WO2015029839A1 - 含フッ素化合物の製造方法 - Google Patents

含フッ素化合物の製造方法 Download PDF

Info

Publication number
WO2015029839A1
WO2015029839A1 PCT/JP2014/071673 JP2014071673W WO2015029839A1 WO 2015029839 A1 WO2015029839 A1 WO 2015029839A1 JP 2014071673 W JP2014071673 W JP 2014071673W WO 2015029839 A1 WO2015029839 A1 WO 2015029839A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
fluorine
group
atom
reaction
Prior art date
Application number
PCT/JP2014/071673
Other languages
English (en)
French (fr)
Inventor
元志 青山
順平 野村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480047089.5A priority Critical patent/CN105492418B/zh
Priority to RU2016110877A priority patent/RU2675377C2/ru
Priority to JP2015534153A priority patent/JP6288094B2/ja
Priority to EP14839266.5A priority patent/EP3040327B1/en
Priority to KR1020167004853A priority patent/KR102258218B1/ko
Publication of WO2015029839A1 publication Critical patent/WO2015029839A1/ja
Priority to US15/016,426 priority patent/US9783483B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/287Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/24Preparation of ethers by reactions not forming ether-oxygen bonds by elimination of halogens, e.g. elimination of HCl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen

Definitions

  • the present invention relates to a method for producing industrially useful fluorine-containing compounds.
  • Fluorine-containing monomers such as perfluoro (alkyl vinyl ether) are useful as raw material monomers for fluororesins having excellent heat resistance and chemical resistance.
  • perfluoro (alkyl vinyl ether) having a carboxy group in the molecule is useful as a raw material monomer for an ion exchange membrane, and is produced via diacyl fluorides (see Non-Patent Document 1).
  • Step (1) A step of obtaining a partially fluorinated ester by reacting a bifunctional alcohol with monoacyl fluoride.
  • Step (2) A step of obtaining a perfluoroester from a partially fluorinated ester by a fluorination reaction.
  • Step (3) A step of obtaining diacyl fluorides by perfluoroester decomposition reaction.
  • An object of the present invention is to provide a method for producing a perfluorinated target product in a high yield in a fluorination reaction of a partially fluorinated ester.
  • the present invention provides a method for producing a fluorine-containing compound having the following configurations [1] to [14].
  • R A a divalent saturated hydrocarbon group or a partially halogenated divalent saturated hydrocarbon group.
  • R B, R C, R D R B is either R BF and the same fluorine-containing monovalent organic group, a monovalent organic group formed in R BF by a fluorination reaction, a hydrogen atom and a halogen atom
  • R C is a monovalent organic group formed in R CF by the same fluorine-containing monovalent organic group or a fluorination reaction and R CF
  • R D is the same fluorinated monovalent organic group or a fluorination reaction and R DF it is a monovalent organic group formed in R DF.
  • X 1 is a halogen atom.
  • R AF A group in which all hydrogen atoms of R A are fluorine-substituted.
  • R BF If R B is a hydrogen atom, the R BF is a fluorine atom, if R B is a halogen atom, the R BF is the same halogen atom and R B. If R B is not one of a hydrogen atom and a halogen atom, R BF is R B identical or different fluorinated monovalent organic radical, when different is a group in which R B is fluorine-substituted.
  • R CF R CF is R C is the same as or different from the fluorine-containing monovalent organic group, when different is a group R C is substituted by fluorine.
  • R DF R DF is R D is the same as or different from the fluorine-containing monovalent organic group, when different is a group R D is fluorinated.
  • the R B and R BF are fluorine atoms
  • the R C and R CF are the same and are perfluoroalkyl groups having 1 to 3 carbon atoms
  • the R D and R DF are the same Any one of [1] to [3], which is a perfluoroalkyl group having 1 carbon atom, a perfluoroalkoxy group having 2 to 6 carbon atoms, or a perfluoroalkoxy group having 4 to 8 carbon atoms having one etheric oxygen atom
  • a method for producing such a fluorine-containing compound is a perfluoroalkyl group having 1 carbon atom, a perfluoroalkoxy group having 2 to 6 carbon atoms, or a perfluoroalkoxy group having 4 to 8 carbon atoms having one etheric oxygen atom
  • fluorination is performed by supplying a fluorine gas diluted with an inert gas into the liquid phase, and the ratio of the fluorine gas is the sum of the inert gas and the fluorine gas.
  • fluorination is performed in the liquid phase containing a fluorination reaction solvent, and the fluorination reaction solvent is a fluorine-containing solvent containing an etheric oxygen atom not containing a C—H bond.
  • the fluorine-containing solvent is (R DF ) (R CF ) (R BF ) C—C ( ⁇ O) F (provided that R BF , R CF and R DF are the same as above), [ 6] The method for producing a fluorine-containing compound.
  • Steps (I) and (II) in the method for producing a fluorine-containing compound according to any one of [1] to [7], and the cleavage reaction of the compound (4) are represented by the following formula (5): And a step (III) of obtaining one or more of the compound (5) and the compound (6) represented by the following formula (6).
  • fluorination is performed in the liquid phase containing a fluorination reaction solvent, and the fluorination reaction solvent is one or more of the compound (5) and the compound (6).
  • a method for producing a fluorine-containing compound is performed in the liquid phase containing a fluorination reaction solvent.
  • a method for producing a fluorine-containing compound is
  • R AF Shows the same meaning as above.
  • Q AF When the number of carbon atoms in R AF is 1, Q AF is a single bond. When the number of carbon atoms in R AF is 2 or more, Q AF has one carbon atom less than R AF , and all the hydrogen atoms of the divalent saturated hydrocarbon group or the partially halogenated divalent saturated hydrocarbon group are fluorine-substituted. It is a group.
  • Step (I), step (II) and step (III) in the method for producing a fluorine-containing compound of [8] or [9], and the compound (5) are represented by the following formula (9):
  • a method for producing a fluorine-containing compound comprising a step (VI) of reacting with a compound (9) to obtain a compound (10) represented by the following formula (10): HO-R (9) R—OC ( ⁇ O) —R AF —C ( ⁇ O) O—R (10)
  • R is a group selected from —CH 3 , —CH 2 CH 3 and —CH (CH 3 ) 2 .
  • R AF Shows the same meaning as above.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms.
  • a method for producing a fluoropolymer comprising obtaining the compound (8) by the method of [10] and then polymerizing the compound (8).
  • a method for producing a fluorine-containing polymer wherein the compound (11) is obtained by the method of [12], and then the compound (11) is polymerized.
  • a perfluorinated target product can be produced in a high yield in the fluorination reaction of a partially fluorinated ester.
  • the organic group is a group in which a carbon atom is essential, and the hydrocarbon group is a group composed of a carbon atom and a hydrogen atom.
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • halogenated refers to substitution of an atom that is not a halogen atom (for example, a hydrogen atom bonded to a carbon atom) with a halogen atom, or a group bonded to a carbon atom (for example, a hydroxyl group bonded to a carbon atom).
  • a halogen atom With a halogen atom, and adding a halogen atom to an atomic group having no halogen atom (for example, an atomic group consisting of two carbon atoms forming a double bond or a triple bond), Say. Note that substituting a halogen atom with another halogen atom may also be referred to as halogenation in the name of the substituted halogen atom (for example, fluorination may mean substituting a chlorine atom or the like with a fluorine atom). is there).
  • a “halogenable” group refers to a group having at least one of an atom, a group, and an atomic group that can be halogenated by a halogenation reaction.
  • halogenated group refers to an organic group generated by halogenating an organic group having a group that can be halogenated.
  • a halogenated hydrocarbon group is an organic group produced by halogenating a hydrocarbon group.
  • a “partially halogenated group” is a group that is a halogenated group and that can be halogenated.
  • the “perhalogenated group” is a group that is a halogenated group and does not have a group that can be halogenated.
  • Fluorine-containing perhalogenated group refers to a perhalogenated group in which at least a part of the halogen atom is a fluorine atom.
  • fluorination reaction in the following description and claims refers to the fluorination reaction of step (II) in the present invention.
  • fluorination refers to fluorination by the fluorination reaction in step (II) in the present invention.
  • organic group that can be fluorinated in the following specification refers to an organic group having at least one of an atom, a group, and an atomic group that can be fluorinated by the fluorination reaction in the step (II) of the present invention. .
  • the heteroatom-containing hydrocarbon group is a heteroatom that does not change by a fluorination reaction (for example, an oxygen atom of an alkoxy group, an etheric oxygen atom, etc.) or a heteroatom group that does not change by a fluorination reaction (for example, A carbonyl group, a sulfonyl group, etc.).
  • the halogenated (hetero atom-containing hydrocarbon) group is a group obtained by halogenating a hetero atom-containing hydrocarbon group.
  • a perhalogenated (heteroatom-containing hydrocarbon) group is a halogenated (heteroatom-containing hydrocarbon) group in which no group that can be halogenated exists, and a partially halogenated (heteroatom-containing hydrocarbon) group is a halogen atom. It is a halogenated (heteroatom-containing hydrocarbon) group in which there is a group that can be converted.
  • the method for producing a fluorine-containing compound of the present invention includes the following steps (I) and (II), and includes steps (III) to (VI) as necessary. Hereinafter, each step will be described.
  • Step (I) is a step of obtaining the following compound (3) (however, the fluorine content is 30% by mass or more) by reacting the following compound (1) with the following compound (2). .
  • R A is a divalent saturated hydrocarbon group or a partially halogenated divalent saturated hydrocarbon group.
  • R A does not have a hetero atom such as an etheric oxygen atom.
  • no heteroatoms such as R A etheric oxygen atom compounds in later step (II) (3) is hardly decomposed. Therefore, the yield of compound (4), which is the target product of step (II), is excellent.
  • the carbon number of RA is preferably 1-20, and particularly preferably 1-10.
  • Examples of the divalent saturated hydrocarbon group include an alkylene group and a divalent saturated hydrocarbon group having a ring structure.
  • Examples of the divalent saturated hydrocarbon group having a ring structure include a divalent saturated hydrocarbon group having a substituent selected from the group consisting of a cycloalkyl group, a bicycloalkyl group, and a monovalent group having an alicyclic spiro structure; Cycloalkylene group; bicycloalkylene group; divalent saturated hydrocarbon group having a cycloalkylene group or bicycloalkylene group as a partial structure; and the like.
  • the divalent saturated hydrocarbon group is preferably an alkylene group from the viewpoint of availability.
  • the alkylene group may be linear or branched, and is preferably linear from the viewpoint of excellent conversion rate of the compound (3) in the step (II).
  • the partially halogenated divalent saturated hydrocarbon group is preferably a group in which part of the hydrogen atoms of the above divalent saturated hydrocarbon group is substituted with a halogen atom, and part of the hydrogen atoms of the alkylene group is substituted with a halogen atom.
  • Particularly preferred are partially halogenated alkylene groups.
  • the halogen atom of the partially halogenated alkylene group is preferably a fluorine atom, a chlorine atom or a bromine atom.
  • R A is preferably a linear alkylene group having 1 to 20 carbon atoms, particularly preferably a linear alkylene group having 1 to 10 carbon atoms. Specific examples include — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 — and the like.
  • R B is, R BF and the same fluorine-containing monovalent organic group, a monovalent organic group formed in R BF by a fluorination reaction, it is any one of hydrogen atom and halogen atoms.
  • R C is a monovalent organic group formed in R CF by the same fluorine-containing monovalent organic group or a fluorination reaction and R CF.
  • R D is a monovalent organic group formed in R DF by the same fluorine-containing monovalent organic group or a fluorination reaction and R DF.
  • the —C (R B ) (R C ) (R D ) group in the formula (2) is a branched group. Since the branched group is bulky, the compound (3) having the group is hardly decomposed in the step (II). Therefore, the yield of compound (4) in step (II) is excellent.
  • R B is the same fluorine-containing monovalent organic group as R BF
  • R B is a fluorine-containing monovalent organic group that is not fluorinated by the fluorination reaction.
  • fluorine-containing perhalogenated monovalent saturated hydrocarbon group fluorine-containing perhalogenated (hetero atom-containing monovalent saturated hydrocarbon) group;
  • the organic group that can be fluorinated by the fluorination reaction in the step (II) has at least one of the following atoms, atomic groups, and groups.
  • An organic group that is not fluorinated by the fluorination reaction is an organic group that does not have any of these.
  • Examples of the atom that can be fluorinated by the fluorination reaction include a hydrogen atom bonded to a carbon atom.
  • Examples of the atomic group that can be fluorinated by the fluorination reaction include an atomic group to which a fluorine atom such as> C ⁇ C ⁇ , —C ⁇ C— can be added.
  • C C ⁇ is fluorinated, it becomes> CF—CF ⁇ , and when —C ⁇ C— is fluorinated, it becomes —CF 2 —CF 2 —.
  • an atom group that can be fluorinated may be bonded to an atom group that can be fluorinated.
  • the group that can be fluorinated by the fluorination reaction include a carboxy group that becomes a fluorocarbonyl group by fluorination; a group in which a carbonyl group is inserted between carbon-carbon bonds of an alkyl group; and the like.
  • the monovalent saturated hydrocarbon group that is the source of the fluorine-containing perhalogenated monovalent saturated hydrocarbon group and the fluorine-containing perhalogenated (heteroatom-containing monovalent saturated hydrocarbon) group includes an alkyl group, a cycloalkyl group, or a ring
  • a monovalent saturated hydrocarbon group having a structure for example, a cycloalkyl group, a cycloalkylalkyl group, or a bicycloalkyl group, a group having an alicyclic spiro structure, or a group having these groups as a partial structure). It is done.
  • R B is the same fluorine-containing monovalent organic group as R BF
  • specific examples of R B include a fluorine-containing perhalogenated alkyl group and a fluorine-containing perhalogenated alkyl having one or more etheric oxygen atoms.
  • Group, fluorine-containing perhalogenated alkoxy group, fluorine-containing perhalogenated alkoxy group having one or more etheric oxygen atoms is preferred, perfluoroalkyl group, perfluoroalkyl group having one or more etheric oxygen atoms, perfluoroalkoxy Especially preferred are perfluoroalkoxy groups having one or more etheric oxygen atoms.
  • R B is the same fluorine-containing monovalent organic group as R BF , solubility in the liquid phase of the compound (3) in the step (II) described later, inhibition of decomposition of the compound (3) in the step (II), etc. in terms of the number of carbon atoms of R B is preferably 1 to 20, 1 to 10 are particularly preferred.
  • R B may be linear or branched.
  • R B When R B is a monovalent organic group that becomes R BF by a fluorination reaction, R B includes a monovalent saturated hydrocarbon group; a heteroatom-containing monovalent saturated hydrocarbon group; a partially halogenated monovalent saturated hydrocarbon group.
  • the monovalent saturated hydrocarbon group in the heteroatom-containing monovalent saturated hydrocarbon group, partially halogenated monovalent saturated hydrocarbon group and partially halogenated (heteroatom-containing monovalent saturated hydrocarbon) group includes fluorine-containing perhalogenated 1 Examples thereof include the same groups as those exemplified as the monovalent saturated hydrocarbon group in the valent saturated hydrocarbon group and the fluorine-containing perhalogenated (hetero atom-containing monovalent saturated hydrocarbon) group.
  • monovalent unsaturated hydrocarbon group that can be fluorinated include a cyclohexenyl group, a phenyl group, an alkenyl group, and an alkynyl group.
  • R B When R B is a monovalent organic group that becomes R BF by a fluorination reaction, R B includes a monovalent saturated hydrocarbon group; a heteroatom-containing monovalent saturated hydrocarbon group; a partially halogenated monovalent saturated hydrocarbon group.
  • a partially halogenated (heteroatom-containing monovalent saturated hydrocarbon) group is particularly preferred.
  • a partially halogenated alkyl group having one or more etheric oxygen atoms and a partially halogenated alkoxy group having one or more etheric oxygen atoms are preferred.
  • R B is a monovalent organic group that becomes R BF by a fluorination reaction
  • solubility of the compound (3) in the liquid phase in the step (II) described below, and the decomposition inhibition of the compound (3) in the step (II) from the viewpoint of equal number of carbon atoms in R B is preferably 1 to 20, 1 to 10 are particularly preferred.
  • R B may be linear or branched.
  • R B is a halogen atom
  • R B is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom.
  • R C is the same fluorine-containing monovalent organic group as R CF
  • examples of R C include the same groups as those exemplified for R B , and the same groups are preferable.
  • R C is a monovalent organic group that becomes R CF by a fluorination reaction
  • examples of R C include the same groups as those exemplified for R B , and the same groups are preferable.
  • R C is a monovalent organic group formed in R CF by the same fluorine-containing monovalent organic group or a fluorination reaction and R CF, solubility in a liquid phase of the compound in the later step (II) (3)
  • the carbon number of R C is preferably 1-20, and particularly preferably 1-10.
  • R C may be linear or branched.
  • R D is the same fluorine-containing monovalent organic group as R DF
  • examples of R D include the same groups as those exemplified for R B , and the same groups are preferable. If R D is a monovalent organic group formed in R DF by fluorination reaction, as the R D, include the same groups as exemplified for R B, the same groups are preferred.
  • R D is a monovalent organic group formed in R DF by the same fluorine-containing monovalent organic group or a fluorination reaction and R DF, solubility in a liquid phase of the compound in the later step (II) (3)
  • the carbon number of RD is preferably 1-20, and particularly preferably 1-10.
  • RD may be linear or branched.
  • R C and One of R D is a monovalent organic group having 1 to 3 carbon atoms
  • one of R C and R D is a monovalent organic group having 1 to 10 carbon atoms
  • R B is a hydrogen atom or a halogen atom Combinations that are atoms are preferred.
  • R C is one selected from the group consisting of —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CF (CF 3 ) 2
  • R D is —CF 3, —OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 , —OCF 3 , —OCF 2 CF 3 , —OCF 2 CF 2 CF 3 , —OCF 2 CF 2 CFClCF 2 Cl, — A combination of OCF 2 CF 2 Br, —OCF (CF 3 ) CF 2 CFClCF 2 Cl, —OCH 2 CH 2 CH 3 , wherein R B is a hydrogen atom or a halogen atom. It is done.
  • R C is a perfluoroalkyl group having 1 to 3 carbon atoms or a perfluoroalkoxy group having 1 to 3 carbon atoms
  • R D is a perfluoroalkyl group having 1 carbon atom
  • a perfluoroalkyl group having 2 to 10 carbon atoms having the etheric oxygen atom, a perfluoroalkoxy group having 1 to 10 carbon atoms, or a perfluoroalkoxy group having 2 to 10 carbon atoms having one or more etheric oxygen atoms A combination in which R B is a fluorine atom is more preferable.
  • R B is a perfluoroalkyl group having 1 to 3 carbon atoms
  • R D is a perfluoroalkyl group having 1 carbon atom, a perfluoroalkoxy group having 2 to 6 carbon atoms, or A combination of 4 to 8 carbon atoms having one etheric oxygen atom and R B being a fluorine atom.
  • R C is selected from the group consisting of —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CF (CF 3 ) 2.
  • R D is one selected from the group consisting of —CF 3 , —OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 , —OCF 2 CF 2 CF 3 , and R B is fluorine The combination which is an atom is mentioned.
  • X 1 is a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. From the viewpoint of excellent reactivity in the step (1), a fluorine atom, a chlorine atom or a bromine atom is preferable, and a fluorine atom is particularly preferable.
  • Compound (1) Specific examples of the compound (1) include the following compound (1-1). HOCH 2 — (CH 2 ) n —CH 2 OH (1-1) n is the number of carbon atoms of RA , preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, and particularly preferably 2 to 8.
  • Compound (2) Specific examples of the compound (2) include the following compounds (2-1) to (2-7), and compounds (2-1) to (2-3) are particularly preferable.
  • the boiling point of the compound (2) is preferably ⁇ 10 to 200 ° C., particularly preferably 0 to 170 ° C.
  • the recovery operation when recovering the unreacted compound (2) is easy after the step (I).
  • the unreacted compound (2) can be recovered without using a large-scale facility such as a refrigerator.
  • the unreacted compound (2) can be recovered using a general-purpose heating device such as steam without using a special heating device.
  • the boiling points of the compounds (2-1) to (2-7) are all 0 to 170 ° C.
  • Compound (2) can be obtained by a method of obtaining a commercially available product, a method of synthesis by a known method, or the like.
  • step (I) Compound (1) and compound (2) are combined so that the fluorine content of compound (3) obtained in step (I) is 30% by mass or more.
  • the fluorine content of the compound (3) is 30% by mass or more, the solubility of the compound (3) in the liquid phase in the step (II) is excellent. Therefore, it becomes easy to carry out the fluorination reaction of step (II) in a uniform system, and the yield of compound (4) in step (II) is also improved.
  • the fluorine content of the compound (3) is preferably 30 to 86% by mass, particularly preferably 30 to 76% by mass.
  • fluorine content means the mass ratio of the fluorine atom which occupies for the molecular weight of a compound.
  • the combination of compound (1) and compound (2) uses a compound that does not contain a fluorine atom in one of them, and contains a fluorine atom in the other. It is preferable to use a compound containing. Especially, it is especially preferable to use the compound which does not contain a fluorine atom as a compound (1), and to use the compound which contains a fluorine atom as a compound (2).
  • the compound (3) is preferably a compound having only hydrogen atoms bonded to carbon atoms as atoms, atomic groups and groups that can be fluorinated.
  • the fluorination reaction in the step (II) is only a reaction in which a hydrogen atom bonded to a carbon atom is replaced with a fluorine atom. Since —CH 2 —R A —CH 2 — has only a hydrogen atom bonded to a carbon atom as an atom, atomic group and group that can be fluorinated, any of R B , R C , and R D can be fluorinated.
  • the fluorination of the compound (3) is only a reaction in which a hydrogen atom in —CH 2 —R A —CH 2 — is replaced with a fluorine atom.
  • the following compound (3-7) may be mentioned.
  • the reaction between the compound (1) and the compound (2) is an esterification reaction and can be carried out by a known method.
  • the esterification reaction may be performed in the presence or absence of a solvent (hereinafter also referred to as “esterification reaction solvent”).
  • esterification reaction solvent dichloromethane, chloroform, triethylamine, or a mixed solvent of triethylamine and tetrahydrofuran is preferable.
  • the amount of the esterification reaction solvent used is preferably 50 to 500 parts by mass with respect to 100 parts by mass as the total of the compound (1) and the compound (2).
  • the esterification reaction is carried out in a batch reactor, the amount of compound (1) and compound (2) per unit volume of the reactor is improved and the productivity is excellent. It is preferable to carry out the esterification reaction in the presence.
  • the amount of the compound (2) with respect to the compound (1) is preferably 1.5 to 10-fold mol, particularly preferably 2 to 5-fold mol.
  • the lower limit of the reaction temperature between compound (1) and compound (2) is preferably ⁇ 50 ° C.
  • the upper limit is preferably a low temperature of 100 ° C. and the boiling point of the esterification reaction solvent.
  • ° C is preferred.
  • the reaction temperature is particularly preferably ⁇ 50 to 100 ° C.
  • the reaction time of the compound (1) and the compound (2) can be appropriately changed according to the feed rate of the raw material and the amount of the compound used for the reaction.
  • the reaction pressure is preferably 0 to 2 MPa (gauge pressure).
  • an acid represented by HX 1 is generated.
  • X 1 is a fluorine atom
  • HF is generated, and therefore it is preferable that a HF scavenger is present in the reaction system.
  • the HF scavenger include alkali metal fluorides and trialkylamines.
  • the alkali metal fluoride NaF or KF is preferable.
  • an HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which HF can be vaporized, and to discharge HF out of the reaction system accompanied by a nitrogen stream.
  • the amount of the HF scavenger used is preferably 1 to 10 moles compared to the compound (2).
  • the crude product containing the compound (3) produced by the reaction between the compound (1) and the compound (2) may be purified or used as it is for the reaction in the step (II). It is preferable to refine
  • Purification methods include distillation of the crude product as it is, treatment of the crude product with dilute alkaline water and separation, distillation of the crude product after extraction with an appropriate organic solvent, silica gel column chromatography Etc.
  • Step (II) is a step of obtaining compound (4) represented by the following formula (4) by fluorinating compound (3) in the liquid phase.
  • the compound (4) is a compound in which all of the atoms, atomic groups, and groups that can be fluorinated in the compound (3) are fluorinated.
  • the compound (3) obtained by reacting the compound (1) and the compound (2) is not easily decomposed in the step (II). Therefore, compound (4) can be obtained in high yield by using compound (3) as a raw material for fluorination.
  • R AF is a group in which all of the hydrogen atoms of R A are substituted with fluorine atoms.
  • R BF (R BF , R CF and R DF ) If R B is a hydrogen atom, the R BF is a fluorine atom, if R B is a halogen atom, the R BF is the same halogen atom and R B. If R B is not one of a hydrogen atom and a halogen atom, R BF is the same as R B or different fluorinated monovalent organic group, and when different R B is fluorinated groups (in R B , A group in which all of the atoms, groups and groups that can be fluorinated are fluorinated.).
  • R CF is a fluorine-containing monovalent organic group which is the same as or different from R C , and when different, R C is a group in which R C is fluorinated (all atoms, atomic groups and groups in R C that can be fluorinated). A fluorinated group.).
  • R DF is a fluorine-containing monovalent organic group that is the same as or different from RD , and in the case where RD is different, RD is a fluorinated group (all of the atoms, atomic groups and groups in RD that can be fluorinated). A fluorinated group.).
  • Compound (4) Specifically, as the compound (4), the following compound (4-1) obtained by the fluorination reaction of the compound (3-1) and the following compound obtained by the fluorination reaction of the compound (3-2) (4-2), the following compound (4-3) obtained by fluorination reaction of the compound (3-3), the following compound (4-4) obtained by fluorination reaction of the compound (3-4), The following compound (4-5) obtained by fluorination reaction of compound (3-5), the following compound (4-6) obtained by fluorination reaction of compound (3-6), and compound (3-7) The following compound (4-7) obtained by the fluorination reaction of:
  • the fluorination reaction of compound (3) is performed in the liquid phase. It is preferably carried out in a liquid phase containing a solvent (hereinafter also referred to as “fluorination reaction solvent”).
  • fluorination reaction solvent a solvent
  • fluorine gas is preferably used.
  • the fluorine gas is preferably a fluorine gas diluted with an inert gas.
  • the inert gas include noble gases such as helium gas, neon gas, and argon gas, and nitrogen gas. Nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable because it is economically advantageous.
  • the proportion of fluorine gas (hereinafter also referred to as “fluorine gas amount”) is preferably 30 to 60% by volume in a total of 100% by volume of fluorine gas and inert gas.
  • fluorine gas amount is preferably 30 to 60% by volume in a total of 100% by volume of fluorine gas and inert gas.
  • the compound (3) obtained by reacting the compound (1) and the compound (2) has a high conversion rate of the compound (3) even under a relatively large amount of fluorine gas, and the compound (3) The selectivity of 4) is high. Therefore, compound (4) can be obtained in high yield under conditions where the amount of fluorine gas is large and productivity is excellent.
  • the fluorination reaction solvent is preferably a fluorinated solvent that is not fluorinated by a fluorination reaction, and has, for example, perfluoroalkanes or one or more atoms selected from a chlorine atom, a nitrogen atom, and an oxygen atom in the structure.
  • the organic solvent which perfluorinated the well-known organic solvent is mentioned.
  • the fluorination reaction solvent a solvent that exists as a liquid at ⁇ 100 to 300 ° C. under normal pressure is preferable, and a solvent that exists as a liquid at ⁇ 80 to 200 ° C. is particularly preferable.
  • a solvent having high solubility of the compound (3) is preferably used, and a fluorine-containing solvent capable of dissolving 1% by mass or more of the compound (3) at 20 ° C. is particularly preferable, and 5% by mass or more is preferable. Soluble solvents are particularly preferred.
  • fluorination reaction solvent examples include perfluoroalkanes (trade names: FC-72, etc.), perfluoroethers (trade names: FC-75, FC-77, etc.), and perfluoropolyethers (product). Name: Krytox, Fomblin, Galden, Demnam, etc.), chlorofluoroethers, chlorofluorocarbons (trade name: CFC), chlorofluoropolyethers, perfluoroalkylamines (for example, perfluorotrialkylamine, etc.), An inert fluid (trade name: Florinert) and the like can be mentioned.
  • the fluorination reaction solvent is more preferably a fluorine-containing solvent containing an etheric oxygen atom, and examples thereof include the above-mentioned perfluoroethers, perfluoropolyethers, and chlorofluoroethers. Of these, a fluorine-containing solvent containing no chlorine atom is preferable, and perfluoroethers and perfluoropolyethers are particularly preferable.
  • the fluorination reaction solvent it is also preferable to use at least one of compound (5) and compound (6), which is a product of step (III) described later.
  • compound (5) and compound (6) which is a product of step (III) described later.
  • solvent recovery after step (III) becomes unnecessary, and post-treatment becomes simple.
  • the compound (5) is preferably the compound of interest, so that the compound (6) is preferred as the fluorination reaction solvent.
  • the amount of the fluorination reaction solvent used is preferably 5 times or more, more preferably 10 to 100 times the mass of the compound (3).
  • the reaction mode of the fluorination reaction is preferably a batch method or a continuous method.
  • the fluorination reaction is preferably carried out by the following ⁇ Method 1> or ⁇ Method 2>, and ⁇ Method 2> is particularly preferred from the viewpoint of the reaction yield and selectivity of the compound (4).
  • Fluorine gas is preferably diluted with an inert gas such as nitrogen gas when used in a batch mode or in a continuous mode.
  • ⁇ Method 1> Into the reactor, the compound (3) and the fluorination reaction solvent are charged, and stirring is started. A method in which a fluorine gas diluted with an inert gas is reacted under a predetermined reaction temperature and reaction pressure while being continuously fed into a fluorination reaction solvent.
  • Method 2> The reactor is charged with a fluorinated reaction solvent and stirred. Next, the reaction is carried out while continuously supplying the fluorine gas diluted with an inert gas, the compound (3), and the fluorination reaction solvent at a predetermined molar ratio at a predetermined reaction temperature and pressure. How to make.
  • a fluorination reaction solvent is continuously introduced into the tubular reactor and allowed to flow through the tubular reactor.
  • the fluorine gas diluted with an inert gas and the fluorination reaction solvent in which the compound (3) is dissolved are continuously tubular reacted at a ratio of the fluorine gas and the compound (3) at a predetermined molar ratio.
  • the fluorination reaction solvent containing the reaction product is supplied from the tubular reactor to the fluorination reaction solvent flow in the reactor, mixed, and brought into contact with the fluorine gas and the compound (3) in the tubular reactor. How to take out.
  • the fluorination reaction solvent can be circulated and the fluorination reaction can be carried out in a continuous manner by taking out the reaction product from the circulated fluorination reaction solvent.
  • Method 2 when supplying Compound (3), supplying Compound (3) diluted with a fluorination reaction solvent improves the selectivity of Compound (4). , which is preferable in terms of suppressing the amount of by-products. Moreover, when diluting the compound (3) with a solvent, the amount of the fluorination reaction solvent relative to the compound (3) is preferably 5 times or more, and more preferably 10 times or more.
  • the amount of fluorine (F 2 ) that fluorinates all of the atoms, atomic groups, and groups that can be fluorinated in the compound (3) in both the batch system and the continuous system is preferable to always have an excess amount.
  • the amount is preferably 1.1 times equivalent or more, and particularly preferably 1.3 times equivalent or more of the theoretical amount necessary to fluorinate all the atoms, atomic groups and groups that can be fluorinated.
  • the amount of fluorine (F 2 ) is always excessive.
  • the amount of fluorine is preferably 1.1 times equivalent or more (that is, 1.1 times mole or more) with respect to hydrogen atoms, and 1.3 times equivalent or more (that is, 1.3 times mole or more).
  • the above is particularly preferable from the viewpoint of selectivity.
  • the amount of fluorine is preferably in excess from the beginning to the end of the reaction. Therefore, when the fluorination reaction solvent is charged into the reactor at the beginning of the reaction, it is preferable to dissolve a sufficient amount of fluorine in the fluorination reaction solvent.
  • the liquidus temperature of the fluorination reaction is preferably from 10 to 50 ° C., particularly preferably from 10 to 30 ° C., from the viewpoint of the yield of the compound (4), selectivity, safety and industrial ease of implementation.
  • the reaction pressure for the fluorination reaction is not particularly limited, and is preferably from atmospheric pressure to 2 MPa (gauge pressure) from the viewpoints of the yield of compound (4), selectivity, safety, and industrial ease of implementation.
  • a C—H bond-containing compound other than the compound (3) is added to the reaction system, or to irradiate the reaction system with ultraviolet rays. These are preferably carried out in the late stage of the fluorination reaction. Thereby, the compound (3) present in the reaction system can be efficiently fluorinated, and the yield of the compound (3) can be dramatically improved.
  • the C—H bond-containing compound is preferably an aromatic hydrocarbon, and examples thereof include benzene and toluene.
  • the amount of the CH bond-containing compound added is preferably from 0.1 to 10 mol%, particularly preferably from 0.1 to 5 mol%, based on the hydrogen atoms in the compound (3).
  • the C—H bond-containing compound is preferably added to the reaction system in which fluorine gas is present. Further, when a C—H bond-containing compound is added, the reaction system is preferably pressurized. The pressure during pressurization is preferably 0.01 to 5 MPa (gauge pressure). In the case of irradiation with ultraviolet rays, the irradiation time is preferably 0.1 to 3 hours.
  • HF is by-produced.
  • an HF scavenger Specifically, a method in which an HF scavenger coexists in the reaction system and a method in which the HF scavenger is brought into contact with the outlet gas at the reactor gas outlet are exemplified.
  • the HF scavenger those exemplified above can be used similarly, and NaF is preferable.
  • the amount of the HF scavenger is preferably 1 to 20 times mol, particularly preferably 1 to 5 times mol for the hydrogen atom present in the compound (3).
  • an HF scavenger is disposed at the reactor gas outlet, it is preferable to employ a NaF pellet packed layer in which NaF, which is an HF scavenger, is formed and filled into pellets. Specifically, (a) a cooler (preferably kept at 10 ° C.
  • a liquid return line for returning the liquid condensed from the cooler to the reactor may be installed.
  • the crude product containing the compound (4) obtained by the fluorination reaction may be used in the next step as it is, or may be purified to have a high purity.
  • the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure.
  • Step (III) is a step of obtaining one or more of compound (5) represented by the following formula (5) and compound (6) represented by the following formula (6) by cleavage reaction of compound (4). .
  • Examples of compound (5) include the following compound (5-1) obtained by cleavage reaction of compounds (4-1) to (4-7).
  • n is the same as n in the formula (1-1).
  • the cleavage reaction of compound (4) is a decomposition reaction of the ester bond of compound (4).
  • the decomposition reaction is preferably performed by a thermal decomposition reaction or a decomposition reaction performed in the presence of a nucleophile or an electrophile, and a decomposition reaction performed in the presence of a nucleophile or an electrophile is particularly preferable.
  • the reaction may be performed in the presence or absence of a decomposition reaction solvent. Good. It is preferable to carry out in the absence of a decomposition reaction solvent in that the compound (4) itself acts as a solvent and it is not necessary to separate the solvent from the reaction product.
  • the nucleophilic agent F - is preferably, F from the alkali metal fluoride - is particularly preferred. As the alkali metal fluoride, NaF, NaHF 2 , KF, and CsF are preferable, and KF is particularly preferable from the viewpoint of reactivity.
  • F - a when performing a decomposition reaction of the ester bond to nucleophilic agent, F to the carbonyl group present in the ester bond of the compound (4) - is added nucleophilically, then, -OCF 2 -R AF 6 -CF 2 O— is eliminated and compound (6) is produced.
  • -OCF is 2 -R from AF -CF 2 O-addition F - is separated compound (5) is produced de.
  • the detached F ⁇ reacts in the same manner as another compound (4) molecule. Therefore, the nucleophile used at the beginning of the reaction may be a catalytic amount or an excess amount.
  • the amount of the nucleophilic agent such as, preferably 0.1 to 500 mol% relative to the compound (4), more preferably 0.1 to 100 mol%, particularly preferably 0.5 to 50 mol%.
  • the reaction temperature is preferably ⁇ 30 ° C. or higher and not higher than the boiling point of the solvent or compound (4), particularly preferably ⁇ 20 to 250 ° C.
  • the decomposition reaction is preferably carried out while distillation in a reaction apparatus equipped with a distillation column.
  • generated at process (III) Compound (5) can be continuously produced by using (6) (recycling) as compound (2) in step (I).
  • generated compound (6) as a compound (2) is mentioned.
  • the compound (6) can also be used as a fluorination reaction solvent. Accordingly, the compound (1) is mixed with an excess amount of the compound (6), and both are reacted to form the compound (3), whereby a solution comprising the compound (3) and the compound (6) in which it is dissolved. Can be formed. This solution can be used in step (II) as a fluorination reaction solvent in which compound (3) is dissolved.
  • Step (IV) is a step in which compound (5) is reacted with hexafluoropropylene oxide (hereinafter also referred to as “HFPO”) to obtain compound (7) represented by the following formula (7).
  • Step (V) is a step of thermally decomposing compound (7) to obtain compound (8) represented by the following formula (8).
  • Compound (8) is a fluorinated monomer capable of cyclopolymerization, and is useful as a raw material for fluororesins. When the compound (8) is produced from the compound (5), the compound (8) can be efficiently obtained with a small number of steps by employing the production method via the compound (7).
  • F 2 C CF—O—Q AF —CF ⁇ CF 2 (8)
  • Q AF Q AF
  • Q AF Q AF
  • Q AF When the number of carbon atoms in R AF is 1, Q AF is a single bond. When the number of carbon atoms in R AF is 2 or more, Q AF has one carbon atom less than R AF , and all the hydrogen atoms of the divalent saturated hydrocarbon group or the partially halogenated divalent saturated hydrocarbon group are fluorine-substituted. It is a group.
  • Examples of the compound (7) include the following compound (7-1) obtained by reacting the compound (5-1) with HFPO. FC ( ⁇ O) —CF (CF 3 ) —O—CF 2 — (CF 2 ) n —C ( ⁇ O) F (7-1) However, n is the same as n in the formula (1-1).
  • the reaction of reacting compound (5) with HFPO to obtain compound (7) may be carried out in the presence or absence of a solvent.
  • the solvent is preferably tetraglyme.
  • the reaction temperature is preferably ⁇ 50 to 0 ° C., and ⁇ 15 to ⁇ 5 ° C. is particularly preferable from the viewpoint of easy reaction control and the selectivity of the compound (7).
  • the reaction is preferably carried out at normal pressure, specifically, ⁇ 0.1 to 0.5 MPa (gauge pressure) is particularly preferred.
  • the reaction is carried out in the absence of moisture and acidic components.
  • the reaction for thermally decomposing the compound (7) is preferably performed in the gas phase in the presence of a catalyst.
  • a catalyst for example, there is a method in which the reaction is carried out in a reactor filled with glass beads as a catalyst using a fluidized bed type reactor.
  • compound (8) can be obtained directly from compound (7) in one step without once converting compound (7) into a metal salt.
  • the reaction is carried out at normal pressure at a reaction temperature of 100 to 350 ° C., and for compound (7) to pass through for 1 to 30 seconds. It is preferable to carry out under the following conditions.
  • the transit time is the time during which the compound (7) is in contact with the catalyst packed bed, which is the portion packed with the catalyst.
  • Step (VI) is a step of obtaining compound (10) represented by the following formula (10) by reacting compound (5) with compound (9) represented by the following formula (9).
  • Compound (10) can be converted to the diisocyanate compound having an R AF group, a diisocyanate compound having an R AF group are useful as intermediates, such as the fluorine-containing polyurethane resin raw material and medical adhesive materials.
  • (R) R is a group selected from —CH 3 , —CH 2 CH 3 and —CH (CH 3 ) 2 .
  • the compound (9) is any one of CH 3 OH, CH 3 CH 2 OH, and (CH 3 ) 2 CHOH.
  • Examples of the compound (10) include the following compounds obtained by reacting the compound (5-1) with the compound (9). R—OC ( ⁇ O) — (CF 2 ) n —C ( ⁇ O) O—R However, n is the same as n in the formula (1-1).
  • the reaction of the compound (5) and the compound (9) may be performed in the presence or absence of a solvent.
  • a solvent which is not reactive with the compound (10) and can be separated from the compound (10) by a method such as distillation separation or column separation is preferable. Since compound (9) itself acts as a solvent, it can be carried out in the absence of a solvent.
  • the lower limit of the reaction temperature is preferably ⁇ 20 ° C.
  • the upper limit of the reaction temperature is preferably a low temperature of 100 ° C. and the boiling point of the solvent.
  • the reaction temperature is particularly preferably 0 to 40 ° C.
  • the pressure is preferably 0 to 2 MPa (gauge pressure).
  • HF is by-produced in the reaction of compound (5) and compound (9).
  • an HF scavenger or an aqueous alkali solution As the HF scavenger, those exemplified above can be used similarly.
  • the alkaline aqueous solution include a potassium hydroxide aqueous solution and a sodium hydroxide aqueous solution.
  • an HF scavenger When an HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which HF can be vaporized, and to discharge HF out of the reaction system accompanied by a nitrogen stream.
  • the amount of the HF scavenger or the aqueous alkali solution used is preferably 1 to 10 times mol with respect to the compound (5).
  • Step (IV) is a step of obtaining compound (7) represented by the following formula (7) by reacting compound (5) with HFPO as described above.
  • Step (VII) is a step of obtaining compound (11) represented by the following formula (11) by thermally decomposing compound (7) and reacting with R 1 OH.
  • Compound (11) is useful as a raw material for the fluororesin. When the compound (11) is produced from the compound (5), the compound (11) can be efficiently obtained with a small number of steps by employing the production method via the compound (7).
  • R 1 R 1 : an alkyl group having 1 to 10 carbon atoms.
  • Examples of the compound (11) include the following compound (11-1) obtained by thermally decomposing the compound (7-1) and reacting with R 1 OH.
  • n is the same as n in the formula (1-1).
  • R 1 is CH 3 (that is, R 1 OH is methanol)
  • F 2 C ⁇ CF—O— (CF 2 ) n —C ( ⁇ O) OCH 3 is a fluorine-containing polymer as a fluorine-containing monomer. It is useful for production, and n is particularly preferably 3.
  • the reaction for thermally decomposing compound (7) to synthesize (11) is preferably performed in the gas phase in the presence of a catalyst.
  • a catalyst for example, there is a method in which the reaction is carried out in a reactor filled with glass beads as a catalyst using a fluidized bed type reactor.
  • the compound (11) can be directly obtained from the compound (7) by allowing it to react with methanol after passing through the catalyst layer without isolating the compound (7) once.
  • the reaction temperature is 100 to 350 ° C., preferably 150 to 250 ° C. at normal pressure
  • the transit time of the compound (7) is 1 to 20 seconds. It is preferable to carry out under the following conditions.
  • the transit time is the time during which the compound (7) is in contact with the catalyst packed bed, which is the portion packed with the catalyst.
  • the compound (3) obtained by reacting the compound (1) and the compound (2) in the step (I) in the step (II) is fluorinated.
  • (4) can be obtained in high yield.
  • step (III) to (V) compound (5) and compound (6) are obtained from compound (4), and compound (8) is obtained from compound (5) via compound (7). be able to.
  • the compound (8) is useful as a fluorine-containing monomer capable of cyclopolymerization.
  • step (VI) compound (10) can be obtained from compound (5).
  • the compound (10) is useful as an intermediate for medical adhesives.
  • compound (11) can be obtained from compound (5).
  • Compound (11) is useful as a fluorine-containing monomer.
  • Compound (8) and Compound (11) may be polymerized alone as a fluorine-containing monomer to obtain a fluorine-containing polymer, or may be polymerized in combination to obtain a fluorine-containing polymer.
  • Examples 1 to 5 and Examples 11 and 12 are Examples, and Examples 6 to 10 are Comparative Examples.
  • the amount of the converted compound (3) is a value (mol%) expressed as a percentage on a molar basis, and the calculation formula: 100 ⁇ (recovered unreacted compound ( 3) Amount / feed compound (3) amount) ⁇ 100.
  • the amount of the compound (3) supplied to the fluorination reaction is an actual measurement value
  • the amount of the recovered unreacted compound (3) is determined by 19 F-NMR measurement of the recovered product taken out from the autoclave. This is the calculated value.
  • Example 1-1 Production of (CF 3 ) 2 CFCOO (CH 2 ) 5 OCOCF (CF 3 ) 2 (corresponding to compound (3-1))
  • HO CH 2 ) 5 OH (compound (Corresponding to (1-1)) was added and stirred while bubbling nitrogen gas.
  • 4,400 g of (CF 3 ) 2 CFC ( ⁇ O) F (corresponding to compound (2-1)) was added over 2.5 hours while maintaining the internal temperature of the flask at 25 to 30 ° C. It was fed (bubbling) into the liquid phase. After completion of the supply, the mixture was stirred at room temperature for 15 hours, and the resulting crude liquid was recovered. The GC purity of the crude liquid was 95%.
  • Example 1-1 40 g of (CF 3 ) 2 CFCOO (CH 2 ) 5 OCOCF (CF 3 ) 2 obtained in Example 1-1 was injected over 2 hours while blowing 50% fluorine gas at the same flow rate. Further, 50% fluorine gas was blown at the same flow rate for 1 hour, and nitrogen gas was further blown for 1 hour.
  • the product in the recovered product from the autoclave was mainly composed of the title compound, and the 19 F-NMR yield was 96% and the 19 F-NMR conversion rate was 98%.
  • Example 2 Production of (CF 3 ) 2 CFCOO (CF 2 ) 5 OCOCF (CF 3 ) 2 (corresponding to compound (4-1)) (CF 3 ) 2 CFCOO (CH 2 ) 5 OCOCF (CF 3 ) 2 was obtained.
  • the same operation as in Example 1-2 was performed except that the conditions for the fluorination reaction were changed to those shown in Table 1.
  • the main product of the product in the autoclave recovery was the title compound.
  • the 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 3-2 Production of (CF 3 ) 2 CFCOO (CF 2 ) 6 OCOCF (CF 3 ) 2 (corresponding to Compound (4-1))
  • a compound to be injected into the autoclave was obtained in Example 3-1.
  • the same operation as in Example 1-2 was performed except that CF 3 ) 2 CFCOO (CH 2 ) 6 OCOCF (CF 3 ) 2 was used and the fluorination reaction conditions were as shown in Table 1.
  • the main product of the product in the autoclave recovery was the title compound.
  • the 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 4 (Example 4-1) CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CH 2 ) 6 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (compound (3-2))
  • the same operation as in Example 1-1 was performed except that the starting materials were changed as described in Table 1.
  • Example 4-2 CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CF 2 ) 6 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (compound (4-2)) CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CH 2 ) 6 OCOCF (CF 3 ) OCF 2 CF obtained in Example 4-1 was used as the compound to be injected into the autoclave. The same operation as in Example 1-2 was performed except that (CF 3 ) OCF 2 CF 2 CF 3 was used and the conditions for the fluorination reaction were changed to those shown in Table 1.
  • Example 5 (Example 5-1) CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CH 2 ) 5 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (compound (3-2))
  • the same operation as in Example 1-1 was performed except that the starting materials were changed as described in Table 1.
  • Example 5-2 CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CF 2 ) 5 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (compound (4-2)) CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CH 2 ) 5 OCOCF (CF 3 ) OCF 2 CF obtained in Example 5-1 as the compound to be injected into the autoclave
  • Example 5-1 The same operation as in Example 1-2 was performed except that (CF 3 ) OCF 2 CF 2 CF 3 was used and the conditions for the fluorination reaction were changed to those shown in Table 1.
  • Example 6-2 Production of CF 3 CF 2 CF 2 OCF (CF 3 ) COO (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF 2 CF 3 (corresponding to compound (4-3))
  • Example 6 Example 3 except that CF 3 CF 2 CF 2 OCF (CF 3 ) COO (CH 2 ) 4 OCOCF (CF 3 ) OCF 2 CF 2 CF 3 obtained in 1 was used and the conditions for the fluorination reaction were the same as those in Table 1. The same operation as in 1-2 was performed. The main product of the product in the autoclave recovery was the title compound. The 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 7-1 Production of CF 3 CF 2 COO (CH 2 ) 5 OCOCF 2 CF 3 The same operation as in Example 1-1 was performed, except that the starting materials were changed as shown in Table 1. The collected crude liquid had a GC purity of 97%. 1 H-NMR and 19 F-NMR spectra were measured to confirm that the main component was the title compound. NMR spectrum 1 H-NMR (399.78 MHz, solvent: CDCl 3 , standard: TMS) ⁇ (ppm): 1.42-1.53 (m, 2H), 1.70-1.84 (m, 4H) 4.20-4.50 (m, 4H). 19 F-NMR (376.17 MHz, solvent: CDCl 3 , standard: C 6 F 6 ) ⁇ (ppm): ⁇ 83.0 (6F), ⁇ 121.4 (4F).
  • Example 7-2 Production of CF 3 CF 2 COO (CF 2 ) 5 OCOCF 2 CF 3
  • the compound to be injected into the autoclave was CF 3 CF 2 COO (CH 2 ) 5 OCOCF 2 CF 3 obtained in Example 7-1.
  • the procedure was the same as in Example 1-2 except that the conditions for the fluorination reaction were changed to those shown in Table 1. However, a combustion reaction occurred, and various products were confirmed in the recovered material recovered from the autoclave. It was done.
  • the 19 F-NMR yield of the title compound in the recovered product is shown in Table 1.
  • Example 8-1 Production of CF 3 CF 2 COO (CH 2 ) 6 OCOCF 2 CF 3 The same operation as in Example 1-1 was performed, except that the starting materials were changed as shown in Table 1. The GC purity of the recovered crude liquid was 96%. 1 H-NMR and 19 F-NMR spectra were measured to confirm that the main component was the title compound. NMR spectrum 1 H-NMR (399.78 MHz, solvent: CDCl 3 , standard: TMS) ⁇ (ppm): 1.42-1.53 (m, 4H), 1.70-1.84 (m, 4H) 4.20-4.50 (m, 4H). 19 F-NMR (376.17 MHz, solvent: CDCl 3 , standard: C 6 F 6 ) ⁇ (ppm): ⁇ 83.0 (6F), ⁇ 121.4 (4F).
  • Example 8-2 Production of CF 3 CF 2 COO (CF 2 ) 6 OCOCF 2 CF 3
  • the compound to be injected into the autoclave was CF 3 CF 2 COO (CH 2 ) 6 OCOCF 2 CF 3 obtained in Example 8-1.
  • the same operation as in Example 1-2 was performed except that the conditions for the fluorination reaction were changed to those shown in Table 1.
  • the main product of the product in the autoclave recovery was the title compound.
  • the 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 9-1 Production of CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH (CH 3 ) O (CH 2 ) 5 OCOCF (CF 3 ) OCF 2 CF 2 CF 3 As described in Table 1 The same operation as in Example 1-1 was performed except that the starting material was changed. The GC purity of the recovered crude liquid was 95%. 1 H-NMR and 19 F-NMR spectra were measured to confirm that the main component was the title compound.
  • Example 9-2 CF 3 CF 2 CF 2 OCF (CF 3) COOCF 2 CF (CF 3) O (CF 2) 5 OCOCF (CF 3) compound to be injected into the production autoclave OCF 2 CF 2 CF 3 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH (CH 3 ) O (CH 2 ) 5 OCOCF (CF 3 ) OCF 2 CF 2 CF 3 obtained in 9-1 was used, and the conditions for the fluorination reaction were shown The procedure was the same as in Example 1-2 except that the condition 1 was used. The main product of the product in the autoclave recovery was the title compound. The 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 10 Production of CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF 2 CF (CF 3 ) O (CF 2 ) 5 OCOCF (CF 3 ) OCF 2 CF 2 CF 3 3 CF 2 CF 2 OCF (CF 3) COOCH 2 CH (CH 3) O (CH 2) 5 OCOCF (CF 3) to obtain a OCF 2 CF 2 CF 3. Then, the same operation as in Example 9-2 was performed except that the conditions for the fluorination reaction were changed to those shown in Table 1. The main product of the product in the autoclave recovery was the title compound. The 19 F-NMR yield and 19 F-NMR conversion are shown in Table 1.
  • Example 11-1 Production of CF 3 CF 2 COO (CH 2 ) 4 OCOCF 2 CF 3 The same operation as in Example 1-1 was performed, except that the starting materials were changed as shown in Table 1. The collected crude liquid had a GC purity of 98%. 1 H-NMR and 19 F-NMR spectra were measured to confirm that the main component was the title compound. NMR spectrum 1 H-NMR (399.78 MHz, solvent: CDCl 3 , standard: TMS) ⁇ (ppm) 1.70-1.84 (m, 4H), 4.20-4.50 (m, 4H). 19 F-NMR (376.17 MHz, solvent: CDCl 3 , standard: C 6 F 6 ) ⁇ (ppm): ⁇ 83.0 (6F), ⁇ 121.4 (4F).
  • Example 11-2 Production of CF 3 CF 2 COO (CF 2 ) 4 OCOCF 2 CF 3
  • (HFPO) 3 2,800 g was added and stirred, and kept at 25 ° C. .
  • a cooler cooled to ⁇ 20 ° C. was installed at the autoclave outlet.
  • a liquid return line for returning the condensed liquid from the cooler maintained at ⁇ 20 ° C. to the autoclave was installed. After blowing nitrogen gas for 2 hours, 50% fluorine gas was blown for 1 hour at a flow rate of 7.8 L / hour.
  • Example 11-1 Next, while blowing 50% fluorine gas at the same flow rate, CF 3 CF 2 COO (CH 2 ) 4 OCOCF 2 CF 3 (25 g) obtained in Example 11-1 was injected over 6 hours. Further, 50% fluorine gas was blown at the same flow rate for 1 hour, and nitrogen gas was further blown for 1 hour.
  • the product in the recovered product from the autoclave was mainly composed of the title compound, and 19 F-NMR yield was 51% and 19F-NMR conversion rate was 80%. Further, CF 3 CF 2 COO (CH 2 ) 4 OCOCF 2 CF 3 (25 g) obtained in Example 11-1 was injected over 6 hours while blowing 50% fluorine gas at the same flow rate.
  • the target product could be obtained in high yield by the fluorination reaction.
  • the target product could be obtained in a high yield under conditions where the amount of fluorine gas was high (50% by volume).
  • the target product could not be obtained in high yield.
  • the fluorination reaction was performed under a condition where the amount of fluorine gas was high, the selectivity was low but the yield was low although the conversion rate was high.
  • Example 10 in which the fluorination reaction was performed under a condition where the amount of fluorine gas was low, the selectivity of the target product was slightly improved, but a sufficient yield was not obtained.
  • the conversion time was increased by extending the injection time (reaction time) of the compound to be fluorinated, but the selectivity was low and a sufficient yield was not obtained.
  • Example 12-1 Production of FC ( ⁇ O) (CF 2 ) 3 C ( ⁇ O) F (corresponding to the compound (5-1))
  • FC ( ⁇ O) (CF 2 ) 3 C ( ⁇ O) F (corresponding to the compound (5-1))
  • a 1 L flask was charged with 500 g of (CF 3 ) 2 CFCOO (CF 2 ) 5 OCOCF (CF 3 ) 2 (corresponding to compound (4-1)) obtained in Example 1-2, and then 4 KF powder. .1 g was charged and heated at 100 ° C. for 5 hours in an oil bath with vigorous stirring.
  • a reflux condenser whose temperature was adjusted to 20 ° C. and a fluororesin container for gas collection were installed in series.
  • the sample was cooled after heating, and a liquid sample and a gaseous sample were collected, and the liquid sample was purified by distillation. As a result of analysis by GC-MS, it was confirmed that the title compound was the main product.
  • the yield was 82 mol%. The yield means the mol% of the target compound contained in the recovered fraction obtained by distillation purification when the number of moles of the target compound theoretically obtained from the charged composition is 100%.
  • Example 12-2 Production of FC ( ⁇ O) CF (CF 3 ) O (CF 2 ) 4 C ( ⁇ O) F (corresponding to the compound (7-1))
  • a 2 L autoclave was charged with 360 g of the FOC (CF 2 ) 3 COF obtained in Example 12-1, 11.4 g of cesium fluoride, and 56.8 g of tetraglyme, and while maintaining the autoclave at ⁇ 10 ° C., hexafluoro 260 g of propylene oxide was added.
  • the lower layer was collected, purified by distillation, and confirmed by GC-MS that the title compound was the main product.
  • the yield of the target compound as defined in Example 12-1 was 60 mol%.
  • Example 12-3 Production of F 2 C ⁇ CFO (CF 2 ) 2 CF ⁇ CF 2 (corresponding to the compound (8-1))
  • a 1-inch reaction tube made of Inconel was filled with glass beads so that the filling height was 20 cm, and heated to 330 ° C.
  • 500 g of FC ( ⁇ O) CF (CF 3 ) O (CF 2 ) 4 C ( ⁇ O) F obtained in Example 12-2 was diluted to 10% by volume with nitrogen gas and added to the reaction tube. Introduced. The linear velocity was controlled to 2.0 cm / second, and the reaction was carried out while maintaining the passage time of the reaction gas in the glass bead layer at 10 seconds.
  • the reaction outlet gas was collected with a dry ice-ethanol trap.
  • the trapped liquid was purified by distillation and analyzed by GC-MS. As a result, it was confirmed that the title compound was the main product.
  • the yield of the target compound as defined in Example 12-1 was 48 mol%.
  • Example 12-4 Polymerization of F 2 C ⁇ CFO (CF 2 ) 2 CF ⁇ CF 2 (corresponding to Compound (8-1))
  • F 2 C obtained in Example 12-3 CFO (CF 2)
  • 2 CF CF 2 of 150 g
  • methanol 28.0 g initiator ([(CH 3) 2 CHOCO ] 2 of 10 mass% 1,1,1,2,2,3,3,4 , 4,5,5,6,6-tridecafluorohexane solution), 5.7 g of a dispersant (trade name: New Coal 714SN, manufactured by Nippon Emulsifier Co., Ltd.), and 800 g of ultrapure water were charged.
  • a dispersant trade name: New Coal 714SN, manufactured by Nippon Emulsifier Co., Ltd.
  • the suspension was stirred for 26 hours at 40 ° C. for 20 hours and at 50 ° C. for 6 hours for suspension polymerization.
  • the yield of the obtained polymer particles (cyclized polymer) was 88%, and the intrinsic viscosity was 0.34.
  • the cyclized polymer was dissolved in a perfluoro solvent such as perfluorotributylamine, and could form a thin film coating on a silicon wafer or glass, and was a transparent and tough polymer.
  • the yield of polymer particles is the mass% of the obtained polymer particles when the mass of the charged monomer is 100%.
  • the intrinsic viscosity is defined by the following formula (A). The intrinsic viscosity was measured as follows.
  • Example 13-1 Production of FC ( ⁇ O) (CF 2 ) 4 C ( ⁇ O) F (corresponding to Compound (5-1)) CF was obtained in Example 4-2 in a 1 L flask. 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO (CF 2 ) 6 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 , 2.1 g of KF powder was heated in an oil bath at 100 ° C. for 5 hours with vigorous stirring. A reflux condenser whose temperature was adjusted to 20 ° C. was installed at the top of the flask. After cooling, a liquid sample was collected and purified by distillation. As a result of analysis by GC-MS, it was confirmed that the title compound was the main product. The yield was 85 mol%. The yield was determined in the same manner as in Example 12-1.
  • Example 13-2 Production of H 3 COC ( ⁇ O) (CF 2 ) 4 C ( ⁇ O) OCH 3 (corresponding to Compound (10))
  • a 500 mL flask was charged with 300 g of FC ( ⁇ O) (CF 2 ) 4 C ( ⁇ O) F obtained in Example 13-1, and methanol (corresponding to compound (9)) was maintained at 10 ° C. 110 g was added.
  • an aqueous potassium hydroxide solution was added to recover the lower layer and purified by distillation.
  • the yield of the target compound according to the same definition as in Example 12-1 was 87 mol%.
  • Example 14-1 Production of FC ( ⁇ O) (CF 2 ) 2 C ( ⁇ O) F (corresponding to Compound (5-1))
  • KF powder was charged and heated at 100 ° C. for 5 hours in an oil bath with vigorous stirring.
  • a reflux condenser whose temperature was adjusted to 20 ° C. and a fluororesin container for gas collection were installed in series.
  • the sample was cooled after heating, and a liquid sample and a gaseous sample were collected, and the liquid sample was purified by distillation. As a result of analysis by GC-MS, it was confirmed that the title compound was the main product.
  • the yield was 85 mol%. The yield means the mol% of the target compound contained in the recovered fraction obtained by distillation purification when the number of moles of the target compound theoretically obtained from the charged composition is 100%.
  • a 2 L autoclave was charged with 500 g of the FOC (CF 2 ) 2 COF obtained in Example 14-1, 39.1 g of cesium fluoride, and 115 g of tetraglyme, and while maintaining the autoclave at ⁇ 10 ° C., hexafluoropropylene oxide Of 470 g was added. After completion of the reaction, the lower layer was collected, purified by distillation, and confirmed by GC-MS that the title compound was the main product. The yield of the target compound as defined in Example 14-1 was 62 mol%.
  • Example 14-3 Production of F 2 C ⁇ CFO (CF 2 ) 3 C ( ⁇ O) OCH 3 (corresponding to the compound (9-1)) Inconel 1 inch reaction tubes were filled with glass beads so that the filling height was 20 cm and heated to 250 ° C. 500 g of FC ( ⁇ O) CF (CF 3 ) O (CF 2 ) 3 C ( ⁇ O) F obtained in Example 14-2 was diluted to 10% by volume with nitrogen gas and added to the reaction tube. Introduced. The linear velocity was controlled to 2.0 cm / second, and the reaction was carried out while maintaining the passage time of the reaction gas in the glass bead layer at 10 seconds. The reaction outlet gas was collected by a dry ice-ethanol trap filled with methanol. The trapped liquid was purified by distillation and analyzed by GC-MS. As a result, it was confirmed that the title compound was the main product. The yield of the target compound according to the same definition as in Example 14-1 was 42 mol%.
  • a perfluorinated target product can be produced in a high yield in the fluorination reaction of a partially fluorinated ester.
  • the target product as a raw material, it is possible to provide an intermediate of a fluorine-containing monomer or a medical adhesive as a fluororesin raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 部分フッ素化エステルのフッ素化反応において、ペルフルオロ化された目的物を高収率で製造する方法の提供。 化合物(1)と化合物(2)とを反応させて得られた化合物(3)(ただし、フッ素含有量が30質量%以上である。)を液相中でフッ素化して、ペルフルオロ化された化合物(4)を得る。ただし、化合物(1)はHOCH-R-CHOH、化合物(2)はXC(=O)-C(R)(R)(R)である。Rは2価飽和炭化水素基等でありエーテル性酸素原子等のヘテロ原子を有しない。Xはハロゲン原子、-C(R)(R)(R)は分岐状の基である。

Description

含フッ素化合物の製造方法
 本発明は、工業的に有用な含フッ素化合物の製造方法に関する。
 ペルフルオロ(アルキルビニルエーテル)等の含フッ素モノマーは、耐熱性かつ耐薬品性に優れるフッ素樹脂の原料モノマーとして有用である。たとえば分子中にカルボキシ基を有するペルフルオロ(アルキルビニルエーテル)は、イオン交換膜の原料モノマーとして有用であり、ジアシルフルオリド類を経由して製造される(非特許文献1参照)。
 含フッ素モノマーの製造に用いられるジアシルフルオリド類の製造方法として、次の工程(1)~(3)を有する方法が知られている(特許文献1参照。)。
 工程(1):2官能アルコールにモノアシルフルオリドを反応させて部分フッ素化エステルを得る工程。
 工程(2):フッ素化反応により、部分フッ素化エステルからペルフルオロエステルを得る工程。
 工程(3):ペルフルオロエステルの分解反応により、ジアシルフルオリド類を得る工程。
国際公開第2002/004397号
J.Fluorine Chem.,94,65-68(1999)
 しかしながら、特許文献1に記載の製造方法では、上記工程(2)におけるペルフルオロエステルの収率が低かった。
 本発明は、部分フッ素化エステルのフッ素化反応において、ペルフルオロ化された目的物を高収率で製造する方法の提供を目的とする。
 本発明は、下記[1]~[14]の構成を有する含フッ素化合物の製造方法を提供する。
 [1]下式(1)で表される化合物(1)と下式(2)で表される化合物(2)とを反応させて下式(3)で表される化合物(3)(ただし、フッ素含有量が30質量%以上である。)を得る工程(I)と、
 前記化合物(3)を液相中でフッ素化して下式(4)で表される化合物(4)を得る工程(II)と、を有することを特徴とする含フッ素化合物の製造方法。
 HOCH-R-CHOH・・・(1)
 XC(=O)-C(R)(R)(R)・・・(2)
 (R)(R)(R)C-C(=O)OCH-R-CHOC(=O)-C(R)(R)(R)・・・(3)
 (RDF)(RCF)(RBF)C-C(=O)OCF-RAF-CFOC(=O)-C(RBF)(RCF)(RDF)・・・(4)
 ただし、
 R:2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基である。
 R、R、R:Rは、RBFと同一の含フッ素1価有機基、フッ素化反応によってRBFになる1価有機基、水素原子およびハロゲン原子のいずれかであり、Rは、RCFと同一の含フッ素1価有機基またはフッ素化反応によってRCFになる1価有機基であり、Rは、RDFと同一の含フッ素1価有機基またはフッ素化反応によってRDFになる1価有機基である。
 X:ハロゲン原子である。
 RAF:Rの水素原子のすべてがフッ素置換された基である。
 RBF:Rが水素原子である場合、RBFはフッ素原子であり、Rがハロゲン原子である場合、RBFはRと同一のハロゲン原子である。Rが水素原子およびハロゲン原子のいずれでもない場合、RBFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
 RCF:RCFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
 RDF:RDFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
 [2]前記Rの炭素数が20以下であり、前記R、前記Rおよび前記Rがそれぞれ前記含フッ素1価有機基または前記1価有機基の場合、その炭素数が10以下である、[1]の含フッ素化合物の製造方法。
 [3]前記Rが(CHであり、RAFが(CFである(ただし、nは1~10の整数。)、[1]または[2]の含フッ素化合物の製造方法。
 [4]前記RおよびRBFがフッ素原子であり、前記RおよびRCFが同一であってかつ炭素数1~3のペルフルオロアルキル基であり、かつ、前記RおよびRDFが同一であってかつ炭素数1のペルフルオロアルキル基、炭素数2~6のペルフルオロアルコキシ基またはエーテル性酸素原子を1つ有する炭素数4~8のペルフルオロアルコキシ基である、[1]~[3]のいずれかの含フッ素化合物の製造方法。
 [5]前記工程(II)において、フッ素化を不活性ガスで希釈したフッ素ガスを前記液相中に供給して行い、前記フッ素ガスの割合が、前記不活性ガスと前記フッ素ガスとの合計100体積%中、30~60体積%である、[1]~[4]のいずれかの含フッ素化合物の製造方法。
 [6]前記工程(II)において、フッ素化をフッ素化反応溶媒を含む前記液相中で行い、前記フッ素化反応溶媒が、C-H結合を含まないエーテル性酸素原子を含む含フッ素溶媒である、[1]~[5]のいずれかの含フッ素化合物の製造方法。
 [7]前記含フッ素溶媒が、(RDF)(RCF)(RBF)C-C(=O)Fである(ただし、RBF、RCFおよびRDFは前記に同じ。)、[6]の含フッ素化合物の製造方法。
 [8]前記[1]~[7]のいずれかの含フッ素化合物の製造方法における工程(I)および工程(II)と、前記化合物(4)の切断反応により下式(5)で表される化合物(5)および下式(6)で表される化合物(6)の1種以上を得る工程(III)とを有することを特徴とする含フッ素化合物の製造方法。
 FC(=O)-RAF-C(=O)F・・・(5)
 (RDF)(RCF)(RBF)C-C(=O)F・・・(6)
 [9]前記工程(II)において、フッ素化をフッ素化反応溶媒を含む前記液相中で行い、前記フッ素化反応溶媒が、前記化合物(5)および前記化合物(6)の1種以上である、[8]の含フッ素化合物の製造方法。
 [10]前記[8]または[9]の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)をヘキサフルオロプロピレンオキシドと反応させて、下式(7)で表される化合物(7)を得る工程(IV)と、該化合物(7)を熱分解して下式(8)で表される化合物(8)を得る工程(V)とを有することを特徴とする含フッ素化合物の製造方法。
 FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
 FC=CF-O-QAF-CF=CF・・・(8)
 ただし、
 RAF:上記と同じ意味を示す。
 QAF:RAFの炭素数が1の場合、QAFは単結合である。RAFの炭素数が2以上の場合、QAFはRAFよりも炭素数が1つ少なく、2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基の水素原子のすべてがフッ素置換された基である。
 [11]前記[8]または[9]の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)を下式(9)で表される化合物(9)と反応させて下式(10)で表される化合物(10)を得る工程(VI)を有することを特徴とする含フッ素化合物の製造方法。
 HO-R・・・(9)
 R-OC(=O)-RAF-C(=O)O-R・・・(10)
 ただし、Rは、-CH、-CHCHおよび-CH(CHから選ばれる基である。
 [12]前記[8]または[9]の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)をヘキサフルオロプロピレンオキシドと反応させて、下式(7)で表される化合物(7)を得る工程(IV)と、該化合物(7)を熱分解してROHと反応させて下式(11)で表される化合物(11)を得る工程(VII)とを有することを特徴とする含フッ素化合物の製造方法。
 FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
 FC=CF-O-RAF-C(=O)OR・・・(11)
 ただし、
 RAF:上記と同じ意味を示す。
 R:炭素数1~10のアルキル基を示す。
 [13]前記[10]の方法で化合物(8)を得て、次いで化合物(8)を重合させる、含フッ素重合体の製造方法。
 [14]前記[12]の方法で化合物(11)を得て、次いで化合物(11)を重合させる、含フッ素重合体の製造方法。
 本発明の含フッ素化合物の製造方法によれば、部分フッ素化エステルのフッ素化反応において、ペルフルオロ化された目的物を高収率で製造できる。
 本明細書において、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 本明細書における有機基とは、炭素原子を必須とする基であり、炭化水素基とは、炭素原子と水素原子からなる基である。
 本明細書における「ハロゲン」とは、フッ素、塩素、臭素およびヨウ素をいう。
 本明細書における「ハロゲン化」とは、ハロゲン原子ではない原子(たとえば、炭素原子に結合した水素原子)をハロゲン原子に置換すること、炭素原子に結合した基(たとえば、炭素原子に結合した水酸基)をハロゲン原子に置換すること、および、ハロゲン原子を有しない原子団(たとえば、二重結合や三重結合を形成している2つの炭素原子からなる原子団)にハロゲン原子を付加すること、をいう。なお、ハロゲン原子を別のハロゲン原子に置換することを置換したハロゲン原子の名のハロゲン化ということもある(たとえば、フッ素化とは、塩素原子等をフッ素原子に置換することを意味することもある)。
 本明細書における「ハロゲン化されうる」基とは、ハロゲン化反応によりハロゲン化されうる、原子、基および原子団の少なくともいずれかを有する基をいう。
 本明細書における「ハロゲン化基」とは、ハロゲン化されうる基を有する有機基がハロゲン化されて生じた有機基をいう。たとえば、ハロゲン化炭化水素基とは、炭化水素基がハロゲン化されて生じた有機基である。
 「部分ハロゲン化基」とは、ハロゲン化基であってかつハロゲン化されうる基が存在する基である。
 「ペルハロゲン化基」とは、ハロゲン化基であってかつハロゲン化されうる基が存在しない基である。
 「含フッ素ペルハロゲン化基」とは、ハロゲン原子の少なくとも一部がフッ素原子であるペルハロゲン化基をいう。
 以下の本明細書および請求の範囲における「フッ素化反応」とは、本発明における工程(II)のフッ素化反応をいう。
 同様に、「フッ素化」とは、本発明における工程(II)のフッ素化反応によるフッ素化をいう。
 以下の本明細書における「フッ素化されうる」有機基とは、本発明における工程(II)のフッ素化反応によりフッ素化されうる、原子、基および原子団の少なくともいずれかを有する有機基をいう。
 本明細書におけるヘテロ原子含有炭化水素基とは、フッ素化反応により変化しないヘテロ原子(たとえば、アルコキシ基の酸素原子、エーテル性酸素原子等。)またはフッ素化反応により変化しないヘテロ原子団(たとえば、カルボニル基、スルホニル基等。)を含む炭化水素基である。
 ハロゲン化(ヘテロ原子含有炭化水素)基とは、ヘテロ原子含有炭化水素基がハロゲン化された基である。ペルハロゲン化(ヘテロ原子含有炭化水素)基とは、ハロゲン化されうる基が存在しないハロゲン化(ヘテロ原子含有炭化水素)基であり、部分ハロゲン化(ヘテロ原子含有炭化水素)基とは、ハロゲン化されうる基が存在するハロゲン化(ヘテロ原子含有炭化水素)基である。
 本発明の含フッ素化合物の製造方法は、下記の工程(I)と工程(II)とを有し、必要に応じて工程(III)~工程(VI)を有する。
 以下、各工程について説明する。
〔工程(I)〕
 工程(I)は、下記の化合物(1)と下記の化合物(2)とを反応させて下記の化合物(3)(ただし、フッ素含有量が30質量%以上である。)を得る工程である。
 HOCH-R-CHOH・・・(1)
 XC(=O)-C(R)(R)(R)・・・(2)
 (R)(R)(R)C-C(=O)OCH-R-CHOC(=O)-C(R)(R)(R)・・・(3)
(R
 Rは、2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基である。Rは、エーテル性酸素原子等のヘテロ原子を有しない。Rがエーテル性酸素原子等のヘテロ原子を有しないと、後述の工程(II)において化合物(3)が分解しにくい。そのため、工程(II)の目的物である化合物(4)の収率が優れる。後述の工程(II)における化合物(3)の液相への溶解性等の点からは、Rの炭素数は1~20が好ましく、1~10が特に好ましい。
 2価飽和炭化水素基としては、アルキレン基、環構造を有する2価飽和炭化水素基が挙げられる。環構造を有する2価飽和炭化水素基としては、たとえば、シクロアルキル基、ビシクロアルキル基および脂環式スピロ構造を有する1価基からなる群より選ばれる置換基を有する2価飽和炭化水素基;シクロアルキレン基;ビシクロアルキレン基;シクロアルキレン基またはビシクロアルキレン基を部分構造とする2価飽和炭化水素基;等が挙げられる。
 2価飽和炭化水素基としては、入手容易性の点からは、アルキレン基が好ましい。アルキレン基は、直鎖状でも分岐状でもよく、工程(II)における化合物(3)の転化率が優れる点からは、直鎖状が好ましい。
 部分ハロゲン化2価飽和炭化水素基としては、上述の2価飽和炭化水素基の水素原子の一部がハロゲン原子に置換された基が好ましく、アルキレン基の水素原子の一部がハロゲン原子に置換された部分ハロゲン化アルキレン基が特に好ましい。部分ハロゲン化アルキレン基のハロゲン原子としては、フッ素原子、塩素原子または臭素原子が好ましい。
 Rとしては、炭素数が1~20の直鎖状アルキレン基が好ましく、炭素数が1~10の直鎖状アルキレン基が特に好ましい。具体的には、-(CH-、-(CH-、-(CH-等が挙げられる。
(R、RおよびR
 Rは、RBFと同一の含フッ素1価有機基、フッ素化反応によってRBFになる1価有機基、水素原子およびハロゲン原子のいずれかである。
 Rは、RCFと同一の含フッ素1価有機基またはフッ素化反応によってRCFになる1価有機基である。
 Rは、RDFと同一の含フッ素1価有機基またはフッ素化反応によってRDFになる1価有機基である。
 式(2)中の-C(R)(R)(R)基は、分岐状の基である。分岐状の基は嵩高いため、該基を有する化合物(3)は、工程(II)において分解しにくい。そのため、工程(II)における化合物(4)の収率が優れる。
<R
 RがRBFと同一の含フッ素1価有機基である場合、Rは、フッ素化反応によってフッ素化されない含フッ素1価有機基である。たとえば、含フッ素ペルハロゲン化1価飽和炭化水素基;含フッ素ペルハロゲン化(ヘテロ原子含有1価飽和炭化水素)基;等が挙げられる。
 工程(II)のフッ素化反応によってフッ素化されうる有機基としては、下記原子、原子団および基の少なくともいずれかを有する。フッ素化反応によってフッ素化されない有機基はこれらのいずれをも有しない有機基である。
 フッ素化反応によってフッ素化されうる原子としては、たとえば炭素原子に結合した水素原子が挙げられる。
 フッ素化反応によってフッ素化されうる原子団としては、たとえば、>C=C<、-C≡C-等のフッ素原子が付加しうる原子団が挙げられる。>C=C<がフッ素化されると>CF-CF<に、-C≡C-がフッ素化されると-CF-CF-になる。また、フッ素化されうる原子団にはフッ素化されうる原子が結合していてもよく、たとえば、-CH=CH-がフッ素化されると-CF-CF-になる。
 フッ素化反応によってフッ素化されうる基としては、たとえば、フッ素化によりフルオロカルボニル基となるカルボキシ基;アルキル基の炭素-炭素結合間にカルボニル基が挿入された基;等が挙げられる。
 含フッ素ペルハロゲン化1価飽和炭化水素基および含フッ素ペルハロゲン化(ヘテロ原子含有1価飽和炭化水素)基の元である1価飽和炭化水素基としては、アルキル基、シクロアルキル基、または環構造を有する1価飽和炭化水素基(たとえば、シクロアルキル基、シクロアルキルアルキル基、またはビシクロアルキル基、脂環式スピロ構造を有する基、またはこれらの基を部分構造とする基。)等が挙げられる。
 RがRBFと同一の含フッ素1価有機基である場合、Rとして具体的には、含フッ素ペルハロゲン化アルキル基、1つ以上のエーテル性酸素原子を有する含フッ素ペルハロゲン化アルキル基、含フッ素ペルハロゲン化アルコキシ基、1つ以上のエーテル性酸素原子を有する含フッ素ペルハロゲン化アルコキシ基が好ましく、ペルフルオロアルキル基、1つ以上のエーテル性酸素原子を有するペルフルオロアルキル基、ペルフルオロアルコキシ基、1つ以上のエーテル性酸素原子を有するペルフルオロアルコキシ基が特に好ましい。
 RがRBFと同一の含フッ素1価有機基である場合、後述の工程(II)における化合物(3)の液相への溶解性、工程(II)における化合物(3)の分解抑制等の点からは、Rの炭素数は1~20が好ましく、1~10が特に好ましい。Rは、直鎖状でも分岐状でもよい。
 Rがフッ素化反応によってRBFになる1価有機基である場合、Rとしては、1価飽和炭化水素基;ヘテロ原子含有1価飽和炭化水素基;部分ハロゲン化1価飽和炭化水素基;部分ハロゲン化(ヘテロ原子含有1価飽和炭化水素)基;1価不飽和炭化水素基;ヘテロ原子含有1価不飽和炭化水素基;部分ハロゲン化1価不飽和炭化水素基;部分ハロゲン化(ヘテロ原子含有1価不飽和炭化水素)基;フッ素化されうる基を有する1価有機基;等が挙げられる。
 ヘテロ原子含有1価飽和炭化水素基、部分ハロゲン化1価飽和炭化水素基および部分ハロゲン化(ヘテロ原子含有1価飽和炭化水素)基における1価飽和炭化水素基としては、含フッ素ペルハロゲン化1価飽和炭化水素基および含フッ素ペルハロゲン化(ヘテロ原子含有1価飽和炭化水素)基における1価飽和炭化水素基として例示した基と同様の基が挙げられる。
 フッ素化されうる1価不飽和炭化水素基としては、具体的には、シクロヘキセニル基、フェニル基、アルケニル基、またはアルキニル基等が挙げられる。
 Rがフッ素化反応によってRBFになる1価有機基である場合、Rとしては、1価飽和炭化水素基;ヘテロ原子含有1価飽和炭化水素基;部分ハロゲン化1価飽和炭化水素基;部分ハロゲン化(ヘテロ原子含有1価飽和炭化水素)基が特に好ましい。具体的には、アルキル基、アルコキシ基、1つ以上のエーテル性酸素原子を有するアルキル基、1つ以上のエーテル性酸素原子を有するアルコキシ基、部分ハロゲン化アルキル基、部分ハロゲン化アルコキシ基、1つ以上のエーテル性酸素原子を有する部分ハロゲン化アルキル基、1つ以上のエーテル性酸素原子を有する部分ハロゲン化アルコキシ基が好ましい。
 Rがフッ素化反応によってRBFになる1価有機基である場合、後述の工程(II)における化合物(3)の液相への溶解性、工程(II)における化合物(3)の分解抑制等の点からは、Rの炭素数は1~20が好ましく、1~10が特に好ましい。Rは、直鎖状でも分岐状でもよい。
 Rがハロゲン原子である場合、Rはフッ素原子、塩素原子、臭素原子が好ましく、フッ素原子が特に好ましい。
<R
 RがRCFと同一の含フッ素1価有機基である場合、Rとしては、Rについて例示した基と同様の基が挙げられ、同様の基が好ましい。
 Rがフッ素化反応によってRCFになる1価有機基である場合、Rとしては、Rについて例示した基と同様の基が挙げられ、同様の基が好ましい。
 RがRCFと同一の含フッ素1価有機基またはフッ素化反応によってRCFになる1価有機基である場合、後述の工程(II)における化合物(3)の液相への溶解性、工程(II)における化合物(3)の分解抑制等の点からは、Rの炭素数は1~20が好ましく、1~10が特に好ましい。Rは、直鎖状でも分岐状でもよい。
<R
 RがRDFと同一の含フッ素1価有機基である場合、Rとしては、Rについて例示した基と同様の基が挙げられ、同様の基が好ましい。
 Rがフッ素化反応によってRDFになる1価有機基である場合、Rとしては、Rについて例示した基と同様の基が挙げられ、同様の基が好ましい。
 RがRDFと同一の含フッ素1価有機基またはフッ素化反応によってRDFになる1価有機基である場合、後述の工程(II)における化合物(3)の液相への溶解性、工程(II)における化合物(3)の分解抑制等の点からは、Rの炭素数は1~20が好ましく、1~10が特に好ましい。Rは、直鎖状でも分岐状でもよい。
<R、RおよびRの組み合わせ>
 R、RおよびRの組み合わせは、工程(II)における化合物(3)の液相への溶解性、工程(II)における化合物(3)の分解抑制等の点からは、RおよびRのうちの1つが炭素数1~3の1価有機基であり、RおよびRのうちの1つが炭素数1~10の1価有機基であり、Rが水素原子またはハロゲン原子である組み合わせが好ましい。
 このような組み合わせとしては、たとえば、Rが、-CF、-CFCF、-CFCFCF、-CF(CFからなる群より選ばれる1つであり、Rが、-CF3、-OCFCF(CF)OCFCFCF、-OCF、-OCFCF、-OCFCFCF、-OCFCFCFClCFCl、-OCFCFBr、-OCF(CF)CFCFClCFCl、-OCHCHCHからなる群より選ばれる1つであり、Rが、水素原子またはハロゲン原子である組み合わせが挙げられる。
 R、RおよびRの組み合わせは、Rが炭素数1~3のペルフルオロアルキル基または炭素数1~3のペルフルオロアルコキシ基であり、Rが炭素数1のペルフルオロアルキル基、1つ以上のエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキル基、炭素数1~10のペルフルオロアルコキシ基または1つ以上のエーテル性酸素原子を有する炭素数2~10のペルフルオロアルコキシ基であり、Rがフッ素原子である組み合わせがより好ましい。
 特に好ましいR、RおよびRの組み合わせは、Rが炭素数1~3のペルフルオロアルキル基であり、Rが炭素数1のペルフルオロアルキル基、炭素数2~6のペルフルオロアルコキシ基またはエーテル性酸素原子を1つ有する炭素数4~8のペルフルオロアルコキシ基であり、Rがフッ素原子である組み合わせである。
 このようなより好ましいまたは特に好ましい組み合わせとしては、たとえば、Rが、-CF、-CFCF、-CFCFCF、-CF(CFからなる群より選ばれる1つであり、Rが、-CF、-OCFCF(CF)OCFCFCF、-OCFCFCFからなる群より選ばれる1つであり、Rが、フッ素原子である組み合わせが挙げられる。
(X
 Xはハロゲン原子である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子が挙げられ、工程(1)における反応性に優れる点から、フッ素原子、塩素原子または臭素原子が好ましく、フッ素原子が特に好ましい。
(化合物(1))
 化合物(1)としては、具体的には、以下の化合物(1-1)が挙げられる。
 HOCH-(CH-CHOH・・・(1-1)
 nは、Rの炭素数であり、1~20が好ましく、1~10がより好ましく、1~8がさらに好ましく、2~8が特に好ましい。
(化合物(2))
 化合物(2)としては、具体的には、以下の化合物(2-1)~(2-7)が挙げられ、化合物(2-1)~(2-3)が特に好ましい。
 (CFCFC(=O)F・・・(2-1)
 CFCFCFOCF(CF)CFOCF(CF)C(=O)F・・・(2-2)
 CFCFCFOCF(CF)C(=O)F・・・(2-3)
 CFClCFClCFCFOCF(CF)C(=O)F・・・(2-4)
 CFBrCFOCF(CF)C(=O)F・・・(2-5)
 CFClCFClCFCF(CF)OCF(CF)C(=O)F・・・(2-6)
 CHCHCHOCF(CF)C(=O)F・・・(2-7)
 化合物(2)の沸点は-10~200℃が好ましく、0~170℃が特に好ましい。化合物(2)の沸点が上記範囲内であると、工程(I)の後、未反応の化合物(2)を回収する際の回収操作が容易である。たとえば化合物(2)の沸点が上記範囲の下限値以上であると、冷凍機等の大規模な設備を用いずに、未反応の化合物(2)を回収できる。上記範囲の上限値以下であると、特別な加熱装置を用いずにスチーム等の汎用の加熱装置を用いて、未反応の化合物(2)を回収できる。化合物(2-1)~(2-7)の沸点は、いずれも0~170℃である。
 化合物(2)は、市販品を入手する方法、公知の方法で合成する方法等により得ることができる。
(化合物(1)と化合物(2)との組み合わせ)
 化合物(1)と化合物(2)は、工程(I)で得られる化合物(3)のフッ素含有量が30質量%以上となるように、組み合わせる。化合物(3)のフッ素含有量が30質量%以上であると、工程(II)における化合物(3)の液相への溶解性が優れる。そのため、工程(II)のフッ素化反応を均一な系で実施しやすくなり、工程(II)における化合物(4)の収率も向上する。化合物(3)のフッ素含有量は30~86質量%が好ましく、30~76質量%が特に好ましい。
 なお、フッ素含有量とは、化合物の分子量に占めるフッ素原子の質量割合をいう。
 化合物(1)と化合物(2)との組み合わせは、化合物(1)および(2)の入手容易性の点では、これらのうちの一方にフッ素原子を含まない化合物を用い、他方にフッ素原子を含む化合物を用いることが好ましい。なかでも、化合物(1)としてフッ素原子を含まない化合物を用い、化合物(2)としてフッ素原子を含む化合物を用いることが特に好ましい。
(化合物(3))
 化合物(3)としては、フッ素化されうる原子、原子団および基として炭素原子に結合した水素原子のみを有する化合物であることが好ましい。この場合、工程(II)におけるフッ素化反応は、炭素原子に結合した水素原子がフッ素原子に置換される反応のみとなる。-CH-R-CH-がフッ素化されうる原子、原子団および基として炭素原子に結合した水素原子のみを有することより、R、R、Rがいずれもフッ素化されうる基や原子ではない場合には、化合物(3)のフッ素化は-CH-R-CH-中の水素原子がフッ素原子に置換される反応のみとなる。
 化合物(3)としては、具体的には、化合物(1-1)と化合物(2-1)を反応させて得られた下記化合物(3-1)、化合物(1-1)と化合物(2-2)を反応させて得られた下記化合物(3-2)、化合物(1-1)と化合物(2-3)を反応させて得られた下記化合物(3-3)、化合物(1-1)と化合物(2-4)を反応させて得られた下記化合物(3-4)、化合物(1-1)と化合物(2-5)を反応させて得られた下記化合物(3-5)、化合物(1-1)と化合物(2-6)を反応させて得られた下記化合物(3-6)、化合物(1-1)と化合物(2-7)を反応させて得られた下記化合物(3-7)が挙げられる。
 (CFCFCOOCH-(CH-CHOCOCF(CF・・・(3-1)
 CFCFCFOCF(CF)CFOCF(CF)COOCH-(CH-CHOCOCF(CF)OCFCF(CF)OCFCFCF・・・(3-2)
 CFCFCFOCF(CF)COOCH-(CH-CHOCOCF(CF)OCFCFCF・・・(3-3)
 CFClCFClCFCFOCF(CF)COOCH-(CH-CHOCOCF(CF)OCFCFCFClCFCl・・・(3-4)
 CFBrCFOCF(CF)COOCH-(CH-CHOCOCF(CF)OCFCFBr・・・(3-5)
 CFClCFClCFCF(CF)OCF(CF)COOCH-(CH-CHOCOCF(CF)OCF(CF)CFCFClCFCl・・・(3-6)
 CHCHCHOCF(CF)COOCH-(CH-CHOCOCF(CF)OCHCHCH・・・(3-7)
 ただし、nは式(1-1)中のnと同じである。
(化合物(1)と化合物(2)との反応)
 化合物(1)と化合物(2)との反応はエステル化反応であり、公知の方法で実施できる。エステル化反応は、溶媒(以下、「エステル化反応溶媒」とも記す。)の存在下に実施しても不存在下に実施してもよい。エステル化反応溶媒としては、ジクロロメタン、クロロホルム、トリエチルアミン、または、トリエチルアミンとテトラヒドロフランとの混合溶媒が好ましい。エステル化反応溶媒の使用量は、化合物(1)と化合物(2)との合計の100質量部に対して、50~500質量部が好ましい。エステル化反応をバッチ式反応器で行う場合、該反応器の単位容積あたりの化合物(1)および化合物(2)の仕込み量が向上し、生産性が優れる点からは、エステル化反応溶媒の不存在下にエステル化反応を行うことが好ましい。
 エステル化反応において、化合物(1)に対する化合物(2)の量は1.5~10倍モルが好ましく、2~5倍モルが特に好ましい。
 化合物(1)と化合物(2)との反応温度の下限は-50℃が好ましい。上限は、反応をエステル化反応溶媒の存在下で行う場合、100℃およびエステル化反応溶媒の沸点のうち、低い温度とすることが好ましく、エステル化反応溶媒の不存在下に実施する場合、100℃が好ましい。反応温度は、-50~100℃が特に好ましい。
 化合物(1)と化合物(2)との反応時間は、原料の供給速度と、反応に用いる化合物量に応じて適宜変更できる。反応圧力は0~2MPa(ゲージ圧)が好ましい。
 化合物(1)と化合物(2)との反応により、HXで表される酸が発生する。Xがフッ素原子である場合には、HFが発生するため、反応系中にHF捕捉剤を存在させることが好ましい。HF捕捉剤としては、アルカリ金属フッ化物、トリアルキルアミン等が挙げられる。アルカリ金属フッ化物としては、NaFまたはKFが好ましい。HF捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、かつ、HFを窒素気流に同伴させて反応系外に排出することが好ましい。HF捕捉剤の使用量は、化合物(2)に対して1~10倍モルが好ましい。
 化合物(1)と化合物(2)との反応で生成した化合物(3)を含む粗生成物は、精製を行っても、そのまま、工程(II)での反応に用いてもよい。工程(II)におけるフッ素化反応を円滑に行う点からは、精製することが好ましい。
 精製方法としては、粗生成物をそのまま蒸留する方法、粗生成物を希アルカリ水等で処理して分液する方法、粗生成物を適当な有機溶媒で抽出した後に蒸留する方法、シリカゲルカラムクロマトグラフィ等が挙げられる。
〔工程(II)〕
 工程(II)は、化合物(3)を液相中でフッ素化して下式(4)で表される化合物(4)を得る工程である。化合物(4)は、化合物(3)中のフッ素化されうる原子、原子団および基のすべてがフッ素化された化合物である。上記の化合物(1)および化合物(2)を反応させて得られた化合物(3)は、工程(II)において分解しにくい。そのため、該化合物(3)をフッ素化の原料に用いることにより、化合物(4)を高収率で得ることができる。
 (RDF)(RCF)(RBF)C-C(=O)OCF-RAF-CFOC(=O)-C(RBF)(RCF)(RDF)・・・(4)
(RAF
 RAFは、Rの水素原子のすべてがフッ素原子に置換された基である。
(RBF、RCFおよびRDF
 Rが水素原子である場合、RBFはフッ素原子であり、Rがハロゲン原子である場合、RBFはRと同一のハロゲン原子である。Rが水素原子およびハロゲン原子のいずれでもない場合、RBFは、Rと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素化された基(R中の、フッ素化されうる原子、原子団および基のすべてがフッ素化された基。)である。
 RCFは、Rと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素化された基(R中の、フッ素化されうる原子、原子団および基のすべてがフッ素化された基。)である。
 RDFは、Rと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素化された基(R中の、フッ素化されうる原子、原子団および基のすべてがフッ素化された基。)である。
(化合物(4))
 化合物(4)としては、具体的には、化合物(3-1)のフッ素化反応により得られた下記化合物(4-1)、化合物(3-2)のフッ素化反応により得られた下記化合物(4-2)、化合物(3-3)のフッ素化反応により得られた下記化合物(4-3)、化合物(3-4)のフッ素化反応により得られた下記化合物(4-4)、化合物(3-5)のフッ素化反応により得られた下記化合物(4-5)、化合物(3-6)のフッ素化反応により得られた下記化合物(4-6)、化合物(3-7)のフッ素化反応により得られた下記化合物(4-7)が挙げられる。
 (CFCFCOOCF-(CF-CFOCOCF(CF・・・(4-1)
 CFCFCFOCF(CF)CFOCF(CF)COOCF-(CF-CFOCOCF(CF)OCFCF(CF)OCFCFCF・・・(4-2)
 CFCFCFOCF(CF)COOCF-(CF-CFOCOCF(CF)OCFCFCF・・・(4-3)
 CFClCFClCFCFOCF(CF)COOCF-(CF-CFOCOCF(CF)OCFCFCFClCFCl・・・(4-4)
 CFBrCFOCF(CF)COOCF-(CF-CFOCOCF(CF)OCFCFBr・・・(4-5)
 CFClCFClCFCF(CF)OCF(CF)COOCF-(CF-CFOCOCF(CF)OCF(CF)CFCFClCFCl・・・(4-6)
 CFCFCFOCF(CF)COOCF-(CF-CFOCOCF(CF)OCFCFCF・・・(4-7)
 ただし、ただし、nは式(1-1)中のnと同じである。
(化合物(3)のフッ素化反応)
 化合物(3)のフッ素化反応は、液相中で行う。溶媒(以下、「フッ素化反応溶媒」とも記す。)を含む液相中で行うことが好ましい。フッ素源としては、フッ素ガスを用いることが好ましい。フッ素ガスは、不活性ガスで希釈したフッ素ガスを用いることが好ましい。不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス等の希ガスや、窒素ガスが挙げられ、窒素ガス、ヘリウムガスが好ましく、経済的に有利である点から窒素ガスが特に好ましい。フッ素ガスの割合(以下、「フッ素ガス量」とも記す。)は、フッ素ガスと不活性ガスとの合計100体積%中、30~60体積%が好ましい。フッ素ガス量が上記範囲の下限値以上であると、フッ素化反応に必要な所定量のフッ素ガスを短時間で反応器に供給でき、生産性に優れる。化合物(3)の転化率が高く、かつ、化合物(4)の選択率が高くできる。フッ素ガス量が上記範囲の上限値以下であると、安全性に優れる。
 上記の化合物(1)および化合物(2)を反応させて得られた化合物(3)は、フッ素ガス量が比較的大きい条件下においても、化合物(3)の転化率が高く、かつ、化合物(4)の選択率が高い。そのため、フッ素ガス量が大きく生産性に優れる条件下において、高収率で化合物(4)を得られる。
 フッ素化反応溶媒としては、フッ素化反応によってフッ素化されない、含フッ素溶媒が好ましく、たとえば、ペルフルオロアルカン類、または、塩素原子、窒素原子および酸素原子から選ばれる1種以上の原子を構造中に有する公知の有機溶媒をペルフルオロ化した有機溶媒が挙げられる。
 フッ素化反応溶媒としては、常圧下で、-100~300℃で液体として存在する溶媒が好ましく、-80~200℃で液体として存在する溶媒が特に好ましい。
 フッ素化反応溶媒としては、化合物(3)の溶解性が高い溶媒を用いることが好ましく、特に化合物(3)を20℃において、1質量%以上溶解しうる含フッ素溶媒が好ましく、5質量%以上溶解しうる溶媒が特に好ましい。
 フッ素化反応溶媒としては、具体的には、ペルフルオロアルカン類(商品名:FC-72等。)、ペルフルオロエーテル類(商品名:FC-75、FC-77等。)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等。)、クロロフルオロエーテル類、クロロフルオロカーボン類(商品名:フロンルーブ)、クロロフルオロポリエーテル類、ペルフルオロアルキルアミン(たとえば、ペルフルオロトリアルキルアミン等。)、不活性流体(商品名:フロリナート)等が挙げられる。
 フッ素化反応溶媒としては、エーテル性酸素原子を含む含フッ素溶媒がより好ましく、たとえば上述のペルフルオロエーテル類、ペルフルオロポリエーテル類、クロロフルオロエーテル類等が挙げられる。なかでも、塩素原子を含まない含フッ素溶媒が好ましく、ペルフルオロエーテル類、ペルフルオロポリエーテル類が特に好ましい。
 フッ素化反応溶媒としては、後述の工程(III)の生成物である化合物(5)および化合物(6)のうちの1種以上を用いることも好ましい。化合物(5)および化合物(6)のうちの1種以上を用いると、工程(III)の後の溶媒回収が不要となり、後処理が簡便になる。通常、化合物(5)は目的物となることより、フッ素化反応溶媒としては化合物(6)が好ましい。
 フッ素化反応溶媒の使用量は、化合物(3)に対して、5倍質量以上が好ましく、特に10~100倍質量が好ましい。
 フッ素化反応の反応形式は、バッチ方式または連続方式が好ましい。フッ素化反応は、下記の<方法1>または<方法2>により実施することが好ましく、化合物(4)の反応収率と選択率の点からは、<方法2>が特に好ましい。フッ素ガスは、バッチ方式で実施する場合および連続方式で実施する場合のいずれにおいても、窒素ガス等の不活性ガスで希釈して使用することが好ましい。
<方法1>
 反応器に、化合物(3)とフッ素化反応溶媒とを仕込み、撹拌を開始する。所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスをフッ素化反応溶媒中に連続的に供給しながら反応させる方法。
<方法2>
 反応器にフッ素化反応溶媒を仕込み、撹拌する。次に所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスと化合物(3)とフッ素化反応溶媒とを所定のモル比で連続的にフッ素化反応溶媒中に供給しながら反応させる方法。
<方法3>
 管状反応器にフッ素化反応溶媒を連続的に導入して管状反応器内を流通させる。次に、不活性ガスで希釈したフッ素ガスと、化合物(3)を溶解したフッ素化反応溶媒とを、フッ素ガスと化合物(3)とが所定のモル比となる割合でそれぞれ連続的に管状反応器内のフッ素化反応溶媒の流れに供給して混合し、管状反応器内でフッ素ガスと化合物(3)とを接触させて反応させ、反応生成物を含むフッ素化反応溶媒を管状反応器から取り出す方法。この方法において、フッ素化反応溶媒を循環させ、循環されているフッ素化反応溶媒から反応生成物を取り出すことにより、連続方式でフッ素化反応を行うことができる。
 方式3の場合と同様に、方法2において、化合物(3)を供給する際には、フッ素化反応溶媒で希釈した化合物(3)を供給することが、化合物(4)の選択率を向上させ、副生成物量を抑制させる点で好ましい。また、化合物(3)を溶媒で希釈する際には、化合物(3)に対するフッ素化反応溶媒の量を5倍質量以上とすることが好ましく、10倍質量以上とすることが特に好ましい。
 フッ素化反応においては、バッチ方式においても連続方式においても、化合物(3)中のフッ素化されうる原子、原子団および基のすべてに対して、これらをフッ素化するフッ素(F)の量が常に過剰量になるようにすることが好ましい。その量は、フッ素化されうる原子、原子団および基のすべてをフッ素化するために必要な理論量の1.1倍当量以上が好ましく、1.3倍当量以上が特に好ましい。
 たとえば、化合物(3)が、フッ素原子に置換されうる原子、原子団および基のうち、フッ素原子に置換されうる原子のみを有し、該原子が水素原子である場合、該水素原子に対して、フッ素(F)の量が常に過剰量になるようにすることが好ましい。具体的には、水素原子に対して、フッ素量は1.1倍当量以上(すなわち1.1倍モル以上。)であることが好ましく、1.3倍当量以上(すなわち、1.3倍モル以上。)が選択率の点から特に好ましい。フッ素の量は、反応の最初から最後まで過剰量であることが好ましい。よって、反応当初に反応器にフッ素化反応溶媒を仕込む際には、該フッ素化反応溶媒に充分量のフッ素を溶解させておくことが好ましい。
 フッ素化反応の液相温度は、化合物(4)の収率、選択率、安全性および工業的な実施しやすさの点から、10~50℃が好ましく、10~30℃が特に好ましい。
 フッ素化反応の反応圧力は、特に限定されず、化合物(4)の収率、選択率、安全性および工業的な実施しやすさの点から、大気圧~2MPa(ゲージ圧)が好ましい。
 フッ素化反応を効率的に進行させるためには、反応系中に化合物(3)以外のC-H結合含有化合物を添加する、または、反応系に紫外線を照射することが好ましい。これらはフッ素化反応後期に行うことが好ましい。これにより、反応系中に存在する化合物(3)を効率的にフッ素化でき、化合物(3)の収率を飛躍的に向上させうる。
 C-H結合含有化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエン等が挙げられる。該C-H結合含有化合物の添加量は、化合物(3)中の水素原子に対して0.1~10モル%である量が好ましく、0.1~5モル%である量が特に好ましい。
 C-H結合含有化合物は、フッ素ガスが存在する反応系中に添加することが好ましい。さらに、C-H結合含有化合物を加えた場合には、反応系を加圧することが好ましい。加圧時の圧力としては、0.01~5MPa(ゲージ圧)が好ましい。
 紫外線を照射する場合、照射時間は、0.1~3時間が好ましい。
 炭素原子に結合した水素原子がフッ素原子に置換されるフッ素化反応においては、HFが副生する。副生したHFを除去するには、HF捕捉剤を用いることが好ましい。具体的には、HF捕捉剤を反応系中に共存させる方法、HF捕捉剤を反応器ガス出口で出口ガスに接触させる方法が挙げられる。該HF捕捉剤としては、先に例示したものを同様に使用でき、NaFが好ましい。
 反応系中にHF捕捉剤を共存させる場合、HF捕捉剤の量は、化合物(3)中に存在する水素原子に対して1~20倍モルが好ましく、1~5倍モルが特に好ましい。反応器ガス出口にHF捕捉剤を配置する場合には、HF捕捉剤であるNaFをペレット状に成形、充填したNaFペレット充填層を採用することが好ましい。具体的には、(a)冷却器(10℃~室温に保持することが好ましく、特には約20℃に保持することが好ましい。)、(b)NaFペレット充填層、および(c)冷却器(-78~10℃に保持することが好ましく、-30~0℃に保持することが特に好ましい。)を(a)-(b)-(c)の順に直列に設置することが好ましい。なお、(c)の冷却器には、該冷却器から凝集した液を反応器に戻すための液体返送ラインを設置してもよい。
 フッ素化反応で得た化合物(4)を含む粗生成物は、そのまま次の工程に用いてもよく、精製して高純度のものにしてもよい。精製方法としては、粗生成物をそのまま常圧または減圧下に蒸留する方法等が挙げられる。
〔工程(III)〕
 工程(III)は、化合物(4)の切断反応により下式(5)で表される化合物(5)および下式(6)で表される化合物(6)の1種以上を得る工程である。
 FC(=O)-RAF-C(=O)F・・・(5)
 (RDF)(RCF)(RBF)C-C(=O)F・・・(6)
(化合物(5))
 化合物(5)としては、化合物(4-1)~(4-7)の切断反応により得られる下記化合物(5-1)が挙げられる。
 FC(=O)-(CF-C(=O)F・・・(5-1)
 ただし、nは式(1-1)中のnと同じである。
(化合物(6))
 化合物(6)としては、化合物(4-1)の切断反応により得られる下記化合物(6-1)、化合物(4-2)の切断反応により得られる下記化合物(6-2)、化合物(4-3)の切断反応により得られる下記化合物(6-3)、化合物(4-4)の切断反応により得られる下記化合物(6-4)、化合物(4-5)の切断反応により得られる下記化合物(6-5)、化合物(4-6)の切断反応により得られる下記化合物(6-6)、化合物(4-7)の切断反応により得られる下記化合物(6-7)が挙げられる。
 (CFCFC(=O)F・・・(6-1)
 CFCFCFOCF(CF)CFOCF(CF)C(=O)F・・・(6-2)
 CFCFCFOCF(CF)C(=O)F・・・(6-3)
 CFClCFClCFCFOCF(CF)C(=O)F・・・(6-4)
 CFBrCFOCF(CF)C(=O)F・・・(6-5)
 CFClCFClCFCF(CF)OCF(CF)C(=O)F・・・(6-6)
 CFCFCFOCF(CF)C(=O)F・・・(6-7)
(化合物(4)の切断反応)
 化合物(4)の切断反応は、化合物(4)のエステル結合の分解反応である。該分解反応は、熱分解反応、または、求核剤もしくは求電子剤の存在下に行う分解反応により行うことが好ましく、求核剤もしくは求電子剤の存在下に行う分解反応が特に好ましい。
 化合物(4)を液相中で求核剤または求電子剤と反応させ、エステル結合の分解反応を行う場合、該反応は、分解反応溶媒の存在下に行っても不存在下に行ってもよい。化合物(4)自身が溶媒としても作用し、反応生成物中から溶媒を分離する必要がない点で、分解反応溶媒の不存在下で行うことが好ましい。求核剤としてはFが好ましく、アルカリ金属のフッ化物由来のFが特に好ましい。アルカリ金属のフッ化物としては、NaF、NaHF、KF、CsFが好ましく、反応性の点から、KFが特に好ましい。
 Fを求核剤とするエステル結合の分解反応を行う場合には、化合物(4)のエステル結合中に存在するカルボニル基にFが求核的に付加し、次いで、-OCF-RAF-CFO-が脱離するとともに化合物(6)が生成する。-OCF-RAF-CFO-からはさらにFが脱離して化合物(5)が生成する。脱離したFは別の化合物(4)分子と同様に反応する。したがって、反応の最初に用いる求核剤は触媒量であっても、過剰量であってもよい。F等の求核剤の量は、化合物(4)に対して0.1~500モル%が好ましく、0.1~100モル%がより好ましく、0.5~50モル%が特に好ましい。
 反応温度は、-30℃以上、かつ、溶媒または化合物(4)の沸点以下の温度が好ましく、-20~250℃が特に好ましい。
 分解反応は、蒸留塔をつけた反応装置で蒸留をしながら実施することが好ましい。
 なお、以上説明した方法において、工程(III)で生成した化合物(6)と、工程(I)で用いる化合物(2)とが同一の化合物である場合には、工程(III)で生成した化合物(6)を工程(I)で化合物(2)として用いる(リサイクル)ことにより、化合物(5)を連続製造できる。たとえば、生成した化合物(6)の一部または全部を化合物(2)として用いて化合物(1)と反応させる方法が挙げられる。
 また、前記のように、化合物(6)はフッ素化反応溶媒として使用することもできる。したがって、化合物(1)を過剰量の化合物(6)と混合し、両者を反応させて化合物(3)を生成させることによって、化合物(3)とそれを溶解した化合物(6)とからなる溶液を形成することができる。この溶液を化合物(3)を溶解したフッ素化反応溶媒として工程(II)に使用することができる。
〔工程(IV)および工程(V)〕
 工程(IV)は、化合物(5)をヘキサフルオロプロピレンオキシド(以下、「HFPO」とも記す。)と反応させて、下式(7)で表される化合物(7)を得る工程である。工程(V)は、化合物(7)を熱分解して下式(8)で表される化合物(8)を得る工程である。化合物(8)は、環化重合が可能な含フッ素モノマーであり、フッ素樹脂の原料として有用である。化合物(5)から化合物(8)を製造する場合において、このように化合物(7)を経由する製造方法を採用することにより、化合物(8)を工程数が少なく効率よく得られる。
 FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
 FC=CF-O-QAF-CF=CF・・・(8)
(RAF
 上記と同じ意味、すなわち、Rの水素原子のすべてがフッ素化された基を示す。
(QAF
 QAF:RAFの炭素数が1の場合、QAFは単結合である。RAFの炭素数が2以上の場合、QAFはRAFよりも炭素数が1つ少なく、2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基の水素原子のすべてがフッ素置換された基である。
(化合物(7))
 化合物(7)としては、化合物(5-1)にHFPOを反応させて得られる下記化合物(7-1)が挙げられる。
 FC(=O)-CF(CF)-O-CF-(CF-C(=O)F・・・(7-1)
 ただし、nは式(1-1)中のnと同じである。
(化合物(8))
 化合物(8)としては、化合物(7-1)を熱分解して得られる下記化合物(8-1)が挙げられる。
 FC=CF-O-(CFn-1-CF=CF・・・(8-1)
 ただし、nは式(1-1)中のnと同じである。
 なかでも、nが3であるFC=CF-O-(CF-CF=CFとnが2であるFC=CF-O-CF-CF=CFは、環化重合が可能な含フッ素モノマーとして特に有用である。得られる重合体としては、旭硝子社製CYTOP(登録商標)が挙げられる。
 化合物(5)とHFPOとを反応させて化合物(7)を得る反応は、溶媒の存在下に実施しても不存在下に実施してもよい。溶媒を使用する場合、溶媒としてはテトラグライムが好ましい。反応温度は、-50~0℃が好ましく、反応制御のしやすさ、化合物(7)の選択率の点からは、-15~-5℃が特に好ましい。反応は、常圧で実施することが好ましく、具体的には、-0.1~0.5MPa(ゲージ圧)が特に好ましい。反応は、水分、酸性成分の不存在下に行う。
 化合物(7)を熱分解する反応は、気相において触媒の存在下で行うことが好ましい。たとえば、流動層型の反応装置を用い、触媒としてガラスビーズを充填した反応器で反応を実施する方法が挙げられる。この方法によれば、化合物(7)を一旦金属塩にすることなく、化合物(7)から直接一段階で、化合物(8)を得られる。
 反応は、化合物(7)の過度な分解と化合物(7)の異性化を抑制する点からは、常圧において、反応温度が100~350℃、化合物(7)の通過時間が1~30秒間の条件下で行うことが好ましい。なお、通過時間とは、化合物(7)が、触媒が充填されている部分である触媒充填層と接触している時間である。
〔工程(VI)〕
 工程(VI)は、化合物(5)を下式(9)で表される化合物(9)と反応させて下式(10)で表される化合物(10)を得る工程である。化合物(10)は、RAF基を有するジイソシアネート化合物に変換することができ、RAF基を有するジイソシアネート化合物は含フッ素ポリウレタン樹脂原料や医療用接着材の中間体等として有用である。
 HO-R・・・(9)
 R-OC(=O)-RAF-C(=O)O-R・・・(10)
(R)
 Rは、-CH、-CHCHおよび-CH(CHから選ばれる基である。
(RAF
 上記と同じ意味、すなわち、Rの水素原子のすべてがフッ素置換された基を示す。
(化合物(9))
 化合物(9)としては、CHOH、CHCHOHおよび(CHCHOHのいずれかである。
(化合物(10))
 化合物(10)としては、化合物(5-1)に化合物(9)を反応させて得られる下記化合物が挙げられる。
  R-OC(=O)-(CF-C(=O)O-R
 ただし、nは式(1-1)中のnと同じである。
 化合物(5)と化合物(9)との反応は、溶媒の存在下に行っても不存在下に行ってもよい。溶媒としては、化合物(10)と反応性がなく、かつ、化合物(10)と蒸留分離、カラム分離等の方法で分離可能な溶媒が好ましい。化合物(9)自身が溶媒としても作用するため、溶媒の不存在下で行うことができる。反応温度の下限値は-20℃が好ましい。反応温度の上限値は、100℃および溶媒の沸点のうち、低い温度とすることが好ましい。反応温度は0~40℃が特に好ましい。圧力は、0~2MPa(ゲージ圧)が好ましい。
 化合物(5)と化合物(9)との反応においては、HFが副生する。副生したHFを除去するには、HF捕捉剤またはアルカリ水溶液を用いることが好ましい。該HF捕捉剤としては、先に例示したものを同様に使用できる。アルカリ水溶液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液等が挙げられる。HF捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、かつ、HFを窒素気流に同伴させて反応系外に排出することが好ましい。HF捕捉剤またはアルカリ水溶液の使用量は、化合物(5)に対して1~10倍モルが好ましい。
〔工程(IV)および工程(VII)〕
 工程(IV)は、前述の通り、化合物(5)をHFPOと反応させて、下式(7)で表される化合物(7)を得る工程である。工程(VII)は、化合物(7)を熱分解してROHと反応させて下式(11)で表される化合物(11)を得る工程である。化合物(11)は、フッ素樹脂の原料として有用である。化合物(5)から化合物(11)を製造する場合において、このように化合物(7)を経由する製造方法を採用することにより、化合物(11)を工程数が少なく効率よく得られる。
 FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
 FC=CF-O-RAF-C(=O)OR・・・(11)
(RAF
 上記と同じ意味、すなわち、Rの水素原子のすべてがフッ素置換された基を示す。
(R
 R:炭素数1~10のアルキル基。
(化合物(11))
 化合物(11)としては、化合物(7-1)を熱分解してROHと反応して得られる下記化合物(11-1)が挙げられる。
 FC=CF-O-(CF-C(=O)OR・・・(11-1)
 ただし、nは式(1-1)中のnと同じである。
 なかでも、RがCHである(すなわちROHはメタノール)FC=CF-O-(CF-C(=O)OCHは、含フッ素モノマーとして含フッ素重合体の製造に有用であり、nは特に3が好ましい。
 化合物(7)を熱分解して(11)を合成する反応は、気相において触媒の存在下で行うことが好ましい。たとえば、流動層型の反応装置を用い、触媒としてガラスビーズを充填した反応器で反応を実施する方法が挙げられる。触媒層を通過後、メタノールと反応させることで、化合物(7)を一旦単離することなく、化合物(7)から直接化合物(11)を得られる。
 反応は、化合物(7)の過度な分解を抑制する点からは、常圧において、反応温度が100~350℃、好ましくは150~250℃で、化合物(7)の通過時間が1~20秒間の条件下で行うことが好ましい。なお、通過時間とは、化合物(7)が、触媒が充填されている部分である触媒充填層と接触している時間である。
 以上説明したように本発明の製造方法では、工程(II)において、工程(I)で化合物(1)および化合物(2)を反応させて得られた化合物(3)をフッ素化するため、化合物(4)を高収率で得ることができる。
 そして、工程(III)~(V)を行うことにより、化合物(4)から化合物(5)および化合物(6)を得て、化合物(5)から化合物(7)を経て化合物(8)を得ることができる。化合物(8)は、環化重合が可能な含フッ素モノマーとして有用である。
 また、工程(VI)において、化合物(5)から化合物(10)を得ることができる。化合物(10)は、医療用接着材の中間体等として有用である。
 また、工程(VII)において、化合物(5)から化合物(11)を得ることができる。化合物(11)は、含フッ素モノマーとして有用である。
 化合物(8)と化合物(11)は、含フッ素モノマーとして単独で重合して含フッ素重合体を得ても、併用して重合して含フッ素重合体を得てもよい。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されない。例1~5および例11、12は実施例、例6~10は比較例である。
 例中の略号は以下を意味する。
 (HFPO):CFCFCFOCF(CF)CFOCF(CF)C(=O)F
 TMS:テトラメチルシラン
〔GC純度〕
 ガスクロマトグラム(GC)のピーク面積比より求めた粗液中の化合物(3)の割合を百分率で表した値(モル%)。
19F-NMRおよびH-NMRの測定〕
 内部基準試料として、19F-NMRでの測定にはペルフルオロベンゼン(C)を用い、H-NMRでの測定にはTMSを用いた。
 NMRスペクトルデータは、見かけの化学シフト範囲として示した。
19F-NMR転化率〕
 フッ素化反応に供給する化合物(3)の量のうち、転化した化合物(3)の量をモル基準の百分率で表した値(モル%)であり、計算式:100-(回収未反応化合物(3)量/供給化合物(3)量)×100により求められる。
 具体的には、フッ素化反応に供給する化合物(3)の量は実測値であり、回収された未反応化合物(3)の量は、オートクレーブから取り出された回収物の19F-NMR測定により求めた値である。
19F-NMR収率〕
 フッ素化反応に供給する化合物(3)の量に対する、回収された化合物(4)の量(生成量)をモル基準の百分率で表した値(モル%)であり、計算式:(回収化合物(4)量/供給化合物(3)量)×100により求められる。
 具体的には、フッ素化反応に供給する化合物(3)の量は実測値であり、回収された化合物(4)の量は、オートクレーブから取り出された回収物の19F-NMR測定により求めた値である。
〔例1〕
(例1-1)(CFCFCOO(CHOCOCF(CF(化合物(3-1)に相当。)の製造
 5Lのフラスコに、HO(CHOH(化合物(1-1)に相当。)の1,000gを加え、窒素ガスをバブリングしながら攪拌した。次に、(CFCFC(=O)F(化合物(2-1)に相当。)の4,400gを、該フラスコの内温を25~30℃に保ちながら2.5時間かけて液相中に供給(バブリング)した。供給終了後、室温で15時間攪拌し、得られた粗液を回収した。
 該粗液のGC純度は95%であった。
 また、H-NMRおよび19F-NMRスペクトルを測定し、主成分は標記化合物(フッ素含有量=53.6質量%)であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、2H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl3、基準:C)δ(ppm):-74.3(12F)、-181.9(2F)。
(例1-2)(CFCFCOO(CFOCOCF(CF(化合物(4-1)に相当。)の製造
 3,000mLのニッケル製オートクレーブに、フッ素化反応溶媒として(HFPO)の2,800gを加えて攪拌し、25℃に保った。オートクレーブガス出口には-20℃に保持した冷却機を設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が50体積%の希釈フッ素ガス(以下、「50%フッ素ガス」と記す。)を吹き込み速度36L/時間で1時間吹き込んだ。
 次に、50%フッ素ガスを同じ流速で吹き込みながら、例1-1で得た(CFCFCOO(CHOCOCF(CFの40gを2時間かけて注入した。さらに、50%フッ素ガスを同じ流速で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。
 オートクレーブからの回収物中の生成物は標記化合物を主生成物とし、19F-NMR収率は96%、19F-NMR転化率は98%であった。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-74.3(s、12F)、-86.1(4F)、-122.6(2F)、-125.7(4F)、-181.9(2F)。
〔例2〕(CFCFCOO(CFOCOCF(CF(化合物(4-1)に相当。)の製造
 例1-1と同様にして(CFCFCOO(CHOCOCF(CFを得た。次に、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
〔例3〕
(例3-1)(CFCFCOO(CHOCOCF(CF(化合物(3-1)に相当。)の製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は96%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物(フッ素含有量=52.2質量%)であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、4H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-74.3(12F)、-181.9(2F)。
(例3-2)(CFCFCOO(CFOCOCF(CF(化合物(4-1)に相当。)の製造
 オートクレーブに注入する化合物を例3-1で得た(CFCFCOO(CHOCOCF(CFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-74.3(s、12F)、-86.1(4F)、-122.6(4F)、-125.7(4F)-181.9(2F)。
〔例4〕
(例4-1)
 CFCFCFOCF(CF)CFOCF(CF)COO(CHOCOCF(CF)OCFCF(CF)OCFCFCF(化合物(3-2)に相当。)の製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は97%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物(フッ素含有量=60.1質量%)であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、4H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.9(4F)、-80.5(6F)、-83.1(16F)、-130.7(4F)、-132.7(2F)、-145.2(2F)。
(例4-2)
 CFCFCFOCF(CF)CFOCF(CF)COO(CFOCOCF(CF)OCFCF(CF)OCFCFCF(化合物(4-2)に相当。)の製造
 オートクレーブに注入する化合物を例4-1で得たCFCFCFOCF(CF)CFOCF(CF)COO(CHOCOCF(CF)OCFCF(CF)OCFCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.9(4F)、-80.5(6F)、-83.1(16F)、-86.1(4F)、-122.6(4F)、-125.7(4F)、-130.7(4F)、-132.7(2F)、-145.2(2F)。
〔例5〕
(例5-1)
 CFCFCFOCF(CF)CFOCF(CF)COO(CHOCOCF(CF)OCFCF(CF)OCFCFCF(化合物(3-2)に相当。)の製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は95%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物(フッ素含有量=60.9質量%)であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、2H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.9(4F)、-80.5(6F)、-83.1(16F)、-130.7(4F)、-132.7(2F)、-145.2(2F)。
(例5-2)
 CFCFCFOCF(CF)CFOCF(CF)COO(CFOCOCF(CF)OCFCF(CF)OCFCFCF(化合物(4-2)に相当。)の製造
 オートクレーブに注入する化合物を例5-1で得たCFCFCFOCF(CF)CFOCF(CF)COO(CHOCOCF(CF)OCFCF(CF)OCFCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.9(4F)、-80.5(6F)、-83.1(16F)、-86.1(4F)、-122.6(2F)、-125.7(4F)、-130.7(4F)、-132.7(2F)、-145.2(2F)。
〔例6〕
(例6-1)
 CFCFCFOCF(CF)COO(CHOCOCF(CF)OCFCFCF(化合物(3-3)に相当。)の製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は97%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物(フッ素含有量=58.5質量%)であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm)1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.5(6F)、-80.9(4F)、-83.1(6F)、-130.7(4F)、-145.2(2F)。
(例6-2)
 CFCFCFOCF(CF)COO(CFOCOCF(CF)OCFCFCF(化合物(4-3)に相当。)の製造
 オートクレーブに注入する化合物を例6-1で得たCFCFCFOCF(CF)COO(CHOCOCF(CF)OCFCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.5(6F)、-80.9(4F)、-83.1(6F)、-122.6(4F)、-126.6(4F)-130.7(4F)、-145.2(2F)。
〔例7〕
(例7-1)CFCFCOO(CHOCOCFCFの製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は97%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、2H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.0(6F)、-121.4(4F)。
(例7-2)CFCFCOO(CFOCOCFCFの製造
 オートクレーブに注入する化合物を例7-1で得たCFCFCOO(CHOCOCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行ったが、燃焼反応が起こり、オートクレーブから回収できた回収物中には多種の生成物が確認された。該回収物中の標記化合物の19F-NMR収率を表1に示す。NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.0(6F)、-86.1(4F)、-121.4(4F)、-122.6(2F)、-125.7(4F)。
〔例8〕
(例8-1)CFCFCOO(CHOCOCFCFの製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は96%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.42-1.53(m、4H)、1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.0(6F)、-121.4(4F)。
(例8-2)CFCFCOO(CFOCOCFCFの製造
 オートクレーブに注入する化合物を例8-1で得たCFCFCOO(CHOCOCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.0(6F)、-86.1(4F)、-121.4(4F)、-122.6(4F)、-125.7(4F)。
〔例9〕
(例9-1)CFCFCFOCF(CF)COOCHCH(CH)O(CHOCOCF(CF)OCFCFCFの製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は95%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.19(3H)、1.39-1.49(2H)、1.54-1.63(2H)、1.71-1.80(2H)、3.39-3.53(2H)、3.66-3.72(1H)、4.21-4.46(4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-80.9(2F)、-82.3(6F)、-83.1(6F)、-87.4(2F)、-130.7(4F)、-132.7(2F)。
(例9-2)CFCFCFOCF(CF)COOCFCF(CF)O(CFOCOCF(CF)OCFCFCFの製造
 オートクレーブに注入する化合物を例9-1で得たCFCFCFOCF(CF)COOCHCH(CH)O(CHOCOCF(CF)OCFCFCFとし、フッ素化反応の条件を表1の条件とした以外は、例1-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
 NMRスペクトル
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-79.2~-80.7(7F)、-81.5~82.0(12F)、-85.9~-87(6F)、-122,4(2F)、-125.3(4F)-129.6(4F)、-131.4(2F)、-144.9(1F)。
〔例10〕CFCFCFOCF(CF)COOCFCF(CF)O(CFOCOCF(CF)OCFCFCFの製造
 例9-1と同様にしてCFCFCFOCF(CF)COOCHCH(CH)O(CHOCOCF(CF)OCFCFCFを得た。そして、フッ素化反応の条件を表1の条件とした以外は、例9-2と同様に操作を行った。オートクレーブからの回収物中の生成物の主生成物は標記化合物であった。19F-NMR収率および19F-NMR転化率を表1に示す。
〔例11〕
(例11-1)CFCFCOO(CHOCOCFCFの製造
 表1に記載のように出発原料を変更した以外は、例1-1と同様の操作を行った。回収された粗液のGC純度は98%であった。また、H-NMRおよび19F-NMRスペクトルを測定し主成分は標記化合物であることを確認した。
 NMRスペクトル
 H-NMR(399.78MHz、溶媒:CDCl、基準:TMS)δ(ppm)1.70-1.84(m、4H)、4.20-4.50(m、4H)。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.0(6F)、-121.4(4F)。
(例11-2)CFCFCOO(CFOCOCFCFの製造
 3,000mLのニッケル製オートクレーブに、(HFPO)の2,800gを加えて攪拌し、25℃に保った。オートクレーブ出口には、-20℃に冷却した冷却器を設置した。なお、-20℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。窒素ガスを2時間吹き込んだ後、50%フッ素ガスを、流速7.8L/時間で1時間吹き込んだ。次に、50%フッ素ガスを同じ流速で吹き込みながら、例11-1で得たCFCFCOO(CHOCOCFCF(25g)を6時間かけて注入した。さらに、50%フッ素ガスを同じ流速で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブからの回収物中の生成物は標記化合物を主生成物とし、19F-NMR収率51%、19F-NMR転化率は80%であった。
 さらに、50%フッ素ガスを同じ流速で吹き込みながら、例11-1で得たCFCFCOO(CHOCOCFCF(25g)を6時間かけて注入した。さらに、50%フッ素ガスを同じ流速で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。生成物は標記化合物を主生成物とし、19F-NMR収率83%、19F-NMR転化率は100%であった。
 19F-NMR(376.17MHz、溶媒:CDCl、基準:C)δ(ppm):-83.8(6F)、-87.3(4F)、-122.6(4F)、-126.6(4F)。
Figure JPOXMLDOC01-appb-T000001
 例1~6では、フッ素化反応により、目的物を高収率で得ることができた。なかでも、例1、3~6では、フッ素ガス量が高い条件(50体積%)において、目的物を高収率で得ることができた。これに対して例7~11では、目的物を高収率で得ることができなかった。たとえば、フッ素ガス量が高い条件でフッ素化反応を行った例7~9では、転化率は高いものの目的物の選択率が低く、そのため収率は低かった。フッ素ガス量が低い条件でフッ素化反応を行った例10では、目的物の選択率はやや向上したが、充分な収率は得られなかった。例11では、フッ素化される化合物の注入時間(反応時間)を延長して転化率を高めたが、選択率は低く、充分な収率は得られなかった。
〔例12〕
(例12-1)FC(=O)(CFC(=O)Fの製造(化合物(5-1)に相当。)
 1Lのフラスコに、例1-2で得た(CFCFCOO(CFOCOCF(CF(化合物(4-1)に相当。)の500gを仕込み、次いでKF粉末の4.1gを仕込み、激しく攪拌を行いながら、オイルバス中で100℃で5時間加熱した。フラスコ上部には、20℃に温度調節した還流器およびガス捕集用フッ素樹脂容器を直列に設置した。加熱後に冷却し、液状サンプルとガス状サンプルを回収し、液状サンプルを蒸留精製した。GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。収率は82モル%であった。該収率は、仕込み組成より理論上得られる目的化合物のモル数を100%とした時の、蒸留精製で得られた回収フラクション中に含まれる目的化合物のモル%を意味する。
(例12-2)FC(=O)CF(CF)O(CFC(=O)Fの製造(化合物(7-1)に相当。)
 2Lのオートクレーブに、例12-1で得たFOC(CFCOFの360g、フッ化セシウムの11.4g、テトラグライムの56.8gを仕込み、-10℃にオートクレーブを保ちながら、ヘキサフルオロプロピレンオキシドの260gを添加した。反応終了後、下層を回収し、蒸留精製し、GC-MSにより、標記化合物が主生成物であることを確認した。例12-1と同様の定義による目的化合物の収率は60モル%であった。
(例12-3)FC=CFO(CFCF=CFの製造(化合物(8-1)に相当。)
 インコネル製1インチ反応管に、充填高が20cmになるようにガラスビーズを充填し、330℃に熱した。例12-2で得たFC(=O)CF(CF)O(CFC(=O)Fの500gを、窒素ガスで10体積%になるように希釈して、反応管に導入した。線速を2.0cm/秒に制御し、反応ガスのガラスビーズ層中での通過時間を10秒に保ちながら反応を行った。反応出口ガスはドライアイス-エタノールトラップで捕集した。トラップ捕集液を蒸留精製し、GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。例12-1と同様の定義による目的化合物の収率は48モル%であった。
(例12-4)FC=CFO(CFCF=CF(化合物(8-1)に相当。)の重合
 1Lセパラブルフラスコに、例12-3で得たFC=CFO(CFCF=CFの150g、メタノールの28.0g、開始剤([(CHCHOCO]の10質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液。)の3.8g、分散剤(日本乳化剤社製、商品名:ニューコール714SN)の5.7g、超純水の800gを仕込み、40℃にて20時間、50℃にて6時間の計26時間攪拌し、懸濁重合を行った。得られたポリマー粒子(環化重合体)の収率は88%であり、固有粘度は0.34であった。環化重合体はパーフルオロトリブチルアミンなどのパーフルオロ溶媒に溶解し、シリコンウエハやガラス上に薄膜コーティングを形成でき、透明でタフなポリマーであった。
 ポリマー粒子の収率は、仕込んだ単量体の質量を100%とした時の、得られたポリマー粒子の質量%である。
 固有粘度は、下式(A)で定義される。固有粘度の測定は、以下のように行った。ポリマー粒子を1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)-ペンタンに溶解した溶液を調製し、濃度cを希釈しながら、その流下速度をウベローデ型粘度管で計測した。固有粘度は、ηsp/cとcを両対数プロットし、その濃度cを0に外挿入した外挿値である。
 固有粘度[η]=lim(ηsp/c)…(A)
 ただし、c=ポリマー濃度(g/dL)、ηsp=t1/t0-1(t0:溶媒の流下時間、t1:溶液の流下時間)。
〔例13〕
(例13-1)FC(=O)(CFC(=O)Fの製造(化合物(5-1)に相当。)の製造
 1Lのフラスコに、例4-2で得たCFCFCFOCF(CF)CFOCF(CF)COO(CFOCOCF(CF)OCFCF(CF)OCFCFCFの500g、KF粉末の2.1gを仕込み、激しく攪拌しながら、オイルバス中で100℃で5時間加熱した。フラスコ上部には20℃に温度調節した還流器を設置した。冷却後液状サンプルを回収し、蒸留精製した。GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。収率は85モル%であった。該収率は、例12-1と同様にして求めた。
(例13-2)HCOC(=O)(CFC(=O)OCHの製造(化合物(10)に相当。)
 500mLのフラスコに、例13-1で得たFC(=O)(CFC(=O)Fの300gを仕込み、10℃に保ちながら、メタノール(化合物(9)に相当。)の110gを添加した。2時間攪拌した後、水酸化カリウム水溶液を加えて下層を回収し、蒸留精製した。GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。例12-1と同様の定義による目的化合物の収率は87モル%であった。
〔例14〕
(例14-1)FC(=O)(CFC(=O)Fの製造(化合物(5-1)に相当。)
 1Lのフラスコに、例6-2で得たCFCFCFOCF(CF)COO(CFOCOCF(CF)OCFCFCF(化合物(4-3)に相当。)の1,000gを仕込み、次いでKF粉末の6.5gを仕込み、激しく攪拌を行いながら、オイルバス中で100℃で5時間加熱した。フラスコ上部には、20℃に温度調節した還流器およびガス捕集用フッ素樹脂容器を直列に設置した。加熱後に冷却し、液状サンプルとガス状サンプルを回収し、液状サンプルを蒸留精製した。GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。収率は85モル%であった。該収率は、仕込み組成より理論上得られる目的化合物のモル数を100%とした時の、蒸留精製で得られた回収フラクション中に含まれる目的化合物のモル%を意味する。
(例14-2)FC(=O)CF(CF)O(CFC(=O)Fの製造(化合物(7-1)に相当。)
 2Lのオートクレーブに、例14-1で得たFOC(CFCOFの500g、フッ化セシウムの39.1g、テトラグライムの115gを仕込み、-10℃にオートクレーブを保ちながら、ヘキサフルオロプロピレンオキシドの470gを添加した。反応終了後、下層を回収し、蒸留精製し、GC-MSにより、標記化合物が主生成物であることを確認した。例14-1と同様の定義による目的化合物の収率は62モル%であった。
(例14-3)FC=CFO(CFC(=O)OCHの製造(化合物(9-1)に相当。)
 インコネル製1インチ反応管に、充填高が20cmになるようにガラスビーズを充填し、250℃に熱した。例14-2で得たFC(=O)CF(CF)O(CFC(=O)Fの500gを、窒素ガスで10体積%になるように希釈して、反応管に導入した。線速を2.0cm/秒に制御し、反応ガスのガラスビーズ層中での通過時間を10秒に保ちながら反応を行った。反応出口ガスはメタノールを張り込んだドライアイス-エタノールトラップで捕集した。トラップ捕集液を蒸留精製し、GC-MSにより分析した結果、標記化合物が主生成物であることを確認した。例14-1と同様の定義による目的化合物の収率は42モル%であった。
 本発明の含フッ素化合物の製造方法によれば、部分フッ素化エステルのフッ素化反応において、ペルフルオロ化された目的物を高収率で製造できる。該目的物を原料として、フッ素樹脂原料である含フッ素モノマーや医療用接着材の中間体を提供できる。

 なお、2013年8月26日に出願された日本特許出願2013-175041号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  下式(1)で表される化合物(1)と下式(2)で表される化合物(2)とを反応させて下式(3)で表される化合物(3)(ただし、フッ素含有量が30質量%以上である。)を得る工程(I)と、
     前記化合物(3)を液相中でフッ素化して下式(4)で表される化合物(4)を得る工程(II)と、を有することを特徴とする含フッ素化合物の製造方法。
     HOCH-R-CHOH・・・(1)
     XC(=O)-C(R)(R)(R)・・・(2)
     (R)(R)(R)C-C(=O)OCH-R-CHOC(=O)-C(R)(R)(R)・・・(3)
     (RDF)(RCF)(RBF)C-C(=O)OCF-RAF-CFOC(=O)-C(RBF)(RCF)(RDF)・・・(4)
     ただし、
     R:2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基である。
     R、R、R:Rは、RBFと同一の含フッ素1価有機基、フッ素化反応によってRBFになる1価有機基、水素原子およびハロゲン原子のいずれかであり、Rは、RCFと同一の含フッ素1価有機基またはフッ素化反応によってRCFになる1価有機基であり、Rは、RDFと同一の含フッ素1価有機基またはフッ素化反応によってRDFになる1価有機基である。
     X:ハロゲン原子である。
     RAF:Rの水素原子のすべてがフッ素置換された基である。
     RBF:Rが水素原子である場合、RBFはフッ素原子であり、Rがハロゲン原子である場合、RBFはRと同一のハロゲン原子である。Rが水素原子およびハロゲン原子のいずれでもない場合、RBFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
     RCF:RCFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
     RDF:RDFはRと同一または異なる含フッ素1価有機基であり、異なる場合にはRがフッ素置換された基である。
  2.  前記Rの炭素数が20以下であり、前記R、前記Rおよび前記Rがそれぞれ前記含フッ素1価有機基または前記1価有機基の場合、その炭素数が10以下である、請求項1に記載の含フッ素化合物の製造方法。
  3.  前記Rが(CHであり、RAFが(CFである(ただし、nは1~10の整数。)、請求項1または2に記載の含フッ素化合物の製造方法。
  4.  前記RおよびRBFがフッ素原子であり、前記RおよびRCFが同一であってかつ炭素数1~3のペルフルオロアルキル基であり、かつ、前記RおよびRDFが同一であってかつ炭素数1のペルフルオロアルキル基、炭素数2~6のペルフルオロアルコキシ基またはエーテル性酸素原子を1つ有する炭素数4~8のペルフルオロアルコキシ基である、請求項1~3のいずれか一項に記載の含フッ素化合物の製造方法。
  5.  前記工程(II)において、フッ素化を不活性ガスで希釈したフッ素ガスを前記液相中に供給して行い、
     前記フッ素ガスの割合が、前記不活性ガスと前記フッ素ガスとの合計100体積%中、30~60体積%である、請求項1~4のいずれか一項に記載の含フッ素化合物の製造方法。
  6.  前記工程(II)において、フッ素化をフッ素化反応溶媒を含む前記液相中で行い、
     前記フッ素化反応溶媒が、C-H結合を含まないエーテル性酸素原子を含む含フッ素溶媒である、請求項1~5のいずれか一項に記載の含フッ素化合物の製造方法。
  7.  前記含フッ素溶媒が、(RDF)(RCF)(RBF)C-C(=O)Fである(ただし、RBF、RCFおよびRDFは前記に同じ。)、請求項6に記載の含フッ素化合物の製造方法。
  8.  請求項1~7のいずれか一項に記載の含フッ素化合物の製造方法における工程(I)および工程(II)と、前記化合物(4)の切断反応により下式(5)で表される化合物(5)および下式(6)で表される化合物(6)の1種以上を得る工程(III)とを有することを特徴とする含フッ素化合物の製造方法。
     FC(=O)-RAF-C(=O)F・・・(5)
     (RDF)(RCF)(RBF)C-C(=O)F・・・(6)
  9.  前記工程(II)において、フッ素化をフッ素化反応溶媒を含む前記液相中で行い、
     前記フッ素化反応溶媒が、前記化合物(5)および前記化合物(6)の1種以上である、請求項8に記載の含フッ素化合物の製造方法。
  10.  請求項8または9に記載の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)をヘキサフルオロプロピレンオキシドと反応させて、下式(7)で表される化合物(7)を得る工程(IV)と、該化合物(7)を熱分解して下式(8)で表される化合物(8)を得る工程(V)とを有することを特徴とする含フッ素化合物の製造方法。
     FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
     FC=CF-O-QAF-CF=CF・・・(8)
     ただし、
     RAF:上記と同じ意味を示す。
     QAF:RAFの炭素数が1の場合、QAFは単結合である。RAFの炭素数が2以上の場合、QAFはRAFよりも炭素数が1つ少なく、2価飽和炭化水素基または部分ハロゲン化2価飽和炭化水素基の水素原子のすべてがフッ素置換された基である。
  11.  請求項8または9に記載の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)を下式(9)で表される化合物(9)と反応させて下式(10)で表される化合物(10)を得る工程(VI)を有することを特徴とする含フッ素化合物の製造方法。
     HO-R・・・(9)
     R-OC(=O)-RAF-C(=O)O-R・・・(10)
     ただし、Rは、-CH、-CHCHおよび-CH(CHから選ばれる基である。
  12.  請求項8または9に記載の含フッ素化合物の製造方法における工程(I)、工程(II)および工程(III)と、前記化合物(5)をヘキサフルオロプロピレンオキシドと反応させて、下式(7)で表される化合物(7)を得る工程(IV)と、該化合物(7)を熱分解してROHと反応させて下式(11)で表される化合物(11)を得る工程(VII)とを有することを特徴とする含フッ素化合物の製造方法。
     FC(=O)-CF(CF)-O-CF-RAF-C(=O)F・・・(7)
     FC=CF-O-RAF-C(=O)OR・・・(11)
     ただし、
     RAF:上記と同じ意味を示す。
     R:炭素数1~10のアルキル基を示す。
  13.  請求項10に記載の方法で化合物(8)を得て、次いで化合物(8)を重合させる、含フッ素重合体の製造方法。
  14.  請求項12に記載の方法で化合物(11)を得て、次いで化合物(11)を重合させる、含フッ素重合体の製造方法。
PCT/JP2014/071673 2013-08-26 2014-08-19 含フッ素化合物の製造方法 WO2015029839A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480047089.5A CN105492418B (zh) 2013-08-26 2014-08-19 含氟化合物的制造方法
RU2016110877A RU2675377C2 (ru) 2013-08-26 2014-08-19 Способ получения фторированного соединения
JP2015534153A JP6288094B2 (ja) 2013-08-26 2014-08-19 含フッ素化合物の製造方法
EP14839266.5A EP3040327B1 (en) 2013-08-26 2014-08-19 Method for producing fluorinated compound
KR1020167004853A KR102258218B1 (ko) 2013-08-26 2014-08-19 함불소 화합물의 제조 방법
US15/016,426 US9783483B2 (en) 2013-08-26 2016-02-05 Process for producing fluorinated compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-175041 2013-08-26
JP2013175041 2013-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/016,426 Continuation US9783483B2 (en) 2013-08-26 2016-02-05 Process for producing fluorinated compound

Publications (1)

Publication Number Publication Date
WO2015029839A1 true WO2015029839A1 (ja) 2015-03-05

Family

ID=52586401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071673 WO2015029839A1 (ja) 2013-08-26 2014-08-19 含フッ素化合物の製造方法

Country Status (7)

Country Link
US (1) US9783483B2 (ja)
EP (1) EP3040327B1 (ja)
JP (1) JP6288094B2 (ja)
KR (1) KR102258218B1 (ja)
CN (1) CN105492418B (ja)
RU (1) RU2675377C2 (ja)
WO (1) WO2015029839A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014667A (ja) * 2017-07-05 2019-01-31 Agc株式会社 ペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)の製造方法及び新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)
WO2022138659A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 フルオロビニルエーテル化合物の製造方法
WO2024111486A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素アシルフルオリド化合物の製造方法
WO2024111487A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素環状化合物の製造方法及び含フッ素環状化合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705557B2 (ja) * 2017-05-26 2020-06-03 Agc株式会社 含フッ素エーテル化合物の製造方法および含フッ素エーテル化合物
JP6835060B2 (ja) * 2018-12-27 2021-02-24 ダイキン工業株式会社 シクロブテンの製造方法
CN111138275B (zh) * 2019-12-30 2022-06-10 天津市长芦化工新材料有限公司 全氟烷基二酰氟及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004397A1 (fr) 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor
WO2004080940A1 (ja) * 2003-02-21 2004-09-23 Asahi Glass Company, Limited ペルフルオロジアシルフルオリド化合物の製造方法
JP2004346014A (ja) * 2003-05-22 2004-12-09 Asahi Glass Co Ltd ペルフルオロジビニルエーテルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2071462C1 (ru) * 1994-02-14 1997-01-10 Всероссийский научно-исследовательский институт химической технологии Способ получения непредельных фторуглеводородов, фторгалогенуглеводородов, фторгалогенуглеродов или фторуглеродов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004397A1 (fr) 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor
WO2004080940A1 (ja) * 2003-02-21 2004-09-23 Asahi Glass Company, Limited ペルフルオロジアシルフルオリド化合物の製造方法
JP2004346014A (ja) * 2003-05-22 2004-12-09 Asahi Glass Co Ltd ペルフルオロジビニルエーテルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. FLUORINE CHEM., vol. 94, 1999, pages 65 - 68
See also references of EP3040327A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014667A (ja) * 2017-07-05 2019-01-31 Agc株式会社 ペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)の製造方法及び新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)
WO2022138659A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 フルオロビニルエーテル化合物の製造方法
WO2024111486A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素アシルフルオリド化合物の製造方法
WO2024111487A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素環状化合物の製造方法及び含フッ素環状化合物

Also Published As

Publication number Publication date
RU2016110877A (ru) 2017-10-03
KR102258218B1 (ko) 2021-05-28
KR20160048083A (ko) 2016-05-03
JP6288094B2 (ja) 2018-03-07
CN105492418A (zh) 2016-04-13
EP3040327A4 (en) 2017-01-04
EP3040327B1 (en) 2018-02-28
US9783483B2 (en) 2017-10-10
JPWO2015029839A1 (ja) 2017-03-02
RU2675377C2 (ru) 2018-12-19
CN105492418B (zh) 2018-03-30
RU2016110877A3 (ja) 2018-05-31
EP3040327A1 (en) 2016-07-06
US20160152545A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6288094B2 (ja) 含フッ素化合物の製造方法
JP4905214B2 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
US6894187B2 (en) Method for producing a fluorine-containing compound
JP4934939B2 (ja) 含フッ素ケトンの製造方法
JP4934940B2 (ja) 含フッ素エステル化合物の製造方法
US7501540B2 (en) Process for producing perfluorodiacyl fluorinated compounds
JP4626118B2 (ja) vic−ジクロロ酸フルオリド化合物の製造方法
JP2001139509A (ja) 熱分解反応による不飽和化合物の製造方法
US7053238B2 (en) Process for producing fluorinated polyvalent carbonyl compound
JP4802438B2 (ja) 熱分解反応による不飽和化合物の製造方法
JP4961656B2 (ja) ペルフルオロアシルフルオリド類の製造方法
JP4956856B2 (ja) フルオリド化合物の製造方法
JPWO2002026682A1 (ja) 含フッ素ビニルエーテル化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047089.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534153

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004853

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014839266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839266

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016110877

Country of ref document: RU

Kind code of ref document: A