WO2004080894A1 - フッ化カルボニルの製造方法 - Google Patents

フッ化カルボニルの製造方法 Download PDF

Info

Publication number
WO2004080894A1
WO2004080894A1 PCT/JP2004/003328 JP2004003328W WO2004080894A1 WO 2004080894 A1 WO2004080894 A1 WO 2004080894A1 JP 2004003328 W JP2004003328 W JP 2004003328W WO 2004080894 A1 WO2004080894 A1 WO 2004080894A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
reactor
carbon monoxide
carbonyl fluoride
producing
Prior art date
Application number
PCT/JP2004/003328
Other languages
English (en)
French (fr)
Inventor
Yuki Mitsui
Taisuke Yonemura
Yutaka Ohira
Akira Sekiya
Original Assignee
Research Institute Of Innovative Technology For The Earth
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute Of Innovative Technology For The Earth, National Institute Of Advanced Industrial Science And Technology filed Critical Research Institute Of Innovative Technology For The Earth
Priority to US10/548,836 priority Critical patent/US7332628B2/en
Priority to EP04720210.6A priority patent/EP1619170B8/en
Publication of WO2004080894A1 publication Critical patent/WO2004080894A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene

Definitions

  • the present invention relates to a method for producing carbonyl fluoride. More specifically, the present invention relates to a method for producing high-purity carbonyl fluoride by reacting carbon monoxide with fluorine.
  • carbonyl fluoride has been produced by a method of reacting phosgene with a fluorinating agent such as hydrogen fluoride or antimony trifluoride, or a method of reacting carbon monoxide with silver difluoride. — 1 1 6 2 16 Publication).
  • the carbonyl fluoride produced by these methods contains by-products such as hydrogen chloride and silver fluoride, and this carbonyl fluoride is used as a cleaning gas for a plasma CVD device used in a semiconductor manufacturing process. In order to use it, it was necessary to purify the crude carbon fluoride obtained by the above method to high purity.
  • the CF 4 is global warming potential (integration period 1 0 0 year value) compared to C 0 2, 5, 7 0 0 times extremely large, there is a problem that adverse effects on the environment is concerned, CF There has been a demand for the development of a method for producing carbonyl fluoride in which the production of 4 is suppressed.
  • the present invention is intended to solve the problems associated with the prior art as described above, and an object of the present invention is to provide a method for safely and easily producing carbonyl fluoride. Another object of the present invention is to provide a method for producing high-purity carbonyl fluoride by suppressing the production of CF 4 in the reaction process between carbon monoxide and fluorine. Disclosure of the invention
  • the inventors of the present application have conducted intensive studies to solve the above problems, and the lower the pressure or the molar ratio of carbon monoxide and fluorine (CO_F 2 ), the more the temperature rise in the reactor is suppressed. It was found that high-purity carbonyl fluoride can be produced safely and easily. Furthermore, they have found that the production of carbon tetrafluoride can be suppressed by mixing fluorine and nitrogen.
  • carbon monoxide and fluorine are supplied to a reactor, and the pressure in the reactor is less than atmospheric pressure. It is characterized by reacting element and fluorine. .
  • carbon monoxide and fluorine are supplied to a reactor at a molar ratio (CO / F 2 ) of not less than 1.0 to carbon monoxide and fluorine. And reacting with.
  • the third method for producing carbonyl fluoride according to the present invention comprises the steps of: mixing fluorine and nitrogen in advance; supplying the mixed gas of fluorine and nitrogen and carbon monoxide to a reactor; And reacting with.
  • the method is characterized in that the reaction product (a) is removed to purify fluorinated ruponyl.
  • the molar ratio of carbon monoxide and fluorine (C OZ F 2) 1. It is preferable to supply to the reactor at 0 or rate.
  • the fluorine It is preferable that nitrogen is previously mixed into the mixture, and the mixed gas of fluorine and nitrogen and carbon monoxide are supplied to the reactor.
  • the mixture molar ratio of fluorine and nitrogen is preferably 1.5 or less, and the temperature in the reactor is The temperature is preferably lower than the service temperature, the yield of carbofluoride is preferably 95 mol% or more, and the reaction selectivity of carbon tetrafluoride is preferably 2.0 mol% or less.
  • FIG. 1 shows an apparatus for producing carbon fluoride used in the present invention.
  • the symbols in the figure are as follows.
  • carbonyl fluoride As carbon monoxide, fluorine and nitrogen used in the present invention, commercially available ones can be used.
  • the reaction between carbon monoxide and fluorine may be carried out by any of a batch method and a flow method.
  • a flow-type method using a carbonyl chloride production apparatus is preferably used.
  • This manufacturing apparatus includes a fluorine storage tank 1, a carbon monoxide storage tank 2, and a nitrogen storage tank 3 as necessary.
  • the fluorine storage tank 1 is connected to a gas mixer 14 via a fluorine gas flow controller 11 and a valve 21.
  • the nitrogen storage tank 3 is connected to the gas mixer 14 via the nitrogen gas flow controller 13 and the valve 23.
  • This gas mixer 14 is connected to the inlet of the reactor 4 via a valve 24.
  • fluorine and nitrogen are not mixed, connect the fluorine storage tank 1 directly to the inlet of the reactor 4 via the fluorine gas flow control device 11 and the valve 21 without using the gas mixer 14.
  • Moyore On the other hand, —the carbon monoxide storage tank 2 is connected to the inlet of the reactor 4 via the carbon monoxide gas flow rate control device 12 and the valve 22.
  • thermometer 5 is provided in the reactor 4, and the temperature in the reactor 4 can be measured and displayed using the temperature indicator 5a.
  • the reactor 4 may be provided with a cooling device for removing heat in the reactor.
  • the reactor 4 may be used alone or in combination of two or more.
  • the outlet of the reactor 4 is connected to the pressure reducing pump 6 via the valve 33 6 is connected to the device of the next process.
  • the outlet of the reactor 4 may be directly connected to the device in the next step via the valve 32.
  • a valve 31 for adjusting the pressure in the reactor is provided in the flow path from the outlet of the reactor 4.
  • the first method for producing carbonyl fluoride comprises the steps of: supplying carbon monoxide and fluorine to a reactor, wherein the pressure in the reactor is less than atmospheric pressure. This is a method for producing fluorinated ruponyl by reacting carbon monoxide with fluorine.
  • the first method for producing carbonyl fluoride using the production apparatus shown in FIG. 1 will be specifically described, but the present invention is not limited to the method using this apparatus.
  • the pressure inside the reactor 4 is reduced to a predetermined pressure using the pressure reducing pump 6.
  • carbon monoxide and fluorine are supplied to the reactor 4 from the carbon monoxide storage tank 1 and the fluorine storage tank 2, respectively, to start the reaction.
  • the molar ratio between carbon monoxide and fluorine (CO / F 2 ) is adjusted by adjusting the flow rates of carbon monoxide and fluorine, respectively.
  • the pressure in the reactor 4 is adjusted to a predetermined pressure lower than the atmospheric pressure by adjusting the valve 31.
  • the pressure in the reactor 4 may be generally lower than the atmospheric pressure, but is preferably 100 kPa or less, more preferably 97 kPa or less, still more preferably 95 kPa or less, and particularly preferably. Is 85-93 kPa. Since the reaction between carbon monoxide and fluorine is an exothermic reaction, the temperature inside the reactor usually rises with the progress of the reaction, but when the pressure inside the reactor is within the above range, the rise in temperature inside the reactor is suppressed. Can be maintained at a constant temperature. Further, the lower the pressure in the reactor, the more the temperature rise in the reactor can be suppressed, or the lower temperature can be maintained. As a result, if a cooling device is installed in the reactor, Therefore, the temperature inside the reactor can be kept constant even when the reaction is carried out without installing a cooling device.
  • the temperature can be kept at 250 ° C. or lower, more preferably at 200 ° C. or lower, particularly preferably at 150 ° C. or lower, and carbon fluoride can be produced more safely.
  • the lower limit of the temperature in the reactor is not particularly limited as long as it is equal to or higher than room temperature, but is preferably 50 ° C or higher, more preferably 100 ° C or higher, and particularly preferably, in order to obtain carbonyl fluoride efficiently.
  • the temperature is preferably 120 ° C or higher.
  • the temperature distribution in the reactor may be uniform or non-uniform as long as the maximum temperature is equal to or lower than the upper limit and the minimum temperature is equal to or higher than the lower limit.
  • the yield of carbonyl fluoride can be improved to preferably 95 mol% or more, more preferably 97 mol% or more, and particularly preferably 98 mol% or more.
  • the yield of fluorinated olevonyl in the present specification means a ratio actually obtained with respect to a theoretical amount of carbonyl fluoride obtained by a reaction between carbon monoxide and fluorine. That is, it is a ratio calculated by any of the following equations (1) to (3).
  • CO / Fs is not particularly limited, preferably 1.0 or more, more preferably 2.0 or more, particularly preferably 2 0 or more and 3.0 or less is desirable. Increasing CO / F 2 can more effectively suppress the temperature rise in the reactor. Further, when CO / F 2 is 1-0 or more, the formation reaction of carbon tetrafluoride can be easily suppressed, and the reaction selectivity of CF 4 is preferably 2.0 mol% or less, more preferably 1.5 mol%. It can be easily reduced to mol% or less.
  • fluorine and nitrogen are preliminarily mixed, and this mixed gas and carbon monoxide are supplied to a reactor to produce carbon monoxide and fluorine. Can be reacted to produce carbonyl fluoride.
  • fluorine and nitrogen are supplied from the fluorine storage tank 2 and the nitrogen storage tank 3 to the gas mixer 14 to prepare a mixed gas of fluorine and nitrogen.
  • this mixed gas and carbon monoxide from the carbon monoxide storage tank 1 are supplied to the reactor 4 to start the reaction.
  • the molar ratio between carbon monoxide and fluorine (coz F 2 ) and the mixture molar ratio of fluorine and nitrogen (F2 / 'N 2 ) are adjusted by adjusting the flow rates of carbon monoxide, fluorine and nitrogen, respectively.
  • F 2 / N 2 is not particularly limited, preferably 1.5 or less, more preferably 1.0 or less, particularly preferably 0.5 or less.
  • the reaction for forming carbon tetrafluoride can be more easily suppressed, and the reaction selectivity for carbon tetrafluoride is preferably 1.0 mol% or less, more preferably 0.8 mol%. It can be more easily reduced to not more than 0.5 mol%, particularly preferably to not more than 0.5 mol%.
  • the method for producing a second carbonyl fluoride according to the present invention is a method for producing a reactor in which a molar ratio (CO / F 2 ) of carbon monoxide to fluorine is 1.0 or more. To produce carbonyl fluoride by reacting carbon monoxide with fluorine.
  • the second method for producing carbonyl fluoride will be specifically described using the production apparatus shown in FIG. 1, but the present invention is not limited to the method using this apparatus.
  • Carbon monoxide and fluorine are supplied to the reactor 4 from the carbon monoxide storage tank 1 and the fluorine storage tank 2, respectively, to start the reaction. At this time, the molar ratio of carbon monoxide to fluorine (CO / F 2 ) is adjusted by adjusting the flow rates of carbon oxide and fluorine, respectively.
  • CO / F2 is usually 1.0 or more, preferably 2.0 or more, more preferably 2.
  • the reaction in the reactor by the reaction between carbon monoxide and fluorine Abrupt temperature rise of the reactor can be prevented, and the temperature inside the reactor can be easily reduced, usually, to below the service temperature of the reactor, preferably to 250 ° C or lower, more preferably to 200 ° C or lower, especially Preferably, the temperature can be kept at 150 ° C. or lower, and carbon fluoride can be produced more safely.
  • the lower limit of the temperature in the reactor is not particularly limited as long as it is equal to or higher than room temperature, but is preferably 50 ° C or higher, more preferably 100 ° C or higher, and particularly preferably, in order to obtain carbonyl fluoride efficiently.
  • the temperature is preferably 120 ° C or higher.
  • the temperature distribution in the reactor may be uniform or non-uniform as long as the maximum temperature is equal to or lower than the upper limit and the minimum temperature is equal to or higher than the lower limit.
  • the reaction selectivity of carbonyl fluoride can be improved.
  • the yield of carbonyl fluoride can be increased to preferably 95 mol% or more, more preferably 97 mol% or more, and particularly preferably 98 mol% or more.
  • the reaction selectivity of CF 4 can be reduced to preferably 2.0 mol% or less, more preferably 1.5 mol% or less.
  • fluorine and nitrogen are preliminarily mixed, and the mixed gas and carbon monoxide are supplied to a reactor to produce carbon monoxide and fluorine. Can be reacted to produce carbonyl fluoride. Specifically, first, fluorine and nitrogen are supplied from the fluorine storage tank 2 and the nitrogen storage tank 3 to the gas mixer 14 to prepare a mixed gas of fluorine and nitrogen. Next, this mixed gas and carbon monoxide from the carbon monoxide storage tank 1 are supplied to the reactor 4 to start the reaction.
  • the molar ratio of carbon monoxide to fluorine (CO / F 2 ) and the molar ratio of fluorine to nitrogen (F 2 / N2) are adjusted by controlling the flow rates of carbon monoxide, fluorine and nitrogen, respectively. And adjust.
  • F 2 ZN 2 is not particularly limited, but is preferably 1.5 or less, more preferably It is desirably 1.0 or less, particularly preferably 0.5 or less.
  • the F 2 / N 2 can be easily prevented that the production reaction of carbon tetrafluoride to the above range, the reaction selectivity of carbon tetrafluoride, preferably 1.0 mole 0/0 or less, more preferably 0 It can be reduced more easily to 0.8 mol% or less, particularly preferably to 0.5 mol% or less.
  • the third method for producing carbonyl fluoride according to the present invention comprises mixing fluorine and nitrogen in advance, and reacting the mixed gas of fluorine and nitrogen with carbon monoxide.
  • carbon monoxide and fluorine are supplied to a reactor to produce carbonyl fluoride.
  • the third method for producing carbonyl fluoride is specifically described using the production apparatus shown in FIG. 1, but the present invention is not limited to the method using this apparatus.
  • fluorine and nitrogen are supplied to the gas mixer 14 from the fluorine storage tank 2 and the nitrogen storage tank 3, respectively, to prepare a mixed gas of fluorine and nitrogen.
  • the mixed gas and the carbon monoxide from the carbon monoxide storage tank 1 are supplied to the reactor 4 to start the reaction.
  • the molar ratio of carbon monoxide to fluorine (C OZ F 2) and the molar ratio of fluorine to nitrogen (F 2 / N 2 ) are adjusted by controlling the flow rates of carbon monoxide, fluorine and nitrogen, respectively. adjust.
  • the temperature in the reactor may be lower than the serviceable temperature of the reactor, but is preferably maintained at 250 ° C or lower, more preferably 200 ° C or lower, particularly preferably 150 ° C or lower. Is preferred.
  • the lower limit of the temperature in the reactor is not particularly limited as long as it is equal to or higher than room temperature, but is preferably 50 ° C or higher, more preferably 100 ° C or higher, in order to obtain carbonyl fluoride efficiently. Particularly preferably, the temperature is 120 ° C. or higher.
  • the temperature distribution in the reactor may be uniform or non-uniform as long as the maximum temperature is equal to or lower than the upper limit and the minimum temperature is equal to or lower than the lower limit.
  • the method of maintaining the temperature of the reactor the method of removing heat by installing a cooling device in the Alternatively, the method described in the second method for producing carbonyl fluoride may be used.
  • F 2 ZN 2 is not particularly limited, but is preferably 1.5 or less, more preferably 1.0 or less, and particularly preferably 0.5 or less.
  • the reaction for producing carbon tetrafluoride can be easily suppressed, and the reaction selectivity of carbonyl fluoride can be improved.
  • the reaction selectivity of carbon tetrafluoride can be easily reduced to preferably at most 1.0 mol%, more preferably at most 0.8 mol%, particularly preferably at most 0.5 mol%.
  • the yield of carbon fluoride can be improved to preferably 95 mol% or more, more preferably 97 mol% or more, and particularly preferably 98 mol% or more.
  • a compound (A) that reacts with fluorine but is inactive with respect to carbon fluoride, and the crude carbon fluoride are mixed,
  • reaction step (I) a usual reaction method between carbon monoxide and fluorine can be used.
  • a method in which the reaction is performed under conditions where the pressure in the reactor is higher than the atmospheric pressure or the supply ratio of carbon monoxide and fluorine (CONO F 2 ) is less than 1.0. I can do it.
  • the method for reacting carbon monoxide and fluorine described in the first to third methods for producing carbonyl fluoride according to the present invention may be used.
  • the compound (A) used in the fourth method for producing carbonyl fluoride is inactive to fluorinated luponyl, and the reaction product (a) with fluorine is converted to fluorinated luponyl by distillation or the like.
  • the compound is not particularly limited as long as it is a compound that can be easily separated.
  • a compound in which the reaction product (a) is obtained as a liquid or a solid at room temperature and pressure is preferable. Examples of such compounds include methanol, ethanol, propanol, butanol, acetic acid, propionic acid, benzene, toluene, anthracene, and hydrofluorocarbons (C x Hy F z (x is preferably 2 or more). ))).
  • the compound (A) is aerated with the crude fluorinated solvent obtained in the reaction step (I) to react the fluorine contained in the crude carbonyl fluoride with the compound (A), respectively.
  • a reaction product (a) is formed.
  • the reaction product (a) is liquid or solid under the conditions of normal temperature and normal pressure, it can be easily separated from gaseous carbonyl fluoride, and high-purity carbonyl fluoride can be obtained. According to the above method, it is possible to obtain carbonyl fluoride having a purity of usually 95 mol% or more, preferably 97% or more, particularly preferably 98 mol% or more.
  • a step of separating carbon fluoride and carbon dioxide by gas-liquid separation or gas-solid separation (1) A step of separating carbon fluoride and carbon dioxide by gas-liquid separation or gas-solid separation.
  • FTIR manufactured by Mydac, model number IGA-2000
  • FTIR manufactured by Mydac, model number IGA-2000
  • a nitrogen gas supply line for dilution was connected to a connection line between the carbonyl fluoride production device and the FTIR, and the obtained carbonyl fluoride was appropriately diluted with nitrogen for analysis.
  • the obtained gas was appropriately diluted with nitrogen, and the gas composition was analyzed by FTIR. Table 1 shows the results.
  • the pressure inside the reactor was 100.1 kPa, Carbon monoxide (purity: 99.95%) and fluorine (purity: 9.9%) were independently supplied to the reactor at the flow rates shown in Table 2, and the reaction was started at room temperature.
  • the temperature inside the reactor is
  • high purity carbonyl fluoride can be produced safely and easily by directly reacting carbon monoxide with fluorine. Further, it is possible to suppress the side reaction of CF 4 generation in the reaction process between carbon monoxide and fluorine, and to produce fluorinated fluoronil having a small CF 4 content.
  • Such high-purity fluorinated compounds can be used, for example, as a cleaning gas for a plasma CVD apparatus used in a semiconductor manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明に係るフッ化カルボニルの製造方法は、四フッ化炭素含有量の少ない、高純度のフッ化カルボニルを安全に、かつ容易に製造する方法であって、一酸化炭素とフッ素とを反応器に供給し、反応器内の圧力が大気圧未満の条件で一酸化炭素とフッ素とを反応させる方法である。

Description

明 細 書 フッ化カルボニルの製造方法
技術分野
本発明は、 フッ化カルボニルの製造方法に関する。 より詳しくは、 一酸化炭 素とフッ素とを反応させて、 高純度のフッ化カルボニルを製造する方法に関す る。 背景技術
従来、 フッ化カルボニルは、 ホスゲンをフッ化水素、 三フッ化アンチモン等 のフッ素化剤と反応させる方法や、 一酸化炭素を二フッ化銀と反応させる方法 により製造されている (特開平 1 1— 1 1 6 2 1 6号公報) 。 しかし、 これら の方法で製造されるフッ化カルボニルには、 塩化水素ゃフッ化銀等の副生成物 が含有し、 このフッ化カルボニルを、 半導体製造工程に用いられるプラズマ C V D装置のクリーニングガス等として使用するには、 上記方法により得られた 粗フッ化カルボ二ルを高純度に精製する必要があつた。
また、 C O F 2は一酸化炭素とフッ素とを直接反応させることによって製造 でさること 、知られている (Handboook of preparative inorganic chemistry, Vol.1, 2nd ed., p206-208, edited by Georg Brauer (Translation Editor), Academic Press, New York (1963)) 。 し力 し、 この方法では、 一酸化炭素雰 囲気中でフッ素を反応させると、 激しく爆発するという危険性があると言われ ており、 通常、 フッ素過剰の条件で一酸化炭素とフッ素とを直接反応させる方 法が用いられている。 この場合、 副生成物として四フッ化炭素 (C F 4) が生 成する。 この C F 4は、 地球温暖化係数 (積分期間 1 0 0年値) C 02 と 比較して、 5 , 7 0 0倍と極めて大きく、 環境への悪影響が懸念されるという 問題があり、 C F 4の生成を抑制したフッ化カルボニルの製造方法の開発が求 められていた。
また、 従来のフッ化カルボニルの製造では、 フッ素過剰の条件で一酸化炭素 とフッ素とを反応させるため、 反応後に得られる粗フッ化カルボニルにはフッ 素が含まれていることが多い。 フッ化カルボ二ルとフッ素は常温で気体である ため、 これらを分離するには、 低温処理あるいは加圧等により、 いずれか一方 の成分を液化または固化して分離する必要があった。 発明の目的
本発明は上記のような従来技術に伴う問題を解決しようとするものであって、 フッ化カルボニルを安全に、 かつ容易に製造する方法を提供することを目的と する。 また、 一酸化炭素とフッ素との反応過程において C F 4の生成を抑制し、 高純度のフッ化カルボニルの製造方法を提供することを目的とする。 発明の開示
本願発明者は、 上記問題点を解決すべく鋭意研究し、 圧力を低くするほど、 または一酸化炭素とフッ素とのモル比 (C O_ F 2) が増加するほど反応器内 の温度上昇が抑制され、 安全に、 かつ容易に高純度のフッ化カルボニルを製造 することができることを見出した。 さらに、 フッ素と窒素とを混合することに よって四フッ化炭素の生成を抑制できることを見出した。
すなわち、 本発明に係る第一のフッ化カルボニルの製造方法は、 一酸化炭素 とフッ素とを反応器に供給し、 反応器内の圧力が大気圧未満の条件で一酸化炭 素とフッ素とを反応させることを特徴としている。 .
本発明に係る第二のフッ化カルボニルの製造方法は、 一酸化炭素とフッ素と をモル比 (C O/ F 2) 1 . 0以上の割合で反応器に供給して一酸化炭素とフ ッ素とを反応させることを特徴としている。
本発明に係る第三のフッ化カルボニルの製造方法は、 予めフッ素と窒素とを 混合し、 このフッ素と窒素との混合ガスと一酸化炭素とを反応器に供給して、 一酸化炭素とフッ素とを反応させることを特徴としている。
本発明に係る第四のフッ化力ルポニルの製造方法は、
(I) 少なくとも一酸化炭素とフッ素とを反応器に供給して一酸化炭素とフッ 素とを反応させる反応工程と、
(II) 反応工程 (I) で得られる粗フッ化カルボニルを精製する工程とを含み、 前記粗フッ化カルボニルが少なくともフッ素を含み、
精製工程 (II) が、
フッ素と反応するがフッ化カルボニルに対しては不活性な化合物 (A) と、 前記粗フッ化カルボニルとを混合して、
フッ素と化合物 (A) との反応生成物 ( a ) を形成させ、
該反応生成物 ( a ) を除去することによってフッ化力ルポニルを精製する工程 であることを特徴としている。
第四のフッ化カルボニルの製造方法において、 反応器内の圧力が大気圧未満 の条件で一酸化炭素とフッ素とを反応させることが好ましい。
第一、 第三および第四のフッ化カルボニルの製造方法において、 一酸化炭素 とフッ素とをモル比 (C OZ F 2) 1 . 0以上の割合で反応器に供給すること が好ましい。
第一、 第二および第四のフッ化カルボエルの製造方法において、 前記フッ素 に予め窒素を混合し、 このフッ素と窒素との混合ガスと、 一酸化炭素とを反応 器に供給することが好ましい。
第一〜第四のフッ化カルボニルの製造方法において、 フッ素と窒素との混合 モル比 (F 2/N2) は 1 . 5以下であることが好ましく、 反応器内の温度は該 反応器の耐用温度以下であることが好ましく、 フッ化カルボエルの収率は 9 5 モル%以上であることが好ましく、 四フッ化炭素の反応選択率は 2 . 0モル% 以下であることが好ましい。 図面の簡単な説明
図 1は、 本発明に用いられるフッ化カルボ二ル製造装置である。 なお、 図中 の符号は下記の通りである。
1 : フッ素貯蔵タンク
2 :一酸化炭素貯蔵タンク
3 :窒素貯蔵タンク
4 :反応器
5 :温度計
5 a :温度表示計
6 :減圧ポンプ
1 1 : フッ素ガス流量制御装置
1 2 :—酸化炭素ガス流量制御装置
1 3 :窒素ガス流量制御装置
1 4 :ガス混合器
2 1〜2 4、 3 1〜3 3 :バルブ 発明を実施するための最良の形態
以下、 本発明に係るフッ化カルボニルの製造方法について詳細に説明する。 本発明に用いられる一酸化炭素、 フッ素および窒素は、 それぞれ市販のもの を用いることができる。
本発明に係るフッ化カルボニルの製造方法における一酸化炭素とフッ素との 反応は、 バッチ式および流通式のいずれの方法を用いてもよいが、 工業的には、 たとえば図 1に示すようなフッ化カルボニル製造装置を用いた流通式の方法が 好ましく用いられる。
まず、 図 1に示すフッ化カルボニル製造装置について説明する。 この製造装 置は、 フッ素貯蔵タンク 1、 一酸化炭素貯蔵タンク 2を備え、 必要に応じて窒 素貯蔵タンク 3を備えている。 フッ素貯蔵タンク 1はフッ素ガス流量制御装置 1 1とバルブ 2 1とを経てガス混合器 1 4に接続されている。 窒素貯蔵タンク 3を備えている場合には、 窒素貯蔵タンク 3は窒素ガス流量制御装置 1 3とバ ルブ 2 3を経てガス混合器 1 4に接続されている。 このガス混合器 1 4はバル ブ 2 4を経て反応器 4の入口に接続されている。 フッ素と窒素とを混合しない 場合には、 ガス混合器 1 4を用いず、 フッ素貯蔵タンク 1をフッ素ガス流量制 御装置 1 1とバルブ 2 1とを経て直接反応器 4の入口に接続してもよレヽ。 一方、 —酸化炭素貯蔵タンク 2は一酸化炭素ガス流量制御装置 1 2とバルブ 2 2とを 経て反応器 4の入口に接続されている。
反応器 4内には温度計 5が設置されており、 温度表示計 5 a用いて反応器 4 内の温度を測定、 表示することができる。 反応器 4には反応器内の熱を除熱す るために冷却装置を設置してもよい。 また、 反応器 4は 1本または 2本以上を 併用して用いてもよい。
反応器 4の出口は、 バルブ 3 3を経て減圧ポンプ 6と接続され、 減圧ポンプ 6は次工程の装置と接続されている。 また、 反応器 4内の圧力を減圧にしない 場合には、 反応器 4の出口はバルブ 3 2を経て直接、 次工程の装置と接続して もよい。 反応器 4の出口からの流路には反応器内の圧力を調整するためのバル プ 3 1が設置されている。
く第一のフッ化カルボニルの製造方法 > 本発明に係る第一のフッ化カルボニルの製造方法は、 一酸化炭素とフッ素と を反応器に供給し、 反応器内の圧力が大気圧未満の条件で一酸化炭素とフッ素 とを反応させてフッ化力ルポニルを製造する方法である。 以下、 図 1に示す製 造装置を用いて第一のフッ化カルボニルの製造方法を具体的に説明するが、 本 発明はこの装置を用いる方法に限定されるものではない。
まず、 減圧ポンプ 6を用いて反応器 4内を所定の圧力に減圧する。 次いで一 酸化炭素貯蔵タンク 1およびフッ素貯蔵タンク 2からそれぞれ一酸化炭素およ びフッ素を反応器 4に供給して反応を開始する。 このとき、 一酸化炭素とフッ 素とのモル比 ( C O / F 2) は、 一酸化炭素およびフッ素の流量をそれぞれ調 節して調整する。 反応器 4内の圧力はバルブ 3 1を調節して大気圧未満の所定 の圧力に調整する。
反応器 4内の圧力は、 通常大気圧未満であればよいが、 好ましくは 1 0 0 k P a以下、 より好ましくは 9 7 k P a以下、 さらに好ましくは 9 5 k P a以下、 特に好ましくは 8 5〜9 3 k P aである。 一酸化炭素とフッ素との反応は発熱 反応であるため、 通常、 反応器内の温度は反応の進行とともに上昇するが、 反 応器内の圧力を上記範囲にすると反応器内の温度上昇を抑制すること、 あるい は一定温度に保持することができる。 さらには反応器内の圧力が低いほど反応 器内の温度上昇をより抑制すること、 あるいはより低い温度で保持することが できる。 その結果、 反応器に冷却装置を装着する場合にはこの冷却装置の負担 を低減することができ、 冷却装置を装着せずに反応を行う場合にも反応器内の 温度を一定に保持することもできる。
すなわち、 上記方法によると、 一酸化炭素とフッ素との反応による反応器内 の急激な温度上昇を防ぐことができ、 容易に反応器内の温度を、 通常、 反応器 の耐用温度以下、 好ましくは 2 5 0 °C以下、 より好ましくは 2 0 0 °C以下、 特 に好ましくは 1 5 0 °C以下に保持することができ、 より安全にフッ化カルボ二 ルを製造することができる。 反応器内の温度の下限は、 室温以上であれば特に 制限されないが、 フッ化カルボニルを効率よく得るためには、 好ましくは 5 0 °C以上、 より好ましくは 1 0 0 °C以上、 特に好ましくは 1 2 0 °C以上が望ま しい。 反応器内の温度分布は、 その最高温度が上記上限以下、 その最低温度が 上記下限以上であれば均一であっても不均一であってもよい。
また、 上記方法によると、 フッ化カルボニルの生成反応における、 四フッ化 炭素の生成反応などの副反応を抑制することができ、 フッ化カルボニルの反応 選択性を向上させることができる。 たとえば、 フッ化カルボニルの収率を、 好 ましくは 9 5モル%以上、 より好ましくは 9 7モル%以上、 特に好ましくは 9 8モル%以上に向上させることができる。 なお、 本明細書におけるフッ化力ノレ ボニルの収率は、 一酸化炭素とフッ素との反応により得られるフッ化カルボ二 ルの理論量に対する実際に得られる割合を意味する。 すなわち、 下記式 (1 ) 〜 (3 ) のいずれかにより計算される割合である。
フッ素量過剰の条件: 収率 (%) =フッ化 H成量 ル 。。 ( 1 )
—酸化炭素供給量 (モル)
一酸化炭素量過剰の条件: 収率 (%) ツイ ノ^ ^ モル) > 00 (2) . フッ素供給直 (モノレ) 一酸化炭素とフッ素とが等量の条件: 収率 (ο/ο) = _フッ化カルボニル生成量 (モル) χ100 ( 3) 一酸化炭素またはフッ素の供給量 (モル) また、 CF4の反応選択率を、 好ましくは 2. 0モル%以下、 より好ましく は 1. 5モル%以下に低減することができる。 なお、 本明細書における CF4 の反応選択率は、 一酸化炭素とフッ素との反応生成物中の C F 4のモル分率を 意味し、 下記式 (4) で求められる。 収率 (%) = CF4^ i (モル) 00 (4)
CF4生成量 + COF2生成量 + C02生成量 (モル) 上記方法において、 CO/Fsは、 特に制限されないが、 好ましくは 1. 0 以上、 より好ましくは 2. 0以上、 特に好ましくは 2. 0以上 3. 0以下が望 ましい。 CO/F2を増大させるほどより効果的に反応器内の温度上昇を抑制 することができる。 また、 CO/F2を 1 - 0以上にすると、 四フッ化炭素の 生成反応を容易に抑制でき、 C F4の反応選択率を、 好ましくは 2. 0モル% 以下、 より好ましくは 1. 5モル%以下に容易に低減することができる。 さらに、 本発明に係る第一のフッ化力ルポニルの製造方法では、 フッ素と窒 素とを予め混合し、 この混合ガスと一酸化炭素とを反応器に供給して一酸化炭 素とフッ素とを反応させてフッ化カルボニルを製造することができる。 具体的 には、 まず、 フッ素貯蔵タンク 2および窒素貯蔵タンク 3からそれぞれフッ素 およぴ窒素をガス混合器 14に供給してフッ素と窒素との混合ガスを調製する。 次いでこの混合ガスと、 一酸化炭素貯蔵タンク 1から一酸化炭素を反応器 4に 供給して反応を開始する。 このとき、 一酸ィヒ炭素とフッ素とのモル比 (coz F2) およびフッ素と窒素との混合モル比 (F2/'N2) は、 一酸化炭素、 フッ 素およぴ窒素の流量をそれぞれ調節して調整する。
F2/N2は、 特に制限されないが、 好ましくは 1. 5以下、 より好ましくは 1. 0以下、 特に好ましくは 0. 5以下が望ましい。 F2ZN2を上記範囲にす ると四フッ化炭素の生成反応をより容易に抑制でき、 四フッ化炭素の反応選択 率を、 好ましくは 1. 0モル%以下、 より好ましくは 0. 8モル%以下、 特に 好ましくは 0. 5モル%以下に、 より容易に低減することができる。
<第二のフッ化カルボニルの製造方法 > 本発明に係る第二のフッ化カルボニルの製造方法は、 一酸化炭素とフッ素と をモル比 (CO/F2) 1. 0以上の割合で反応器に供給して一酸化炭素とフ ッ素とを反応させてフッ化カルボニルを製造する方法である。 以下、 図 1に示 す製造装置を用いて第二のフッ化カルボニルの製造方法を具体的に説明するが、 本発明はこの装置を用いる方法に限定されるものではない。
一酸化炭素貯蔵タンク 1およびフッ素貯蔵タンク 2からそれぞれ一酸化炭素 およびフッ素を反応器 4に供給して反応を開始する。 このとき、 一酸化炭素と フッ素とのモル比 (CO/F2) は、 —酸化炭素およびフッ素の流量をそれぞ れ調節して調整する。
CO/F2は、 通常 1. 0以上、 好ましくは 2. 0以上、 より好ましくは 2.
0以上 3. 0以下である。 COZF 2を上記範囲にすると反応器内の温度上昇 を抑制すること、 あるいは一定温度に保持することができる。 その結果、 反応 器に冷却装置を装着する場合にはこの冷却装置の負担を低減することができ、 冷却装置を装着せずに反応を行う場合にも反応器内の温度を一定に保持するこ ともできる。
すなわち、 上記方法によると、 一酸化炭素とフッ素との反応による反応器内 の急激な温度上昇を防ぐことができ、 容易に反応器内の温度を、 通常、 反応器 の耐用温度以下、 好ましくは 2 5 0 °C以下、 より好ましくは 2 0 0 °C以下、 特 に好ましくは 1 5 0 °C以下に保持することができ、 より安全にフッ化カルボ二 ルを製造することができる。 反応器内の温度の下限は、 室温以上であれば特に 制限されないが、 フッ化カルボニルを効率よく得るためには、 好ましくは 5 0 °C以上、 より好ましくは 1 0 0 °C以上、 特に好ましくは 1 2 0 °C以上が望ま しい。 反応器内の温度分布は、 その最高温度が上記上限以下、 その最低温度が 上記下限以上であれば均一であっても不均一であってもよい。
また、 C O/ F 2を 1 . 0以上にすると、 四フッ化炭素の生成反応などの副 反応を抑制することができ、 フッ化カルボニルの反応選択性を向上させること ができる。 たとえば、 フッ化カルボニルの収率を、 好ましくは 9 5モル%以上、 より好ましくは 9 7モル%以上、 特に好ましくは 9 8モル%以上に向上させる ことができる。 また、 C F 4の反応選択率を、 好ましくは 2 . 0モル%以下、 より好ましくは 1 . 5モル%以下に低減することができる。
さらに、 本発明に係る第二のフッ化力ルポニルの製造方法では、 フッ素と窒 素とを予め混合し、 この混合ガスと一酸化炭素とを反応器に供給して一酸化炭 素とフッ素とを反応させてフッ化カルボニルを製造することができる。 具体的 には、 まず、 フッ素貯蔵タンク 2および窒素貯蔵タンク 3からそれぞれフッ素 および窒素をガス混合器 1 4に供給してフッ素と窒素との混合ガスを調製する。 次いでこの混合ガスと、 一酸化炭素貯蔵タンク 1から一酸化炭素を反応器 4に 供給して反応を開始する。 このとき、 一酸化炭素とフッ素とのモル比 (C O/ F 2) およびフッ素と窒素との混合モル比 (F 2/N2) は、 一酸化炭素、 フッ 素およぴ窒素の流量をそれぞれ調節して調整する。
F 2ZN2は、 特に制限されないが、 好ましくは 1 . 5以下、 より好ましくは 1 . 0以下、 特に好ましくは 0 . 5以下が望ましい。 F 2/N2を上記範囲にす ると四フッ化炭素の生成反応を容易に抑制でき、 四フッ化炭素の反応選択率を、 好ましくは 1 . 0モル0 /0以下、 より好ましくは 0 . 8モル%以下、 特に好まし くは 0 . 5モル%以下に、 より容易に低減することができる。
<第三のフッ化カルボニルの製造方法〉 本発明に係る第三のフッ化カルボニルの製造方法は、 予めフッ素と窒素とを 混合し、 このフッ素と窒素との混合ガスと一酸化炭素とを反応器に供給して一 酸化炭素とフッ素とを反応させてフッ化カルボニルを製造する方法である。 以 下、 図 1に示す製造装置を用いて第三のフッ化カルボニルの製造方法を具体的 に説明するが、 本発明はこの装置を用いる方法に限定されるものではない。 まず、 フッ素貯蔵タンク 2および窒素貯蔵タンク 3からそれぞれフッ素およ び窒素をガス混合器 1 4に供給してフッ素と窒素との混合ガスを調製する。 次 いでこの混合ガスと、 一酸化炭素貯蔵タンク 1から一酸化炭素を反応器 4に供 給して反応を開始する。 このとき、 一酸化炭素とフッ素とのモル比 (C OZ F 2) およびフッ素と窒素との混合モル比 (F 2/N2) は、 一酸化炭素、 フッ素 および窒素の流量をそれぞれ調節して調整する。
反応器内の温度は、 反応器の耐用温度以下であればよいが、 好ましくは 2 5 0 °C以下、 より好ましくは 2 0 0 °C以下、 特に好ましくは 1 5 0 °C以下に保持 することが好ましい。 反応器内の温度の下限は、 室温以上であれば特に制限さ れないが、 フッ化カルボニルを効率よく得るためには、 好ましくは 5 0 °C以上、 より好ましくは 1 0 0 °C以上、 特に好ましくは 1 2 0 °C以上が望ましい。 反応 器内の温度分布は、 その最高温度が上記上限以下、 その最低温度が上記下限以 上であれば均一であっても不均一であってもよい。 反応器の温度を保持する方 法は、 反応器に冷却装置を設置して除熱する方法を用いても、 上記した第一ま たは第二のフッ化カルボニルの製造方法に記載の方法を用いてもよい。
F 2ZN2は、 特に制限されないが、 好ましくは 1 . 5以下、 より好ましくは 1 . 0以下、 特に好ましくは 0 . 5以下が望ましい。 F2/N2を上記範囲にす ると四フッ化炭素の生成反応を容易に抑制でき、 フッ化カルボニルの反応選択 性を向上させることができる。 たとえば、 四フッ化炭素の反応選択率を、 好ま しくは 1 . 0モル%以下、 より好ましくは 0 . 8モル%以下、 特に好ましくは 0 . 5モル%以下により容易に低減することができる。 また、 フッ化カルボ二 ルの収率を、 好ましくは 9 5モル%以上、 より好ましくは 9 7モル%以上、 特 に好ましくは 9 8モル%以上に向上させることができる。
<第四のフッ化カルボニルの製造方法 > 本発明に係る第四のフッ化カルボニルの製造方法は、
(I) 少なくとも一酸化炭素とフッ素とを反応器に供給して一酸化炭素とフッ 素とを反応させる反応工程と、
(II) 反応工程 (I) で得られる粗フッ化カルボニルを精製する工程とを含み、 前記粗フッ化カルボエルが少なくともフッ素を含み、
精製工程 (II) 1
フッ素と反応するがフッ化カルボ二ルに対しては不活性な化合物 (A) と、 前記粗フッ化カルボ二ルとを混合して、
フッ素と化合物 (A) との反応生成物 ( a ) を形成させ、
該反応生成物 (a ) を除去することによってフッ化カルボニルを精製する工程 である。
前記反応工程 (I) は、 通常の一酸化炭素とフッ素との反応方法を用いるこ とができる。 たとえば、 反応器内の圧力が大気圧以上または一酸化炭素とフッ 素との供給割合 (C Oノ F 2) が 1 . 0未満などの条件で反応させる方法が挙 げられる。 また、 本発明に係る第一〜第三のフッ化カルボニルの製造方法に記 載の一酸化炭素とフッ素との反応方法を用いてもよい。
第四のフッ化カルボニルの製造方法で用いられる化合物 (A) は、 フッ化力 ルポニルに対しては不活性であって、 フッ素との反応生成物 (a ) がフッ化力 ルポニルと蒸留などにより容易に分離できる化合物であれば特に制限されない 力 反応生成物 (a ) が常温常圧で液体または固体として得られる化合物が好 ましい。 このような化合物としては、 たとえば、 メタノール、 エタノール、 プ ロパノール、 ブタノール、 酢酸、 プロビオン酸、 ベンゼン、 トルエン、 アント ラセン、 ハイ ドロフルォロカーボン類 ( C x Hy F z ( xは 2以上が望まし い) ) が挙げられる。
このような化合物 (A) に、 反応工程 (I) で得られる粗フッ化力ルボ二ル を通気して、 粗フッ化カルボニルに含まれるフッ素と、 化合物 (A) をそれぞ れ反応させて、 反応生成物 ( a ) を形成させる。 たとえば、 反応生成物 ( a ) 力 常温常圧の条件で液体または固体であれば、 気体であるフッ化カルボニル と容易に分離することができ、 高純度のフッ化カルボニルを得ることができる。 上記方法によると、 純度が、 通常 9 5モル%以上、 好ましくは 9 7 %以上、 特に好ましくは 9 8モル%以上のフッ化カルボニルを得ることができる。
本発明に係る第一〜第四のフッ化カルボニルの製造方法において、 得られる フッ化カルボニルガスが一酸化炭素を含んでいる場合、 たとえば、 以下の工程 を施して一酸化炭素を処理してもよい。
( 1 ) フッ化カルボ二ルとー酸ィ匕炭素とを、 気液分離または気固分離により分 離する工程。
( 2 ) 一酸化炭素を二酸化炭素に酸化した後、 この二酸化炭素を処理する工程。 上記 (1 ) の工程を施すことにより、 より高純度のフッ化カルボニルガスを 得ることができる。 また上記 (2) の工程を施すことにより一酸化炭素を排出 することなく、 安全にフッ化カルボニルを製造することができる。
上記 (1) および (2) の工程は、 いずれか一方を実施しても、 両方を実施 してもよいが、 両方を実施することが好ましい。 実施例
以下、 本発明を実施例により説明するが、 本発明は、 この実施例により何ら 限定されるものではない。
実施例おょぴ比較例は、 図 1に示すフッ化カルボニル製造装置に F T I R (マイダック社製、 型番 I GA— 2000) を接続し、 得られたフッ化カルボ ニルを直接分析した。 フッ化カルボニル製造装置と F T I Rとの接続ラインに 希釈用窒素ガス供給ラインを接続し、 得られたフッ化カルボニルを適宜窒素で 希釈して分析した。
実施例および比較例におけるフッ化カルボニルの収率および C F 4反応選択 率は次式により求めた。
COF2収率 =[COF2]Z[F2] (5)
C F 4選択率 = [C F 4]Z([C F 4] + [C〇 F 2] + [C Od) (6) 〔実施例 1〜 5〕
ニッケル製反応器 (内径 1 6. 7mmx長さ 300mm) 内を減圧ポンプで 減圧した後、 表 1に示す反応器内圧力で、 一酸化炭素 (純度: 99. 95%) 、 フッ素 (純度: 99. 9%) ともに 30sccmの流量 (CO/F2 (モル比) : 1. 0) でそれぞれ独立に反応器に供給し、 室温で反応を開始した。 反応器内 の温度は、 一酸化炭素とフッ素との合流点の温度を測定した。 この合流点で反 応器内の最高温度を示すことを確認した。 表 1には定常時の反応器内温度を示 す。
得られたガスを適宜窒素で希釈して、 ガス組成を F T I Rで分析した。 結果 を表 1に示す。
表 1
Figure imgf000017_0001
〔実施例 6〜 8〕
冷却装置付の二ッケル製反応器 (内径 1 6. 7 ramx長さ 3 0 0 mm) 内を 減圧ポンプで減圧した後、 反応器内の圧力が 1 0 0. 1 k P aの条件で、 一酸 化炭素 (純度: 9 9. 9 5 %) とフッ素 (純度: 9 9 %) とを表 2に示す流量 でそれぞれ独立に反応器に供給し、 室温で反応を開始した。 反応器内の温度は、
—酸化炭素とフッ素との合流点の温度を測定した。 この合流点で反応器内の最 高温度を示すことを確認した。 表 2には定常時の反応器内温度を示す。
得られたガスを適宜窒素で希釈して、 ガス組成を FT I Rで分析した。 結果 を表 2に示す。 表 2
Figure imgf000018_0001
〔実施例 9〜1 3〕
表 3に示す流量でフッ素 (純度: 99 %) と窒素 (純度 : 99. 9%) とを ガス混合器に供給して混合した。 冷却装置付のニッケル製反応器 (内径 1 6. 7111111 長さ 300111111) 内を減圧ポンプで減圧した後、 反応器内の圧力が 1 00. 1 k P aの条件で、 前記混合ガスに一酸化炭素 (純度: 99. 95%) を表 3に示す流量で反応器に供給し、 室温で反応を開始した。 反応器内の温度 は、 一酸化炭素とフッ素との合流点の温度を測定した。 この合流点で反応器内 の最高温度を示すことを確認した。 表 3には定常時の反応器内温度を示す。 得られたガスを適宜窒素で希釈して、 ガス組成を FT I Rで分析した。 結果 を表 3に示す。 表 3
Figure imgf000019_0001
産業上の利用可能性
本発明によると、 一酸化炭素とフッ素とを直接反応させて、 安全に、 かつ容 易に高純度のフッ化カルボニルを製造することができる。 また、 一酸化炭素と フッ素との反応過程における C F 4生成の副反応を抑制し、 C F 4含有率が小 さいフッ化力ルポニルを製造することができる。 このような高純度のフッ化力 ルポ二ルは、 たとえば、 半導体製造工程に用いられるプラズマ C V D装置のク リ一ユングガスとして使用することができる。

Claims

請 求 の 範 囲
一酸化炭素とフッ素とを反応器に供給し、 反応器内の圧力が大気圧未満の条 件で一酸化炭素とフッ素とを反応させることを特徴とするフッ化カルボニルの 製造方法。
2 .
一酸化炭素とフッ素とをモル比 (C OZ F 2) 1 . 0以上の割合で反応器に 供給して一酸化炭素とフッ素とを反応させることを特徴とするフッ化カルボ二 ルの製造方法。
3 .
予めフッ素と窒素とを混合し、 このフッ素と窒素との混合ガスと一酸化炭素 とを反応器に供給して、 一酸化炭素とフッ素とを反応させることを特徴とする フッ化カルボニルの製造方法。
4 .
(I) 少なくとも一酸化炭素とフッ素とを反応器に供給して一酸化炭素とフ ッ素とを反応させる反応工程と、
(II) 反応工程 (I) で得られる粗フッ化カルボニルを精製する工程とを含 み、
前記粗フッ化カルボニルが少なくともフッ素を含み、
精製工程 (II) が、 (A) フッ素と反応するがフッ化カルボニルに対しては不活性な化合物と、 前記粗フッ化カルボ二ルとを混合して、
フッ素と化合物 (A) との反応生成物 (a ) を形成させ、
該反応生成物 (a ) を除去することによってフッ化カルボニルを精製するェ 程
であることを特徴とするフッ化力ルポエルの製造方法。
5 .
反応器内の圧力が大気圧未満の条件で一酸化炭素とフッ素とを反応させるこ とを特徴とする請求項 4に記載のフッ化カルボニルの製造方法。
6 .
一酸化炭素とフッ素とをモル比 (C OZ F 2) 1 . 0以上の割合で反応器に 供給することを特徴とする請求項 1、 3および 4のレ、ずれかに記载のフッ化力 ルボニルの製造方法。
7 .
前記フッ素に予め窒素を混合し、 このフッ素と窒素との混合ガスと、 一酸化 炭素とを反応器に供給することを特徴とする請求項 1、 4および 5のいずれか に記載のフッ化カルボニルの製造方法。
8 .
フッ素と窒素との混合モル比 (F2/N2) が 1 . 5以下であることを特徴と する請求項 3または 7に記載のフッ化カルボニルの製造方法。
9 .
反応器内の温度が該反応器の耐用温度以下であることを特徴とする請求項 1 〜 4のいずれかに記載のフッ化カルボニルの製造方法。
1 0 .
フッ化カルボニルの収率が 9 5モル%以上であることを特徴とする請求項 1 〜 4のいずれかに記載のフッ化カルポニルの製造方法。
四フッ化炭素の反応選択率が 2 . 0モル。 /0以下であることを特徴とする請求 項 1〜3のいずれかに記載のフッ化カルボニルの製造方法。
PCT/JP2004/003328 2003-03-14 2004-03-12 フッ化カルボニルの製造方法 WO2004080894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/548,836 US7332628B2 (en) 2003-03-14 2004-03-12 Process for producing carbonyl fluoride
EP04720210.6A EP1619170B8 (en) 2003-03-14 2004-03-12 Process for producing carbonyl fluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-070342 2003-03-14
JP2003070342A JP4505680B2 (ja) 2003-03-14 2003-03-14 フッ化カルボニルの製造方法

Publications (1)

Publication Number Publication Date
WO2004080894A1 true WO2004080894A1 (ja) 2004-09-23

Family

ID=32984651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003328 WO2004080894A1 (ja) 2003-03-14 2004-03-12 フッ化カルボニルの製造方法

Country Status (4)

Country Link
US (1) US7332628B2 (ja)
EP (1) EP1619170B8 (ja)
JP (1) JP4505680B2 (ja)
WO (1) WO2004080894A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997975B2 (ja) * 2004-12-16 2012-08-15 旭硝子株式会社 フッ化カルボニルの製造方法
TWI324147B (en) * 2005-09-27 2010-05-01 Nat Inst Of Advanced Ind Scien Method for producing carbonyl fluoride
US8932406B2 (en) 2012-09-04 2015-01-13 Matheson Tri-Gas, Inc. In-situ generation of the molecular etcher carbonyl fluoride or any of its variants and its use
CN103303894B (zh) * 2013-06-17 2015-03-11 邯郸净化设备研究所 一种碳酰氟的纯化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511096A (ja) * 1994-12-22 1998-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー パーフルオロ炭素の製造法
JPH11116216A (ja) * 1997-10-06 1999-04-27 Central Glass Co Ltd フッ化カルボニルの製造方法
JP2002515011A (ja) * 1994-12-22 2002-05-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ化カルボニルの製造
JP2003267712A (ja) * 2002-03-18 2003-09-25 Central Glass Co Ltd 二フッ化カルボニルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112198B2 (ja) * 2000-09-11 2008-07-02 財団法人地球環境産業技術研究機構 クリーニングガス及びエッチングガス、並びにチャンバークリーニング方法及びエッチング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511096A (ja) * 1994-12-22 1998-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー パーフルオロ炭素の製造法
JP2002515011A (ja) * 1994-12-22 2002-05-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ化カルボニルの製造
JPH11116216A (ja) * 1997-10-06 1999-04-27 Central Glass Co Ltd フッ化カルボニルの製造方法
JP2003267712A (ja) * 2002-03-18 2003-09-25 Central Glass Co Ltd 二フッ化カルボニルの製造方法

Also Published As

Publication number Publication date
EP1619170A1 (en) 2006-01-25
EP1619170B8 (en) 2015-04-08
EP1619170B1 (en) 2014-11-26
JP2004277215A (ja) 2004-10-07
EP1619170A4 (en) 2008-12-17
US20060194985A1 (en) 2006-08-31
US7332628B2 (en) 2008-02-19
JP4505680B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
TWI448429B (zh) 三氯矽烷之製造方法、三氯矽烷之製造裝置、以及多結晶矽之製造方法
JP4188590B2 (ja) 三フッ化窒素の製造方法及び装置
JP3407601B2 (ja) 塩化メチルの製造方法
US20140322121A1 (en) Processes and systems for non-equilibrium trichlorosilane production
WO2004080894A1 (ja) フッ化カルボニルの製造方法
JP2003327562A (ja) 亜硝酸アルキルの製法
JP2003183191A (ja) 塩化メチルの製造方法
JP4765630B2 (ja) フッ化カルボニルの製造方法および製造装置
JP2710382B2 (ja) 高純度ジクロロシランの製造方法
JP4515989B2 (ja) 三フッ化窒素の生成法
JP3258413B2 (ja) 四フッ化ゲルマニウムの製造方法
US6162955A (en) Manufacturing method for perfluoroethane
US20060062719A1 (en) Process for preparing so2f2 and so2clf
RU2041194C1 (ru) Способ получения октафторпропана и реактор для его осуществления
JPH06247707A (ja) 一酸化炭素の製造方法および製造装置
JP2003267712A (ja) 二フッ化カルボニルの製造方法
JP3089106B2 (ja) メタノール製造方法
JPH10237009A (ja) ギ酸メチルからの酢酸の製造方法
WO2023282241A1 (ja) オクタフルオロシクロブタンの製造方法
JPH1192434A (ja) ジメチルホルムアミドの製造方法
JP2003261515A (ja) 亜硝酸アルキルの製造法
JPS60260418A (ja) 水素化ケイ素の製造方法
JPS63129011A (ja) 高純度シリコンの製造方法
JPH0517378A (ja) 塩化メチルの分離精製方法
JPH07112963A (ja) モノアリルヒドラジンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006194985

Country of ref document: US

Ref document number: 10548836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004720210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004720210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10548836

Country of ref document: US