WO2004080475A1 - 抗ロタウィルス感染組成物、およびその製法 - Google Patents

抗ロタウィルス感染組成物、およびその製法 Download PDF

Info

Publication number
WO2004080475A1
WO2004080475A1 PCT/JP2004/003185 JP2004003185W WO2004080475A1 WO 2004080475 A1 WO2004080475 A1 WO 2004080475A1 JP 2004003185 W JP2004003185 W JP 2004003185W WO 2004080475 A1 WO2004080475 A1 WO 2004080475A1
Authority
WO
WIPO (PCT)
Prior art keywords
whey
rotavirus
composition
milk
food
Prior art date
Application number
PCT/JP2004/003185
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Kanamaru
Yoshitaka Nakamura
Takeshi Takahashi
Shinya Nagafuchi
Makoto Yamaguchi
Hideo Ohtomo
Kenichi Nakazawa
Original Assignee
Meiji Dairies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Dairies Corporation filed Critical Meiji Dairies Corporation
Priority to AU2004218981A priority Critical patent/AU2004218981B2/en
Priority to NZ542981A priority patent/NZ542981A/en
Priority to DK04719582.1T priority patent/DK1623717T3/en
Priority to EP04719582.1A priority patent/EP1623717B1/en
Priority to CN2004800129731A priority patent/CN1787829B/zh
Priority to JP2005503566A priority patent/JPWO2004080475A1/ja
Priority to US10/548,906 priority patent/US8211476B2/en
Publication of WO2004080475A1 publication Critical patent/WO2004080475A1/ja
Priority to US13/339,019 priority patent/US8440233B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/20Milk; Whey; Colostrum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/16Agglomerating or granulating milk powder; Making instant milk powder; Products obtained thereby
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Definitions

  • the present invention relates to an anti-rotavirus-infected composition, a method for producing the same, and an anti-rotavirus-infected food composition containing an effective amount of the anti-rotavirus-infected composition.
  • Infant winter diarrhea caused by human rotavirus is a severe diarrheal disease that causes fever, vomiting, diarrhea, and dehydration, primarily in infants under 2 years of age.
  • gray stool was called diarrhea due to the nature of the stool, but it has been found to be a human virus infection.
  • 3.5 million diarrhea in children under the age of five are diagnosed with rotavirus infection annually, resulting in 55,000 hospitalizations and 20 deaths.
  • RRV-TV rhesus rotavi rus tetraval ent
  • intussusception was a side effect, and administration of the V-TV vaccine was discontinued (for example, see Non-Patent Document 1).
  • immunoglobulin in colostrum and its composition for example, refer to Patent Document 1
  • p- ⁇ -force zein for example, refer to Patent Document 2
  • milk mucin for example, Non-patent Documents
  • buttermilk-derived polypeptides for example, see Non-Patent Document 3
  • Non-Patent Document 3 (Non-Patent Document 3)
  • An object of the present invention is to provide a novel food composition having an oral virus infection protective effect. Another object of the present invention is to provide a food containing an effective amount of the composition. Still another object of the present invention is to provide a livestock feed containing an effective amount of the composition.
  • the present inventors have studied to solve the above-mentioned problems, and as a result, a retentate obtained by a microfiltration (MF) treatment of a whey, a fraction obtained by a centrifugal separation treatment, and precipitation of whey or ammonium sulfate (Ammonium sulfate fractionation method, ammonium sulfate salting out method, Or the ammonium sulfate precipitation method).
  • the fraction obtained by the treatment showed a potent inhibitory activity against Rotavirus infection. Further, they have found that the rotavirus infection inhibitory activity is not lost even when the retentate or fraction is heat-treated. That is, the present invention
  • composition according to (1) wherein the pore size of the microfiltration membrane is in the range of 0.004 to 1.
  • composition according to claim 1 wherein the saturation of ammonium sulfate precipitation is in the range of 30 to 100%.
  • a food having an oral virus infection protective action comprising an effective amount of the composition according to any of (1) to (4);
  • a livestock feed having an oral virus infection protective action comprising an effective amount of the composition according to any of (1) to (4);
  • Whey is divided into sweet whey and acid whey.
  • Sweet whey is a by-product of mature molded cheese and is sweet at pH 5.9-6.3.
  • acid whey is obtained from the production of unripe, fresh cheese, and usually has a sourness at pH 4.4 to 4.6.
  • the whey in casein production is also acid whey.
  • Table 1 shows the general composition of sheet whey and acid whey (Milk Science Vol. 51, No. 1, 2002).
  • the invention includes sweet whey and acid whey.
  • the whey used in the present invention is prepared by a conventional method using milk of each lactation period of the radish, or a concentrate or a dried product thereof (hereinafter, these may be collectively referred to as milk). . Further, in the present invention, milk of mammals other than humans and pests can also be used. In general, whey is purified from raw milk and heat-sterilized at 72-75 ° C for 15 seconds.HTST (High Te immediate short time) sterilization and heat-sterilized at 120-150 ° C for 1-3 seconds UHT (Ult) ra High Temperature) After sterilization such as sterilization, it can be roughly divided into the following two methods.
  • the first is a method of manufacturing sweet whey, in which pasteurized milk or pasteurized milk is heated to about 30 to 60 ° C and gravity of several hundred G or more is applied to produce skim milk as fat by creaming fat.
  • This is a method of adding ethnet (animal, microbial and plant origin). That is, whey is discharged as a solution when producing hard, semi-hard or soft cheese and rennet casein.
  • the other is a method for producing acid whey, in which an acid (an organic acid such as acetic acid or lactic acid or an inorganic acid such as hydrochloric acid or sulfuric acid) is added to skim milk obtained by the same method as described above.
  • acid whey is obtained by adjusting the pH of skim milk to 4.6 with an acid and removing the isoelectrically precipitated casein by filtration or centrifugation.
  • a supernatant obtained by adding lactic acid bacteria alone or both calcium chloride and acid to skim milk and removing the resulting casein precipitate by centrifugation or the like can also be used as acid whey.
  • Sweet whey contains about 8% lipid in total solids (Table 1). It has been pointed out that this lipid impairs the flavor of WPC. Whey lipid is also related to the efficiency of membrane treatment such as ultrafiltration membrane (UF) and reverse osmosis membrane (R0). The more residual lipid in whey, the lower the flux rate during membrane separation.
  • UF ultrafiltration membrane
  • R0 reverse osmosis membrane
  • whey is purified by centrifugation, the pH is adjusted to around neutral (6.8 to 7.2), and then the membrane is treated with MF. Further, after repeating the process of adding water to the MF membrane treatment a plurality of times (usually three times), the retentate is dried by an ordinary method.
  • the MF membrane can be used in two ways: flowing the sample parallel to the membrane surface (cross flow ⁇ tangential flow filtration or cross flow filtration) and pushing the sample perpendicular to the membrane surface (dead end filtration).
  • cross flow ⁇ tangential flow filtration or cross flow filtration clos-mouth filtration is used for the processing of dairy products, and total filtration is used for air sterilization for aseptic tanks.
  • Bactocatch is a cross-flow MF (CFMF) filtration method, and the MF membrane (Membralox, SCT, France) is made of alumina ceramics and has a pore size of 1.4 ⁇ to permeate casein micelles and block bacteria. .
  • the biggest feature of Bactocatch is that the permeation flux By controlling this, the module can operate at a uniform transmembrane pressure (UTP: uniform transmembrane pressure) of about 0.04MPa (0.1MPa atm). This has made it possible to prevent clogging.
  • UTP uniform transmembrane pressure
  • ESL (Extended shelf life) milk can be produced by using the milk that has been sterilized by the bactoch atch system as a raw material.
  • the Bactocatch system is also used to remove spores from cheese ingredients. Also in the present invention, it is conceivable to use a cross-flow filtration type apparatus including this Bac tocatch system for MF treatment of whey.
  • the MF membrane has a difference in shape between a flat membrane type and a hollow fiber type, and a difference in material such as a resin membrane and a ceramic membrane, and these can be used as appropriate.
  • Fat in whey cannot be completely removed by centrifugation and remains at 0.05%.
  • WPC powder with a protein content of 80% is produced from this whey, the fat content reaches 5-8% (JL Maubois: Bulletin of the IDF 320: 37-40, 1997). It has been pointed out that this lipid may impair the function and flavor of WPC (Y. Morr and EYWHa: CRC Crit. Rev. Food Sci. Nutr., 33: p.431, 1993; JN de Wit , G. Klarenbeek and M. Adamse: Neth. Milk Dairy J., 40, p. 41, 1986; MT Patel and A. Kilara: J. Dairy Sci., 73: p. 2731, 1990).
  • Whey lipids are also associated with membrane treatment effects such as ultrafiltration (0JF) and reverse osmosis (R0). 'The more residual lipid in whey, the lower the flux rate during membrane separation (JN de Wit and R. de Boer: Neth. Milk Dairy J., 29, p. 198, 1975).
  • the main component of this fat is phospholipids. This fat is mostly removed by treating whey with 0.1 / im MF (P. Dejimek and B. Hallstroem: Food Membrane Technology Roundtable, 5th Spring Meeting Abstracts, p. 36-45, 1993; A. Nielsen: Danish Dairy & Food Ind. Worldwide, 10: 72-73, 1996).
  • the permeated liquid can be sterilized by using an MF membrane having a pore size of about 0.2 to 0.45 ⁇ m.
  • Bacteria are about the same size as fat globules (fat globules range in diameter from 0.1 to 17 ⁇ with an average of 3.4 ⁇ 1).
  • the hole diameter of the MF membrane is from 0.01 m to 12 m.
  • the pore size of the MF membrane used in the present invention is considered to be practically in the range of 0.1 to 1.4 ⁇ , but optimization of the pore can be confirmed through ordinary experiments by those skilled in the art.
  • the water phase obtained by centrifuging the whey cream obtained by centrifuging sweet whey at about 30 to 60 ° C is retained, so that the fresh cream is separated from the raw milk more easily. It can be used like a liquid.
  • the whey MF retentate, the centrifuged solution, and the Z- or ammonium sulfate-precipitated fraction or the dried product thereof exhibit anti-robin virus infection activity as described in Examples described later. In addition, they retain their anti-rotavirus infection activity even when they are heated.
  • the MF retentate or its dried product is obtained as a by-product of whey protein isolate (WPI) produced by a combination of MF and UF.
  • WPI whey protein isolate
  • the whey centrifuged solution or its dried product is obtained as a by-product of butter oil. Phospholipids are concentrated in the whey MF retentate and the centrifuged solution or the dried product thus produced. '
  • composition of the present invention can be heat-treated, and is mixed with an effective amount of a food (especially infant formula or infant feed) to give an infant, a baby, a baby or the like. It can be expected to be effective in preventing or treating diarrhea caused by rotavirus. Effective amounts of the compositions of the present invention are estimated to be in the range of 0.1-50% by weight of the final product, but should be determined in human or livestock tests.
  • Rotavirus grows on epithelial cells about one-third of the small intestinal villi. After infection, the villi Dwarf and cause lesions such as disordered or missing microvilli. As a result, physiology is impaired and water absorption is impaired, causing diarrhea. Oral and viral infections begin with attachment to target cells and involve a multistep process of invasion and colonization.
  • the anti-rotavirus infectivity of the MF retentate, the centrifuged solution and / or the ammonium sulfate-precipitated fraction of the whey of the present invention, or the dried product thereof is attributed to the inhibition of the oral virus from adhering to target cells. Estimated, but further elucidation of mechanism of action is required.
  • the safety of the milk-derived composition used in the present invention has been established over a long dietary experience. Therefore, it is possible to confirm the efficacy and the effective amount of the product of the present invention in a human test.
  • composition derived from milk When used as an anti-virus virus infection composition, it may be used as such (in liquid or powder form), together with other active substances or with other 'pharmacologically active substances'. it can.
  • forms include, for example, tablets or coated tablets, capsules, solutions, syrups, emulsions or dispersible powders.
  • the amount of intake varies depending on age, physical condition, etc., but is 0.001 to 10 g / kg body weight, preferably 0.01 to 2 g / kg body weight per day.
  • the composition derived from milk can be used in infant formulas of infants with poorly developed protective ability against oral and oral virus infection, or elderly people with reduced protective ability against rotavirus infection
  • An effective amount of the composition can be added to foods intended for use to produce a food composition infected with anti-Robin virus.
  • Infant formula is defined as infant formula for infants aged 0 to 12 months, follow-up milk for infants aged 6 to 9 months and younger (up to 3 years old), and birth at birth.
  • various treatments used for the treatment of infants with pathological conditions such as milk allergy and lactose intolerance Refers to milk.
  • the composition can be applied to foods for functional health and foods for the sick.
  • the Health Functional Food System was established not only for ordinary foods but also for foods in the form of tablets, capsules, etc., taking into account internal and external trends and the consistency with the conventional foods for specified health uses. It consists of two types: food for specified health use (individually licensed type) and food with nutritional function (standard-based type). Further, the composition can be added to livestock feed in an effective amount to prepare an anti-rotavirus-infected composition.
  • FIG. 1 is a diagram showing a fractionation pattern of an active ingredient of an anti-Robins virus-infected composition using a gel filtration (Sephacryl S-500) column.
  • the heated product was prepared by dissolving the obtained powder in distilled water to a concentration of 10 mg / ml, heating at 80 ° C for 30 minutes, and freeze-drying by a conventional method.
  • the phospholipid content of the milk-derived composition produced using the same method as in Example 1 described above using milk was measured. First, 50 ml of 5 NaCl solution was added to 10 g of the sample and dissolved, and then 100 ml of methanol was added. Next, 100 ml of black-mouthed form was added, and the mixture was stirred and allowed to stand. The same operation was repeated twice more. The resulting black-mouthed form layer was dried under reduced pressure and dissolved in 30 ml of n-hexane. 50 ml of n-hexane-saturated 1% aqueous methanol was added, stirred, and allowed to stand, and a methanol layer was collected. The same operation was repeated twice more.
  • the obtained methanol layer was dried under reduced pressure and dissolved in chloroform (2: 1). Thus, a sample for measuring phospholipids was obtained.
  • Phosphatidyletanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM) concentrations in the obtained samples were measured by the HPLC method to determine the phosphorus' lipid content in the samples.
  • the rotavirus infection inhibitory activity of the milk-derived composition produced by using the milk in the same manner as in Example 1 or the heat-treated product thereof was measured.
  • the infection-inhibiting activity of the human M. virus M0 strain was measured as follows. 0.4 ml of 10 6 FCFU (Fluorescent Cell Forming Unit) / ml of the Humanovirus virus MO strain and 0.4 ml of 20 ig / ml trypsin were mixed and incubated at 37 ° C. for 30 minutes. Preliminarily dispensed 50/1 (sample solution was sterilized by filtration with a 0.45 m filter) diluted to various concentrations in Fig. 1 medium containing 10% fetal bovine serum. Each of the prepared virus solutions was added to a tube by 50/2], and the mixture was cultured at 37 ° C for 1 hour.
  • FCFU Fluorescent Cell Forming Unit
  • 50 il of a idal medium containing 10% fetal bovine serum was used instead of the sample 50 ⁇ 1.
  • 100 xl of 2 ⁇ 10 5 / ml rhesus monkey kidney-derived MA-104 cells was added to each eppendorf tube containing this culture solution, mix, and mix each slide with 201 of the corresponding slide. The cells were transferred to a glass and cultured at 37 ° C for 45 hours.
  • the minimum inhibitory activity of the composition derived from normal milk and the heat-treated product is 33, and And 35 ig / ml (evening protein concentration in terms of serum albumin). From these results, it was found that the composition had an anti-virus activity and that the anti-virus activity hardly changed even after the heat treatment. It should be noted that substantially the same results were obtained with the compositions of the present invention produced by other starting materials and methods. Therefore, it has been clarified that the composition obtained by separating the pesticide milk from the milk with a microfiltration membrane has an anti-virus activity and that the anti-rotavirus infection activity of the composition has heat resistance. .
  • Rotavirus infection begins with adhesion to target cells and involves a multistep process of invasion and colonization. This time, the composition was mixed with rotavirus in advance and reacted with target cells. As a result, the rotavirus infection was inhibited. It was suggested that the inhibition was exerted by inhibiting the adhesion of the protein.
  • Example 4 An infant formula having the following formulation was prepared by mixing 0.5% of the milk-derived composition produced by using milk with the same method as in Example 1 described above.
  • Example 5 Preparation of anti-rotavirus infection composition from whey and heat-treated product thereof 100 kg of milked unheated raw milk was sterilized with 72 for 15 seconds, and prepared according to a conventional method, and the pH of the produced whey was adjusted to 6.8 with 6N NaOH. Similarly, from 100 kg of HTST-sterilized raw milk, emmen juice was prepared according to a conventional method, and the pH of the produced whey was adjusted to 6.8 with 6N NaOH. After mixing these whey, they were centrifuged to remove the cream fraction and fine casein particles.
  • the whey thus obtained is diluted with water so that the solid content becomes 1.7%, and then the fine filtration device (ceramic filter made by Exekia, pore size 0.1 l) After treatment at a temperature of 50 ° C), a retentate having a solid content of 8% was recovered. The obtained retentate was further concentrated under reduced pressure, and then dried by a spray dry method.
  • the fine filtration device ceramic filter made by Exekia, pore size 0.1 l
  • Preparation of the heated product was carried out by dissolving the obtained powder in distilled water at 1, 5, and 10 mg / ml, heating at 141 ° C. for 5 seconds, and freeze-drying by a conventional method.
  • the solution dissolved at 10 mg / ml was separately heat-treated at iOO ° C for 5 minutes and 80 ° C for 30 minutes, and lyophilized by a conventional method.
  • Example 6 Measurement of oral rotavirus infection inhibitory activity of anti-rotavirus infection composition from whey and heat-treated product thereof
  • Anti-rotavirus infection composition from whey and its heat-treated product to inhibit rotavirus infection
  • the minimum inhibitory concentration is expressed as the protein concentration in terms of serum albumin.
  • Anti-rotavirus infection composition prepared from whey using microfiltration membranes of various pore sizes 100 kg of milked unheated raw milk was centrifuged (8000 g, 15 minutes, 4 ° C), and the cream was separated to obtain skim milk. This skim milk was heated (20 to 25 ° C), and 0.5N HC1 was added to PH4.6. After maintaining this state for 15 to 30 minutes, centrifugation (3000 g, 15 minutes, 4 ° C) was performed to separate casein to obtain acid whey.
  • Example 8 Measurement of rotavirus infection inhibitory activity of anti-rotavirus infection composition prepared from whey using microfiltration membranes of various pore sizes
  • Table 4 shows the measurement results of the anti-rotavirus activity of each sample.
  • the minimum inhibitory concentration of the experimental sample was shown as the protein concentration in terms of serum albumin.
  • the minimum inhibitory concentration was expressed as a protein concentration in terms of serum albumin.
  • Anti-rotavirus-infected composition prepared from whey by centrifugation 100 kg of unheated raw milk that had been milked was sterilized at 63 ° C for 30 minutes. The formed whey (pH 6.0) was separated. The whey was heated and centrifuged (3000 g, 20 minutes, 40 ° C) to obtain whey cream. The whey cream was heated again to 50 ° C and centrifuged (3000 g, 20 minutes, 50 ° C). The aqueous phase thus obtained (hereinafter abbreviated as whey cream serum) 'was freeze-dried by a conventional method to prepare a test sample.
  • whey cream serum aqueous phase thus obtained
  • Example 10 Measurement of oral virus infection inhibitory activity of anti-rotavirus infection composition prepared from whey by centrifugation
  • the inhibitory activity of the dye composition on oral virus infection was measured by the same method as in Example 6.
  • sylactoferrin (Asha) was used as a control sample.
  • Table 5 shows the measurement results of the anti-rotavirus activity of each sample.
  • the minimum inhibitory concentration of the experimental sample was represented by the protein concentration in terms of serum albumin.
  • the whey cream serum showed a stronger anti-rotavirus activity than that of peractoferrin.
  • the anti-rotavirus infection composition can be prepared from whey only by centrifugation.
  • the minimum inhibitory concentration was expressed as the tamper concentration in magma serum albumin conversion.
  • Example 11 An anti-rotavirus infection composition prepared by subjecting whey obtained from skim milk heated at 95 ° C for 30 minutes to ammonium sulfate precipitation and centrifugation
  • This solution was centrifuged (7000 g, 30 minutes, 4 ° C) to remove the precipitate again. Ammonium sulfate was further added to the obtained solution to make it 90% saturated. Finally, this solution was centrifuged (7000 g, 30 minutes, 4.C) to collect a precipitate. The precipitate obtained at 90% saturation was dissolved in distilled water, dialyzed against distilled water, and lyophilized by a conventional method to obtain a test sample.
  • Example 12 Measurement of rotavirus infection inhibitory activity of anti-rotavirus-infected composition prepared by ammonium sulfate precipitation and centrifugation of whey obtained from skim milk heated at 95 ° C for 30 minutes
  • the 90% saturated precipitate showed a minimum inhibitory concentration of 50/2 g / ml (protein concentration in terms of serum albumin).
  • the active ingredient of the milk-derived composition produced by the same method as in Example 5 described above was further fractionated.
  • the powder obtained by spray-drying the retentate in Example 5 was dissolved in distilled water so as to have a concentration of 5%, and then heat-treated at 95 ° C for 30 minutes. A part of this solution was dialyzed overnight against the following Tris-II buffer to prepare a gel filtration sample. About 480 ml of Sephacryl S-500 HR was taken, and the solvent was replaced with MilliQ water (ultra pure water) by several times of decantation. Stir the gel to homogeneity, gently pour it into a column (2.6 x 60 cm) equipped with a reservoir, then fill the reservoir with Mi 11 iQ water to prevent air from entering. did.
  • the column was connected to AKTA explorer 10 C (Amersham Pharmacia Biotech), and after running Milli-Q water to sufficiently precipitate the gel, the reservoir was removed and the adapter was attached.
  • the column was equilibrated with 0.05 M Tris-HCl buffer at pH 8.0 (0.15 M NaCK ⁇ Na.EDTA, 0.02% NaN 3 ).
  • 11 ml of the above sample was added to the column and eluted at a flow rate of 1.3 ml / min. At this time, the change in absorbance at 280 MI of the eluate was examined, and a fraction C 1 that passed almost through was collected.
  • This C1 fraction was dialyzed overnight against distilled water, and a portion was freeze-dried by a conventional method to prepare a test sample.
  • the rest was further fractionated using ammonium sulfate in the same manner as in Example 11. That is, ammonium sulfate was added to the C1 fraction solution to make the solution 35 saturated. This solution was centrifuged (7000 g, 30 minutes, 4 ° C) to remove the precipitate. Ammonium sulfate was added again to the solution from which the precipitate had been removed to make it 55% saturated. This solution was centrifuged (7000 g, 30 minutes, 4 ° C) to remove the precipitate again. Ammonium sulfate was further added to the obtained solution to make it 90% saturated.
  • the solution was centrifuged (7000 g, 30 minutes, 4 ° C) to collect the precipitate.
  • the precipitate obtained at 90% saturation was dissolved in distilled water, dialyzed against distilled water, and lyophilized by a conventional method to obtain a test sample.
  • Example 14 Measurement of oral virus infection inhibitory activity of components obtained by fractionating an anti-rotavirus-infected composition with a gel filtration (Sephacryl S-500) column and ammonium sulfate
  • the rotavirus infection inhibitory activity of a component produced from raw milk by the same method as in Example 13 described above was measured by the same method as in Example 6.
  • Table 6 shows the measurement results of the anti-rotavirus activity of each sample.
  • the minimum inhibitory concentration of the experimental sample was represented by the protein concentration in terms of serum albumin.
  • the active ingredient of the milk-derived composition produced by the same method as in Example 5 described above was further fractionated.
  • the powder obtained by spray-drying the retentate in Example 5 was dissolved in distilled water to a concentration of 10%, and 0.5N HCl was added to adjust the pH to 4.6. After maintaining in this state for 15 to 30 minutes, centrifugation was performed (at 6000 g for 20 minutes) to separate into a sediment fraction and a supernatant fraction. The supernatant fraction was freeze-dried by the method to give test sample A. The supernatant fraction was subjected to ultrafiltration using an ultrafiltration membrane (Millipore Japan) with a molecular weight cut off of 10,000. It was 25 ° C. First, the supernatant fraction was 1 / The solution was concentrated to 4 and then the concentrated solution was hydrolyzed four-fold.
  • Example 16 Measurement of oral virus infection inhibitory activity of components obtained by fractionating an anti-rotavirus-infected composition by centrifugation and ultrafiltration
  • the inhibitory activity against oral virus infection of the components produced from raw milk by the same method as in Example 15 described above was measured by the same method as in Example 6. An unfractionated sample was used as a control sample for comparison.
  • Table 7 shows the measurement results of the anti-rotavirus activity of each sample.
  • the minimum inhibitory concentration of the experimental sample was represented by the protein concentration in terms of serum albumin.
  • composition having a novel rotavirus infection protective effect is provided.
  • the composition can be blended with an effective amount of the infant formula.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nutrition Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Dairy Products (AREA)
  • Fodder In General (AREA)

Abstract

 ホエイの精密濾過保持物、遠心分離処理物および/または硫安沈殿処理物がロタウィルス感染阻害活性を有することを見出した。

Description

明細書 抗ロタウイルス感染組成物、 およびその製法 技術分野
本発明は、 抗ロ夕ウイルス感染組成物とその製法、 および該抗ロ夕ウィルス感 染組成物の有効量を含有せしめた抗ロタウィルス感染食品組成物に関する。 背景技術
ヒトロタウィルスを原因とする乳幼児冬季下痢症は、 おもに 2歳以下の幼児に、 発熱、 嘔吐、 下痢、 および脱水症状を引き起こす重症の下痢症疾患である。 我が 国では灰白色の便の性状から白痢とよばれたが、 ヒトロ夕ウィルス感染症である ことが明らかにされている。 アメリカ合衆国では年間で 5歳以下の子供の 350万人 の下痢症がロタウィルス感染症と診断され、 5万 5千人が入院し、 20人が死亡して いる。 全世界では、 主に発展途上国において、 年間で約 60万人の乳幼児が死亡し ている。 先進国での疫学調査から、 衛生状態の改善はロタウィルスの有病率を減 少させることはできないとされ、 その対策のひとつとして世界的なロタウイルス ワクチン開発が進められている。
RRV-TV (rhesus rotavi rus tetraval ent) ワクチンは、 先進国、 発展途上国の 両方でロタウィルスによる重症の下痢症の予防に高い効果を示し、 1998年 8月、 米 国食品医薬局は RRV-TVワクチンを世界ではじめて口夕ウィルスワクヂンとして認 可した。 しかしながら、 腸重積症が副反応であることが米国疾病防疫センターか ら報告され、 V- TVワクチンの投与は中止された(例えば、 非特許文献 1参照) 一方、 ロタウィルス感染を阻害する食品成分あるいは組成物として、 例えば、 初乳中の免疫グロプリンおよびその組成物(例えば、 特許文献 1参照)、 ゥシ κ -力 ゼイン (例えば、 特許文献 2参照)、 乳ムチン (例えば、 非特許文献 2参照)、 およ びバタ一ミルク由来ポリぺプチド(例えば、 非特許文献 3参照)などが提案されて いるがその評価はこれからであり、 未だ、 抗ロタウィルス感染効果を有する新た な抗ロ夕ウィルス感染組成物、 および該組成物を含有せしめた食品組成物の登場 が望まれている。
〔非特許文献 1〕
石田真一他、 「ロタウィルスワクチン」 小児科診療 Vol 63, 2000年, p. 1045 - 104 9
〔非特許文献 2〕
Yolken, R. Y. et. al. , 「U丽 n Mi lk Mucin Inhibi ts Rotavirus Repl icat ion an d Prevents Experimental Gastroenteri t isJ J Cl in Invest, Vol 90, 1992年, p. 1984-1991
〔非特許文献 3〕
松本光晴他、 「バターミルク由来抗ゥシロタウィルスポリペプチド」 日畜会報、 V ol 73, 2002年, p. 49- 56
〔特許文献 1〕
特開平 3-72432
〔特許文献 2〕
特表平 10- 505828 発明の開示
本発明は、 口夕ウィルス感染防御効果を有する新規な食品組成物を'提供するこ とを課題とする。 また本発明は、 該組成物の有効量を含有せしめた食品を提供す ることを課題とする。 さらにまた本発明は、 該組成物の有効量を含有せしめた家 畜飼料を提供することを課題とする。
本発明者らは、 上記課題を解決すべく検討した結果、 ホエイの精密濾過 (MF : ffl icro f i l trat ion) 処理により得られる保持物、 遠心分離処理により得られる分画 物およびノまたは硫安沈殿 (硫酸アンモニゥム分画法、 硫酸アンモニゥム塩析法、 又は硫酸アンモニゥム沈殿法ともいう) 処理により得られる分画物に強力なロタ ゥィルス感染阻害活性を見出した。 そしてこの保持物あるいは分画物を加熱処理 してもロタウィルス感染阻害活性が失われないことを見出した。 すなわち本発明 は、
(1) ホエイの精密濾過保持液、 遠心分離処理液および Zまたは硫安沈殿処理分 画物またはその乾燥物であって、 口夕ウィルス感染防御作用を有する組成 物、
(2) 精密濾過膜の孔径が 0.004〜1. の範囲にある、 前記 (1) 記載の組成物、
(3) 遠心分離処理の重力が 300〜30, OOOgの範囲にある、 請求項 1記載の組成物、
(4) 硫安沈殿の飽和度が 30〜100%の範囲にある、 請求項 1記載の組成物、
(5) 前記 (1) から (4) のいずれかに記載の組成物の有効量を含有する、 口 夕ウィルス感染防御作用を有する食品、
(6) 食品が育児用調製粉乳、 高齢者用食品、 保健機能食品および病者用食品か らなる群より選ばれる前記 (5) 記載の食品、
(7) 前記 (1) から (4) のいずれかに記載の組成物の有効量を含有する、 口 夕ウィルス感染防御作用を有する家畜飼料-、
(8) 前記 (5) 記載または前記 (6) 記載の食品を製造するための前記 (1) から (4) のいずれかに記載の組成物の使用、
(9) 前記 (7) 記載の家畜飼料を製造するための前記 (1) から (4) のいず れかに記載の組成物の使用、
からなる。
ホエイは、 スイートホエイ (sweet whey ) および酸ホエイ (acid whey ) に分 けられる。 スィートホエイは熟成型チーズの副産物であり、 pH 5.9〜6.3 で甘味 がある。 一方、 酸ホエイは非熟成、 フレッシュ型チーズの製造で得られ、 通常 pH 4.4〜4.6 で酸味がある。 また、 カゼイン製造の際のホエイも酸ホエイである。 ス ィ一トホエイおよび酸ホエイの一般的組成を表 1に示す (Milk Science Vol. 51, No. 1, 2002 ) 。 本発明はスイートホエイおよび酸ホエイを含む。
本発明で用いるホエイはゥシの各泌乳期の乳、 もしくはこれらの濃縮物または 乾燥物 (以下これらをまとめて乳と記載することがある) を原料として、 常法に より調製したものである。 さらに、 本発明においてはヒトおよびゥシ以外の他の 哺乳動物の乳を用いることもできる。 一般にホエイは、 原乳を清浄化し、 72〜7 5°Cで 15秒間加熱殺菌する HTST (High Te即 erature Short Time) 殺菌および 120〜 150°Cで 1〜3秒間加熱殺菌する UHT (Ul t ra High Temperature) 殺菌等の殺菌処理 を施した後、 大きく分けると以下の二つの方法で製造することができる。 一つは スイートホエイの製造法であり、 殺菌した乳、 または殺菌した乳を約 30〜60°Cに 加温し数百 G以上の重力をかけて脂肪をクリームとして脱脂した脱脂乳に各種レ ンネット (動物、 微生物および植物起源) を添加する方法である。 すなわち、 硬 質、 半硬質または軟質チーズおよびレンネットカゼインを製造するときにホエイ を溶液として排出する方法である。 もう一つは酸ホエイの製造法であり、 上述の 方法と同様の方法で得た脱脂乳に酸 (酢酸や乳酸などの有機酸または塩酸や硫酸 などの無機酸) を添加する方法である。 すなわち、 脱脂乳の pHを酸で 4. 6に調整し、 等電点沈殿したカゼィンを濾過や遠心分離などで除去することで酸ホエイが得ら れる。 さらにこれら以外にも脱脂乳に乳酸菌を単独で、 あるいは塩化カルシウム と酸の両者を添加し、 生じるカゼインの沈殿を遠心分離等で除去した上清も酸ホ エイとして利用することができる。 表 1
Figure imgf000006_0001
スイートホエイには全固形分中約 8 %の脂質が含まれる (表 1) 。 この脂質は、 WPCの風味を損なうことが指摘されている。 また、 ホエイの脂質は、 限外濾過膜 (UF) 、 逆浸透膜 (R0) などの膜処理効率とも関係があり、 ホエイ中に残留脂質 が多いほど膜分離中の流束速度が低下する。
本発明では、 ホエイを遠心分離ノ清浄化し、 pHを中性付近 (6.8〜7.2) に調節 した後、 MF膜処理する。 さらに保持液に加水→MF膜処理といった工程を複数回 (通常 3回) 繰り返した後、 保持液を常法により乾燥する。
MF処理は目詰まりが発生し易いため実用化は遅かった。 1980年半ばに ALFA- LAVA L Filtration System社 (現 Tetra Pak社) により牛乳の膜除菌システム 「Bacto catchJ が開発されて実用化された。
MF膜の使用方法には膜面に平行に試料を流す方式 (クロスフロー^過: tangent ial flow filtration または cross flow filtration) と膜面に垂直に試料を押す 方式 (全濾過: dead end filtration) があり乳業では乳製品の処理にクロスフ口 —濾過が、 無菌タンク用空気除菌等には全濾過が用いられている。
Bactocatchはクロスフロー MF (CFMF) 瀘過方式であり、 MF膜 (フランス SCT社製 Membralox) はアルミナセラミックス製でカゼインミセルを透過して細菌を阻止す るために孔径は 1.4 χπιを採用している。 Bactocatchの最大の特徴は、 透過流束を 制御して、 モジュール全体の膜間差圧を 0.04MPa (0.1 MPa l気圧) 程度の均一膜 間差圧 (UTP: uniform transmembrane pressure) で運転することを可能にした点 である。 これにより目詰まりを防止することが可能となった。 その結果、 脱脂乳 では、 除菌率 99.9 % 以上を保ちつつ、 温度 50°Cで 500LZHの透過流束を 7時間安定 して得られる (01 sen, N. et al.: Milchwissenschaf t, 44 (8) : p. 476, 1989 )。 Bac t oc a t chシステムで除菌した牛乳を原料とすることにより ESL (Extended shelf life) 牛乳の製造が可能となった。 また、 チーズ原料の胞子除去にもこの Bactoc atchシステムが利用されている。 本発明においても、 ホエイの MF処理に、 この Bac tocatchシステムを含むクロスフロー濾過方式の装置の利用が考えられる。 さらに ホエイの MF処理に全濾過方式の装置を使用することも可能である。 また MF膜には 平膜型および中空糸型などの形状の違い、 樹脂膜およびセラミック膜などの材質 の違いがあり、 これらを適宜使用することができる。
ホエイ中の脂肪は遠心分離では完全に除去できず、 0.05 %ほど残留する。 この ホエイよりタンパク質含量 80 %の WPC粉末を製造すると脂肪含量は 5〜8 %に達する (J. L. Maubois: Bulletin of the IDF 320: 37-40, 1997 ) 。 この脂質は、 WPC の機能性や風味を損なう原因になることが指摘されている ( Y. Morr and E. Y. W.Ha: CRC Crit. Rev. Food Sci. Nutr. , 33: p.431, 1993; J. N. de Wit, G. Klarenbeek and M. Adamse: Neth. Milk Dairy J. , 40, p. 41, 1986; M. T. Pat el and A. Kilara: J. Dairy Sci., 73: p. 2731, 1990 ) 。 また、 ホエイの脂質 は限外濾過 0JF) 、 逆浸透 (R0) などの膜処理効果とも関連があり、 'ホエイ中に 残留脂質が多いほど膜分離中の流束速度は低下する (J. N. de Wit and R. de Bo er: Neth. Milk Dairy J. , 29, p. 198, 1975 ) 。 この脂肪の主体はリン脂質で ある。 この脂肪はホエイを 0.1/imの MFで処理することにより大半除去される (P. Dejimek and B. Hallstroem: 食品膜技術懇談会, 第 5回春期研究例会講演要旨集, p. 36-45, 1993; A. Nielsen: Danish Dairy & Food Ind. Worldwide, 10: 72-7 3, 1996 ) 。 一般的に、 孔径が 0. 2〜0. 45 ^m程度の MF膜を用いることで透過液を無菌にする ことができる。 細菌の大きさは脂肪球 (脂肪球の大きさは直径 0. 1〜17 μ πιの範囲 にあり、 平均 3. 4 Π1である) とほぼ同じである。 一般に MF膜の孔怪は 0. 01 mから 12 mである。 本発明に用いる MF膜の孔径は、 実用的に 0. 1〜1. 4 μπιの範囲にある と考えられるが、 孔怪の最適化は、 当業者の通常の実験のなかで確認可能である。 またより簡便には原乳から生クリームを分離するように、 特にスイートホエイ を約 30〜60°Cで遠心分離処理して得られるホエイクリームを再度遠心分離処理し て得られる水相も MF保持液と同様に利用することができる。
さらに上記遠心分離処理の変法として、 95°Cで 30分間加熱処理した脱脂乳から 得られる酸ホエイ、 いわゆるプロテオース,ペプトンを硫安沈殿と遠心分離を組 み合わせた方法で処理して得られる分画物も MF保持液と同様に利用することがで きる。
これらのホエイの MF保持液、 遠心分離処理液および Zまたは硫安沈殿処理分画 物あるいはその乾燥物は、 後述する実施例に示すように抗ロ夕ウィルス感染活性 を示す。 また、 これらを加熱しても抗ロタウィルス感染活性を保持している。 MF 保持液あるいはその乾燥物は、 MFおよび UFの組み合わせで製造されるホエイ夕ン パク分離物 (WPI) の副産物として得られる。 ホエイの遠心分離処理液あるいはそ の乾燥物は、 バターオイルの副産物として得られる。 このようにして製造される ホエイの MF保持液および遠心分離処理液あるいはその乾燥物中にはリン脂質が濃 縮されている。 '
本発明の組成物は加熱処理が可能で食品 (とりわけ育児用調製粉乳や仔ゥシの 飼料) にその有効量を混合することにより、 ヒ卜乳児、 仔ゥシ、 仔ゥマなどにお けるロタウィルスが原因の下痢症を予防または治療するのに有効であることが期 待できる。 本発明の組成物の有効量は最終製品に対して 0. 1〜50重量%の範囲にあ ると推定されるが、 ヒトあるいは家畜による試験で決定されるべきである。
ロタウィルスは小腸絨毛の先端部約 1/3の上皮細胞で増殖する。 感染後、 絨毛は 矮小化し、 微絨毛の配列の乱れや欠落などの病変を起こす。 その結果、 生理機能 が低下し、 水の吸収が阻害され下痢を起こす。 口夕ウィルスの感染は標的細胞へ の接着から始まり、 侵入、 定着という多段階の過程を含んでいる。
本発明のホエイの MF保持液、 遠心分離処理液および/または硫安沈殿処理分画 物あるいはその乾燥物の抗ロタゥィルス感染活性は、 口夕ウイルスが標的細胞へ 接着することを阻害することによるものと推定されるが、 今後の作用機作解明を 要する。
ロタウィルス感染における食品成分の抗ロタウィルス感染効果を検定 ·評価す る方法は多岐にわたり、 万全の検定 ·評価系はない。 これまでにさまざまな抗ロ 夕ウィルス感染効果の検定 ·評価法が報告されている。 例えば本発明で用いた方 法以外に、 実験動物 (マウス) にロタウィルスおよび食品成分を投与し、 下痢の 発症および消化管粘膜へのロタウィルスの結合量を測定するなどの検定 ·評価系 があげられる (Duf fy L. C. Ped i at r. Res. 35 : 690-695 (1994) ) 。 本発明者は、 これらの系を適切に用いて、 該組成物の抗ロタウイルス感染活性をさらに詳細に 調べることが可能である。
本発明において用いる乳-由来の組成物は長い食経験の中で安全性は確立されて いる。 したがってヒトによる試験で本発明品の有効性および有効量の確認が可能 である。
乳由来の該組成物を抗ロ夕ウィルス感染組成物として用いる場合、 それ自身 (液状または粉末状) で、 また、 他の活性物質と共に、 あるいは他の'薬理学的な 活性物質と共に用いることができる。 形態は、 例えば、 錠剤、 もしくは被覆錠、 カプセル、 溶液、 シロップ、 乳液または分散性粉末を包含する。 摂取量は、 年齢、 身体状態等に依存して変化するが 1日当たり 0. 001〜10 g/kg体重、 好ましくは 0. 01 〜2g/kg体重である。
乳由来の該組成物は、 口夕ウィルス感染に対する防御能の発達が未熟な乳幼児 の育児用調製粉乳、 あるいはロタウィルス感染に対する防御能の低下した高齢者 向けの食品にその有効量を添加して抗ロ夕ウィルス感染食品組成物とすることが できる。 育児用調製粉乳とは、 0〜12か月の乳児を対象とする乳児用調製粉乳、 6〜 9か月以降の乳児および年少幼児 ( 3歳まで) を対象とするフォローアップ ミルク、 出生時の体重が 2500 g未満の新生児 (低出生体重児) を対象とする低出 生体重児用調製粉乳、 牛乳アレルギーや乳糖不耐症等の病的状態を有する児の治 療に用いられる各種治療用ミルクなどを指す。 さらに、 該組成物を保健機能食品 や病者用食品に適用することができる。 保健機能食品制度は、 内外の動向、 従来 からの特定保健用食品制度との整合性を踏まえて、 通常の食品のみならず錠剤、 カプセル等の形状をした食品を対象として設けられたもので、 特定保健用食品 (個別許可型) と栄養機能食品 (規格基準型) の 2種類の類型からなる。 さらに、 該組成物を家畜用飼料にその有効量を添加して抗ロタウィルス感染組成物とする ことができる。 図面の簡単な説明
図 1は、 ゲル濾過 (Sephacryl S-500) カラムを用いた抗ロ夕ウィルス感染組成 物の活性成分の分画パターンを示す図である。 発明を実施するための最良の形態
以下、 本発明の効果を実施例に基づき具体的に説明するが、 本発明はこれらの 具体例に限定されるものではない。 '
[実施例 1] ホエイからの抗ロタウイルス感染組成物およびその加熱処理物の調 製
〈材料および方法〉
搾乳した未加熱の原乳 100kgを で 15秒殺菌し、 常法にしたがってモザレラチ —ズを調製し、 生成したホエイの pHを 6N NaOHで 6. 8とした。 遠心分離してクリ一 ム画分と微細なカゼイン粒子を除去した。 クリーム画分およびカゼィンを除去し たホエイを精密濾過装置 (日本ポール株式会社、 MEMBRALOX, 孔径 0, l /im、 入口圧 3. Okg/cm2, 温度 25°C) で処理後、 保持液を採取した。 得られた保持液に脱塩水を 添加し、 再度精密濾過装置に供する操作を 3回繰り返した。 得られた保持液をスプ レードライ法により乾燥した。
加熱物の調製は、 得られた粉末を蒸留水に 10mg/mlとなるように溶解後、 80°C30 分間加熱処理した後、 常法により凍結乾燥することにより行った。
[実施例 2] ゥシ常乳由来の組成物のリン脂質含量の測定
〈材料および方法〉
牛乳を用いて前述した実施例 1と同一の方法により製造した乳由来組成物のリン 脂質含量を測定した。 はじめに試料 10gに 5 NaCl溶液 50mlを加え溶解後、 メタノ —ル 100mlを添加した。 次に、 クロ口ホルム 100mlを加え撹拌後、 静置し、 クロ口 ホルム層を回収した。 同様の操作をさらに 2回繰り返した。 得られたクロ口ホルム 層を減圧乾固したものを n-へキサン 30mlに溶解した。 n-へキサン飽和 1%含水メタ ノール 50mlを加え撹拌後、 静置し、 メタノール層を回収した。 同様の操作をさら に 2回繰り返した。 得られたメタノール層を減圧乾固したものをクロ口ホルム:メ 夕ノール (2 : 1 ) に溶解し、 リン脂質測定用試料を得た。 得られた試料中のホ スファチジルェタノ一ルァミン (PE) 、 ホスファチジルコリン (PC) 、 スフイン ゴミエリン (SM) 濃度を HPLC法により測定することで、 試料中のリン'脂質含量を 求めた。
〈結果と考察〉
リン脂質の測定結果 (重量 %) は PE 0. 69%, PC 1. 36%, SM 0. 85 であった。 牛乳 中のリン脂質の含量は 0. 04〜0. 05%であることが報告されている (乳の科学、 上野 川修ー編、 朝倉書店、 1996) 。 したがって、 ホエイの MF膜保持物には牛乳中のリ ン脂質が高濃度で濃縮されていることが確認された。 [実施例 3] ゥシ常乳由来の組成物、 およびその加熱処理物の口夕ウィルス感染 阻害活性の測定
〈材料および方法〉
牛乳を用いて前述した実施例 1と同一の方法により製造した乳由来組成物、 また はその加熱処理物のロタウイルス感染阻害活性を測定した。
ゥシ常乳由来の組成物、 およびその加熱処理物を試料として、 ヒトロ夕ウィル ス M0株の感染阻害活性を以下のように測定した。 106 FCFU (Fluorescent Cel l Foe us Forming Uni t) /mlのヒトロ夕ウィルス MO株 0. 4mlと 20 i g/mlのトリプシン 0. 4ml を混合し、 37°Cで 30分間インキュベートした。 予め 10%ゥシ胎児血清を含むィーグ ル培地にて各種濃度に希釈調製された試料 50 / 1 (試料溶液は 0. 45 mのフィルタ —で濾過滅菌) を分注した 0. 5ffllエツペンドルフチューブに、 調製したウィルス溶 液をそれぞれ 50/2】ずつ加えて 37°Cで 1時間培養した。
なお、 空試験用としては、 前記試料 50 ^ 1に代えて、 10%ゥシ胎児血清を含むィ 一ダル培地 50 i lを用いた。 この培養液が入った各エツペンドルフチューブにそれ ぞれ 2 X 105 /mlのァカゲザル腎臓由来 MA- 104細胞を 100 x l添加し、 混合後、 各混 合液の 20 1をそれぞれ対応するスライドグラスに移し、 37°Cで 45時間培養した。 これをアセトンで固定し、 ヒトロタウィルス感染細胞数を、 一次抗体としてハ卜 ロタウィルス P0-13株の VP6を特異的に認識するモノクローナル抗体、 および二次 抗体として蛍光標識したャギ抗ゥサギ IgGを用いた間接蛍光抗体法で^出した。 なお、 感染阻害活性の評価は、 下記の式から求められる値 (阻害率) が 以上 の時、 感染阻害活性ありと判断し、 感染阻害活性がある最も低い試料濃度を最小 阻害活性とした
100 X [1- (試料添加時の感染細胞数) / (空試験の感染細胞数) ]
〈結果と考察〉
ゥシ常乳由来の組成物、 およびその加熱処理物の最小阻害活性は順に 33、 およ び 35 i g/ml (ゥシ血清アルブミンで換算した場合の夕ンパク質濃度) であった。 この結果から、 該組成物が抗ロ夕ウィルス感染活性を有すること、 加熱処理後も 抗ロ夕ウィルス活性がほとんど変化しないことが判明した。 なお、 他の出発原料 および方法により製造した本発明の組成物についても、 ほぼ同様の結果が得られ た。 したがって、 ゥシ乳より精密濾過膜による分離で得られる該組成物には抗ロ 夕ウィルス感染活性が存在すること、 該組成物の抗ロタウィルス感染活性は耐熱 性を有することが明らかとなつた。
ロタウィルスの感染は標的細胞への接着から始まり、 侵入、 定着という多段階 の過程を含んでいる。 今回、 該組成物を予めロタウィルスと混合してから標的細 胞と反応させたところ、 ロタウィルスの感染が阻害されたことから、 該組成物の 抗ロタウイルス感染活性は標的細胞へのロタウィルスの接着を阻害することによ り発揮されていることが示唆された。
[実施例 4] 牛乳を用いて前述した実施例 1と同一の方法により製造した乳由来 組成物を、 0. 5%配合した下記処方の乳児用調製粉乳を調製した。
3 表 2
脂炭灰水た核鉄該塩銅亜ェセパ葉ナママカナアコ夕力カ·シビビビビビビビビ3ビ αリリリ 0ド
水乳ん質分分可組ネフ夕夕夕夕タタタ
成 分 製品 100Η当たり
¾ル白 Ξ/z : -質 g
物ギンンンンンンン
ADBBBBC
( 26 11
( 溶 ½多糖
( ラク トオ
7Λ36
R mg
g
g
Figure imgf000014_0001
g
ンガン U g
レン Ί. g
ルニチン mg
0 mg
[実施例 5] ホエイからの抗ロタウイルス感染組成物およびその加熱処理物の調 搾乳した未加熱の原乳 100 kgを 72 で 15秒殺菌し、 常法にしたがってゴ一ダチ ーズを調製し、 生成したホエイの pHを 6N NaOHで 6. 8とした。 同様に HTST殺菌処理 をした原乳 100 kgから常法にしたがってエメン夕一ルチ一ズを調製し、 生成した ホエイの pHを 6N NaOHで 6. 8とした。 これらのホエイを混合後、 遠心分離してクリ ー厶画分と微細なカゼィン粒子を除去した。 こうして得られたホエイを固形分が 1. 7%となるように水で希釈してから精密濾過装置 (Exekia製のセラミックフィルタ 一、 孔径 0. l
Figure imgf000015_0001
温度 50°C) で処理後、 固形分 8 %の保持液を 回収した。 得られた保持液はさらに減圧濃縮した後、 スプレードライ法により乾 燥した。
加熱物の調製は、 得られた粉末を蒸留水に 1、 5および 10 mg/mlとなるように溶 解後、 141°C5秒間加熱処理した後、 常法により凍結乾燥することにより行った。 なお、 10 mg/mlとなるように溶解したものについては別途 iOO°C5分間および 80°C3 0分間加熱処理したものを調製し、 常法により凍結乾燥した。 [実施例 6] ホエイからの抗ロタウィルス感染組成物およびその加熱処理物の口 タウイルス感染阻害活性の測定
〈材料および方法〉
原乳を用いて前述した実施例 5と同一の方法により製造した乳由来組成物、 ま たはその加熱処理物の口夕ウィルス感染阻害活性を実施例 3と同一の方法により 測定した。
すなわち、 106 FCFU (Fluorescent Cel l Focus Forming Uni t) /mlのヒトロタウ ィルス M0株 0. 4mlと 20 g/mlのトリプシン 0. 4mlを混合し、 37°Cで 30分間インキュ ベ一トした。 予め 1( ^ゥシ胎児血清を含むイーグル培地にて各種濃度に希釈調製さ れた試料 50 1 (試料溶液は 0. 45 mのフィルターで漏:過滅菌) を分注した 0. 5mlェ ッペンドルフチューブに、 調製したウィルス溶液をそれぞれ 50 1ずつ加えて 37 で 1時間培養した。 なお、 空試験用としては、 前記試料 50 1に代えて、 10%ゥシ 胎児血清を含むイーグル培地 50 1を用いた。 この培養液が入つた各ェッペンドル フチューブにそれぞれ 2 X 105 /nilのァカゲザル腎臓由来 ΜΑ - 104細胞を 100!丄 忝カロ し、 混合後各混合液の 20 Iをそれぞれ対応するスライドグラスに移した。 37。Cで 45時間培養した後、 アセトンで固定し、 ヒ卜ロ夕ウィルス感染細胞を間接蛍光抗 体法 (一次抗体として八トロ夕ウィルス P0- 13株の VP6を特異的に認識するモノク ローナル抗体、 二次抗体として蛍光標識したャギ抗ゥサギ IgG血清を使用) で検出 した。 活性は実施例 3と同様に最小阻害濃度で表した。
〈結果と考察〉
ホエイからの抗ロタウイルス感染組成物に各種食品の製造時の殺菌条件である 加熱処理を加えても表 3に示すようにその活性はほとんど低下しなかつたことか ら、 本活性は最終製品においても維持される可能性が高いと考えられた。
表 3
ホエイからの抗ロタウイルス感染組成物およびその加熱処理物のロタウィルス 感染阻害活性
3式斗 最小阻害濃度※: g/ml ホエイからの抗ロタウイルス感染組成物 25 - 上記加熱物 (0. 1%溶液で 141°C 5秒加熱) 27
上記加熱物 (0. 5%溶液で 1°C 5秒加熱) 34
上記加熱物 ( 1 %溶液で C 5秒加熱) 39
上記加熱物 (1 %溶液で 100°C 5分加熱) 13 '
上記加熱物 ( 1 ¾溶液で 80で 30分加熱) 20
:最小阻害濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で表 己し/こ。
[実施例 7] ホエイから各種孔径の精密濾過膜を用いて調製した抗ロタウイルス 感染組成物 搾乳した未加熱の原乳 100 kgに遠心分離処理 (8000g、 15分間、 4 °C) を行い、 クリームを分離して脱脂乳を得た。 この脱脂乳を加温(20〜25°C)し、 0. 5N HC1を 添加して PH4. 6とした。 この状態で 15〜30分間保持した後、 遠心分離処理 (3000g、 15分間、 4 °C) を行い、 カゼインを分離して酸ホエイを得た。 この酸ホエイに 0. 5 N NaOHを添加して pH6. 0とした後、 各種孔径 (0. 1、 0. 2、 0. 3、 0. 45、 0. 65、 0. 8、 1. O ixm) の精密濾過膜 (セルロース混合エステルタイプ、 ァドバンテック東洋社 製)を用いて酸ホエイの精密濾過処理を実施した。 この時の処理条件は入口圧 3. Ok g/cm2, 温度 20〜25°Cであった。 最初に酸ホエイを精密濾過膜で 5倍濃縮し、 次に 濃縮液に加水しながら透析濾過を精密濾過膜の透過液の Brix値が 2 %未満となる まで行った。 最後に得られた精密濾過膜の保持液を常法により凍結乾燥し、 さら にァ線滅菌処理をして試験試料とした。
[実施例 8] ホエイから各種孔径の精密濾過膜を用いて調製した抗ロタウイルス 感染組成物のロタウィルス感染阻害活性の測定
〈材料および方法〉
原乳を用いて前述した実施例 7と同一の方法により製造した抗ロタウィルス感 染組成物のロタウイルス感染阻害活性を実施例 6と同一の方法により測定した。 〈結果と考察〉
各試料の抗ロタウィルス活性の測定結果を表 4に示した。 実験試料の最小阻害 濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で示し'た。
その結果、 MF膜の孔径が 0. 8 Ai m以上になると、 MF保持物の抗口夕ウイルス活性 の低下が顕著になった。 したがって、 抗ロタウィルス感染組成物をホエイから調 製するためには、 用いる精密濾過膜の孔径を 0. 65 m以下にすることが望ましいと 考えられた。 7 - 表 4
ホエイから各種孔径の精密濾過膜を用いて調製した抗ロタゥィルス感染組成物 の口夕ウイルス感染阻害活性
S式料 最小阻害濃度※: g/ml
孔径 0. 1 mの保持物 25
〃 0. 2 w m " 81
〃 0. 3 in 〃 36
» 0. 45 m " 52
" 0. 65 m " 61
〃 0. 8 m " 〉81
" 1. 0 m 〃 〉101
:最小阻害濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で表 記した。
[実施例 9] ホエイから遠心分離処理で調製した抗ロタウィルス感染組成物 搾乳した未加熱の原乳 100 kgを 63°Cで 30分間殺菌し、 常法にしたがって力マン ベールチーズを調製し、 生成したホエイ(pH6. 0)を分離した。 このホエイを加温し、 遠心分離処理 (3000g、 20分間、 40°C) を行い、 ホエイクリームを得た。 さらにこ のホエイクリームを再び 50°Cに加温し、 遠心分離処理 (3000g、 20分間、 50°C) を 行った。 こうして得られた水相部分 (以下、 whey cream serumと略) 'を常法によ り凍結乾燥し、 試験試料とした。
[実施例 10] ホエイから遠心分離処理で調製した抗ロタウィルス感染組成物の 口夕ウイルス感染阻害活性の測定
〈材料および方法〉
原乳を用いて前述した実施例 9と同一の方法により製造した抗ロタウィルス感 染組成物の口夕ウィルス感染阻害活性を実施例 6と同一の方法により測定した。 なお、 比較のためにゥシラクトフエリン (匿社) を対照試料として用いた。
〈結果と考察〉
各試料の抗ロタウィルス活性の測定結果を表 5に示した。 実験試料の最小阻害 濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で示した。
whey cream serumはゥシラク卜フェリンを上回る強力な抗ロタウィルス活性を 示した。
以上より、 抗ロタウィルス感染組成物はホエイから遠心分離処理のみで調製可 能なことが明らかとなった。
表 5
ホエイから遠心分離処理で調製した抗ロ夕ウイルス感染組成物の口夕ウィルス 感染阻害活性
試料 最小阻害濃度※: /i g/ml
whey cream serum 65
ゥシラクトフエリン 1787
※:最小阻害濃度は、 ウジ血清アルブミンで換算した場合のタンパ夕質濃度で表 記した。
[実施例 11] 95°Cで 30分間加熱処理した脱脂乳から得られるホエイを硫安沈殿 と遠心分離処理して調製した抗ロタウイルス感染組成物
搾乳した未加熱の原乳 10 kgに遠心分離処理 (8000g、 15分間、 4 ) を行い、 クリームを分離して脱脂乳を得た。 この脱脂乳を加熱処理 (95° 30分間)し、 0. 5 N HC1を添加して pM. 6とした。 この状態で 15〜30分間保持した後、 遠心分離処理 (5000g、 30分間、 4 °C) を行い、 カゼインを分離して酸ホエイを得た。 この酸ホ エイに硫酸アンモニゥムを加え、 35%飽和の状態とした。 この溶液を遠心分離処理 (7000g、 30分間、 4 °C) して沈殿物を除去した。 沈殿除去した溶液に再度硫酸ァ ンモニゥムを加え、 55%飽和の状態とした。 この溶液を遠心分離処理 (7000g、 30 分間、 4 °C) して再び沈殿物を除去した。 得られた溶液にさらに硫酸アンモニゥ ムを加え、 90%飽和の状態とした。 最後にこの溶液を遠心分離処理 (7000g、 30分 間、 4。C) して沈殿物を回収した。 90%飽和で得られた沈殿物は蒸留水に溶解後、 蒸留水に対して透析し、 常法により凍結乾燥し、 試験試料とした。
[実施例 12] 95°Cで 30分間加熱処理した脱脂乳から得られるホエイを硫安沈殿 と遠心分離処理して調製した抗ロタウイルス感染組成物のロタウィルス感染阻害 活性の測定
〈材料および方法〉
原乳を用いて前述した実施例 1 1と同一の方法により製造した抗ロタウィルス感 染組成物の口夕ウイルス感染阻害活性を実施例 6と同一の方法により測定した。 〈結果と考察〉
90%飽和沈殿物は 50/2 g/ml (ゥシ血清アルブミンで換算した場合のタンパク質濃 度)の最小阻害濃度を示した。
95°Cで 30分間加熱処理した脱脂乳から得られるホエイ、 いわゆるプ-ロテオ一 ス ·ペプトンの硫安沈殿処理画分が抗ロタウィルス活性を有することが明らかと なった。
[実施例 13] ゲル濾過カラムと硫安を用いた抗ロタウィルス感染 ia成物の活性 成分の分画
原乳を用いて前述した実施例 5と同一の方法により製造した乳由来組成物の活 性成分をさらに分画した。
実施例 5で保持液をスプレードライして得られた粉末を蒸留水に 5 %となるよ うに溶解後、 95°C 30分間の加熱処理を加えた。 この溶液の一部を下記の Tr i s- ΗΠ 緩衝液に対して一晩透析し、 ゲル濾過試料とした。 Sephacryl S-500 HRを約 480 ml取り、 数回のデカンテーシヨンにより溶媒を Mi l l i-Q水 (超純水) に置き換えた。 ゲルを均一になるように攪拌し、 リザ一バーを 装着したカラム (2. 6 X 60 cm) に静かに流し込んだ後、 空気が入らないようリザ —バーに Mi 1 1 i-Q水を充たし蓋をした。 カラムを AKTA explorer 10 C (アマシャム フアルマシアバイオテク) に接続し、 Mi l l i- Q水を流してゲルを十分に沈積させた 後、 リザーバ一を外してアダプタ一を装着した。 このカラムを pH8. 0 の 0. 05 M T ri s-HC l緩衝液 (0. 15 M NaCK Ι πιΜ Na.EDTA, 0. 02% NaN3) により平衡化した。 上 述の試料をカラムに 11 ml添加してから流速 1. 3 ml/分で溶出させた。 この際、 溶出液の 280 MI における吸光度の変化を調べ、 ほとんど素通りしてくる画分 C 1 を回収した。 この C 1画分を蒸留水に対して一晩透析後、 一部は常法により凍結 乾燥し、 試験試料とした。 残りは実施例 1 1と同様に硫安を用いてさらに分画した。 すなわち、 この C 1画分溶液に硫酸アンモニゥムを加え、 35飽和の状態とした。 この溶液を遠心分離処理 (7000g、 30分間、 4 °C ) して沈殿物を除去した。 沈殿除 去した溶液に再度硫酸アンモニゥムを加え、 55%飽和の状態とした。 この溶液を遠 心分離処理 (7000g、 30分間、 4 °C) して再び沈殿物を除去した。 得られた溶液に さらに硫酸アンモニゥムを加え、 90%飽和の状態とした。 最後にこの溶液を遠心分 離処理 (7000g、 30分間、 4 °C) して沈殿物を回収した。 90%飽和で得られた沈殿 物は蒸留水に溶解後、 蒸留水に対して透析し、 常法により凍結乾燥し、 試験試料 とした。
[実施例 14] 抗ロタウィルス感染組成物をゲル濾過 (Sephacryl S-500) カラム と硫安で分画して得た成分の口夕ウイルス感染阻害活性の測定
く材料および方法〉
原乳を用いて前述した実施例 13と同一の方法により製造した成分のロタウィル ス感染阻害活性を実施例 6と同一の方法により測定した。
く結果と考察〉 各試料の抗ロタウィルス活性の測定結果を表 6に示した。 実験試料の最小阻害 濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で示した。
ゲル濾過力ラム後の硫安塩析により活性成分が濃縮されることが明らかとなつ た。
¾ 6
ゲル濾過 (Sephacryl S-5QQ) カラムと硫安塩析で分画して得た成分のロタウイ ルス感染阻害活性 試料 最小阻害濃度※: /ml
C 1 52
90 飽和硫安での塩析画分 Π
※:最小阻害濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で表 記した。
[実施例 i 5 ] 遠心分離および限外濾過処理による抗ロタウィルス感染組成物の 活性成分の分画
原乳を用いて前述した実施例 5と同一の方法により製造した乳由来組成物の活 性成分をさらに分画した。
実施例 5で保持液をスプレードライして得られた粉末を蒸留水に 10%となるよう に溶解後、 0. 5N HC1を添加して pH4. 6とした。 この状態で 15〜30分間保持した後、 遠心分離処理 (6000g、 20分間、 を行い、 沈殿画分と上清画分に分けた。 沈 殿画分は再度蒸留水に分散させた後、 常法により凍結乾燥して試験試料 A とした。 上清画分は分画分子量 1万の限外濾過膜(日本ミリポア社製)を用いて限外濾過処 理に供した。 処理温度は 20〜25°Cであった。 最初に上清画分を限外濾過膜で 1 / 4に濃縮し、 次に濃縮液を 4倍に加水希釈し、 その後再び容量が 1 / 4になるよ うに透析濾過を行った。 最後に得られた限外濾過膜の保持液を常法により凍結乾 燥して試験試料 B とした。 [実施例 16] 抗ロタウィルス感染組成物を遠心分離および限外濾過処理で分画 して得た成分の口夕ウイルス感染阻害活性の測定
〈材料および方法〉
原乳を用いて前述した実施例 15と同一の方法により製造した成分の口夕ウィル ス感染阻害活性を実施例 6と同一の方法により測定した。 なお、 比較のために未 分画の試料を対照試料として用いた。
〈結果と考察〉
各試料の抗ロタウィルス活性の測定結果を表 7に示した。 実験試料の最小阻害 濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で示した。
遠心分離および限外濾過処理により活性成分が濃縮されることが明らかとなつ た。
表 7
遠心分離および限外濾過処理で分画して得た成分の口夕ウイルス感染阻害活性 試料 最小阻害濃度※: /ml
未分画 49
A 19
B 16
※:最小阻害濃度は、 ゥシ血清アルブミンで換算した場合のタンパク質濃度で表 記した。 産業上の利用の可能性
本発明により新たなロタウィルス感染防御作用を有する組成物が提供される。 該組成物は、 その有効量を育児用調製粉乳に配合することができる

Claims

請求の範囲
1 . ホエイの精密濾過保持液、 遠心分離処理液および/または硫安沈殿処理溶 液またはその乾燥物であって、 ロタウィルス感染防御作用を有する組成物。
2 . 精密濾過膜の孔径が 0. 004〜1. の範囲にある、 請求項 1記載の組成物。
3 . 遠心分離処理の重力が 300〜30, OOOgの範囲にある、 請求項 1記載の組成物。
4 . 硫安沈殿の飽和度が 30〜 100%の範囲にある、 請求項 1記載の組成物。
5 . 請求項 1から 4のいずれかに記載の組成物の有効量を含有する、 ロタウイ ルス感染防御作用を有する食品。
6 . 食品が育児用調製粉乳、 高齢者用食品、 保健機能食品および病者用食品か らなる群より選ばれる請求項 5記載の食品。
7 . 請求項 1から 4のいずれかに記載の組成物の有効量を含有する、 ロタウイ ルス感染防御作用を有する家畜飼料。
8 . 請求項 5または 6の食品を製造するための請求項 1から 4のいずれかに記 載の組成物の使用。
9 . 請求項 7の家畜飼料を製造するための請求項 1から 4のいずれ-かに記載の 組成物の使用。
PCT/JP2004/003185 2003-03-14 2004-03-11 抗ロタウィルス感染組成物、およびその製法 WO2004080475A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2004218981A AU2004218981B2 (en) 2003-03-14 2004-03-11 Compositions against rotavirus infection and processes for producing the same
NZ542981A NZ542981A (en) 2003-03-14 2004-03-11 Compositions against infection with rotavirus infection and processes for producing the same
DK04719582.1T DK1623717T3 (en) 2003-03-14 2004-03-11 Composition against rotavirus infection and method for preparing it
EP04719582.1A EP1623717B1 (en) 2003-03-14 2004-03-11 Composition against rotavirus infection and process for producing the same
CN2004800129731A CN1787829B (zh) 2003-03-14 2004-03-11 抗轮状病毒感染的组合物及制备该组合物的方法
JP2005503566A JPWO2004080475A1 (ja) 2003-03-14 2004-03-11 抗ロタウィルス感染組成物、およびその製法
US10/548,906 US8211476B2 (en) 2003-03-14 2004-03-11 Compositions against rotavirus infection and processes for producing the same
US13/339,019 US8440233B2 (en) 2003-03-14 2011-12-28 Compositions against rotavirus infection and processes for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003070669 2003-03-14
JP2003-070669 2003-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10548906 A-371-Of-International 2004-03-11
US13/339,019 Continuation US8440233B2 (en) 2003-03-14 2011-12-28 Compositions against rotavirus infection and processes for producing the same

Publications (1)

Publication Number Publication Date
WO2004080475A1 true WO2004080475A1 (ja) 2004-09-23

Family

ID=32984664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003185 WO2004080475A1 (ja) 2003-03-14 2004-03-11 抗ロタウィルス感染組成物、およびその製法

Country Status (9)

Country Link
US (2) US8211476B2 (ja)
EP (1) EP1623717B1 (ja)
JP (2) JPWO2004080475A1 (ja)
KR (1) KR20050109979A (ja)
CN (2) CN1787829B (ja)
AU (1) AU2004218981B2 (ja)
DK (1) DK1623717T3 (ja)
NZ (1) NZ542981A (ja)
WO (1) WO2004080475A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158340A (ja) * 2004-12-09 2006-06-22 Snow Brand Milk Prod Co Ltd 複合脂質高含有素材の製造方法及び複合脂質高含有素材
JP2007084523A (ja) * 2005-03-02 2007-04-05 Meiji Milk Prod Co Ltd ロタウイルス感染阻害活性を有する新規糖タンパク質
WO2007046123A3 (en) * 2005-10-21 2007-11-22 Opocrin Spa Composition containing vitamins k and d as well as taurine for the preventio and treatment of osteoporosis
JP2011254838A (ja) * 2005-03-02 2011-12-22 Meiji Co Ltd ロタウイルス感染阻害活性を有する新規糖タンパク質
US8211476B2 (en) 2003-03-14 2012-07-03 Meiji Co., Ltd. Compositions against rotavirus infection and processes for producing the same
AU2010257271B2 (en) * 2004-10-12 2012-11-15 Fonterra Co-Operative Group Limited Beta-serum dairy products, neutral lipid-depleted and/or polar lipid-enriched dairy products, and processes for their production
WO2020137932A1 (ja) * 2018-12-28 2020-07-02 森永乳業株式会社 造粒粉末の製造方法及び造粒粉末

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281257A (ja) * 2004-03-30 2005-10-13 Snow Brand Milk Prod Co Ltd 美肌剤
NZ560524A (en) * 2007-08-09 2011-04-29 Fonterra Co Operative Group Treating or preventing rotavirus infection using conjugated linoleic acid
US9055752B2 (en) 2008-11-06 2015-06-16 Intercontinental Great Brands Llc Shelf-stable concentrated dairy liquids and methods of forming thereof
UA112972C2 (uk) 2010-09-08 2016-11-25 Інтерконтінентал Грейт Брендс ЛЛС Рідкий молочний концентрат з високим вмістом сухих речовин
CN109475164A (zh) * 2016-05-12 2019-03-15 阿拉食品公司 促进脑发育的乳清制剂
US12023075B2 (en) 2022-03-21 2024-07-02 Ryan J. Niver Bone fixation systems and methods for fixating bones
CN114751978B (zh) * 2022-04-07 2023-10-27 武汉科前生物股份有限公司 一种猪轮状病毒特异性阳性血清及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133941A (ja) * 1986-11-26 1988-06-06 Taiyo Kagaku Co Ltd 健康食品
JPS63135336A (ja) * 1986-11-26 1988-06-07 Taiyo Kagaku Co Ltd 整腸剤
JPH03218318A (ja) * 1989-11-02 1991-09-25 Chugai Pharmaceut Co Ltd ロタウイルス感染症治療剤の製法
JPH05236883A (ja) * 1992-02-18 1993-09-17 Snow Brand Milk Prod Co Ltd ホエーからα−ラクトアルブミン含有量の高い画分を製造する方法及び該画分を含有せしめてなる母乳代替物または栄養組成物
JPH05244875A (ja) * 1992-01-24 1993-09-24 Snow Brand Milk Prod Co Ltd 活性の高いラクテニン画分の回収方法
JPH05269353A (ja) * 1992-03-26 1993-10-19 Snow Brand Milk Prod Co Ltd ガングリオシド含有量の高い組成物の製造方法
JPH06189679A (ja) * 1992-12-25 1994-07-12 Nippon Chem Res Kk 活性乳蛋白成分含有製品およびその製造法
JPH0899896A (ja) * 1994-09-29 1996-04-16 Morinaga Milk Ind Co Ltd ウイルス感染防御作用を有するウシ乳清由来の高分子糖蛋白質混合物、その用途及びその製造法
JPH08116875A (ja) * 1994-10-26 1996-05-14 Meiji Milk Prod Co Ltd ホエイ調製物およびその製造方法
JPH09509320A (ja) * 1994-02-23 1997-09-22 サボライネン,ジューコ ホエータンパク質を分離するための方法
JPH10501698A (ja) * 1994-06-15 1998-02-17 デアリーゴールド・テクノロジーズ・リミテッド ホエー成分を分別するための方法
JPH11512746A (ja) * 1995-10-05 1999-11-02 イミユセル・コーポレーシヨン 乳漿中の免疫グロブリンの単離方法
JP2000300183A (ja) * 1999-04-22 2000-10-31 Snow Brand Milk Prod Co Ltd ホエータンパク質濃縮物及びその製造法
JP2002255824A (ja) * 2001-02-27 2002-09-11 Meiji Milk Prod Co Ltd 免疫賦活組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU666512B (en) 1912-10-04 1913-07-29 Shennan Kirkpatrick James Improvements in gate or door latches
US5066491A (en) * 1985-04-15 1991-11-19 Protein Technology, Inc. Method of disease treatment utilizing an immunologically active whey fraction
DE3834636A1 (de) 1988-10-11 1990-04-19 Max Planck Gesellschaft Verfahren zur analyse von laengenpolymorphismen in dna-bereichen
AU5254790A (en) 1989-04-06 1990-10-11 Chugai Seiyaku Kabushiki Kaisha Process for preparing a therapeutic agent for rotavirus infection
JP2935193B2 (ja) 1989-04-06 1999-08-16 中外製薬株式会社 ロタウイルス感染症治療剤の製法
JP3072432B2 (ja) 1989-12-25 2000-07-31 大日本インキ化学工業株式会社 湿気硬化型非水分散型塗料
WO1994009651A1 (en) * 1992-10-30 1994-05-11 Cancer Research Fund Of Contra Costa Anti-diarrheic product and method of treating rotavirus-associated infection
JPH10505828A (ja) 1994-09-16 1998-06-09 アボツト・ラボラトリーズ ヒトロタウイルス感染の阻害
US5747031A (en) * 1995-10-05 1998-05-05 Immucell Corporation Process for isolating immunoglobulins in whey
CN1787829B (zh) 2003-03-14 2010-06-16 明治乳业株式会社 抗轮状病毒感染的组合物及制备该组合物的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133941A (ja) * 1986-11-26 1988-06-06 Taiyo Kagaku Co Ltd 健康食品
JPS63135336A (ja) * 1986-11-26 1988-06-07 Taiyo Kagaku Co Ltd 整腸剤
JPH03218318A (ja) * 1989-11-02 1991-09-25 Chugai Pharmaceut Co Ltd ロタウイルス感染症治療剤の製法
JPH05244875A (ja) * 1992-01-24 1993-09-24 Snow Brand Milk Prod Co Ltd 活性の高いラクテニン画分の回収方法
JPH05236883A (ja) * 1992-02-18 1993-09-17 Snow Brand Milk Prod Co Ltd ホエーからα−ラクトアルブミン含有量の高い画分を製造する方法及び該画分を含有せしめてなる母乳代替物または栄養組成物
JPH05269353A (ja) * 1992-03-26 1993-10-19 Snow Brand Milk Prod Co Ltd ガングリオシド含有量の高い組成物の製造方法
JPH06189679A (ja) * 1992-12-25 1994-07-12 Nippon Chem Res Kk 活性乳蛋白成分含有製品およびその製造法
JPH09509320A (ja) * 1994-02-23 1997-09-22 サボライネン,ジューコ ホエータンパク質を分離するための方法
JPH10501698A (ja) * 1994-06-15 1998-02-17 デアリーゴールド・テクノロジーズ・リミテッド ホエー成分を分別するための方法
JPH0899896A (ja) * 1994-09-29 1996-04-16 Morinaga Milk Ind Co Ltd ウイルス感染防御作用を有するウシ乳清由来の高分子糖蛋白質混合物、その用途及びその製造法
JPH08116875A (ja) * 1994-10-26 1996-05-14 Meiji Milk Prod Co Ltd ホエイ調製物およびその製造方法
JPH11512746A (ja) * 1995-10-05 1999-11-02 イミユセル・コーポレーシヨン 乳漿中の免疫グロブリンの単離方法
JP2000300183A (ja) * 1999-04-22 2000-10-31 Snow Brand Milk Prod Co Ltd ホエータンパク質濃縮物及びその製造法
JP2002255824A (ja) * 2001-02-27 2002-09-11 Meiji Milk Prod Co Ltd 免疫賦活組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1623717A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211476B2 (en) 2003-03-14 2012-07-03 Meiji Co., Ltd. Compositions against rotavirus infection and processes for producing the same
US8440233B2 (en) 2003-03-14 2013-05-14 Meiji Co., Ltd Compositions against rotavirus infection and processes for producing the same
AU2010257271B2 (en) * 2004-10-12 2012-11-15 Fonterra Co-Operative Group Limited Beta-serum dairy products, neutral lipid-depleted and/or polar lipid-enriched dairy products, and processes for their production
AU2010257271B8 (en) * 2004-10-12 2013-03-14 Fonterra Co-Operative Group Limited Beta-serum dairy products, neutral lipid-depleted and/or polar lipid-enriched dairy products, and processes for their production
JP2006158340A (ja) * 2004-12-09 2006-06-22 Snow Brand Milk Prod Co Ltd 複合脂質高含有素材の製造方法及び複合脂質高含有素材
JP4559836B2 (ja) * 2004-12-09 2010-10-13 雪印乳業株式会社 複合脂質高含有素材の製造方法及び複合脂質高含有素材
JP2007084523A (ja) * 2005-03-02 2007-04-05 Meiji Milk Prod Co Ltd ロタウイルス感染阻害活性を有する新規糖タンパク質
JP2011254838A (ja) * 2005-03-02 2011-12-22 Meiji Co Ltd ロタウイルス感染阻害活性を有する新規糖タンパク質
WO2007046123A3 (en) * 2005-10-21 2007-11-22 Opocrin Spa Composition containing vitamins k and d as well as taurine for the preventio and treatment of osteoporosis
WO2020137932A1 (ja) * 2018-12-28 2020-07-02 森永乳業株式会社 造粒粉末の製造方法及び造粒粉末
JPWO2020137932A1 (ja) * 2018-12-28 2021-11-11 森永乳業株式会社 造粒粉末の製造方法及び造粒粉末
JP7550650B2 (ja) 2018-12-28 2024-09-13 森永乳業株式会社 造粒粉末の製造方法及び造粒粉末

Also Published As

Publication number Publication date
NZ542981A (en) 2008-05-30
US8211476B2 (en) 2012-07-03
JP2012012391A (ja) 2012-01-19
US20060240115A1 (en) 2006-10-26
EP1623717B1 (en) 2018-08-29
CN101828713A (zh) 2010-09-15
JP5666995B2 (ja) 2015-02-12
DK1623717T3 (en) 2018-12-03
EP1623717A4 (en) 2010-07-28
EP1623717A1 (en) 2006-02-08
KR20050109979A (ko) 2005-11-22
CN1787829A (zh) 2006-06-14
US20120100224A1 (en) 2012-04-26
AU2004218981A1 (en) 2004-09-23
CN1787829B (zh) 2010-06-16
JPWO2004080475A1 (ja) 2006-06-08
AU2004218981B2 (en) 2010-09-16
US8440233B2 (en) 2013-05-14

Similar Documents

Publication Publication Date Title
JP5666995B2 (ja) 抗ロタウィルス感染組成物、およびその製法
JP6513629B2 (ja) 乳ベースの製品およびその調製方法
JP6509058B2 (ja) ホエータンパク質製品およびその調製方法
RU2489905C2 (ru) Жидкая энтеральная питательная композиция с высоким содержанием белка
Fenelon et al. Whey proteins in infant formula
CA2077482C (en) Hypoallergenic products from natural and/or synthetic components and process of making
JP6359501B2 (ja) 酸処理水性乳清タンパク質抽出物を使用したアレルギー治療
US4954361A (en) Hypoallergenic milk products and process of making
CN106962480A (zh) 乳制品和制备方法
AU2017311557B2 (en) Process for producing infant formula products and dairy products
US20170099850A1 (en) Low fat, clear, bland flavored whey products
CN103781368A (zh) 具有低lps的乳品类组合物
JP2014520549A (ja) タンパク質の消化性が改善された組成物
US20140057040A1 (en) Method of Making a Milk Protein Composition
US5112636A (en) Hypoallergenic butter and process of making
US20030166866A1 (en) Method of processing a proteinaceous material to recover K-casein macropeptide and polymers of a-lactalbumin and B-lactoglobulin
Ow-Wing Production of Low Lactose and Low Serum Milk Protein Beverage by Microfiltration.
WO2022210231A1 (ja) 食品組成物の製造方法
JP2023149482A (ja) 中枢神経炎症抑制組成物及び組成物を含む飲食品、医薬品、飼料
JPS63133941A (ja) 健康食品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057016810

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004218981

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004719582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004218981

Country of ref document: AU

Date of ref document: 20040311

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 542981

Country of ref document: NZ

Ref document number: 1200501497

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 2004218981

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20048129731

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016810

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004719582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006240115

Country of ref document: US

Ref document number: 10548906

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10548906

Country of ref document: US