WO2004078973A1 - 微生物トランスグルタミナーゼの製造法 - Google Patents

微生物トランスグルタミナーゼの製造法 Download PDF

Info

Publication number
WO2004078973A1
WO2004078973A1 PCT/JP2004/002923 JP2004002923W WO2004078973A1 WO 2004078973 A1 WO2004078973 A1 WO 2004078973A1 JP 2004002923 W JP2004002923 W JP 2004002923W WO 2004078973 A1 WO2004078973 A1 WO 2004078973A1
Authority
WO
WIPO (PCT)
Prior art keywords
protease
derived
neutral
pro
mtg
Prior art date
Application number
PCT/JP2004/002923
Other languages
English (en)
French (fr)
Inventor
Yukiko Umezawa
Keiichi Yokoyama
Yoshimi Kikuchi
Masayo Date
Norimasa Onishi
Original Assignee
Ajinomoto Co. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co. Inc. filed Critical Ajinomoto Co. Inc.
Priority to DE602004031198T priority Critical patent/DE602004031198D1/de
Priority to CA2518049A priority patent/CA2518049C/en
Priority to JP2005503155A priority patent/JP4482938B2/ja
Priority to EP04717856A priority patent/EP1602722B1/en
Priority to DK04717856.1T priority patent/DK1602722T3/da
Priority to BRPI0407911-6A priority patent/BRPI0407911A/pt
Priority to AT04717856T priority patent/ATE496995T1/de
Publication of WO2004078973A1 publication Critical patent/WO2004078973A1/ja
Priority to US11/218,780 priority patent/US7704707B2/en
Priority to US12/714,853 priority patent/US8105802B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • C12N9/1044Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)

Definitions

  • the present invention relates to a novel protease that efficiently cleaves the pro-structure of pro-transglutaminase produced by actinomycetes and converts it into active transglutaminase, and a nucleic acid molecule encoding the same.
  • the present invention also relates to a method for producing a transglutaminase derived from an active microorganism using the protease.
  • the present invention relates to a method for producing the neutral meta-oral protease.
  • Transglutaminase is an enzyme that catalyzes the transacylation of -carboxamide groups in the peptide chain of proteins. When this enzyme is allowed to act on proteins, (a-Glu) -Lys cross-linking reaction and conversion of Gin to Glu residue by deamidation may occur.
  • This transglutaminase is used for the production of gelled foods such as jelly, garlic, cheese, or gel-like cosmetics, and the improvement of meat quality (Japanese Patent Publication 50382). In addition, it is highly industrially applicable, as it is used for the production of heat-stable microcapsule materials and carriers for immobilized enzymes.
  • Transglucinase from animal whose activity expression is calcium-dependent and transglucinase from a microorganism independent of calcium (microvial transglucinase: hereinafter referred to as “MTG”) Is known.
  • MTG microvial transglucinase
  • Streptobacillus spp. include, for example, Streptococciium griseocarnium (S 04 002923 treptoverticillium griseocarneum) IFO 12776, Streptovert ici 11 cin cinnamoneum sub sp. mobaraense) IFO 13819 and the like (JP-A 64-27471).
  • a coryneform bacterium is selected as a host, and a fusion protein in which transgluminase is connected downstream of a signal peptide derived from the coryneform bacterium is produced. Then, a method for efficiently secreting this out of the cells and obtaining a high yield of transglutaminase was established (W001 / 23591).
  • the pro-MTG is secreted in the form of an inactive protransglutaminase (hereinafter referred to as “pro-MTG”) in which a pro-structure is added to the MTG.
  • pro-MTG an inactive protransglutaminase
  • a method for cleaving the protein into a transgenic enzyme having activity, and co-expressing SAM-P45, a serine protease derived from actinomycetes, in a coryneform bacterium that produces pro-MTG, in a necessary and sufficient amount A method for producing an active transglutaminase directly in a culture solution is disclosed.
  • Dispase As an enzyme that cleaves the pro-structure of pro-MTG, in addition to SM-P45, a dispase derived from Bacillus' polymixer is known (Eur. J. Biochei., 257, 570-576 ( 1998)). However, a large amount of enzyme is required to cleave the pro-structure, and there is a risk of over-degradation of the transglutaminase itself. Dispase is a reagent for cell culture, and is expensive as an industrial enzyme. Disclosure of the invention
  • proteases that are useful for the production of transglutaminase which selectively degrade the pro-structure of pro-MTG, can be easily secreted out of the cells using coryneform bacteria.
  • an active form of transglutaminase could be directly produced in the culture solution, which was considered to be more preferable.
  • an object of the present invention is a protease that selectively cleaves the pro-structure of pro-MTG, which can be produced using a coryneform bacterium as a host and that can be easily secreted out of the cells. It is to provide ze. Another object of the present invention is to provide a nucleic acid molecule encoding the protease.
  • a further object of the present invention is to provide a method for efficiently producing MTG using the protease.
  • the present invention provides a method for producing the protease.
  • the present inventors conducted a search for a protease that selectively degrades the pro-structural portion of pro-MTG but does not cause degradation of transglutaminase itself as much as possible.
  • the meta-mouth protease could be isolated and purified.
  • the present inventors also obtained a DNA encoding the protease, incorporated it into a coryneform bacterium, and succeeded in secretory expression using the coryneform bacterium as a host.
  • the enzyme was allowed to actually act on pro-MTG to cleave the pro-structure, and active transglutaminase could be recovered.
  • the present inventors have found a neutral protease from a microorganism of another origin having an equivalent function, and found that it is also useful for the production of activated MTG, thereby completing the present invention.
  • the present invention relates to a neutral meta-oral protease having high selectivity for cleavage of the pro-MTG pro-structure derived from actinomycetes, and a nucleic acid molecule encoding the same.
  • the present invention is a method for producing an active MTG, which comprises cleaving the pro-structure portion of pro-MTG with a neutral meta-mouth protease.
  • the present invention provides a method for introducing a nucleic acid molecule encoding the above-mentioned neutral medium protease into coryneform bacterium, culturing the coryneform bacterium into which the nucleic acid molecule has been introduced, and The method for producing a protease according to the above-described method, wherein the protease is expressed, and the protease secreted outside the cell is recovered. More specifically, the present invention is a neutral meta-oral protease SVP35 from actinomycetes having the following properties:
  • Temperature stable 't' raw stable at about 50 ° C or less
  • the present invention is also a neutral meta-oral protease SV P70 derived from actinomycetes having the following properties:
  • Optimum temperature 50 ° C to 55 ° C, especially around 55 ° C
  • the present invention is also a nucleic acid molecule encoding the above SVP35 or SVP70.
  • the present invention is a method for producing an active MTG, which comprises cleaving a pro-structure portion of a pro-MTG with the SVP35 or SVP70.
  • the present invention introduces a nucleic acid molecule encoding the above SVP35 or SVP70 into a coryneform bacterium, cultures the coryneform bacterium into which the nucleic acid molecule has been introduced, and recovers SVP35 or SVP70 secreted outside the cells.
  • a method for producing SVP35 or SW70. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a graph showing the pH dependence of the activity of SVP35 and SVP70.
  • FIG. 2 is a graph showing the pH stability of SVP35 and SVP70.
  • FIG. 3 is a graph showing the temperature dependence of the activity of SVP35 and SVP70.
  • FIG. 4 is a graph showing the temperature stability of SVP35.
  • FIG. 5 shows the inhibitory activity of various compounds on the activity of SVP35 and SVP70.
  • FIG. 6 is a diagram showing changes over time in conversion of pro-MTG to active MTG by SVP35 and SVP as changes in protein amount.
  • FIG. 7 is a graph showing the time-dependent changes in transglutinase activity when SVP70 and SAM-P45 were allowed to act on pro-MTG.
  • A SVP70 added, Exposure: 1/200 amount added to substrate, Drawing: 1/500 amount added to substrate;
  • B SAM-P45 added, ⁇ : 1 to substrate / 10 volume added, ⁇ : 1/50 volume added to substrate.
  • FIG. 8 is a graph showing a time-dependent change in the amount of MTG protein when SVP70 and SAM-P45 were allowed to act on pro-MTG.
  • A SVP70 added, Book: 1/200 amount added to substrate, Drawing: 1/500 amount added to substrate;
  • B SAM-P45 added, ⁇ : 1 to substrate
  • secreted proteins are translated as peptides or pre-peptides, followed by cleavage of the signal peptide (the "pre-part") to a mature peptide or peptide, which is then converted to a protease. It is known that this further cleaves a region called the pro-structure into a mature peptide.
  • the pro-structure portion of the secretory protein may be simply referred to as “pro-structure”.
  • signal sequence refers to a sequence that is present at the N-terminus of a secretory protein precursor and is not present in a naturally occurring mature protein.
  • Gnal peptides refer to peptides that are cleaved from such protein precursors. Generally, the signal sequence is cleaved by protease when secreted outside the cell.
  • a protein that does not have a signal peptide but has a pro-structure portion may be referred to as a “proprotein”, for example, “protransglutinase” or “proMTG”.
  • pro-structure portion of the secretory protein may be simply referred to as “pro-structure” or “pro-structure portion”, and these terms are used interchangeably.
  • the present inventors firstly selected a target protease having high specificity of target substrate, that is, protease which is assumed to be easily expressed in coryneform bacteria. A search was made for a protease that would not cause excessive degradation of the transglucin minase itself.
  • both the structural gene of pro-MTG derived from actinomycetes and the structural gene of protease SAM-P45 are well expressed in coryneform bacteria, and can be secreted out of the cells.
  • MTG-producing bacteria which are actinomycetes.
  • MTG-producing strain Streptoverticillium 'Mobara-en's digested the pro-MTG pro-structure It was found that it also produced a novel neutral meta-oral protease that was highly selective and useful for the production of activated MTG. Departure The authors isolated and purified this neutral meta-oral protease and clarified its enzymological properties.
  • the present inventors determined the N-terminal partial amino acid sequence of this meta-oral protease and obtained a gene encoding this meta-oral protease.
  • the present inventors incorporated the present enzyme gene into coryneform bacterium and expressed it in a system using coryneform bacterium as a host. Furthermore, when this enzyme was actually allowed to act on pro-MTG, the pro-structure was cleaved and active transglutaminase was obtained. In addition, neutral protease from other origins of microorganisms having the same function was found, and it was revealed that the protease is also useful for the production of activated MTG.
  • the neutral meta-oral protease of the present invention may be an actinic radiation such as Streptoverticillium mobaraense, Streptomyces griseus, Streptomyces coelico lor, or the like. It can be prepared from the surface of the cultured bacterial cells of the bacteria and the culture supernatant. First, a neutral protease newly discovered from Streptoverticillium mobaraens IF013819 is described below.
  • Culturing of a bacterium for obtaining the neutral protease of the present invention can be performed according to a method generally used for culturing actinomycete. That is, as a medium for culturing, a normal medium containing a normal carbon source, a nitrogen source, inorganic ions and the like can be used. Glucose, starch, sucrose, and others can be used as carbon sources. As a nitrogen source, peptone, yeast extract, meat extract, malt dex, ammonium salt, and others can be used as needed.
  • Cultivation can be performed under aerobic conditions by controlling the pH to an appropriate range from 5.0 to 8.5 and the temperature from 15 to 37 ° C.
  • the culture is continued until the production of the desired neutral yeast protease reaches the maximum, and then stopped.
  • the appropriate culture period depends on the temperature, pH and culture medium, but is generally preferably about 1 to 2 days. After culture, the culture is separated into cells and culture supernatant by centrifugation or the like.
  • the novel neutral meloprotease of the present invention can be obtained from the culture supernatant and the recovered cells, especially from the cell surface layer.
  • all the usual methods usually used to purify the enzyme are used, such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, hydrophobic mouth chromatography, etc. can do.
  • HPLC high performance liquid chromatography
  • the protease can be purified more efficiently.
  • the measurement of the enzymatic activity of the neutral protease obtained as described above was performed using a peptide containing a pro-structural component of protransglutinase and a connecting region of mature transglutinase, for example, a synthetic peptide.
  • the partial amino acid sequence can be determined by analyzing the amino acid sequence.
  • the enzymatic chemical properties optimal pH, pH stability, optimal temperature, temperature stability, effects of inhibitors, etc.
  • a neutral medium proteinase named SVP35 from the cell surface of Streptobacillus motiens and a neutral medium proteinase named SVP70 from the culture supernatant are obtained. can get.
  • the neutral protease of the present invention is neutral meloprotease SVP35 having the following properties:
  • inhibitors a meta port protease Ichize inhibitor Echirenjiamin tetraacetic acid, 1 3 10 Fuenansurorin and Hosuhorami Don, also subjected to strong inhibition at derived from Streptomyces subtilisin inhibitor evening protein (SSI).
  • SSI Streptomyces subtilisin inhibitor evening protein
  • the neutral meta-oral protease of the present invention is a neutral meta-oral protease SVP70 having the following properties:
  • Optimum temperature 50 ° C to 55 ° C, especially around 55 ° C
  • Inhibitors Meta-oral protease inhibitors ethylenediaminetetraacetic acid, 1,10-phenanthroline and phosphoramidone, SH- SH dithiothreitol, and actinomycete-derived subtilisin inhibitory protein (SSI) Receive a strong inhibitory effect.
  • both SVP35 and SVP70 When both SVP35 and SVP70 are allowed to act on pro-MTG, they have high selective cleavage activity of the pro-structure of MTG. That is, both enzymes efficiently convert pro-MTG to active MTG, but have a low activity of degrading the generated active MTG itself. It is a suitable enzyme for producing.
  • the N-terminal amino acid sequences of these two new neutral proteases are shown in SEQ ID NO: 1 for SVP35 and SEQ ID NO: 2 for SVP70, and are homologous to both. There is. Therefore, when a search was made for those having homology to these proteases and the N-terminal amino acid sequence, a meta-protease derived from Streptomyces griseus SGMPl J.
  • T. cericella Three types of meta-oral proteases from T. cericella (GenBank / EMBL / DDBJ CAB76000, CAB76001, CAB69762) and the like were found. These proteases, like SVP35 and SVP70, can also be used for selective cleavage of the pro-structure of pro-MTG, and can be used to produce active MTG using pro-MTG as a raw material.
  • a promoter In order to produce the neutral protein protease of the present invention using recombinant DNA technology, first, a promoter, a sequence encoding an appropriate signal peptide, and the neutral protein protein of the present invention are prepared.
  • a gene construct having the gene is prepared.
  • the neutral meta-oral protease of the present invention may have a pro-structure at the N-terminus.
  • the vector that can be used for producing this construct is not particularly limited as long as it can function in a host microorganism, preferably a coryneform bacterium.
  • plasmid derived from a coryneform bacterium is particularly preferred as a vector.
  • plasmid include, for example, PHM1519 (Agric. Biol. Chem. 48, 2901-2903 (1984)), pAM330 (Agric. Biol. Chem., 48, 2901-2903 (1984)), and modified drugs of these.
  • PHM1519 Agric. Biol. Chem. 48, 2901-2903 (1984)
  • pAM330 Agric. Biol. Chem., 48, 2901-2903 (1984)
  • modified drugs of these Includes plasmid with resistance gene o
  • Coryneform bacteria that can be used as host bacteria in the present invention include L-glutamine Brevibacterium Saccharolyticum ATCC14066, Previbacterium inmariofilm ATCC14068, represented by acid-producing bacteria, Brevibacterium lactofu amenum (Corynebacterium glutamicum) ATCC13869, Brevibacterium um ATCC13825, Pre-Bacterium. Flavum (Corynebacterium.
  • the mutant strain used in the present invention includes, for example, a mutant strain that has lost productivity of glumic acid, a mutant strain that produces amino acids such as lysine, and a mutant strain that produces another substance such as a nucleic acid such as inosine. Is also included. Such mutants can be obtained by ultraviolet irradiation or treatment with a chemical mutagen such as N-methinole-N, -nitrosoguanidine, and then selecting strains with enhanced protein secretion-producing ability. Can be.
  • a corynebacterium isolated from a wild-type corynebacterium 'glutamicum ATCC1 3869 as a streptomycin (Sm) -resistant mutant strain-Guruyumi mimicum AJ12036 (FE BP-734) (3/1984) (Currently deposited on March 26, Hara) (Currently, National Institute of Advanced Industrial Science and Technology (AIST) Patent Organism Depositary, Yuichi, Tsukuba East, Japan 1-1-1 Chuo No. 6, zip code 305-8566) It is predicted that there will be mutations in the functional genes involved in protein secretion compared to wild-type strains, and the secretory production of heterologous proteins will be approximately 2-3 times as much as the amount accumulated under optimal culture conditions.
  • a strain modified so as not to produce cell surface proteins from such a strain as a host facilitates purification of the heterologous protein secreted into the medium, which is particularly preferable.
  • Such alterations can be made by mutations or genetic recombination techniques to cell surface proteins on the chromosome. Alternatively, it can be performed by introducing a mutation into the expression control region.
  • promoters derived from coryneform bacteria include the cell surface protein PS
  • PS2 and SlpA gene promoters various amino acid biosynthesis systems, such as glutamate synthase gene, lysine biosynthesis aspartokinase gene promoter and the like.
  • the signal peptide used in the present invention is a signal peptide of a secretory protein of a coryneform bacterium as a host, and preferably a signal peptide of a cell surface protein of a coryneform bacterium.
  • the cell surface proteins of coryneform bacteria include PS1 and PS2 derived from C. glutamicum (Tokuhyo Heihei 5-502548) and Corynebacterium ammoniagenes (ammoniagenes). SlpA (Japanese Unexamined Patent Application Publication No. 10-108675).
  • neutral DNA protease SVP35 is produced using recombinant DNA technology.
  • the MA encoding SVP35 can be obtained as follows.
  • the amino acid sequence of the purified SVP35 is determined.
  • the amino acid sequence can be determined using the Edman method (Edman, P., Acta Chem. Scand. 4, 111 (1950)).
  • the amino acid sequence can be determined using a gas phase protein sequencer manufactured by Shimadzu Corporation.
  • N-terminal Homogenase-derived protease genes that are expected to have homology based on the homology search results of amino acid sequences, such as Streptomyces' Sericolor-derived meta-oral protease (GenBank / EMB L / DDBJ CAB7600 1) PCR performed using actinomycete DM prepared by the method of Saito and Miura [Biochem. Biophys. Acta, 72, 619 (1963)] as a type II gene, and a gene encoding this protease. Can be amplified. The obtained amplified fragment can be used as a probe.
  • actinomycete-derived DNA prepared by the method of Saito and Miura, for example, chromosome DM of Streptovertic illium mobaraense IF013819, is digested with various appropriate restriction enzymes, for example, various restriction enzymes recognizing a 6-base sequence.
  • various appropriate restriction enzymes for example, various restriction enzymes recognizing a 6-base sequence.
  • the 32 P- lapel product of resulting PCR products by the PCR as a professional one flop, Molecular Cloning 2nd edition [J. Sambr ook EF Fritsch and T. Maniatis, Cold Spring Harbor Laboratory Press, p9.31 (1989)] in The digested actinomycete chromosomal DNA can be analyzed by methods known to those skilled in the art, such as the described Southern plate hybridization method.
  • a fragment confirmed to have high homology with the probe used by Southern blotting is recovered and cloned into an appropriate vector to encode the neutral protein of the present invention.
  • the nucleic acid molecule or a part thereof can be cloned.
  • the techniques required for such gene cloning are well known to those skilled in the art (eg, Molecular Cloning 2nd edition [J. Sambrook EF Fritsch and T. Maniatis, Cold Spring Harbor Laboratory Press, pi. 90 (198) 9)]).
  • a probe is prepared by performing PCR using chromosomal DNA of Streptomyces coelicolor A3 (2) as a rust type. Further, in the Sph l digests of Streptoverticillium m obaraense IF013819 chromosomal DNA, 32 P-labeled single band of about 8 kb of probe and a high Puridaizu is detected.
  • the chromosomal DNA of Streptoverticillium mobaraense IF013819 prepared by the above method was digested with Sphl, A fragment of about 8 kb is recovered by agarose gel electrophoresis, and the recovered fragment is inserted into the SphI site of pUC18, and then introduced into a competent cell of Escherichia coli JM109 to prepare a library.
  • the prepared library was screened according to the colony hybridization method described in Molecular Cloning 2nd edition (described above) using the synthetic oligonucleotide as a probe, and the plasmid in which the SVP35 gene fragment was cloned was used.
  • the plasmid recovered from this strain is named pVSVl.
  • the fragment encodes the previously determined N-terminal partial amino acid sequence. This confirms that the obtained gene is a gene encoding SVP35.
  • the gene construct containing DNA encoding the obtained meta-oral protease is ligated with an appropriate vector depending on the properties of the host to be used, and the neutral protease of the present invention is ligated.
  • the recombinant nucleic acid molecule is used to transform a coryneform bacterial cell as a host.
  • the transformed cells can be cultured in a suitable medium to recover the neutral protease of the present invention secreted or accumulated in the medium and / or in the cells.
  • Neutral-mouth proteinase used for the production of activated MTG can be made to act on pro-MTG as a neutral meta-oral protease-containing fraction prepared from the culture solution of bacteria producing the neutral-mouth proteinase. it can. It can also be used as a highly purified neutral meloprotease with high specific activity. Furthermore, as described later, a recombinant nucleic acid molecule obtained by ligating a vector coding for a neutral protease having a strong selective cleavage activity of the pro-MTG mouth structure portion and a vector. Culture transformed cells A neutral protease obtained by the above method can also be used.
  • the pro-MTG used for MTG production may be a pro-MTG-containing fraction prepared from a culture solution of a pro-MTG-producing bacterium. Further, a more highly purified pro-MTG may be used.
  • the reaction conditions were 1/10 to 1/500 by mass of the amount of neutral medium protease added to pro-MTG, the reaction temperature was 15 ° C to 50 ° C, and the pH was 5.0 to 9 It can be adjusted to an appropriate range.
  • a gene construct containing DM encoding the neutral meta-oral protease of the present invention constructed as described above, and a microorganism having the gene construct encoding pro-MTG, in particular, introduced into a coryneform bacterium, MTG and the meta-oral protease of the present invention can be produced by the cells, and the pro-MTG can be converted to the mature MTG under the above conditions. More detailed methods for efficiently producing pro-MTG in coryneform bacteria, gene constructs used in the method, and coryneform bacteria into which such gene constructs have been introduced are disclosed in, for example, W001 / 35991. Has been.
  • a sequence encoding a pro-MTG downstream of a sequence encoding a signal peptide region derived from a coryneform bacterium, in particular, a signal peptide region of a cell surface protein is appropriately modified.
  • the gene construct obtained by binding overnight can be introduced into a coryneform bacterium to obtain a coryneform bacterium capable of efficiently secreting the pro-MTG protein out of the cells.
  • the signal peptide, promoter and host which can be used for this purpose can be selected from the above-mentioned signal peptides, promoters and hosts suitable for expressing the meta-oral protease of the invention.
  • an appropriate gene expression construct containing the above-described DNA encoding the neutral protease of the present invention is introduced into a coryneform bacterium that produces pro-MTG, or conversely, the present invention
  • an appropriate gene expression construct that encodes pro-MTG into a coryneform bacterium that produces neutral meproproteinase
  • the neutralization of pro-MTG and the neutralization of the present invention can be achieved in the same cell.
  • Can express the protein of the mouth A mature MTG can be obtained by coexisting the gene construct, culturing the bacterium, and placing the bacterium under appropriate conditions such that the neutral protease of the present invention has activity as described above.
  • the transglutaminase produced by the method of the present invention can be separated and purified from a reaction solution according to a method well known to those skilled in the art. For example, after removing cells by centrifugation or the like, salting out, ethanol precipitation, ultrafiltration, gel filtration chromatography, ion-exchange power ram chromatography, affinity chromatography, medium- and high-pressure liquid chromatography, Separation and purification can be performed by known appropriate methods such as reverse phase chromatography, hydrophobic chromatography, or a combination thereof.
  • ISP2 liquid medium Yeast Extract, Malt Extract 10 g, Glucose 4 g, make 1 L with water and adjust to pH 7.3
  • ISP2 liquid medium Yeast Extract, Malt Extract 10 g, Glucose 4 g, make 1 L with water and adjust to pH 7.3
  • the cells were cultured with shaking at 120 rpm for 9 days. The culture was centrifuged and the culture supernatant was collected. After filtration using a depth filter (pore size 3 / m, manufactured by Sartorius), concentration was performed using a 10,000 Da pore size salt con slice membrane (manufactured by Sartorius).
  • the solution was diluted 10-fold with 20mM Tris-HCl buffer / 5mM salted calcium (pH 7.5) and DEAE-Sepharose was equilibrated with the same buffer using FPL C (manufactured by Amarsham Pharmacia).
  • the solution was passed through a column of FF (2.6 XX 10 cm, manufactured by Amarsham Pharmacia) and eluted with a linear concentration gradient of sodium chloride 0-0.5M.
  • the fraction containing the active ingredient was collected and purified with Phenyl Sepharose HP (1.6 ⁇ x 10 cm, Amarsham Pharmacia) equilibrated with 1.5 M ammonium sulfate I 20 MES buffer / 5 calcium chloride (pH 6.0).
  • the fraction was passed through a column and eluted with a linear concentration gradient of 1.5-0 M ammonium sulfate to collect an active fraction.
  • the resulting active fraction was dialyzed at 4 ° C. against 20 M MES buffer / 5 mM calcium chloride (pH 6.0) to obtain a purified enzyme solution.
  • the measurement of the enzyme activity at each stage was performed as follows.
  • the peptide GPSFRAPDS eluted at a retention time of 13 to 14 minutes, and the degradation product FRAPDS eluted at a retention time of 7.5 to 8.5 minutes.
  • the resulting supernatant is sterilized by filtration through a depth filter (pore size: 0.22 ⁇ m, manufactured by Sartorius), and then, using FPLC (manufactured by Amarsham Pharmacia), containing 5 mM calcium chloride and O. Olm zinc chloride. ] Pass through a column (1.60 x 10 cm) of CM-Sepharose FF (Amarsham Pharmacia) equilibrated with DM Tris-hydrochloric acid buffer (PH7.5), and directly add 0-0.5 M sodium chloride in the same buffer. Elution was performed with a linear concentration gradient.
  • the fraction containing the active ingredient was collected and further equilibrated with 20 mM Tris-HCl buffer (PH7.5) containing 1.5 M ammonium sulfate, 5 mM calcium chloride and O. OlmM zinc chloride, pH 7.5.
  • the solution was passed through an HP column (1 mL, manufactured by Amarsham Pharmacia) and eluted with a linear concentration gradient of 1.5 to 0 M ammonium sulfate.
  • the active fraction was collected, desalted using a PD-10 (Amersham Pharmacia) column with a 20 mM Tris-HCl buffer (pH 7.5) containing 5 mM calcium chloride and O. OlmM zinc chloride, and partially purified. An enzyme solution was obtained.
  • the enzyme activity at each stage was measured using the peptide GPSFEAPDS as a substrate, as in (1).
  • VYDAC VYDAC C18 4.6 mI .D. X250uun
  • Detection wavelength UV 220 nm The amino acid sequence of the obtained peptide fragment was analyzed using PPSQ-10 (Shimadzu Corporation), and the sequence of the cleavage point by SVP35 was analyzed. As a result, in particular, Phe, often Leu, and sometimes Tyr, Trp, Ile, and Val are cleaved (N-terminal side), and SVP is the aromatic amino acid located at P'1 position of the cleavage site and the large side It was found that it recognized hydrophobic amino acids in the chain.
  • Gly-Pro-Ser-Phe-Arg-Ala-Pro-Asp-Ser was added to the purified enzyme solution diluted with 20 mM Tris-HCl buffer (pH 7.5) containing 5 mM calcium chloride and O. OlmM zinc chloride, and pH 7.
  • the reaction was carried out for 10 minutes at a temperature of from 0 to 65 ° C.
  • the optimum temperature of SVP35 was about 45 ° C, indicating that it has high activity in the range of 40 ° C to 50 ° C (more than 80% of the activity at 45 ° C). ( Figure 3).
  • the purified enzyme solution was added to sodium phosphate buffer (pH 7.0) containing various compounds at the concentrations shown in FIG. 5 and left at room temperature for 60 minutes. Then Gly-P as substrate ro-Ser-Phe-Arg-Ala-Pro-Asp-Ser was added and reacted at 30 ° C for 10 minutes. Assuming that the cleavage activity of Gly-Pro-Ser-Phe-Arg-Ala-Pro-Asp-Ser when no compound was added was 100%, the relative activity when each compound was added was calculated.
  • the substrate is cleaved, especially before Phe, often Leu, sometimes before Tyr, Trp, lie, and Val (N-terminal), and SVP70 is an aromatic amino acid located at P'1 position of the cleavage site.
  • SVP70 is an aromatic amino acid located at P'1 position of the cleavage site.
  • L which recognizes the hydrophobic amino acid of the giant side chain.
  • the optimal pH of SVP70 was examined in the same manner as (3) -ii). As a result, the optimum pH of SVP70 was around 7.0, and the activity at pH 7.0 was 100%, and the activity at pH 6.0 to 8.0 was 90% or more, and the activity at pH 6.5 to 7.5 was 95% or more. It became clear that they had it (Figure 1).
  • the purified enzymes of SVP35 and SVP70 obtained in (1) and (2) were transferred to a polyvinylidene-difluoride (PVDF) membrane using Membrane Cartridge (manufactured by Kinelma Co., Ltd.), and the gas phase protein sequencer was used.
  • PVDF polyvinylidene-difluoride
  • the N-terminal amino acid sequence was subjected to angular analysis using PPSQ-10 (manufactured by Shimadzu Corporation).
  • the amino acid sequence of SVP35 is shown in SEQ ID NO: 1
  • the amino acid sequence of SVP70 is shown in SEQ ID NO: 2. These have homology.
  • Chromosome DM of Streptomyces ces coelicolor A3 (2) was prepared by the method of Saito and Miura [Biochem. Biophys. Acta, 72, 619 (1963)].
  • PCR was performed using the chromosomal DNA of Streptoiayces coelicolor A3 (2) described above as a type III and the primers shown in SEQ ID NO: 3 and SEQ ID NO: 4 to amplify the gene region in the meta-oral protease gene.
  • the PCR reaction used Pyrobe st DNA polymerase (Takara Shuzo), and the reaction conditions followed the protocol recommended by the manufacturer.
  • the chromosomal DNA of Streptovertici Ilium mobaraense IF013819 prepared by the method of Saito and Miura was digested with various restriction enzymes recognizing the 6-base sequence.
  • the plasmid recovered from the obtained strain was named pVSVl. Clone to pVSVl The nucleotide sequence of the fragment being converted was determined. The nucleotide sequence of this fragment was shown in SEQ ID NO: 5.
  • SEQ ID NO: 6 shows the entire amino acid sequence of SVP35. Of the amino acid sequence of SEQ ID NO: 6; It is estimated that amino acid Nos. 37-216 are the pro-structure part, and amino acids Nos.
  • 21-53 are estimated to be mature SW35. See the sequence of SEQ ID No. 5.
  • the primers shown in SEQ ID NO: 7 and SEQ ID NO: 8 were synthesized using pVSVl as type II, and the gene region containing the pro-structure portion of SVP35 and mature SVP35 was amplified by PCR.
  • the PCR reaction used Pyrobest DNA polymerase (Takara Shuzo), and the reaction conditions followed the protocol recommended by the manufacturer.
  • the pPKSPTGl described in WO 001/23591 was used as a type III, and the combination of the oligonucleotides of SEQ ID NO: 9 and SEQ ID NO: 10 included the promoter region of the PS2 gene, which is the cell surface protein of C. glutamicum. 5 5 - a region including the signal sequence of upstream region and ammoniagenes cell surface evening protein SlpA was amplified by PCR.
  • the primer shown in SEQ ID NO: 10 contains a sequence encoding the N-terminal amino acid of pro-structured SVP35.
  • the constructed plasmid pVSVl was used to transform C. glutamicum ATTC13869, and CM2S containing 5 mg of chloramphenicol (10 g of yeast extract, 10 g of tryptone, 5 g of sucrose, 5 g of NaCl, 15 g of agar, 1 g of water) The strain grown on the agar medium was selected. Next, glutamicum ATTC1386 9 having the selected pVSVl was added to a MMTG liquid medium containing 5 mg / l chloramphenicol (Dalkose 60 g, magnesium sulfate heptahydrate 0.4 g, ammonium sulfate 30 g, potassium dihydrogen phosphate).
  • Fig. 6 shows the results. As can be seen from Fig. 6, when these proteases are reacted, pro-MTG is converted to the mature form, After that, the generated MTG did not decrease.
  • the transglutaminase (TG) activity of the collected fraction was measured by the hydroxamate method, and a sufficient activity was confirmed.
  • SGMP II was purified from actinase (manufactured by Kaken Pharmaceutical Co., Ltd.) according to the method described in the literature (J. Biochem. 110, 339-344, 1991).
  • SAM-P45 did not completely increase transglutaminase activity even at 1/50 the amount of the substrate, and did not completely convert to the active form.
  • SAM-P45 was added at 1/10 amount to the substrate, conversion to active MTG was observed, but subsequently, the amount of MTG protein and the activity were decreased. This suggests that over-degradation of mature MTG by SAM-P45 has occurred.
  • a novel protease that specifically cleaves and activates the pro-structural portion of a transglutaminase precursor from Actinomyces streptobacillusium mobaraens, and its gene. Further, since the novel protease of the present invention can be expressed in large amounts in coryneform bacteria, this provides a method for efficiently producing transglutaminase derived from microorganisms.
  • the advantages of using the actinomycete-derived neutral protein proteases of the present invention for the production of active MTG include the strong selective cleavage activity of the pro-structure of pro-MTG and the expression and secretion of these enzymes in coryneform bacteria. The point that can be.
  • Pro-MTG from actinomycetes can be efficiently expressed and secreted in coryneform bacteria
  • coryneform bacteria co-expression and secretion of pro-MTd and neutral meta-oral protease by coryneform bacterium will enable more efficient production of active MTG in bacterial cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明により、微生物由来プロトランスグルタミナーゼのプロ構造部を選択的に切断する、放線菌由来中性メタロプロテアーゼおよびこれをコードする遺伝子が提供される。本発明の放線菌由来中性メタロプロテアーゼをコードする遺伝子を導入した微生物を培養し、前記放線菌由来中性メタロプロテアーゼを生産させ、微生物由来プロトランスグルタミナーゼに作用させることにより、プロ構造部が切断された活性型微生物由来トランスグルタミナーゼを製造することができる。

Description

明細書
微生物トランスダル夕ミナ一ゼの製造法 発明の技術分野
本発明は、 放線菌により生産されるプロトランスグル夕ミナーゼのプロ構造部 を効率的に切断し、 活性型トランスグルタミナ一ゼに変換する新規プロテア一ゼ、 およびそれをコードする核酸分子に関する。
また本発明は、 前記プロテアーゼを用いて、 活性型微生物由来トランスグル夕 ミナ一ゼを製造する方法に関する。
さらに本発明は、 前記中性メタ口プロテア一ゼの製造法に関するものである。 背景技術
トランスグル夕ミナーゼはタンパク質のぺプチド鎖内にある -カルボキシァ ミド基のァシル転移反応を触媒する酵素である。 本酵素をタンパク質に作用させ ると、 (ァ- Glu)-Lys架橋形成反応、 Ginの脱アミド化による Glu残基への変換反 応が起こりうる。 このトランスグル夕ミナ一ゼは、 ゼリー等のゲル化食品、 ョ一 ダルト、 チーズ、 或いはゲル状ィ匕粧品などの製造や食肉の肉質改善等に利用され ている (特公平 50382)。 また、熱に安定なマイクロカプセルの素材、 固定化酵 素の担体などの製造に利用されているなど、 産業上利用性の高い酵素である。
トランスグル夕ミナーゼには、 活性発現がカルシウム依存性の動物由来トラン スグル夕ミナ一ゼおよびカルシウム非依存性の微生物由来トランスグル夕ミナ一 ゼ(マイクロバイアルトランスグル夕ミナ一ゼ:以下「MTG」 という)が知られて いる。 MTGとしては、 これまでにストレプ卜バ一チシリウム属 (Streptoverticil liiujj) の菌から発見されたものが知られている。 そのようなストレプトバ一チシ リウム属としては、例えば、 ストレプトパーチシリウム ·グリセォカルニゥム (S 04 002923 treptoverticillium griseocarneum) IFO 12776、ストレプトバーチシリゥム ·シ ナモニゥム ( Str eptovert i c i 11 ium cinnamoneum sub sp. cinnamoneum) IFO 1285 2、 ス卜レプトノ 一チシリゥム■モノ ラエンス ( Streptove rticillium mobaraens e、以後、 S. mobaraenseと略すことがある) IFO 13819等が挙げられている (特開 昭 64-27471) 。
しかしこれらは、 上記菌類等の培養物から精製作業を経て製造されていたため、 供給量、 効率等の点で問題があった。 そこで、 異種タンパク質を効率よく分泌す る方法として、 宿主にコリネ型細菌を選択し、 コリネ型細菌由来のシグナルぺプ チドの下流にトランスグル夕ミナ一ゼが接続された融合夕ンパク質を産生させ、 これを菌体外に効率よく分泌させ、 高収量のトランスグルタミナ一ゼを得る方法 が確立された (W0 01/23591) 。 そこでは、 MTGにプロ構造部の付加した不活性型 のプロトランスグル夕ミナ一ゼ (以下、 「プロ MTG」 という) の形態で分泌させ、 分泌後プロテア一ゼによってプロ MTGのプロ構造部を切断させ活性を有するトラ ンスグル夕ミナ一ゼに変換する方法、 および、 放線菌由来のセリンプロテアーゼ である SAM-P45を、 プロ MTGを生産するコリネ型細菌に必要十分量共発現させるこ とによって、 培養液中に直接活性型のトランスグル夕ミナーゼを生成させる方法 が示されている。
ところで、コリネ型細菌にプロ MTGと、そのプロ構造部を切断させるプロテア一 ゼとを共発現させて培養液に直接、 活性型のトランスグル夕ミナ一ゼを生成させ る方法は、 きわめて効率の良いトランスグル夕ミナーゼ製造方法になると想定さ れるが、 SAM-P45はその基質特異性が厳格ではなく、 プロ MTGのプロ構造部のみな らず、 トランスグル夕ミナーゼ本体をある程度消化分解する場合もあるため、 そ の取り扱いは必ずしも簡便とは言えない。したがって、 SAM-P45を使用する場合に は、 培養液中に生成したトランスダルタミ一ゼの分解を起こさせないよう、 トラ ンスグル夕ミ一ゼ製造の工程管理を厳密に行う必要がある。 従って、活性型トランスグル夕ミナーゼを有利に行うために、プロ MTGのプロ構 造部のみを選択的に分解し、 かつトランスグル夕ミナ一ゼ本体の過分解をできる だけ起こさないプロテア一ゼに対する需要がなお存在していた。
プロ M T Gのプロ構造部を切断する酵素としては、 SM-P45以外には、 バチラ ス 'ポリミキサ由来のディスパ一ゼが知られている (Eur. J. Biochei., 257卷、 570- 576頁(1998年)) 。 しかしながら、 プロ構造部の切断に大量の酵素が必要で あり、 トランスグル夕ミナ一ゼ本体の過分解の恐れがある。 また、 ディスパーゼ は細胞培養用の試薬であり、 産業用酵素としては高価である。 発明の開示
上述のように、活性型トランスグル夕ミナ一ゼ製造を有利に行うために、プロ M TGのプロ構造部のみを選択的に分解し、 かつトランスグル夕ミナ一ゼ本体の過分 解をできるだけ起こさないプロテアーゼがなお望まれていた。 また、 もしプロ MT Gのプロ構造部のみを選択的に分解し、かつトランスグル夕ミナ一ゼ本体の過分解 をできるだけ起こさないプロテア一ゼを利用できれば、 活性型トランスグル夕ミ ナ一ゼの製造に有利であると考えられた。さらに、プロ MTGのプロ構造部を選択的 に分解する、 トランスグル夕ミナ一ゼ製造に有用なプロテア一ゼは、 コリネ型細 菌を用いて、容易に菌体外へ分泌できるものであれば、プロ MTGとともに共発現さ せることによつて培養液に直接、 活性型のトランスグル夕ミナ一ゼを生成させる ことができるので、 より好ましいと考えられた。
従って、本発明の目的は、 プロ MTGのプロ構造部を選択的に切断する、 トランス ダル夕ミナ一ゼ製造に有用なプロテアーゼを提供することである。
特に、本発明の目的は、プロ MTGのプロ構造部を選択的に切断するプロテア一ゼ であって、 コリネ型細菌を宿主として生産することができ、 かつ容易に菌体外へ 分泌できるプロテァ一ゼを提供することである。 また、 本発明の目的は、 前記プロテアーゼをコードする核酸分子を提供するこ とでもある。
本発明の更なる目的は、前記プロテアーゼを用いて、 MTGを効率的に製造する方 法を提供することである。
さらに本発明は、 前記プロテア一ゼを製造する方法を提供することである。 本発明者らは、プロ MTGのプロ構造部分を選択的に分解するがトランスグルタミ ナ一ゼ自体の分解をできるだけ起こさないプロテアーゼの探索を行い、 放線菌か ら、 そのような性質を有する中性メタ口プロテアーゼを単離精製することができ た。本発明者らは、前記プロテアーゼをコードする DNAも取得し、 これをコリネ型 細菌に組み込み、 コリネ型細菌を宿主とした分泌発現に成功した。 さらに実際に 本酵素をプロ MTGに作用させ、プロ構造部を切断させ、活性型トランスグル夕ミナ —ゼを回収することができた。 また、 同等の機能を有する他起源の微生物由来中 性メ夕口プロテァ一ゼを見出し、同様に活性型 MTGの製造に有用であることも明ら かにし、 本発明を完成するに至った。
すなわち、本発明は放線菌由来の、プロ MTGプロ構造部の切断選択性が高い中性 メタ口プロテア一ゼ、 および、 これらをコードする核酸分子である。
また本発明は、中性メタ口プロテアーゼによりプロ MTGのプロ構造部分を切断す ることを特徴とする、 活性型 MTGの製造方法である。
また、 本発明は上記中性メ夕口プロテア一ゼをコードする核酸分子をコリネ型 細菌に導入し、 前記核酸分子が導入されたコリネ型細菌を培養し、 それによつて 上記中性メ夕口プロテア一ゼを発現させ、 菌体外に分泌された上記メ夕口プロテ ァーゼを回収することを特徴とする、 上記メ夕口プロテアーゼ製造方法でもある。 より具体的には、 本発明は、 以下の性質を有する放線菌由来の中性メタ口プロ テア一ゼ SVP35である:
1 ) 分子量:約 35, 000 (SDS-PAGEによる測定) 2 )至適 :6.0〜8.0、 より具体的には 6.5〜7.5、 特に 7.0付近
3 ) pH安定性: pH4〜10
4 ) 至適温度:約 45°C
5 ) 温度安定' t'生:約 50°C以下で安定
6 )メタ口プロテア一ゼ阻害剤であるェチレンジアミン四酢酸、 1, 10-フエナンス 口リンおよびホスホラミドン、 また、放線菌由来サチライシン阻害タンパク質(S SI) にて強い阻害作用を受ける。
また、 本発明は、 以下の性質を有する放線菌由来の中性メタ口プロテア一ゼ SV P70である:
1 ) 分子量:約 71, 000 (SDS- PAGEによる測定)
2 )至適1)11 : 6.0〜8.0の範囲、 より具体的には 6.5〜7.5、 特に 7.0付近
3 ) pH安定性 .· ρΗ5〜; 10
4 ) 至適温度: 50°C〜55°Cの範囲、 特に 55°C付近
5 )メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 1, 10-フエナンス 口リンおよびホスホラミドン、 SH-還元剤であるジチオスレィトール、 また、放線 菌由来サチライシン阻害タンパク質 (SSI) にて強い阻害作用を受ける。
また、 本発明は上記 SVP35または SVP70をコードする核酸分子である。
また、本発明は、上記 SVP35または SVP70によりプロ MTGのプロ構造部分を切断す ることを特徴とする、 活性型 MTGの製造方法である。
さらに、 本発明は上記 SVP35または SVP70をコ一ドする核酸分子をコリネ型細菌 に導入し、 前記核酸分子が導入されたコリネ型細菌を培養し、 菌体外に分泌され た SVP35または SVP70を回収することを特徴とする、 SVP35または SW70の製造方法 である。 図面の簡単な説明
図 1は、 SVP35および SVP70の活性の p H依存性を表したグラフである。
図 2は、 SVP35および SVP70の p H安定性を表したグラフである。
図 3は、 SVP35および SVP70の活性の温度依存性を表したグラフである。
図 4は、 SVP35の温度安定性を表したグラフである。
図 5は、 SVP35および SVP70の活性に対する種々の化合物の阻害活性を表す。 図 6は、 SVP35および 0による、 プロ MTGの活性型 MTGへの変換の経時変化を タンパク質量の変化としてそれぞれ表した図である。
図 7は、 SVP70および SAM- P45をプロ MTGに作用させた場合の、 トランスグル夕ミ ナーゼ活性の経時変化を表したグラフである。 (A) : SVP70添加、 暴:基質に対し て 1/200量を添加、 画:基質に対して 1/500量を添加; (B): SAM- P45添加、 ·:基 質に対して 1/10量を添加、 ■:基質に対して 1/50量を添加。
図 8は、 SVP70および SAM-P45をプロ MTGに作用させた場合の、 MTGタンパク質量 の経時変化を表したグラフである。(A) : SVP70添加、 書:基質に対して 1/200量を 添加、 画:基質に対して 1/500量を添加; (B): SAM- P45添加、 ·:基質に対して 1
/10量を添加、 園:基質に対して 1/50量を添加。 発明を実施するための最良の形態
一般に、 分泌型夕ンパク質はプレぺプチドまたはプレブロぺプチドとして翻訳 された後、 シグナルペプチド ( 「プレ部分」 ) が切断されて成熟ペプチドまたは プロぺプチドに変換され、 プロぺプチドはプロテア一ゼによってさらにプロ構造 分と呼ばれる領域が切断されて成熟べプチドになることが知られている。 本明細 書において、 分泌型タンパク質のプロ構造部分を単に 「プロ構造」 と呼ぶことも ある。 また、 本明細書において、 「シグナル配列」 とは、 分泌性タンパク質前駆 体の N末端に存在し、かつ天然の成熟タンパク質には存在しない配列をいい、「シ グナルぺプチド」 とはそのようなタンパク質前駆体から切り取られるぺプチドを いう。 一般にはシグナル配列は菌体外への分泌に伴ってプロテア一ゼによって切 断される。
本明細書において、 シグナルぺプチドを有しないがプロ構造部分を有する夕ン パク質を 「プロタンパク質」、 たとえば「プロトランスグル夕ミナ一ゼ」 あるい は「プロ MTG」 と称することがある。本明細書において、分泌型タンパク質のプロ 構造部分を単に 「プロ構造」 あるいは「プロ構造部」 と称することがあり、 これ らの用語は互換的に使用される。
本発明者らは、 まずコリネ型細菌で容易に発現できると想定されるプロテア一 ゼのうち、目的とする基質選択特異性が高い、すなわちプロ MTGのプロ構造部を選 択的に分解し且つトランスグル夕ミナ一ゼ本体の過分解をできるだけ起こさない プロテア一ゼの探索を行った。
本来放線菌によって MTGが菌体外に分泌されるときは、 まずプロ MTGとして分泌 され、 分泌後プロ MTGのプロ構造部が切断され活性型 MTGとなることが想定されて いる (Eur.J.Biochem. 257卷、 570-576頁(1998年))。 このことから、 本発明者 らは、 MTG生産放線菌にプロ MTGのプロ構造部を切断するプロテァ一ゼが存在する ことを予想した。 このプロテア一ゼは本来プロ構造部を切断するプロテアーゼで あるから、基質選択性が高く、 プロ構造部のみを切断し、 MTG本体への作用は少な いことが想定される。
また、 放線菌由来のプロ MTGの構造遺伝子、 並びにプロテアーゼ SAM- P45の構造 遺伝子何れもがコリネ型細菌で良好に発現し、 これらを菌体外へ分泌させること ができる。これらの情報に基づき、放線菌である MTG生産菌から目的とするプロテ ァーゼを見出すベく鋭意検討を行った結果、 MTG生産菌ストレブトバーチシリウ ム 'モバラエンスが、 プロ MTGのプロ構造部の切断選択性が高く、 活性型 MTG生産 に有用な新規中性メタ口プロデアーゼをも生産していることが見出された。 本発 明者らは、 この中性メタ口プロテア一ゼを単離精製し、 その酵素学的特性を明ら かにした。さらに本発明者らは、このメタ口プロテア一ゼの N末端部分アミノ酸配 列を決定し、 このメタ口プロテァ一ゼをコードする遺伝子を得た
また、 本発明者らは、 本酵素遺伝子をコリネ型細菌に組み込み、 コリネ型細菌 を宿主とした系において発現させたところ菌体外に分泌させることができた。 さ らに実際に本酵素をプロ MTGに作用させたところ、プロ構造部が切断され、活性型 トランスグル夕ミナ一ゼが得られた。 また、 同等の機能を有する他の起源の微生 物由来中性メ夕口プロテア一ゼも見出され、同様に活性型 MTGの製造に有用である ことが明らかになった。
以下に、 より具体的な本発明の実施の態様を例示的に示す。
本発明の中性メタ口プロテア一ゼは、 ストレプトバ一チシリウム■モバラェン ス(Streptoverticillium mobaraense)、 ストレプトマイセス ·グリセウス (Stre ptomyces griseus) 、 ス卜レプ卜マイセス ·セリカラ一 (Streptomyces coelico lor) 等の放線菌の培養菌体表層および培養上清中から調製することができる。 以下では、 まず、 ストレプトバーチシリウム ·モバラエンス IF013819から新規 に見出した中性プロテア一ゼについて述べる。
本発明の中性プロテアーゼを得るための菌、 例えば上述した放線菌の培養は、 放線菌の培養に通常用いられる方法に従って行うことができる。 すなわち、 培養 するための培地としては通常の炭素源、 窒素源、 無機イオン等を含有する通常の 培地が利用できる。 炭素源としてはグルコース、 デンプン、 ショ糖、 その他を用 いることができる。窒素源としてはペプトン、 酵母エキス、 肉エキス、 麦芽ェキ ス、 アンモニゥム塩、 その他を必要に応じて適宜使用することができる。 培養は 好気条件下に PH5.0から 8.5、 温度を 15°Cから 37°Cの適当な範囲に制御することに よって行うことができる。 本発明の中性プロテア一ゼ製造のためには、 目的とす る中性メ夕口プロテア一ゼの生産が最大に達するまで培養を続け、 その後停止さ せるのが好ましい。適切な培養期間は温度、 pH、 培地に依存するが、 一般には 1 〜丄 2日程度が好ましい。 培養後遠心分離操作等により、 培養物を菌体と培養上清 とに分ける。
本発明の新規中性メ夕ロプロテアーゼは、 培養上清液、 および、 回収した菌体、 特に菌体表層から得ることができる。 本酵素を精製するためには、 通常酵素の精 製を行うために用いられる全ての常法、 例えば硫安塩析法、 ゲル濾過法、 イオン 交換クロマトグラフィ一法、 疎水ク口マトグラフィ一法等を採用することができ る。 高速液体クロマトグラフィー (HPLC) 等を使用することによって、 さらに効 率よくプロテァーゼを精製することができる。 このようにして得られる中性メ夕 口プロテア一ゼの酵素活性の測定は、 プロトランスグル夕ミナーゼのプロ構造部 分と成熟トランスグル夕ミナーゼの接続領域を含むペプチド、 例えば、 合成ぺプ チド Glu- Pro- Ser-Phe-Arg- Ala-Pro- Asp- Ser (配列番号 1 1 ) (ペプチド研究所製) を基質として酵素を反応させ、 基質の減少量を算出することにより測定すること ができる。
上述したように、 回収した菌体、 特に菌体表層または培養上清液から抽出精製 された本発明の中性メタ口プロテア一ゼは、 次に、 気相プロテインシークェンサ —にて N末端のアミノ酸配列を解析し、 部分アミノ酸配列を決定することができ る。さらに、単離精製した中性メタ口プロテア一ゼの酵素化学的性質(至適 pH、 p H安定性、 至適温度、 温度安定性、 阻害剤の影響等) を調べることができる。
本発明の一実施態様において、 ストレブトバ一チシリゥム ·モバラエンスの菌 体表層から SVP35と命名した中性メ夕口プロテァ一ゼが、 培養上清から SVP70と命 名した中性メ夕口プロテア一ゼが得られる。
本発明の一実施態様において、 本発明の中性メ夕口プロテアーゼは以下の性質 を有する中性メ夕ロプロテア一ゼ SVP35である:
1 ) 分子量:約 35, 000 (SDS- PAGEによる測定) 2 )至適1)11 : 6.0〜8.0、 より具体的には 6.5〜7.5、 特に 7.0付近
3 ) pH安定性: pH4〜: 10
4 ) 至適温度:約 45°C
5 )温度安定性:約 50°C以下で安定
6 ) 阻害剤:メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 13 10- フエナンスロリンおよびホスホラミ ドン、 また、 放線菌由来サチライシン阻害夕 ンパク質 (SSI) にて強い阻害作用を受ける。
また、 本発明の別の実施態様において、 本発明の中性メタ口プロテア一ゼは以 下の性質を有する中性メタ口プロテア一ゼ SVP70である:
1 ) 分子量:約 71,000 (SDS-PAGEによる測定)
2 )至適 :6.0〜8.0の範囲、 より具体的には 6.5〜7.5、 特に 7.0付近
3 ) pH安定性: pH5〜10
4 ) 至適温度: 50°C〜55°Cの範囲、 特に 55°C付近
5 ) 阻害剤:メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 1, 10 - フエナンスロリンおよびホスホラミドン、 SH-遛元剤であるジチオスレィトール、 また、放線菌由来サチライシン阻害タンパク質(SSI)にて強い阻害作用を受ける。
SVP35及び SVP70は、 いずれもプロ MTGに作用させた場合、 MTGのプロ構造部の選 択的切断活性が高い。 すなわち、 いずれの酵素もプロ MTGを活性型の MTGに効率よ ' ぐ変換させるが、生成した活性型 MTG本体を分解する活性は低いという特徴がある ので、 どちらもプロ MTGを原料として活性型 MTGを製造するのに好適な酵素である。 一方これら新規な 2種の中性メ夕口プロテア一ゼの N末端ァミノ酸配列は、 SVP35 については配列表配列番号 1に、 SVP70については配列表配列番号 2に示してあり、 両者には相同性がある。従って、これらプロテア一ゼと N末端アミノ酸配列に相同 性を有するものを検索したところ、 ストレブトマイセス ·グリセウス由来のメタ 口プロテア一ゼ SGMPl J. Biochem. llO卷、 339〜344ページ、 1991年)、並びに、ス トレプトマイセス ·セリカラ一由来の 3種のメタ口プロテアーゼ(GenBank/EMBL/ DDBJ CAB76000, 同 CAB7600 1、 同 CAB69762)等が見出された。 これらのプロテア ーゼも、 SVP35及び SVP70と同様に、プロ MTGのプロ構造部の選択的切断に使用する ことができ、 プロ MTGを原料として活性型 MTGを製造するために用いることができ る。
次に、組み換え MA技術によって本発明の中性メ夕口プロテアーゼを製造する方 法について説明する。
組み換え DNA技術を利用して酵素、生理活性物質等の有用夕ンパク質を製造する 例は数多く知られている。組み換え DNA技術を用いることの利点は、天然に微量に 存在する有用タンパク質を大量生産できることである。
組み換え DNA技術を利用して本発明の中性メ夕口プロテア一ゼを製造するため には、 まず、 プロモ一夕一、 適切なシグナルペプチドをコードする配列および本 発明の中性メ夕口プロテァ一ゼをコードする核酸断片、 およびコリネ型細菌中で 中性メタ口プロテアーゼ遺伝子を発現させるために必要な制御配列 (オペレータ —やターミネータ一等) 、 をそれらが機能し得るように適切な位置に有する遺伝 子構築物を作製する。 本発明の中性メタ口プロテア一ゼは、 N末端にプロ構造部 を有していてもよい。 この構築物作製のために使用できるベクターは特に制限さ れず、 宿主微生物、 好ましくはコリネ型細菌中で機能し得るものであればよく、 例えば、 プラスミドのように染色体外で自立増殖するものであっても細菌染色体 に組み込まれるものであってもよい。 宿主としてコリネ型細菌を使用する場合、 コリネ型細菌由来のプラスミドはベクターとして特に好ましい。 これらには、 例 えば PHM1519 (Agric. Biol. Chemリ 48, 2901-2903(1984)) 、 pAM330 (Agric. B iol. Chem. , 48, 2901- 2903(1984))、およびこれらを改良した薬剤耐性遺伝子を 有するプラスミドが含まれる o
本発明において宿主菌として使用できるコリネ型細菌としては、 L-グル夕ミン 酸生産菌に代表されるブレビバクテリウム 'サヅカロリテイクム ATCC14066、プレ ビバクテリウム ·インマリオフィルム ATCC14068、 ブレビバクテリウム ·ラクトフ アーメン夕厶 (コリネバクテリゥム 'グルタミカム) ATCC13869、 ブレビパクテリ ゥム ·口ゼゥム ATCC13825、プレビパクテリゥム。フラバム(コリネバクテリゥム。 グル夕ミカム) ATCC14067、 コリネバクテリウム ·ァセトァシドフィルム ATCC138 70、 コリネバクテリゥム ·ダル夕ミカム ATCC13032、 コリネバクテリウム ·リリウ ム (コリネパクテリゥム ·グル夕ミカム) ATCC15990、 プレビバクテリウム 'アン モニァゲネス (コリネバクテリゥム *アンモニアゲネス) ATCC6871等の野生株ま たはその変異株より誘導される変異株である。
本発明において使用される変異株としては、 例えばグル夕ミン酸生産性を失つ た変異株、 更にはリジン等のアミノ酸生産変異株、 イノシン等の核酸のような他 の物質を生産する変異株も含まれる。 このような変異株は、 紫外線照射または N- メチノレ- N,-ニトロソグァ二ジン等の化学変異剤による処理を行なった後、 タンパ ク質の分泌生産能が高まった株を選抜することにより得ることができる。
とりわけ、 野生株コリネバクテリゥム 'グル夕ミカム ( glutamicum) ATCC1 3869よりストレブトマイシン(Sm)耐性変異株として分離したコリネバクテリゥ ム -グル夕ミ力ム AJ12036(FE BP-734) (昭和 59年 3月 2 6日原寄託) (現、 独 立行政法人 産業技術総合研究所 特許生物寄託セン夕一、 日本国つくば巿東 1 - 1 - 1 中央第 6、 郵便番号 305- 8566) はその親株 (野生株) に比べ、 タンパ ク質の分泌に関わる機能遺伝子に変異が存在することが予測され、 異種タンパク 質の分泌生産能が至適培養条件下での蓄積量としておよそ 2〜 3倍と極めて高く、 宿主菌として好適である(W0 02/08169 照)。 さらに、 このような菌株から細胞 表層タンパク質を生産しないように改変した菌株を宿主として使用すれば、 培地 中に分泌された異種タンパク質の精製が容易となり、 特に好ましい。 そのような 改変は、 突然変異または遺伝子組換え法により染色体上の細胞表層タンパク質ま たはその発現調節領域に変異を導入することにより行うことができる。
コリネ型細菌由来のプロモ一夕一としては、 例えば、 細胞表層タンパク質の PS
1、 PS2、 SlpAの遺伝子のプロモーター、 各種アミノ酸生合成系、 例えばグルタミ ン酸合成酵素遺伝子、 リジン生合成系のァスパルトキナーゼ遺伝子のプロモー夕 一等が挙げられる。
本発明で使用するシグナルぺプチドは、 宿主であるコリネ型細菌の分泌性夕ン パク質のシグナルぺプチドであり、 好ましくは、 コリネ型細菌の細胞表層夕ンパ ク質のシグナルぺプチドである。 コリネ型細菌の細胞表層タンパク質としては、 コリネバクテリゥム ·グル夕ミカム (C.glutamicum) に由来する PS1及び PS2 (特 表平 6-502548)、及びコリネバクテリゥム ·アンモニアゲネス( ammoniagenes) に由来する SlpA (特開平 10-108675) が挙げられる。
組み換え DNA技術を利用してプロ MTGのプロ構造部の選択的切断活性が強い中性 メタ口プロテアーゼを製造するためには、 当該中性メ夕口プロテァーゼをコード する D NAが必要である。
本発明の一実施態様において、組み換え DNA技術を利用して中性メ夕口プロテア —ゼ SVP35が製造される。 SVP35をコードする MAは、下記のようにして取得するこ とができる。
はじめに、精製された SVP35のァミノ酸配列を決定する。ェドマン法(Edman,P., Acta Chem. Scand. 4, 111 ( 1950)) を用いてアミノ酸配列を決定することがで きる。 また島津製作所社製等の気相プロティンシークェンサ一を用いてアミノ酸 配列を決定することができる。
本発明の中性メ夕口プロテア一ゼ SVP35について、 N末端から 20残基のアミノ酸 配列を決定したところ、 配列表配列番号 1に示される配列が明らかとなった。 この配列情報を利用して適切な PCR用プライマ一を合成し、本発明の中性メ夕口 プレテァーゼを得るためのプローブを作製することができる。例えば、 N末端ァミ ノ酸配列の相同性検索結果から相同性を有することが予想される放線菌由来のプ 口テア一ゼ遺伝子、 例えば、 ストレブトマイセス 'セリカラー由来のメタ口プロ テア一ゼ(GenBank/E MB L/DDBJ CAB7600 1 )遺伝子、 を斉藤、 三浦の方法 [Bi ochem. Biophys. Acta, 72, 619(1963)]により調製した放線菌 DMを錶型として P CRを行い、 このプロテアーゼをコードする遺伝子の断片を増幅することができる。 得られた増幅断片はプローブとして使用することができる。
次に斉藤、 三浦の方法により調製した放線菌由来の DNA、 例えば Streptovertic illium mobaraense IF013819の染色体 DMを、適当な種々の制限酵素、例えば 6塩 基配列を認識する種々の制限酵素で消化する。 上記 PCRによって得られた PCR産物 の32 P-ラペル化物をプロ一プとして、 Molecular Cloning 2nd edition [J. Sambr ook E. F. Fritsch and T. Maniatis, Cold Spring Harbor Laboratory Press, p9.31(1989)]に記載されたサザンプロヅトハイプリダイゼ一シヨン法等の当業者 に知られた方法により、消化した放線菌染色体 DNAを解析することができる。例え ばサザンプロットにより、 用いたプローブと高い相同性を有することが確認され た断片を回収し、 適切なベクタ一中にクローニングすることにより、 本発明の中 性メ夕口プロテァ一ゼをコードする核酸分子またはその一部をクロ一ニングする ことができる。 このような遺伝子クローニングに必要な技法は当業者にはよく知 られたものである(例えば、 Molecular Cloning 2nd edition[J. Sambrook E. F. Fritsch and T. Maniatis, Cold Spring Harbor Laboratory Press, pi.90(198 9)]参照) 。
本発明の一実施態様においては、 Streptomyces coelicolor A3(2)の染色体 DNA を銹型として PCRを行い、 プローブが作製される。 更に、 Streptoverticillium m obaraense IF013819染色体 DNAの Sph l消化物中に、 32Pラベルしたプローブとハイ プリダイズする約 8 k bの単一バンドが検出される。 そこで、 先の方法により調 製した Streptoverticillium mobaraense IF013819の染色体 DNAを Sph lで消化し、 約 8 k bの断片をァガローズゲル電気泳動により回収し、 この回収断片を pUC18 の Sph I部位に挿入した後、 Escherichia coli JM109のコンビテントセルに導入し、 ライブラリ一が作製される。作製したライブラリーに対して、 合成オリゴヌクレ ォチドをプロ一プとして、 Molecular Cloning 2nd edition (既出)記載のコロニー ハイプリダイゼーシヨン法に従ってスクリーニングを行い、 SVP35の遺伝子断片が クロ一ン化されたプラスミドを保持する菌; j朱を選択することにより目的のクロー ンが得られる。 この菌株より回収したプラスミドは pVSVlと名付けられている。 p VSV1にクローン化されている断片のヌクレオチド配列を解析し、 ァミノ酸の一次 配列を推定することにより、先に決定した N末端部分ァミノ酸配列をコードしてい ることが確認される。これによつて、得られた遺伝子が SVP35をコードする遺伝子 であることが確認される。
次に、得られたメタ口プロテア一ゼをコ一ドする DNAを含む遺伝子構築物を、使 用する宿主の性質に応じて適切なベクターと結合させて、 本発明の中性メ夕ロブ 口テァーゼを発現させるための組換え核酸分子を構築することができる。 この組 換え核酸分子で宿主であるコリネ型細菌細胞を形質転換する。形質転換された細 胞を適切な培地中で培養し、 培地中及び/又は細胞中に分泌又は蓄積された本発 明の中性メ夕口プロテア一ゼを回収することができる。
次に、 中性メタ口プロテア一ゼを用いてプロ MTGから活性型 MTGを製造する方法 について述べる。
活性型 MTG製造に用いる中性メ夕口プロテア一ゼは、中性メ夕口プロテァーゼ生 産菌の培養液から調製される中性メタ口プロテア一ゼ含有画分としてプロ MTGに 作用させることができる。 又、 さらに高度に精製された比活性の高い中性メ夕ロ プロテアーゼとして用いることもできる。さらに、後述するように、 プロ MTGのプ 口構造部の選択的切断活性が強い中性メ夕口プロテアーゼをコ一ドする DNAとべ クタ一とを連結して得られる組換え核酸分子によつて形質転換された細胞を培養 することによって得られる中性メ夕ロプロテアーゼを用いることもできる。
MTG製造に用いるプロ MTGは、 プロ MTG生産菌の培養液から調製されるプロ MTG含 有画分であってもよい。 また、 さらに高度に精製されたプロ MTGを用いてもよい。 反応条件は、 プロ MTGに対し中性メ夕口プロテア一ゼの添加量を質量にして 1/10 から 1/500とし、反応温度 15°Cから 50°C、 pHを pH5.0から 9の適当な範囲に調整して 行うことができる。
また、前述したように構築した本発明の中性メタ口プロテア一ゼをコードする D Mを含む遺伝子構築物と、プロ MTGをコードする遺伝子構築物を有する微生物、特 に、コリネ型細菌に導入し、プロ MTGと本発明のメタ口プロテア一ゼをー菌体によ つて産生させ、 上記条件下でプロ MTGを成熟 MTGに変換することもできる。 プロ MT Gをコリネ型細菌で効率よく生産させるためのより詳細な方法、その方法に使用す る遺伝子構築物、そのような遺伝子構築物が導入されたコリネ型細菌は、例えば W 0 01/23591に明らかにされている。より具体的には、例えば、コリネ型細菌由来 のシグナルべプチド領域、 特に細胞表層夕ンパク質のシグナルべプチド領域をコ ―ドする配列の下流にプロ MTGをコ一ドする配列を適切なプロモ一夕一の下流に 結合して得られる遺伝子構築物をコリネ型細菌に導入して、プロ MTGタンパク質を 菌体外に効率よく分泌し得るコリネ型細菌を得ることができる。 この目的に使用 し得るシグナルぺプチド、 プロ乇一夕一および宿主は本発明のメタ口プロテア一 ゼを発現させるために適した上述のシグナルぺプチド、 プロモー夕一および宿主 から選ぶことができる。 また、 同一菌体内で共存可能なベクタ一の組み合わせも 当業者にはよく知られている。従って、プロ MTGを産生するコリネ型細菌に上述し た本発明の中性メ夕口プロテア一ゼをコ一ドする DNAを含む適切な遺伝子発現構 築物を導入する、 あるいは逆に、 本発明の中性メ夕ロプロテア一ゼを産生するコ リネ型細菌にプロ MTGをコ一ドする適切な遣伝子発現構築物を導入することによ り、同一菌体内にプロ MTGおよび本発明の中性メ夕口プロテァ一ゼを発現させ得る 遺伝子構築物を共存させ、 その菌を培養し、 上述したような、 本発明の中性メタ 口プロテア一ゼが活性を有するような適切な条件に置くことによつて成熟 MTGを 得ることができる。
本発明の方法により製造されたトランスグル夕ミナーゼは、 当業者によく知ら れた方法に従って反応液から分離精製することができる。 例えば、 菌体を遠心分 離等により除去した後、 塩析、 エタノール沈殿、 限外濾過、 ゲル濾過クロマトグ ラフィ一、 ィオン交換力ラムクロマトグラフィー、 ァフィニーティ一クロマトグ ラフィー、 中高圧液体ク口マトグラフィ一、 逆相クロマトグラフィ一、 疎水クロ マトグラフィ一等の既知の適切な方法、 またはこれらを組み合わせることにより 分離精製することができる。 次に、 本発明を実施例により詳しく説明する。 尚、 本発明は実施例の記載に限 定されない。 実施例
実施例 1 .ストレブトバ一チシリウム 'モバラエンス ΙΪΌ13819が生産する中性メ タロプロテア一ゼ
( 1 )ストレプトバ一チシリウム 'モバラエンス IF013819の生産する中性メ夕口 プロテアーゼ(SVP70)の精製
ISP2液体培地(Yeast Extract 、 Malt Extract 10g、 Glucose 4g、水で 1 Lに して PH7.3に調整) を 5 L坂口フラスコに 800mL張り込み、 Streptoverticilliu m mobaraense IF013819株をプレートより植菌して 30°Cにて 9日間、 120rpmで振 盪培養した。 培養液を遠心分離し、 培養上清を回収した。 デプスフィルター (ポ ァサイズ 3 /m、 ザルトリウス社製) を用いて濾過後、 ポアサイズ 10,000Daのザ ルトコンスライスメンブラン (ザルトリウス社製) を用いて濃縮を行った。 濃縮 液を 20mM トリス-塩酸緩衝液 /5mM塩ィ匕カルシウム (pH7.5 )で 10倍に希釈し、 FPL C (Amarsham Pharmacia社製)を用いて、同緩衝液で平衡ィ匕した DEAE-セファロー ス FF (2.6 ø X 10cm, Amarsham Pharmacia社製) のカラムに通し、 塩化ナトリ ゥム 0-0.5Mの直線濃度勾配で溶出した。活性成分を含有する画分を回収し、 1.5 M硫酸アンモニゥム I 20 MES緩衝液 /5 塩化カルシウム(pH6.0)で平衡化し たフヱニルセファロース HP (1.6 ^ x lOcm, Amarsham Pharmacia社製)のカラム に通し、 硫酸アンモニゥム 1.5-0 Mの直線濃度勾配で溶出して活性画分を回収し た。得られた活性画分を 20 M MES緩衝液 /5mM塩化カルシウム(pH6.0)に対して一 晚、 4 °Cで透析して、 精製酵素液を得た。
各段階での酵素活性の測定は以下のように行った。
ぺプチド GPSFRAPDS (ぺプチド研究所製) (配列番号 1 1 ) を含有する 20mMリ ン酸ナトリゥム緩衝液に酵素溶液を加え、 総液量 170〃 1で 30°C、 10分間反応さ せた後、 95°Cで 5分間加熱して反応を停止させた。 このうち 80〃 1を以下の条件 で HPLC分析し、 基質の減少量に基づいて活性を算出した。 装置:日立株式会社製 HPLC L-6300 システム
カラム: YMC- PACK ODS 120A 4.6 x 150腿 (ヮイエムシィ)
溶離液:(A) 0. 1% TFA (B)80% ァセトニトリル / 0. 1¾ TFA
溶出条件:ァセトニトリル 12-16%直線濃度勾配 (15分間)
流速: l . Oml/min.
検出波長: 220皿
この条件において、 ペプチド GPSFRAPDSは、 リテンションタイム 13〜; 14分に、 分解物 FRAPDSは リテンションタイム 7.5〜8.5分に溶出した。
酵素活性の単位として 1分間に 1腿 olのプロ MTG分解を触媒する酵素量を 1U と疋我した。 ( 2 )ストレプトバ一チシリウム'モバラエンス ΙΙΌ13819の生産する中性メ夕口 プロテァ一ゼ ( SVP35 )の精製
ISP2液体培地を 5 L坂口フラスコに 800 L張り込み、 Streptoverticillium mo baraense IF013819株をプレー卜より植菌して 30°Cにて 48時間、 120rpmで振盪 培養した。培養液を遠心分離し、 培養上清を除いて菌体を回収した。菌体を 20mM トリス-塩酸緩衝液 I 30mM塩化ナトリウム (PH7.5) に懸濁し、 氷上で 4時間振 盪後、 遠心分離により上清を回収した。 得られた上清をデプスフィルタ一 (ポア サイズ 0.22〃m、 ザルトリウス社製) で濾過滅菌後、 FPLC (Amarsham Pharmacia 社製) を用いて、 5mM塩ィ匕カルシウム及び O. Olm 塩化亜鉛を含む 20]DMトリス - 塩酸緩衝液 (PH7.5) で平衡ィ匕した CM- Sepharose FF (Amarsham Pharmacia社製) のカラム (1.60 X 10cm) に通し、 同緩衝液中、 塩化ナトリウム 0 - 0.5 Mの直 線濃度勾配で溶出した。活性成分を含有する画分を回収し、 さらに 1.5M 硫酸ァ ンモニゥム、 5mM塩ィ匕カルシウム及び O. OlmM塩ィ匕亜鉛を含む 20mM トリス-塩酸 緩衝液 (PH7.5) で平衡化した Phenyl Sepharose HPカラム (lmL、 Amarsham Ph annacia社製)に通し、硫酸アンモニゥム 1.5 - 0Mの直線濃度勾配で溶出した。 活性画分を回収し、 PD- 10 (Amersham Pharmacia)カラムを用いて、 5mM塩化カル シゥム及び O. OlmM塩化亜鉛を含む 20mM トリス-塩酸緩衝液(pH7.5)で脱塩して、 部分精製酵素液を得た。
各段階での酵素活性は (1 ) と同様に、 ペプチド GPSFEAPDSを基質として用い て測定した。
( 3 )ストレブトバ一チシリウム'モバラエンス IF013819の生産する中性メ夕口 プロテア一ゼ( SVP35 )の特性評価
i )基質特異性 5mM塩ィ匕カルシウム及び O. Olm 塩化亜鉛を含む 20m トリス-塩酸緩衝液 (pH 7.5)にて lmg/mlに調製したィンスリン B溶液およびプロ MTG溶液を基質とし、 酵素溶液を添加して 30°C、 2時間反応させた後、以下の条件の HPLCにてぺプチド 断片を分取した。 装置: L-7100 I 7200 / 7405 / D-7600 (日立)
カラム : VYDAC C18 4.6 mI .D. X250uun (VYDAC)
溶離液: (A) 0.1% TFA (B)80¾ ァセトニトリル / 0.1% TFA
溶出条件 ァセトニトリル 4 -44%直線濃度勾配
0.5ml I mm
検出波長 UV 220nm 得られたペプチド断片のアミノ酸配列を PPSQ-10 (島津製作所) にて分析し、 S VP35による切断点の配列を解析した。 その結果、 特に Phe、 しばしば Leu、 時々 T yr、 Trp、 Ile、 Valの前(N末端側) にて切断されており、 SVPは切断部位の P' 1 位に位置する芳香族アミノ酸および巨大側鎖の疎水アミノ酸を認識していること が明らかとなった。
ii) 至適 pH
pH3から 10までの 0.15M GTA緩衝液 (3,3-ジメチルグル夕ル酸、 卜リス(ヒド 口キシメチル)ァミノメタン、 2-ァミノ- 2-メチル -1, 3-プロパンジオールによる緩 衝液) 中で、 Gly-Pro-Ser-Phe-Arg'- Ala- Pro-Asp- Serを基質として 30°Cにて 10 分間 SVP35を作用させた。 その結果、 SVP35の至適 pHは 7.0付近であり、 pH7.0 の活性を 100%とすると、 pH6.0〜8.0の範囲で 70%以上、 pH6.5〜7.5の範囲で 8 0%以上の活性を有することが明らかになった (図 1 )。
iii) pH安定性 pH3から 10までの 0. 15M GTA緩衝液に SVP35精製酵素溶液 10 / 1に各 pHの緩 衝液を 40 l加え、 4 °Cで一晩放置した後、 0.1Mリン酸ナトリゥム緩衝液 (pH7. 0) で液量を 400〃 1に合わせ、 pHを 7. 0に調整した。 この酵素溶液に Gly-Pro-S er- Phe- Arg- Ala- Pro- Asp- Serを基質として添加し、 pH7.0s 30°Cで 10分間反応さ せた。その結果、 SVP35は pH4〜; 10の範囲で安定(pH4.0における活性を 100%と すると、 pH4〜10において 90%以上の活性を有する)であることが示された(図 2 ) o
iv) 至適温度
5mM塩化カルシウム及び O. OlmM塩化亜鉛を含む 20mM トリス-塩酸緩衝液 (pH 7.5)で希釈した精製酵素溶液に Gly- Pro-Ser-Phe- Arg-Ala-Pro-Asp-Serを加えて pH7.0 5°Cから 65°Cにて 10分間反応させた。 その結果、 SVP35の至適温度は約 4 5°Cであり、 40°C〜50°Cの範囲で高い活性を有する (45°Cにおける活性の 80%以 上の活性を有する) ことが示された (図 3 ) 。
v) 温度安定性
精製酵素液 10〃1に 5m 塩ィ匕カルシウム及び O. OlmM塩化亜鉛を含む 20mM ト リス-塩酸緩衝液 (PH7.5)を 40 / 1加え、 4°Cまたは 30°Cから 70°Cにて 15分間処 理した後、 氷冷し、 20m リン酸ナトリウム緩衝液(PH7.0) を 250〃1添加した。 この酵素溶液に Gly-Pro- Ser-Phe- Arg- Ala- Pro-Asp-Serを基質として添加し、 3 0°Cで 5分間反応させた。 4°Cで処理した場合の活性を 100%として各温度における 残存活性を算出した。その結果、 SVP35は 50°Cでは 80%の活性を保っているが、 6 0°Cで失活することが示された (図 4 ) 。 vi) 阻害剤
各種化合物を第 5図に示した濃度で含有する 20慮 リン酸ナトリゥム緩衝液(p H7.0) に精製酵素溶液を加え、 室温で 60分間放置した。その後基質として Gly-P ro-Ser-Phe-Arg-Ala-Pro-Asp-Serを加えて 30°Cで 10分間反応させた。化合物無 添加の場合の Gly-Pro-Ser-Phe-Arg- Ala-Pro-Asp- Ser切断活性を 100%として、各 種化合物を添加した場合の相対活性を算出した。 その結果、 メタ口プロテア一ゼ 阻害剤であるエチレンジァミン四酢酸、 13 10-フエナンスロリンおよびホスホラミ ドン、 また、放線菌由来サチライシン阻害タンパク質 ( )によって SVP35は強 い阻害作用を受けた (図 5 ) 。
( 4 ) ストレプトパ一チシリウム ·モバラエンス IF013819の生産する中性メ夕 口プロテア一ゼ( SVP70 )の特性評価
i ) 基質特異性
( 3 ) - i ) と同様にして基質特異性を調べた。
その結果、 基質は特に Phe、 しばしば Leu、 時々 Tyr、 Trp、 lie, Valの前 (N 末端側) にて切断されており、 SVP70は切断部位の P' 1位に位置する芳香族アミ ノ酸および巨大側鎖の疎水ァミノ酸を認識して L、ることが明らかとなった。
ii) 至適 PH
( 3 ) - ii) と同様にして SVP70の至適 pHを調べた。その結果、 SVP70の至適 p Hは 7.0付近であり、 pH7.0における活性を 100%として pH6.0〜8.0においてで 9 0%以上、 pH6.5〜7.5の範囲で 95%以上の活性を有することがことが明らかにな つた (図 1 ) 。
iii) PH安定性
( 3 ) -iii) と同様にして pH安定性を調べた。 その結果、 SVP70は pH5〜; 10の 範囲で安定であるが、 SVP35に比べてややアル力リ側で安定性が弱いことが示さ れた (図 2 ) 。 具体的には、 pH5における活性を 100%とすると、 pH5〜7の範囲 で 90%以上の活性を有し、 pH 7〜10の範囲でも約 80%以上の活性を有すること が示された。 iv) 至適温度
( 3 ) -iv) と同様にして SVP70の至適温度を調べた。 その結果、 SVP70の至適 温度は約 50〜55°Cの範囲、 特に 55°C付近にあることが示された (図 3 ) 。
V) 阻害剤
( 3 ) -V) と同様にして、 種々の化合物の SVP70に対する阻害活性を調べた。 その結果、 SVP70は、 メタ口プロテア一ゼ阻害剤であるエチレンジアミン四酢 酸、 1, 10-フエナンスロリンおよびホスホラミドン、還元剤ジチオスレィトール、 尿素および放線菌由来サチライシン阻害タンパク質(SSI)によって強い阻害作用 を受けた (図 5 )。
( 5 ) SVP35, SVP70の N末端ァミノ酸配列解析
( 1 )、 ( 2 )で得た SVP35、 SVP70の精製酵素をメンプランカートリツジ (パ —キンエルマ一社製)を用いてポリビニリデン-ジフルオリド(PVDF)膜に転写し、 気相プロティンシークェンサ一 PPSQ-10 (島津製作所製)にて N末端アミノ酸配列 を角军析した。 SVP35のアミノ酸配列を配列表配列番号 1に、 SVP70のアミノ酸配列 を配列表配列番号 2に示した。 これらには相同性が認められる。
そこで、 これらプロテァ一ゼと N末端アミノ酸配列に相同性を有するものを放 線菌から検索したところ、 ストレプトマイセス■グリセウス (Streptomyces gri seus) 由来のメタ口プロテア一ゼ SGMPlKJ. Biochem. llO卷、 339〜344ページ、 1 991年)、 および、 ストレプトマイセス ·セリカラー (Streptomyces coelicolor) 由来の 3種のメ夕口プロテァ一ゼ(GenBankZEMBL/DDBJ CAB76000、同 CAB7600 1、 同 CAB69762)等が見出された。 これらのプロテア一ゼも、 プロ MTGのプロ構造部 を選択的に切断するために使用することができ、従って、 本発明による活性型 MT 6の製造に用いることができる。 ( 6 ) SVP35遺伝子のクローン化とコリネ型細菌での分泌発現
斉藤、三浦の方法 [Biochem. Biophys. Acta, 72, 619(1963)]により Streptomy ces coelicolor A3(2)の染色体 DMを調製した。 N末端アミノ酸配列に相同性を 有するストレプトマイセス 'セリカラ一由来のメタ口プロテア一ゼ(GenBankZE MB L/DDBJ CAB7600 1 )遺伝子の配列を参考にして、配列番号 3と配列番号 4に 示したプライマ一を合成した。前述の、 Streptoiayces coelicolor A3(2)の染色体 DNAを鎵型として、 配列番号 3と配列番号 4に示したプライマーを用いて PCRを 行い、 メタ口プロテア一ゼ遺伝子中の遺伝子領域を増幅した。 PCR反応は Pyrobe st DNA polymerase (宝酒造製)を用い、反応条件は業者の推奨するプロトコルに 従った。 この PCR産物の 32P-ラベル化物をプローブとして、 斉藤、 三浦の方法に より調製した Streptovertici Ilium mobaraense IF013819の染色体 D NAを 6塩 基配列を認識する種々の制限酵素で消化した試料を用いて、 Molecular Cloning 2nd edition[J. Sambrook E. F. Fritsch and T. Maniatis, Cold Spring Harbo r Laboratory Press, p9.31(1989)]記載のサザンブロヅトハイブリダィゼ一ショ ン法により解析したところ、 Sphl切断により約 8 k bの単一バンドが検出された。 そこで、 先の方法により調製した Streptoverticillium mobaraense IF013819の 染色体 DNAを Sphlで消化し、 約 8 k bの断片を EASYTRAP Ver.2 (宝酒造社製) を用いてァガロースゲル電気泳動により回収した。回収断片を PUC18の Sphl部位 に揷入した後、 大腸菌 JM109 (宝酒造社製) のコンビテントセルに導入し、 ライ ブラリーを作製した。作製したライブラリ一に対して、 合成オリゴヌクレオチド をプローブとして、 Molecular Cloning 2nd edition[J. Sambrook E. F. Fritsc h and T. Maniatis, Cold Spring Harbor Laboratory Press, pi.90(1989)]記載 のコロニーハイプリダイゼーシヨン法により、 SVP35の遺伝子断片がクローン化 されたブラスミドを保持する菌株をスクリ一二ングした。
得られた菌株より回収したプラスミドを pVSVlと名付けた。 pVSVlにクローン 化されている断片のヌクレオチド配列を決定した。 このク口一ン化断片のヌクレ ォチド配列を配列番号 5に示した。 この遺伝子にコードされるアミノ酸の一次配 列を推定したところ、 先に決定した N末端部分アミノ酸配列を含む、 SVP35のシ グナル配列およびプロ構造と想定される領域を含む全アミノ酸の一次配列を決定 した。 SVP35の全アミノ酸配列を配列番号 6に示した。 配列番号 6に記載のアミ ノ酸配列の;!〜 3 6番アミノ酸までがシグナル配列であり、 アミノ酸番号 3 7〜 2 1 6がプロ構造部であり、 アミノ酸 2 1 7〜 5 3 7番が成熟型 SW35と推定さ 配列番号 5の配列を参考にして、 pVSVlを錶型として、 配列番号 7と配列番号 8に示したプライマ一を合成し、 SVP35のプロ構造部分および成熟 SVP35を含む 遺伝子領域を PCR法にて増幅した。 PCR反応は Pyrobest DNA polymerase (宝酒造 製) を用い、 反応条件は業者の推奨するプロトコルに従った。
次に、 W0 01/23591に記載の pPKSPTGlを鎵型として、 配列番号 9と配列番号 1 0のォリゴヌクレオチドの組み合わせにより、 C. glutamicumの細胞表層夕ンパク 質である PS2遺伝子のプロモーター領域を含む 5 5 -上流域と ammoniagenesの 細胞表層夕ンパク質 SlpAのシグナル配列とを含む領域を PCR法にて増幅した。配 列番号 10に示したプライマ一はプロ構造付き SVP35の N末端側のアミノ酸をコ一 ドする配列を含んでいる。 - 次に、 それぞれ増幅させた PCR反応液各 1〃1を混ぜて錡型とし、 配列表配列 番号 8と配列表配列番号 9を用いてクロスオーバ一 PCRを行い、 PS2遺伝子のプロ モーター領域を含む 5 ' -上流域と C. ammoniagenesの細胞表層夕ンパク質 SlpA のシグナル配列に接続された異種融合プレブ口 SVP35遺伝子断片を増幅させた。 ァガロースゲル電気泳動により、 約 2.3kbの増幅断片を検出した。 P C R産物 をァガロースゲル電気泳動に供し、約 2.3k bの断片を回収し、 DNA Blunting Ki t (宝酒造製) を用い末端を平滑化後、 特開平 9-070291記載の pCV7の Smal部位 に挿入することによって、 pVSVlを得た。 定法に従って、 挿入断片の塩基配列の 決定を行い、 予想通りの融合遺伝子が構築されていることを確認した。
構築したプラスミド pVSVlを用いて、 C.glutamicumATTC13869を形質転換し、 5mg のクロラムフエニコ一ルを含む CM2S (酵母エキストラクト 10g、 トリプト ン 10g、 シュ一クロース 5g'、 NaCl 5g、 寒天 15g、 水で 1 Lにする) 寒天培地で 生育した菌株を選択した。次に、選択した pVSVlを有する glutamicumATTC1386 9を、 5mg/ lのクロラムフエニコールを含む MMTG液体培地 (ダルコ—ス 60g、 硫 酸マグネシゥム七水和物 0.4g、硫酸アンモニゥム 30g、 リン酸ニ水素カリウム lg、 硫酸鉄七水和物 0.01g、 硫酸マンガン五水和物 0.01g、 チアミン塩酸塩 450 /g、 ピオチン 450〃g、 DL-メチォニン 0.15g、 炭酸カルシウム 50g、 水で 1 Lにして p H7.5に調整)で 30°C;、 3 0時間培養した。この培養液 1 m 1を遠心分離により培 養上清と菌体に分離した。培養上清には、 SVP35の活性が検出され、 Lae雇 li の 方法による SDS-PAGE (Nature, 227, 680-685 (1970) ) 電気泳動の結果、 約 200 mg/Lの SVP35が分泌発現していることが確認された。 実施例 2 .ストレプトバ一チシリウム 'モバラエンス IF013819の生産するトラン スグル夕ミナ一ゼ前駆体 (プロ MTG) の活性型への変換
Corynebacterim glutamicumにて発現させたプロ MTG (lmg/ml)を精製した基質 として、 Streptoverticillium mobaraense由来中性プロテア一ゼ (SVP35,SVP70) または放線菌 Streptomyces griseus由来中性メタ口プロテア一ゼ SGMP IIと基 質:酵素 =200: 1の割合で混合し、 30°Cで反応させた。 経時的に 0 , 1 , 2, 4, 7 , 2 0時間後に反応混合物を分取し、 一部を SDS- PAGEサンプルバッファ一と混 合して 95°C、 3分間加熱した後 Lae腿 li の方法による SDS-PAGE (Nature, 227, 68 0-685 (1970) ) に供した。 その結果を第 6図に示す。第 6図から分かるように、 こ れらのプロテアーゼを反応させるとプロ MTGは成熟型に変換され、長時間反応させ た後も生成した MTGは減少しなかった。また、分取した画分のトランスグル夕ミナ ーゼ (TG) 活性をハイドロキサメート法にて測定したところ、 十分な活性が確認 された。なお、 SGMP I Iは、 ァクチナ一ゼ (科研製薬製) かから文献(J.Biochem. 110卷、 339〜344ページ、 1991年) の方法に従って精製した。
次に、 Streptoverticillium mobaraense由来中性プロテア一ゼ SVP70、 および、 対照としてセリンプロテアーゼ SAM-P45 (放線菌 St.albogriseolus由来)を、酵素 添カロ量を増加させてプロ MTGに添加し、 30°C、 pH7.0にて反応させた。 経時的に 1, 4 , 7 , 2 4時間後に分取し、 TG活性をハイドロキサメート法により測定した(第 7図) 。 また、 TGのタンパク質濃度を逆相 HPLCにて測定した (第 8図) 。 その結 果、 SWは基質に対して 1/500という少量でプロ MTGを効率よく活性型 MTGに変換で きることが示された。 SAM-P45は基質に対して 1/50量でもトランスグル夕ミナーゼ 活性が上がりきらず、活性型への完全な変換はされないことが示された。一方、 S AM - P45を基質に対して 1/10量添加した場合、活性型 MTGへの変換が見られたが、続 いて MTGタンパク量の減少および活性の低下が見られた。 このことは、 SAM-P45に よる成熟 MTGの過分解が起こっていることを示唆する。 本発明により、 放線菌ストレプトバ一チシリウム 'モバラエンスより、 トラン スグル夕ミナ一ゼ前駆体のプロ構造部分を特異的に切断し、 活性化する新規プロ テアーゼ、 およびその遺伝子が提供される。 また、 本発明の新規プロテア一ゼは コリネ型細菌で大量発現させることができるため、 これにより、 微生物由来トラ ンスグルタミナ一ゼを効率よく製造する方法が提供される。
本発明の放線菌由来中性メ夕口プロテア一ゼを活性型 MTG製造に用いる利点は、 プロ MTGのプロ構造部の選択的切断活性が強いとともに、コリネ型細菌でこれら酵 素を発現分泌させることができる点である。
放線菌由来のプロ MTGはコリネ型細菌で効率よく発現させ分泌させ得ることが 分かっているので、 コリネ型細菌にプロ MTdと中性メタ口プロテア一ゼを共発現 および分泌させることより、 ー菌体でのさらに効率的な活性型 MTGの製造が可能 となる。 ここで、 中性メタ口プロテア一ゼはプロ MTGのプロ構造部切断に必要十 分な量を発現させるだけで良い。
1. 特公平 1-50382号公報
2. 特開昭 64-27471号公報
3. 国際公開第 01/23591号パンフレット
4. 特表平 6-502548号公報
5. 特開平 10-108675号公報
6. Eur.J.Biochem. 257卷、 570-576頁、 1998年
7. J. Biochem.110卷、 339〜344頁、 1991年

Claims

請求の範囲
1 . 放線菌由来中性メタ口プロテアーゼをコードする逍伝子を導入した微生物を 培養し、 前記放線菌由来中性メ夕ロプロテア一ゼを生産させ、 微生物由来プロト ランスグル夕ミナーゼのプロ構造部を前記微生物が生産した放線菌由来中性メ夕 口プロテアーゼにより切断することを特徴とする、 微生物由来プロトランスグル 夕ミナーゼから活性型微生物由来トランスグル夕ミナーゼを製造する方法。
2 . 放線菌由来中性メタ口プロテア一ゼをコードする遺伝子を導入した微生物が コリネ型細菌である、 請求項 1に記載の方法。
3 . 放線菌由来中性メタ口プロテア一ゼが以下の性質を有する、 請求項 1記載の 活性型微生物由来トランスグル夕ミナーゼを製造する方法:
1 ) 分子量が約 35,000、
2 )至適 pHが約 7.0、
3 ) pH4〜10において安定であり、
4 ) 至適温度が約 45°C;、
5 ) 約 50°C以下で安定であり、
6 )メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 1, 10-フエナンス 口リンおよびホスホラミドン、 また、放線菌由来サチライシン阻害タンパク質(S SI) にて強い阻害作用を受ける。
4 · 放線菌由来中性メ夕口プロテアーゼが以下の性質を有する請求項 1記載の 活性型微生物由来トランスグル夕ミナ一ゼの製造法。
1 ) 分子量が約 71, 000、
2 ) 至適 pHが約 7.0、
3 ) pH5〜: 10にて安定であり、
4 ) 至適温度が約 55°C 5)メ夕ロプロテア一ゼ阻害剤であるエチレンジアミン四酢酸、 1,10-フエナンス 口リンおよびホスホラミ ドン、 SH-還元剤であるジチオスレィ トール、 また、放線 菌由来サチライシン阻害タンパク質 (SSI) にて強い阻害作用を受ける。
5. 以下の性質を有する放線菌由来中性メ夕口プロテア一ゼ:
1) 分子量が約 35,000、
2)至適画勺7.0、
3) pH4〜10において安定であり、
4) 至適温度が約 45°C、
5) 約 50°C以下で安定であり、
6)メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 1,10-フエナンス 口リンおよびホスホラミ ドン、 また、放線菌由来サチライシン阻害タンパク質(S SI) にて強い阻害作用を受ける。
6. 以下の性質を有する放線菌由来中性メタ口プロテア一ゼ:
1) 分子量が約 71,000、
2) 至適 pHが約 7.0、
3) pH5〜; 10にて安定であり、
4) 至適温度が約 55°C
5)メタ口プロテア一ゼ阻害剤であるエチレンジァミン四酢酸、 1,10-フエナンス 口リンおよびホスホラミ ドン、 SH-還元剤であるジチオスレィ トール、 また、放線 菌由来サチライシン阻害タンパク質 (SSI) にて強い阻害作用を受ける。
7. 請求項 5又は 6に記載の放線菌由来中性メ夕口プロテアーゼをコ一ドする核 酸分子。
8. 請求項 7に記載の核酸分子が導入されたコリネ型細菌を培養し、 コリネ型細 菌の菌体外に分泌された放線菌由来中性メ夕口プロテア一ゼを回収することを特 徴とする、 放線菌由来中性メ夕口プロテアーゼを製造する方法。
PCT/JP2004/002923 2003-03-07 2004-03-05 微生物トランスグルタミナーゼの製造法 WO2004078973A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE602004031198T DE602004031198D1 (de) 2003-03-07 2004-03-05 Verfahren zur herstellung mikrobieller transglutaminase
CA2518049A CA2518049C (en) 2003-03-07 2004-03-05 Method of producing microbial transglutaminase
JP2005503155A JP4482938B2 (ja) 2003-03-07 2004-03-05 微生物トランスグルタミナーゼの製造法
EP04717856A EP1602722B1 (en) 2003-03-07 2004-03-05 Process for producing microbial transglutaminase
DK04717856.1T DK1602722T3 (da) 2003-03-07 2004-03-05 Fremgangsmåde til fremstilling af mikrobiel transglutaminase
BRPI0407911-6A BRPI0407911A (pt) 2003-03-07 2004-03-05 método para produzir uma transglutaminase ativa microbiana a partir de uma pró-transglutaminase microbiana, metaloprotease neutra de actionomicetos, molécula de ácido nucleico, e, método para produzir uma metaloprotease neutra de actinomicetos
AT04717856T ATE496995T1 (de) 2003-03-07 2004-03-05 Verfahren zur herstellung mikrobieller transglutaminase
US11/218,780 US7704707B2 (en) 2003-03-07 2005-09-06 Method of producing microbial transglutaminase
US12/714,853 US8105802B2 (en) 2003-03-07 2010-03-01 Method of producing microbial transglutaminase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-061623 2003-03-07
JP2003061623 2003-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/218,780 Continuation US7704707B2 (en) 2003-03-07 2005-09-06 Method of producing microbial transglutaminase

Publications (1)

Publication Number Publication Date
WO2004078973A1 true WO2004078973A1 (ja) 2004-09-16

Family

ID=32958965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002923 WO2004078973A1 (ja) 2003-03-07 2004-03-05 微生物トランスグルタミナーゼの製造法

Country Status (13)

Country Link
US (2) US7704707B2 (ja)
EP (1) EP1602722B1 (ja)
JP (1) JP4482938B2 (ja)
KR (1) KR20050106502A (ja)
CN (1) CN100381569C (ja)
AT (1) ATE496995T1 (ja)
BR (1) BRPI0407911A (ja)
CA (1) CA2518049C (ja)
DE (1) DE602004031198D1 (ja)
DK (1) DK1602722T3 (ja)
ES (1) ES2356149T3 (ja)
RU (1) RU2316594C2 (ja)
WO (1) WO2004078973A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197802A (ja) * 2004-12-22 2006-08-03 Okayama Prefecture メタロエンドペプチダーゼ
WO2007026922A1 (ja) * 2005-08-30 2007-03-08 Ajinomoto Co., Inc. プロテアーゼ活性が低減されているトランスグルタミナーゼ含有物の製造方法
WO2007026921A1 (ja) * 2005-08-30 2007-03-08 Ajinomoto Co., Inc. トランスグルタミナーゼ含有物のプロテアーゼ活性測定方法及び接着用トランスグルタミナーゼ製剤
WO2008120798A1 (ja) 2007-03-29 2008-10-09 Ajinomoto Co., Inc. 接着用酵素製剤及び接着成形食品の製造方法
WO2009066785A1 (ja) 2007-11-19 2009-05-28 Ajinomoto Co., Inc. 繊維加工物及びその製造法
WO2010035856A1 (ja) 2008-09-25 2010-04-01 味の素株式会社 接着成形食品用酵素製剤及び接着成形食品の製造方法
WO2016075078A3 (en) * 2014-11-10 2016-07-07 Novozymes A/S Metalloproteases and uses thereof
CN108103041A (zh) * 2018-02-02 2018-06-01 泰兴市东圣生物科技有限公司 一种热稳定微生物转谷氨酰胺酶及其编码基因

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE411378T1 (de) * 2000-01-21 2008-10-15 Ajinomoto Kk Verfahren zur herstellung von l-lysin
CA2518049C (en) * 2003-03-07 2013-05-07 Ajinomoto Co., Inc. Method of producing microbial transglutaminase
JP4730302B2 (ja) * 2004-04-20 2011-07-20 味の素株式会社 タンパク質の製造法
NZ579599A (en) * 2007-02-15 2012-03-30 Ajinomoto Kk Transglutaminase having disulfide bond introduced therein
EP2255823A4 (en) * 2008-02-15 2011-03-09 Ajinomoto Kk GUT IMMUNE-STIMULATOR
EP2302066A4 (en) * 2008-07-09 2012-02-08 Ajinomoto Kk METHOD FOR PRODUCING AMINOHYDROXYBENZOIC ACID
WO2010101256A1 (ja) 2009-03-06 2010-09-10 味の素株式会社 放線菌由来の耐熱性トランスグルタミナーゼ
CN103608463A (zh) 2011-06-23 2014-02-26 味之素株式会社 由使具有免疫球蛋白折叠结构的蛋白和能够形成亚单元结构的蛋白融合而得到的单体蛋白组成的多聚体蛋白的制备方法
CN103917656B (zh) 2011-10-25 2016-09-28 味之素株式会社 蛋白质的分泌产生方法
AU2012333515B2 (en) * 2011-11-02 2015-07-16 Ajinomoto Co., Inc. Method for secreting and producing proteins
KR101653555B1 (ko) 2011-11-02 2016-09-02 아지노모토 가부시키가이샤 단백질의 분비 생산 방법
CN104379742A (zh) 2012-05-29 2015-02-25 味之素株式会社 生产3-乙酰氨基-4-羟基苯甲酸的方法
CN113528479B (zh) * 2020-04-13 2023-01-24 中国科学院微生物研究所 一种转谷氨酰胺酶的高效制备方法及其专用工程菌
CN113528478B (zh) * 2020-04-13 2023-01-20 中国科学院微生物研究所 一种高效生产转谷氨酰胺酶的方法及其专用工程菌
KR102277403B1 (ko) * 2021-01-27 2021-07-14 씨제이제일제당 주식회사 신규한 리보뉴클레아제 p 변이체 및 이를 이용한 l-글루탐산 생산 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970291A (ja) 1995-06-30 1997-03-18 Ajinomoto Co Inc 人工トランスポゾンを用いた遺伝子増幅方法
WO2001023591A1 (fr) * 1999-09-30 2001-04-05 Ajinomoto Co., Inc. Procédé de production de transglutaminase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665280B2 (ja) 1987-03-04 1994-08-24 味の素株式会社 タンパクゲル化剤及びそれを用いるタンパクのゲル化方法
CN1174889A (zh) * 1997-06-16 1998-03-04 中国医学科学院医药生物技术研究所 一种链霉菌产生的新型纤溶酶
EP1375664B1 (en) 2001-03-30 2009-11-04 Ajinomoto Co., Inc. Method for the secretion and production of protein
CA2518049C (en) * 2003-03-07 2013-05-07 Ajinomoto Co., Inc. Method of producing microbial transglutaminase
JP4730302B2 (ja) 2004-04-20 2011-07-20 味の素株式会社 タンパク質の製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970291A (ja) 1995-06-30 1997-03-18 Ajinomoto Co Inc 人工トランスポゾンを用いた遺伝子増幅方法
WO2001023591A1 (fr) * 1999-09-30 2001-04-05 Ajinomoto Co., Inc. Procédé de production de transglutaminase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIKUCHI Y. ET AL: "Secretion of Active-Form Streptoverticillium mobaraense Transglutaminase by Corynebacterium glutamicum: Processing of the Pro-Transglutaminase by a Cosecreted Subtilisin-Like Protease from Streptomyces albogriseolus", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 69, no. 1, January 2003 (2003-01-01), pages 358 - 366, XP002979776 *
KOJIMA S. ET AL: "Primary Structure of Streptomyces griseus Metalloendopeptidase II", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 62, no. 7, 1998, pages 1392 - 1398, XP002979775 *
NATURE, vol. 227, 1970, pages 380 - 685

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631436B2 (ja) * 2004-12-22 2011-02-16 岡山県 メタロエンドペプチダーゼ
JP2006197802A (ja) * 2004-12-22 2006-08-03 Okayama Prefecture メタロエンドペプチダーゼ
JP4973496B2 (ja) * 2005-08-30 2012-07-11 味の素株式会社 トランスグルタミナーゼ含有物のプロテアーゼ活性測定方法及び接着用トランスグルタミナーゼ製剤
WO2007026921A1 (ja) * 2005-08-30 2007-03-08 Ajinomoto Co., Inc. トランスグルタミナーゼ含有物のプロテアーゼ活性測定方法及び接着用トランスグルタミナーゼ製剤
CN101248176B (zh) * 2005-08-30 2011-05-11 味之素株式会社 制备蛋白酶活性降低的含转谷氨酰胺酶制品的方法
JP4905351B2 (ja) * 2005-08-30 2012-03-28 味の素株式会社 プロテアーゼ活性が低減されているトランスグルタミナーゼ含有物の製造方法
WO2007026922A1 (ja) * 2005-08-30 2007-03-08 Ajinomoto Co., Inc. プロテアーゼ活性が低減されているトランスグルタミナーゼ含有物の製造方法
WO2008120798A1 (ja) 2007-03-29 2008-10-09 Ajinomoto Co., Inc. 接着用酵素製剤及び接着成形食品の製造方法
WO2009066785A1 (ja) 2007-11-19 2009-05-28 Ajinomoto Co., Inc. 繊維加工物及びその製造法
WO2010035856A1 (ja) 2008-09-25 2010-04-01 味の素株式会社 接着成形食品用酵素製剤及び接着成形食品の製造方法
WO2016075078A3 (en) * 2014-11-10 2016-07-07 Novozymes A/S Metalloproteases and uses thereof
CN107075492A (zh) * 2014-11-10 2017-08-18 诺维信公司 金属蛋白酶及其用途
US10538722B2 (en) 2014-11-10 2020-01-21 Novozymes A/S Metalloproteases and uses thereof
CN107075492B (zh) * 2014-11-10 2021-07-27 诺维信公司 金属蛋白酶及其用途
CN108103041A (zh) * 2018-02-02 2018-06-01 泰兴市东圣生物科技有限公司 一种热稳定微生物转谷氨酰胺酶及其编码基因

Also Published As

Publication number Publication date
US20100159560A1 (en) 2010-06-24
JPWO2004078973A1 (ja) 2006-06-08
CA2518049A1 (en) 2004-09-16
RU2005127869A (ru) 2006-02-10
ATE496995T1 (de) 2011-02-15
CN1759180A (zh) 2006-04-12
RU2316594C2 (ru) 2008-02-10
US8105802B2 (en) 2012-01-31
JP4482938B2 (ja) 2010-06-16
ES2356149T3 (es) 2011-04-05
EP1602722B1 (en) 2011-01-26
EP1602722A4 (en) 2006-08-02
DE602004031198D1 (de) 2011-03-10
CN100381569C (zh) 2008-04-16
CA2518049C (en) 2013-05-07
US7704707B2 (en) 2010-04-27
DK1602722T3 (da) 2011-05-16
EP1602722A1 (en) 2005-12-07
US20060019367A1 (en) 2006-01-26
BRPI0407911A (pt) 2006-02-14
KR20050106502A (ko) 2005-11-09

Similar Documents

Publication Publication Date Title
US8105802B2 (en) Method of producing microbial transglutaminase
JP3669390B2 (ja) バチルス属細菌由来のトランスグルタミナーゼ
KR100565030B1 (ko) 트랜스글루타미나제의 제조방법
JP4730302B2 (ja) タンパク質の製造法
JP4362651B2 (ja) タンパク質の分泌生産法
JP5246639B2 (ja) 4−ヒドロキシ−l−イソロイシンの製造法
Wu et al. Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein
EP1999258A1 (en) Novel aldolase and production process of 4-hydroxy-l-isoleucine
Toogood et al. A thermostable L-aminoacylase from Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotransformations
WO2006062189A1 (ja) ニトリルヒドラターゼを発現する形質転換体
Arima et al. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus
Komeda et al. L-Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family
Baik et al. Synthesis of L-threo-3, 4-dihydroxyphenylserine (L-threo-DOPS) with thermostabilized low-specific L-threonine aldolase from Streptomyces coelicolor A3 (2)
Lee et al. Thermostable Tyrosine Phenol-Lyase ofSymbiobacteriumsp. SC-1: Gene Cloning, Sequence Determination, and Overproduction inEscherichia coli
JP4108095B2 (ja) 新規なニトリルヒドラターゼ
Ohmachi et al. Identification, Cloning, and Sequencing of the Genes Involved in the Conversion of D, L-2-Amino-Δ2-Thiazoline-4-Carboxylic Acid to…
Kwon et al. Molecular cloning of the arylsulfate sulfotransferase gene and characterization of its product from Enterobacter amnigenus AR-37
JP2971218B2 (ja) ウリカーゼ遺伝子およびウリカーゼの製造法
Ohmachi et al. A novel N-carbamoyl-L-amino acid amidohydrolase of Pseudomonas sp. strain ON-4a: purification and characterization of N-carbamoyl-L-cysteine amidohydrolase expressed in Escherichia coli
WO2010067871A1 (ja) Nε-アシル-L-リジン特異的アミノアシラーゼ
Hyun et al. Alteration of substrate specificity of valine dehydrogenase from Streptomyces albus
CN115851687A (zh) 具有头孢菌素c酰基转移酶活性的多肽及其用途
JP2003061692A (ja) 活性化されたrec−ヒダントイナーゼの製造方法、該方法で得られるrec−ヒダントイナーゼ、これをコードする核酸、それを有するプラスミド、ベクター及び微生物、ハイブリダイズする核酸、その製造のためのプライマー並びにrec−ヒダントイナーゼ及び核酸の使用
JPWO2006038479A1 (ja) アリールアシルアミダーゼ遺伝子、およびその利用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004717856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2518049

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11218780

Country of ref document: US

Ref document number: 1020057016640

Country of ref document: KR

Ref document number: 2005127869

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 20048062248

Country of ref document: CN

Ref document number: 2005503155

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057016640

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004717856

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11218780

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0407911

Country of ref document: BR