WO2004077593A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2004077593A1
WO2004077593A1 PCT/JP2004/002468 JP2004002468W WO2004077593A1 WO 2004077593 A1 WO2004077593 A1 WO 2004077593A1 JP 2004002468 W JP2004002468 W JP 2004002468W WO 2004077593 A1 WO2004077593 A1 WO 2004077593A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
secondary battery
substituted
polymer
positive electrode
Prior art date
Application number
PCT/JP2004/002468
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Iwasa
Hiroyuki Nishide
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005502976A priority Critical patent/JP4435087B2/ja
Priority to US10/519,933 priority patent/US7318981B2/en
Publication of WO2004077593A1 publication Critical patent/WO2004077593A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly to a secondary battery having high energy density, high capacity, and excellent charge / discharge stability.
  • lithium ion secondary batteries are used in various electronic devices as high-capacity batteries with excellent stability and high energy-density.
  • Such a lithium ion secondary battery uses a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate as an active material and carbon as an active material, and uses lithium ion as an active material.
  • U.S. Pat. No. 4,833,048 and Japanese Patent No. 2715778 disclose batteries using an organic compound having a disulfide bond for a positive electrode. This is based on the electrochemical redox reaction involving the formation and dissociation of disulfide bonds. It was used. These batteries are composed of electrode materials mainly composed of elements with low specific gravity, such as sulfur and carbon, so that they can provide a reasonable effect in terms of high energy density and large capacity batteries. However, due to the low efficiency of dissociated bonds being recombined and the diffusion of the active material into the electrolyte, there is a problem that the capacity is reduced and repeated when charge and discharge cycles are repeated.
  • a battery using an organic compound a battery using a conductive polymer as an electrode material has been proposed.
  • This is a battery based on the principle of doping and undoping of electrolyte ions to a conductive polymer.
  • the doping reaction described here is a reaction in which excitons such as charged solitons and polar ports generated by oxidation or reduction of a conductive polymer are stabilized by counter ions.
  • the undoping reaction corresponds to the reverse reaction, and indicates a reaction in which excitons stabilized by a counter ion are electrochemically oxidized or reduced.
  • 4,442,187 discloses a battery using such a conductive polymer as a material for a positive electrode or a negative electrode; This battery is composed only of elements with low specific gravity, such as carbon and nitrogen, and was expected to be developed as a high-capacity battery. .. '..,.
  • conductive polymers have the property that excitons generated by oxidation-reduction delocalize over a wide range of .pi. Electron conjugated systems and interact with each other. This places a limit on the concentration of excitons generated and limits the capacity of the battery. For this reason, batteries using conductive polymer as the electrode material have some effect in terms of weight reduction, but there is still room for improvement in terms of increasing capacity. As described above, various batteries that do not use transition metal-containing active materials have been proposed in order to realize high-capacity batteries. However, a battery with high energy density, high capacity and excellent charge / discharge stability has not yet been obtained.
  • an object of the present invention is to provide a secondary battery having high energy density, high capacity, and excellent charge / discharge cycle characteristics.
  • an electrode having a high capacity density can be obtained by using a polymer having a repeating unit represented by the formula (1) in a molecule as an electrode active material.
  • a battery with excellent charge / discharge stability can be provided. '.
  • the present invention relates to a secondary battery having at least a positive electrode, a negative electrode, and an electrolyte, wherein a polymer having a repeating unit represented by the formula (1) is used as at least one active material of the positive electrode and the negative electrode.
  • the present invention relates to a secondary battery including:
  • R 1, R 2, R 3 and R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group. ring group, a halogen atom, or R l and R3, R 2 and also lay either R4 'represents an alkylene group which both led annularly.
  • the present invention also relates to the secondary battery containing the polymer as a positive electrode active material.
  • the electrode active material is oxidized or reduced by an electrode reaction, so that the electrode active material can take either a starting state or an oxidized or reduced state.
  • the polymer may be contained in the electrode in any of a starting state and an oxidized or reduced state.
  • the present invention relates to a secondary battery comprising a polymer having a repeating unit represented by the above formula (1) as a reactant or a product in at least one of a positive electrode and a negative electrode. Further, the present invention relates to the secondary battery containing the polymer as a reactant or a product in a positive electrode reaction.
  • the present invention also relates to a secondary battery comprising a compound capable of forming a polymer having a repeating unit represented by the formula (1) in at least one electrode reaction of a positive electrode and a negative electrode.
  • the polymer may be contained in the electrode as an intermediate of the electrode reaction.
  • the present invention also relates to the secondary battery containing the compound in a positive electrode.
  • the present invention also relates to any one of the above secondary batteries, which is a lithium secondary battery.
  • the present invention has been made based on the finding that the above polymer directly contributes to an electrode reaction at a positive electrode or a negative electrode and is excellent as an electrode active material. This is because a polymer having a repeating unit represented by the formula (1) in a molecule causes a reversibly stable oxidation-reduction reaction. That is, by using a polymer having a repeating unit represented by the formula (1) in a molecule as an active material, charging and discharging can be performed stably, and a secondary battery having excellent cycle characteristics can be provided. .
  • the polymer having the repeating unit represented by the formula (1) in the molecule can be composed only of carbon, nitrogen, hydrogen and oxygen, which are small elements.
  • the mass of the active material can be reduced, and the capacity density per unit mass of the electrode manufactured using the active material increases.
  • the energy density per unit mass of the battery manufactured using the active material decreases. Can be larger.
  • Electrodes using the above polymers as active materials are limited to either positive or negative electrodes. It is not something to be done. However, from the viewpoint of energy density, it is particularly preferable to use this polymer as the electrode active material of the positive electrode. Further, the secondary battery of the present invention is particularly preferably a lithium secondary battery from the viewpoint that a high capacity can be obtained.
  • FIG. 1 is a schematic diagram showing a configuration example of the battery of the present invention. Embodiment of the Invention
  • FIG. 1 shows the configuration of an embodiment of the battery of the present invention.
  • the positive electrode 5 and the negative electrode 3 arranged on the negative electrode current collector 1 are overlapped so as to face each other via a separator 4 containing an electrolyte. It has a configuration in which the conductors 6 are overlapped.
  • An insulating packing 2 made of an insulating material such as a plastic resin is arranged between the negative electrode current collector 1 and the positive electrode current collector 6 for the purpose of preventing electrical contact between them.
  • the electrolyte may be interposed between the electrodes instead of separating.
  • a polymer having a repeating unit represented by the above formula (1) in a molecule is contained as an active material used for the negative electrode 3 or the positive electrode 5 or both electrodes in such a configuration.
  • the battery of the present invention is preferably a lithium secondary battery having a positive electrode containing a polymer having a repeating unit represented by the above formula (1) in a molecule as a positive electrode active material, from the viewpoint of battery capacity.
  • the active material of the electrode in the present invention is a material that directly contributes to an electrode reaction such as a charge reaction and a discharge reaction, and plays a central role in a battery system.
  • a polymer having a repeating unit represented by the above formula (1) can be used as an active material.
  • examples of the substituted or unsubstituted alkyl group include a linear, branched, or cyclic substituted or unsubstituted alkyl group, and the carbon number of these is preferably 1 to 10 .
  • Sobutyl group 1,2-jodoethyl group, 1,3-iodoisopropyl group, 2,3-jodo-t-butyl group, 1,2,3-triodopropyl group, aminomethyl group, 1-amino group Ethyl group,
  • the substituted or unsubstituted aromatic hydrocarbon group is particularly preferably one having 1 to 18 carbon atoms.
  • the substituted or unsubstituted aromatic heterocyclic group is particularly preferably one having 1 to 18 carbon atoms.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and they may have one kind alone or two or more kinds in combination.
  • the alkylene group linked to the ring an ethylene group (-CH 2 CH 2 -), trimethylene group (- CH 2 CH 2 CH 2 -), tetramethylene group, pen Tamechiren group to, Kisamechiren group, heptamethylene group, a propylene group (-CH (CH 3) CH 2 -), butylene group, pentylene group, hexylene group, heptylene group and the like.
  • the skeleton structure of the polymer having the repeating unit represented by the formula (1) contained in the electrode may be any of a chain, a branch, and a network.
  • the average molecular weight is not particularly limited, but is preferably 1,000 or more. This is because if the molecular weight is high, the solubility of the polymer in the battery electrolyte decreases, and the stability of the charge / discharge cycle increases.
  • Examples of the polymer having a repeating unit represented by the formula (1) include a polymer represented by the following formula (2).
  • R1, R2, R3 and R4 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group.
  • Rl, R2, R3 and R4 in Formula (2) may include those of the aforementioned exemplified by the Rl, R2, R3 and R 4 in the formula (1).
  • n in Equation (2) indicates a positive integer.
  • the polymer represented by the formula (2) may be a homopolymer having one kind of repeating unit or a polymer comprising two or more different kinds of repeating units. Further, a polymer containing a repeating unit other than the repeating unit represented by the formula (1) may be used.
  • the content of the repeating unit represented by the formula (1) in the polymer having the repeating unit represented by the formula (1) is preferably as large as possible in terms of the capacity per unit mass, for example, preferably 60 mol% or more. , 70 mol% or more, more preferably 80 mol% or more.
  • Examples of the polymer having a repeating unit represented by the formula (1) include a polymer having a structure represented by the following formulas (3) to (10). N in the equations (3) to (9) indicates a positive integer.
  • the polymer represented by the formula (10) may be a random copolymer or a block copolymer, where n and m indicate the composition ratio.
  • a polymer having a repeating unit represented by the formula ( ⁇ ) can be obtained, for example, by the following method.
  • an aziridine derivative represented by the following formula (11) is synthesized, and A polymer represented by the following formula (12) is synthesized by cationic ring-opening polymerization.
  • Cationic ring-opening polymerization catalysts that can be used include boron trifluoride, boron trifluoride, getyl ether complex, aluminum chloride, ethyl aluminum dichloride, ethyl methyl microlide, titanium tetrachloride, tin tetrachloride, sulfuric acid, and trifluoromethane.
  • Examples include sulfonic acid, p-toluenesulfonic acid, phosphoric acid, perchloric acid, and getyl sulfate.
  • the resulting polymer is treated with organic peroxides such as hydrogen peroxide, t-butyl hydroperoxide, benzoyl peroxide, etc .; organic peracids such as peracetic acid, perbenzoic acid, m-chloroperbenzoic acid, etc .; It can be obtained by oxidizing with an oxidizing agent such as sulfuric acid.
  • R R2, R3 and R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic ring.
  • R1, R2, R3 and R4 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group.
  • Rl, R2, R3 and R4 of formula (11) and the formula (12) include Rl in the formula), those above exemplified as R 2, R 3 and R4. Further, n in the equation (12) indicates a positive integer.
  • the polymer represented by the formula (12) may be a homopolymer having one repeating unit or a polymer having two or more different repeating units.
  • Aziridine derivatives represented by the formula (11), which are raw materials, include GL cloth (GL C 1 oss), SJ Plyce (S.J.B rois), Journal-op-the-American 'Chemical' Society ( The compound can be synthesized by the method described in Jornal of the American Chemical Society, Vol. 82, pp. 6068-6070 (1960).
  • the radical concentration can be represented by the spin concentration.
  • the spin concentration can be determined, for example, from the absorption area intensity of the electron spin resonance (ESR) spectrum as the spin amount per unit weight (spin / g) of the active material of the present invention.
  • the spin concentration of the active material in the present invention is, for example, preferably 1 second or more, preferably 1 hour or more, more preferably 24 hours or more, and is usually maintained at 1 O20 S pin / g or more. More preferably, it is maintained at 5 X 1020 S pin / g or more.
  • the polymer in the secondary battery of the present invention may be in a solid state, or may be in a state of being dissolved or dispersed in an electrolyte. However, when used in a solid state, those which are insoluble or lowly soluble in the electrolytic solution are preferred from the viewpoint of suppressing a decrease in capacity due to dissolution in the electrolytic solution.
  • the polymer having a repeating unit represented by the formula (1) as an active material can be used alone, but may be used in combination of two or more kinds. Good. Further, it may be used in combination with another active material.
  • a polymer having a repeating unit represented by the above formula (1) is used as an active material in one electrode reaction of the positive electrode or the negative electrode, or in both electrode reactions.
  • a conventionally known active material can be used as the other electrode reaction.
  • metal oxide particles, a disulfide compound, a conductive polymer, or the like can be used as the positive electrode active material.
  • manganese Sanli lithium with a metal oxide for example L i Mn_ ⁇ 2, L iXMn 2 0 4 ( 0 ⁇ x ⁇ 2) lithium manganate or spinel structure such as, Mn0 2, L i Co_ ⁇ 2 , L i N i 0 2, or L i XV 2 0 5 (0 ⁇ x ⁇ 2) .
  • Examples of the conductive polymer include polyacetylene, polyphenylene, polyaline, and polypyrrol.
  • these positive electrode materials can be used alone or in combination of two or more.
  • these positive electrode materials and a polymer having a repeating unit represented by the formula (1) may be mixed and used as a composite active material.
  • a polymer having the repeating unit represented by the above formula (1) when a polymer having the repeating unit represented by the above formula (1) is used for the positive electrode, graphite, amorphous carbon, lithium metal, lithium alloy, lithium ion storage carbon, and lithium ion are used as the negative electrode active material.
  • a conductive polymer can be used.
  • the shape is not particularly limited.
  • lithium metal may be in the form of a thin film, a bulk, a solidified powder, a fiber, a flake, or the like.
  • These negative electrode active materials can be used alone or in combination of two or more. Further, in the negative electrode, these conventionally known active materials may be used in combination with the polymer.
  • an auxiliary conductive material and an ion conductive auxiliary material can be mixed for the purpose of lowering the impedance.
  • these materials include auxiliary conductive materials such as graphite, car-pump racks, carbonaceous fine particles such as acetylene black, and conductive polymers such as polyaline, polypyrrol, polythiophene, polyacetylene, and polyacene.
  • the auxiliary material include a polymer gel electrolyte and a polymer solid electrolyte.
  • a binder may be mixed with the electrode material in order to strengthen the connection between the constituent materials of the electrode.
  • a binder include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, Resin binders such as styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyimide, and various polyurethanes.
  • a catalyst that assists the oxidation-reduction reaction can be mixed with the electrode material.
  • catalysts include conductive polymers such as polyaniline, polypyrrol, polythiophene, polyacetylene, and polyacene, pyridine derivatives, lipidone derivatives, benzimidazole derivatives, benzothiazol derivatives, and acridine derivatives. Examples include a basic compound and a metal complex.
  • the negative electrode current collector and the positive electrode current collector foils made of nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, or the like, metal plates, meshes, and the like can be used. Further, the current collector may have a catalytic effect, or the active material and the current collector may be chemically bonded.
  • a porous film made of polyethylene, polypropylene, or the like, a non-woven fabric, or the like can be used as a material that has a shape that does not make contact between the positive electrode and the negative electrode so as not to be short-circuited or has insulating properties.
  • the electrolyte is for transporting charge carriers between the negative electrode and the positive electrode, and generally preferably has an ion conductivity of 20 to 10-5 to 10-1 S / cm.
  • the electrolyte for example, an electrolytic solution obtained by dissolving an electrolyte salt in a solvent can be used.
  • L i PF 6 L i C 10 4, L i BF 4, L i CF3SO3, L i (CF 3 S0 2) 2 L i (C 2 F 5 S0 2) 2N, L i (CF 3 S0 2) 3 C
  • L i (C 2 F 5 SO 2) conventionally known material such as 3 C.
  • Examples of the solvent used for the electrolytic solution include ethylene-ion-ponate, propylene-ion-ione, dimethylcarbonate, getylcapone, methylethyl-iron-ponate, arptyrolactone, tetrahydrofuran, dioxolan, sulfolane, and dimethyl.
  • Organic solvents such as formamide, dimethylacetamide and N-methyl-2-pyrrolidone can be used. These solvents can be used alone or in combination of two or more.
  • a solid electrolyte can be used as the electrolyte.
  • the polymer compound used for these solid electrolytes include polyvinylidene fluoride, vinylidene fluoride-hexafluoro propylene copolymer, vinylidene fluoride-ethylene copolymer, and pinylidene fluoride-monofluoroethylene copolymer. , Vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, etc.
  • Pinylidene fluoride polymer acrylonitrile-methyl methacrylate copolymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid Copolymer, acryloni Acryl nitrile-based polymers such as acrylonitrile copolymer and acrylonitrile-vinyl acetate copolymer, as well as polyethylene oxide, ethylene oxide-propylene oxide copolymer, and acrylates and methacrylates thereof And the like.
  • This A gel obtained by adding an electrolytic solution to these polymer compounds may be used, or only the polymer compound may be used as it is.
  • the shape of the battery is not particularly limited, and a conventionally known battery can be employed.
  • an electrode laminate or a wound body thereof is sealed with a metal case, a resin case, or a laminate film made of a metal foil such as an aluminum foil and a synthetic resin film, or the like.
  • the external shape include a cylindrical shape, a square shape, a coin shape, and a sheet shape, but the present invention is not limited to these shapes.
  • the method for manufacturing the battery is not particularly limited, and various methods can be used depending on the material. For example, a solvent is added to an electrode material containing an active material, a slurry is formed and applied to the electrode current collector, the solvent is volatilized by heating or at room temperature, and then a counter electrode is laminated through a separator, or There is a method of winding, wrapping with an outer package, injecting an electrolyte solution, and sealing.
  • Solvents for slurrying include ether solvents such as tetrahydrofuran and diethyl ether; amine solvents such as N-methylpyrrolidone; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; and hexane and heptane.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • amine solvents such as N-methylpyrrolidone
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene
  • hexane and heptane examples include aliphatic hydrocarbon solvents, chloroform-based solvents, and halogenated hydrocarbon solvents such as dichloromethane.
  • a polymer having a repeating unit represented by the formula (1) (nitroxyl radical polymer) itself is used as an electrode material, and the nitroxyl radical polymer is formed by an electrode reaction.
  • a compound that can be changed to is used.
  • examples of the compound that is converted into the nitroxyl radical polymer by an electrode reaction include lithium salts and sodium salts comprising an anion body obtained by reducing the nitroxyl radical polymer and electrolyte cations such as lithium ions and sodium ions.
  • Poly (2,2,3,3-tetramethylethylene nitroxyl) 300 mg, graphite powder 600 mg, polytetrafluoroethylene resin pinda 1 O Omg are measured and sampled.
  • the mixture was dry-mixed by kneading for 10 minutes using an agate mortar.
  • the molecular weight of poly (2,2,3,3-tetramethylethyleneditroxyl) was measured by GPC.
  • the weight average molecular weight was 8900 (in terms of polystyrene) and the degree of dispersion (weight average molecular weight / number average molecular weight) was 1.82.
  • the resulting mixture was stretched with a roller under pressure to form a thin film. This was dried overnight in a vacuum at 80, and then punched into a 12 mm diameter circle to produce a coin-shaped positive electrode. The mass of this electrode was 18.8 mg.
  • the obtained electrode was immersed in the electrolytic solution, and the electrolytic solution was impregnated into the voids in the electrode.
  • the electrode impregnated with the electrolytic solution was placed on a positive electrode current collector as shown in FIG. 1, and a polypropylene porous film separator impregnated with the electrolytic solution was also laminated thereon. Further, lithium serving as a negative electrode was laminated, copper foil was laminated, a frame-shaped insulating packing was provided, and a negative electrode current collector was laminated. This was pressurized with a caulking machine and sealed, to obtain a coin-type battery using poly (2,2,3,3-tetramethylethylene nitroxyl) as the positive electrode active material and metallic lithium as the negative electrode active material. .
  • the coin-shaped battery was charged at a constant current of 1 mA until the voltage reached 4.2 V, and then discharged at a constant current of 1 mA. As a result, the voltage became almost constant at around 3.6 V for 48 minutes, and then dropped sharply. This confirmed that the battery operated.
  • charging was performed again, and charging and discharging were repeated 50 times in the range of 4.2 to 2.2 V. As a result, it was confirmed that the voltage remained constant at around 3.3 V during discharge even after repeated charging and discharging. We confirmed that it was operating as a pond.
  • the capacity of this coin-type battery was 166.2 mAh / g of the positive electrode active material. (50th discharge capacity) / (1st discharge capacity) was 97.1%.
  • the coin-shaped battery was charged at a constant current of 1 mA until the voltage reached 4.2 V, and then discharged at a constant current of 1 mA. As a result, the voltage became almost constant at around 3.6 V for 25 minutes, and then dropped sharply. This confirmed that the battery operated.
  • charging was performed again, and charging and discharging were repeated 50 times in the range of 4.2 to 2.2 ⁇ V. As a result, it was confirmed that the voltage remained constant at around 3.3 V during discharge even after repeated charging and discharging, and that this battery operated as a secondary battery.
  • the capacity of this coin battery was 94.8 mAh / lg of the positive electrode active material. Further, (the 50th discharge capacity) Z (the first discharge capacity) was 97.7%.
  • Poly (2,2,3,3-tetrafluoroethylene nitroxyl) (a polymer represented by formula (D)) was used instead of poly (2,2,3,3-tetramethylethylene nitroxyl) Except for the above, a coin battery was produced in the same manner as in Example 1. The weight of the positive electrode of this coin battery was 17.2 mg.
  • the coin-type battery was charged at a constant current of 1 mA until the voltage reached 4.2 V, and then discharged at a constant current of 1 mA. As a result, the voltage became almost constant at around 3.7 V for 42 minutes, and then dropped sharply. This confirmed that the battery operated.
  • charging was performed again, and charging and discharging were repeated 50 times in the range of 4.2 to 2.2 V. As a result, it was confirmed that the voltage remained constant at around 3.7 V during discharge even after repeated charging and discharging, and that this battery was operating as a secondary battery.
  • the capacity of this coin-type battery was 18 ImAh per gram of the positive electrode active material.
  • the (50th discharge capacity) (the first discharge capacity) was 95.2%.
  • a coin-type battery was fabricated in the same manner as in Example 1, except that poly (2,2,3,3-tetramethylethylenenitroxyl) was not used and the graphite powder was increased to 90 Omg instead.
  • the produced battery was charged and discharged in the same manner as in Example 1. As a result, no voltage flat portion was observed at the time of discharge, and the voltage rapidly dropped, and the battery did not operate sufficiently.
  • the voltage instantaneously increased and exceeded 4.5 V.
  • the flat portion of the voltage curve showed No, it was confirmed that this battery did not operate as a secondary battery.
  • the battery fabricated as described above was charged and discharged in the same manner as in Example 1, and the capacity per active material was calculated to be 94 mAhZg.
  • the battery comprised from the light and safe element which does not contain a heavy metal as an electrode active material, and also has a high capacity (per mass) and excellent stability of a charge / discharge cycle. Secondary battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

明細書 二次電池
技術分野
本発明は二次電池に関するものであり、 特にエネルギー密度が高く、 高容量で充 放電の安定性に優れた二次電池に関する。 背景技術
本発明に関する現時点での技術水準をより十分に説明する目的で、 本願で引用さ れ或いは特定される特許、 特許出願、 特許公報、 科学論文等の全てを、 ここに、 参 照することでそれらの全ての説明を組入れる。
近年、 ノート型パソコン、 携帯電話など小型あるいは携帯電子機器の急速な市場 拡大に伴い、 これらに用いられる電池に対して軽量化およぴ高容量化に対する要求 が高まっている。 この要求に応えるために、 リチウムイオン等のアルカリ.金属ィォ ンを荷電担体として、 その電荷授受に伴う電気化学反応を利用した二次電池が盛ん に開発されている。 なかでも リチウムイオン二次電池は安定性に優れたエネルギ —密度の大きな高容量電池として種々の電子機器に利用されている。 このようなリ チウムイオン二次電池は、 活物質として正極にマンガン酸リチウムやコバルト酸リ チウムといったリチウム含有遷移金属酸化物、 負極に炭素を用いたものであり、 こ れら活物質へのリチウムイオンの挿入、 脱離反応を利用して充放電を行っている。 しかしながら、 このリチウムイオン二次電池は、 特に正極に比重の大きな金属酸 化物を用いているため、 単位質量当たりの電池容量には改善の余地があり、 より軽 量の電極材料を用いて高容量電池を開発しょうとする試みが検討されてきた。
例えば、 米国特許第 4, 833, 048号明細書および日本国特許第 2715778号明細書には、 ジスルフィド結合を有する有機化合物を正極に用いた電池が開示されている。 これ はジスルフィド結合の生成、 解離を伴う電気化学的酸化還元反応を電池の原理とし て利用したものである。 これらの電池は硫黄や炭素といった比重の小さな元素を主 成分とする電極材料から構成されているため、 高エネルギー密度の大容量電池とい う点において一応の効果を示すことができる。 しかし、 解離した結合が再度結合す る効率が小さいことや活物質の電解液への拡散のため、 充放電サイクルを重ねると 容量が低下しゃすいという問題がある。
一方、 同じく有機化合物を利用した電池として、 導電性高分子を電極材料に用い た電池が提案されている。 これは導電性高分子に対する電解質イオンのドープ、 脱 ドープ反応を原理とした電池である。 ここで述べるドープ反応とは、 導電性高分子 の酸化もしくは還元によって生ずる荷電ソリトンゃポーラ口ン等のエキシトンを、 対イオンによって安定化させる反応のことである。 一方、 脱ドープ反応とはその逆 反応に相当し、 対イオンによつて安定化されたェキシトンを電気化学的に酸化もし くは還元する反応のことを示している。 米国特許第 4, 442, 187号明細書には、.この ような導電性高分子を正極もしくは負極の材料とする電池が開示されでいる;。 この 電池は、 炭素や窒素といつた比重の小さな元素のみから構成されたも.ので'あり、 高 容量電池として開発が期待された。 .. ' . . , . · ·.
しかし、 導電性高分子には、 酸化還元によって生じるエキシトンが. π電子共役系 の広い範囲に亘つて非局在化し、 それらが相互作用するという性質がある。 これは 発生するエキシトンの濃度に限界をもたらすものであり、 電池の容量を制限するも のである。 このため、 導電性高分子を電極材料とする電池では軽量化という点では 一応の効果を示すものの、 大容量化という点においては未だ改善の余地があつた。 以上述べたように、 高容量電池を実現するために、 遷移金属含有活物質を利用し ない様々な電池の提案がなされている。 しかし、 エネルギー密度が高く、 高容量で 充放電の安定性に優れた電池は未だ得られていない。
上記のとおり、 正極に遷移金属酸化物を用いるリチウムイオン電池では、 元素の 比重が大きいため、 現状を上回る高容量電池の製造が原理的に困難であった。 この ため、 高容量電池を実現するために、 遷移金属含有活物質を利用しない様々な電池 の提案がなされているが、 エネルギー密度が高く、 高容量で、 充放電の安定性に優 れた電池は未だ得られていない。 発明の開示
そこで本発明は、 エネルギー密度が高く、 高容量で、 充放電サイクル特性に優れ た二次電池を提供することを目的としている。
本発明者らは、 鋭意検討した結果、 低質量の原子のみから構成されているにもか かわらず、 今までに電極の活物質として利用されなかった特定の有機化合物、 すな わち式 ( 1 ) で表される繰り返し単位を分子中に有する重合体が電極の活物質とし て利用できることを見出した。 本発明によれば、 式 (1 ) で表される繰り返し単位 を分子中に有する重合体を電極活物質として用いることにより高容量密度の電極を 得ることができるため、 高エネルギー密度、 高容量かつ充放電の安定性に優れた電 池を提供することができる。 ' .
すなわち本発明は、.少なくとも正極、 負極および電解質を有する二次電池におい て、 正極および負極の少なくとも一方の活物質として、 式 (1 )·.で表される繰り返 し単位を有する重合体を含むことを特徴とする二次電池に関する。
Figure imgf000005_0001
(式 (1 ) において R l、 R2、 R3及び R4はそれぞれ独立して水素原子、 置換また は無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換もしくは非 置換の芳香族複素環基、 ハロゲン原子、 又は R lと R3、 R2と R4のいずれかもしく ' は両方が環状につながったアルキレン基を表す。 ) また本発明は、 前記重合体を正極活物質として含有する前記二次電池に関する。 二次電池において、 電極活物質は電極反応により酸化もしくは還元されるため、 電極活物質は出発状態と酸化もしくは還元状態の何れかの状態を取り得る。 本発明 において、 前記重合体は、 出発状態と酸化もしくは還元された状態の何れかの状態 で電極中に含有され得る。
すなわち本発明は、 正極および負極の少なくとも一方の電極反応における反応物 もしくは生成物として、 上記式 ( 1 ) で表される繰り返し単位を有する重合体を含 有することを特徴とする二次電池に関する。 また本発明は、 前記重合体を、 正極反 応における反応物もしくは生成物として含有する前記二次電池に関する。
また本発明は、 正極および負極の少なくとも一方の電極反応において式 (1 ) で 表される繰り返し単位を有する重合体を生成し得る化合物を含有することを特徴と する二次電池に関する。 前記重合体は、 電極反応の中間体として電極中に含有され 得る。 また本発明は、 前記化合物を正極に含有する前記二次電池に関する。
. また本発明は、' リチウム二次電池である前記いずれかの二次電池に関する。 本発明は、 上記の重合体が、 正極もしくは負極での電極反応に直接寄与し、 電極 活物質として優れていることを見出したことに基づいてなされたものである。 これ は、 式 ( 1 ) で表される繰り返し単位を分子中に有する重合体が可逆に安定した酸 化還元反応を起こすことによる。 すなわち、 式 ( 1 ) で表される繰り返し単位を分 子中に有する重合体を活物質として用いることにより、 充放電を安定して行うこと ができ、 サイクル特性に優れた二次電池を提供できる。 また、 式 ( 1 ) で表される 繰り返し単位を分子中に有する重合体は、 炭素、 窒素、 水素、 酸素という質量の小 さい元素のみから構成することができる。 このため、 活物質の質量を小さくでき、 これを用いて製造した電極の単位質量あたりの容量密度は大きくなり、 その結果、 この活物質を用いて作製した電池は、 単位質量当たりのエネルギー密度を大きくす ることができる。
上記の重合体を活物質として用いる電極は正極もしくは負極のいずれかに限定さ れるものではない。 ただし、 エネルギー密度の観点から、 特に正極の電極活物質と してこの重合体を用いることが好ましい。 また、 本発明の二次電池は、 高容量が得 られるという点から特にリチウム二次電池であることが好ましい。 図面の簡単な説明
図 1は、 本発明の電池の構成例を示す概略図である。 発明を実施の形態
図 1に本発明の電池の一実施形態の構成を示す。 図 1に示された電池は、 正極 5 と負極集電体 1上に配置した負極 3とを電解質を含むセパレ一夕 4を介して対向す るように重ね合わせ、 さらに正極 5上に正極集電体 6を重ね合わせた構成を有して いる。 負極集電体 1と正極集電体 6との間には、 両者の電気的接触を防ぐ目的で、 プラスティック樹脂等の絶縁性材料からなる絶縁パッキン 2が配置される。 なお、 固体電解質やゲル電解質を用いる場合は、 セパレ.一夕に代えてこれら電解質を電極 間に介在させる形態にすることもできる。
本実施形態では、 このような構成において 負極 3もしくは正極 5または両電極 に用いられる活物質として、 前記式 ( 1 ) で表される繰り返し単位を分子中に有す る重合体を含有する。
本発明の電池は、 電池容量の点から、 正極活物質として前記式 (1 ) で表される 繰り返し単位を分子中に有する重合体を含有する正極を有するリチウム二次電池と することが好ましい。
[ 1 ] 活物質
本発明における電極の活物質とは、 充電反応および放電反応等の電極反応に直接 寄与する物質のことであり、 電池システムの中心的役割を果たすものである。 本発明では活物質として前記式 (1 ) で表される繰り返し単位を有する重合体を 用いることができる。 前記式 (1 ) において、 置換もしくは非置換のアルキル基としては、 直鎖状、 分 岐状、 環状の置換もしくは非置換のアルキル基が挙げられ、 これらの炭素数は 1か ら 1 0が好ましい。 具体的には、 例えば、 メチル基、 ェチル基、 プロピル基、 イソ プロピル基、 n—ブチル基、 s—ブチル基、 イソブチル基、 t—ブチル基、 n—ぺ ンチル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、 シクロプロピル基、 シクロブチル基、 シクロペンチル基、 シクロへキシル基、 4ーメチルシクロへキシ ル基、 ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシェチル基、 1 , 3—ジヒドロ キシイソプロピル基、 2 , 3—ジヒドロキシー t 一ブチル基、 1 , 2 , 3—トリヒ ドロキシプロピル基、 クロロメチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1 , 2—ジクロロェチル基、 1 , 3—ジクロ口イソプロ ピル基、 2, 3—ジクロロ— t一プチル基、 1, 2 , 3—トリクロ口プロピル基、 ブロモメチル基、 1一プロモェチル基、 2一ブロモェチル基、 2—プロモイソプチ ル基、 1., 2—ジブロモェチル基、 1, 3—ジブロモイソプロピル基、 2 , 3—ジ ブロモー t一ブチル基、 1 , 2 , 3—トリブロモプロピル基、 ョ一ドメチル基、. 1 ーョ一ドエチル基、 2—ョ一ドエチル基., 2—ョ一ドィ.ソブチル基.。 1, 2—ジョ —ドエチル基、 1 , 3 _ジョ一ドイソプロピル基、 2 , 3—ジョ一ドー t 一ブチル 基、 1, 2, 3—トリョードプロピル基、 アミノメチル基、 1一アミノエチル基、
2—アミノエチル基、 2—ァミノイソブチル基、 1, 2ージアミノエチル基、 1,
3—ジァミノイソプロピル基、 2 , 3—ジァミノ— t 一ブチル基、 1 , 2, 3—ト リアミノプロピル基、 シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1 , 2—ジシァノエチル基、 1 , 3ージシァノイソプロ ピル基、 2 , 3—ジシァノ— t一ブチル基、 1 , 2 , 3—トリシアノプロピル基、 ニトロメチル基、 1 _ニトロェチル基、 2—ニトロェチル基、 2—二トロイソプチ ル基、 1, 2—ジニトロェチル基、 1, 3—ジニトロイソプロピル基、 2 , 3—ジ ニトロ一 t一ブチル基、 1, 2 , 3—トリニトロプロピル基等が挙げられ、 一種単 独または二種以上を組み合わせて有することができる。
前記式 (1 ) において置換もしくは非置換の芳香族炭化水素基としては、 炭素数 1から 1 8のものが特に好ましい。 具体的には、 例えば、 フエニル基、 1一ナフチ ル基、 2—ナフチル基、 9一フルォレニル基、 1一アントリル基、 2 _アントリル 基、 9 _アントリル基、 1一フエナントリル基、 2—フエナントリル基、 3—フエ ナントリル基、 4一フエナントリル基、 9一フエナントリル基、 1一ナフタセニル 基、 2—ナフタセニル基、 9一ナフタセニル基、 1 -ピレニル基、 2—ピレニル基、 4ーピレニル基、 2—ピフエ二ルイル基、 3—ビフエ二ルイル基、 4—ピフエニル ィル基、 p—ターフェ二ルー 4—ィル基、 ρ—ターフェ二ルー 3—ィル基、 p—夕 —フエ二ルー 2—ィル基、 m—ターフェニル— 4—ィル基、 m—ターフェ二ルー 3 ーィル基、 m—ターフェ二ルー 2—ィル基、 o—トリル基、 m—トリル基、 p—ト リル基、 p一 t 一ブチルフエニル基、 p - ( 2—フエニルプロピル) フエニル基、 3—メチルー 2—ナフチル基、 4ーメチルー 1—ナフチル基、 4一メチル— 1—ァ ントリル基、 4 ' ーメチルビフエ二ルイル基、 4 " 一 tーブチルー p—夕一フエ二 ルー 4ーィル基、 及びこれらの誘導体等が挙げられ、 これらの一種単独または二種 以上を組み合わせて有することができる。
前記式 (1 ) において置換または非置換の芳香族複素環基としては、 炭素数 1か ら 1 8のものが特に好ましい。 具体的には、 1一ピロリル基、 2—ピロリル基、 3 —ピロリル基、 ピラジニル基、 2—ピリジニル基、 3—ピリジニル基、 4一ピリジ ニル基、 1—インドリル基、 2—インドリル基、 3一インドリル基、 4—インドリ ル基、 5一インドリル基、 6—インドリル基、 7一インドリル基、 1一イソインド リル基、 2—イソインドリル基、 3—イソインドリル基、 4一イソインドリル基、 5—イソインドリル基、 6—イソインドリル基、 7—イソインドリル基、 2—フリ ル基、 3—フリル基、 2—ベンゾフラニル基、 3—べンゾフラニル基、 4—ベンゾ フラニル基、 5—ベンゾフラニル基、 6一べンゾフラニル基、 7—ベンゾフラニル 基、 1 _イソべンゾフラニル基、 3—イソべンゾフラニル基、 4一イソベンゾフラ ニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソべンゾ フラニル基、 2—キノリル基、 3—キノリル基、 4一キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8—キノリル基、 1—イソキノリル基、 3—ィ ソキノリル基、 4一イソキノリル基、 5—イソキノリル基、 6—イソキノリル基、 7一イソキノリル基、 8—イソキノリル基、 2—キノキサリニル基、 5—キノキサ リニル基、 6—キノキサリニル基、 1一力ルバゾリル基、 2一力ルバゾリル基、 3 —カルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 1—フエナンスリ ジニル基、 2—フエナンスリジニル基、 3—フエナンスリジニル基、 4一フエナン スリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエ ナンスリジニル基、 9一フエナンスリジニル基、 1 0—フエナンスリジニル基、 1 一ァクリジニル基、 2—ァクリジニル基、 3—ァクリジニル基、 4一ァクリジニル 基、 9—ァクリジニル基、 1, 7—フエナンスロリン— 2—ィル基、 1 , 7—フエ ナンスロリン一 3—ィル基、 1 , 7—フエナンスロリン— 4ーィル基、 1, 7 _フ ェナンスロリン一 5—ィル基、 1, 7 _フエナンスロリン— 6—ィル基、 1 , 7一 フエナンスロリン— 8—ィル基、 1 , 7 _フエナンスロリン一 9ーィル基、 1 , 7 一フエナンスロリン— 1 0—ィル基 1 , 8—フエナンスロリンー 2 ίル基、 1 , 8—フエナンスロリン一 3—ィル基、 1 , 8—フエナンスロリン— 4一^ fル基、 1, 8—フエナンスロリン— 5—ィル基、 1, 8—フエナンスロリンー 6—ィル基、 1 , 8 _フエナンスロリンー Ί—ィル基、 1, 8—フエナンスロリン— 9—ィル基、 1, 8—フエナンスロリン— 1 0—ィル基、 1, 9一フエナンスロリン一 2—ィル基、 1 , 9 _フエナンスロリン— 3—ィル基、 1, 9一フエナンスロリンー 4—ィル基、 1 , 9—フエナンスロリン— 5—ィル基、 1, 9—フエナンスロリンー 6—ィル基、 1, 9—フエナンスロリン一 7—ィル基、 1 , 9一フエナンスロリン一 8—ィル基、 1 , 9—フエナンスロリン一 1 0—ィル基、 1, 1 0—フエナンスロリンー2—ィ ル基、 1 , 1 0—フエナンスロリンー 3—ィル基、 1 , 1 0—フエナンスロリン一 4ーィル基、 1 , 1 0—フエナンスロリン— 5—ィル基、 2 , 9—フエナンスロリ ンー 1ーィル基、 2 , 9—フエナンスロリン一 3—ィル基、 2, 9一フエナンスロ リン—4—ィル基、 2 , 9—フエナンスロリン一 5—ィル基、 2, 9—フエナンス 口リン— 6—ィル基、 2 , 9—フエナンスロリン一 7—ィル基、 2 , 9—フエナン スロリン— 8—ィル基、 2 , 9一フエナンスロリン一 1 0—ィル基、 2 , 8 -フエ ナンスロリン— 1—ィル基、 2 , 8—フエナンスロリン— 3—ィル基、 2 , 8—フ ェナンスロリンー 4ーィル基、 2 , 8—フエナンスロリンー 5—ィル基、 2 , 8 - フエナンスロリン一 6—ィル基、 2 , 8—フエナンスロリン一 7—ィル基、 2 , 8 一フエナンスロリン一 9ーィル基、 2, 8—フエナンスロリン一 1 0—ィル基、 2 , 7—フエナンスロリンー 1ーィル基、 2 , 7 _フエナンスロリンー 3—ィル基、 2 , 7—フエナンスロリンー 4—ィル基、 2, 7—フエナンスロリンー 5—ィル基、 2 , 7—フエナンスロリンー 6—ィル基、 2, 7—フエナンスロリン一 8—"^ ル基、 2 , 7—フエナンスロリンー 9ーィル基、 2 , 7—フエナンスロリン一 1 0一^ fル基、 1一フエナジニル基、 2—フエナジニル基、 1ーフエノチアジニル基、 2—フエノ チアジニル基、 3—フエノチアジニル基、 4—フエノチアジニル基、 1 0 _フエノ チアジニル基、 1一フエノキサジニル基、 2—フエノキサジニル基、 3—フエノキ サジニル基 4—フエノキサジニル基 1 0—フエノキサジニル基、 2—ォキサゾ リル基、 4ーォキサゾリル基、 5ーォキサゾリル基、 2—ォキサジァゾリル基、 5 一ォキサジァゾリル基、 3—フラザニル基、 2一チェニル基、 3一チェニル基、 2 一メチルピロ一ルー 1—ィル基、 2—メチルピロール— 3—ィル基、 2—メチルビ ロール— 4ーィル基、 2—メチルピロ一ルー 5—ィル基、 3—メチルピロール一 1 ーィル基、 3一メチルピロ一ルー 2—ィル基、 3—メチルピロ一ルー 4ーィル基、
3—メチルビロール— 5—ィル基、 2— t一ブチルピロ一ル—4—ィル基、 3— ( 2—フエニルプロピル) ピロ一ルー 1ーィル基、 2ーメチルー 1一インドリル基、
4—メチルー 1一インドリル基、 2—メチルー 3—インドリル基、 4—メチル—3 —インドリル基、 2— t一プチルー 1—インドリル基、 4一 t 一ブチル— 1一イン ドリル基、 2 - t -プチルー 3—インドリル基、 4一 t _プチルー 3—インドリル 基、 及びこれらの誘導体等が挙げられ、 これらの一種単独または二種以上を組み合 わせて有することができる。
前記式 (1) において、 ハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原 子、 ヨウ素原子が挙げられ、 一種単独または二種以上を組み合わせて有することが できる。
前記式 (1) において、 環状につながったアルキレン基としては、 エチレン基 ( -CH2CH2 -) 、 トリメチレン基 (- CH2CH2CH2- ) 、 テトラメチレン基、 ペン タメチレン基、 へキサメチレン基、 ヘプタメチレン基、 プロピレン基 (-CH (C H3) CH2 -) 、 ブチレン基、 ペンチレン基、 へキシレン基、 ヘプチレン基等が挙 げられる。
本発明において電極に含有される式 (1) で表される繰り返し単位を有する重合 体の骨格構造は鎖状、 分岐状、 網目状の何れであってよい。 また、 その平均分子量 は特に限定されないが、 1000以上であることが好ましい。 これは、 分子量が高 いと、 電池用電解液に対する重合体の溶解性が低下し、 充放電サイクルの安定性が 高くなるためである。
式 (1) で表される繰り返し単位としては 以下のものが挙げられる。
Figure imgf000012_0001
-C― C一 N
CH3 CH3 O
Figure imgf000013_0001
¾0 ¾D
εΗ0
Figure imgf000013_0002
891'Z0 /t00ZdT/13d £6 ム0請 OAV
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
£6SLL0/ 00Z ΟΛ\
Figure imgf000015_0001
Figure imgf000015_0002
3
式 (1) で表される繰り返し単位を有する重合体としては、 下記式 (2) で表さ れる重合体を挙げることができる。 R1 R3
Figure imgf000016_0001
式 (2) において Rl、 R2、 R3及び R4はそれぞれ独立して水素原子、 置換また は無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換もしくは非 置換の芳香族複素環基、 ハロゲン原子、 又は Rlと R3、 R2と R4のいずれかもしく は両方が環状につながったアルキレン基を表す。
式 (2) 中の Rl、 R2、 R3及び R4は、 式 (1) 中の Rl、 R2、 R3及び R4とし て例示した前述のものを挙げることができる。 また、 式 (2) 中の nは正の整数を 示す。 式 (2) で表される重合体は、 繰り返し単位が一種の単独重合体であっても 良いし、 異なる二種以上の繰り返し単位からなる重合体であってもよい。 さらに式 (1) で示される繰り返し単位以外の繰り返し単位を含有する重合体であってもよ い。 式 (1) で表される繰り返し単位を有する重合体における式 (1) で表される 繰り返し単位の含有量は、 単位質量あたりの容量の点から多いほど良く、 例えば 6 0モル%以上が好ましく、 70モル%以上がより好ましく、 80モル%以上がさら に好ましい。
式 (1) で表される繰り返し単位を有する重合体として、 以下の式 (3) から式 (10) で表される構造をもつ重合体が挙げられる。 式 (3) 〜 (9) 中の nは正 の整数を示す。 式 (10) で表される重合体は、 ランダム共重合体であってもプロ ック共重合体であってもよく、 式中の n、 mは組成比率を示す。
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
si
Figure imgf000017_0004
C6S..0/1700Z OAV
(L )
Figure imgf000018_0001
9
O ¾D eHD
-N—— 0一 0
Figure imgf000018_0002
91
Figure imgf000018_0003
£6SLL0/ 00Z OAV
Figure imgf000019_0001
Figure imgf000019_0002
CH3 CHg Η Η
C ~~ C ~ Ν一 C—一 c
η
CH3 CHg Ο Η Η Η
(1 0) 式 (ι)で表される繰り返し単位を有する重合体は、 例えば以下の方法で得るこ とができる。 まず、 下記式 (11)で表されるアジリジン誘導体を合成し、 これを カチオン開環重合することにより下記式 (1 2 ) で表される重合体を合成する。 用 いることができるカチオン開環重合触媒としては三フッ化ホウ素、 三フッ化ホウ素 ジェチルエーテル錯体、 塩化アルミニウム、 ェチルアルミジクロリド、 ジェチルァ ルミクロリド、 四塩化チタン、 四塩化スズ、 硫酸、 トリフルォロメタンスルホン酸、 p -トルエンスルホン酸、 りん酸、 過塩素酸、 硫酸ジェチルなどが挙げられる。 得 られた重合体を過酸化水素、 t 一プチルヒドロペルォキシド、 過酸化ベンゾィル等 の有機過酸化物、 過酢酸、 過安息香酸、 m—クロ口過安息香酸等の有機過酸、 ペル ォキソ硫酸などの酸化剤で酸化することにより得ることができる。
Figure imgf000020_0001
式 (I I ) において R R2、 R3及び R4はそれぞれ独立して水素原子、 置換ま たは無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換もしくは 非置換の芳香族複素環基、 ハロゲン原子、 又は R lと R3、 R 2と R4のいずれかもし くは両方が環状につながつたアルキレン基を表す。
Figure imgf000020_0002
1 2 ' 式 (12) において Rl、 R2、 R3及び R4はそれぞれ独立して水素原子、 置換ま たは無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換もしくは 非置換の芳香族複素環基、 ハロゲン原子、 又は と R3、 R2と R4のいずれかもし くは両方が環状につながったアルキレン基を表す。
式 (11) 及び式 (12) 中のそれぞれの Rl、 R2、 R3及び R4は、 式 ) 中 の Rl、 R2、 R3及び R4として例示した前述のものを挙げることができる。 また、 式 (12) 中の nは正の整数を示す。 式 (12) で表される重合体は、 繰り返し単 位が一種の単独重合体であっても良いし、 異なる二種以上の繰り返し単位からなる 重合体であってもよい。
原料である式 (1 1) で表されるアジリジン誘導体は、 G. L. クロス (G. L. C 1 o s s) 、 S. J. プロイス (S. J . B r o i s ) 、 ジャーナル ·ォプ ·ザ -アメリカン 'ケミカル 'ソサエティ一 (Jornal of the American Chemical Soci ety) 、 82巻、 6068頁〜 6070頁 ( 1960年) に記載の方法により合成 することができる。
一般に、 ラジカル濃度はスピン濃度で表すことができる。 スピン濃度は、 例えば 電子スピン共鳴 (ESR) スペクトルの吸収面積強度から、 本発明の活物質の単位重 量あたりのスピン量 (spin/g) として求めることができる。 本発明における活物 質のスピン濃度は、 たとえば 1秒以上、 好ましくは 1時間以上、 より好ましくは 2 4時間以上にわたって、 通常、 1 O20Spin/g以上に保たれていることが好ましく、 さらに 5 X 1020Spin/g以上に保たれていることがより好ましい。
本発明の二次電池における前記重合体は固体状態であっても、 また電解質へ溶解 または分散した状態であってもよい。 ただし、 固体状態で用いる場合は、 電解液へ の溶解による容量低下を抑える点から、 電解液に対し不溶性または低溶解性のもの が好ましい。 また、 本発明の電池の一つの極において、 活物質である式 (1) で表 される繰り返し単位を有する重合体は、 一種単独で用いることができるが、 二種類 以上を組み合わせて用いてもよい。 また、 他の活物質と組み合わせて用いてもよい。 本発明の電池は、 正極もしくは負極の一方の電極反応、 または両方の電極反応に おける活物質として、 前記式 (1) で表される繰り返し単位を有する重合体が用い られるが、 この重合体を一方の電極反応に活物質として用いる場合、 他方の電極反 応に用いられる活物質として従来公知のものが利用できる。
例えば負極に式 (1) で表される繰り返し単位を有する重合体を用いる場合には、 正極活物質として金属酸化物粒子、 ジスルフイド化合物、 導電性高分子等を用いる ことができる。 ここで、 金属酸化物としては例えば L i Mn〇2、 L iXMn204 ( 0 < x < 2 ) 等のマンガン酸リチウムあるいはスピネル構造を有するマンガン酸リ チウム、 Mn02、 L i Co〇2、 L i N i 02、 あるいは L i XV205 (0<x<2 ) 等が挙げられ、 ジスルフィド化合物としてはジチオダリコ一ル、 2, 5—ジメル カプト一 1, 3, 4ーチアジアゾール、 S—トリアジンー 2, 4, 6—卜リチォ一 ル等が挙げられ、 導電性高分子としてはポリアセチレン、 ポリフエ二レン、 ポリア 二リン、 ポリピロ一ル等が挙げられる。 本発明ではこれらの正極材料を単独もしく は二種以上を組み合わせて使用することもできる。 また、 正極においてこれらの正 極材料と式 (1) で表される繰り返し単位を有する重合体を混合して複合活物質と して用いてもよい。
一方、 前記式 (1) で表される繰り返し単位を有する重合体を正極に用いた場合 には、 負極活物質としてグラフアイトや非晶質カーボン、 リチウム金属、 リチウム 合金、 リチウムイオン吸蔵炭素、 導電性高分子等を用いることができる。 これらの 形状としては特に限定されず、 例えばリチウム金属では薄膜状のものの他、 バルク 状のもの、 粉末を固めたもの、 繊維状のもの、 フレーク状のもの等であってもよい。 また、 これらの負極活物質を単独もしくは二種以上を組み合わせて使用できる。 ま た、 負極においてこれら従来公知の活物質と前記重合体と組み合わせて用いてもよ い。
[2] 補助導電材およびイオン伝導補助材
前記式 (1) で表される繰り返し単位を有する重合体を用いて電極を形成する際 に、 インピーダンスを低下させる目的で、 補助導電材ゃイオン伝導補助材を混合さ せることもできる。 これらの材料としては、 補助導電材としてグラフアイト、 カー ポンプラック、 アセチレンブラック等の炭素質微粒子、 ポリア二リン、 ポリピロ一 ル、 ポリチォフェン、 ポリアセチレン、 ポリアセン等の導電性高分子が挙げられ、 イオン伝導補助材としては高分子ゲル電解質、 高分子固体電解質等が挙げられる。
[ 3 ] 結着剤
電極の各構成材料間の結びつきを強めるために、 電極材料に結着剤を混合するこ ともできる。 このような結着剤としては、 ポリテトラフルォロエチレン、 ポリフッ 化ビニリデン、 ビニリデンフルオライド—へキサフルォロプロピレン共重合体、 ビ 二リデンフルオラィド―テトラフルォロエチレン共重合体、 スチレン一ブタジエン 共重合ゴム、 ポリプロピレン、 ポリエチレン、 ポリイミド、 各種ポリウレタン等の 樹脂バインダ一が挙げられる。
[ 4 ] 触媒
電極反応をより潤滑に行うために、 酸化還元反応を助ける触媒を電極材料に混合 することもできる。 このような触媒としては、 ポリア二リン、 ポリピロ一ル、 ポリ チォフェン、 ポリアセチレン、 ポリアセン等の導電性高分子、 ピリジン誘導体、 ピ 口リドン誘導体、 ベンズイミダゾール誘導体、 ベンゾチアゾ一ル誘導体、 ァクリジ ン誘導体等の塩基性化合物、 金厲ィォン錯体等が挙げられる。
[ 5 ] 集電体およびセパレー夕
負極集電体および正極集電体として、 ニッケルやアルミニウム、 銅、 金、 銀、 ァ ルミニゥム合金、 ステンレス、 炭素等からなる箔、 金属平板、 メッシュ状などの形 状のものを用いることができる。 また、 集電体に触媒効果を持たせたり、 活物質と 集電体とを化学結合させたりしてもよい。 一方、 セパレー夕は、 上記の正極と負極 が短絡しないように接触しない形状や絶縁性を有するものとして、 ポリエチレン、 ポリプロピレン等からなる多孔質フィルムゃ不織布などを用いることもできる。
[ 6 ] 電解質 本発明において、 電解質は、 負極と正極の両極間の荷電担体輸送を行うものであ り、 一般には 20 で10—5〜10—1 S/ cmのイオン伝導性を有していることが 好ましい。 電解質としては、 例えば電解質塩を溶剤に溶解した電解液を利用するこ とができる。
電解質塩として、 例えば L i PF6、 L i C 104、 L i BF4、 L i CF3SO3, L i (CF3S02) 2 L i (C2F5S02) 2N、 L i (CF3S02) 3C、 L i ( C 2 F 5 S O 2) 3 C等の従来公知の材料を用いることができる。
また, 電解液に用いられる溶剤としては、 例えばエチレン力一ポネート、 プロピ レン力一ポネート、 ジメチルカーポネート、 ジェチルカ一ポネート、 メチルェチル 力一ポネート、 ァープチロラクトン、 テトラヒドロフラン、 ジォキソラン、 スルホ ラン、 ジメチルホルムアミド、 ジメチルァセトアミド、 N—メチル—2—ピロリド ン等の有機溶媒を用いることができる。 これらの溶剤を単独もしくは 2種類以上混 合して用いることもできる。
さらに、 本発明では電解質として固体電解質を用いることもできる。 これら固体 電解質に用いられる高分子化合物としては、 ポリフッ化ビニリデン、 フッ化ビニリ デン—へキサフルォ口プロピレン共重合体 フッ化ビニリデンーェチレン共重合体、 フッ化ピニリデン—モノフルォロェチレン共重合体、 フッ化ビニリデンートリフル ォロエチレン共重合体、 フッ化ビニリデンーテトラフルォロエチレン共重合体、 フ ッ化ビ二リデン一へキサフルォロプロピレンーテトラフルォロェチレン三元共重合 体等のフッ化ピニリデン系重合体や、 ァクリロニトリル一メチルメタクリレート共 重合体、 アクリロニトリル一メチルァクリレート共重合体、 アクリロニトリル—ェ チルメタクリレート共重合体、 アクリロニトリル一ェチルァクリレート共重合体、 アクリロニトリル—メタクリル酸共重合体、 アクリロニトリル一ァクリル酸共重合 体、 ァクリロニトリル—ビニルァセテ一ト共重合体等のアクリル二トリル系重合体、 さらにポリエチレンォキサイド、 エチレンォキサイドープロピレンォキサイド共重 合体、 これらのァクリレート体やメタクリレート体の重合体などが挙げられる。 こ れらの高分子化合物に電解液を含ませてゲル状にしたものを用いても、 高分子化合 物のみをそのまま用いてもよい。
[ 7 ] 電池形状
本発明において、 電池の形状は特に限定されず、 従来公知のものを採用すること ができる。 例えば、 電極積層体あるいはその巻回体を金属ケース、 樹脂ケース、 あ るいはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィル ム等によって封止したもの等が挙げられる。 またその外観形状としては、 円筒型、 角型、 コイン型、 シート型等が挙げられるが、 本発明はこれらに限定されるもので はない。
[ 8 ] 電池の製造方法
電池の製造方法としては特に限定されず、 材料に応じて様々な方法を用いること ができる。 例えば、 活物質を含む電極材料に溶剤を加えスラリー状にして電極集電 体に塗布し、 加熱もしくは常温で溶剤を揮発させ、 その後に、 セパレ一夕を介して 対極を積層し、 あるいはさらにこれを巻回して、 外装体で包み、 電解液を注入して 封止する方法がある。 スラリ一化のための溶剤としては、 テトラヒドロフラン、 ジ ェチルェ一テルなどのエーテル系溶媒 N—メチルピロリドン等のアミン系溶媒 ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素系溶媒、 へキサン、 ヘプタン などの脂肪族炭化水素系溶媒、 クロ口ホルム、 ジクロロメタン等のハロゲン系炭化 水素系溶媒等が挙げられる。
電池を製造する際には、 電極材料として、 前記式 ( 1 ) で表される繰り返し単位 を有する重合体 (ニトロキシルラジカル重合体) そのものを用いる場合と、 電極反 応によって前記ニトロキシルラジカル重合体に変化し得る化合物を用いる場合とが ある。 後者の場合、 電極反応によって前記ニトロキシルラジカル重合体に変化する 化合物の例としては、 前記ニトロキシルラジカル重合体を還元したァニオン体とリ チウムイオンやナトリゥムイオンといった電解質カチオンとからなるリチウム塩ゃ ナトリウム塩、 あるいは、 前記ニトロキシルラジカル重合体を酸化したカチオン体 と PF6一や: BF4一といつた電解質ァニオンとからなる塩などが挙げられる。
本発明において、 電極からのリードの取り出し、 外装等のその他の製造条件は二 次電池の製造方法として従来公知の方法を用いることができる。
<実施例 >
以下、 本発明を実施例により具体的に説明するが、 本発明はこれらの実施例に限 定されるものではない。
(実施例 1 )
ポリ (2, 2, 3, 3—テトラメチルェチレンニトロキシル) (式 (A) で表さ れる化合物) 300mg、 グラフアイト粉末 600mg、 ポリテトラフルォロェチ レン樹脂パインダ 1 O Omgを測り採り、 メノウ乳鉢を用い 10分間混練すること により乾式混合した。 なお、 ポリ (2, 2, 3, 3ーテトラメチルエチレン二トロ キシル) の分子量を G P Cにより測定した結果、 重量平均分子量は 8900 (ポリ スチレン換算) 、 分散度 (重量平均分子量/数平均分子量) は 1. 82であった。 得られた混合体を、 圧力を掛けてローラ一延伸することにより薄膜とした。 これ を、 真空中 80 で一晩乾燥した後、 直径 12mmの円形に打ち抜き、 コイン型の 正極用電極を作製した。 なお、 この電極の質量は 18. 8mgであった。
次に、 得られた電極を電解液に浸して、 電極中の空隙に電解液を染み込ませた。 電角军液としては、 lmo 1/ のし i P F6電解質塩を含むエチレンカーボネート /ジェチルカーボネート混合溶液 (混合比 3 : 7 (体積比) ) を用いた。
電解液を含浸させた電極は、 図 1に示すように、 正極集電体上に置き、 その上に 同じく電解液を含浸させたポリプロピレン多孔質フィルムセパレー夕を積層した。 さらに負極となるリチウムを張り合わせ銅箔を積層し、 枠状の絶緣パツキンを設 置し、 負極集電体を重ね合わせた。 これに、 かしめ機によって圧力を加えて密閉し、 正極活物質としてポリ (2, 2, 3, 3—テトラメチルェチレンニトロキシル) 、 負極活物質として金属リチウムを用いたコイン型電池を得た。
作製したコイン型電池を 1mAの定電流で電圧が 4. 2 Vになるまで充電し、 そ の後、 1mAの定電流で放電を行った。 その結果、 電圧は 3. 6 V付近で 48分間 ほぼ一定となり、 その後急激に低下した。 これにより電池として動作していること を確認した。 電圧が 2. 2 Vまで低下したところで再び充電を行い、 さらに、 4. 2〜2. 2 Vの範囲で充放電を 50回繰り返した。 その結果、 繰り返し充放電を行 つても放電時に 3. 6 V付近で電圧が一定になることを確認し、 この電池が二次電 池として動作していることを確認した。 このコイン型電池の容量は、 正極活物質 1 gあたり 188mAhであった。 また、 (50回目の放電容量) / (1回目の放電 容量) は 98. 2 %であった。
Figure imgf000027_0001
CH3 CH 3,
(A)
(実施例 2 )
ポリ (2, 2, 3, 3—テトラメチルエチレンニトロキシル) の代わりにポリ ( 2, 2, 3—トリメチルー 3—プロピルェチレンニトロキシル) (式 (B) で表さ れる重合体) を用いた以外は、 実施例 1と同様にしてコイン型電池を作製した。 こ のコイン型電池の正極の重さは 2 Omgであった。
作製したコイン型電池を 1mAの定電流で電圧が 4. 2 Vになるまで充電し、 そ の後、 1mAの定電流で放電を行った。 その結果、 電圧は 3. 6 V付近で 48分間 ほぼ一定となり、 その後急激に低下した。 これにより電池として動作していること を確認した。 電圧が 2. 2 Vまで低下したところで再び充電を行い、 さらに、 4. 2〜2. 2 Vの範囲で充放電を 50回繰り返した。 その結果、 繰り返し充放電を行 つても放電時に 3. 3 V付近で電圧が一定になることを確認し、 この電池が二次電 池として動作していることを確認した。 このコイン型電池の容量は、 正極活物質 1 gあたり 166. 2mAhであった。 また、 (50回目の放電容量) / (1回目の 放電容量) は 97. 1%であった。
Figure imgf000028_0001
Β
(実施例 3 )
ポリ (2, 2, 3, 3ーテトラメチルエチレンニトロキシル) の代わりにポリ ( 2, 3—ジメチル— 2, 3ージフエニルエチレン二トロキシル) (式 (C) で表さ れる重合体) を用いた以外は、 実施例 1と同様にしてコイン型電池を作製した。 こ のコイン電池の正極の重さは 19. lmgであった。
作製したコイン型電池を 1mAの定電流で電圧が 4. 2 Vになるまで充電し、 そ の後、 1mAの定電流で放電を行った。 その結果、 電圧は 3. 6 V付近で 25分間 ほぼ一定となり、 その後急激に低下した。 これにより電池として動作していること を確認した。 電圧が 2· 2 Λ/まで低下したところで再び充電を行い、 さらに、 4. 2〜2· 2 Vの範囲で充放電を 50回繰り返した。 その結果、 繰り返し充放電を行 つても放電時に 3. 3 V付近で電圧が一定になることを確認し、 この電池が二次電 池として動作していることを確認した。 このコイン電池の容量は、 正極活物質 l g あたり 94. 8mAhであった。 また、 (50回目の放電容量) Z (1回目の放電 容量) は 97. 7 %であった。
Figure imgf000029_0001
CH3 i¾3 Q
(C)
(実施例 4)
ポリ (2, 2, 3, 3—テトラメチルエチレンニトロキシル) の代わりにポリ ( 2, 2, 3, 3—テトラフルォ口エチレンニトロキシル) (式 (D) で表される重 合体) を用いた以外は、 実施例 1と同様にしてコイン型電池を作製した。 このコィ ン電池の正極の重さは 17. 2 m gであった。
作製したコィン型電池を 1 mAの定電流で電圧が 4. 2 Vになるまで充電し., そ の後. 1 m Aの定電流で放電を行つた。 その結果、 電圧は 3. 7 V付近で 42分間 ほぼ一定となり、 その後急激に低下した。 これにより電池として動作していること を確認した。 電圧が 2. 2 Vまで低下したところで再び充電を行い、 さらに、 4. 2〜2. 2 Vの範囲で充放電を 50回繰り返した。 その結果、 繰り返し充放電を行 つても放電時に 3. 7 V付近で電圧が一定になることを確認し、 この電池が二次電 池として動作していることを確認した。 このコイン型電池の容量は、 正極活物質 1 gあたり 18 ImAhであった。 また、 (50回目の放電容量) ノ (1回目の放電 容量) は 95. 2 %であった。
Figure imgf000030_0001
(比較例 1 )
ポリ (2, 2, 3, 3ーテトラメチルエチレンニトロキシル) を用いず、 代わり にグラフアイト粉末を 90 Omgに増やした以外は、 実施例 1と同様にしてコイン 型電池を作製した。
作製した電池に対して、 実施例 1と同様にして充放電を行った。 その結果、 放電 時に電圧平坦部はみられず電圧は急速に低下し、 電池として十分に動作しなかった。 また、 この電池に対して、 1mAの定電流を流して充電を試みたところ、 電圧は 瞬間的に上昇して 4. 5 Vを超えたが、 これを放電したところ、 電圧曲線に平坦部 は認められず、 この電池は二次電池として動作しないことが確認された。
(比較例 2 )
ポリ (2, 2, 3, 3—テトラメチルエチレンニトロキシル) を用いず、 代わり に L i Co〇2を 30 Omgを用いた以外は、 実施例 1と同様にしてコイン型電池 を作製した。
以上のように作製した電池に対して実施例 1と同様の方法で充放電を行い、 活物 質あたりの容量を計算したところ、 94mAhZgであった。
本発明によれば、 電極活物質として重金属を含まない軽くて安全な元素から構成 される電池を作製することが可能となり、 また、 高容量 (質量当たり) で充放電サ ィクルの安定性に優れた二次電池を提供できる。 産業上の利用の可能性
エネルギー密度が高く、 高容量で充放電の安定性に優れた二次電池に関するもの であれば、 あらゆるものに適用することが可能であり、 その利用の可能性において 何ら限定するものではない。
幾つかの好適な実施の形態及び実施例に関連付けして本発明を説明したが、 これ ら実施の形態及び実施例は単に実例を挙げて発明を説明するためのものであって、 限定することを意味するものではないことが理解できる。 本明細書を読んだ後であ れば、 当業者にとって等価な構成要素や技術による数多くの変更および置換が容易 であることが明白であるが、 このような変更および置換は、 添付の請求項の真の範 囲及び精神に該当するものであることは明白である。

Claims

請求の範囲
1 . 少なくとも正極、 負極および電解質を有する二次電池において、 正 極および負極の少なくとも一方の活物質として、 式 (1 ) で表される繰り返し単位 を有する重合体を含む二次電池。
R1 E3
Figure imgf000032_0001
1 )
ここで、 式 (1 ) において R l、 R R 3及び R 4はそれぞれ独立して水素原子、 置換または無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換も しくは非置換の芳香族複素環基、 ハロゲン原子、 又は R lと R3、 R 2と R4のいずれ かもしくは両方が環状につながったアルキレン基を表す。
2 . 前記重合体を正極活物質として含有する請求項 1に記載の二次電池。
3 . 前記二次電池は、 リチウム二次電池である請求項 1に記載の二次電 池。
4. 少なくとも正極、 負極および電解質を有する二次電池において、 正 極および負極の少なくとも一方の活物質として、 式 (2) で表される重合体を含む 二次電池。
Figure imgf000033_0001
ここで、 式 (2) において Rl、 R2、 R3及び R4はそれぞれ独立して水素原子、 置換または無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換も しくは非置換の芳香族複素環基、 ハロゲン原子、 又は R1と R3、 R2と R4のいずれ かもしくは両方が環状につながつたアルキレン基を表す。
5. 前記重合体を正極活物質として含有する請求項 4に記載の二次電池 c
6. 前記二次電池は、 リチウム二次電池である請求項 4に記載の二次電 池。
7. 正極および負極の少なくとも一方の電極反応における反応物もしく は生成物として、 式 (1) で表される繰り返し単位を有する重合体を含有する二次
Figure imgf000034_0001
(1
ここで、 式 (1) において Rl、 R2、 R 3及び R4はそれぞれ独立して水素原子、 置換または無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換も しくは非置換の芳香族複素環基、 ハロゲン原子、 又は Rlと R'3、 R2と R4のいずれ かもしくは両方が環状につながつたアルキレン基を表す。
8. 前記重合体を、 正極反応における反応物もしくは生成物として含有 する請求項 7に記載の二次電池。
9. 前記二次電池は、 リチウム二次電池である請求項 7に記載の二次電 池。
10. 正極および負極の少なくとも一方の電極反応において式 (1) で表 される繰り返し単位を有する重合体を生成し得る化合物を含有する二次電池。
Figure imgf000035_0001
ここで、 式 (1) において 、 、 R 3及び R 4はそれぞれ独立して水素原子、 置換または無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換も しくは非置換の芳香族複素環基、 ハロゲン原子、 又は Rlと R3、 R2と R4のいずれ かもしくは両方が環状につながったアルキレン基を表す。
11. 前記化合物を正極に含有する請求項 10に記載の二次電池。
12. 前記二次電池は、 リチウム二次電池である請求項 10に記載の二次 電池。
高容量で充放電サイクル特性に優れた二次電池を提供する。 正極、 負極および電 解質を有する二次電池において、 正極および負極の少なくとも一方の活物質として、 式 ( 1 ) で表される繰り返し単位を有する重合体を含む。
R1 B3
Figure imgf000036_0001
ここで 式 (1 ) において R l、 R R3及び R4はそれぞれ独立して水素原子 置換または無置換のアルキル基、 置換もしくは無置換の芳香族炭化水素基、 置換も しくは非置換の芳香族複素環基、 ハロゲン原子、 又は R lと R3、 R 2と R4のいずれ かもしくは両方が環状につながったアルキレン基を表す。
PCT/JP2004/002468 2003-02-28 2004-03-01 二次電池 WO2004077593A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005502976A JP4435087B2 (ja) 2003-02-28 2004-03-01 二次電池
US10/519,933 US7318981B2 (en) 2003-02-28 2004-03-01 Secondary battery with a nitroxyl polymer active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-053885 2003-02-28
JP2003053885 2003-02-28

Publications (1)

Publication Number Publication Date
WO2004077593A1 true WO2004077593A1 (ja) 2004-09-10

Family

ID=32923448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002468 WO2004077593A1 (ja) 2003-02-28 2004-03-01 二次電池

Country Status (4)

Country Link
US (1) US7318981B2 (ja)
JP (1) JP4435087B2 (ja)
CN (1) CN1331258C (ja)
WO (1) WO2004077593A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475956B2 (en) 2007-01-25 2013-07-02 Nec Corporation Polyradical compound-conductive material composite, method for producing the same, and battery using the same
DE102014003300A1 (de) 2014-03-07 2015-09-10 Evonik Degussa Gmbh Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
EP3135704A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3136410A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3279223A1 (de) 2016-08-05 2018-02-07 Evonik Degussa GmbH Verwendung thianthrenhaltiger polymere als ladungsspeicher
WO2018024901A1 (de) 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verwendung thianthrenhaltiger polymere als ladungsspeicher
WO2018046387A1 (de) 2016-09-06 2018-03-15 Evonik Degussa Gmbh Verfahren zur verbesserten oxidation sekundärer amingruppen
DE102017005924A1 (de) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949018B2 (ja) * 2004-03-16 2012-06-06 パナソニック株式会社 リチウム二次電池
WO2008039808A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
EP2167228B1 (en) * 2007-05-09 2015-07-08 California Institute of Technology Lithium fluoropolymer and fluoro-organic batteries
CN110002502A (zh) 2013-02-01 2019-07-12 特罗诺克斯有限公司 改善的锂锰氧化物组合物
KR101975149B1 (ko) * 2017-09-14 2019-05-03 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022809A (ja) * 2001-07-09 2003-01-24 Nec Corp 電池および電池用電極
JP2003036849A (ja) * 2001-07-24 2003-02-07 Nec Corp 二次電池
JP2003132891A (ja) * 2001-10-23 2003-05-09 Nec Corp 二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687736B2 (ja) * 2000-02-25 2005-08-24 日本電気株式会社 二次電池
JP2002117854A (ja) * 2000-10-06 2002-04-19 Nec Corp 二次電池およびその製造方法
JP3687534B2 (ja) * 2000-12-20 2005-08-24 日本電気株式会社 電池
JP4687848B2 (ja) * 2001-04-03 2011-05-25 日本電気株式会社 蓄電デバイス
JP4154561B2 (ja) * 2001-10-19 2008-09-24 日本電気株式会社 二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022809A (ja) * 2001-07-09 2003-01-24 Nec Corp 電池および電池用電極
JP2003036849A (ja) * 2001-07-24 2003-02-07 Nec Corp 二次電池
JP2003132891A (ja) * 2001-10-23 2003-05-09 Nec Corp 二次電池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475956B2 (en) 2007-01-25 2013-07-02 Nec Corporation Polyradical compound-conductive material composite, method for producing the same, and battery using the same
US9890230B2 (en) 2014-03-07 2018-02-13 Evonik Degussa Gmbh Tetracyanoanthraquinodimethane polymers and use thereof
DE102014003300A1 (de) 2014-03-07 2015-09-10 Evonik Degussa Gmbh Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
US10263280B2 (en) 2014-03-28 2019-04-16 Evonik Degussa Gmbh 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
EP3136410A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3135704A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
WO2018024901A1 (de) 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verwendung thianthrenhaltiger polymere als ladungsspeicher
EP3279223A1 (de) 2016-08-05 2018-02-07 Evonik Degussa GmbH Verwendung thianthrenhaltiger polymere als ladungsspeicher
US10608255B2 (en) 2016-08-05 2020-03-31 Evonik Operations Gmbh Use of thianthrene-containing polymers as a charge store
WO2018046387A1 (de) 2016-09-06 2018-03-15 Evonik Degussa Gmbh Verfahren zur verbesserten oxidation sekundärer amingruppen
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups
DE102017005924A1 (de) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher

Also Published As

Publication number Publication date
CN1331258C (zh) 2007-08-08
US7318981B2 (en) 2008-01-15
JPWO2004077593A1 (ja) 2006-06-08
US20050260500A1 (en) 2005-11-24
CN1698225A (zh) 2005-11-16
JP4435087B2 (ja) 2010-03-17

Similar Documents

Publication Publication Date Title
WO2004077593A1 (ja) 二次電池
JP3687515B2 (ja) 電池
KR100453411B1 (ko) 전지 및 전지용 전극
JP2003132891A (ja) 二次電池
JP4218246B2 (ja) リチウム二次電池用電極活物質、リチウム二次電池用電極およびリチウム二次電池
KR100458666B1 (ko) 전극 및 이를 이용한 전지
US7312000B2 (en) Electrolytic solution for secondary battery and secondary battery containing the same
JP4677706B2 (ja) 二次電池
JP4385246B2 (ja) 重合体、その製造方法及び二次電池
KR100443776B1 (ko) 하나 이상의 전극의 일부를 형성하는 환상 공액 카르보닐 화합물을 함유하는 전극층을 갖는 고에너지 밀도 및 대용량의 안정한 전지
JP4479148B2 (ja) リチウム二次電池の正極およびこれを用いたリチウム二次電池
JP4041973B2 (ja) 二次電池、単量体および重合体
JP4321015B2 (ja) 二次電池
JP3951105B2 (ja) 電極およびそれを用いた電池
JP4061490B2 (ja) 二次電池、単量体および重合体
JP2003338318A (ja) 二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502976

Country of ref document: JP

Ref document number: 20048002957

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10519933

Country of ref document: US

122 Ep: pct application non-entry in european phase