WO2004075182A1 - 光磁気ヘッド装置 - Google Patents

光磁気ヘッド装置 Download PDF

Info

Publication number
WO2004075182A1
WO2004075182A1 PCT/JP1999/000799 JP9900799W WO2004075182A1 WO 2004075182 A1 WO2004075182 A1 WO 2004075182A1 JP 9900799 W JP9900799 W JP 9900799W WO 2004075182 A1 WO2004075182 A1 WO 2004075182A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
magneto
optical head
head device
reflected
Prior art date
Application number
PCT/JP1999/000799
Other languages
English (en)
French (fr)
Inventor
Haruhiko Izumi
Original Assignee
Haruhiko Izumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haruhiko Izumi filed Critical Haruhiko Izumi
Priority to US09/600,799 priority Critical patent/US6741528B1/en
Publication of WO2004075182A1 publication Critical patent/WO2004075182A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation

Definitions

  • the present invention relates to a magneto-optical head device for reproducing magneto-optically recorded data, and more particularly to the reproduction of high-density recorded data.
  • Magneto-optical disk devices can store large amounts of data, and there is a demand for even larger capacities in multimedia systems.
  • the present inventors have proposed an optical head device capable of super-resolution reproduction of data recorded on an optical disk by arranging a light shielding plate in an optical head portion of a magneto-optical disk device. (Patent Registration No. 2664327).
  • a light beam emitted from a semiconductor laser as a light source is converted into a parallel light by a collimating lens, and the cross section of the light beam is made circular by a perfect circular correction prism.
  • the light passes through the mirror and is focused on the magneto-optical disk by the objective lens.
  • Data is recorded on the magneto-optical disk by directing the magnetization of the recording film in a direction corresponding to the data to be recorded.
  • the magnetization of the recording film turns to a desired direction by applying an external magnetic field to the recording film that has been heated by light beam irradiation and has reached a temperature equal to or higher than the melting point.
  • the reflected light from the magneto-optical disk is converted into parallel light by the objective lens.
  • the light is again incident on the beam splitter 1 and is reflected.
  • the reflected light is split into two beams by a second beam splitter, one of which is used for detecting a servo signal, and the other is used for detecting a reproduction signal.
  • the light for detecting the reproduction signal first passes through the light shielding plate and is incident on the reproduction signal detection unit.
  • the reproduced signal detector is provided with a half-wave plate, a polarizing beam splitter, and a photodiode.
  • An opaque film is provided at the approximate center of the transparent substrate Light is not transmitted through the portion where the opaque film is formed, and light is transmitted through the periphery.
  • the light transmitted through the periphery of the light-shielding plate is rotated by 45 ° through a half-wave plate, and is split into a p-polarized component and an s-polarized component by a polarizing beam splitter.
  • the light emitted from the light source is P-polarized light
  • the reflected light from the magneto-optical disk contains an s-polarized component as a signal component due to the magnetic Kerr effect of the recording film.
  • the p-polarized component and s-polarized component rotated by 45 ° through a half-wave plate and separated by a polarization beam splitter are received by a photodiode, respectively, and the difference between these components is obtained to obtain a reproduced signal. Is obtained.
  • Fig. 1 shows an example of the amplitude characteristics of the transfer function of a magneto-optical head device.
  • the vertical axis represents the degree of modulation, and the horizontal axis represents the spatial frequency.
  • the graph with the light-shielding plate shows the characteristics of the magneto-optical head device described above, and the graph without the light-shielding plate shows the characteristic of performing the difference detection using all the reflected light for detecting the reproduction signal. Is shown.
  • the magneto-optical head with a spatial frequency of 800-1 000 (cycles / mm) and a light-shielding plate has a higher modulation degree. Therefore, by arranging a light-shielding plate for blocking the transmission of light in the central portion, data recorded at high density can be reproduced with high resolution.
  • Fig. 2 is a graph showing the transmittance distribution of the light shielding plate.
  • the vertical axis represents the transmittance
  • the horizontal axis represents the distance from the center of the light shielding plate.
  • the transmittance is 0% in the region of the radius r Q at the center of the light shielding plate.
  • the present invention has been made in view of such circumstances, and a light-shielding unit that transmits a predetermined polarized light component at a higher rate than other polarized light components, or transmits a predetermined polarized light component and blocks other polarized light components.
  • An object of the present invention is to provide a magneto-optical head device capable of increasing the S / N by increasing a reproduction signal itself and providing super-resolution reproduction by providing a light shielding means.
  • the magneto-optical head device is a magneto-optical head device that obtains a reproduction signal using reflected light reflected by a magneto-optical recording medium, comprising: a light-shielding unit into which the reflected light is incident;
  • the light shielding means includes a polarizing film having a predetermined polarization component having a higher transmittance than the other polarization components at a substantially central portion of the incident reflected light.
  • the predetermined polarized light component is transmitted more than the other polarized light components at the substantially central portion of the reflected light incident on the light shielding means having the polarizing film, that is, at the central portion in the light amplitude distribution.
  • the predetermined polarization component is a polarization component that is not a signal component. Since the output of the photodiode when detecting the reproduction signal is proportional to the power of the light, not the amplitude of the light, the more the amount of light that passes through the light shielding means, the larger the reproduction signal itself, and the S / N Is improved. Also, since the polarization component, which is a signal component, has a low transmittance, super-resolution reproduction is possible.
  • the light reflected by the magneto-optical recording medium An objective lens for allowing reflected light to enter, a beam splitter for dividing the reflected light into a reproduction signal detecting unit, a focusing error detecting unit and a tracking error detecting unit, and a light shielding unit to which the reflected light is incident.
  • a magneto-optical head device comprising: a reproduction signal detection unit for detecting a reproduction signal using reflected light transmitted through the light shielding means; wherein the light shielding means is provided at a substantially central portion of the incident reflected light.
  • one of the split light is incident on the light shielding means to transmit a predetermined polarized light component, and the other is used for a forcing error and a tracking error detection system.
  • the output of the photodiode when detecting a reproduced signal is proportional to the power of the light, not the amplitude of the light.Therefore, the more the amount of light that passes through the light-shielding means, the larger the reproduced signal itself becomes. improves.
  • the polarization component which is a signal component, is shielded, super-resolution reproduction becomes possible. Further, compared with the case where the reflected light is split by the beam splitter after the light is shielded by the light shielding means, the amount of light for detecting the focusing error and the tracking error is increased.
  • the magneto-optical head device comprises: an objective lens for making the reflected light reflected by the magneto-optical recording medium incident; and a splitting of the reflected light into a reproduction signal detection unit and a focusing error and tracking error detection unit.
  • a magneto-optical head device comprising: a beam splitter; a light-blocking unit into which the reflected light is incident; and a reproduction signal detection unit that detects a reproduction signal using the reflected light transmitted through the light-shielding unit.
  • the light shielding means includes a polarizing film having a predetermined polarization component having a higher transmittance than other polarization components at a substantially central portion of the reflected light that is incident, and the reflected light transmitted through the light shielding means. Is arranged at a position where it is incident on the beam splitter.
  • the reflected light is split by the beam splitter, and one of the split lights is incident on the reproduction signal detection system, and Is used for the focusing error and tracking error detection systems.
  • the output of the photodiode at the time of detecting the reproduction signal is proportional to the power of the light, not the amplitude of the light. Therefore, the more the amount of light that passes through the light-shielding means, the larger the reproduction signal itself becomes. N improves.
  • the polarization component which is a signal component, is shielded, super-resolution reproduction becomes possible.
  • the magneto-optical head device is characterized in that the polarizing film is a dielectric multilayer film that transmits a predetermined polarization component and reflects or absorbs another polarization component.
  • a predetermined polarized light component is transmitted by approximately 109 °, and other polarized light components are reflected or absorbed by approximately 100%.
  • the predetermined polarization component is a polarization component that is not a signal component, and since the amount of light transmitted through the light shielding means is larger, the reproduced signal itself is further increased, and S / N is improved.
  • the polarization component which is a signal component, is shielded at a high rate, super-resolution reproduction with higher resolution is possible.
  • the magneto-optical head device is characterized in that the predetermined polarization component for selectively transmitting the polarizing film is in the same direction as the polarization direction of the beam light applied to the magneto-optical recording medium.
  • the emitted light beam is applied to the magneto-optical recording medium, reflected there, and incident on the light shielding means. If the direction of polarization of this light beam is, for example, ⁇ -polarized light, the beam will reflect the magnetic Kerr effect when reflected.
  • An S-polarized component is generated as a signal component
  • the P-polarized component is a polarized component that is not a signal component. Therefore, since a polarized light component, which is not a signal component, is transmitted, the amount of light transmitted through the light shielding means increases, and the reproduced signal itself increases. Also, since the polarization component, which is a signal component, is shielded, super-resolution reproduction becomes possible.
  • the magneto-optical head device is characterized in that a condensing means for condensing reflected light transmitted through the light shielding means is provided.
  • each of the polarized light components included in the reflected light is transmitted through the light shielding means with different transmittances between the substantially central portion and the peripheral portion of the light, and the transmitted light is condensed.
  • the light from the peripheral portion optically overlaps, and this is given to the reproduction signal detection unit.
  • the transmitted light in the central portion is directly related to the light component a proportional to the magnitude of the reproduced signal, and a is increased, so that the SZN of the reproduced signal is further improved.
  • a condenser lens is used as the condenser means, and the condenser lens is disposed in the optical path of the reflected light, between the light shielding means and the reproduction signal detector.
  • the distance between the condenser lens and the light shielding means is preferably within the focal length of the condenser lens so that the reflected light passes through the light shielding means before focusing.
  • Fig. 1 is a graph showing the amplitude characteristics of the transfer function of a conventional magneto-optical head device.
  • FIG. 2 is a graph showing the light transmittance of a light shielding plate of a conventional magneto-optical head device.
  • FIG. 3 is a configuration diagram of the magneto-optical head device of the present embodiment.
  • FIG. 4 is a plan view of the light shielding plate of the present embodiment.
  • FIG. 5 is a graph showing the light transmittance of the light shielding plate of the present embodiment.
  • FIG. 6A, FIG. 6B and FIG. 6C are graphs showing the polarization state of light in the light shielding plate of the present embodiment.
  • FIG. 7 is a graph illustrating the detection of a difference between reproduced signals according to the present embodiment.
  • FIG. 8 is a configuration diagram of another magneto-optical head device of the present embodiment.
  • FIG. 9 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 10 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 11 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 13 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 13 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 13 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 15 is a configuration diagram of a magnetic head device.
  • FIG. 15 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 15 is a configuration diagram of a magnetic head device.
  • FIG. 16 is a diagram of a magneto-optical head device of another embodiment.
  • FIG. 17 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 18 is a configuration diagram of a magneto-optical head device according to another embodiment.
  • FIG. 19 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 20 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 21 is another embodiment.
  • FIG. 22 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 23 is a configuration diagram of a magneto-optical head device of another embodiment. Is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 22 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 25 is a configuration diagram of a magneto-optical head device of another embodiment.
  • FIG. 26 is a configuration diagram of another embodiment.
  • FIG. 27 is a configuration diagram of the magneto-optical head device.
  • FIG. 27 is a plan view of a light shielding plate according to another embodiment.
  • FIG. 3 is a configuration diagram of the magneto-optical head device according to the embodiment of the present invention.
  • reference numeral 11 denotes a semiconductor laser light source.
  • the laser light emitted from the laser light source is collimated by a collimating lens 12 and then collimated by a circular correction prism 13. It becomes light.
  • This parallel light is p-polarized light, enters the objective lens 15 via the first beam splitter 14, and is condensed on the magneto-optical disk 1 by the objective lens 15.
  • the magneto-optical disc 1 has a transparent substrate 2 and a recording film 3, and the parallel light is focused on the recording film 3 by an objective lens 15.
  • a magnetic head 4 is disposed above the magneto-optical disc 1 so that a predetermined magnetic field is applied when recording Z on the magneto-optical disc 1 is reproduced.
  • the reflected light from the magneto-optical disk 1 is collimated by the objective lens 15, reflected by the first beam splitter 14, and incident on the second beam splitter 16.
  • the parallel light incident on the second beam splitter 16 is split into two, one of which is supplied to a reproduction signal detection system 20 and the other is supplied to a support signal detection unit 17.
  • the servo signal detector 17 detects a focusing error signal and a tracking error signal based on the output of a four-divided photodetector (not shown).
  • the parallel light supplied to the reproduction signal detection system 20 is supplied to the light-shielding plate 21 which is a feature of the present invention, and the light transmitted through the light-shielding plate 21 is converted into a half-wave plate (hereinafter, ⁇ wavelength).
  • FIG. 4 is a plan view showing the configuration of the light shielding plate 21.
  • the light shielding plate 21 includes a transparent flat plate 21 a having a substantially rectangular shape in a plan view, and a polarizing film 2 lb formed on one surface of the transparent flat plate 21 a.
  • the polarizing film 21b is formed to have a circular shape substantially at the center of the transparent flat plate 21a, and its position and radius r. Is set to block the central part of the reflected light.
  • the polarizing film 21b is made of, for example, a dielectric It is composed of a multilayer film and has a function of reflecting or absorbing a predetermined polarized light component similarly to the film used for the polarization beam splitter.
  • FIG. 5 is a graph showing a light transmittance distribution of the light shielding plate used in the present embodiment.
  • the vertical axis represents the transmittance
  • the horizontal axis represents the distance from the center of the light shielding plate.
  • the solid line indicates the P polarization component
  • the broken line indicates the S polarization component.
  • both the p-polarized light component and the s-polarized light component are transmitted at a transmittance of approximately 100% except in the region of the polarizing film 21b, but the p-polarized light component is transmitted in the region of the polarizing film 21b.
  • the s-polarized light component is transmitted at a transmittance of approximately 100%, and the s-polarized light component is blocked by the transmittance of approximately 0%, that is, reflected or absorbed.
  • the light transmitted through the light-shielding plate 21 is incident on the half-wave plate 18, the polarization direction is rotated by 45 °, and is incident on the polarization beam splitter 19, where the P-polarized light component and the S-polarized light are incident.
  • Ingredients are divided into: Each of the P-polarized component and the S-polarized component is received by the photodiode (PD 1) 22 and the photodiode (PD 2) 23, converted into an electric signal, and input to the differential amplifier 24. The difference between the reproduced signals is detected.
  • FIG. 6 is a graph for explaining the polarization state at each position of the optical path shown in FIG. 3, in which the vertical axis represents the amplitude of the s-polarized component, and the horizontal axis represents the amplitude of the p-polarized component.
  • FIG. 6A shows the polarization state at the ⁇ -line.
  • the parallel light emitted from the perfect circle correction prism 13 is ⁇ -polarized light, which is applied to the magneto-optical disk 1.
  • the magnetization direction of the recording film 3 is upward or downward depending on the data to be recorded.When the light is reflected, the polarization direction is rotated by ⁇ 0 k due to the magnetic force effect, and an s-polarized component is generated. . This state is the polarization state at-line, which is shown in Fig. 6B. This light The polarization direction is rotated by 45 ° by a half-wave plate, and received by the photodiodes 22 and 23 in the polarization state of the 7-line shown in Fig. 6C, and reproduced by the differential amplifier 24. Is detected as a difference.
  • FIG. 7 is a graph illustrating the principle of differential detection performed using the magneto-optical head device of the present invention.
  • the vertical axis represents the amplitude of the s-polarized light component
  • the horizontal axis represents the amplitude of the p-polarized light component.
  • the amplitude of the P-polarized light component and the amplitude of the s-polarized light component corresponding to the Kerr rotation angle ⁇ k are represented by the following formulas (hereinafter, the same order in the composite).
  • A Amplitude of reflected light
  • the amplitudes of the P-polarized component and the s-polarized component are photoelectrically converted by the photodiodes 22 and 23 to become electric signals. Since the output from photodiodes 22 and 23 is not proportional to the amplitude of light, but to the power, the output from photodiodes 22 and 23 is expressed by the following equations, respectively. .
  • the reproduced signal is not only proportional to the soil b due to the s-polarization component generated by the Kerr rotation angle ⁇ 0 k , but also to a due to the p-polarization component.
  • b is a signal component, but a is not a signal component.
  • the value of a can be increased by transmitting the P-polarized component at the central part of the reflected light and shielding only the s-polarized component by the light shielding plate 21 as described above, and the reproduced signal itself can be increased. .
  • the s-polarized light component related to the signal component is shielded, super-resolution reproduction is possible.
  • the case where the light-shielding plate 21 as described above is used to increase the p-polarized component is described.
  • the signal level increases because the amount of received light increases, and as a result, the S / N of the reproduced signal increases.
  • the amplitude of the P-polarized light component of the light transmitted through the central portion of the light shielding plate 21 is reflected in a in the above equation (1). It does not mean that a has been increased. actually
  • the light of the P-polarized component transmitted through the central portion of the light shielding plate 21 and the light containing the s-polarized component transmitted through the peripheral portion thereof are optically overlapped. It is necessary to carry out photoelectric conversion with the photo diodes 22 and 23. Then, next, the light transmitted through the central part of the light shielding plate 21 is
  • FIG. 8 shows the structure of a magneto-optical head device obtained by further improving the device of FIG. FIG.
  • a condenser lens 25 is provided between the light shielding plate 21 and the half-wave plate 18.
  • Other configurations are the same as those in FIG. 3, and corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the light transmitted through the light-shielding plate 21 is condensed by the light collecting lens 25, and the light of the p-polarized light component transmitted through the central portion of the light-shielded plate 21 and the light including the s-polarized light component transmitted through the peripheral portion are optically separated.
  • the light beams are received by the photodiodes 22 and 23 respectively.
  • the signal photoelectrically converted by the photodiodes 22 and 23 becomes a reproduced signal as shown in the above equation (1), and the light of the P polarization component transmitted through the central part of the light shielding plate 21 is reflected on a. And a becomes larger.
  • the magneto-optical head device shown in FIG. 8 when the laser beam applied to the magneto-optical disk 1, that is, the laser beam on the outward path is p-polarized, the central portion of the reflected light has a super-resolution effect. Since the involved s-polarized light component is shielded and only the p-polarized light component, which is not a signal component, is transmitted, the reproduced signal itself becomes large and the S / N is improved. Also, since the s-polarized light component involved in the super-resolution effect is shielded from light as before, super-resolution reproduction with high resolution is possible.
  • the position of the condenser lens 25 for condensing the light transmitted through the light shielding plate 21 onto the photodiodes 22 and 23 is located between the light shielding plate 21 and the half-wave plate 18. Not limited to this, it may be between the first and second beam splitters 14 and 16 as shown in FIG. 9 or the second beam splitter 16 as shown in FIG. Between the half-wave plate 18 and the polarizing beam splitter 19, as shown in FIG. Also, as shown in FIG. 12, two condensing lenses are used, one between the polarizing beam splitter 19 and the photo diode 22 and the other as the polarizing beam splitter. It may be provided between 19 and the photodiode 23.
  • the position of the light-shielding plate is not limited to this. Absent. Another embodiment in which the positions of the light shielding plates are different will be described below.
  • FIG. 13 is a configuration diagram showing a magneto-optical head device according to another embodiment of the present invention.
  • the light shielding plate 21 and the condenser lens 25 are 1/2 wavelength plates
  • the parallel light whose polarization direction is rotated by 45 ° by the half-wave plate 18 passes through the light shielding plate 21, and the signal component is shielded at a substantially central portion.
  • the transmitted light is condensed and incident on the polarizing beam splitter 19, and is received by the photo diodes 23 and 24.
  • the light-shielding plate 21 receives the parallel light from the half-wavelength plate 18 so that the light-shielding plate 21 shown in FIG. It is arranged in the rotated direction.
  • the other configuration is the same as the configuration of the magneto-optical head device shown in FIG. 3, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the magneto-optical head device having such a configuration the same operation as that of the light shielding plate 21 in FIG. 3, that is, the signal component involved in the super-resolution effect is shielded, and only the polarization component which is not the signal component is used. Therefore, an effect similar to that of the above-described magneto-optical head device can be obtained.
  • the position of the condenser lens 25 for condensing the light transmitted through the light shielding plate 21 onto the photodiodes 22 and 23 is determined by the position of the light shielding plate 21 and the polarizing beam splitter 19. Not limited. For example, it may be between the first and second beam splitters 14 and 16 as shown in FIG. 14 or as shown in FIG. 15 with the second beam splitters 16 and 1 / 2-wavelength plate
  • Fig. 16 1 Z 2 wave plate 18 as shown in Fig. 16. It may be located between the light-shielding plates 21. As shown in Fig. 17, two condensing lenses were used, one between the polarizing beam splitter 19 and the photodiode 22 and the other between the polarizing beam splitter 19 and the polarizing beam splitter 19. It may be provided between the photo diode 23 and the photo diode 23.
  • FIG. 18 is a configuration diagram showing a magneto-optical head device according to still another embodiment of the present invention.
  • the light shielding plate 21 is disposed between the first beam splitter 14 and the second beam splitter 16, and the converging lens 25 is arranged between the first beam splitter 16 and the second beam splitter 16. It is arranged between 6 and 1 Z two-wave plate 18.
  • the parallel light reflected by the first beam splitter 14 passes through the light shielding plate 21, and the s-polarized light component is shielded at a substantially central portion, and is incident on the second beam splitter 16.
  • the collimated light supplied from the second beam splitter 16 to the reproduction signal detection system 20 is condensed by the condenser lens 25 and is incident on the half-wave plate 18, where the photo diode 23 , 24 are received.
  • the other configuration is the same as the configuration of the magneto-optical head device shown in FIG. 3, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the position of the condenser lens 25 for condensing the light transmitted through the light shielding plate 21 on the photodiodes 22 and 23 is determined by the position of the second beam splitter 16 and the half-wave plate. Not limited to 18 For example, as shown in FIG. 19, the distance between the first beam splitter 14 and the light-shielding plate 21 may be sufficient, or as shown in FIG. 20, the light-shielding plate 21 and the second beam splitter may be used. Even during the evening 16 or as shown in Fig. 21, the 1 Z It may be between the light beam split 19 and the light beam split. Also, as shown in Fig.
  • FIG. 23 is a configuration diagram showing a magneto-optical head device according to still another embodiment of the present invention.
  • the light blocking plate 21 is disposed between the first beam splitter 14 and the objective lens 15, and the condenser lens 25 is formed between the second beam splitter 16 and the 1Z2 wavelength. It is arranged between plates 18.
  • the reflected light reflected by the magneto-optical disk 1 is made parallel by the objective lens 15, passes through the light-shielding plate 21, and the s-polarized light component is shielded at a substantially central portion, thereby forming the first beam splitter. It is reflected on evening 14 and is incident on the second beam split.
  • the parallel light supplied from the second beam splitter 16 to the reproduction signal detection system 20 is condensed by the converging lens 25 and is incident on the half-wave plate 18, and the photodiode 2 Light is received at 3, 24.
  • the other configuration is the same as the configuration of the magneto-optical head device shown in FIG. 3, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the outgoing laser light emitted from the semiconductor laser light source 11 also passes through the light-shielding plate 21, but since the light-shielding plate 21 transmits the p-polarized light component, the p-polarized outgoing laser light is There is no inconvenience because it is transmitted.
  • the position of the condensing lens 25 for condensing the light transmitted through the light shielding plate 21 on the photodiodes 22 and 23 is determined by the position of the second beam splitter 16 and the half wavelength.
  • the first and second beam splitters 14 and 16 may be used as shown in FIG. 25, or the half-wave plate 18 and the polarizing beam splitter 19 may be connected as shown in FIG. It may be in between.
  • two condensing lenses are used, one of which is between the polarizing beam splitter 19 and the photo diode 22 and the other is the polarizing beam splitter. It may be provided between 19 and the photo diode 23.
  • FIG. 27 is a plan view of a light shielding plate showing another structure of the light shielding plate.
  • the light shielding plate 21 has a transparent flat plate 21a and a polarizing film 21c.
  • the transparent flat plate 21a has a substantially rectangular shape in plan view, and a band-shaped polarizing film 21c is formed substantially at the center of one surface thereof.
  • the present invention is not limited to this, and the light-shielding plate 21 comprises only the polarizing film 21c. It may be.
  • a polarizing film 21c is provided on the light-emitting surface of a beam splitter or a half-wave plate 18 to achieve a good L value.
  • polarizing films 2 lb and 21 c of the above-mentioned light shielding plate 21 a dielectric component that transmits a predetermined polarization direction component by approximately 100% and transmits other polarization direction components by approximately 0%, that is, blocks light
  • a film such as a polarizing plate having a different transmittance depending on the polarization direction may be used.
  • the outgoing laser light is p
  • the present invention is not limited to this, and the present invention can be applied to S-polarized light.
  • a light-shielding plate equipped with a polarizing film having a higher transmittance for the S-polarized component than for the p-polarized component is used, and the configuration related to the polarization direction is switched between the P-polarized component and the S-polarized component.
  • the case where the reflected light from the magneto-optical disk is converted into parallel light by the objective lens and the parallel light is transmitted through the light blocking means is described.
  • a configuration may be adopted in which focused light focused on the reproduction signal detection unit passes through the light shielding means.
  • the present invention is not limited to this. Any configuration may be used as long as it is used to detect a reproduction signal.
  • the reflected light from the magneto-optical disk passes through the light-shielding means, and the polarization component, which is a signal component, is substantially more centrally reflected than the polarization component, which is not a signal component. Since the light is transmitted at a high rate, the S / N is improved by increasing the reproduced signal, and super-resolution reproduction is possible. Further, since the light transmitted through the light shielding means is condensed, the light component proportional to the magnitude of the reproduction signal can be increased, and the SZN of the reproduction signal is further improved.

Description

明 糸田 書
光磁気へッ ド装置
技術分野
本発明は、 光磁気記録されたデータを再生する光磁気へッ ド装置 に関し、 特に、 高密度記録されたデータの再生に関する。
背景技術
光磁気ディスク装置は、 大容量のデ一夕を記憶することが可能で あり、 マルチメディアシステムにおいて更なる大容量化が要望され ている。 本願発明者らは、 光磁気ディスク装置の光へッ ド部に遮光 板を配することにより、 光ディスクに記録されたデータの超解像再 生が可能な光へッ ド装置を提案している (特許登録番号 2664327号) 。
この光へッ ド装置では、 光源である半導体レーザから出射された 光ビームがコ リ メ一夕レンズで平行光となり、 真円補正プリズムで 光ビーム断面を円形にした後、 第 1 のビ一ムスプリ ッ夕を透過して 対物レ ンズで光磁気ディ ス ク上に集光される。 光磁気デイ スクには、 記録膜の磁化を記録すべきデ一夕に対応する方向に向けるこ とによ りデータが記録されている。 光ビームの照射による加熱で昇温され、 キユ リ一温度以上になった記録膜に外部磁界を与えることにより、 記録膜の磁化が所望の方向を向く
光磁気ディスクからの反射光は、 対物レンズで平行光となり、 第
1 のビ一ムスプリ ッタに再び入射されて反射される。 反射された光 は第 2のビ一ムスプリ ッ夕で 2分され、 一方はサ一ボ信号検出に用 いられ、 他方は再生信号検出に用いられる。 再生信号検出のための 光は、 まず遮光板を透過して再生信号検出部に入射される。 再生信 号検出部には、 1 / 2波長板, 偏光ビ一ムスプリ ッタ及びフ ォ トダ ィォー ドが配されている。 遮光板は透明基板の略中央に不透明膜を 設けて形成されており、 不透明膜が形成された部分は光が透過され ず、 周縁部で光が透過するようになっている。
遮光板の周縁側を透過した光は 1 / 2波長板を通って 4 5 ° 回転 され、 偏光ビームスプリ ッタにより p偏光成分と s偏光成分とに分 けられる。 光源からの出射光が P偏光である場合は、 記録膜の磁気 カー効果により光磁気ディスクの反射光には信号成分である s偏光 成分が含まれている。 1 / 2波長板を通って 4 5 ° 回転され、 偏光 ビームスプリ ッ夕で分けられた p偏光成分及び s偏光成分は夫々 フ ォ トダイォ一 ドに受光され、 これらの差分を求めることにより再生 信号が得られる。
以上の如き構成の光磁気へッ ド装置では、 光磁気ディスクからの 反射光が遮光板を通ることにより光磁気ディスクの照射スポッ トの 反射光の中央部分が遮光されるので、 再生信号に超解像効果が得ら れる。 第 1 図は、 光磁気へッ ド装置の伝達関数の振幅特性の 1例を 示す。 縦軸は変調度を表し、 横軸は空間周波数を表している。 グラ フ中、 遮光板有りのグラフは上述した光磁気へッ ド装置の特性を示 し、 遮光板無しのグラフは、 再生信号検出用の反射光の全てを用い て差分検出を行なつた特性を示している。 グラフから判るように、 空間周波数が 800 - 1 000 (サイクル/ mm) で遮光板を配した光磁気 へッ ドの方が高い変調度を得ている。 従って、 中央部分の光の透過 を遮えぎる遮光板を配することにより、 高密度記録されたデータを 分解能良く再生することができる。
このよう 、 上述した構成の光磁気へッ ドでは、 高密度記録され たデータを超解像再生することができる。 しかしながら、 遮光板を 透過する光の一部が遮光されるために、 フ ォ トダイォー ドが受光す る光量が少なくなる。 第 2図は遮光板の透過率分布を示すグラフで あり、 縦軸は透過率を表し、 横軸は遮光板の中心からの距離を表し ている。 グラフから判るように、 遮光板の中央の半径 r Q の領域で 透過率が 0 %になっている。 これにより、 遮光板を配さない構成の 光磁気へッ ドと比較してフ ォ トダイォー ドの受光量が低く、 再生信 号の分解能は高いが再生信号自体は小さ くなる。 このために、 再生 信号の S / Nが劣化するという問題があった。
本発明は、 かかる事情に鑑みてなされたものであり、 所定の偏光 成分を他の偏光成分より も高率で透過させる遮光手段、 又は所定の 偏光成分を透過し、 他の偏光成分を遮光する遮光手段を配するこ と により、 再生信号自体を大き く して S / Nを向上させ、 且つ超解像 再生が可能な光磁気へッ ド装置を提供することを目的とする。
発明の開示
本発明に係る光磁気へッ ド装置は、 光磁気記録媒体で反射された 反射光を用いて再生信号を得る光磁気へッ ド装置において、 前記反 射光が入射される遮光手段を備え、 該遮光手段は入射される反射光 の略中央部分にて所定の偏光成分が他の偏光成分より も高い透過率 を有する偏光膜を備えることを特徴とする。
従って、 偏光膜を有する前記遮光手段に入射される反射光の略中 央部分、 即ち、 光振幅分布中の中央部分で所定の偏光成分を他の偏 光成分より も多く透過させる。 こ こで所定の偏光成分とは信号成分 ではない偏光成分である。 再生信号を検出する際のフォ トダイォ一 ドの出力は、 光の振幅ではなく光のパワーに比例しているので、 遮 光手段を透過する光量が多いほど再生信号自体が大きくなり、 S / Nが向上する。 また、 信号成分である偏光成分は透過率が低いので、 超解像再生が可能となる。
本発明に係る光磁気へッ ド装置は、 光磁気記録媒体で反射された 反射光を入射せしめる対物レ ンズと、 前記反射光を再生信号検出部 とフ ォーカシングエラ一及びトラツキングエラ一検出部とに分割す るビームスプリ ッタと、 前記反射光が入射される遮光手段と、 該遮 光手段を透過した反射光を用いて再生信号を検出する再生信号検出 部とを備える光磁気へッ ド装置において、 前記遮光手段は、 入射さ れる反射光の略中央部分にて所定の偏光成分が他の偏光成分より も 高い透過率を有する偏光膜を備え、 前記ビームスプリ ッ夕で分割さ れた反射光が入射される位置に配してあることを特徴とする。
従って、 前記ビームスプリ ッ夕で反射光を分割した後にその一方 を遮光手段に入射して所定の偏光成分を透過させ、 他方をフ ォ ー力 シングエラー及びトラッキングエラ一検出系に用いている。 再生信 号を検出する際のフォ トダイォ一 ドの出力は、 光の振幅ではなく光 のパワーに比例しているので、 遮光手段を透過する光量が多いほど 再生信号自体は大き くなり、 S Z Nが向上する。 また、 信号成分で ある偏光成分は遮光するので、 超解像再生が可能となる。 また、 遮 光手段にて遮光した後に前記ビームスプリ ッ夕で反射光を分割する 場合と比較して、 フ ォーカシングエラ一及びトラ ッキングエラー検 出用の光量が多くなる。
本発明に係る光磁気へッ ド装置は、 光磁気記録媒体で反射された 反射光を入射せしめる対物レ ンズと、 前記反射光を再生信号検出部 とフォーカシングエラー及びトラッキングエラ一検出部とに分割す る ビームスプリ ッタと、 前記反射光が入射される遮光手段と、 該遮 光手段を透過した反射光を用いて再生信号を検出する再生信号検出 部とを備える光磁気へッ ド装置において、 前記遮光手段は、 入射さ れる反射光の略中央部分にて所定の偏光成分が他の偏光成分より も 高い透過率を有する偏光膜を備え、 前記遮光手段を透過した反射光 が前記ビームスプリ ッ夕に入射される位置に配してあることを特徴 とする。
従って、 前記遮光手段で反射光の光振幅分布中の中央部分で所定 の偏光成分を透過した後、 前記ビームスプリ ッ夕で反射光を分割し、 その一方を再生信号検出系に入射し、 他方をフ ォーカシングエラー 及びトラッキングエラ一検出系に用いている。 再生信号を検出する 際のフ ォ トダイオー ドの出力は、 光の振幅ではなく光のパワーに比 例しているので、 遮光手段を透過する光量が多いほど再生信号自体 は大き くなり、 S / Nが向上する。 また、 信号成分である偏光成分 は遮光するので、 超解像再生が可能となる。
本発明に係る光磁気へッ ド装置は、 前記偏光膜は、 所定の偏光成 分を透過し、 他の偏光成分を反射又は吸収する誘電体多層膜である ことを特徵とする。
従って、 前記偏光膜として誘電体多層膜を用いるので、 所定の偏 光成分を略 1 0 0 9ό'透過し、 その他の偏光成分を略 1 0 0 %反射又 は吸収する。 こ こで所定の偏光成分とは、 信号成分ではない偏光成 分であり、 遮光手段を透過する光量がさらに多いので再生信号自体 がさらに大き く なり、 S / Nが向上する。 また、 信号成分である偏 光成分を高率で遮光するので、 さらに高分解能での超解像再生が可 能となる。
本発明に係る光磁気へッ ド装置は、 前記偏光膜を選択的に透過さ せる所定の偏光成分は、 前記光磁気記録媒体に照射されるビーム光 の偏光方向と同方向であることを特徴とする。
従って、 出射されたビーム光が光磁気記録媒体に照射され、 こ こ で反射されて遮光手段に入射される。 このビーム光の偏光方向が例 えば Ρ偏光である場合は、 ビーム光が反射する際に磁気カー効果に より信号成分として S偏光成分が生じ、 P偏光成分は信号成分では ない偏光成分である。 従って、 信号成分ではない偏光成分を透過さ せるので、 遮光手段を透過する光量が多くなり、 再生信号自体が大 き くなる。 また、 信号成分である偏光成分は遮光するので、 超解像 再生が可能となる。
本発明に係る光磁気へッ ド装置は、 前記遮光手段を透過した反射 光を集光する集光手段を配してあることを特徴とする。
従って、 反射光に含まれる偏光成分の夫々が、 光の略中央部分と 周縁部分とで透過率を異ならせて遮光手段を透過し、 この透過光が 集光しているので、 前記中央部分と周縁部分との光が光学的に重な り、 これが再生信号検出部に与えられる。 これにより、 中央部分の 透過光が、 再生信号の大きさに比例する光の成分 aに直接関わり、 aを増大させるので再生信号の S Z Nがさ らに向上する。 集光手段 には例えば集光レンズが用いられ、 集光レンズは反射光の光路中、 遮光手段と再生信号検出部との間に配される。 又は、 遮光手段の入 り側に配されても良い。 この場合は、 反射光が合焦するまでに遮光 手段を透過するように、 集光レンズと遮光手段との距離は、 集光レ ンズの焦点距離以内であることが好ましい。
図面の簡単な説明
第 1 図は従来の光磁気へッ ド装置の伝達関数の振幅特性を示すグ ラフである。
第 2図は従来の光磁気へッ ド装置の遮光板の光透過率を示すグラ フである。
第 3図は本実施の形態の光磁気へッ ド装置の構成図である。
第 4図は本実施の形態の遮光板の平面図である。
第 5図は本実施の形態の遮光板の光透過率を示すグラフである。 第 6図 A, 第 6図 B及び第 6図 Cは、 本実施の形態の遮光板での 光の偏光状態を示すグラフである。
第 7図は本実施の形態の再生信号の差分検出を説明するグラフで める。
第 8図は本実施の形態の他の光磁気へッ ド装置の構成図である。 第 9図は他の実施の形態の光磁気へッ ド装置の構成図である。 第 1 0図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 1 図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 2図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 3図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 4図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 5図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 6図は他の実施の形態の光磁気へッ ド装置の構成図である 第 1 7図は他の実施の形態の光磁気へヅ ド装置の構成図である 第 1 8図は他の実施の形態の光磁気へ 、ソ ド装置の構成図である 第 1 9図は他の実施の形態の光磁気へ ド装置の構成図である 第 2 0図は他の実施の形態の光磁気へッ ド装置の構成図である 第 2 1 図は他の実施の形態の光磁気へ -y ド装置の構成図である 第 2 2図は他の実施の形態の光磁気へッ ド装置の構成図である 第 2 3図は他の実施の形態の光磁気へッ ド装置の構成図である 第 2 4図は他の実施の形態の光磁気へッ ド装置の構成図である 第 2 5図は他の実施の形態の光磁気へッ ド装置の構成図である 第 2 6図は他の実施の形態の光磁気へヅ ド装置の構成図である 第 2 7図は他の実施の形態の遮光板の平面図である。
発明を実施するための最良の形態
以下、 本発明をその実施の形態を示す図面に基づき具体的に説明 する。
第 3図は、 本発明の実施の形態の光磁気へッ ド装置の構成図であ る。 図中、 1 1 は半導体レーザ光源であり、 ここから出射されたレ 一ザ光はコ リ メ一夕レンズ 1 2で平行光とされた後、 真円補正プリ ズ厶 1 3で円形の平行光となる。 この平行光は p偏光であり、 第 1 のビ一ムスプリ ッ夕 1 4を介して対物レンズ 1 5 に入射され、 対物 レ ンズ 1 5 により光磁気ディスク 1上に集光される。 光磁気ディス ク 1 は透明基板 2 と記録膜 3 とを備えており、 平行光は対物レンズ 1 5 により記録膜 3上に集光される。 なお、 光磁気ディスク 1 の上 方には磁気へッ ド 4が配されており、 光磁気ディスク 1 の記録 Z再 生時に所定の磁界を印加するようになっている。
光磁気ディスク 1 からの反射光は前記対物レンズ 1 5 により平行 光にされた後、 前記第 1 のビームスプリ ツ夕 1 4により反射され、 第 2のビームスプリ ッ 夕 1 6 に入射される。 第 2のビームスプリ ツ 夕 1 6 に入射された平行光は二分され、 一方は再生信号検出系 2 0 に供給され、 他方はサ一ポ信号検出部 1 7に供給される。 サ一ボ信 号検出部 1 7では図示しない四分割光検出器の出力に基づいてフ ォ —カシングエラ一信号及びトラ ツキングエラー信号が検出される。 再生信号検出系 2 0 に供給される平行光は、 本発明の特徴である 遮光板 2 1 に供給され、 遮光板 2 1 を透過した光が 2分の 1 波長板 (以下、 1 / 2波長板と記す) 1 8 に入射される。 第 4図は遮光板 2 1 の構成を示す平面図である。 遮光板 2 1 は、 平面視で略矩形状 の透明平板 2 1 a と、 該透明平板 2 1 aの一面に形成された偏光膜 2 l b とを有している。 偏光膜 2 1 bは透明平板 2 1 aの略中央に 円形状を有して形成され、 その位置及び半径 r 。 は反射光の中央部 分を遮るように設定してある。 また偏光膜 2 1 bは、 例えば誘電体 多層膜で構成されており、 偏光ビームスプリ ッ夕に用いられる膜と 同様に所定の偏光成分を反射又は吸収する機能を有している。
第 5図は、 本実施の形態に用いる遮光板の光の透過率分布を示す グラフである。 縦軸は透過率を表し、 横軸は遮光板の中心からの距 離を表している。 グラフ中、 実線は P偏光成分を示し、 破線は S偏 光成分を示している。 グラフから判るように、 偏光膜 2 1 bの領域 以外では p偏光成分及び s偏光成分の双方が略 1 0 0 %の透過率で 透過するが、 偏光膜 2 1 bの領域では p偏光成分は略 1 0 0 %の透 過率で透過し、 s偏光成分は略 0 %の透過率、 即ち反射又は吸収さ れて遮光される。
そして、 遮光板 2 1 を透過した光が 1 / 2波長板 1 8に入射され て偏光方向を 4 5 ° 回転され、 偏光ビ一ムスプリ ッ夕 1 9 に入射さ れて P偏光成分と S偏光成分とに分けられる。 P偏光成分及び S偏 光成分の夫々 はフ ォ トダイオー ド ( P D 1 ) 2 2及びフ ォ トダイォ ー ド ( P D 2 ) 2 3で受光され、 電気信号に変換されて差動増幅器 2 4に入力され、 再生信号が差分検出される。
以上の如き構成の光磁気へッ ド装置の効果を示すために、 まず、 光学経路における各位置での光の偏光状態を説明する。 第 6図は、 第 3図に示す光学経路の各位置での偏光状態を説明するグラフであ り、 縦軸は s偏光成分振幅を表し、 横軸は p偏光成分の振幅を表し ている。 第 6図 Aは α — 線での偏光状態を示している。 真円補正 プリズム 1 3から出射された平行光は ρ偏光であり、 これが光磁気 ディスク 1 に照射される。 記録膜 3の磁化方向は、 記録すべきデー 夕に応じて上又は下方向であり、 光は反射する際に磁気力一効果に よって ± 0 k だけ偏光方向が回転され、 s偏光成分が生じる。 この 状態が —; 8線での偏光状態であり、 第 6図 Bに示す。 この光が 1 / 2波長板により偏光方向を 4 5 ° 回転させ、 第 6図 Cに示した 7 - 線での偏光状態でフオ トダイオー ド 2 2 , 2 3で受光され、 差動増幅器 2 4で再生信号が差分検出される。
次に、 差分検出原理を説明する。 第 7図は、 本発明の光磁気へッ ド装置を用いて行なう差分検出の原理を説明するグラフである。 縦 軸は s偏光成分振幅を表し、 横軸は p偏光成分振幅を表している。 カー回転角 ± k に対応する P偏光成分振幅及び s偏光成分振幅は 以下の式で表される (以下、 複合同順) 。
P偏光成分振幅 = a + b
s偏光成分振幅 = a土 b
但し、 a =A cos Θ k cos 4 5 ° =A cos Θ k sin 4 5 °
= A cos Θ k
2
b = A sin > k cos 4 5 ° = A sin9 k sin 4 5 ° A s i II Θ k
2
A : 反射光の振幅
この P偏光成分振幅及び s偏光成分振幅はフォ トダイオー ド 2 2, 2 3で光電変換され、 電気信号となる。 フ ォ トダイオー ド 2 2 , 2 3 からの出力は光の振幅に比例するのではなく、 パワーに比例するた め、 フォ トダイオー ド 2 2 , 2 3からの出力は夫々以下の式で表さ れる。
P D 1 の出力 = K ( a + b ) 2
P D 2の出力二 K ( a土 b ) 2
但し、 K : 光電変換係数
また、 これらの出力の差、 即ち再生信号は以下の式で表される。 P D 2の出力一 P D 1の出力
K ( a土 b) 2 — K ( a + b ) 2
= K ( a 2 ± 2 a b + b 2 ) 一 K ( a 2 + 2 a b + b 2 ) = ± 4 K a b · · ■ ( 1 )
( 1 ) 式から判るように、 再生信号はカー回転角 ± 0 k によって 生じた s偏光成分による土 bのみに比例しているのではなく、 p偏 光成分による aにも比例している。 bは信号成分であるが、 aは信 号成分ではない。 このことから、 上述した如き遮光板 2 1 により反 射光の中央部分で P偏光成分を透過し、 s偏光成分のみを遮光する こ とにより aの値が大き くなり、 再生信号自体を大き くできる。 ま た、 信号成分に関与する s偏光成分を遮光するので、 超解像再生が 可能である。
このように、 p偏光成分を大き くするために上述した如き遮光板 2 1を用いた場合を説明している。 第 3図に示す如き光磁気へッ ド 装置の構成では受光量が増大するので信号レベルは高くなり、 その 結果、 再生信号の S/Nは増大する。 しかしながら、 中央部分の光 とその他の部分の光とを各別に光電変換しているので、 遮光板 2 1 の中央部分を透過した光の P偏光成分の振幅は上記 ( 1 ) 式の aに 反映されず、 従って、 aを大き く したことにはならない。 実際に
( 1 ) 式の aを大き くするためには、 遮光板 2 1の中央部分を透過 した P偏光成分の光と、 周縁部分を透過した s偏光成分を含む光と を光学的に重ねた後、 フ ォ トダイオー ド 2 2, 2 3で光電変換する 必要がある。 そこで次に、 遮光板 2 1 の中央部分を透過した光が
( 1 ) 式の aに反映され、 信号成分の aを大き くできる実際的な光 磁気へッ ド装置について説明する。
第 8図は、 第 3図の装置をさらに改良した光磁気へッ ド装置の構 成図である。 遮光板 2 1 と 1 / 2波長板 1 8 との間に集光レンズ 2 5を配している。 その他の構成は第 3図と同様であり、 対応する部 分に同符号を付して説明を省略する。 遮光板 2 1 を透過した光は集 光レンズ 2 5 により集光され、 遮光板 2 1 の中央部分を透過した p 偏光成分の光と、 周縁部分を透過した s偏光成分を含む光とが光学 的に重なり合って、 夫々のフォ トダイオー ド 2 2 , 2 3で受光され る。 フォ トダイオー ド 2 2, 2 3で光電変換された信号は、 上述し た ( 1 ) 式に示す如き再生信号となり、 遮光板 2 1 の中央部分を透 過した P偏光成分の光が aに反映され、 aが大き くなる。
従って、 第 8図に示す光磁気へッ ド装置では、 光磁気ディ スク 1 に照射するレーザ光、 即ち往路のレーザ光が p偏光の場合に、 反射 光の中央部分で、 超解像効果に関与する s偏光成分を遮光し、 信号 成分ではない p偏光成分のみを透過させるので再生信号自体が大き くなり、 S / Nが改善される。 また、 超解像効果に関与する s偏光 成分は従来通り遮光するので、 高分解能での超解像再生が可能とな
W
なお、 遮光板 2 1 を透過した光をフオ トダイオー ド 2 2 , 2 3 に 集光させるための集光レンズ 2 5の配位置は、 遮光板 2 1 と 1 / 2 波長板 1 8 との間に限らず、 第 9図に示すように第 1及び第 2 の ビ —ムスプリ ッ夕 1 4 , 1 6 の間でも良いし、 第 1 0図に示すように 第 2のビームスプリ ツ夕 1 6 と遮光板 2 1 との間でも良いし、 第 1 1 図に示すように 1 / 2波長板 1 8 と偏光ビ一ムスプリ ッ夕 1 9 との間にあっても良い。 また、 第 1 2図に示すように 2枚の集光レ ンズを用いて、 一方を偏光ビームスプリ ッタ 1 9 とフ ォ トダイォー ド 2 2 との間に、 他方を偏光ビ一ムスプリ ッタ 1 9 とフォ トダイォ 一ド 2 3 との間に設けてあっても良い。 上述した光磁気へッ ドの実施の形態では、 遮光板 2 1 を 1 / 2波 長板 1 8の直前に配した場合を説明しているが、 遮光板の位置はこ れに限るものではない。 遮光板の配置位置が異なる他の実施の形態 を以下に説明する。
第 1 3図は、 本発明の他の実施の形態の光磁気ヘッ ド装置を示す 構成図である。 遮光板 2 1及び集光レンズ 2 5 は、 1 / 2波長板
1 8 と偏光ビームスプリ ッタ 1 9 との間に配されており、 1 / 2波 長板 1 8 , 遮光板 2 1, 集光レ ンズ 2 5及び偏光ビームスプリ ッ夕 1 9の順である。 1 / 2波長板 1 8で偏光方向を 4 5 ° 回転された 平行光が遮光板 2 1 を通り、 略中央部分で信号成分が遮光される。 透過光は集光されて偏光ビームスプリ ッ夕 1 9 に入射され、 フ ォ ト ダイオー ド 2 3, 2 4で受光される。 遮光板 2 1 は 1 / 2波長板 1 8からの平行光を受けるために、 第 4図に示す遮光板 2 1 を平面内 で 4 5。 回転させた向きに配されている。 その他の構成は、 第 3図 に示す光磁気へッ ド装置の構成と同様であり、 同部分に同符号を付 して説明を省略する。
このような構成の光磁気へッ ド装置にあっては、 第 3図の遮光板 2 1 と同様の作用、 即ち、 超解像効果に関与する信号成分を遮光し、 信号成分でない偏光成分のみを透過させるので、 上述した光磁気へ ッ ド装置と同様の効果を得ることができる。
なお、 遮光板 2 1 を透過した光をフォ トダイオー ド 2 2, 2 3 に 集光させるための集光レンズ 2 5の配位置は、 遮光板 2 1 と偏光ビ 一ムスプリ ッタ 1 9 との間に限らない。 例えば第 1 4図に示すよう に第 1及び第 2のビームスプリ ツ夕 1 4 , 1 6の間でも良いし、 第 1 5図に示すように第 2のビームスプリ ツ夕 1 6 と 1 / 2波長板
1 8 との間でも良いし、 第 1 6図に示すように 1 Z 2波長板 1 8 と 遮光板 2 1 との間にあっても良い。 また、 第 1 7図に示すように 2 枚の集光レンズを用いて、 一方を偏光ビームスプリ ツ夕 1 9 とフォ トダイオー ド 2 2 との間に、 他方を偏光ビームスプリ ッタ 1 9 とフ ォ トダイォー ド 2 3 との間に設けてあっても良い。
また、 第 1 8図は、 本発明のさらに他の実施の形態の光磁気へッ ド装置を示す構成図である。 遮光板 2 1 は第 1 のビームスプリ ツ夕 1 4 と第 2のビームスプリ ツ夕 1 6 との間に配されており、 集光レ ンズ 2 5 は、 第 2のビ一ムスプリ ッ夕 1 6 と 1 Z 2波長板 1 8 との 間に配されている。 第 1 のビ一ムスプリ ッタ 1 4で反射された平行 光が遮光板 2 1 を通り、 略中央部分で s偏光成分が遮光されて第 2 のビームスプリ ッ夕 1 6 に入射される。 第 2 ビームスプリ ツ夕 1 6 から再生信号検出系 2 0 に供給される平行光は、 集光レンズ 2 5 に より集光されて 1 / 2波長板 1 8 に入射され、 フォ トダイオー ド 2 3 , 2 4で受光される。 その他の構成は、 第 3図に示す光磁気へ ッ ド装置の構成と同様であり、 同部分に同符号を付して説明を省略 する。
このような構成の光磁気へッ ド装置にあっては、 第 3図の遮光板 2 1 と同様の作用、 即ち、 超解像効果に関与する s偏光成分を遮光 し、 信号成分でない P偏光成分のみを透過させるので、 上述した光 磁気へッ ド装置と同様の効果を得ることができる。
なお、 遮光板 2 1 を透過した光をフオ トダイオー ド 2 2, 2 3 に 集光させるための集光レンズ 2 5の配位置は、 第 2のビームスプリ ッ夕 1 6 と 1 / 2波長板 1 8 との間に限らない。 例えば第 1 9図に 示すように第 1 のビ一ムスプリ ッ夕 1 4 と遮光板 2 1 との間でも良 いし、 第 2 0図に示すように遮光板 2 1 と第 2のビームスプリ ッ夕 1 6の間でも良いし、 第 2 1 図に示すように 1 Z 2波長板 1 8 と偏 光ビ一ムスプリ ッ夕 1 9 との間にあっても良い。 また、 第 2 2図に 示すように 2枚の集光レンズを用いて、 一方を偏光ビームスプリ ッ 夕 1 9 とフォ トダイオー ド 2 2 との間に、 他方を偏光ビームスプリ ッ夕 1 9 とフォ トダイオー ド 2 3 との間に設けてあっても良い。 さらに第 2 3図は、 本発明のさらに他の実施の形態の光磁気へッ ド装置を示す構成図である。 遮光板 2 1 は第 1 のビームスプリ ッ夕 1 4 と対物レンズ 1 5 との間に配されており、 集光レンズ 2 5 は、 第 2のビ一ムスプリ ッタ 1 6 と 1 Z 2波長板 1 8 との間に配されて いる。 光磁気ディスク 1 で反射された反射光が対物レンズ 1 5で平 行光にされた後、 遮光板 2 1 を通り、 略中央部分で s偏光成分が遮 光されて第 1 のビ一ムスプリ ッ 夕 1 4で反射され、 第 2のビ一ムス プリ ッ夕に入射される。 第 2 ビー厶スプリ ツ夕 1 6から再生信号検 出系 2 0に供給される平行光は、 集光レンズ 2 5により集光されて 1 / 2波長板 1 8 に入射され、 フォ トダイオー ド 2 3, 2 4で受光 される。 その他の構成は、 第 3図に示す光磁気ヘッ ド装置の構成と 同様であり、 同部分に同符号を付して説明を省略する。 なお、 半導 体レーザ光源 1 1 から出射された往路のレーザ光も遮光板 2 1 を通 るが、 遮光板 2 1 は p偏光成分を透過させるため、 p偏光である往 路のレーザ光は透過されるので不都合はない。
このような構成の光磁気へッ ド装置にあっては、 第 3図の遮光板 2 1 と同様の作用、 即ち、 超解像効果に関与する s偏光成分を遮光 し、 信号成分でない P偏光成分のみを透過させるので、 上述した光 磁気へッ ド装置と同様の効果を得るこ とができる。
なお、 遮光板 2 1 を透過した光をフオ トダイオー ド 2 2 , 2 3 に 集光させるための集光レンズ 2 5の配位置は、 第 2のビ一ムスプリ ッ夕 1 6 と 1 / 2波長板 1 8 との間に限らない。 例えば第 2 4図に 示すように第 1及び第 2のビ一ムスプリ ッ夕 1 4 , 1 6の間でも良 いし、 第 2 5図に示すように 1 / 2波長板 1 8 と偏光ビームスプリ ッ夕 1 9 との間にあっても良い。 また、 第 2 6図に示すように 2枚 の集光レンズを用いて、 一方を偏光ビームスプリ ツ夕 1 9 とフ ォ ト ダイォ一 ド 2 2 との間に、 他方を偏光ビームスプリ ッタ 1 9 とフ ォ トダイォー ド 2 3 との間に設けてあっても良い。
また、 上述した遮光板 2 1 の偏光膜 2 1 bは、 第 4図に示すよう に、 略円形状を有しているが、 これに限るものではなく、 遮光板 2 1 を通る平行光の略中央部分に対応する位置に偏光膜が形成され てあれば良い。 第 2 7図は他の遮光板の構造を示す遮光板の平面図 である。 遮光板 2 1 は透明平板 2 1 a と偏光膜 2 1 c とを有してい る。 透明平板 2 1 aは平面視で略矩形状を有し、 その一面の略中央 に帯状の偏光膜 2 1 cが形成されている。 このような構造の遮光板 2 1 を用いることにより、 上述した光磁気へッ ド装置と同様の効果 を得ることができる o
さらに、 上述した遮光板 2 1 は透明平板 2 1 a と偏光膜 2 1 c と で構成してある場合を説明しているが、 これに限るものではなく、 偏光膜 2 1 cのみからなるものであっても良い。 例えば、 ビ一ムス プリ ッタ又は 1 / 2波長板 1 8の出光面に偏光膜 2 1 cを設けてあ つ" Lも良レヽ o
さらにまた、 上述した遮光板 2 1 の偏光膜 2 l b , 2 1 c として、 所定の偏光方向成分を略 1 0 0 %透過させ、 他の偏光方向成分を略 0 %の透過、 即ち遮光する誘電体多層膜を用いた場合を説明してい るが、 これに限るものではなく、 偏光方向により透過率が異なる偏 光板のような膜を用いても良い。
さらにまた、 上述した光磁気へッ ド装置は、 往路のレーザ光が p 偏光である場合を説明しているが、 これに限るものではなく、 S偏 光であっても適用できる。 ただしこの場合は、 p偏光成分より も S 偏光成分の方が高い透過率を有する偏光膜を備える遮光板を用い、 さ らに、 偏光方向に係わる構成を P偏光用と S偏光用とで入れ替え なお、 上述した実施の形態は、 光磁気ディスクからの反射光を対 物レンズで平行光とし、 平行光が遮光手段を透過する構成とした場 合を説明しているが、 平行光に限るものではなく、 例えば、 再生信 号検出部へ集束する集束光が遮光手段を透過する構成であつても良 い。
また、 上述した実施の形態は、 偏光ビ一ムスプリ ッタにより反射 光を偏光成分に分けて再生信号を差動検出する場合を説明している が、 これに限るものではなく、 各偏光成分を用いて再生信号を検出 する構成であれば良い。
産業上の利用可能性
以上のように、 本発明においては、 光磁気デイ スクでの反射光が 遮光手段を透過し、 反射光の略中央部分で、 信号成分でない偏光成 分より も信号成分である偏光成分の方を高率で透過させるので、 再 生信号を大き く して S / Nを向上させ、 且つ、 超解像再生が可能と なる。 また、 遮光手段を透過した光を集光させるので、 再生信号の 大きさに比例する光の成分を大き くでき、 再生信号の S Z Nがさら に向上する等、 本発明は優れた効果を奏する。

Claims

言青 求 の 範 圏
1 . 光磁気記録媒体で反射された反射光を用いて再生信号を得る 光磁気へッ ド装置において、
前記反射光が入射される遮光手段を備え、 該遮光手段は入射され る反射光の略中央部分にて所定の偏光成分が他の偏光成分より も高 い透過率を有する偏光膜を備えることを特徴とする光磁気へッ ド装
2 . 光磁気記録媒体で反射された反射光を入射せしめる対物レン ズと、 前記反射光を再生信号検出部とフ ォ ーカシングエラ一及びト ラッキングエラ一検出部とに分割するビームスプリ ッ夕と、 前記反 射光が入射される遮光手段と、 該遮光手段を透過した反射光を用い て再生信号を検出する再生信号検出部とを備える光磁気へッ ド装置 におい し、
前記遮光手段は、 入射される反射光の略中央部分にて所定の偏光 成分が他の偏光成分より も高い透過率を有する偏光膜を備え、 前記 ビームスプリ ッ夕で分割された反射光が入射される位置に配してあ ることを特徴とする光磁気へッ ド装置。
3 · 光磁気記録媒体で反射された反射光を入射せしめる対物レン ズと、 前記反射光を再生信号検出部とフ オーカシングエラー及びト ラッキングエラ一検出部とに分割するビ一ムスプリ ッ夕と、 前記反 射光が入射される遮光手段と、 該遮光手段を透過した反射光を用い て再生信号を検出する再生信号検出部とを備える光磁気へッ ド装置 において、
前記遮光手段は、 入射される反射光の略中央部分にて所定の偏光 成分が他の偏光成分より も高い透過率を有する偏光膜を備え、 前記 遮光手段を透過した反射光が前記ビームスプリ ッ夕に入射される位 置に配してあるこ とを特徴とする光磁気へッ ド装置。
4 . 前記偏光膜は、 所定の偏光成分を透過し、 他の偏光成分を反 射又は吸収する誘電体多層膜である請求項 1乃至 3のいずれかに記 載する光磁気へッ ド装置。
5 . 前記偏光膜を選択的に透過させる所定の偏光成分は、 前記光 磁気記録媒体に照射されるビーム光の偏光方向と同方向である請求 項 1乃至 4のいずれかに記載の光磁気へッ ド装置。
6 . 前記遮光手段を透過した反射光を集光する集光手段を配して ある請求項 1乃至 5のいずれかに記載する光磁気へツ ド装置。
7 . 前記集光手段を前記再生信号検出部内に配してある請求項 6 記載の光磁気へッ ド装置。
8 . 前記集光手段を複数の偏光成分の夫々に対応づけて配してあ る請求項 7記載の光磁気へッ ド装置。
9 . 前記遮光手段及び集光手段を前記再生信号検出部内に配して ある請求項 6記載の光磁気へッ ド装置。
1 0 . 前記集光手段を複数の偏光成分の夫々に対応づけて配してあ る請求項 9記載の光磁気へツ ド装置。
1 1 . 前記遮光手段及び集光手段を前記ビ一ムスプリ ッ夕の前後に 配してある請求項 6記載の光磁気へッ ド装置。
1 2 . 前記遮光手段及び集光手段を前記ビ—ムスプリ ッタの前に配 してある請求項 6記載の光磁気へッ ド装置。
1 3 . 前記集光手段を前記再生信号検出部内に配してある請求項 1 1記載の光磁気へッ ド装置。
1 4 . 前記集光手段を複数の偏光成分の夫々に対応づけて配してあ る請求項 1 3記載の光磁気へッ ド装置。
1 5 . 反射光を集光する集光手段を備え、 集光された反射光を前記 遮光手段に透過させるベくなしてある請求項 1乃至 5のいずれかに 記載の光磁気へッ ド装置。
1 6 . 前記集光手段及び遮光手段を前記ビームスプリ ッタの前後に 配してある請求項 1 5記載の光磁気へッ ド装置。
1 7 . 前記集光手段及び遮光手段を前記ビームスプリ ッタと再生信 号検出部との間に配してある請求項 1 5記載の光磁気へッ ド装置。
1 8 . 前記遮光手段を前記再生信号検出部内に設けてある請求項 1 5記載の光磁気へッ ド装置。
1 9 . 前記集光手段を前記ビームスプリ ッ夕への入射側に配してあ る請求項 1 8記載の光磁気へッ ド装置。
2 0 . 前記集光手段を前記ビームスプリ ッ夕と前記再生信号検出部 との間に配してある請求項 1 8記載の光磁気へッ ド装置。
2 1 . 前記集光手段は前記再生信号検出部内に配してある請求項 1 8記載の光磁気へッ ド装置。
2 2 . 前記集光手段及び遮光手段をビ一厶スプリ ツ夕の前に配して ある請求項 1 5記載の光磁気へッ ド装置。
PCT/JP1999/000799 1998-03-19 1999-02-22 光磁気ヘッド装置 WO2004075182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/600,799 US6741528B1 (en) 1998-03-19 1999-02-22 Magneto-optical head device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7051898 1998-03-19
JP10-70518 1998-03-19
JP10-331737 1998-11-20
JP33173798A JP3554844B2 (ja) 1998-03-19 1998-11-20 光磁気ヘッド装置

Publications (1)

Publication Number Publication Date
WO2004075182A1 true WO2004075182A1 (ja) 2004-09-02

Family

ID=26411673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000799 WO2004075182A1 (ja) 1998-03-19 1999-02-22 光磁気ヘッド装置

Country Status (3)

Country Link
US (1) US6741528B1 (ja)
JP (1) JP3554844B2 (ja)
WO (1) WO2004075182A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157769A (ja) * 2000-11-10 2002-05-31 Samsung Electro Mech Co Ltd 情報記録再生装置
JP2003203407A (ja) * 2001-12-28 2003-07-18 Fujitsu Ltd 光磁気記録再生装置
US8775997B2 (en) 2003-09-15 2014-07-08 Nvidia Corporation System and method for testing and configuring semiconductor functional circuits
US8711156B1 (en) 2004-09-30 2014-04-29 Nvidia Corporation Method and system for remapping processing elements in a pipeline of a graphics processing unit
US20110205036A1 (en) * 2010-02-23 2011-08-25 Allen Ku Power-saving wireless input device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141714A (ja) * 1993-11-19 1995-06-02 Dainippon Ink & Chem Inc 光情報検出装置
JPH0831002A (ja) * 1994-07-13 1996-02-02 Dainippon Ink & Chem Inc 光情報検出装置
JPH08221795A (ja) * 1995-02-14 1996-08-30 Hitachi Ltd 光ディスク装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756709B2 (ja) 1981-10-29 1995-06-14 シャ−プ株式会社 光磁気記憶装置
US5189651A (en) * 1986-05-12 1993-02-23 Pioneer Electronic Corporation Optical system in magneto-optical recording and reproducing device
JP2664327B2 (ja) 1993-06-21 1997-10-15 富士通株式会社 光学的ヘッド及び光学的記録再生方法
JPH07141681A (ja) 1993-11-18 1995-06-02 Ricoh Co Ltd 光ヘッド
JP2655077B2 (ja) * 1994-05-17 1997-09-17 日本電気株式会社 光ヘッド装置
JPH10302302A (ja) * 1997-04-24 1998-11-13 Sanyo Electric Co Ltd 光ピックアップ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141714A (ja) * 1993-11-19 1995-06-02 Dainippon Ink & Chem Inc 光情報検出装置
JPH0831002A (ja) * 1994-07-13 1996-02-02 Dainippon Ink & Chem Inc 光情報検出装置
JPH08221795A (ja) * 1995-02-14 1996-08-30 Hitachi Ltd 光ディスク装置

Also Published As

Publication number Publication date
JP3554844B2 (ja) 2004-08-18
US6741528B1 (en) 2004-05-25
JPH11328765A (ja) 1999-11-30

Similar Documents

Publication Publication Date Title
JPH035936A (ja) 光フアイバ形光磁気ヘッド
WO2004075182A1 (ja) 光磁気ヘッド装置
JPH05109143A (ja) 光学ピツクアツプ装置
JPS6235169B2 (ja)
JPH03116567A (ja) 光磁気情報再生装置
US6097689A (en) Optical pickup system incorporated therein a polarizing film and a pair of 1/4 wavelength plates
JPS5829155A (ja) 光磁気方式による情報再生装置
US6396638B1 (en) Optical pickup device capable of stable tracking
JP3334818B2 (ja) 光ピツクアツプ装置
JP3211483B2 (ja) 光ピックアップ装置
JP3167171B2 (ja) 光ヘッド
JPH0264917A (ja) 光磁気記録装置用光学ヘッド構造
JPH04141846A (ja) 光ヘッド
JP3350946B2 (ja) 光ディスク装置
JP2581779B2 (ja) 光磁気記録媒体からの信号検出装置
JPH06314449A (ja) 光ピックアップ装置
JPH05198030A (ja) 光磁気記録用レーザカプラ
JPS6063751A (ja) 光磁気ピツクアツプ装置
JPH0536111A (ja) 光学式情報読取り装置
JPH05205339A (ja) 光磁気記録用偏光光学系
JPH046647A (ja) 光磁気再生装置
JPH06333290A (ja) 光ピックアップ装置
JPS63225947A (ja) 光磁気デイスク用情報記録再生装置の光学系
JPH01285046A (ja) 光磁気記録再生装置の光磁気ヘッド
JPH07296438A (ja) 光磁気ピックアップ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09600799

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)