WO2004074832A1 - 活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の生成装置 - Google Patents

活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の生成装置 Download PDF

Info

Publication number
WO2004074832A1
WO2004074832A1 PCT/JP2004/001602 JP2004001602W WO2004074832A1 WO 2004074832 A1 WO2004074832 A1 WO 2004074832A1 JP 2004001602 W JP2004001602 W JP 2004001602W WO 2004074832 A1 WO2004074832 A1 WO 2004074832A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigenic substance
gas
treated
antigenic
substance
Prior art date
Application number
PCT/JP2004/001602
Other languages
English (en)
French (fr)
Inventor
Kazuo Nishikawa
Hideo Nojima
Tetsuya Yoneda
Kazuhisa Ono
Seiko Shigeta
Masatoshi Oshita
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CA2516031A priority Critical patent/CA2516031C/en
Priority to US10/545,239 priority patent/US8420326B2/en
Publication of WO2004074832A1 publication Critical patent/WO2004074832A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for evaluating the ability of an activated gas to deactivate an antigenic substance. More specifically, the present invention relates to a method for evaluating the ability of an activated gas to deactivate an antigenic substance by a reaction between an activated substance and a substance that causes an allergic reaction in mammals. .
  • the present invention relates to an apparatus for producing a treated antigenic substance using an activation gas. More specifically, the present invention relates to a device for producing a treated antigenic substance, which is provided with a container and is used as a sample for evaluating the ability of an activation gas to deactivate an antigenic substance.
  • the pollen when the purpose is to collect pollen, the pollen is physically collected by a collection filter in the presence of an antigenic protein that causes pollinosis. Have been surviving. Thus physically collected Since pollen easily detaches from the collection filter, there is a problem that pollen that has been collected may re-scatter at the start of operation, at the time of operation shutdown, or at the time of filter replacement. Furthermore, even if the pollen itself can be collected by the collection filter, antigenic proteins having a smaller particle size than the pollen may pass through the collection filter, thus fundamentally removing the antigenic substance. There is also a problem that does not reach.
  • an air purifier that irradiates ultraviolet rays to generate ozone has also been developed (for example, see Japanese Patent Application Laid-Open No. 2000-111106).
  • an air conditioner consumes a great deal of energy for UV irradiation, which increases the electricity bills paid by households and has the problem of adversely affecting the global environment.
  • ozone is released into the atmosphere, which may adversely affect living organisms of mammals including humans depending on conditions.
  • none of these air conditioners can process antigenic substances in accordance with the types of antigenic substances that cause allergic reactions that vary from individual to individual. The problem has not been solved at all. And the problem that the effect of various removal means or deactivation means differs depending on the type of antigenic substance has not been solved.
  • Another object of the present invention is to provide a device for producing a treated antigenic substance capable of uniformly and easily producing an antigenic substance which has been treated with an activated gas and used as an evaluation sample in the above-described evaluation method. It is to provide. Disclosure of the invention
  • the present inventors worked on trial and error to establish a method for evaluating the performance of an activated gas to deactivate an antigenic substance.
  • the inventors spread the antigenic substance in the container, and react with the activating gas in a state where the solution containing the dispersed antigenic substance is suspended in the container to obtain a homogeneous active substance. It has been found that an oxygenated gas-treated antigenic substance can be easily obtained. The present inventors have found that by using this treated antigenic substance, the ability of the activated gas to deactivate the antigenic substance can be accurately and simply evaluated.
  • the method for evaluating the performance of the activated gas of the present invention to deactivate the antigenic substance includes the steps of reacting the antigenic substance with the activated gas to obtain a treated antigenic substance; Reacting the antibody to the antibody with the treated antigenic substance and measuring the binding activity of the treated antigenic substance to the antibody, comprising the step of: activating gas to deactivate the antigenic substance. This is an evaluation method.
  • the method for evaluating the performance of an activated gas to deactivate an antigenic substance comprises the steps of reacting the antigenic substance with the activated gas to obtain a treated antigenic substance; Reacting the antibody with the treated antigenic substance to measure the binding activity of the treated antigenic substance to the antibody; and And a step of comparing the binding activity of the substance with the binding activity of the antigenic substance to the antibody.
  • the step of obtaining the treated antigenic substance preferably includes the step of reacting the antigenic substance floating in the air with the activating gas.
  • the step of causing the reaction includes: 'spreading a solution containing the antigen' in the vessel; f floating the solution containing the sprayed antigenic substance in the vessel; and And introducing the activating gas therein.
  • the step of obtaining the treated antigenic substance includes the step of suspending the antigenic substance in the air by applying vibration and / or impact to the antigenic substance.
  • the step of suspending includes a step of placing the antigenic substance on a sample stage having potential, and a step of subjecting the sample stage to vibration and Z or impact.
  • the step of floating the antigenic substance is performed on a sample table having at least one kind of flexibility selected from the group consisting of a futon, a blanket, a cushion, a pillow, a mat, a sponge, a cloth, paper, and polystyrene foam. Setting and hitting the sample stage and
  • the step of obtaining the treated antigenic substance includes the step of obtaining the antigenic substance, a gas containing positive ions, a gas containing negative ions, a gas containing radicals, an ozone gas, and a nitrate gas.
  • the method includes a step of reacting with a gas containing at least one selected from the group consisting of ⁇ .
  • the step of obtaining the treated antigenic substance comprises reacting the activated gas with at least one selected from the group consisting of antigenic substances contained in cedar pollen and Z or mite dust, cedar pollen and dust dust. And obtaining a processed antigenic substance.
  • the step to be measured is determined by the ELISA method and / or the ELISA inhibition method. It is desirable to include a step of reacting the body with the treated antigenic substance and measuring the binding activity of the treated antigenic substance to the antibody.
  • the antibody and the treated antigenic substance are separated by an intradermal reaction test and a Z or conjunctival reaction test with a non-human animal having cells producing the antibody against the antigenic substance.
  • the method comprises the step of reacting to measure the binding activity of the treated antigenic substance to the antibody.
  • the apparatus for generating a treated antigenic substance used as an evaluation sample of the performance of the activated gas for deactivating an antigenic substance comprises: a container; means for dispersing the antigenic substance in the container; And a means for generating or introducing an activated gas in the container.
  • the present invention also provides a container, means for enclosing an antigenic substance in the container, and means for generating or introducing the activating gas in the container, wherein the activating gas loses the antigenic substance. Also provided is an apparatus for producing a treated antigenic substance used as an evaluation sample for activating performance.
  • the container preferably contains a transparent material in part or in whole.
  • FIG. 1 is a flow chart showing an outline of a method for evaluating the performance of an activating gas of the present invention to deactivate an antigenic substance.
  • FIG. 2 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of an activating gas of the present invention for deactivating an antigenic substance.
  • FIG. 3 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • FIG. 4 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • FIG. 5 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • FIG. 6 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • FIG. 7 is a diagram showing an outline of an example of the structure of the ion generating element used in the present invention.
  • 8A and 8B are diagrams showing mass spectra of positive ions and negative ions generated from the ion generating element.
  • FIG. 9A and 9B show the allergic reactions of the cedar antigenic substances with serum 1 gE antibody from 19-40 patients, respectively, when the cedar antigenic substance was treated with a gas containing both positive and negative ions and untreated.
  • FIG. 9A shows the allergic reactions of the cedar antigenic substances with serum 1 gE antibody from 19-40 patients, respectively, when the cedar antigenic substance was treated with a gas containing both positive and negative ions and untreated.
  • Fig. 1 OA and 10B show allergy to hay fever patients 41-60 with serum IgE antibody when cedar antigenic substance was treated with gas containing both positive and negative ions and untreated. It is a figure showing the relation of reaction.
  • Figure 11 shows the relationship between Cryj 1 and Cryj 2 and their reactivity with monoclonal antibodies when the cedar antigenic substance was treated with a gas containing both positive and negative ions and when it was not treated.
  • FIG. 11 shows the relationship between Cryj 1 and Cryj 2 and their reactivity with monoclonal antibodies when the cedar antigenic substance was treated with a gas containing both positive and negative ions and when it was not treated.
  • FIG. 12 shows the antigenic substance and the serum I of hay fever patients when the cedar antigenic substance was treated with a gas containing both positive and negative ions by the ELISA inhibition method and when untreated.
  • FIG. 4 is a diagram showing the relationship of the allergic reaction of the gE antibody.
  • FIG. 13 is a diagram showing the relationship between the respective concentrations of both positive and negative ions in the activated gas and the reaction deactivation rate of the antigenic substance derived from cedar pollen.
  • FIG. 14 is a schematic view showing an example of an apparatus for executing the method for deactivating an antigenic substance, which is equipped with a device for reducing an ozone concentration.
  • Fig. 15 shows the relationship between allergic reactions with serum IgE antibodies from mite allergic patients a to r when the antigenic substance (Du antigenic substance) was ion-treated and untreated.
  • FIG. 15 shows the relationship between allergic reactions with serum IgE antibodies from mite allergic patients a to r when the antigenic substance (Du antigenic substance) was ion-treated and untreated.
  • FIG. 16 is a schematic view showing an example of an apparatus for performing the method for deactivating an antigenic substance, which is provided with a blower and a recovery filter.
  • FIG. 17 is a schematic view showing an example of an apparatus for performing the method for deactivating an antigenic substance, which is provided with a blower and a collection container.
  • Fig. 18 shows the case where mite dust was treated with ion and the case where it was not treated under the spatial average concentration of both positive and negative ions (3000 pcs / cm 3 ) by the ELISA Inhibition method.
  • FIG. 2 is a graph showing the relationship between antigenic substances and allergic reactivity of serum IgE antibody of a patient with dayurer allergy.
  • FIG. 19 shows the case where the dust was ion-treated and the case where it was not treated by the ELISA method under the spatial average concentration of both positive and negative ions (10,000 pieces / cm 3 ).
  • FIG. 4 is a graph showing the relationship between antigenic substances and the allergic reactivity of serum IgE antibodies of dae allergy patients.
  • the antigenic substance refers to a substance contained in pollen such as cedar, cypress, ragweed, an organism such as a tick, feces of an organism such as a tick, or household suspended matter such as house dust, It refers to a substance that induces an allergic reaction by acting on the living body of mammals including humans, which is a type of antigen-antibody reaction.
  • the antigenic substance is usually composed of a protein or a glycoprotein.
  • the shape or size is not particularly limited, and the molecular form of the protein or the glycoprotein itself, or It is assumed that they include those that are aggregated into particles, or that contain antibody reactive sites (also called antigenic determinants ⁇ epitopes) that are part of the molecular ones.
  • the antigenic substance may be cedar pollen itself or an antigenic substance (cedar antigenic substance) contained in cedar pollen. Further, the antigenic substance may be an antigenic substance (mite antigenic substance) contained in dust or dust.
  • antigenic substances include Cryj 1 protein and Cryj 2 protein, which are known as causative substances of cedar pollinosis, and Cryj 1 Protein and Cryj 2 protein epitopes are also included, as well as Cr yj 1 protein and Cr y It also includes particulate matter in cedar pollen that contains a large amount of j2 protein (also called ubiquitous bovine) and cedar pollen itself.
  • the mite antigenic substance is contained in the body of the mite itself, but in a general living environment, it is often a problem that the substance is contained in the mite dust rather than the mite itself.
  • mite dust refers to the mite itself, the mite carcass and a part of the body, and the fine particles including the mite's food and excrement, shells and eggs.
  • the antigenic substance in the present invention includes such mites and dust.
  • an antibody-reactive site is a specific portion contained in an antigenic substance and means a site that binds to an antibody.
  • the antibody reactive site is denatured or destroyed (decomposed), the antigenic substance cannot bind to the antibody, thereby suppressing an allergic reaction.
  • the activating gas means a gas that causes some chemical reaction or Z or a physical action on the antigenic substance.
  • Specific examples of the activation gas are not particularly limited, and include a gas containing positive ions, a gas containing negative ions, a gas containing both positive and negative ions, a gas containing ozone, a gas containing nitric acid gas, a gas containing radicals, and the like. No. It is also assumed that there may be other gases having various compositions as the activation gas for the antigenic substance. However, the activation gas of the present invention described later has the performance of deactivating the antigenic substance. It is possible to find out using the evaluation method.
  • activation of an antigenic substance means the disappearance or reduction of the activity of the antigenic substance as an antigenic substance. That is, the ability of the antigenic substance to react with the antibody Extinction or reduction.
  • the present inventors consider that the mechanism of deactivation of an antigenic substance by an activation gas is that the activation gas attacks a protein constituting the antigenic substance, particularly, its antibody reaction site. It is understood to be due to the mechanism of inactivating antigenic substances by denaturing or destroying (degrading) proteins. '
  • the contained gas acts as an activating gas for the antigenic substance and has a function of deactivating the antigenic substance. This deactivating function is achieved by allowing positive and negative ions to act on the antigenic substance.
  • the gas containing positive ions or the gas containing negative ions can be used alone. In comparison with, a significant deactivation effect is exhibited for antigenic substances.
  • an active substance is generated by a chemical reaction as described below, and the active substance is a protein constituting an antigenic substance, in particular, It can be understood that by attacking the antibody reaction site, the protein is denatured or broken (degraded) to inactivate the antigenic substance.
  • the term "inactivate an antigenic substance” can be defined in more detail as follows: only the disappearance of an antigenic substance by denaturation or rupture (decomposition) of the antigenic substance as described above. However, this also includes reducing the amount of the antigenic substance per unit volume in the atmosphere gas or reducing the reactivity of the antigenic substance with the antibody at the antibody reaction site.
  • an appropriate method should be selected according to the type of the antigenic substance and the type of the activation gas.
  • a measurement technique is not particularly limited, but as an example, an ELISA inhibition method can be used. According to this method, when a concentration showing 50% inhibition of the antigenic substance treated with the activated gas is measured, the concentration of the 50% inhibition is measured. If the degree is, for example, 5 times or more higher than the 50% inhibitory concentration of the antigenic substance not treated with the activated gas, the residual activity is 20% (that is, the reaction inactivation rate is 80%). .
  • the extent to which the reaction inactivation rate is to be realized when determining that the activated gas has the ability to deactivate the antigenic substance depends on the type of the activated gas and the type of the antigenic substance. Differently, it can be determined by an appropriate threshold value. For example, although not particularly limited, a gas containing positive and negative ions can be used as the activating force, and an antigenic substance derived from cedar pollen can be used as the antigenic substance.
  • FIG. 1 is a flow chart showing an outline of a method for evaluating the performance of an activating gas of the present invention to deactivate an antigenic substance.
  • the method for evaluating the ability of an activated gas to deactivate an antigenic substance according to the present invention includes the steps of: reacting an antigenic substance with an activated gas to obtain a treated antigenic substance (S 101); Reacting an antibody to the antigenic substance with the treated antigenic substance and measuring the binding activity of the treated antigenic substance to the antibody (S103).
  • This is a method for evaluating the performance of gas to deactivate an antigenic substance.
  • a step (S101) of obtaining the treated antigenic substance Following the step of measuring the binding activity of the antigenic substance (S103), the step of comparing the binding activity of the treated antigenic substance with the binding activity of the antigenic substance to the antibody (S105) ) Is preferable.
  • the step of obtaining the treated antigenic substance preferably includes the step of reacting the antigenic substance floating in the air with the activating gas.
  • the antigenic substance and the activating gas can react in a uniform state, and the floating time of the antigenic substance can be adjusted.
  • the reaction time between the antigenic substance and the activating gas can be easily adjusted.
  • the antigenic substance may be floated in the air by agitating or flowing an atmosphere gas containing an activation gas, or the antigenic substance may simply be dropped for a certain distance. It may be suspended in the air.
  • the step of causing the reaction includes a step of spraying the antigenic substance in a container, a step of suspending the solution containing the sprayed antigenic substance in the container, and a step of floating the solution containing the antigenic substance in the container. Introducing an activating gas.
  • the container is preferably a closed system, but may be a semi-closed system partially open.
  • the antigenic substance when the antigenic substance is sowed by stirring or flowing an atmosphere gas containing an activating gas by suspending the solution containing the antigenic substance thus sprayed in the container, Unnecessary diffusion of the antigenic substance can be prevented, and there is an advantage that the concentration of the antigenic substance in the container can be easily maintained within a certain range.
  • the activation gas By introducing the activation gas into the container in this way, the activation gas can be prevented from being unnecessarily diffused, so that the concentration of the antigenic substance is kept within a certain range in the container.
  • concentration of the antigenic substance is kept within a certain range in the container.
  • concentration of the activated gas can be uniformly reacted with the antigenic substance.
  • the antigenic substance is contained in the solution, when spraying the solution containing the antigenic substance into the container, it is preferable to spray using a nebulizer or the like. Fine This is because a solution with a small and uniform particle size can be sprayed, and the reaction between the antigenic substance and the activation gas can be made more uniform.
  • the step of obtaining the treated antigenic substance in the method for evaluating the ability of an activated gas to deactivate an antigenic substance according to the present invention includes the step of: applying vibration and / or impact to the antigenic substance.
  • the method includes the step of suspending the substance in the air.
  • This floating step preferably includes a step of placing the antigenic substance on a flexible sample table, and a step of subjecting the sample table to vibration Z or impact.
  • the flexible sample stage is preferably at least one selected from the group consisting of a futon, a blanket, a cushion, a pillow, a mat, a sponge, a cloth, paper, and styrene foam.
  • the step of applying vibration and / or impact to the sample stage is to apply vibration, Z or impact to the sample stage by hitting and z or swinging the sample stage.
  • the step of obtaining the treated antigenic substance includes at least one selected from the group consisting of a gas containing the antigenic substance and a gas containing positive ions, a gas containing negative ions, a gas containing radicals, an ozone gas, and a nitric acid gas.
  • the method includes a step of reacting the gas with a gas.
  • the step of obtaining the treated antigenic substance is particularly preferably a step of reacting the antigenic substance with a gas containing both positive and negative ions.
  • the present inventor has first shown that the gas containing both positive and negative ions has a function of inactivating antigenic substances derived from cedar pollen.
  • ozone gas, nitric acid gas, and gas containing radicals are also gaseous substances, and therefore, the inactivation ability for antigenic substances can be evaluated by using the evaluation method of this specification.
  • the step of measuring is performed by reacting an antibody against the antigenic substance with the treated antigenic substance by ELISA method Z or ELISA inhibition method, and binding the treated antigenic substance to the antibody. It is desirable to include a step of measuring the activity.
  • the binding activity of the treated antigenic substance to the antibody can be accurately and simply determined. It can be measured in stool.
  • the 50% inhibition concentration is calculated as follows. It can be compared with the 50% inhibitory concentration of the antigenic substance not treated with the activated gas. In this case, for example, when the 50% inhibitory concentration is increased by a factor of 5, the residual activity becomes 20% (that is, the reaction inactivation rate is 80%).
  • the antibody and the processed antigenic substance are subjected to an intradermal reaction test and / or a conjunctival reaction test on a non-human animal having cells producing the antibody against the antigenic substance.
  • the method comprises the step of reacting to measure the binding activity of the treated antigenic substance to the antibody.
  • the binding activity of the treated antigenic substance to the antibody can be determined by an intradermal reaction test or a conjunctival reaction test with a non-human animal having cells producing the antibody against the antigenic substance.
  • measurement can be performed under conditions closer to those in a human body.
  • the force S for performing the intradermal reaction test and the conjunctival reaction test on humans are performed using non-human mammals such as mice, rats, and herons. It is common knowledge in the fields of medicine, pharmacy, agriculture, biology, biochemistry and molecular biology that using animals is much easier than using humans.
  • the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of an activated gas to deactivate an antigenic substance comprises: a container; means for spraying the antigenic substance into the container; Gas A device for producing a treated antigenic substance used as an evaluation sample for evaluating the ability of an activated gas to deactivate an antigenic substance, comprising: means for generating or introducing the gas into the container. Further, the apparatus for producing a treated antigenic substance of the present invention comprises: a container; means for enclosing the antigenic substance in the container; and means for generating or introducing the activation gas into the container. An apparatus for producing a treated antigenic substance used as a sample for evaluating the performance of the activating gas for deactivating the antigenic substance may be used.
  • the apparatus for producing a treated antigenic substance of the present invention preferably further comprises means for suspending the antigenic substance in the container. Since the diffusion of the activation gas and the antigenic substance is prevented by the presence of the container, even if the antigenic substance is lifted up by stirring or flowing an atmosphere gas containing the activation gas, the antigenic substance is suspended in the container. This is because the concentrations of the active substance and the activation gas are kept within a certain range.
  • the container partially or entirely contains a transparent material. Since a part or all of the container is transparent in this way, the floating state of the antigenic substance in the container can be visually observed, so that the reaction condition between the antigenic substance and the activated gas can be easily adjusted. There is an advantage that it becomes.
  • FIG. 2 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of an activating gas of the present invention for deactivating an antigenic substance.
  • the apparatus shown in FIG. 2 includes a semi-closed cylindrical container 1027 as a container. Further, as means for dispersing the antigenic substance, a nebulizer 110 and an inlet 108 are provided. In addition, it has a semi-closed cylindrical container 10 27 that has a certain height as a means for floating the antigenic substance in the container, so that the antigenic substance inevitably floats inside the container. .
  • An ion generating element 1021 is provided as a means for introducing a gas containing both positive ions 1022 and negative ions 1023 as an activating gas into the container.
  • the apparatus shown in FIG. 2 further includes a collecting container for collecting the antigenic substance that has been treated with the activated gas, and a degassing port for the atmosphere gas containing the activated gas. Have been.
  • FIG. 3 is a diagram showing an outline of another example of the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • the apparatus shown in FIG. 3 includes a semi-closed cylindrical container 103 as a container. Further, an injection port 130 is provided as a means for dispersing the antigenic substance. In addition, a semi-closed cylindrical container 110 37 that has a certain height as a means for floating the antigenic substance in the container and inevitably floats the antigenic substance inside the container is provided. ing. An ion generating element 103 is provided as a means for introducing a gas containing both positive and negative ions as an activating gas into the container.
  • FIG. 4 is a diagram showing an outline of another example of the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance. .
  • the device shown in Fig. 4 has a closed cylindrical container 10047 as a container. Further, as means for dispersing the antigenic substance, an openable lid 104 is provided. In addition, since the antigenic substance has a certain height as a means for floating the antigenic substance in the container, the antigen is inevitably contained inside by erecting it in the longitudinal direction or by repeatedly twisting it in the longitudinal direction.
  • the container is provided with a closed cylindrical container 1004 in which the conductive substance floats.
  • An ion generating element 1041 is provided as a means for introducing a gas containing both positive and negative ions as an activating gas into the container.
  • the apparatus shown in FIG. 4 also shows an antigenic substance 104, a voltage application electrode 104, a dielectric substance 104, and a ground electrode 104. .
  • FIG. 5 is a diagram showing an outline of still another example of the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • the apparatus shown in FIG. 5 includes a closed cylindrical container 105 as a container. Further, an openable / closable cover 105 is provided as a means for spraying the antigenic substance 105. Further, a fan 105 is provided as a means for floating the antigenic substance 105 in the container.
  • An ion generating element 1051 is provided as a means for introducing a gas containing both positive and negative ions 1052 as an activating gas into the container.
  • FIG. 6 is a diagram showing an outline of still another example of the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • the apparatus shown in FIG. 6 includes a closed cylindrical container 1067 as a container.
  • an opening / closing lid 106 is provided as a means for dispersing the antigenic substance 106.
  • a fan 1069 and a filter 1065 that transmits the activation gas but does not transmit the antigenic substance.
  • An ion generating element 1061 is provided as a means for introducing a gas containing both positive and negative ions 1062 as an activating gas into this container.
  • the ion generating element used in the apparatus for producing a processed antigenic substance used as an evaluation sample of the performance of the activated gas for deactivating the antigenic substance of the present invention generates positive ions and negative ions. It is also preferable that the substance can be able to directly inactivate the allergic reaction of the antigenic substance by electric shock as described below.
  • the location of such an ion generating element is not particularly limited, but usually it is preferably provided in an air passage of a device for deactivating an antigenic substance. Both positive and negative ions generated by the ion generating element disappear in a short period of time, so that these positive and negative ions can be efficiently diffused into the air.
  • the number of installed ion generating elements may be one or two or more.
  • an ion generating element As such an ion generating element, a conventionally known ion generating element that generates both positive and negative ions by a discharge mechanism is used. In particular, positive and negative ions are sent into the air so that the concentration of both positive and negative ions in the atmosphere in which positive and negative ions act on the antigenic substance is 100,000 cm 3 or more, respectively. You can choose what you can.
  • the ion concentration means the concentration of a small ion.
  • a critical mobility is set to 1 cm 3 / V ⁇ sec, and an air ion counter ( The value measured by Dan Kagaku's air ion counter (Part No. 83-101B)) is used.
  • the discharge mechanism here has a structure in which an insulator is sandwiched between electrodes. A high voltage of AC is applied to one side, and the other electrode is grounded. A mechanism that forms a plasma discharge in the air layer in contact with it, and ionizes or dissociates water molecules and oxygen molecules in the air to generate positive and negative ions.
  • the electrode shape is a plate shape or mesh shape on the voltage application side and the ground side electrode is mesh shape
  • the electric field concentrates on the mesh end face of the ground side electrode.
  • a creeping discharge occurs and a plasma region is formed. When air is injected into this plasma region, both positive and negative ions are generated.
  • FIG. 7 is a diagram showing an outline of an example of the structure of the ion generating element used in the present invention. More specifically, as shown in FIG. 7, a dielectric 703 is sandwiched between a plate-shaped voltage application electrode 702 and a mesh-shaped ground electrode 704 as shown in FIG.
  • the high-voltage power supply 7001 alternately applies positive and negative voltages to the plate-shaped electrode, causing an electric field to concentrate on the mesh end surface of the mesh-shaped electrode, causing plasma discharge and forming a plasma region 7005
  • Particularly preferred is a structure having both positive and negative ions.
  • the applied voltage required to generate and send both positive and negative ions depends on the structure of the ion generating element, but is 2 to 10 kV, preferably 3 to 7 kV, as the Peaktopeak voltage between the electrodes. Range.
  • the present inventors use the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activated gas of the present invention to deactivate the antigenic substance, and the activated gas of the present invention loses the antigenic substance.
  • a gas containing both positive and negative ions has a function of deactivating an antigenic substance, as shown in Examples described later.
  • the present invention is not limited to positive and negative ions, but can be used for various gas types or gas concentrations.
  • the mechanism of deactivation of an antigenic substance by a gas containing both positive and negative ions includes not only the mechanism by the chemical reaction as described above, but also the reaction of the antigenic substance with the antibody by the electric shock in the ion generating element. It is considered that the mechanism of deactivation by denaturation or rupture is also included.
  • the antibody reaction site of the antigenic substance is denatured or ruptured by the plasma discharge itself due to the application of a voltage when generating both positive and negative ions, and the binding ability between the antigenic substance and the antibody is also caused by such electric shock. Is lost and antigenic substances are inactivated.
  • the inventors of the present invention evaluated the ability of the activated gas of the present invention to deactivate an antigenic substance, as described later, when a gas containing both positive and negative ions was used as the activated gas. It has been found out which method is preferable as a method for delivering a gas containing both positive and negative ions.
  • the positive and negative ions used in the present invention are mainly generated by the discharge phenomenon of the ion generating element.
  • both positive and negative ions are generated almost simultaneously by alternately applying positive and negative voltages and are sent out into the air. can do.
  • the method for transmitting both positive and negative ions according to the present invention is not limited to this, and only one of the positive and negative voltages is applied for a certain period of time, and only one of the positive and negative ions is transmitted first. Then, an opposite voltage is applied for a certain period of time, and ions having a charge opposite to that of the already sent ions can be sent.
  • the applied voltage required to generate and send these positive and negative ions depends on the electrode structure, but the peak-to-peak voltage between the electrodes should be 2 to: L 0 kV, preferably 3 to 7 kV. be able to.
  • the positive ions and negative ions used in the present invention are preferably generated at a relative humidity of 20 to 90%, preferably 40 to 70%.
  • the generation of both positive and negative ions is related to the presence of water molecules in the air. In other words, when the relative humidity is less than 20%, clustering by water molecules centered on ions does not proceed properly, and recombination of ions easily occurs, so that the life of generated ions is shortened. I will. If it exceeds 90%, the condensation of water on the surface of the ion generating element will significantly reduce the ion generation efficiency, and the generated ions will be too clustered and will be surrounded by many water molecules. As a result, there is a risk that the weight will increase and settle without being released too far. Therefore, generation of ions at such extremely low or high humidity can be This is not preferred.
  • a method of transmitting the positive / negative dion of the present invention a method utilizing a device that emits ultraviolet rays or electron beams may be used irrespective of only the above-described discharge phenomenon.
  • the positive ions and negative ions can be generated using oxygen molecules and Z or water molecules existing on the surface of the discharge element as raw materials. According to this generation method, no special raw material is required, which is advantageous not only in terms of cost but also because the raw material itself has no harmfulness and does not generate other harmful ions or substances. .
  • the composition of both positive and negative ions generated by the discharge phenomenon of the above-mentioned ion generating element is mainly that as a positive ion, water molecules in the air are ionized by plasma discharge to generate hydrogen ions H +, which is the solvation energy H 3 0+ (H 2 0) n (n is 0 or a natural number) is to be calculated and form by water molecules and clustering in the air by.
  • H 3 0+ (H 2 O ) n (n is 0 or a natural number) described as positive ions, changing the notation H + (H 2 0) n (n is a natural number) and that describes Are possible and indicate equivalent ions.
  • 8A and 8B are diagrams showing mass spectra of positive ions and negative ions generated from the ion generating device.
  • the clustering of water molecules means that the minimum peak observed in FIG. 8A is at the position of molecular weight 19, and the latter peak corresponds to the molecular weight of water for this molecular weight 19. It is clear from the fact that the 8 appears sequentially. In other words, this result indicates that water molecules having a molecular weight of 18 are integrally hydrated with hydrogen ions H + having a molecular weight of 1. On the other hand, as the negative ions by ionizing oxygen molecules or water molecules in the air oxygen ions 0 2 _ is generated by the plasma discharge, O 2 _ by this to water molecules and clustering in the air by solvation energy conservation one (H 2 0) m
  • the hydroxyl radical denatures or breaks down (decomposes) the antibody-reactive site of the antigenic substance and loses the binding ability between the antigenic substance and the antibody, thereby efficiently removing the antigenic substance in the air. It is understood that it can be deactivated.
  • the Omicron 2 one (H 2 0) m (m is 0 or a natural number) as negative ions
  • the positive and negative ions in the present invention are not limited to these. While mainly of positive and negative ions of the two, for example, N 2 + is a positive ion, 0 to 2 + etc., can be as negative ions illustrates NO 2 one, CO 2 one and respectively containing these The same effect can be expected even if it does.
  • cedar antigenic substance 80 g of cedar pollen in 4 mM 20 mM PBS (pH 7.4) at 4 ° C, 4 hours After stirring, the mixture was centrifuged at 6000 rpm for 30 minutes. After centrifugation, ammonium sulfate was added to the supernatant to a final concentration of 80% saturation, and centrifuged at 6000 rpm for 30 minutes. After centrifugation, dialysis for 6 hours was repeated 6 times, followed by centrifugation at lOOOrpm for 30 minutes. After centrifugation, the obtained supernatant was freeze-dried to obtain a cedar antigenic substance. In the present specification, the cedar antigenic substance is also described as CJP. ⁇ Measuring protein content by F o 1 in—Lowry method>
  • Solution A solution containing 1 N of phenol reagent as acid
  • cedar antigenic substance protein concentration 200 ng ml
  • cedar pollen A cedar antigenic substance extracted from cedar pollen was sprayed with a nebulizer under irradiation of positive and negative ions.
  • a collection dish was placed on the bottom of the spray container, and only the ion-treated antigen was collected without touching the wall. 8 ml of the solution (containing cedar antigenic substances) was sprayed over 1.5 hours.
  • FIG. 2 is a diagram showing an outline of an example of an apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activating gas of the present invention for deactivating an antigenic substance.
  • FIGS. 8A and 8B show positive ions generated from the ion generating element provided in the apparatus shown in FIG.
  • FIG. 2 is a diagram showing mass spectra of ions and negative ions.
  • a flat creeping discharge element having a length of 37 mm and a width of 15 mm was used as the ion generating element 1021. Then, by applying a positive and negative voltage between the electrodes alternately, a creeping discharge was generated at the surface electrode portion, and positive ions 1022 and negative ions 1023 were simultaneously generated and transmitted by discharge plasma under atmospheric pressure. .
  • the applied voltage was 3.3 kV to 3.7 kV as the peak voltage between the electrodes, and no ozone was generated at a voltage in this range that was harmful to the human body.
  • ion generating elements are mounted and fixed inside a semi-sealed cylindrical container 1027 made of Ataryl having an inner diameter of 150 mm and a length of 37 Omm. 1028, and a container 1025 for collecting an antigenic substance solution on the other side.
  • cedar pollen When an antigenic substance extracted from cedar pollen was used as the antigenic substance, the cedar pollen was collected from a branch of Japanese cedar (Cryptomerijaiaponapica) that grows in Toyoinchi, Hiroshima Prefecture. At that time, they were collected by sieving using a vacuum cleaner fitted with a mesh. After collection, a freezer at 130 ° C was used.
  • the method of extracting the antigenic substance from cedar pollen was as follows: after stirring 80 g of cedar pollen in 3.2 L of 2 OmMPB S (pH 7.4) at 4 ° C for 4 hours, and centrifuging at 6000 rpm for 30 minutes Then, ammonium sulfate was added to the supernatant so that the final concentration was 80% saturated, and the mixture was centrifuged at 600 rpm for 30 minutes. After centrifugation, dialysis for 6 hours was repeated 6 times, and centrifuged at 10,000 rpm for 30 minutes. After centrifugation, the obtained supernatant was freeze-dried to obtain an antigen substance solution.
  • the antigen substance liquid recovery container 1025 of the same device was installed at the bottom of a semi-closed cylindrical container 1027.
  • the nebulizer was connected to an air compressor, and sprayed the test antigenic substance from the inlet 1028 with compressed air (flow rate 5 L, min).
  • the spraying volume was 8.0 ml (spraying time 90 minutes).
  • the antigenic substance settled at the bottom of the semi-closed cylindrical container for 90 minutes was collected in the collection container.
  • the sprayed antigenic substance naturally falls into the air for 90 seconds, and interacts with positive ions 1022 and negative ions 1023 in the air.
  • Reactivity with serum IgE antibodies collected from hay fever patients was measured by ELISA.
  • the concentration of both positive and negative ions was measured by using an air compressor at a flow rate of 5 L / min from the injection port 1028 for spraying the antigenic substance liquid in the semi-closed cylindrical container 1027 in which the ion generating element 1021 was installed as described above.
  • an air ion counter product number 83-1001B manufactured by Dan Kagaku was set in the container 1025 for collecting the antigenic substance solution, and the total concentration of both positive and negative ions in the space was measured.
  • the space atmosphere was at a temperature of 25 ° C and a relative humidity of 60% RH.
  • the positive ions delivered are H 3 0+ (H 2 0) n (n is 0 or any natural number), and the negative ions are 0 2 (H 2 O) m (m is 0 or any natural number), and these positive and negative ions form hydrogen peroxide H 2 O 2 , hydrogen dioxide H 0 2 or hydroxy radical OH by the chemical reactions (1) and (2) described above.
  • the positive ions delivered are H 3 0+ (H 2 0) n (n is 0 or any natural number)
  • the negative ions are 0 2 (H 2 O) m (m is 0 or any natural number)
  • Figures 9A and 9B show the relationship between the allergic reaction with the serum 1 gE antibody of hay fever patients 19 to 40 when the cedar antigenic substance was treated with a gas containing both positive and negative ions and untreated.
  • FIG. 9A shows the relationship between the allergic reaction with the serum 1 gE antibody of hay fever patients 19 to 40 when the cedar antigenic substance was treated with a gas containing both positive and negative ions and untreated.
  • Fig. 1 OA and Fig. 10B show the relationship between the allergic reaction with serum 1 gE antibody of pollinosis patients 41 to 60 when the cedar antigen-producing substance was treated with a gas containing both positive and negative ions and untreated.
  • FIG. 1 OA and Fig. 10B show the relationship between the allergic reaction with serum 1 gE antibody of pollinosis patients 41 to 60 when the cedar antigen-producing substance was treated with a gas containing both positive and negative ions and untreated.
  • Figure 11 shows the relationship between the reactivity of Crj1 and Cryj2 with their monoclonal antibodies when the cedar antigenic substance was treated with a gas containing both positive and negative ions and when it was not treated.
  • FIG. 11 shows the relationship between the reactivity of Crj1 and Cryj2 with their monoclonal antibodies when the cedar antigenic substance was treated with a gas containing both positive and negative ions and when it was not treated.
  • the cedar antigenic substance collected after spraying was placed in a centrifuge (Centriprip YM-10) and concentrated by centrifugation at 2500 rpm. Further, the concentrated solution was placed in a centrifuge (ULTRA F LEE-MC) and concentrated at 7000 rpm.
  • the concentrated ion-treated cedar antigenic substance and the untreated cedar antigenic substance were diluted 5-fold from a protein concentration of 11 ⁇ g Zml eight times.
  • the diluted respective antigenic substance 50 ⁇ 1 and 10-fold diluted patient serum Ig I50 ⁇ l were mixed and pre-incubated at 4 ° C.
  • a cedar antigenic substance (without spraying) diluted to 1 ⁇ g / m 1 with Bicarbonate buffer in 96-we 11 p 1 ate for ELISA was applied to we 11 at 50 ⁇ l, and allowed to stand for 2 hours. After washing the plate three times with Washingbuffer, B lockingbuffer was applied at 300 ⁇ 1 and allowed to stand at 4 ° C. After washing the plate three times, each of the samples that had been pre-cubated was applied to each well in a 500 ⁇ l well and allowed to stand for 4 hours.
  • Attophos TM substratebuffer was applied to we11 for 501 and allowed to stand in a light-shielded state until the color developed.
  • the fluorescence intensity was measured with Cyto TMF 1 uor II.
  • the untreated case where the ion generating element is not operated, and a voltage between 3.3 kV and 3.7 kV as the peak-to-peak voltage between the electrodes is applied to the element to send both positive and negative ions, and a semi-sealed type It examined the pail 1 0 2 7 ⁇ 1 0 thousands concentrations of positive and negative ions positive and negative ions, respectively Roh cm 3 and the reactivity of the serum I g E antibodies pollen patient when the (binding) . The results are shown in FIG.
  • FIG. 12 shows the antigenic substance and the serum of hay fever patients when the cedar antigenic substance was treated with a gas containing both positive and negative ions by the ELISA enzyme inhibition (ELI SA inhibition) method.
  • FIG. 3 is a graph showing the relationship of allergy to IgE antibodies.
  • Ion generating elements i.e. positive and negative Ion is generated have no state
  • cedar antigenic substance quantity required for 50% inhibition whereas 2.
  • 5 3 X 1 0 3 pg positive negative amphoteric that in the case where the concentration becomes respectively 1 0 thousands Zcm 3, 5 0% cedar antigenic substance quantity required for the inhibition 1.
  • 34 X 1 0 4 pg, and the ratio of deactivation is 8 1% confirmed. .
  • a diluted and untreated cedar antigenic substance diluted with 0.9% NaC1 to a protein concentration of 5 / igZin1 was applied to the eyes of a patient with 5 ⁇ l cedar pollinosis using a Pittman. After about 15 minutes, the conjunctival reaction was observed on the meniscal skin wall, eyelid skin and bulbar conjunctiva, and itching, itching, and lacrimation were observed.
  • Serum IgE of patient 19 in the above ELISA (ELISA) method as antibody The antigenic substance (cedar antigenic substance) concentration (as protein concentration) was set to four concentrations: 100 ng / rsx1, 200 ng / m1, 400 ng / m1, and 800 ng / m1. (In other words, use the device shown in Fig. 3 as the device, and if ion processing, use a concentration of 100,000 ions / cm 3 for each positive and negative ion). And the fluorescence intensity of the ion-treated cedar antigenic substance were determined. Then, the reaction inactivation rate of the allergic reaction was determined from the fluorescence intensity based on the following equation (3). The results are shown in Table 2 below.
  • Reaction deactivation rate (1 -C / D) XI 00 ⁇ ⁇ -(3)
  • the concentration of the antigenic substance was 200 ng Zm1, and on the assumption that the following relationship was established between the ion concentration and the concentration of the antigenic substance, the positive and negative ions were selected.
  • the relationship between the concentration and the reaction inactivation rate was determined. In other words, if the reaction deactivation rate is constant, it is considered that a certain relationship is established between the ion concentration and the antigenic substance concentration. It is considered that the same reaction deactivation rate can be obtained when the concentration is halved and when the ion concentration is doubled while the antigenic substance concentration is kept constant. Therefore, the concentration of the antigenic substance is 2
  • FIG. 13 shows the relationship between the positive and negative ion concentrations and the reaction deactivation rate based on the two points of 00 ng / m 1. That is, the positive and negative ion concentrations in Fig. 13 are 2.
  • the data of 50,000 pieces Zcm 3 , 50,000 pieces Zcm 3 , 100,000 pieces cm 3 , and 200,000 pieces cm 3 indicate that the antigenic substance concentration in the above-mentioned ELISA method is 800 ng / ml and 400 ng / ml, respectively. , 200 ng / ml and 100 ng / ml (the horizontal axis in Fig. 13 indicates the concentration of each positive and negative ion).
  • the reaction deactivation rate increased as the positive and negative ion concentrations increased.
  • the positive and negative ion concentrations are each 50,000 Z cm 3 , a reaction inactivation rate of about 78% can be achieved, and a stable inactivating effect of the antigenic substance can be obtained.
  • the positive and negative ion concentrations respectively 1 0 thousands / cm 3
  • a reaction inactivation rate of 94% can be achieved, and it can be expected that allergic diseases such as hay fever and mite allergy can be effectively suppressed.
  • Example 1 and Example 2 a gas containing both positive and negative ions was used as the activating gas, and an antigenic substance derived from cedar pollen was used as the antigenic substance.
  • the activated gas can deactivate the antigenic substance similarly accurately and easily for other types of activated gases and other types of antigenic substances. Performance can be evaluated.
  • Example 1 the apparatus for producing a treated antigenic substance used as an evaluation sample of the performance of the activated gas of the present invention shown in FIG. 2 to deactivate the antigenic substance was used. Although the processed antigenic substance was generated, even if the processed antigenic substance was generated using the apparatus shown in Figs. 3 to 6, the activated gas lost the antigenic substance simply and accurately as described above. It is possible to evaluate the performance that can be utilized.
  • FIG. 14 is a schematic diagram of an apparatus for performing a method of inactivating an antigenic substance by the action of positive ions and negative ions.
  • FIG. 15 is a diagram showing the evaluation of the reactivity of the mite antigenic substance (abbreviated as Derf) with the serum IgE of a total of 18 patients a to r by the ELISA (ELISA) method.
  • the device shown in Fig. 14 is provided with the ion generating element shown in Fig. 7 in the same manner as the device shown in Fig. 2.
  • the mass spectrum of the positive ions and the negative ions sent out from the devices is shown in Figs. It is shown in B.
  • the device shown in FIG. 14 used in this embodiment is the same as the device shown in FIG. 2 (therefore, the same reference numerals are used in FIG. 2 and FIG. 14). Indicate the same or corresponding parts), but differ only in the provision of equipment for reducing ozone concentration. That is, in the apparatus shown in FIG. 14, one deaeration port 1026 and one nebulizer 1024 are connected via the filter 1029.
  • the filter 1029 contains activated carbon and molecular sieve, and has an action of removing ozone generated in the cylindrical closed container 1027. For this reason, the ozone concentration in the cylindrical closed container 1027 is maintained at 0.025 ppm or less.
  • the antigenic substance 1038 is sprayed from the injection port 1028 and is exposed to both positive and negative ions while naturally falling to the collection container 1025 to exert its action. Will receive it.
  • an antigenic substance extracted from mite dust was used as the antigenic substance. Tick dust was collected from general households using a sweeper equipped with a mesh from cushions and carpets.
  • the antigenic substance further includes antigenic substances Denolev 1 (Derf 1) and Deref 2 (Derf 2).
  • Solution A 1N as phenol reagent as acid.
  • Solution B 2% Na 2 CO 3 +0. IN NaOH
  • a solution (protein concentration: 200 ng / m 1) containing the mite antigenic substance obtained in this way was placed in a nebulizer-1024 by 8 ml, and the antigenicity of the device shown in Fig. 14 was measured. It was connected to the inlet 1028 for spraying the substance solution.
  • a collection container 1025 was set at the bottom of the cylindrical closed container 1027 so that the solution containing the sprayed antigenic substance could be collected.
  • the nebulizer was connected to an air compressor and sprayed the antigenic substance 1038 from the inlet 1028 with compressed air (flow rate 5 L_ / min).
  • the spray amount was 8. Oml (spray time 90 minutes). After 90 minutes, the antigenic substance that settled at the bottom of the cylindrical closed container 1027 was recovered in the recovery container 1025. It took about 90 seconds for the sprayed antigenic substance 1038 to fall naturally in the cylindrical closed container 1027.
  • the spraying and collection of the antigenic substance 1038 were performed in two cases, when the ion generating element 1021 was activated (that is, in the case of ion treatment) and when it was not activated (that is, in the case of no treatment). .
  • the concentration of both positive and negative ions in the atmosphere is determined by the ion generating element 1021.
  • Air is flowed from the injection port 1028 for spraying the antigenic substance solution in the cylindrical airtight container 1027 with an air compressor at a flow rate of 5 L using an air compressor, and the Andean Electric Air-Air Counter is placed in the antigenic substance solution recovery container 1025. (Part number ITC-201A) was installed and the concentration was measured by measuring the concentration of both positive and negative ions.
  • both positive and negative ions in the cylindrical closed container 1027 are The atmosphere had an atmosphere of 100,000 Zcm 3 each.
  • the other atmosphere was at a temperature of 25 ° C and a relative humidity of 60 ° /. RH.
  • ELISA enzyme—1 ikedi mm unosorbentassay
  • ion-treated mites diluted to 0.1 / g / ml with a bicarbonate buffer solution (bicarbonatebuffer) were added to a 96-well plate for the ELISA (96-we11p1ate for ELISA).
  • the antigenic substance and the untreated mite antigenic substance were applied to a well (we11) at 50 ⁇ l.
  • human IgE standard human IgE standard
  • human IgE standard was repeatedly diluted twice from 200 ⁇ g / 1 to 2 times with sodium bicarbonate buffer solution five times. 11), and allowed to stand at room temperature for 2 hours.
  • 300 ⁇ l of a blocking buffer solution (Blockingg bufferr) was applied, and the plate was allowed to stand at 4 ° C.
  • the plate was washed four times, and 50 ⁇ l of Al-powered phosphatase-labeled streptavidin diluted 1,000-fold with (3% skim milk + 1% BSA) / PBST was applied, and left at room temperature for 1 hour. did.
  • the Atophos® substrate buffer solution (Attophos® subst (ratebuffer) was applied to the well (we11) at 50 ⁇ l, and the plate was allowed to stand in a light-shielded state until the color developed.
  • the fluorescence intensity was measured with a spectrophotometer (Cyt ⁇ (registered trademark) F1 uor II).
  • Fig. 15 shows the results.
  • washing buffer solution 43 g of Na 2 HP0 4 '12H 2 0 , a 3. 6 g of NaH 2 P0 4, 263 g of Na C l, 15 m 1 of'win 20 (Twe en- 20) with distilled water Up to 3 L
  • the device comprises a closed box 1030 provided with a blower 1033 and a working window 1034, and an ion generating element 1021 is attached to the air outlet of the blower 1033.
  • the ion generator 1021 was activated, and the blower 1033 was activated.
  • the conditions were as follows: the peak-to-peak voltage between the electrodes of the ion generating element 1021 was adjusted to 90 V so that the spatial average concentration of both positive and negative ions was 3000 / cm 3, and the fan of the blower 1033 The air volume was 2 m 3 / min.
  • the spatial average concentration of both positive and negative ions in the box 1030 is determined by measuring the concentrations of both positive and negative ions at five points near the center of the box at a distance of 50 cm or more from each other. -201), and the average was set to 3000 / cm 3 for both positive and negative ions.
  • the space atmosphere in the box 1030 was a temperature of 25 ° C. and a relative humidity of 60% RH. As shown in FIGS.
  • the positive ions sent out are H 3 O + (H 2 0) n (n is 0 or a natural number), and the negative ions are O 2 ( ⁇ 2 ⁇ ) m ( m is 0 or a natural number), the chemical reactions of these positive and negative ions (1) and (2) hydrogen peroxide by ⁇ H 2 0 2, is generating hydrogen dioxide HO 2 or hydroxy radical 'OH Was presumed.
  • the spatial average concentration of both positive and negative ions in the present invention refers to the average concentration of the entire space having a certain volume, for example, where air is stagnation moderately.
  • concentration of each of the positive and negative ions at the five points was measured using an ion counter (for example, Andean Electric's air ion counter, (Part No. ITC-201A)), and the average concentration at the five points was determined. Can be measured.
  • the ion generating element 1021 and the blower 1033 were stopped. Then, in the box 1030, an article 1032 carrying mite dust (2 g) After being disposed, the ion generating element 1021 and the blower 103 were operated again under the same conditions as above.
  • the mite dust 103 was diffused (sprayed and floated) by, for example, hitting the article 103 with the use of a diffuser 103 through the window 104.
  • the article 1032 include a futon, a blanket, a carpet, a tatami, a pillow, a cushion, a cushion, and the like.
  • a cushion is used.
  • the diffuser 103 for example, a futon beating, a beating, a broom and the like can be mentioned, but in this example, a futon beating was used.
  • a method of shaking or dropping the article 103 can be adopted.
  • a cushion was used as the diffusing device 1035, and the cushion, which was the article 1032, was hit hard for a total of 20 times in 5 minutes.
  • the air suction pump 1037 attached to the upper portion of the box 130 was operated, and the dust in the box 103 was collected for 30 minutes.
  • the sample was collected by suction using 036.
  • the air suction pump 1037 was stopped, and the cushion 310, which was the article 1032, was hit again 20 times for 5 minutes with the bedding of the spreader 1035. . Then, the air suction pump 1037 was operated again, and the dust in the box 13030 was sucked and collected by the collection finolter 1036 for 30 minutes.
  • the amount of dust collected by the collection filter 1036 by two suction collections was weighed to be 0.7 mg.
  • FIG. 17 (same as FIG. 16)
  • the collection container 1025 is installed in place of the air suction pump 1037 and the collection filter 1036 shown in Fig. 16 to remove dust that falls naturally. You may make it collect.
  • Elisa Inhibition (ELI a Ainh ibition: enz yme — Liked ⁇ mm unosorbentassayinh ibition) method. Specifically, Du antigen was extracted from the mite dust collected after diffusion, placed in a centrifuge (Centriprep YM-10), and concentrated by centrifugation at 2500 rpm. Further, this concentrate was put into a centrifuge (ULTRA F LEE-MC) and concentrated by centrifugation at 7000 rpm.
  • the concentrated ions treated mite antigenic substance and untreated da Interview antigenic substance was repeated line 1 once 5-fold dilutions from the protein concentration 7. ⁇ 66 g m 1. 50 ⁇ l of each diluted antigenic substance and 50 ⁇ l of 10-fold diluted patient serum IgE were mixed and pre-incubated at 4 ° C.
  • Mite antigenic substance diluted to l ⁇ g Zm 1 with sodium bicarbonate buffer solution (bicarbonatebuffer) in a 96-well plate for ELISA (96—we 11 late for ELISA) (one without P fog) was applied to a well (we 11) at 50 ⁇ l, and allowed to stand for 2 hours. After the plate was washed three times with a washing buffer solution (Washing buffer), a blocking buffer solution (Brock1ng bufffer) was applied 300 3001 and allowed to stand at 4 ° C.
  • the ion-generating element When the ion-generating element was not activated (ie, untreated mite antigenic substance), the element was activated and ion-treated under the condition that the spatial average concentration of both positive and negative ions was 3000 / cm 3 The case (ie, ion-treated mite antigenic substance) was examined for its reactivity (binding property) with the serum IgE antibody of a mite allergy patient: the results are shown in FIG.
  • the amount of untreated mite antigenic substance required for 50% inhibition (reduction of the mite antigenic substance's reactivity to serum IgE antibody to 50%) Is 500 ng / m1
  • the amount of the mite antigenic substance required for 50% inhibition is 500 ng / ml for the ion-treated mite antigenic substance, and the reaction inactivation rate is 7%.
  • reaction deactivation rate was determined by the same chemical formula as the above chemical formula (1).
  • both positive and negative ions not only acts directly on the antigenic substance, but also extends to dust dust containing the antigenic substance. Moreover, it was confirmed that when the spatial average concentration of both positive and negative ions was 3000 / cm 3 , the effect of inactivating the antigenic substance was exhibited.
  • the spatial average concentration of both positive and negative ions is set to 10,000 cm 3 (the peak-to-peak voltage between the electrodes of the ion generating element 1021 is set to 100 V, and the fan air volume of the The effect of both positive and negative ions on mite dust was confirmed in the same manner as in Example 4 except that the amount was 8 m 3 Z).
  • Fig. 19 shows the results.
  • the antigenic substance can be effectively inactivated by the action of both positive and negative ions, the pollinosis caused by this kind of antigenic substance such as It can be expected to effectively reduce various allergic diseases.
  • the air purification device based on the present invention also applies to allergens contained in mold and the like in addition to pollen and mites. It is considered to be effective.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

抗原性物質と活性化ガスとを反応させて、処理済抗原性物質を得るステップ(S101)と、この抗原性物質に対する抗体とこの処理済抗原性物質とを反応させて、この抗体に対するこの処理済抗原性物質の結合活性を測定するステップ(S103)と、を備える、活性化ガスが抗原性物質を失活させる性能の評価方法によって、各種の活性化ガスが各種の抗原性物質を失活させる性能を正確かつ簡便に評価することのできる評価方法を提供する。

Description

' 明細書 活性化ガスが抗原性物質を失活させる性能の評価方法、 その評価方法の評価試料として用いる処理済抗原性物質の生成装置 技術分野
本発明は、 活性化ガスが抗原性物質を失活させる性能の評価方法に関する。 よ り詳しくは、 本発明は、 哺乳類動物にアレルギー反応を生じさせる物質である抗 原性物質と活性化ガスとの反応により、 活性化ガスが抗原性物質を失活させる性 能の評価方法に関する。
また、 本発明は、 活性化ガスによる処理済抗原性物質の生成装置に関する。 よ り詳しくは、 本発明は、 容器を備える、 活性化ガスが抗原性物質を失活させる性 能の評価試料として用いる処理済抗原性物質の生成装置に関する。 背景技術
近年、 住環境の変化に伴い、 ヒトを含む哺乳類動物の花粉症、 喘息、 皮膚アト ピー、 結膜炎などのアレルギー疾患の原因となる花粉、 ダニ、 ダニの糞おょぴハ ウスダストなどの有害な空気中の浮遊物質を取除き、 健康で快適な生活を送りた いという要望が強くなつている。
この要望に応えるためには、 上記アレルギー疾患の原因となる抗原性物質 (ァ レルゲン) を除去することが有効であり、 各種のフィルタや集塵手段を用いた空 気清浄機が開発されている (たとえば、 特開平 8—1 7 3 8 4 3号公報参照。) しかしながら、 このような空気調節装置では、 雰囲気中の空気を吸引してフィ ルタにより有害な浮遊物質を吸着またはろ過する方式であるため、 長期にわたる 使用によりフィルタの交換などのメンテナンスが不可欠であり、 し力もフィルタ の特性が十分でないため満足のいく性能が得られない場合がある。
そして、 このような空気調節装置では、 たとえば花粉を捕集することを目的と する場合には、 花粉は花粉症の原因となる抗原性タンパク質が存在した状態で捕 集フィルタに物理的に捕集されて残存している。 このように物理的に捕集された 花粉は、 捕集フィルタから容易に離脱するので、 運転開始時、 運転停止時または フィルタ交換時などに、 捕集された花粉の再飛散が起こる可能性があるという問 題があった。 さらに、 花粉自体は捕集フィルタで捕集できても、 花粉よりもさら に粒径の小さい抗原性タンパク質は捕集フィルタを通過してしまう可能性があり、 根本的に抗原性物質を除去するには至らないという問題もある。
また、 各種のフィルタに加えて、 加熱処理により抗原性物質を変性させる花粉 の処理装置も開発されている (たとえば、 特開平 7— 8 0 7号公報参照。)。
しかし、 このような空気調節装置では、 加熱処理に膨大なエネルギーを消費す るため、 家庭の支払う電気料金を増大させ、 地球環境に悪影響を与えるという問 題がある。 また、 このような空気調節装置を夏場あるいは高温地域において用い た場合には、 室内の気温を著しく上昇させ、 不快感を感じるという問題がある。 そのため、 冷房装置に組込んで用いることはできないという問題もある。
. さらに、 各種のフィルタに加えて、 紫外線照射を行うことによりスギ花粉症抗 原を不活性化する装置も開発されている (たとえば、 特開平 6— 1 5 4 2 9 8号 公報参照。)。
しかしながら、 このような空気調節装置では、 紫外線照射に膨大なエネルギー を消費するため、 家庭の支払う電気料金を増大させ、 地球環境に悪影響を与える という問題がある。 また、 上記文献によれば、 スギ花粉によるサンプルの抗体価 の低下には、最低でも 1 . 3 mW/ c m2以上の強度で、 5 0秒以上の紫外線照射 を要する。 そのため、 スギ花粉症抗原の不活性化能力は低く、 実用的な技術であ るとはいい難い。
そして、 各種のフィルタに加えて、 紫外線を照射し、 オゾンを発生させる空気 清浄機も開発されている(たとえば、特開 2 0 0 0— 1 1 1 1 0 6号公報参照。)。. し力 しながら、 このような空気調節装置では、 紫外線照射に膨大なエネルギー を消費するため、 家庭の支払う電気料金を増大させ、 地球環境に悪影響を与える という問題がある。 また、 オゾンが雰囲気中に放出されるため、 条件によりヒト を含む哺乳動物の生体に悪影響を及ぼすおそれがある。
さらに、 これらのいずれの空気調節装置でも、 個人により個体差のあるアレル ギー反応を起こす抗原性物質の種類に応じた抗原性物質の処理が行なえないとい う問題は全く解決されていない。 そして、 抗原性物質の種類に応じて、 各種除去 手段あるいは失活手段の効果が異なるという問題も解決されていない。
上記の現状より、 本発明の課題は、 個人により個体差のある抗原性物質の種類 および/または量に応じた種類および/または量の活性化ガスにより、 抗原性物 質を効率良く除去およひ;/または失活することのできる空気調節装置を実現する ために必要となる、 各種の活性化ガスが各種の抗原性物質を失活させる性能の評 価方法を提供することである。
また、 本宪明の他の課題は、 上記の評価方法において、 評価試料として用いる 活性化ガスによる処理済の抗原性物質を、 均質かつ簡便に生成することのできる 処理済抗原性物質の生成装置を提供することである。 発明の開示
本発明者らは、 上記の課題を解決するため、 活性化ガスが抗原性物質を失活さ せる性能の評価方法を確立すべく試行錯誤に励んだ。
その結果、 発明者らは、 容器中に抗原性物質を撒布して、 撒布された抗原性物 質を含む溶液を容器中で浮遊させた状態で活性化ガスと反応させることにより、 均質な活性化ガス処理済抗原性物質を簡便に得ることができることを見出した。 そして、 本発明者らは、 この処理済抗原性物質を用いることにより、 活性化ガ スが抗原性物質を失活させる性能を正確かつ簡便に評価することができることを 見出した。
すなわち、 本宪明の活性化ガスが抗原性物質を失活させる性能の評価方法は、 抗原性物質と活性化ガスとを反応させて、 処理済抗原性物質を得るステップと、 この抗原性物質に対する抗体とこの処理済抗原性物質とを反応させて、 この抗体 に対するこの処理済抗原性物質の結合活性を測定するステップと、 を備える、 活 性化ガスが抗原性物質を失活させる性能の評価方法である。
また、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法は、 抗原 性物質と活性化ガスとを反応させて、 処理済抗原性物質を得るステップと、 この 抗原性物質に対する抗体とこの処理済抗原性物質とを反応させて、 この抗体に対 するこの処理済抗原性物質の結合活性を測定するステップと、 この処理済抗原性 物質の結合活性を、 この抗体に対するこの抗原性物質の結合活性と比較するステ ップと、を備える、活性化ガスが抗原性物質を失活させる性能の評価方法である。 ここで、 この処理済抗原性物質を得るステップは、 空中に浮遊するこの抗原性 物質とこの活性化ガスとを反応させるステップを含むことが好ましい。'
また、 この反応させるステップは、 '容器中にこの抗原' f生物質を含む溶液を撒布 するステップと、 この撒布されたこの抗原性物質を含む溶液をこの容器中で浮遊 させるステップと、 この容器中にこの活性化ガスを導入するステップと、 を含む ことが望ましい。
また、 この処理済抗原性物質を得るステップは、 この抗原性物質に振動および /または衝撃を与えることにより、 この抗原性物質を空中に浮遊させるステップ を含む、 ことが好ましい。
さらに、 この浮遊させるステップは、 この抗原性物質を可嘵性を有する試料台 に設置するステップと、 この試料台に振動および Zまたは衝撃を与えるステップ とを含む、 ことが好ましい。
ここにおいてこの浮遊させるステップは、 前記抗原性物質を布団、 毛布、 座布 団、 枕、 マット、 スポンジ、 布、 紙、 発泡スチロールからなる群より選ばれる 1 種以上の可嘵性を有する試料台に設置するステップと、 前記試料台を叩くおよび
/または振ることにより前記試料台に振動および < /または衝撃を与えるステップ とを含む、 ことが望ましい。
さらに、 この処理済抗原性物質を得るステップは、 この抗原性物質と、 正ィォ ンを含むガス、 負イオンを含むガス、 ラジカルを含むガス、 オゾンガス、 硝酸ガ
^からなる群より選ばれる一種以上を含有するガスとを反応させるステップを含 む、 ことが好ましい。
またこの処理済抗原性物質を得るステップは、 スギ花粉および Zまたはダニ粉 塵に含まれる抗原性物質、 スギ花粉、 ダュ粉塵からなる群より選ばれる 1種以上 と活性化ガスとを反応させて、 処理済抗原性物質を得るステップを含む、 ことが 好ましい。
そして、この測定するステツプは、 E L I S A法およぴ /または E L I S A ィ ンヒビッシヨン ( i n h i b i t i o n ) 法により、 この抗原性物質に対する抗 体とこの処理済抗原性物質とを反応させて、 この抗体に対するこの処理済抗原性 物質の結合活性を測定するステップを含むことが望ましい。
また、 この測定するステップは、 この抗原性物質に対する抗体の産生細胞を保 有するヒト以外の動物への皮内反応試験および Zまたは結膜反応試験により、 こ の抗体とこの処理済抗原性物質とを反応させて、 この抗体に対するこの処理済抗 原性物質の結合活性を測定するステップを含むことが好ましい。
そして、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置は、 容器と、 この容器内に抗原性物質を撒布 する手段と、 この活性化ガスをこの容器内で発生もしくは導入する手段と、 を備 える、 活性化ガスが抗原性物質を失活させる性能の評価試料として用いる処理済 抗原性物質の生成装置である。
本発明はまた、 容器と、 この容器内に抗原性物質を封入する手段と、 この活性 化ガスをこの容器内で発生もしくは導入する手段と、 を備える、 活性化ガスが抗 原性物質を失活させる性能の評価試料として用いる処理済抗原性物質の生成装置 も提供する。
上述したいずれの本発明の処理済抗原性物質の生成装置においても、 容器は、 透明な材質を一部または全部に含むことが好まし 、。 図面の簡単な説明
図 1は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法の概略 を示すフロー図である。
図 2は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。
図 3は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。
図 4は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。
図 5は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。 図 6は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。
図 7は、 本発明に用いるイオン発生素子の構造の一例の概要を示す図である。 図 8 Aおよび 8 Bは、 イオン発生素子から生成される正イオンおよび負イオン の質量スぺク小ルを示した図である。
図 9 Aおよび 9 Bは、 スギ抗原性物質を正負両ィオンを含むガスにより処理し た場合と未処理の場合とについて、 花粉症患者 1 9〜4 0の血清1 g E抗体との アレルギー反応の関係を示した図である。
図 1 O Aおよび 1 0 Bは、 スギ抗原性物質を正負両イオンを含むガスにより処 理した場合と未処理の場合とについて、 花粉症患者 4 1〜6 0の血清 I g E抗体 とのアレルギー反応の関係を示した図である。
図 1 1は、 スギ抗原性物質を正負両イオンを含むガスにより処理した場合と未 処理の場合とについて、 C r y j 1および C r y j 2とそのモノクロ一 ナル抗体との反応性の関係を示した図である。
図 1 2は、 イライザインヒビッシヨン (E L I S A i n h i b i t i o n ) 法により、 スギ抗原性物質を正負両イオンを含むガスにより処理した場合と未処 理の場合とについて、 抗原性物質と花粉症患者の血清 I g E抗体のアレルギー反 応性の関係を示した図である。
図 1 3は、 活性化ガスにおける正負両イオンのそれぞれの濃度とスギ花粉由来 の抗原性物質の反応失活率との関係を示した図である。
図 1 4は、抗原性物質を失活させる方法を実行するための装置の一例であって、 オゾン濃度を減少させる装備を備えている装置を示す概略図である。
図 1 5は、 抗原性物質 (ダュ抗原性物質) をイオン処理した場合と未処理の場 合とについて、 ダニアレルギー患者 a〜rの血清 I g E抗体とのアレルギー反応 の関係を示した図である。
図 1 6は、抗原性物質を失活させる方法を実行するための装置の一例であって、 送風機と回収フィルターとを備えている装置を示す概略図である。
図 1 7は、抗原性物質を失活させる方法を実行するための装置の一例であって、 送風機と回収容器とを備えている装置を示す概略図である。 図 18は、 正負両イオンの空間平均濃度 (3000個 /cm3) の下、 ィライザ インヒビッシヨン (EL I SA i nh i b i t i o n) 法により、 ダニ粉塵を ィオン処理した場合と未処理の場合とについて、 抗原性物質とダユアレルギ一患 者の血清 I g E抗体のアレルギー反応性の関係を示した図である。
図 19は、 正負両ィオンの空間平均濃度 ( 10000個 c m3) の下、 ィライ ザインヒビッシヨン (EL I SA i nh i b i t i o n) 法により、 タ、、二粉塵 をイオン処理した場合と未処理の場合とについて、 抗原性物質とダェアレルギー 患者の血清 I g E抗体のアレルギー反応性の関係を示した図である。 発明を実施するための最良の形態
以下、 実施の形態を示して本発明をより詳細に説明する。
ぐ抗原性物質 >
本明細書において、 抗原性物質とは、 スギ、 ヒノキ、 ブタクサなどの花粉類や ダニなどの生物、 ダニなどの生物の糞あるいはハウスダストなどの家庭内浮遊物 などに含まれる物質であって、 ヒトを含む哺乳類動物の生体に作用することによ り抗原抗体反応の一種であるアレルギー反応を生ぜしめ、 ァレルギ一疾患を誘発 する物質をいうものとする。
該抗原性物質は、 通常、 タンパク質もしくは糖タンパク質からなるものである 力 本明細書では、 その形状または大きさは特に限定されず、 それらのタンパク' 質や糖タンパク質自体の分子状のもの、 あるいはそれらが集合して粒子状になつ たもの、 またあるいはその分子状のものの一部である抗体反応部位 (抗原決定基 ゃェピトープとも呼ばれる) などが含まれるものとする。
なお、 上記抗原性物質は、 スギ花粉自体またはスギ花粉に含まれる抗原性物質 (スギ抗原性物質) とすることができる。 また、 上記抗原性物質は、 ダ'二粉塵自 体またはダュ粉塵に含まれる抗原性物質(ダニ抗原性物質)とすることができる。 スギ花粉症の原因となる抗原性物質を例にとれば、 抗原性物質には、 スギ花粉 症の原因物質として知られている、 C r y j 1タンパク質および C r y j 2タンパク質に加えて、 C r y j 1タンパク質および C r y j 2タン パク質のェピトープも含まれ、 さらに、 Cr y j 1タンパク質および Cr y j 2タンパク質が多量に含まれるスギ花粉中の粒状物 (ユービッシュボディ ーゃォービクノレとも呼ばれる) も含まれ、 スギ花粉そのものも含まれるものとす る。
なお、 ダニ抗原性物質は、 ダニ自身の体内に含まれるものであるが、 一般の生 活環境においては、 ダニ自身のみよりもむしろダニ粉塵中に含まれるものとして 問題となることが多い。 ここでダニ粉塵とは、 ダニ自身をはじめ、 ダニの死骸や 身体の一部、 およびダニの食物や排泄物、 抜殻や卵を含んだ微粒状のものをいう ものとする。 本発明における抗原性物質とは、 このようなダニ、粉塵をも含むもの とする。
ぐ抗体反応部位 >
本明細書において、 抗体反応部位とは、 抗原性物質に含まれる特定の部分であ つて、 抗体と結合する部位を意味する。 一般に、 抗原性物質は、 この抗体反応部 位が変性ないし破壊 (分解) されると、 抗体と結合することができなくなり、 こ のためアレルギー反応を抑制することができる。
く活性化ガス >
本明細書において、 活性化ガスとは、 抗原性物質に対して何らかの化学反応お よぴ Zまたは物理的作用を起こすガスを意味する。活性化ガスの具体例としては、 特に限定されず、 正イオンを含むガス、 負イオンを含むガス、 正負イオンを共に 含むガス、 オゾンを含むガス、 硝酸ガスを含むガス、 ラジカルを含むガスなどが 挙げられる。 他 も抗原性物質に対する活性化ガスには種々の組成のガスがあり 得ると想定されるが、 それらの活性化ガスについては、 後述する本発明の活性化 ガスが抗原性物質を失活させる性能の評価方法を用いて見出すことが可能である。 なお、 後述するように正負イオンを共に含むガスが抗原性物質に対して活性化 ガスとして作用し、 その抗原性物質を失活させる機能を有することは、 従来公知 の現象ではなく、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法 を用いて、 .本発明者 により初めて見出された現象である。
<抗原性物質の失活>
本明細書において、 抗原性物質の失活とは、 抗原性物質の抗原性物質としての 活性の消滅または低減を意味する。 すなわち、 抗原性物質の抗体と反応する能力 の消滅または低減を意味する。
ここで、 本発明者らは、 活性化ガスによる抗原性物質の失活のメカュズムは、 この活性化ガスが抗原性物質を構成するタンパク質、 とりわけその抗体反応部位 を攻撃することによリ、 該タンパク質を変性ないし破壊 (分解) することによつ て抗原性物質を失活させるメカニズムによるものと解している。'
また、 後述するように、 本発明の活性化ガスが抗原性物質を失活させる性能の 評価方法を用いて、 本発明者らにより初めて見出された現象であるが、 正負ィォ ンを共に含むガスは、 抗原性物質に対して活性化ガスとして作用し、 その抗原性 物質を失活させる機能を有する。 この失活機能は、 抗原性物質に対して正イオン と負イオンとを作用させることにより達成されるものである。
そして、 従来は知られていなかつたが、 本発明者らの知見によれば、 正イオン と負イオンを共に含むガスを用いることによって、 正イオンを含むガスもしくは 負ィオンを含むガスそれぞれ単独の場合と比較して、 抗原性物質に対して格段の 失活効果が発揮されることになる。 本発明者らの知見によれば、 これらの正負ィ オンが共存するガスを使用すると、 後述のような化学反応によって活性物質を発 生し、 この活性物質が抗原性物質を構成するタンパク質、 とりわけその抗体反応 部位を攻撃することによリ、 該タンパク質を変性ないし破壌 (分解) することに よって抗原性物質を失活させるものと解せられる。
すなわち、 本明細書において、 抗原性物質を失活させるとは、 より詳しく定義 すると、 上述のように抗原性物質を変性ないし破壌 (分解) することにより、 抗 原性物質を消滅させることのみならず、 雰囲気ガス中の単位体積あたりの該抗原 性物質の量を減少させたり、 その抗原性物質の抗体反応部位の抗体との反応性を 低下させることをも含むものとする。
ここで、 抗原性物質の反応失活率 (あるいは残存活性) の測定手法 (あるいは 定義手法) には種々あり、 抗原性物質の種類および活性化ガスの種類に応じて、 適当な手法を選ぶことができる。 このような測定手法としては、 特に限定するも のではないが、 例として、 イライザインヒビッシヨン (E L I S A i n h i b i t i o n ) 法を使用することができる。 この方法によれば、 活性化ガスで処理 された抗原性物質の 5 0 %阻害を示す濃度を測定した場合に、 その 5 0 %阻害濃 度が、 活性化ガス未処理の抗原性物質の 5 0 %阻害濃度と比較して、 たとえば 5 倍以上となる場合に、 残存活性は 2 0 % (すなわち反応失活率 8 0 %) となる。 また、 どの程度の反応失活率を実現する場合に、 活性化ガスに抗原性物質に対 する失活能力があると判断するかは、 活性化ガスの種類および抗原性物質の種類 に応じて異なり、 適宜適当な閾値により判断することができる。 たとえば、 特に 限定するものではないが、 活性化力'スとして正負イオンを含むガスを用い、 抗原 性物質としてスギ花粉由来の抗原性物質を用いることができる。
<活性化ガスが抗原性物質を失活させる性能の評価方法 >
図 1は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法の概略 を示すフロー図である。
本発明の活性化ガスが抗原性物質を失活させる性能の評価方法は、 抗原性物質 と活性化ガスとを反応させて、処理済抗原性物質を得るステップ(S 1 0 1 )と、 この抗原性物質に対する抗体とこの処理済抗原性物質とを反応させて、 この抗体 に対するこの処理済抗原性物質の結合活性を測定するステップ (S 1 0 3 ) と、 を基本的に備える、活性化ガスが抗原性物質を失活させる性能の評価方法である。 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法においては、 図 1 のフロー図に示すように、上記処理済抗原性物質を得るステップ(S 1 0 1 )、処 理済抗原性物質の結合活性を測定するステップ (S 1 0 3 ) に続いて、 この処理 済抗原性物質の結合活性を、 この抗体に対するこの抗原性物質の結合活性と比較 するステップ (S 1 0 5 ) をさらに備えるのが、 好ましい。
このような、 対照試料との比較を取入れた評価方法を用いることにより、 この 抗原性物質に対するこの活性化ガスの失活能力を、 正確かつ簡便に、 しかも定量 的に評価することができるという利点がある 9 ここで、 この抗体に対するこの抗 原性物質 (一般に、 活性化ガス未処理の抗原性物質を用いる場合が多いと予想さ れる) の結合活性と比較する際には、 この抗体に対するこの抗原性物質の結合活 性は、 あらかじめ測定しておいた測定値を用いてもよく、 あるいは本発明の評価 方法を実施するたびに測定した測定値を用いてもよい。 評価結果の正確性という 面からは、 そのたびに測定した測定値を用いることが好ましいが、 評価結果を簡 便かつ迅速に得るためには、 あらかじめ測定しておいた測定値を用いることが好 ましい。
ここで、 この処理済抗原性物質を得るステップは、 空中に浮遊するこの抗原性 物質とこの活性化ガスとを反応させるステップを含むことが好ましい。
このように、空中に浮遊する抗原性物質に活性化ガスを反応させることにより、 抗原性物質と活性化ガスを均一な状態で反応させることができ、 抗原性物質の浮 遊時間を調節することにより、 抗原性物質と活性化ガスの反応時間を容易に調節 することができるという利点もある。 なお、 空中に浮遊させるには、 活性化ガス を含む雰囲気ガスを撹拌あるいは流動させることにより抗原性物質を舞上げて空 中に浮遊させてもよく、 あるいは単に抗原性物質を一定の距離落下させることに より空中に浮遊させてもよい。
また、 この反応させるステップは、 容器中にこの抗原性物質を撒布するステツ プと、 この撒布されたこの抗原性物質を含む溶液をこの容器中で浮遊させるステ ップと、 この容器中にこの活性化ガスを導入するステップと、 を含むことが望ま しい。
このように、 容器中に抗原性物質を含む溶液を撒布することにより、 抗原性物 質がいたずらに拡散してしまうことを防ぐことができ、 容器内の抗原性物質の濃 度を一定の範囲に容易に保つことができる利点がある。 ここで、 容器は、 密閉系 であることが好ましいが、 一部開放口を有する半密閉系であってもよい。
また、 このように撒布されたこの抗原性物質を含む溶液を容器中で浮遊させる ことにより、 活性化ガスを含む雰囲気ガスを撹拌あるいは流動させることにより 抗原性物質を舞上げた場合にも、 抗原性物質がいたずらに拡散してしまうことを 防ぐことができ、 容器内の抗原性物質の濃度を一定の範囲に容易に保つことがで きる利点がある。
そして、 このように容器中に活性化ガスを導入することにより、 活性化ガスが いたずらに拡散することを防ぐことができるため、 抗原性物質の濃度が一定の範 囲に保たれた容器内で、 一定の範囲の濃度の活性化ガスを抗原性物質と均一に反 応させることができるという利点がある。
ここで、 抗原性物質は溶液中に含まれているから、 抗原性物質を含む溶液を容 器内に撒布する際には、 ネブライザ一などを用いて噴霧することが好ましい。 微 小かつ均一な粒径の溶液を噴霧でき、 抗原性物質と活性化ガスの反応をより均一 にできるためである。
また、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方法における 前記処理済抗原性物質を得るステップは、 前記抗原性物質に振動および/または 衝撃を与えることにより、 前記抗原性物質を空中に浮遊させるステップを含むこ とが好ましい。 この浮遊させるステップは、 前記抗原性物質を可撓性を有する試 料台に設置するステップと、 前記試料台に振動おょぴ Zまたは衝撃を与えるステ ップとを含むことが望ましい。ここにおいて前記可撓性を有する試料台は、布団、 毛布、 座布団、 枕、 マット、 スポンジ、 布、 紙、 発泡スチロールからなる群より 選ばれる 1種以上であるのが好ましい。 また、 前記試料台に振動および/または 衝撃を与えるステップは、上述した試料台を叩くおよび zまたは振ることにより、 試料台に振動および Zまたは衝撃を与えるものであることが好ましい。
さらに、 この処理済抗原性物質を得るステップは、 この抗原性物質と正イオン を含むガス、 負イオンを含むガス、 ラジカルを含むガス、 オゾンガス、 硝酸ガス カ らなる群より選ばれる一種以上を含有するガスとを反応させるステップを含む ことが好ましい。 中でも、 当該処理済抗原性物質を得るステップは、 抗原性物質 と正負両イオンを含むガスとを反応させるステップであるのが特に好ましい。 この正負両イオンを含むガスについては、 後述するように、 本発明者が、 スギ 花粉由来の抗原性物質を失活させる機能を有することを初めて明らかにしたもの であり、 ^!lの抗原性物質を失活する機能を有することが期待されるためである。 また、 オゾンガス、 硝酸ガス、 ラジカルを含むガスについても、 ガス状の物質で あるため、 本明細書の評価方法を用いることにより、 抗原性物質に対する失活能 力を評価することができる。
そして、この測定するステップは、 E L I S A法おょぴ Zまたは E L I S A i n h i b i t i o n法により、 この抗原性物質に対する抗体とこの処理済抗原性 物質とを反応させて、 この抗体に対するこの処理済抗原性物質の結合活性を測定 するステップを含むことが望ましい。
このように、 E L I S A法および Zまたは E L I S A i n h i b i t i o n 法を用いることにより、 抗体に対する処理済抗原性物質の結合活性を正確かつ簡 便に測定することができる。
たとえば、 上述したように、 イライザインヒビッシヨン (E L I S A i n h i b i t i o n ) 法により、 活性化ガスで処理された抗原性物質の 5 0 %阻害を 示す濃度を測定した場合に、 その 5 0 %阻害濃度を、 活性化ガス未処理の抗原性 物質の 5 0 %阻害濃度と比較することができる。 その場合、 たとえば 5 0 %阻害 濃度が 5倍となる場合に、 残存活性は 2 0 % (すなわち反応失活率 8 0 %) とな る。
また、 この測定するステップは、 この抗原性物質に対する抗体の産生細胞を保 有するヒト以外の動物への皮内反応試験および/または結膜反応試験により、 こ の抗体とこの処理済抗原性物質とを反応させて、 この抗体に対するこの処理済抗 原性物質の結合活性を測定するステップを含むことが好ましい。
このように、 この抗原性物質に対する抗体の産生細胞を保有するヒト以外の動 物への皮内反応試験おょぴ Zまたは結膜反応試験により、 抗体に対する処理済抗 原性物質の結合活性を、 よりヒトの生体内の状態に近い条件で測定することがで きるという利点がある。 ここで、 後述する実施例においては、 ヒトへの皮内反応 試験おょぴ結膜反応試験を行っている力 S、一般にヒトにおいて可能な生体試験は、 マウスゃラットゃゥサギなどのヒト以外の哺乳動物を用いる場合、 ヒトを用いる よりも遥かに容易に実施可能であることは、医学、薬学、農学、生物学、生化学、 分子生物学などの分野における技術常識である。
<処理済抗原性物質の生成装置 >
本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として用いる処 理済抗原性物質の生成装置は、 容器と、 この容器内に抗原性物質を撒布する手段 と、 この活性化ガス この容器内に発生もしくは導入する手段と、 を備える、 活 性化ガスが抗原性物質を失活させる性能の評価試料として用いる処理済抗原性物 質の生成装置である。 また、 本発明の処理済抗原性物質の生成装置は、 容器と、 この容器内に抗原性物質を封入する手段と、 この活性化ガスをこの容器内に発生 もしくは導入する手段と、 を備える、 活性化ガスが抗原性物質を失活させる性能 の評価試料として用いる処理済抗原性物質の生成装置であつてもよい。
このような装置を用いることにより、 活性化ガスと抗原性物質とを均一な状態 で容易に反応させることができ、 活性化ガスが抗原性物質を失活させる性能の評 価試料として好適に用いることのできる、 高品質の処理済抗原性物質を生成する ことができる。 本発明の処理済抗原性物質の生成装置は、 抗原性物質をこの容器 内で浮遊させる手段をさらに備えてなるのが好ましい。 活性化ガスおよび抗原性 物質の拡散が容器の存在により防がれるため、 抗原性物質を活性化ガスを含む雰' 囲気ガスの撹拌または流動により舞上げて容器内で浮遊させたとしても、 抗原性 物質と活性化ガスの濃度が一定の範囲に保持されるためである。
ここで、 この容器は、 透明な材質を一部または全部に含むことが好ましい。 このように容器の一部または全部が透明 あることにより、 容器内部の抗原性 物質の浮遊状況などを目視により観察することができるため、 抗原性物質と活性 化ガスの反応条件の調節が容易になるという利点がある。
図 2は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の一例の概要を示す図である。
図 2に示した装置は、容器として半密閉型の円筒型容器 1 0 2 7を備えている。 また、 抗原性物質を撒布する手段としてネブライザ一 1 0 2 4およぴ注入口 1 0 2 8を備えている。 さらに、 抗原性物質を容器内で浮遊させる手段として一定の 高さを有するためその内部で必然的に抗原性物質が浮遊することになる半密閉型 の円筒型容器 1 0 2 7を備えている。 そして、 活性化ガスとして正イオン 1 0 2 2、 負イオン 1 0 2 3を共に含むガスをこの容器内に導入する手段としてイオン 発生素子 1 0 2 1を備えている。
なお、 図 2に示した装置には、 その他にも、 活性化ガスによる処理済みの抗原 性物質の回収容器 1 0 2 5および活性化ガスを含む雰囲気ガスの脱気口 1 0 2 6 が示されている。
図 3は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の他の一例の概要を示す図である。
図 3に示した装置は、容器として半密閉型の円筒型容器 1 0 3 7を備えている。 また、 抗原性物質を撒布する手段として注入口 1 0 3 8を備えている。 さらに、 抗原性物質を容器内で浮遊させる手段として一定の高さを有するためその内部で 必然的に抗原性物質が浮遊することになる半密閉型の円筒型容器 1 0 3 7を備え ている。 そして、 活性化ガスとして正負両イオンを含むガスをこの容器内に導入 する手段としてイオン発生素子 1 0 3 1を備えている。
図 4は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置の別の一例の概要を示す図である。 .
図.4に示した装置は、 容器として密閉型の円筒型容器 1 0 4 7を備えている。 また、 抗原性物質を撒布する手段として開閉式の蓋 1 0 4 8を備えている。 さら に、 抗原性物質を容器内で浮遊させる手段として一定の高さを有するため、 長手 方向に直立させることにより、 あるいは長手方向に繰返しひつくり返すことによ り、 その内部で必然的に抗原性物質が浮遊することになる密閉型の円筒型容器 1 0 4 7を備えている。 そして、 活性化ガスとして正負両イオンを含むガスをこの 容器内に導入する手段としてイオン発生素子 1 0 4 1を備えている。
なお、 図 4に示した装置には、 その他にも、 抗原性物質 1 0 4 9、 電圧印加電 極 1 0 4 2、 誘電体 1 0 4 3、 接地電極 1 0 4 4が示されている。
図 5は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置のさらに他の一例の概要を示す図である。 図 5に示した装置は、 容器として密閉型の円筒型容器 1 0 5 7を備えている。 また、 抗原性物質 1 0 5 3を撒布する手段として開閉式の蓋 1 0 5 8を備えてい る。 さらに、 抗原性物質 1 0 5 3を容器内で浮遊させる手段としてファン 1 0 5 9を備えている。.そして、 活性化ガスとして正負両イオン 1 0 5 2を含むガスを この容器内に導入する手段としてイオン発生素子 1 0 5 1を備えている。
図 6は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として 用いる処理済抗原性物質の生成装置のさらに別の一例の概要を示す図である。 図 6に示した装置は、.容器として密閉型の円筒型容器 1 0 6 7を備えている。. また、 抗原性物質 1 0 6 3を撒 する手段として開閉式の蓋 1 0 6 8を備えてい る。 さらに、 抗原性物質 1 0 6 3を容器内で浮遊させる手段としてファン 1 0 6 9および活性化ガスを透過するが抗原性物質を透過しないフィルタ 1 0 6 5を備 えている。 そして、 活性化ガスとして正負両イオン 1 0 6 2を含むガスをこの容 器内に導入する手段としてイオン発生素子 1 0 6 1を備えている。
くイオン発生素子 > 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料として用いる処 理済抗原性物質の生成装置において用いるイオン発生素子は、 正イオンと負ィォ ンとを発生させるものであり、 また後述のような電気的衝撃により直接的に抗原 性物質のァレルギ一反応を失活させることができるものともなり得ることが好ま しい。
このようなイオン発生素子は、 その付設箇所は特に限定されないものの、 通常 は抗原性物質を失活させる装置の風路に付設されていることが好ましい。 イオン 発生素子により発生させられる正負両イオンは短時間で消失するため、 これらの 正負両イオンを効率良く空気中に拡散させることができるようにするためである。 なお、 イオン発生素子の設置個数は、 1個であっても、 2個以上であっても差し 支えない。
このようなイオン発生素子としては、 放電機構により正負両イオンを発生する 従来公知のイオン発生素子が用いられる。 特に、 抗原性物質に対して正イオンと 負イオンとを作用させる雰囲気中の正負両イオンの濃度が、 それぞれ 1 0万個 c m3以上となるように正イオンと負イオンとを空気中に送出できるものを選ぶ ことができる。 なお、 本明細書ではイオン濃度とは、 小イオンの濃度を意味して おり、 該小イオンの濃度測定方法としては、 臨界移動度を 1 c m 3/V ·秒とし て、 空気イオンイオンカウンター (ダン科学製空気イオンカウンタ (品番 8 3— 1 0 0 1 B) ) にて測定した値を用いている。
ここでいう放電機構とは、 絶縁体を電極で挟み込んだ構造を持ち、 片側に交流 の高電圧を印加させるとともに、 もう一方の電極は接地させ、,高電圧を印加させ ることにより接地電極に接している空気層にプラズマ放電を形成し、 空気中の水 分子や酸素分子を電離または解離することにより正負両ィオンを生成するような 機構をいう。 このような放電機構において、 たとえば電極の形状を電圧印加側は 板状またはメッシュ状とし、 接地側電極をメッシュ状とした場合、 高電圧を印加 すると接地側電極のメッシュ端面部で電界が集中して沿面放電が起こりプラズマ 領域が形成される。 このブラズマ領域に空気を流し込むと正負両ィオンが生成す る。
このよう放電機構を有する素子としては、 たとえば沿面放電素子、 コロナ放電 素子、 プラズマ放電素子等を挙げることができるがこれらのみに限られるもので はない。 また、 放電素子の電極の形状や材質においても、 上述のようなもののみ に限られるものではなく、 あらゆる形状、 材質のものを選択することができる。 図 7は、 本発明に用いるイオン発生素子の構造の一例の概要を示す図である。 このようなイオン発生素子としてより具体的には、 図 7に示すように、 誘電体 7 0 0 3を板形状の電圧印加電極 7 0 0 2とメッシュ形状の接地電極 7 0 0 4で 挟込み、 高圧電源 7 0 0 1により板形状の電極に正極と負極の電圧を交互に印加 することによって、 メッシュ形状電極のメッシュ端面で電界が集中してプラズマ 放電が起こりプラズマ領域 7 0 0 5が形成され正負両イオンが生成されるような 構造のものが特に好ましい。
なお、 これらの正負両イオンの発生、 送出に必要な印加電圧は、 イオン発生素 子の構造にもよるが電極間の P e a k t o p e a k電圧として 2〜1 0 k V、 好ましくは 3〜7 k Vの範囲とすることができる。
<正負両イオンを含むガスによる抗原性物質の失活>
本発明者らは、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試料 として用いる処理済抗原性物質の生成装置を用いて、 本発明の活性化ガスが抗原 性物質を失活させる性能の評価方法により、 後述の実施例で示すように、 正負両 ィオンを含むガスは、 抗原性物質を失活させる機能を有することを見出した。 ただし、 本発明は、 正負イオンに限定されるものではなく、 様々なガス種ある いはガス濃度を対象として使用できるものである。
なお、 正負両イオンを含むガスによる抗原性物質の失活のメカェズムには、 上 述のような化学反応によるメカニズムばかりではなく、 抗原性物質の抗体反応部 位をイオン発生素子における電気的衝撃により変性ないし破壌させることによる 失活というメカニズムも含まれていると考えられる。
すなわち、 抗原性物質の抗体反応部位は、 正負両イオンを発生させる際の電圧 印加によるプラズマ放電自体によっても変性ないし破壌され、 このような電気的 衝撃によっても抗原性物質と抗体との結合能力は喪失し、 抗原性物質を失活させ ると考えられる。
このように本発明の活性化ガスが抗原性物質を失活させる性能の評価方法によ り、 抗原性物質の抗体反応部位を電気的衝撃および/または化学反応により変性 ないし破壌させることによって抗原性物質を失活させることができるものであり、 特に電気的衝撃と化学反応の両者が相乗的に奏されることにより抗原性物質を効 果的に失活させることを示唆する結果を得ることができた。
く正負両イオンを含むガスの逢出方法 >
また、 本発明者らは、 本発明の活性化ガスが抗原性物質を失活させる性能の評 価方法により、 後述するように、 活性化ガスとして正負両イオンを含むガスを用 いる場合には、 正負両イオンを含むガスの送出方法としていかなる方法が好まし いかを見出した。
すなわち、 本発明に用いる正負両イオンは、 主としてイオン発生素子の放電現 象により発生するものであり、 通常、 正負の電圧を交互に印加させることにより 正負両イオンをほぼ同時に発生させ空気中に送出することができる。 しかしなが ら、 本発明の正負両イオンの送出方法はこれのみに限られることはなく、 正負い ずれか一方の電圧のみを一定時間印加し正負いずれか一方のみのィオンを先に送 出させた後、 次に逆の電圧を一定時間印加しすでに送出されたイオンとは逆の電 荷をもったイオンを送出させることもできる。
なお、 これらの正負両イオンの発生、 送出に必要な印加電圧は、 電極の構造に もよるが電極間の p e a k t o p e a k電圧として 2〜: L 0 k V、 好ましく は 3〜7 k Vの範囲とすることができる。
また、 本発明に用いる正イオンおよび負イオンは、 2 0〜9 0 %、 好ましくは 4 0〜 7 0 %の相対湿度の下で発生させることが好適である。 後述の通り正負両 イオンの発生は、 空気中の水分子の存在と関係するからである。 すなわち、 相対 湿度が 2 0 %未満の場合は、 イオンを中心に据えた水分子によるクラスター化が 適切に進まず、 イオン同士の再結合が起こりやすくなるので発生したイオンの寿 命が短くなつてしまう。 また 9 0 %を超える場合は、 イオン発生素子の表面に水 分が結露することによりィオンの発生効率が著しく低下するし、 発生したィオン もクラスター化が進み過ぎて多くの水分子により取囲まれてしまうので、 重量が 増しあまり遠くへ放出されないまま沈降してしまうという状況となるおそれがあ る。 したがって、 このように極端な低湿度や高湿度でのイオンの発生はいずれの 場合も好ましくない。
なお、 本発明の正負两ィオンの送出方法としては、 上述のような放電現象のみ にかかわらず、 紫外線や電子線を放射するデバイスなどを利用する方法を用いて あよい。
<正負両イオンの同定〉
本発明において、活性化ガスとして正負両イオンを含むガスを用いる場合には、 正イオンおよび負イオンは、 放電素子の表面に存在する酸素分子および Zまたは 水分子を原料として発生させることができる。 この発生方法によれば、 特別な原 料を必要としないためコスト的に有利であるばかりでなく、 原料自体に有害性が なく、 また他の有害なイオンや物質を発生することがないため好ましい。
ここで、 上記のイオン発生素子の放電現象により発生した正負両イオンの組成 は、 主として正ィオンとしてはプラズマ放電により空気中の水分子が電離して水 素イオン H+が生成し、 これが溶媒和エネルギーにより空気中の水分子とクラス タリングすることにより H 30+ (H 20) n ( nは 0または自然数) を形成したも のである。 なおここで、 正イオンとして記載した H 3 0+ (H 2 O) n ( nは 0また は自然数) は、 表記方法を変更すると H+ (H 20) n ( nは自然数) と記述する ことが可能であり、 同等のイオンを示すものである。
図 8 Aおよび 8 Bは、 イオン 生素子から生成される正イオンおよび負イオン の質量スぺクトルを示した図である。
水分子がクラスタリングしていることは、 図 8 Aにおいて最小に観測されるピ ークが分子量 1 9の位置にあり、 後のピークはこの分子量 1 9に対して水の分子 量に相当する 1 8を順次足した位置に現れることから明らかである。 すなわち、 この結果は分子量 1の水素イオン H+に分子量 1 8の水分子が一体となって水和. していることを示している。 一方、 負イオンとしてはプラズマ放電により空気中 の酸素分子または水分子が電離して酸素イオン 02_が生成し、 これが溶媒和エネ ルギ一により空気中の水分子とクラスタリングすることにより O 2_ (H 20) m
(mは 0または自然数) を形成したものである。 水分子がクラスタリングしてい ることは、 図 2 ( b ) において最小に観測されるピークが分子量 3 2の位置にあ り、 後のピークはこの分子量 3 2に対して水の分子量に相当する 1 8を順次足し た位置に現れることから明らかである。 すなわち、 この結果は分子量 32の酸素 イオン O 2一に分子量 18の水分子が一体となって水和していることを示してい る。
そして、 空間に送出されたこれらの正負両イオンは空気中に浮遊している抗原 性物質を取囲み、抗原性物質の表面で正負両イオンが以下のような化学反応 ( 1) 〜(2) によって活个生種である過酸化水素 H202、 二酸化水素 HO2またはヒド ロキシラジカル · OHを生成すると推定される。
Η30++02"→· OH+H202 …ひ)
Η30++02~ ->Η0220 ·'·(2) そして、 このように正負両イオンが作用して生成した過酸化水素 Η202、 二酸 化水素 Η02またはヒドロキシラジカル' ΟΗは、 抗原性物質の抗体反応部位を 変性ないし破壌 (分解) して抗原性物質と抗体との結合能力を喪失させることに より、 効率的に空気中の抗原性物質を失活させることができるものと解される。 なお、 上記の説明においては、 正イオンとして Η30+ (Η2Ο) η (ηは 0また は自然数)、 負イオンとして Ο2一 (H20) m (mは 0または自然数) をそれぞれ 中心に述べてきたが、 本発明における正負イオンはこれらのみに限られるもので はない。 上記 2種の正負イオンを主体としつつ、 たとえば、 正イオンとしては N 2+、 02+等を、 負イオンとしては NO2一、 CO 2一などをそれぞれ例示すること ができ、 これらを含んでいたとしても同様の効果が期待できる。
実施例
以下、 実施例を挙げて本発明をより詳細に説明するが、 本発明はこれらに限定 されるものではない。 ·
<スギ花粉 >
広島県豊町に生育する日本杉 (Cr yp t ome r i a j a p o n i c a) の 枝より採取した。 その際、 メッシュを取り付けた掃除機を用い、 その後ふるいに かけて収集した。 収集後の保存は一 30°Cのフリ一ザ一を用いた。
<スギ抗原性物質 >
スギ花粉 80 gを 20mM PBS (pH7. 4) 3. 2L中で 4°C、 4時 間撹拌した後、 6000 r pm, 30分遠心分離した。 遠心分離後、 上清に終濃 度 80%飽和になるように硫酸アンモユウムを加え、 6000 r pm, 30分遠 心分離した。 遠心後、 6時間の透析を 6回繰り返し行い、 l O O O O r pm, 3 0分遠心分離した。 遠心分離後、 得られた上清を凍結乾燥し、 スギ抗原性物質と した。 なお、'本明細書では、 スギ抗原性物質を C J Pとも記載するものとする。 · く F o 1 i n— L o w r y法による蛋白量の測定 >
[試薬の組成]
A液; フエノール試薬を酸として 1 Nとした溶液
B液; . 2% Na 2C03
0. IN N a OH
C液; 0. 5% Cu S04 · 5H2O
1% クェン酸ナトリウム
D液; B : C=50 : 1 (vZv) の混合液
[測定方法]
サンプル 0. 2m 1と D液 lm 1を混合し 10分放置した。 次に A液を 0. 1 m 1加え 30分放置した後 750n mで吸光度を測定した。 また、 B S Aで標準 系列を作り、 同手順で検量線を作成し、 サンプルの蛋白量を B S A換算量として 定量した。
くスギ抗原性物質の撒布、 回収 >
スギ花粉より抽出したスギ抗原性物質 (蛋白濃度 200 n g m l) を正と負 のィオン照射下においてネブライザ一で撒布した。撒布容器の底に回収皿を置き、 壁面に触れることなくイオン処理された抗原のみを回収した。 なお、 8 mlの溶 液 (スギ抗原性物質を含む) を 1. 5時間かけて撒布した。
<実施例 1 >
本実施例は、 スギ花粉の抗原性物質を用いて、 正負両イオンの作用による抗原 性物質のァレルギ一反応の低下を確認したものである。
ここで、 図 2は、 本発明の活性化ガスが抗原性物質を失活させる性能の評価試 料として用いる処理済抗原性物質の生成装置の一例の概要を示す図である。また、 図 8A, 8Bは、 図 2に示す装置に備わるイオン発生素子から生成される正ィォ ンおよぴ負イオンの質量スぺクトルを示した図である。
まず、 図 2に示した装置では、 イオン宪生素子 1021として縦 37mm 横 15 mmの平板状の沿面放電素子を用いた。 そして、 電極間に正と負の電圧を交 互に印加することにより表面電極部で沿面放電を起こし、 大気圧下での放電ブラ ズマにより正イオン 1022と負イオン 1023を同時に生成し送出させた。 印 カロした電圧は電極間の p e a k t o p e a k電圧として 3. 3 kV〜3. 7 k Vであり、 この範囲の電圧において人体に有害なレベルのオゾンが発生するこ とはなかった。 該イオン発生素子は、 内径 150mm、 長さ 37 Ommのアタリ ル製の半密閉型の円筒型容器 1027の内部に 4個取り付け固定し、 この容器の —方には抗原物質溶液を撒布する注入口 1028を、 もう一方には抗原性物質液 の回収容器 1025を取り付けた。
抗原物質としてスギ花粉より抽出した抗原物質を用いた場合、 スギ花粉は広島 県豊吋に生育する日本杉 (C r y p t ome r i a j a p o n i c a) の枝よ り採取した。 その際、 メッシュを取り付けた掃除機を用い、 その後ふるいにかけ て収集した。 収集後の保存は一 30°Cのフリーザーを用いた。 また、 スギ花粉よ り抗原物質の抽出方法はスギ花粉 80 gを 2 OmMPB S (pH7. 4) 3. 2 L中で 4°C、 4時間攪拌した後、 6000 r pm、 30分遠心分離後、 上清に終 濃度 80%飽和になるように硫酸アンモニゥムを加え、 600ひ r pm、 30分 遠心分離した。 遠心後、 6時間の透析を 6回繰り返し行い、 10000 r pm、 30分遠心分離した。 遠心分離後、 得られた上清を凍結乾燥し、 抗原物質液とし た。
供試抗原物質液をネブライザ一 1024に 8 m 1入れ、 図 2に示した装置の抗 原性物質液撒布用の注入口 1028に接続した。 同装置の抗原物質液の回収容器 1025は、 半密閉型の円筒型容器 1027の底に設置した。 ネブライザ一は、 エアコンプレッサーと接続して、 圧縮空気 (流量 5 L,分) により注入口 102 8から供試抗原性物質を撒布した。 撒布量は 8. 0 m l (撒布時間 90分) とし た。 90分間半密閉型の円筒型容器の底に沈降した抗原性物質を回収容器で捕集 した。 なお、 噴霧された抗原性物質は、 空気中に 90秒間かけて自然落下し、 空 気中の正イオン 1022およぴ負イオン 1023と作用する。 花粉症患者より採取した血清 I gE抗体との反応性を EL I S A法で測定を行 つた。 なお、 正負両イオンの濃度は上記のようにイオン発生素子 1021を設置 した半密閉型の円筒型容器 1027の抗原性物質液撒布用の注入口 1028より エアコンプレッサーにより流量 5 L/分で空気を流し、 抗原性物質液の回収容器 1025にダン科学製空気イオンカウンタ (品番 83— 1001 B) を設置し、 該空間の正負両イオンの合計濃度を測定した。 空間雰囲気は温度 25 °C、 相対湿 度 60%RHであった。 また、 図 8A, 8 Bに示したように送出された正イオン は H30+ (H20) n (nは 0または任意の自然数)、 負イオンは 02一 (H2O) m (mは 0または任意の自然数) であり、 これらの正負両イオンは前記の化学反応 (1) および (2) により過酸化水素 H2O2、 二酸化水素 H02またはヒドロキ シラジカル · OHを生成するものと推定された。
そして、 イオン発生素子 1021を作動させない状態の時を未処理とし、 該素 子に電極間の p e a k t o p e a k電圧として 3. 3 kV〜3. 7kVの電 圧をそれぞれ印加して正負両イオンを送出し、 半密閉型の円筒型容器 1027内 の正負両ィオンの濃度を正負両イオンそれぞれ 10万個 c m3とした場合の抗 原性物質と I gE抗体とのアレルギー反応性の低下を調べた。その結果を図 9 A, 98ぉょび図10 , 10Bに示す。
図 9 Aおよび図 9 Bは、 スギ抗原性物質を正負両ィオンを含むガスにより処理 した場合と未処理の場合とについて、 花粉症患者 19〜40の血清1 gE抗体と のアレルギー反応の関係を示した図である。
図 1 OAおよび図 10Bは、 スギ抗原†生物質を正負両イオンを含むガスにより 処理した場合と未処理の場合とについて、 花粉症患者 41〜60の血清1 gE抗 体とのアレルギー反応の関係を示した図である。
図 9A, 9Bおよび図 10A, 10 Bに示すように、 イオン発生素子を作動さ せない場合 (すなわち正負イオンが発生していない状態) と、 正負両イオンの濃 度がそれぞれ 10万個 cm3となった場合、花粉患者の血清 I gE抗体の反応性 (結合性) は花粉患者 42人中 33人の血清 I g E抗体反応性が有意に低下して いることが確認された。
また、ネブライザ一で撒布後、イオン発生素子を作動させない未処理の場合と、 該素子に電極間の p e a k t o p e a k電圧として 3. 3 kV〜3. 7 k V の電圧をそれぞれ印加して正負両イオンを送出し、 半密閉型の円筒型容器 102 7内の正負両イオンの濃度を正負両イオンがそれぞれ 10万個 /cm3とした場 合の C r y j 1および C r y j 2モノクローナル抗体と血清 I g E抗体 の反応性の低下を調べた。 その結果を図 1 1に示す。
図 1 1は、 スギ抗原性物質を正負両イオンを含むガスにより処理した場合と未 処理の場合とについて、 Cr y j 1および Cr y j 2とそのモノクロ一 ナル抗体と.の反応性の関係を示した図である。
イオン発生素子を作動させない場合 (すなわち正負イオンが発生していない状 態) と、正負両ィオンがそれぞれ 10万個 c m3とした場合の、花粉患者の血清 I g E抗体の反応性(結合性)は、イオン処理を行った場合において、 C r y j 1および C r y j 2モノクロ—ナル抗体の血清 I g E抗体反応性が有意に 低下していることが確認された。
また、 ィオン処理および未処理スギ抗原性物質の花粉症患者血清 Γ g Eとの反 応性の相違を定量的に評価するために E L I SA i n h i b i t i o n法によ る実験を行った。
具体的には、 噴霧後回収したスギ抗原性物質を、 遠心分離機 (Ce n t r i p r e p YM- 10) に入れ、 2500 r pmで遠心濃縮し 。 さらに、 この濃 縮液を遠心分離機 (ULTRA F LEE-MC) に入れ 7000 r p mで遠心 濃縮した。 濃縮したイオン処理スギ抗原性物質および未処理スギ抗原性物質をタ ンパク質濃度 1 1 μ gZmlから 5倍希釈を 8回繰り返し行なった。 希釈したそ れぞれの抗原性物質 50 α 1と 10倍希釈した患者血清 I g Ε 50 μ 1とを混合 し 4°Cで一晚プレインキュベートした。
E L I S A用 96— w e 1 1 p 1 a t eに B i c a r b o n a t e b u f f e rで 1 μ g/m 1に希釈したスギ抗原性物質 (撒布も行っていない) を w e 1 1に 50 μ 1アプライし 2時間静置した。 Wa s h i n g b u f f e rでプ レートを 3回洗浄後、 B l o c k i n g b u f f e rを 300^ 1アプライし、 4°Cでー晚静置した。 プレートを 3回洗浄後、 プレインキュベ一トしていたサン プルをそれぞれ 50 1ゥエルにアプライし、 4時間静置した。 プレートを 3回洗浄後、(3%スキムミルク + 1 °/0B SA) ZPB S Tで 1 0 0 0倍希釈しに B i o t i n— l a b e l e d a n t i— h uma n I g E¾r w e 1 1に 5 0 1アプライし 2. 5時間静置した。プレートを 3回洗浄後、 ( 3 % スキムミルク + 1 %B S A) ZPB STで 1 000倍希釈したアル力リフォスフ ァターゼ標識 s t r e p t a V i d i nを .5 0 μ 1アプライし、 室温で 1. 5時 間静置した。
プレートを 4回洗浄後、 A t t o p h o s TM s u b s t r a t e b u f f e rを w e 1 1に 5 0 1アプライし、 遮光の状態で発色するまで放置した。 蛍光強度を C y t o TMF 1 u o r I Iで測定した。 イオン発生素子を作動させ ない未処理の場合と、該素子に電極間の p e a k t o p e a k電圧として 3. 3 k V〜 3. 7 k Vの電圧をそれぞれ印加して正負両ィオンを送出し、 半密閉型 の円筒型容器 1 0 2 7內の正負両イオンの濃度を正負両イオンがそれぞれ 1 0万 個ノ c m3とした場合の花粉患者の血清 I g E抗体の反応性(結合性)を調べた。 その結果を図 1 2に示す。
図 1 2は、 イライザインヒビッシヨン (E L I SA i n h i b i t i o n) 法により、 スギ抗原性物質を正負両イオンを含むガスにより処理した場合と未処 理の場合とについて、 抗原性物質と花粉症患者の血清 I g E抗体のアレルギー反 応性の関係を示した図である。
ィオン発生素子を作動させない場合 (すなわち正負ィオンが発生していない状 態) は 5 0%阻害に必要なスギ抗原性物質量は 2. 5 3 X 1 03 p gに対し、 正 負両イオンの濃度がそれぞれ 1 0万個 Zcm3となった場合では、 5 0%阻害に 必要なスギ抗原性物質量は 1. 34 X 1 04 p gとなり、 反応失活率は 8 1 %で あることが確認、された。 .
また、 ィォン処理および未処理スギ抗原性物質を 0. 9 % N a C 1で蛋白濃度 0. 5 μ g /m 1に希釈したものを、 ッベルクリン用注射器で 0. 0 2 m 1をス ギ花粉症患者の前腕屈側皮内に注射した。 約 1 5分後に現れた紅斑、 膨疹の直径 と短径を測定し、 それらの平均径から反応性を評価した。 結果は表 1に示す。
Figure imgf000028_0001
紅斑 < 1 Ommを一、 紅斑 10— 20mmを土、 紅斑 20-30mm, 膨疹 < 10mmを十、 紅斑 30— 4 Omm、 膨疹 10— 14 mmを +十、 紅斑 > 40m m、 膨疹〉 15mm、 膨疹に偽足を呈するものを + + +とした。 表 1に示すよう に、 イオン発生素子を作動させない未処理場合 (すなわち正負イオンが発生して いない状態) と、正負両ィオンの濃度がそれぞれ 10万個 cm3となった場合、 花粉症患者の皮内反応性は有意に低下していることが確認された。
さらに、 ィォン処理およぴ未処理スギ抗原性物質を 0. 9 % N a C 1で蛋白濃 度 5/i gZin 1に希釈したものをピぺットマンで 5 μ 1スギ花粉症患者の眼に滴 下し、 約 15分後結膜反応半月皮壁、 眼瞼皮および球結膜の充血、 痒み、 流涙等 を観察した。 .判定は全く充血が認められない場合を一、 わずかに充血が認められ 痒み感のある場合を土、 球結膜上部または下部の一方に充血の認められる場合を +、 球結膜の上部および下部のいずれにも充血の認められる場合を + +、 球結膜 全体に充血が認められる場合を +++、 さらに眼瞼の浮腫等を認めた場合を ++ + +とした。 結果は表 1に示す。
表 1に示すように、 イオン発生素子を作動させない未処理場合 (すなわち正負 イオンが発生していない状態) と、 正負両イオンの濃度がそれぞれ 10万個 /c m3となった場合、 花粉症患者の結膜反応性は有意に低下していることが確認さ れた。
ぐ実施例 2 >
上記のィライザ (EL I SA) 法における患者 19の血清 I g Eを抗体として 用い、 抗原性物質 (スギ抗原性物質) の濃度 (タンパク質濃度として) を 1 00 n g /rsx 1、 200 n g /m 1、 400 n g /m 1、 8 0 0 n g /m 1の 4通り の濃度として、 上記と同様 (すなわち装置としては図 3の装置を用い、 イオン処 理する場合は正負ィオンそれぞれ 1 0万個/ c m3の濃度とする)にしてィライザ 法によりそれぞれ未処理スギ抗原性物質とィオン処理スギ抗原性物質の蛍光強度 を求めた。 そして、 この蛍光強度から以下の式 (3) に基づいてアレルギー反応 の反応失活率を求めた。 その結果を以下の表 2に示す。
表 2
Figure imgf000029_0001
反応失活率%= (1 -C/D) X I 00 · · - (3)
C:イオン処理スギ抗原性物質の蛍光強度
D:未処理スギ抗原性物質の蛍光強度
続いて、上記抗原性物質の濃度が 200 n gZm 1の場合を基準として選択し、 ィオン濃度と抗原性物質の濃度との間には以下の関係が成り立つとの前提の下、 正負それぞれのイオン濃度と反応失活率との関係を求めた。 すな ち、 反応失活 率が一定であれば、 イオン濃度と抗原性物質濃度との間には一定の関係が成立す ると考えられ、 たとえばイオン濃度を一定にしておき抗原性物質濃度を半分にし た状態と、抗原性物質濃度を一定にしておきイオン濃度を 2倍にした状態とでは、 同じ反応失活率が得られると考えられる。 このため、 上記抗原性物質の濃度が 2
00 n g/m 1であることの 2点を基準として、 正負それぞれのイオン濃度と反 応失活率との関係を図 13に示した。すなわち、図 13中の正負イオン濃度が 2.
5万個 Zcm3、 5万個 Zcm3、 1 0万個 cm3、 20万個ノ c m3のデータは、 それぞれ上記のィライザ法における抗原性物質濃度が 8 00 n g/m l、 400 n g/m l、 200 n g/m l、 1 00 n g /m 1の場合のデータに対応してい る (なお、 図 13の横軸は、 正負イオンそれぞれの濃度を示している)。
図 13より明らかな通り、 正負イオン濃度が増加すれば反応失活率も向上して おり、 特に正負イオン濃度がそれぞれ 5万個 Z c m3とすれば、 7 8 %程度の反 応失活率が達成され、抗原性物質の安定した失活効果を得ることができる。また、 正負イオン濃度をそれぞれ 1 0万個 / c m 3とすれば、 8 3 %の反応失活率を達 成することができ、 さらに正負ィオン濃度をそれぞれ 2 0万個ノ c m 3とすれば、 9 4 %の反応失活率を達成することができ、 花粉症やダニァレルギ一などのァレ ルギー疾患を効果的に抑制することが期待できる。
なお、 実施例 1および実施例 2においては、 活性化ガスとして正負両イオンを 含むガスを用い、 抗原性物質としてスギ花粉由来の抗原性物質を用いたが、 本発 明の活性化ガスが抗原性物質を失活させる性能の評価方法を用いることにより、 他の種類の活性化ガスおよび他の種類の抗原性物質についても、 同様に正確かつ 簡便に活性化ガスが抗原性物質を失活させる性能を評価することができる。
また、 実施例 1およぴ実施例 2においては、 図 2に示す本発明の活性化ガスが 抗原性物質を失活させる性能の評価試料として用いる処理済抗原性物質の生成装 置を用いて処理済抗原性物質を生成したが、 図 3〜図 6に示す装置を用いて処理 済抗原性物質を生成しても、 上記と同様に正確力 簡便に活性化ガスが抗原性物 質を失活させる性能を評価することができる。
ぐ実施例 3 >
本実施例は、 ダュ粉塵の抗原性物質を用いて、 正負両イオンの作用による抗原 性物質の失活を確認したものである。 以下、 図 1 4および 1 5を参照して説明す る。
図 1 4は、 正イオンと負イオンの作用による抗原性物質を失活させる方法を実 行するための装置の概略図である。 図 1 5は、 ィライザ (E L I S A) 法による ダニ抗原性物質 (略称 D e r f ) と、 患者 a〜rの計 1 8名の血清 I g Eとの反 応性評価を示した図である。 なお、 図 1 4の装置は、 図 2の装置と同様に、 図 7 のイオン発生素子を備えており、 これにより送出される正イオンおょぴ負イオン の質量スペクトルは、 図 8 A, 8 Bに示されたものとなる。
<抗原性物質を失活させる方法を実行するための装置 >
まず、 本実施例において使用する図 1 4に示した装置は、 図 2に示した装置と 同様のものであり (このため、 図 2と図 1 4において同じ参照符号を付したもの は同一部分または相当部分を示す)、ただオゾン濃度を減少させる装備を備えてい る点のみが異なっている。 すなわち、 図 14の装置においては、 一方の脱気口 1 026とネブライザ一 1024がフィルター 1029を介して接続されている。 該フィルター 1029は、 活性炭とモレキュラーシーブを含んでおり、 円筒型密 閉容器 1027中で発生したオゾンを除去する作用を有するものである。 このた め、 該円筒型密閉容器 1027中のオゾン濃度は 0. 025 p pm以下に維持さ れている。
この図 14に示した装置においては、 図 2の装置と同様に、 抗原性物質 103 8は注入口 1028から噴霧されて回収容器 1025まで自然落下する間に正負 両イオンに晒されてその作用を受けることになる。
くダニ粉塵およぴ抗原性物質 >
抗原性物質としては、 ダニ粉塵より抽出した抗原性物質を用いた。 ダニ粉塵は 一般家庭に存在するものを対象とし、 座布団や絨毯からメッシュを取り付けた掃 除機を用いて捕集した。
また、 ダニ粉塵より抗原性物質を抽出するために、 ダニ粉塵 0. l gを 20m Mのリン酸緩衝溶液 (PB S、 pH7. 4) 15mL中で、 温度 4°Cの下 16時 間攪拌した後、 メンブレンフィルター (0. 2 πι) に通したものをダニ抗原性 物質とした。 なお、 このダュ抗原性物質には、 さらに抗原性物質であるデノレエフ 1 (De r f 1) とデルエフ 2 (D e r f 2) が含まれている。
くフォーリンローリー (Fo l i n— Lowr y) 法によるタンパク質の定量〉 ダニ抗原性物質を含んだ溶液 0. 2 m 1と下記 D液 1 m 1とを混合し、 10分 間放置した。 つぎに、 下記 A液を 0. 1 m 1加え 30分間放置した後 750 n m で吸光度を測定した。 また、 牛血清タンパク質 (BSA) で標準系列を作成し、. 同手順で検量線を作成することにより、 ダュ抗原性物質のタンパク質の量を B S A換算量として定量した。 その結果、 そのタンパク質の濃度は 94. l n g/m 1であった。 なお、 ここで用いた各試薬は、 以下の通りである。
(試薬)
A液;フエノール試薬を酸として 1Nとしたもの。 B液; 2%Na 2CO3+0. INの NaOH
C液; 0. 5%Cu SO4 · 5H20+ 1%タエン酸ナトリウム
D液; B液: C液 =50 : 1 (v/v)
<抗原性物質の噴霧と回収 >
このようにして得られた抗原性物質であるダニ抗原性物質を含んだ溶液 (タン パク質濃度 200 n g/m 1 ) をネプライザ一 1024に 8 m 1入れ、 図 14に 示した装置の抗原性物質溶液噴霧用の注入口 1028に接続した。 一方、 噴霧さ れた抗原性物質を含んだ溶液を回収できるように、 回収容器 1025を円筒型密 閉容器 1027の底に設置した。
ネブライザ一は、 エアコンプレッサーと接続して、 圧縮空気 (流量 5L_ /分) により注入口 1028から抗原性物質 1038を噴霧した。 噴霧量は 8. Oml (噴霧時間 90分) とした。 90分後円筒型密閉容器 1027の底に沈降した抗 原性物質を回収容器 1025で回収した。 なお、 噴霧された抗原性物質 1038 は、 円筒型密閉容器 1027中を自然落下するのに約 90秒間かかった。
なお、 このような抗原性物質 1038の噴霧と回収は、 イオン発生素子 102 1を作動させる場合 (すなわちイオン処理の場合) と作動させない場合 (すなわ ち未処理の場合) の 2通りについて行なった。
ィオン発生素子 1021を作動させて抗原性物質に対して正イオンと負ィオン とを作用させる場合、 その雰囲気中 (すなわち円筒型密閉容器 1027中) の正 負両イオンの濃度は、 イオン発生素子 1021を設置した円筒型密閉容器 102 7の抗原性物質溶液噴霧用の注入口 1028よりエアコンプレッサーにより流量 5 Lノ分で空気を流し、 抗原性物質溶液の回収容器 1025にアンデス電気製空 気イオンカウンター (品番 I T C— 201 A) を設置し、 正負両イオンの濃度を 測定することにより求めた。 その結果、 該イオン発生素子 1021に電極間のピ —クトゥーピーク (p e a k t o e a k) 電圧として 3. 3 kV〜3. 7 kVの電圧をそれぞれ印加した場合、 円筒型密閉容器 1027内の正負両イオン の濃度はそれぞれ 10万個 Z cm3となる雰囲気であった。 なお、 他の空間雰囲 気は温度 25°C、 相対湿度 60°/。RHであった。 また、 図 8A, 8 Bに示したよ うに送出された正イオンは H30+ (H20) n (nは 0または自然数)、 負イオン は 02一 (H20) m (mは 0または自然数) であり、 これらの正負両イオンは前記 の化学反応 (1) 〜 (2) により過酸化水素 H202、 二酸化水素 H02およびヒ ドロキシラジカル · OHを生成しているものと推定された。
<ィライザ (E L I SA) 法による反応性の評価 >
次いで、 このようにして捕集されたダニ抗原性物質と、 ダニァレルギ一の患者 a〜rより採取した血清 I g E抗体との反応性をィライザ (EL I SA: e n z yme— 1 i k e d i mm u n o s o r b e n t a s s a y;法で測定した。 なお、 抗原性物質については、 上記の通り正イオンと負イオンとを作用させたも の (イオン処理ダニ抗原性物質) と未処理のもの (未処理ダニ抗原性物質) と^ 比較することにより該反応性を評価した。
具体的には、 ィライザ用 9 6穴プレート (EL I SA用 9 6— w e 1 1 p 1 a t e) に炭酸水素ナトリゥム緩衝溶液 (B i c a r b o n a t e b u f f e r ) で 0. 1 / g /m lに希釈したイオン処理ダニ抗原性物質と未処理ダニ抗原 性物質とをゥエル (w e 1 1 ) に 5 0 μ 1アプライした。 同時にヒ ト I g E標準 (h uma n I g E s t a n d a r d ) を炭酸水素ナトリウム緩衝溶液で 2 00 μ g/ 1から 2倍希釈を 5回繰り返したものをそれぞれ 50 μ 1づっゥヱ ル (w e 1 1 ) にアプライし、 室温で 2時間静置した。 洗浄用緩衝溶液 (Wa s h i n g b u f f e r)でプレートを 3回洗浄後、プロッキング用緩衝溶液(B l o c k i n g b u f f e r )を 3 00 μ 1アプライし、 4°Cでー晚静置した。
一晚静置後、プレートを 3回洗浄し、 ( 3%スキムミルク + 1 %B SA) ZP B S Tでダニァレルギ一の患者の血清を 20倍希釈し 1時間ィンキュベートしたも のをゥエル (w e 1 1 ) に 50 i 1アプライし、 4時間静置した。 プレートを 3 回洗浄後、 (3%スキムミルク + 1 %B SA) ZPB STで 1 000倍希釈したビ ォチン標識抗ヒ ト I g E (B i o t i n— l a b e l e d a n t i -h uma n I g E) をゥエル (w e 1 1 ) に 5 0 μ 1アプライし 2時間静置した。
該静置後、プレートを 4回洗浄し、 (3%スキムミルク + 1 %B SA) /P B S Tで 1 000倍希釈したアル力リフォスファターゼ標識 s t r e p t a v i d i nを 5 0 μ 1アプライし、 室温で 1時間静置した。 プレートを 5回洗浄後、 ァト フォス (登録商標) 基質緩衝溶液 (A t t o p h o s (登録商標) s u b s t r a t e b u f f e r) をゥエル (w e 1 1 ) に 50 μ 1アプライし、 遮光の 状態で発色するまで放置した。その蛍光強度を分光光度計(Cy t ο (登録商標) F 1 u o r I I) で測定した。 その結果を図 15に示す。
図 15に示すように、 イオン発生素子 1021を作動させない場合 (すなわち 正負両イオンが発生せず耒処理の状態) と、 正負両イオンの濃度がそれぞれ 10 万個 Z cm 3となった場合とにおける、 ダュアレルギーの患者の血清 I gE抗体 とダュ抗原性物質との反応性 (結合性) は、 ダニアレルギーの患者 a〜rの 18 人中、 全 18人の患者において、 前記イオン処理を行なった抗原と、 上記患者の 血清 I gE抗体との反応性が著しく低下していることが確認された (蛍光強度が 低いほど、反応性が低いことを示している)。 なお、 ここで用いた各試薬は、以下 の通りである。
(試薬)
炭酸水素ナトリウム緩衝溶液; 10 OmMの NaHC03 (pH9. 2〜9. 5) リン酸緩衝溶液 (PB S) ; 4 gの Na C 1、 0. l gのNa2HP04 · l 2H2O、 1. 45 gの KC 1、 1 gの KH2 P O4を蒸留水で 500 m 1にメス アップ
PBST; PBS + O. 5%ッウィーン 20 (Twe e n- 20)
ブロッキング用緩衝溶液; P B S + 3 %スキムミルク + 1 % B S A
洗浄用緩衝溶液; 43 gの Na 2HP04 ' 12H20、 3. 6 gのNaH2P04、 263 gの Na C l、 15 m 1のッウィーン 20 (Twe e n— 20) を蒸留水 で 3 Lにメスアップ
ぐ反応失活率〉
上記のィライザ (EL I SA) 法における患者 a〜rの血清 I gEを抗体とし て用い、 ィライザ法によりそれぞれ未処理ダュ抗原性物質とイオン処理ダュ抗原 性物質の蛍光強度を求め、 そして、 この蛍光強度から以下の式 (4) に基づいて ァレルギ一反応の反応失活率を求めた。 その結果を以下の表 3に示す。 表 3
Figure imgf000035_0001
反応失活率。 /。= (1-E/F) X 100 · (4)
E:イオン処理ダニ抗原性物質の蛍光強度
F:未処理ダニ抗原性物質の蛍光強度 表 3より明らかな通り、 患者 a〜 rの平均反応失活率は 57. 8 %であり、 ダ ユアレルギ一疾患を効果的に抑制することが期待できる。
<実施例 4〉
本実施例は、 ダニ粉塵を直接用いて、 正負両イオンの作用によるダニ粉塵 (中 に含まれる抗原性物質) の失活を確認したものである。 以下図 11〜13を参照 して説明する。 なお、 ダニ粉塵に含まれるダニ抗原性物質中のタンパク質量のフ オーリンローリ 法による定量は、 実施例 3と同じ操作により行なった。 <ダュ粉塵の拡散と回収 >
ダニ粉塵の拡散と回収は、 図 16に示した装置を用いて行なった (なお、 図 1 6中他の図と同一の参照付号を付したものは、 同一部分または相当部分を示す)。 すなわち、 該装置は、 送風機 1033と作業用の窓 1034とを備えた密閉状態 のボックス 1030からなり、 該送風機 1033の空気噴出し口のところにはィ オン発生素子 1021が付設されている。
まず、 イオン発生素子 1021を作動させるとともに送風機 1033も作動さ せた。 その条件は、 正負両イオンの空間平均濃度がそれぞれ 3000個 /cm 3 となるように該イオン発生素子 1021の電極間のピークトゥーピーク (p e a k t o p e a k) 電圧を 90Vに調節し、 また該送風機 1033のファン風 量を 2 m3/分とした。
なお、 該ボックス 1030中の正負両イオンの空間平均濃度は、 該ボックスの 中心付近の互いに 50 cm以上離れた 5つのポイントにおける正負両イオンそれ ぞれの濃度をアンデス電気製空気イオンカウンター (品番1丁。ー201 ) を 用いて測定し、 その平均が正負両イオンそれぞれについて 3000個/ cm3と なるようにした。 また、 該ボックス 1030中の空間雰囲気は温度 25°C, 相対 湿度 60%RHであった。 また、 図 8A, 8 Bに示したように送出された正ィォ ンは H3O+ (H20) n (nは 0または自然数)、 負イオンは O2一 (Η2θ) m (m は 0または自然数)であり、これらの正負両イオンは前記の化学反応(1)〜(2)· により過酸化水素 H202、 二酸化水素 HO2およびヒドロキシラジカル' OHを 生成しているものと推定された。
なお、 本発明における正負両イオンの空間平均濃度とは、 ある体積を有する空 間全体の平均濃度をいう.ものとし、 たとえば適度に空気が滞留す ¾室内の中心付 近において互いに 50 cm以上離れた 5つのポイントにおける正負両イオンそれ ぞれの濃度をイオンカウンタ (たとえばアンデス電気製空気イオンカウンター、 (品番 I TC一 201 A))を用いて測定し、その 5つのポイントの平均濃度を求 めることにより測定することができる。
次に、 ー且該イオン発生素子 1021と該送風機 1033を停止させた。 その 後、 該ボックス 1030において、 ダニ粉塵 (2 g) を担持させた物品 1032 を配置させた後、 再度上記と同一の条件でイオン発生素子 1 0 2 1と送風機 1 0 3 3を作動させた。
続いて、 窓 1 0 3 4を介して拡散具 1 0 3 5を用いて物品 1 0 3 2を叩く等し てダニ粉塵 1 0 3 1を拡散 (散布、 浮遊) させた。 ここで、 物品 1 0 3 2として は、 たとえば布団、 毛布、 絨毯、 畳、 枕、 座布団、 クッション等を挙げるごとが できるが、 本実施例では座布団を用いた。 また、 拡散具 1 0 3 5としては、 たと えば布団たたき、 はたき、 ほうき等を挙げることができるが、 本実施例では布団 たたきを用いた。:また、 拡散させる操作としては、 物品 1 0 3 2を叩く以外にも 振るつたり落下ざせたりする方法を採用することができる。 本実施例では、 拡散 具 1 0 3 5として布団たたきを用いて、 5分間で合計 2 0回、 物品 1 0 3 2であ る座布団を強く叩いた。
次いで、 座布団を叩き終わったところで、 該ボックス 1 0 3 0の上部に付設さ れている空気吸引ポンプ 1 0 3 7を作動させ、 3 0分間ボックス 1 0 3 0中の粉 塵を回収フィルター 1 0 3 6により吸引捕集した。
続いて、 3 0分間経過後、 空気吸引ポンプ 1 0 3 7を停止させ、 再度物品 1 0 3 2である座布団を拡散具 1 0 3 5である布団たたきにより 5分かけて 2 0回叩 いた。 その後、 再度空気吸引ポンプ 1 0 3 7を作動させ、 3 0分間ボックス 1 0 3 0中の粉塵を回収フイノレター 1 0 3 6により吸引捕集した。
上記のようにして、 2回の吸引捕集により回収フィルター 1 0 3 6により捕集 された粉塵量を秤量すると 0. 7 m gであった。
なお、 以上の操作は、 イオン発生素子 1 0 2 1を作動させてダニ粉塵に対して 正イオンと負イオンを作用させたものであるが (すなわちこのように処理された ものをイオン処理ダニ粉塵と呼ぴ、 それから抽出されたものをイオン処理ダュ抗 原性物質と呼ぶものとする)、比較のためにイオン発生素子 1 0 2 1を作動させな いことを除きその他は全て上記と同じ操作を行なうことによりダェ粉塵を捕集し た (すなわちこの比較のものを未処理ダニ粉塵と呼び、 それから抽出されたもの を未処理ダェ抗原性物質と呼ぶものとする)。
また、 このような操作に用いられる装置としては、 上記のような図 1 6に示し た装置以外にも種々の装置を用いることができ、 たとえば、 図 1 7 (図 1 6と同 —の参照符号は同一部分または相当部分を示す) に示したように、 図 16の空気 吸引ポンプ 1037と回収フィルター 1036を付設する代わりに回収容器 10 25を設置し、 自然落下してくる粉塵を捕集するようにしてもよい。
くイライザインヒビッション (EL I SA i n h i b i t i o n) 法による評 価〉
イオン処理ダニ抗原性物質および未処理ダニ抗原性物質と、 ダニァレルギ一患 者の血清 I g Eとの反応性を定量的に評価するためにイライザインヒビッション (E L I a A i nh i b i t i o n : e n z yme— l i k e d ι mm u n o s o r b e n t a s s a y i nh i b i t i o n) 法により確 、した。 具体的には、 拡散後回収したダニ粉塵からダュ抗原を抽出し、 遠心分離機 (C e n t r i p r e p YM— 10) に入れ、 2500 r pmで遠心濃縮した。 さ らに、 この濃縮液を遠心分離機 (ULTRA F LEE-MC) に入れ 7000 r pmで遠心濃縮した。 濃縮したイオン処理ダニ抗原性物質および未処理ダュ抗 原性物質をタンパク質濃度 7. ·66 g m 1から 5倍希釈を 1 1回繰り返し行 なった。 希釈したそれぞれの抗原性物質 50 μ 1と 10倍希釈した患者血清 I g E 50 μ 1とを混合し 4 °Cで一晚プレインキュベートした。
ィライザ用 96穴プレート (EL I S A用 96— we 1 1 l a t e) に炭 酸水素ナトリゥム緩衝溶液 (B i c a r b o n a t e b u f f e r) で l ^ g Zm 1に希釈したダニ抗原性物質 (P賁霧も行なっていないもの) をゥエル (we 1 1 ) に 50 μ 1アプライし 2時間静置した。 洗浄用緩衝溶液 (Wa s h i n g b u f f e r) でプレートを 3回洗浄後、 ブロッキング用緩衝溶液 (B l o c k 1 n g b u f f e r) を 300^ 1アプライし、 4°Cでー晚静置した。
一晚静置後、 プレートを 4回洗浄し、 プレインキュペートしていだサンプルを それぞれ 50 / 1ゥエルにアプライし、 4時間静置した。プレートを 5回洗浄後、 (3%スキムミルク + 1%B SA) PB STで 1000倍希釈したピオチン標 識抗.ヒト I gE (B i o t i n— l a b e l e d a n t i— huma n I g E) をゥエル (we 1 1 ) に 50 μ 1アプライし 2. 5時間静置した。
該静置後、プレートを 3回洗浄し、 ( 3 °/0スキムミルク + 1%BSA) ZPBS Tで 1000倍希釈したアル力リフォスファターゼ標識 s t r e p t a v i d i nを 50 μ 1ァプラィし、 室温で 1. 5時間静置した。 プレートを 4回洗浄後、 アトフォス (登録商標) 基質緩衝溶液 (A t t o p h o s (登録商標) s ub s t r a t e b u f f e r) をウエノレ (w e 1 1 ) に 50 μ 1アプライし、 遮 光の状態で発色するまで放置した。 その蛍光強度を分光光度計 (Cy t o (登録 商標) F 1 u o r I I) で測定した。 なお、 試薬は、 特に断りのない限り上記と 同じものを各用いた。
イオン発生素子を作動させない未処理の場合 (すなわち未処理ダニ抗原性物質) と、 該素子を作動させて正負両イオンそれぞれの空間平均濃度が 3000個 /"c m3となる条件下でイオン処理した場合(すなわちイオン処理ダニ抗原性物質) に ついての、ダニァレルギ一患者の血清 I g E抗体との反応性(結合性)を調べた。 : その結果を図 18に示す。
図 18に示したように、 未処理ダニ抗原性物質は、 50%阻害 (ダニ抗原性物 質の血清 I g E抗体に対する反応性が 50 %に低下すること) に必要なダニ抗原 性物質量が 500 n g/m 1であるのに対し、 イオン処理ダニ抗原性物質は、 5 0 %阻害に必要なダニ抗原性物質量が 500n g/mlとなり、 反応失活率は 7
4%であることを確認した。 なお、 ここでいう反応失活率は、 上記化学式 (1) と同様の化学式により求めた。
このようにして、 正負両イオンの作用は、 抗原性物質に対して直接的に作用す るばかりではなく、 抗原性物質を含んだダュ粉塵に対しても及ぶことが確認され た。 しかも、 正負両イオンそれぞれの空間平均濃度が 3000個 /cm3となる 場合において、 抗原性物質を失活させるという効果が発揮されることを確^ ·する ことができた。
く実施例 5 >
本実施例においては、 正負両イオンそれぞれの空間平均濃度を 10000個 cm3とすること(該イオン発生素子 1021の電極間のピークトゥーピーク (p e a k t o p e a k) 電圧を 100 Vとし、 該送風機 1033のファン風量 を 8m3Z分とすること) を除き、 その他は実施例 4と全て同様にしてダニ粉塵 に対する正負両イオンの作用を確認した。 その結果を図 19に示す。
図 19に示したように、 未処理ダニ抗原性物質は、 60%阻害 (ダニ抗原性物 質の血清 I g E抗体に対する反応性が 6 0 %に低下すること) に必要なダニ抗原 性物質量が 3 4 5 n g Zm 1であるのに対し、 ィオン処理ダ 抗原性物質は、 6 0 %阻害に必要なダニ抗原性物質量が 3 8 2 3 n g ,m lとなり、 反応失活率は 9 1 %であることを確認した。なお、ここでいう反応失活率は、上記同様に式(1 ) により求めた。
このようにして、 正負両イオンそれぞれの空間平均濃度が 1 0 0 0 0個ノ c m 3となる場合において、 抗原性物質を失活させるという効果が発揮されることを 確認することができた。
また、 図 1 8と図 1 9を比較すると、 5 0 %阻害と 6 0 %阻害の差異は存する ものの、 図 1 8より判断して 5 0 %阻害の場合と 6 0 %阻害の場合とにおける反 応失活率はほぼ同じと考えられるため、 空間平均濃度が高くなる程反応失活率が 高くなることが認められる。
このように本発明の方法によると、 正負両ィオンを作用させることにより抗原 性物質を有効に失活させることができるため.、 この種の抗原性物質が原因となる 花粉症ゃダユアレルギ一などの各種ァレルギ一疾患を有効に低減することが期待 できる。
また、 本発明の方法または装置を空気調節装置の内部または外部に用いること により、 抗原性物質の失活した空気の送風や、 上記イオン放出による空中に浮遊 する抗原性物質の直接失活が可能になる。
上記各実施の形態では、 花粉およびダュに含まれるアレルゲンに特に注目して 説明したが、 花粉やダニ以外にカビなどに含まれるアレルゲンに対しても、 本発 明に基づく空気浄化装置は、 効果を発揮すると考えられる。
今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。 本究明の範囲は上記した説明ではなくて 特許請求の範囲によって示され、 特許請求の範囲と均等の意味および範囲内での すべての変更が含まれることが意図される。 産業上の利用可能性
下記に示すように、 本発明の活性化ガスが抗原性物質を失活させる性能の評価方 法および装置を用いることにより、 各種の活性化ガスが各種の抗原性物質を失活 させる性能を正確かつ簡便に評価することができる。

Claims

' 請求の範囲
1 . 抗原性物質と活性化ガスとを反応させて、 処理済抗原性物質を得るステツ プと、
' 前記抗原性物質に対する抗体と前記処理済抗原性物質とを反応させて、 前記抗 ' 体に対する前記処理済抗原性物質の結合活性を測定するステップと、
を備える、 活性化ガスが抗原性物質を失活させる性能の評価方法。
2 . 抗原性物質と活性化ガスとを反応させて、 処理済抗原性物質を得るステツ プと、
前記抗原性物質に対する抗体と前記処理済抗原性物質とを反応させて、 俞記抗 体に対する前記処理済抗原性物質の結合活性を測定するステップと、
前記処理済抗原性物質の結合活性を、 前記抗体に対する前記抗原性物質の結合 活性と比較するステップと、
を備える、 活性化ガスが抗原性物質を失活させる性能の評価方法。
3 . 前記処理済抗原性物質を得るステップは、 空中に浮遊する前記抗原性物質 と前記活性化ガスとを反応させるステップを含む、 請求の範囲第 1項に記載の活 性化ガスが抗原性物質を失活させる性能の評価方法。
4 . 前記反応させるステップは、 容器中に前記抗原性物質を含む溶液を撒布す るステップと、 前記撒布された前記抗原性物質を含む溶液を前記容器中で浮遊さ せるステップと、 前記容器中に前記活性化ガスを導入するステップと、 を含む、 請求の範囲第 3項に記載の活性化ガスが抗原性物質を失活させる性能の評価方法。
5 . 前記処理済抗原性物質を得るステップは、 前記抗原性物質に振動および/ または衝撃を与えることにより、 前記抗原性物質を空中に浮遊させるステップを 含む、 請求の範囲第 3項に記載の活性化ガスが抗原性物質を失活させる性能の評 価方法。
6 . 前記浮遊させるステップは、 前記抗原性物質を可嘵性を有する試料台に設 置するステップと、 前記試料台に振動およぴ Zまたは衝撃を与えるステップとを 含む、 請求の範囲第 5項に記載の活性化ガスが抗原性物質を失活させる性能の評 価方法。
7 . 前記浮遊させるステップは、 前記抗原性物質を布団、 毛布、 座布団、 枕、 マット、 スポンジ、 布、 紙、 発泡スチロールからなる群より選ばれる 1種以上の 可嘵性を有する試料台に設置するステップと、 前記試料台を叩くおよび Zまたは 振ることにより前記試料台に振動およぴ zまたは衝撃を与えるステップとを含む、 請求の範囲第 5項に記載の活性化ガスが抗原性物質を失活させる性能の評価方法。
8 . 前記処理済抗原性物質を得るステップは、 空中に浮遊する前記抗原性物質 と前記活性化ガスとを反応させるステップを含む、 請求の範囲第 2項に記載の活 性化ガスが抗原性物質を失活させる性能の評価方法。
9 . 前記処理済抗原性物質を得るステップは、 前記抗原性物質と、 正イオンを 含むガス、 負イオンを含むガス、 ラジカルを含むガス、 オゾンガス、 硝酸ガスか らなる群より選ばれる一種以上を含有するガスとを反応させるステップを含む、 請求の範囲第 1項に記載の活性化ガスが抗原性物質を失活させる性能の評価方法。
1 0 . 前記処理済抗原性物質を得るステップは、 スギ花粉および/またはダェ 粉塵に含まれる抗原性物質、 スギ花粉、 ダニ粉塵からなる群より選ばれる 1種以 上と活性化ガスとを反応させて、 処理済抗原性物質を得るステップを含む、 請求 の範囲第 1項に記載の活性化ガスが抗原性物質を失活させる性能の評価方法。
1 1 . 前記測定するステップは、 E L I S A法および/または E L I S A ィ ンヒビッション法により、 前記抗原性物質に対する抗体と前記処理済抗原性物質 とを反応させて、 前記抗体に対する前記処理済抗原性物質の結合活性を測定する ステップを含む、 請求の範囲第 1項に記載の活性化ガスが抗原性物質を失活させ る性能の評価方法。 ,
1 2 . 前記測定するステップは、 前記抗原性物質に対する抗体の産生細胞を保 有するヒト以外の動物への皮内反応試験および/または結膜反応試験により、 前 記抗体と前記処理済抗原性物質とを反応させて、 前記抗体に対する前記処理済抗 原性物質の結合活性を測定するステップを含む、 請求の範囲第 1項に記載の活性 化ガスが抗原性物質を失活させる性能の評価方法。
1 3 . 容器と、
前記容器内に抗原性物質を撒布する手段と、
前記活性化ガスを前記容器内で発生もしくは導入する手段と、 を備える、 活性化ガスが抗原性物質を失活させる性能の評価試料として用いる 処理済抗原性物質の生成装置。
1 4 . 前記容器は、 透明な材質を一部または全部に含む、 請求の範囲第 1 3項 に記載の活性化ガスが抗原性物質を失活させる性能の評価試料として用いる処理 済抗原性物質の生成装置。
1 5 . 容器と、
前記容器内に抗原性物質を封入する手段と
前記活性化ガスを前記容器内で発生もしくは導入する手段と、
を備える、 活性化ガスが抗原性物質を失活させる性能の評価試料として用いる 処理済抗原性物質の生成装置。
1 6 . 前記容器は、 透明な材質を一部または全部に含む、 請求の範囲第 1 5項 に記載の活性化ガスが抗原性物質を失活させる性能の評価試料として用いる処理 済抗原性物質の生成装置。
PCT/JP2004/001602 2003-02-18 2004-02-13 活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の生成装置 WO2004074832A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2516031A CA2516031C (en) 2003-02-18 2004-02-13 Method of evaluating performance of activation gas deactivating antigenic substance and apparatus for generating processed antigenic substance used as evaluation sample of the evaluating method
US10/545,239 US8420326B2 (en) 2003-02-18 2004-02-13 Method of evaluating performance of activation gas deactivating antigenic substance and apparatus for generating processed antigenic substance used as evaluation sample of the evaluating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003040352 2003-02-18
JP2003-040352 2003-02-18
JP2003308735A JP3890044B2 (ja) 2003-02-18 2003-09-01 活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の作成装置
JP2003-308735 2003-09-01

Publications (1)

Publication Number Publication Date
WO2004074832A1 true WO2004074832A1 (ja) 2004-09-02

Family

ID=32911395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001602 WO2004074832A1 (ja) 2003-02-18 2004-02-13 活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の生成装置

Country Status (5)

Country Link
US (1) US8420326B2 (ja)
JP (1) JP3890044B2 (ja)
KR (1) KR100729693B1 (ja)
CA (1) CA2516031C (ja)
WO (1) WO2004074832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828714B2 (en) 2002-04-05 2014-09-09 Sharp Kabushiki Kaisha Method of evaluating elimination of microoganisms and apparatus for evaluating elimination of microorganisms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221A (ja) * 1985-04-03 1987-01-06 メディゾーン インターナショナル,インコーポレイティド 血液製品中のウイルスの不活性化方法
JPS63188391A (ja) * 1986-10-30 1988-08-03 ホルスト・キーフ 細菌破壊に及び/又は免疫調節に有効な物質の製造方法並びにこれを使用する方法
JPH0587805A (ja) * 1991-09-30 1993-04-06 Olympus Optical Co Ltd 生物学的処理用器具の再生方法
JP2002181371A (ja) * 2000-12-11 2002-06-26 Mitsubishi Heavy Ind Ltd アレルゲンセンサ及び空調機
JP2003180865A (ja) * 2001-12-18 2003-07-02 Mitsubishi Heavy Ind Ltd アレルゲン不活性化方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443572B2 (ja) * 1974-07-08 1979-12-20
US6303152B1 (en) 1986-10-30 2001-10-16 Horst Kief Process for the production of substances that have been bactericidally treated and/or exhibit immune-modulatory activity, and the use thereof
US5491068A (en) * 1991-02-14 1996-02-13 Vicam, L.P. Assay method for detecting the presence of bacteria
DE69225940T2 (de) 1991-09-30 1998-11-19 Olympus Optical Co Verfahren zum Regenerieren von zur Handhabung von biologischen Substanzen verwendeten Geräten
JP3310356B2 (ja) 1992-11-20 2002-08-05 株式会社クラレ スギ花粉症抗原の不活性化装置
JPH07807A (ja) 1993-06-11 1995-01-06 Sanyo Electric Co Ltd 花粉の処理方法及び花粉の処理装置
JP2662769B2 (ja) 1994-12-20 1997-10-15 株式会社ゼクセル 空気清浄装置
US5658794A (en) * 1995-12-07 1997-08-19 Board Of Trustees Operating Michigan State University Method for controlling fungal disease in turfgrasses using Pseudomonas aureofaciens ATCC 55670
US6613358B2 (en) * 1998-03-18 2003-09-02 Theodore W. Randolph Sustained-release composition including amorphous polymer
DE19829091A1 (de) 1998-06-30 2000-01-05 Grewe Helmut F Allergen-denaturierende Luftreinigung mit iodierten Harzen
JP2000111106A (ja) 1998-10-08 2000-04-18 Laser Techno Kk 空気清浄機
KR100502121B1 (ko) 2000-05-18 2005-07-19 샤프 가부시키가이샤 살균 방법, 이온 발생 소자, 이온 발생 장치 및 공기 조절장치
EP2030639B1 (en) * 2000-08-28 2017-07-05 Sharp Kabushiki Kaisha Air conditioning apparatus with an ion generator
US6736133B2 (en) * 2002-04-09 2004-05-18 Hon Technology Inc. Air filtration and sterilization system for a fireplace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221A (ja) * 1985-04-03 1987-01-06 メディゾーン インターナショナル,インコーポレイティド 血液製品中のウイルスの不活性化方法
JPS63188391A (ja) * 1986-10-30 1988-08-03 ホルスト・キーフ 細菌破壊に及び/又は免疫調節に有効な物質の製造方法並びにこれを使用する方法
JPH0587805A (ja) * 1991-09-30 1993-04-06 Olympus Optical Co Ltd 生物学的処理用器具の再生方法
JP2002181371A (ja) * 2000-12-11 2002-06-26 Mitsubishi Heavy Ind Ltd アレルゲンセンサ及び空調機
JP2003180865A (ja) * 2001-12-18 2003-07-02 Mitsubishi Heavy Ind Ltd アレルゲン不活性化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828714B2 (en) 2002-04-05 2014-09-09 Sharp Kabushiki Kaisha Method of evaluating elimination of microoganisms and apparatus for evaluating elimination of microorganisms

Also Published As

Publication number Publication date
CA2516031C (en) 2010-04-13
US8420326B2 (en) 2013-04-16
JP3890044B2 (ja) 2007-03-07
KR20050103226A (ko) 2005-10-27
JP2004271500A (ja) 2004-09-30
KR100729693B1 (ko) 2007-06-18
US20070264192A1 (en) 2007-11-15
CA2516031A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
CN104436273B (zh) 一种空气净化消毒机及其净化消毒方法
CN101319805B (zh) 纳米等离子净化装置
CN203928171U (zh) 清新空气送风器
CN101296741A (zh) 内吸式空气过滤杀菌方法与系统
CN109618937A (zh) 一种环境友好型无菌无抗养殖舍
CN107708749A (zh) 用于化学空气污染物的电流体动力增强的破坏和生物剂的空气中灭活的方法
JP2008022765A (ja) 環境評価装置及び環境評価方法
WO2008010394A1 (fr) Système d&#39;évaluation environnementale et procédé d&#39;évaluation environnementale
WO2004074832A1 (ja) 活性化ガスが抗原性物質を失活させる性能の評価方法、その評価方法の評価試料として用いる処理済抗原性物質の生成装置
CN107687673B (zh) 一种空气净化器
AU2006229002B2 (en) Bioinvasive reaction reducing method, substance modifying device, and air conditioner
JP2004268014A (ja) 抗原性物質を失活させる方法および装置
JP4142974B2 (ja) 微生物の除去評価方法および微生物除去評価装置
JP4330351B2 (ja) 抗原性物質を失活させる方法および装置
CN100510748C (zh) 活化气体使抗原性物质失活的性能评价方法、作为该评价方法的评价试样的经处理抗原性物质的生成装置
JP2004089260A (ja) ウイルスの感染率を低下させる方法、病原性細菌および/または芽胞形成菌を殺菌する方法およびそれらの方法を実行する装置
CN100349651C (zh) 通过正负两种离子的作用使抗原性物质失活的方法和装置
JP2004251497A (ja) 空気調節装置
Li et al. Alteration of the Health Effects of Bioaerosols by Chemical Modification in the Atmosphere: A Review
JP3998036B2 (ja) 生体侵襲反応低減方法、物質改質装置及び空気調和機
TW202231302A (zh) 一種消滅病毒之高壓調頻空氣淨化裝置
Lawson et al. Public Health Impact of Diesel Exhaust: Toxicity of Nano-sized Diesel Exhaust Particles-Part II
KR20220096953A (ko) 냉장식품 보관장치용 알에프를 이용한 단분자형 물방울 발생기
KR20220097003A (ko) 대기중 바이러스 살균장치용 알에프를 이용한 단분자형 물방울 발생기
JP2005043152A (ja) 活性ガス発生素子の性能検査方法および製造方法、活性ガス発生素子を付設した装置の製造方法、これらの製造方法を実行する製造装置、活性ガス発生素子およびそれを付設した装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2516031

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057015126

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048104221

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015126

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10545239

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10545239

Country of ref document: US