WO2004071956A2 - Un material cristalino poroso (zeolita itq-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos - Google Patents

Un material cristalino poroso (zeolita itq-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos Download PDF

Info

Publication number
WO2004071956A2
WO2004071956A2 PCT/ES2004/070006 ES2004070006W WO2004071956A2 WO 2004071956 A2 WO2004071956 A2 WO 2004071956A2 ES 2004070006 W ES2004070006 W ES 2004070006W WO 2004071956 A2 WO2004071956 A2 WO 2004071956A2
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline material
source
itq
stage
porous
Prior art date
Application number
PCT/ES2004/070006
Other languages
English (en)
French (fr)
Other versions
WO2004071956A3 (es
Inventor
Avelino CORMA CANÓS
Rafael CASTAÑEDA SÁNCHEZ
Vicente FORNÉS SEGUÍ
Fernando REY GARCÍA
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politécnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP04709639A priority Critical patent/EP1609758B1/en
Priority to JP2006502054A priority patent/JP4791953B2/ja
Priority to ES04709639T priority patent/ES2392048T3/es
Priority to CA2516046A priority patent/CA2516046C/en
Publication of WO2004071956A2 publication Critical patent/WO2004071956A2/es
Publication of WO2004071956A3 publication Critical patent/WO2004071956A3/es
Priority to US11/200,534 priority patent/US7344696B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • C01B39/085Group IVB- metallosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/12Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the replacing atoms being at least boron atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • a porous crystalline material (ITQ-24 zeolite), its preparation process and its use in the catalytic conversion of organic compounds.
  • the present invention is framed within the crystalline zeolitic materials and their use in the catalytic conversion of organic compounds.
  • Zeolites are porous crystalline materials that have found important applications such as catalysts, adsorbents and ion exchangers. Many of these zeolitic materials have well-defined structures that form channels and cavities inside them, of uniform size and shape that allow the adsorption of certain molecules, while preventing the passage into the glass of other molecules of size too large to diffuse to through the pores. This characteristic gives these materials molecular sieve properties. These molecular sieves can include in the Si network and other elements of groups IIIA, VAT of the periodic system and / or transition metals, such as Ti, V, etc., all of them tetrahedrally coordinated, the tetrahedra being joined by their vertices to through oxygen forming a three-dimensional network.
  • the negative charge generated is compensated by the presence of cations, such as alkaline or alkaline earth, which are located in the channels and / or cavities of these materials.
  • cations such as alkaline or alkaline earth
  • One type of cation can be totally or partially exchanged for another type of cations by ion exchange techniques, thus being able to vary the properties of a given silicate by selecting the desired cations.
  • these cations are protons
  • the resulting materials have a high acidity that gives them interesting catalytic properties
  • the present invention relates to a synthetic, porous and crystalline material characterized in that it is formed by atoms in tetrahedral coordination joined together through oxygen, which has a unit cell containing 56 atoms in tetrahedral coordination, which is called ITQ-24, whose chemical formula in a calcined and anhydrous state is given by
  • X is at least one trivalent element
  • n is between 0 and 0.2 and M is at minus a charge compensation cation in oxidation state p, which has an x-ray diffractogram in a calcined and anhydrous state, whose most representative reflections appear at spaced given in table 1:
  • Examples of trivalent elements in the formula given above for ITQ-24 are Al, B, Fe, In, Ga, Cr and mixtures thereof.
  • tetravalent elements in the formula given above for ITQ-24 are Si, Ti, Sn, Ge and mixtures thereof.
  • compensation cations in the formula given for ITQ-24 are a proton, H + precursors such as NH + 4 , metal ions such as an alkali or alkaline earth metal, rare earth cations, and group VIII metals, as well as of group IIA, IIIA, VAT, Va, IB, IIB, IIIB, IVB, VB, VIIB of the periodic table of the elements, or mixtures of them.
  • ITQ-24 crystalline material can be synthesized in the absence of added trivalent elements and / or compensation cations.
  • X is selected from B, Al and combinations thereof, and Y is Si, Ge, Ti and combinations thereof.
  • the synthetic, porous and crystalline material, ITQ-24, as prepared before calcining, has an x-ray diffractogram whose most representative reflections appear at spacings given in Table 2:
  • the diffraction data listed for this sample as single or single lines may be formed by multiple overlaps or overlapping reflections that, under certain conditions, such as differences in crystallographic changes, may appear as resolved or partially resolved lines.
  • crystallographic changes may include small variations in the parameters of the unit cell and / or changes in the symmetry of the crystal, without a change in the connectivity between atoms of the structure. These modifications, which also include changes in relative intensities may also be due to differences in the type and amount of compensation cations, network composition, crystal size and shape thereof, preferred orientation or the type of thermal or hydrothermal treatments suffered.
  • the crystalline and porous material called ITQ-24 referred to in this invention is a single crystalline phase that has a three-way system of channels that intersect each other.
  • the ITQ-24 zeolite has a first channel system that is defined by 12-member rings of tetrahedrally coordinated atoms with a channel opening of 7.7 x 5.6 A, a second system of sinusoidal channels also defined by openings of channels formed by 12 atoms tetrahedrally coordinated with a channel opening of 7.2 x 6.2 ⁇ , and finally a third channel system with a channel opening of 10 atoms coordinated tetrahedrally with a channel opening of 5.75 x 4.8 A. These three systems are interconnected between yes.
  • the structure of the ITQ-24 zeolite can be defined by its unit cell, which is the smallest structural unit that presents all the symmetry elements of the material.
  • Table 3 shows the list of positions of all tetracoordinated atoms contained in the unit cell for a particular embodiment of ITQ-24. Each tetracoordinated atom is linked to its four neighbors through bridge oxygen. Since the position of the tetracoordinated atoms may vary slightly depending on the presence of organic matter or water in their pores, the chemical composition of the material or any other modification, each position coordinate given in Table 3 can be modified by ⁇ 0.5 ⁇ without a change in the connectivity of the atoms that form the structure of the ITQ-24 zeolite.
  • a second object of the present invention is a method for synthesizing the ITQ-24 crystalline material, which comprises at least: a first stage in which a synthesis mixture comprising at least:
  • the source of hydroxide ions can Be the same structure managing agent.
  • the synthesis process can also comprise a fourth stage in which organic matter occluded inside the crystalline material is removed by a treatment selected from extraction treatments, heat treatments at temperatures above 250 ° C for a period of time between 2 minutes and 25 hours, and combinations thereof.
  • the synthesis mixture further comprises a source of the trivalent element X.
  • the source of the tetravalent element Y is an oxide
  • the source of the trivalent element X is an oxide
  • M ' 2 / . ⁇ / X 2 O 3 between 0 and 1.0
  • j is the oxidation state of the cation M 'and can be one or two.
  • the source of the tetravalent element Y is an oxide
  • the source of the trivalent element X is an oxide
  • the synthesis mixture has a composition, in terms of molar ratios, of: Y0 2 / X 2 0 3 > 7
  • H 2 0 / Y0 2 between 2 and 20
  • R / Y0 2 between 0.05 and 1.0
  • OH / YO a between 0.1 and 2.0
  • M ' a / J O / X 2 ⁇ 3 between 0 and 1.0
  • j is the state of oxidation of the cation M 'and can be one or two.
  • a preferred example of the structure directing agent is a dication salt (hexamethylene bis (trimethylammonium).
  • a further preferred example of the structure directing agent is hexamethylene bis (trimethylammonium) dihydroxide.
  • a preferred source of the tetravalent element Y is an oxide.
  • a preferred source of the trivalent element X is an oxide.
  • a preferred source of the compensation cation, M is a hydroxide or an oxide.
  • fluoride ions are added to the synthesis mixture in a molar ratio F " / Y0 2 less than or equal to 0.02.
  • ammonium fluoride can be added, in a ratio F " / Si0 2 less than 0.01, if Y is Yes.
  • the ITQ-24 zeolite can be prepared essentially as a pure phase or with very small impurities that can even be undetectable by X-ray diffraction.
  • hydroxide ions can be used as mobilizing agents for the oxides of trivalent and tetravalent elements, which are introduced into the synthesis medium as hydroxide of an organic, inorganic cation or mixtures thereof, and may be occluded in Inside the structure organic species, which can be removed by conventional means.
  • the organic component can be removed, for example by extraction, or by heat treatment by heating at a temperature above 250 ° C for a period of time between 2 minutes and 25 hours.
  • Compensation cations in the material in its uncalcined form, or after heat treatment, can be exchanged, if present, for other cations such as metal ions, H + and precursors of H + such as NH + 4 .
  • cations that can be introduced by ion exchange those that can have a positive role in the activity of the material as a catalyst are preferred, and more specifically cations such as H + , rare earth cations, and group VIII metals are preferred, as well as Group IIA, IIIA, VAT, Va, IB, IIB, IIIB, IVB, VB, VIIB of the periodic table of the elements.
  • the crystallization of ITQ-24 can be carried out in static or stirring, in autoclaves at a temperature between 80 and 200 ° C, at times sufficient to achieve crystallization, for example between 12 hours and 60 days.
  • ITQ-24 crystals can be added as seeds, in amounts of up to 15% by weight with respect to the total components constituting the sources of elements X, Y and
  • fluoride ions can also be added in the form, for example of ammonium fluoride, in FNSi0 2 ratios less than 0.01.
  • the ITQ-24 crystals are separated from the mother liquors, and recovered.
  • the ITQ-24 material containing Al can also be prepared from the boron-containing form using well-known post-synthesis methods (Chen et al., Studies in Surface Science and Catalysis (2001), 135, 1710-1717), such as the exchange in aqueous phase of the boron material, by a source of aluminum ions among which are preferred nitrate, chloride or halide in general, sulfate, carbonate, citrate, oxide, and hydroxide.
  • the B-T-ITQ-24 zeolite can be converted into the Ti-ITQ-24 analog by means of post-synthesis treatments that allow selectively removing the B atoms from the zeolitic network using methods similar to those previously described in Literature (Tatsumi et al., J. Phys. Chem., B., 105, 2897, (2001), J. Catal, 202, 245 (2000) and PCT
  • a third object of the present invention is a method of converting a feed formed by at least one organic compound comprising contacting the feed with a catalytically active amount of the crystalline material called ITQ-24.
  • a further object of the present invention is a method for converting a feed formed by at least one organic compound, which comprises contacting the feed with a catalytically active amount of a crystalline material obtained according to the procedure described above.
  • the crystalline material of the present invention can also be intimately combined with hydrogenating-deoxygenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and mixtures thereof.
  • hydrogenating-deoxygenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and mixtures thereof.
  • the introduction of these elements can be carried out in the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing.
  • These elements can be introduced in their cationic form and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the ITQ-24 zeolite produced by this invention when it contains trivalent elements in its composition can be used, once pelletized, as a component of catalysts in acid-catalyzed processes, such as hydrocarbon catalytic cracking processes, hydrocarbon catalytic hydro-cracking , renovated from hydrocarbons, alkylation of aromatics with olefins and in processes of esterification, acylation, reaction of aniline with formaldehyde in its acid form and / or exchanged with suitable cations.
  • acid-catalyzed processes such as hydrocarbon catalytic cracking processes, hydrocarbon catalytic hydro-cracking , renovated from hydrocarbons, alkylation of aromatics with olefins and in processes of esterification, acylation, reaction of aniline with formaldehyde in its acid form and / or exchanged with suitable cations.
  • the ITQ-24 zeolite when it contains tetravalent elements such as Ti and / or Sn in its composition can be used as a heterogeneous catalyst in oxidation processes of olefins with organic or inorganic peroxides and in reactions of the Bayer-Villiger or Meerwein-Pondorf type between others.
  • Figure 1 shows the projection of a first channel system that is defined by 12-member rings of tetrahedrally coordinated atoms with a channel opening of 7.7 x 5.6 ⁇ .
  • Figure 2 shows a second system of sinusoidal channels • also defined by channel openings formed by 12 tetrahedrally coordinated atoms with a channel opening of 7.2 x 6.2 ⁇ . :
  • Figure 3 shows a third channel system with a channel opening of 10 atoms tetrahedrally coordinated with a channel opening of 5.75 x 4.8 A.
  • Figure 4 shows the ITQ-24 unit cell.
  • Figure 5 shows the structure of the hexamethylene bis bis (trimethylammonium)
  • the process consists in dissolving 9 g of hexamethonium dibromide obtained according to example 1 in 250 g of Milli Q water (Myipore).
  • the resulting solution is passed through a washed Amberlite IRN-78 resin column adjusting the flow rate to reach an exchange level greater than 95%.
  • the resulting solution of hexamethylene bis (trimethylammonium) dihydroxide is collected in a beaker. This solution is concentrated at 50 ° C and vacuum until a concentration of hexamethylene bis (trimethylammonium) dihydroxide is reached at approximately 0.5 mol / kg.
  • Example 3- Synthesis of ITO-24 material with aluminum.
  • the gel is heated at 175 ° C under stirring for 15 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-24 and whose list of diffraction peaks is included in Table 4.
  • the material is calcined following the heating ramp described below.
  • the temperature is increased from 25 ° C to 300 ° C with a speed of l ° C / min, maintaining this temperature for 3 hours, and finally raising the temperature to 580 ° C at a speed of l ° C / min; The temperature is maintained for an additional three hours.
  • the calcined sample presents a characteristic diffraction diagram of ITQ-24 whose list of peaks is shown in table 5.
  • the material is calcined following the heating ramp described below.
  • the temperature is increased from 25 ° C to 300 ° C with a speed of l ° C / min, maintaining this temperature for 3 hours, and finally raising the temperature to 580 ° C at a speed of l ° C / min; The temperature is maintained for an additional three hours.
  • the calcined sample presents a characteristic diffraction diagram of ITQ-24.
  • the gel is heated at 175 ° C under stirring for 15 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-24.
  • the material is calcined following the heating ramp described below.
  • the temperature is increased from 25 ° C to 300 ° C at a speed of 3 ° C / min, maintaining this temperature for 3 hours, and finally raising the temperature to 580 ° C at a speed of 3 ° C / min; The temperature is maintained for an additional three hours.
  • the calcined sample presents a characteristic diffraction diagram of ITQ-24.
  • the gel is heated at 175 ° C under stirring for 30 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-24.
  • the material is calcined following the heating ramp described below. The temperature is increased from 25 ° C to 300 ° C at a speed of l ° C / min, maintaining this temperature for 3 hours, and finally raising the temperature to 580 ° C at a speed of l ° C / min; The temperature is maintained for an additional three hours.
  • the calcined sample presents a characteristic diffraction diagram of ITQ-24.
  • Example 7 Post-synthesis treatment of an ITQ-24 zeolite containing Ti in its composition.
  • zeolite prepared as described, in example 6 30 ml of a 2M nitric acid solution is suspended at 90 ° C for 16 hours.
  • the solid is recovered by filtration and washed with distilled water until neutral and absence of chloride ions from the wash waters and dried at 80 ° C for 12 hours.
  • the resulting solid has diffraction peaks characteristic of the ITQ-24 zeolite and the B content is below the detection level of the usual analysis techniques.
  • this solid has a band in the Ultraviolet-visible spectrum around 210 nm, which is assigned to the presence of Ti incorporated into the zeolite network.

Abstract

La presente invención se refiere a un material sintético, poroso y cristalino caracterizado porque està formado por átomos en coordinación tetraédrica unidos entre sí a través de oxígenos, que presenta un celda unidad que contiene 56 átomos en coordinación tetraédrica, que se denomina ITQ-24, cuya fórmula química en estado calcinado y anhidro viene dada por nM1/pXO2: YO2 en la que X es al menos un elemento trivalente, Y es al menos un elemento tetravalente, el valor de n està comprendido entre 0 y 0.2 y M es al menos un catión de compensación de carga en estado de oxidación p.

Description

Titulo
Un material cristalino poroso (zeolita ITQ-24) , su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos.
Campo de la Técnica
La presente invención se enmarca dentro de los materiales zeolíticos cristalinos y su uso en la conversión catalítica de compuestos orgánicos.
Antecedentes
Las zeolitas son materiales cristalinos porosos que han encontrado importantes aplicaciones como catalizadores, adsorbentes e intercambiadores iónicos . Muchos de estos materiales zeolíticos tienen estructuras bien definidas que forman canales y cavidades en su interior, de tamaño y forma uniforme que permiten la adsorción de determinadas moléculas, mientras que impiden el paso al interior del cristal de otras moléculas de tamaño demasiado grande para difundir a través de los poros. Esta característica confiere a estos materiales propiedades de tamiz molecular. Estos tamices moleculares pueden incluir en la red Si y otros elementos de los grupos IIIA, IVA del sistema periódico y/o metales de transición, como por ejemplo Ti, V, etc, todos ellos tetraédricamente coordinados, estando los tetraedros unidos por sus vértices a través de oxígenos formando una red tridimensional. En el caso de presentar elementos correspondientes al grupo IIIA tetraédricamente coordinados en posiciones de red, la carga negativa generada está compensada por la presencia de cationes, como por ejemplo alcalinos o alcalinotérreos, que se sitúan en los canales y/o cavidades de estos materiales. Un tipo de catión puede ser intercambiado total o parcialmente por otro tipo de cationes mediante técnicas de intercambio iónico, pudiendo variar así las propiedades de un silicato dado seleccionando los cationes deseados. En el caso, en que estos cationes son protones, los materiales resultantes poseen una elevada acidez que les confiere interesantes propiedades catalíticas.
El empleo de cationes orgánicos como agentes directores de estructura ha sido hasta el momento un método muy eficaz en la obtención de nuevas estructuras zeolíticas. Recientemente, se ha evidenciado que la incorporación de heteroáto os distintos del silicio pueden ejercer un importante papel como directores de estructura, ya que favorecen la formación de ciertas subunidades de construcción secundarias. Así por ejemplo, la incorporación de Ge favorece la formación de dobles anillos de cuatro miembros en las zeolitas finales, mientras que la incorporación de Be o Zn promueven la aparición de anillos de tres miembros en los materiales finales .
Como consecuencia del trabajo realizado en el campo de la síntesis de zeolitas hasta el momento se han descrito más de 140 estructuras zeolíticas en las que varía la forma, tamaño y conectividad de sus canales y/o cavidades confiriéndoles distintas propiedades de adsorción/difusión, y por tanto, presentando distinto comportamiento catalítico. Resulta por tanto evidente que la obtención de nuevas zeolitas es un campo importante de desarrollo, ya que la posibilidad de disponer de un elevado número de zeolitas permite seleccionar la estructura más adecuada al proceso que se pretende catalizar.
Descripción de la Invención
La presente invención se refiere a un material sintético, poroso y cristalino caracterizado porque está formado por átomos en coordinación tetraédrica unidos entre sí a través de oxígenos, que presenta un celda unidad que contiene 56 átomos en coordinación tetraédrica, que se denomina ITQ-24, cuya formula química en estado calcinado y anhidro viene dada por
M1/pX02 : Y02 en la que:
X es al menos un elemento trivalente,
Y es al menos un elemento tetravalente, el valor de n está comprendido entre 0 y 0.2 y M es al menos un catión de compensación de carga en estado de oxidación p, que posee un difractogra a de rayos x en estado calcinado y anhidro, cuyas reflexiones más representativas aparecen a espaciados dados en la tabla 1 :
Tabla 1
Figure imgf000004_0001
donde los espaciados interplanares, d, se calcularon en Ángstrom y la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y se considera muy fuerte (mf) = 80-100, fuerte (f) =60-80, media (m)= 40-60, débil (d) =20-40, y muy débil (md) = 0-20.
Ejemplos de elementos trivalentes en la fórmula dada anteriormente para ITQ-24, son Al, B, Fe, In, Ga, Cr y mezclas de estos.
Ejemplos de elementos tetravalentes en la fórmula dada anteriormente para ITQ-24 son Si, Ti, Sn, Ge y mezclas de ellos .
Ejemplos de cationes de compensación en la fórmula dada para ITQ-24 son un protón, precursores de H+ como por ejemplo NH+ 4, iones metálicos tales como un metal alcalino o alcalinotérreo, cationes de tierras raras, y metales del grupo VIII, así como del grupo IIA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos, o mezclas de ellos.
De los valores dados se deduce que el material cristalino ITQ-24 se puede sintetizar en ausencia de elementos trivalentes añadidos y/o de cationes de compensació . En una realización preferida de ITQ-24, X está seleccionado entre B, Al y combinaciones de los mismos, e Y es Si, Ge, Ti y combinaciones de los mismos.
El material sintético, poroso y cristalino, ITQ-24, según se prepara antes de calcinar, posee un difractograma de rayos x cuyas reflexiones más representativas aparecen a espaciados dados en la tabla 2 :
Tabla 2
Figure imgf000006_0001
donde la intensidad relativa es como se ha definido anteriormente . Estos difractogramas se obtuvieron con un difractómetro Philips X'Pert equipado con un monocromador de grafito y una rendija de divergencia automática utilizando la radiación K« del cobre. Los datos de difracción se registraron mediante un paso de 2θ de 0.01° en el que θ es el ángulo de Bragg y un tiempo de cuenta de 10 segundos por paso.
Debe tenerse en cuenta que los datos de difracción listados para esta muestra como líneas sencillas o únicas, pueden estar formados por múltiples solapamientos o superposición de reflexiones que, en ciertas condiciones, tales como diferencias en cambios cristalográficos, pueden aparecer como líneas resueltas o parcialmente resueltas. Generalmente, los cambios cristalográficos pueden incluir pequeñas variaciones en los parámetros de la celda unidad y/o cambios en la simetría del cristal, sin que se produzca un cambio en la conectividad entre los átomos de la estructura. Estas modificaciones, que incluyen también cambios en intensidades relativas pueden deberse también a diferencias en el tipo y cantidad de cationes de compensación, composición de red, tamaño de cristal y forma de los mismos, orientación preferente o al tipo de tratamientos térmicos o hidrotérmicos sufridos .
El material cristalino y poroso denominado ITQ-24 a que se refiere esta invención es una fase cristalina única que posee un sistema tridireccional de canales que se intersectan entre sí. En concreto, la zeolita ITQ-24 posee un primer sistema de canales que está definido por anillos de 12 miembros de átomos tetraédricamente coordinados con una apertura de canal de 7.7 x 5.6 A, un segundo sistema de canales sinusoidales también definidos por aperturas de canales formadas por 12 átomos coordinados tetraédricamente con una apertura de canal de 7.2 x 6.2 Á, y finalmente un tercer sistema de canales con una apertura de canal de 10 átomos coordinados tetraédricamente con una apertura de canal de 5.75 x 4.8 A. Estos tres sistemas están interconectados entre sí.
La estructura de la zeolita ITQ-24 puede ser definida por su celda unidad, que es la unidad estructural más pequeña que presenta todos los elementos de simetría del material. En la tabla 3 se muestra la lista de posiciones de todos los átomos tetracoordinados contenidos en la celda unidad para una realización particular de ITQ-24. Cada átomo tetracoordinado se encuentra unido a sus cuatro vecinos a través de oxígenos puente. Ya que la posición de los átomos tetracoordinados puede variar ligeramente dependiendo de la presencia de materia orgánica o agua en sus poros, de la composición química del material o cualquier otra modificación, cada coordenada de posición dada en la tabla 3 puede modificarse en ± 0.5 Á sin que se produzca un cambio en la conectividad de los átomos que forman la estructura de la zeolita ITQ-24.
Tabla 3 Coordenadas atómicas Sitio (θ)
X
TI 1.61 1.60 4.71
T2 12.24 8.36 4.71
T3 19.65 11.92 4.71
T4 9.02 5.16 4.71
T5 1.61 11.92 7.90
T6 12.24 5.16 7.90
T7 19.65 1.60 7.90
T8 9.02 8.36 7.90
T9 19.65 11.92 7.90
TÍO 9.02 5.16 7.90
Til 1.61 1.60 7.90
T12 12.24 8.36 7.90
T13 19.65 1.60 4.71
T14 9.02 8.36 4.71
T15 1.61 11.92 4.71
T16 12.24 5.16 4.71
T17 3.19 2.61 2.31
T18 13.82 9.37 2.31
T19 18.06 10.91 2.31
T20 7.43 4.15 2.31
T21 3.19 10.91 10.30
T22 13.82 4.15 10.30
T23 18.06 2.61 10.30
T24 7.43 9.37 10.30
T25 18.06 10.91 10.30
T26 7.43 4.15 10.30
T27 3.19 2.61 10.30
T28 13.82 9.37 10.30
T29 18.06 2.61 2.31
T30 7.43 9.37 2.31
T31 3.19 10.91 2.31
T32 13.82 4.15 2.31
T33 16.63 8.26 1.61
T34 6.00 1.50 1.61 T35 4.63 5.27 1.61
T36 15.26 12.03 1.61
T37 16.63 5.27 11.00
T38 6.00 12.03 11.00
T39 4.63 8.26 11.00
T40 15.26 1.50 11.00
T41 4.63 5.27 11.00
T42 15.26 12.03 11.00
T43 16.63 8.26 11.00
T44 6.00 1.50 11.00
T45 4.63 8.26 1.61
T 6 15.26 1.50 1.61
T47 16.63 5.27 1.61
T 8 6.00 12.03 1.61
T 9 1.62 1.54 0.00
T50 12.25 8.30 0.00
T51 19.63 11.98 0.00
T52 9.01 5.22 0.00
T53 1.62 11.98 0.00
T54 12.25 5.22 0.00
T55 19.63 1.54 0.00
T56 9.01 8.30 0.00
Un segundo objeto de la presente invención es un procedimiento para sintetizar el material cristalino ITQ- 24, que comprende al menos: una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos :
- H20,
- una fuente de al menos un elemento tetravalente Y, - un agente director de estructura (R) , y - una fuente de iones hidróxido M' una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200°C hasta que se formen cristales de dicho material cristalino; y una tercera etapa que comprende recuperar dicho material cristalino.
En ciertos casos, la fuente de iones hidróxido puede ser el mismo agente director de estructura. El procedimiento de síntesis puede comprender además una cuarta etapa en la que se elimina materia orgánica ocluida en el interior del material cristalino mediante un tratamiento seleccionado entre tratamientos de extracción, tratamientos térmicos a temperaturas superiores a 250°C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas, y combinaciones de los mismos.
Según una realización preferida del procedimiento, la mezcla de síntesis comprende además una fuente del elemento trivalente X .
Según una realización preferida del procedimiento, la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones molares de óxidos, de Y02/X203 > 5 H20/Y02 = entre 1 y 50 R/YO2 = entre 0.05 y 3.0 OH/Y02 = entre 0.05 y 6.0 M'2/.θ/X2O3 = entre 0 y 1.0 donde j es el estado de oxidación del catión M' y puede ser uno o dos .
Según una realización más preferida del procedimiento, la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones molares, de: Y02/X203 > 7
H20/Y02 = entre 2 y 20 R/Y02 = entre 0.05 y 1.0 OH/YOa = entre 0.1 y 2.0 M'a/JO/X2θ3 = entre 0 y 1.0 donde j es el estado de oxidación del catión M' y puede ser uno o dos .
Según el procedimiento de la presente invención la fuente de hidróxido M' puede estar seleccionada entre una fuente de al menos un catión de compensación M, el anión del agente orgánico director de estructura y una mezcla de ambas .
Un ejemplo preferido de agente director de estructura es una sal del dication (hexametilen-bis (trimetilamonio) .
Un ejemplo adicional preferido de agente director de estructura es el dihidróxido de hexametilen- bis (trimetilamonio) .
Una fuente preferida del elemento tetravalente Y es un óxido.
Una fuente preferida del elemento trivalente X es un óxido .
Una fuente preferida del catión de compensación, M, es un hidróxido o un óxido. Según una realización particular del procedimiento se añaden iones fluoruro a la mezcla de síntesis en una relación molar F"/Y02 menor o igual a 0.02. Por ejemplo en una realización particular se puede añadir fluoruro amónico, en una relación F"/Si02 menor que 0.01, en el caso en que Y sea Si.
La zeolita ITQ-24 puede prepararse esencialmente como fase pura o con impurezas muy pequeñas que pueden ser incluso indetectables por difracción de rayos X.
En el proceso de síntesis de ITQ-24 pueden utilizarse iones hidróxido como agentes movilizantes de los óxidos de elementos trivalentes y tetravalentes, que se introducen en el medio de síntesis como hidróxido de un catión orgánico, inorgánico o mezclas de ellos, pudiendo quedar ocluidas en el interior de la estructura especies orgánicas, que se pueden eliminar por medios convencionales. Así, el componente orgánico se puede eliminar, por ejemplo por extracción, o por tratamiento térmico calentando a temperatura por encima de 250° C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas . Los cationes de compensación en el material en su forma sin calcinar, o después de un tratamiento térmico, pueden intercambiarse, en el caso de estar presentes, por otros cationes tales como iones metálicos, H+ y precursores de H+ como por ejemplo NH+ 4. Entre los cationes que pueden introducirse por intercambio iónico se prefieren aquellos que pueden tener un papel positivo en la actividad del material como catalizador, y más específicamente se prefieren cationes tales como H+, cationes de tierras raras, y metales del grupo VIII, así como del grupo IIA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos.
La cristalización de ITQ-24 se puede llevar a cabo en estático o en agitación, en autoclaves a temperatura comprendida entre 80 y 200 °C, a tiempos suficientes para conseguir la cristalización, por ejemplo entre 12 horas y 60 días.
Debe tenerse en cuenta que los componentes de la mezcla de síntesis pueden provenir de distintas fuentes, y dependiendo de estos pueden variar tiempos y condiciones de cristalización. Con el fin de facilitar la síntesis, se pueden añadir cristales de ITQ-24 como semillas, , en cantidades de hasta 15% en peso respecto del total de componentes que constituyen las fuentes de elementos X, Y y
M, a la mezcla de síntesis. Estas pueden ser adicionadas previamente a la mezcla de síntesis, durante la primera etapa del procedimiento, o bien durante la cristalización de ITQ-24, es decir, durante la segunda etapa del procedimiento.
Para facilitar la síntesis se pueden añadir también iones fluoruro en forma, por ejemplo de fluoruro amónico, en relaciones FNSi02 menores que 0.01.
Al finalizar la etapa de cristalización, se separan los cristales de ITQ-24 de las aguas madres, y se recuperan.
Según una realización particular, el material ITQ-24 conteniendo Al, puede ser preparado también a partir de la forma que contiene boro utilizando métodos post-síntesis bien conocidos (Chen et al., Studies in Surface Science and Catalysis (2001), 135, 1710-1717), como por ejemplo el intercambio en fase acuosa del material con boro, por una fuente de iones aluminio entre los que se prefieren nitrato, cloruro o haluro en general, sulfato, carbonato, citrato, óxido, e hidróxido. Así mismo, la zeolita B-Ti- ITQ-24 puede ser convertida en el análogo Ti-ITQ-24 por medio de tratamientos post-síntesis que permiten eliminar selectivamente los átomos de B de la red zeolítica utilizando métodos similares a los descritos previamente en la literatura (Tatsumi et al., J. Phys . Chem. , B., 105, 2897, (2001), J. Catal, 202, 245 (2000) y PCT
Figure imgf000013_0001
Es un tercer objeto de la presente invención un método para convertir una alimentación formada por al menos un compuesto orgánico que comprende poner en contacto la alimentación con una cantidad catalíticamente activa del material cristalino denominado ITQ-24. Un objeto adicional de la presente invención es un método para convertir una alimentación formada por al menos un compuesto orgánico, que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino obtenido de acuerdo con el procedimiento descrito anteriormente
Con el fin de preparar catalizadores, el material cristalino de la presente invención puede además combinarse íntimamente con componentes hidrogenantes-desoxigenantes como platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro y mezclas de ellos. La introducción de estos elementos se puede llevar a cabo en la etapa de cristalización, por intercambio (si ha lugar), y/o por impregnación o por mezcla física. Estos elementos pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada.
La zeolita ITQ-24 producida mediante esta invención cuando contiene elementos trivalentes en su composición puede ser utilizada, una vez peletizada, como componente de catalizadores en procesos catalizados por ácidos, como por ejemplo procesos de craqueo catalítico de hidrocarburos, hidro-craqueo catalítico de hidrocarburos, reformado de hidrocarburos, alquilación de aromáticos con olefinas y en procesos de esterificación, acilación, reacción de anilina con formaldehído en su forma acida y/o intercambiado con cationes adecuados . Asimismo, la zeolita ITQ-24 cuando contiene elementos tetravalente como Ti y/o Sn en su composición puede ser empleada como catalizador heterogéneo en procesos de oxidación de olefinas con peróxidos orgánicos u inorgánicos y en reacciones del tipo Bayer-Villiger o Meerwein-Pondorf entre otros.
Breve descripción de las figuras:
La figura 1 muestra la proyección de un primer sistema de canales que está definido por anillos de 12 miembros de átomos tetraédricamente coordinados con una apertura de canal de 7.7 x 5.6 Á.
La figura 2 muestra un segundo sistema de canales sinusoidales también definidos por aperturas de canales formadas por 12 átomos coordinados tetraédricamente con una apertura de canal de 7.2 x 6.2 Á. :
La figura 3 muestra un tercer sistema de canales con una apertura de canal de 10 átomos coordinados tetraédricamente con una apertura de canal de 5.75 x 4.8 A. La figura 4 muestra la celda unidad de ITQ-24. La figura 5 muestra la estructura del dicatión hexametilen-bis (trimetilamonio)
Para ilustrar la naturaleza de la invención, y la forma de prepararla y utilizarla, se presentan los siguientes ejemplos: EJEMPLOS
Ejemplo 1- Preparación de bromuro de hexametilen- bis (trimetilamonio) .
37.38 g de 1, 6-dibromohexano, (pureza =- 96%), 82.35 g de solución de trimetilamina (31-35% en peso en etanol) son adicionados a un matraz de 500 mi, inmediatamente se añade el etanol necesario para obtener una adecuada mezcla de los distintos productos añadidos mientras se homogenizan mediante agitación magnética. La mezcla resultante se mantiene a temperatura ambiente con agitación constante durante 48 horas, posteriormente se recupera el sólido formado mediante filtración y se lava exhaustivamente con acetato de etilo y dietil éter. El sólido blanco obtenido se seca a temperatura ambiente durante 12 horas .
Ejemplo 2- Preparación de Dihidróxido de hexametilen- bis (trimetilamonio) .
El dihidróxido de hexametonio se prepara por intercambio aniónico directo, utilizando una resina, Amberlite IRN-78 (Supelco) , como fuente de aniones hidróxidos, habiendo lavado la resina previamente con agua destilada hasta pH=7. El proceso consiste en disolver 9 g de dibromuro de hexametonio obtenido según el ejemplo 1 en 250 g de agua Milli Q (Míllipore) . La solución resultante se hace pasar a través de una columna de resina Amberlite IRN-78 lavada ajustándose la velocidad de flujo para alcanzar un nivel de intercambio superior al 95%. La solución resultante de dihidróxido de hexametilen- bis (trimetilamonio) se recoge en un vaso de precipitados. Esta solución se concentra a 50 °C y vacío hasta alcanzar una concentración de dihidróxido de hexametilen- bis (trimetilamonio) de aproximadamente 0.5 mol/Kg. Ejemplo 3- Síntesis del material ITO-24 con aluminio.
Se disuelven 1.46 g de Ge02 en 42.0 g de disolución de dihidróxido de hexametilen-bis (trimetilamonio) con una concentración de 0.499 oles/Kg. En la disolución obtenida se hidrolizan 14.54 g de tetraetilortosílicato y 0.856 g de triisopropóxido de aluminio, y se mantiene en agitación dejando evaporar todo el etanol e isopropóxido formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:
5 Si02 : 1 Ge02 : 1.50 R(OH)2 : 30 H20 : 0.15 Al203 donde R(0H)2 es dihidróxido de hexametilen- bis (trimetilamonio) .
El gel se calienta a 175°C en agitación durante 15 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-24 y cuyo listado de picos de difracción se incluye en la tabla 4.
Tabla 4
Figure imgf000016_0001
Figure imgf000017_0001
El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con a una velocidad de l°C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de l°C/min; la temperatura se mantiene durante tres horas adicionales.
La muestra calcinada presenta un diagrama de difracción característico de ITQ-24 cuyo listado de picos se muestra en la tabla 5.
Tabla 5
Figure imgf000018_0001
Ejemplo 4- Síntesis del material ITQ-24 con aluminio.
Se disuelven 1.115 g de Ge02 en 125 g de disolución de dihidróxido de hexametilen-bis (trimetilamonio) con una concentración de 0.128 moles/Kg. En la disolución obtenida se hidrolizan 11.10 g de tetraetilortosilicato y 0.435' g de triisopropóxido de aluminio, y se mantiene en agitación dejando evaporar todo el etanol e isoprop nol formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:
5 Si02 : 1 GeO2 : 1.50 R(OH)2 : 30 H2O : 0.10 Al203 donde R(0H)2 es dihidróxido de hexametilen- bis (trimetilamonio) . El gel se calienta a 175°C en agitación durante 15 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-24.
El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con una velocidad de l°C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de l°C/min; la temperatura se mantiene durante tres horas adicionales .
La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.
Ejemplo 5- Síntesis del material ITQ-24 con boro.
Se disuelven 1.13 g de GeO2 en 42.0 g de disolución de dihidróxido de hexametilen-bis (trimetilamonio) con una concentración de 0.1505 moles/Kg. En la disolución obtenida se hidrolizan 11.28 g de tetraetilortosilicato y 0.160 g de ácido bórico, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final: 5 Si02 : 1 Ge02 : 1.50 R(OH)2 : 30 H20 : 0.12 B203 donde R(OH)2 es dihidróxido de hexametilen- bis (trimetilamonio) .
El gel se calienta a 175°C en agitación durante 15 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-24.
El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C a una velocidad de 3°C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de 3°C/min; la temperatura se mantiene durante tres horas adicionales .
La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.
Ejemplo 6- Síntesis del material ITO-24 conteniendo titanio.
Se disuelven 1.177 g de Ge02 en 56.0 g de disolución de dihidróxido de hexametilen-bis (trimetilamonio) con una concentración de 0.301 moles/Kg. En la disolución obtenida se hidrolizan 11.72 g de tetraetilortosilicato, 0.154 g de tetraetóxido de titanio y 0.167 g de ácido bórico, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis y hasta que la mezcla de reacción alcanza -una composición final:
5 Si02 : 1 Ge02 : 1.50 R(0H)2 : 30 H20 : 0.12 B203 : 0.06 Ti02 donde R(OH)2 es dihidróxido de hexametileή- bis (trimetilamonio) .
El gel se calienta a 175°C en agitación durante 30 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-24. El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300°C a una velocidad de l°C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580°C a una velocidad de l°C/min; la temperatura se mantiene durante tres horas adicionales.
La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.
Ejemplo 7- Tratamiento post-síntesis de una zeolita ITQ-24 conteniendo Ti en su composición.
Un gramo de zeolita preparada según se describe, en el ejemplo 6 se suspende 30 mi de una disolución de ácido nítrico 2 M a 90°C durante 16 horas. El sólido se recupera por filtración y se lava con agua destilada hasta neutralidad y ausencia de iones cloruro de las aguas de lavado y se seca a 80°C durante 12 horas. El sólido resultante presenta picos de difracción característicos de la zeolita ITQ-24 y el contenido en B está por debajo del nivel de detección de las técnicas de análisis habituales. Además este sólido presenta una banda en el espectro Ultravioleta-visible alrededor de 210 nm, que se asigna a la presencia de Ti incorporado en la red de la zeolita.

Claims

REIVINDICACIONES
1. Un material sintético, poroso y cristalino caracterizado porque está formado por átomos en coordinación tetraédrica unidos entre sí a través de oxígenos, que presenta un celda unidad que contiene 56 átomos en coordinación tetraédrica, que se denomina ITQ-24, cuya fórmula química en estado calcinado y anhidro viene dada por nM1/pX02: YO2 en la que :
X es al menos un elemento trivalente,
Y es al menos un elemento tetravalente, el valor de n está comprendido entre 0 y 0.2, y M es al menos un catión de compensación de carga, en estado de oxidación p, que posee un difractograma de rayos x en estado calcinado y anhidro cuyas reflexiones más representativas aparecen a espaciados dados en la tabla 1:
Tabla 1
Figure imgf000021_0001
donde la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y donde (mf)= 80-100 significa muy fuerte, (f) =60-80 fuerte, (m) = 40-60 media, (d) =20-40 débil, y (md) = 0-20 muy débil.
2. Un material sintético, poroso y cristalino, según la reivindicación 1, caracterizado porque según se prepara antes de calcinar, posee un difractograma de rayos x cuyas reflexiones más representativas aparecen a espaciados dados en la tabla 2 :
Tabla 2
Figure imgf000022_0001
donde la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y donde (mf)= 80-100 significa muy fuerte, (f) =60-80 fuerte, (m) = 40-60 media, (d) =20-40 débil, y (md) = 0-20 muy débil.
3. Un material sintético, poroso y cristalino según la reivindicación 1, caracterizado porque Y es un elemento tetravalente seleccionado entre Si, Ge, Ti, Sn y mezclas de ellos.
4. Un material sintético, poroso y cristalino según la reivindicación 1, caracterizado porque X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr y mezclas de estos.
5. Un material sintético, poroso y cristalino según la reivindicación 1, en el que X está seleccionado entre _B, -Al y combinaciones de los mismos, e Y está seleccionado entre Si, Ti y combinaciones de los mismos.
6. Un material sintético, poroso y cristalino según la reivindicación 1, caracterizado porque posee unas coordenadas atómicas que se muestran a continuación
Tabla 3
, , Coordenadas atómicas (θ) S tio
X Z
TI 1.61 1.60 4.71
T2 12.24 8.36 4.71
T3 19.65 11.92 4.71
T4 9.02 5.16 4.71
T5 1.61 11.92 7.90
T6 12.24 5.16 7.90
T7 19.65 1.60 7.90
T8 9.02 8.36 7.90
T9 19.65 11.92 7.90
TÍO 9.02 5.16 7.90
Til 1.61 1.60 7.90
T12 12.24 8.36 7.90
T13 19.65 1.60 4.71
T14 9.02 8.36 4.71
T15 1.61 11.92 4.71
T16 12.24 5.16 4.71
T17 3.19 2.61 2.31
T18 13.82 9.37 2.31
T19 18.06 10.91 2.31
T20 7.43 4.15 2.31
T21 3.19 10.91 10.30
T22 13.82 4.15 10.30
T23 18.06 2.61 10.30
T24 7.43 9.37 10.30
T25 18.06 10.91 10.30
T26 7.43 4.15 10.30
T27 3.19 2.61 10.30
T28 13.82 9.37 10.30
T29 18.06 2.61 2.31
T30 7.43 9.37 2.31
T31 3.19 10.91 2.31
T32 13.82 4.15 2.31
T33 16.63 8.26 1.61
T34 6.00 1.50 1.61 T35 4.63 5.27 1.61
T36 15.26 12.03 1.61
T37 16.63 5.27 11.00
T38 6.00 12.03 11.00
T39 4.63 8.26 11.00
T40 15.26 1.50 11.00
T41 4.63 5.27 11.00
T42 15.26 12.03 11.00
T43 16.63 8.26 11.00
T44 6.00 1.50 11.00
T45 4.63 8.26 1.61
T46 15.26 1.50 1.61
T47 16.63 5.27 1.61
T48 6.00 12.03 1.61
T49 1.62 1.54 0.00
T50 12.25 8.30 0.00
T51 19.63 11.98 0.00
T52 9.01 5.22 0.00
T53 1.62 11.98 0.00
T54 12.25 5.22 0.00
T55 19.63 1.54 0.00
T56 9.01 8.30 0.00
pudiendo modificarse en ± 0.5 A, sin que se produzca un cambio en la conectividad de los átomos que forman la estructura.
7. Un procedimiento para sintetizar el material cristalino de una cualquiera de las reivindicaciones 1 a 6, que comprende al menos : una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos:
- H2O,
- una fuente de al menos un elemento tetravalente Y, - un agente director de estructura (R) , y
- una fuente de iones hidróxido M" , una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200°C hasta que se formen cristales de dicho material cristalino; y una tercera etapa que comprende recuperar dicho material cristalino.
8. Un procedimiento según la reivindicación 7, caracterizado porque comprende al menos: una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos: - una fuente de al menos un elemento trivalente X,
- H20,
- una fuente de al menos un elemento tetravalente Y, - un agente director de estructura (R) , y
- una fuente de iones hidróxido M' , una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200°C hasta que se formen cristales de dicho material cristalino; y una tercera etapa que comprende recuperar dicho material cristalino.
9. Un procedimiento según la reivindicación 7 ú 8, caracterizado porque comprende además una cuarta etapa en la que se elimina materia orgánica ocluida en el interior del material cristalino mediante un tratamiento seleccionado entre tratamientos de extracción, tratamientos térmicos a temperaturas superiores a 250 °C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas, y combinaciones de los mismos.
10. Un procedimiento según la reivindicación 8, en el que la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones molares de óxidos, de
Y02/X203 > 5 H20/YO2 = entre 1 y 50 R/Y02 = entre 0.05 y 3.0
OH/YO2 = entre 0.05 y 6.0 M ' 2/j0/X203 - entre 0 y 1.0 donde j es el . estado de oxidación del catión M' y puede ser uno o dos .
11. Un procedimiento según la reivindicación 8, en el que la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la, mezcla de síntesis tiene una composición, en términos de relaciones molares, de:
Y02/X203 > 7
H20/Y02 = entre 2 y 20
R/Y02 = entre 0.05 y 1.0 OH/YO2 = entre 0.1 y 2.0
M' 2/jO/X203 = entre 0 y 1.0 donde j es el estado de oxidación del catión M' y puede ser uno o dos .
12. Un procedimiento según la reivindicación 7, en el que el agente director de estructura es una sal del dication hexametilen-bis (trimetilamonio) .
13. Un procedimiento según la reivindicación 7, en el que el agente director de estructura es el dihidróxido de hexametilen-bis (trimetilamonio) .
14. Un procedimiento según la reivindicación 7, en el que la fuente de hidróxido M' está seleccionada entre una fuente de al menos un catión de compensación M, el catión orgánico director de estructura y una mezcla de ambas .
15. Un procedimiento según la reivindicación 7 en el que se añaden semillas de ITQ-24 durante la primera etapa, o durante la segunda etapa del procedimiento.
16. Un procedimiento según una de las reivindicaciones 7 a 15 en el que se añaden iones fluoruro a la mezcla de síntesis en una relación molar F' /YO. menor o igual a 0.02.
17. Un método para convertir una alimentación formada por al menos un compuesto orgánico que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino denominado ITQ-24 definido en una cualquiera de las reivindicaciones 1 a 6, para la conversión de dicho compuesto orgánico.
18. Un método para convertir una alimentación formada por al menos un compuesto orgánico, que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino obtenido de acuerdo con el procedimiento reivindicado en una cualquiera de las reivindicaciones 7 a 16.
19. Un método según la reivindicación 17 ó 18, en el que el material cristalino se usa combinado con componentes hidrogenantes-desoxigenantes .
20. Un método según la reivindicación 17 ó 18, en el que el material cristalino se usa combinado con componentes hidrogenantes-desoxigenantes seleccionados entre platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro.
21. Un método según la reivindicación 17 ó 18, en el que el material cristalino comprende elementos trivalentes en su composición y se usa como componente peletizado de catalizadores en una conversión seleccionada entre un proceso de craqueo catalítico de hidrocarburos, hidro- craqueo catalítico de hidrocarburos, reformado de hidrocarburos, alquilación de aromáticos con olefinas, esterificación, acilación y reacción de anilina con formaldehído .
22. Un método según la reivindicación 16 ó 17, en el que el material . cristalino comprende elementos tetravalentes seleccionados entre Ti, Sn y una mezcla de ambos, y se usa como catalizador heterogéneo en una conversión seleccionada entre un proceso de oxidación de olefinas con peróxidos orgánicos u inorgánicos, un proceso del tipo Bayer-Villiger, y una reacción Meerwein-Pondorf .
23. Un método según la reivindicación 21, en el que el material cristalino se usa en una forma seleccionada entre una forma acida, intercambiado con cationes, y en forma acida e intercambiado con cationes .
PCT/ES2004/070006 2003-02-14 2004-02-10 Un material cristalino poroso (zeolita itq-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos WO2004071956A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04709639A EP1609758B1 (en) 2003-02-14 2004-02-10 Porous crystalline material (zeolite itq-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
JP2006502054A JP4791953B2 (ja) 2003-02-14 2004-02-10 多孔質結晶性物質(ゼオライトitq−24)、該結晶性物質の製造方法及び該結晶性物質の有機化合物の接触変換における使用
ES04709639T ES2392048T3 (es) 2003-02-14 2004-02-10 Material cristalino poroso (zeolita ITQ-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
CA2516046A CA2516046C (en) 2003-02-14 2004-02-10 Porous crystalline material (zeolite itq-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
US11/200,534 US7344696B2 (en) 2003-02-14 2005-08-09 Porous crystalline material (zeolite ITQ-24), preparation method thereof and use of same in the catalytic conversion of organic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200300445A ES2217962B1 (es) 2003-02-14 2003-02-14 Material cristalino poroso (zeolita itq-24),su procedimiento de preparacion y su uso en la conversion catalitica de componentes organicos.
ESP200300445 2003-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/200,534 Continuation US7344696B2 (en) 2003-02-14 2005-08-09 Porous crystalline material (zeolite ITQ-24), preparation method thereof and use of same in the catalytic conversion of organic compounds

Publications (2)

Publication Number Publication Date
WO2004071956A2 true WO2004071956A2 (es) 2004-08-26
WO2004071956A3 WO2004071956A3 (es) 2004-09-16

Family

ID=32865140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070006 WO2004071956A2 (es) 2003-02-14 2004-02-10 Un material cristalino poroso (zeolita itq-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos

Country Status (9)

Country Link
US (1) US7344696B2 (es)
EP (1) EP1609758B1 (es)
JP (1) JP4791953B2 (es)
KR (1) KR20060002765A (es)
CN (1) CN100422082C (es)
CA (1) CA2516046C (es)
ES (2) ES2217962B1 (es)
WO (1) WO2004071956A2 (es)
ZA (1) ZA200507353B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847510A1 (en) * 2005-01-17 2007-10-24 Consejo Superior de Investigaciones Cientificas Microporous crystalline material, zeolite itq-33, preparation method thereof and use of same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2228278B1 (es) * 2003-09-29 2006-06-01 Universidad Politecnica De Valencia. Material cristalino microporoso de naturaleza zeolitica (zeolita itq-28).
FR2901550B1 (fr) * 2006-05-24 2008-09-12 Inst Francais Du Petrole Solide cristallise im-13 et son procede de preparation
US20090132093A1 (en) * 2007-08-21 2009-05-21 Motorola, Inc. Tactile Conforming Apparatus and Method for a Device
FR2923476B1 (fr) * 2007-11-12 2010-12-31 Inst Francais Du Petrole Solide cristalise im-17 et son procede de preparation
AU2010259935B2 (en) 2009-06-13 2016-05-26 Archer-Daniels-Midland Company Production of glutaric acid and derivatives from carbohydrate-containing materials
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
NZ596975A (en) 2009-06-13 2014-04-30 Rennovia Inc Production of adipic acid and derivatives from carbohydrate-containing materials
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
JP2012208325A (ja) * 2011-03-30 2012-10-25 Tosoh Corp 第四級アンモニウム化合物、その製造法及びそれを含む現像液組成物
US8763364B2 (en) 2011-04-18 2014-07-01 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
US8772192B2 (en) * 2012-06-29 2014-07-08 Saudi Basic Industries Corporation Germanium silicalite catalyst and method of preparation and use
FR3063994B1 (fr) * 2017-03-17 2022-01-21 Arkema France Procede de synthese a ensemencement multiple de cristaux de zeolithe a granulometrie controlee
CN113966251A (zh) * 2019-06-06 2022-01-21 巴斯夫欧洲公司 Iwr骨架结构类型的硅铝酸盐沸石材料的直接合成及其在催化中的用途
JP2023510001A (ja) * 2020-01-16 2023-03-10 シェブロン ユー.エス.エー. インコーポレイテッド 分子篩ssz-117、その合成及び使用
US11865524B2 (en) 2020-01-16 2024-01-09 Chevron U.S.A. Inc. Molecular sieve SSZ-117x, its synthesis and use
CN111847474B (zh) * 2020-07-17 2021-09-28 浙江恒澜科技有限公司 一种Ti-ITQ-24沸石分子筛及其原位合成方法和应用
CN113004149A (zh) * 2021-02-26 2021-06-22 大连理工大学 一种双季铵盐类化合物的制备方法
WO2023213936A1 (en) 2022-05-05 2023-11-09 Basf Se Synthesis of zeolitic materials of the iwr framework structure type from zeolitic precursor materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676958A (en) * 1985-03-06 1987-06-30 Chevron Research Company Preparation of crystalline zeolites using magadiite
US5219813A (en) * 1992-01-03 1993-06-15 Council Of Scientific & Industrial Research Process for the preparation of novel molecular sieves
EP0551688B1 (en) * 1992-01-08 1995-09-20 Council of Scientific and Industrial Research A process for the preparation of crystalline molecular sieves
JP3322308B2 (ja) * 1999-09-28 2002-09-09 財団法人 化学技術戦略推進機構 ゼオライトの合成方法
JP4241068B2 (ja) 2002-03-07 2009-03-18 昭和電工株式会社 Mww型ゼオライト物質の製造方法
US7390763B2 (en) * 2003-10-31 2008-06-24 Chevron U.S.A. Inc. Preparing small crystal SSZ-32 and its use in a hydrocarbon conversion process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847510A1 (en) * 2005-01-17 2007-10-24 Consejo Superior de Investigaciones Cientificas Microporous crystalline material, zeolite itq-33, preparation method thereof and use of same
EP1847510A4 (en) * 2005-01-17 2011-03-02 Consejo Superior Investigacion MICROPOROUS CRYSTALLINE MATERIAL, ITQ-33 ZEOLITE, PROCESS FOR PREPARING THE SAME, AND USE THEREOF

Also Published As

Publication number Publication date
ES2392048T3 (es) 2012-12-04
CA2516046A1 (en) 2004-08-26
CN100422082C (zh) 2008-10-01
WO2004071956A3 (es) 2004-09-16
EP1609758A2 (en) 2005-12-28
JP2006517508A (ja) 2006-07-27
US7344696B2 (en) 2008-03-18
CA2516046C (en) 2011-08-23
ZA200507353B (en) 2006-12-27
CN1829661A (zh) 2006-09-06
ES2217962A1 (es) 2004-11-01
KR20060002765A (ko) 2006-01-09
JP4791953B2 (ja) 2011-10-12
ES2217962B1 (es) 2006-02-16
EP1609758B1 (en) 2012-08-22
US20060036120A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US7344696B2 (en) Porous crystalline material (zeolite ITQ-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
ES2252454T3 (es) Material cristalino poroso sintetico itq-13, su sintesis y su uso.
ES2259537B1 (es) Sintesis de la zeolita itq-33.
ES2327395T3 (es) Material cristalino poroso (zeolita itq-21), el metodo de preparacion del mismo y el uso del mismo en la conservacion catalitica de compuestos organicos.
US20050136000A1 (en) Molecular sieve SSZ-47B having high micropore volume and synthesis thereof
ES2204257B1 (es) Sintesis de itq-21 en ausencia de iones fluoruro.
ES2303787B2 (es) "material cristalino microporoso de naturaleza zeolitica, zeolita itq-39, procedimiento de preparacion y usos".
ES2284379B1 (es) Un material cristalino microporoso, zeolita itq-37, procedimiento de preparacion y uso.
ES2241463B1 (es) Procedimiento de sintesis de la zeolita itq-13 en medio basico y en ausencia de iones fluoruro.
BR112014026154B1 (pt) material itq-49, método para a produção do mesmo e uso do mesmo
ES2228278B1 (es) Material cristalino microporoso de naturaleza zeolitica (zeolita itq-28).
ES2871374A1 (es) Material microporoso quiral enantio-enriquecido gtm-3, procedimiento de preparacion y usos
WO2017216410A1 (es) Material itq-62, su procedimiento de obtención y su uso
Koike Synthesis of Zinc-Containing Zeolites with a Focus on Mixing Methods of Raw Materials
ES2421063B1 (es) Material ITQ-38, su procedimiento de obtención y su uso
Corma et al. Process for the synthesis of zeolite ITQ-13 in a basic medium and in the absence of fluoride ions
KR20020083394A (ko) 제올라이트의 이온교환방법
ES2302431A1 (es) Material cristalino microporoso laminar, que denominamos genericamente lrh.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11200534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2516046

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006502054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057015004

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004709639

Country of ref document: EP

Ref document number: 2005/07353

Country of ref document: ZA

Ref document number: 1818/KOLNP/2005

Country of ref document: IN

Ref document number: 200507353

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20048099914

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004709639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015004

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11200534

Country of ref document: US