WO2017216410A1 - Material itq-62, su procedimiento de obtención y su uso - Google Patents

Material itq-62, su procedimiento de obtención y su uso Download PDF

Info

Publication number
WO2017216410A1
WO2017216410A1 PCT/ES2017/070439 ES2017070439W WO2017216410A1 WO 2017216410 A1 WO2017216410 A1 WO 2017216410A1 ES 2017070439 W ES2017070439 W ES 2017070439W WO 2017216410 A1 WO2017216410 A1 WO 2017216410A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
combinations
procedure
obtaining
microporous crystalline
Prior art date
Application number
PCT/ES2017/070439
Other languages
English (en)
French (fr)
Inventor
Avelino CORMA CANÓS
Fernando REY GARCÍA
Susana Valencia Valencia
Ángel CANTÍN SANZ
José Luis JORDÁ MORET
Pablo Javier BERECIARTUA PÉREZ
Raquel Simancas Coloma
Lindiane BIESEKI
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2017216410A1 publication Critical patent/WO2017216410A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation

Definitions

  • the present invention belongs to the technical field of microporous crystalline materials of a zeolitic nature, useful as adsorbents, catalysts or catalyst components, for different processes.
  • Zeolites are porous crystalline aluminosilicates that have found important applications as catalysts, adsorbents and ion exchangers. These zeolitic materials have well-defined structures that form channels and cavities in their interior of uniform size and shape that allow the adsorption of certain molecules, while preventing the passage into the glass of other molecules of size too large to diffuse through pores This characteristic gives these materials molecular sieve properties. These molecular sieves can include in the network, in addition to Si, other elements of the NIA group of the periodic system, all of them tetrahedrally coordinated.
  • the negative charge generated by the elements of the NIA group tetrahedrally coordinated in network positions is compensated by the presence in the cation crystal, such as alkaline or alkaline earth cations.
  • cation crystal such as alkaline or alkaline earth cations.
  • These cations can be totally or partially exchanged for other types of cations by ion exchange techniques, thus being able to vary the properties of a given silicate by selecting the desired cations.
  • zeolites have been synthesized in the presence of an organic molecule that acts as a structure directing agent.
  • Organic molecules that act as structure directing agents (ADE) generally contain nitrogen in their composition, and can give rise to stable organic cations in the reaction medium. From a point of view of their possible applications, zeolites containing channel systems with different pore openings are especially desirable since they provide selectivities in catalytic processes that cannot be obtained with materials with channels with identical openings in all of them. That is why, an important scientific activity has been developed in this regard.
  • the present invention relates, on the one hand, to a microporous crystalline material, which may possess the following chemical composition in its calcined form:
  • X is a trivalent element selected from Al, B, Fe, In, Ga, Cr, and combinations thereof, preferably Al, B and combinations thereof;
  • Y is a tetravalent element selected from Ti, Sn, Zr, V and combinations thereof, preferably Ti, Sn and combinations thereof;
  • Z is a tetravalent element selected from Si, Ge and combinations thereof, preferably Si;
  • the value of z / y is between 10 and infinity, preferably between 15 and infinity; and because the elements X, Y and Z are located in crystalline positions such as those described in table 1.
  • said material may present a diffraction diagram as described in table 3.
  • ITQ-62 crystalline material can be obtained in the absence of added trivalent elements.
  • the microporous crystalline material described in the present invention has been designated ITQ-62.
  • the structure of this material has a microporous network consisting of two channel systems with openings formed by 8 and 12 T0 4 tetrahedra in the same direction, which intersect with two other channel systems in the perpendicular plane, the material being accessible to molecules of interest in catalysis, in different processes, such as adsorption or separation processes.
  • it presents smaller structural units cube-shaped size, which are not accessible since they only have windows formed by four tetrahedra.
  • the structure of the ITQ-62 zeolite can be described by its unit cell, which is the smallest structural unit that contains all the structural elements of this material and whose projections along the crystallographic axes are shown in Figures 1 to 3.
  • Table 1 shows the list of atomic positions of all atoms in tetrahedral coordination in a unit cell. All these atoms are connected to each other through bridge oxygen that bind contiguous tetrahedral atoms two to two. In total, each unit cell contains 48 atoms in tetrahedral coordination, called T1, T2, T3, T4 to T48, other than oxygen.
  • the described material possesses tetrahedral coordination atoms linked through bridge oxygen atoms that connect contiguous tetrahedral coordination atoms, containing 48 atoms in tetrahedral coordination in their unit cell, designated T1, T2, T3, T4 through T48 , which are located in the crystallographic positions with Cartesian atomic coordinates x, yyz shown in Table 1.
  • Each of the T atoms in Table 1 is surrounded by four oxygen atoms as first neighbors and four other T atoms as second neighbors, so that the T atoms are connected two by two through bridge oxygen forming TOT bonds .
  • the presence of cations or the different nature of the T atoms can modify the values presented in Table 1, so that each crystallographic coordinate can be modified up to 1 A of the value given in Table 1.
  • the ITQ-62 zeolite has in its uncalcrated form an X-ray diffraction diagram whose most important diffraction peaks are given in Table 2, and in Table 3 for its calcined form.
  • the value of x can be equal to zero, so it can have a chemical composition:
  • the value of y is equal to zero, so it can have a chemical composition:
  • z / x can be between 9 and infinity, and more preferably between 20 and infinity.
  • the material of the present invention may possess a chemical composition in its uncalcined form:
  • R is a structure directing agent, preferably said R contains nitrogen, and more preferably R is selected from a salt of an alkylammonium cation, an alkylammonium polycation, and combinations thereof.
  • - X is a trivalent element selected from Al, B, Fe, In, Ga, Cr and combinations thereof, preferably Al, B and combinations thereof;
  • - Y is a tetravalent element selected from Ti, Sn, Zr, V and combinations thereof, preferably between Ti, Sn, and combinations thereof;
  • - Z is a tetravalent element selected from Si, Ge and combinations thereof, preferably Si;
  • the directing agent of defined structure as R is an alkylammonium polycation, and more preferably is selected from N 2 , N 2 , N 2 , N 5 , N 5 , N 5 , 3a, 6a-octamethyloctactahydropentalene-2 hydroxide , 5-diamonium, any of its salts and combinations thereof.
  • the ITQ-62 crystalline material can be synthesized in the absence of added trivalent elements.
  • the n / z ratio may be between 1 and 0.001 in the ITQ-62 material as synthesized.
  • the X-ray diffractogram of the zeolite in its synthesized form according to this particular embodiment presents the diffraction peaks listed in Table 2.
  • x may be 0 and the ITQ-62 material may have a chemical composition:
  • n / (y + z) can be between 1 and 0.001.
  • the ITQ-62 material can have a chemical composition
  • the value of z / x is between 9 and infinity, preferably between 20 and infinity, and the value of n / (x + z) is between 1 and 0.001.
  • the present invention also relates to the process for obtaining the microporous crystalline material, ITQ-62, described above.
  • the ITQ-62 material preparation process may comprise at least the following steps: a) preparation of a mixture comprising at least H 2 0, a source of fluoride ions, an oxide or other source of the tetravalent material Z, a structure directing agent (R), a source of the trivalent element X, an oxide or other source of the material tetravalent Y, where the synthesis mixture has a molar composition of oxides in the following ranges:
  • R / (Y0 2 + Z0 2 ) between 0.05-3.0, preferably between 0.05-1.
  • F7 (Y0 2 + Z0 2 ) between 0.01-3.0, preferably between 0.05-1.
  • Z may be selected from Si, Ge and combinations thereof, preferably Si;
  • X may be selected from Al, B, Fe, In, Ga, Cr and combinations thereof, preferably Al, B and combinations thereof and
  • Y may be selected from Ti, Sn, Zr, V and combinations thereof, preferably between Ti, Sn and combinations thereof.
  • the structure directing agent R can be a compound containing N, preferably it can be selected from a salt of an alkylammonium cation, an alkylammonium polycation, or combinations thereof. And more preferably it may be an alkylammonium polycation, specifically R may be selected from N 2 , N 2 , N 2 , N 5 , N 5 , N 5 , 3a, 6a-octamethyl octahydropentalene-2,5-diamonium hydroxide, any of its salts and combinations thereof.
  • the crystallization of the material can be carried out under stirring, in autoclaves at a temperature between 80 and 200 ° C, at times sufficient to achieve crystallization, for example between 12 hours and 90 days. At the end of the crystallization stage, the crystals of the material are separated from the mother liquors, and recovered as indicated above.
  • crystallization conditions In order to facilitate synthesis, crystals of the same material or of this calcined material can be added as seeds, in amounts of up to 15% by weight with respect to the total oxides, to the synthesis mixture. These can be added before or during crystallization.
  • this material could be prepared from a reaction mixture containing H 2 0, a source of fluoride anions, optionally an oxide or a source of the trivalent element X, such as Al and / or B, a oxide or a source of the tetravalent element or elements Z, such as Si, a source of Ge, such as Ge0 2 and an organic structure directing agent (R) generally an organic cation, which may contain atoms other than C, H and N in its composition.
  • a source of fluoride anions optionally an oxide or a source of the trivalent element X, such as Al and / or B, a oxide or a source of the tetravalent element or elements Z, such as Si
  • a source of Ge such as Ge0 2
  • an organic structure directing agent (R) generally an organic cation, which may contain atoms other than C, H and N in its composition.
  • Composite structure directing agents of the alkylammonium type can be used, and more preferably it is the hydroxide of N 2 , N 2 , N 2 , N 5 , N 5 , N 5 , 3a, 6a-octamethyl octahydropentalene-2,5-diamonium, any of its salts or mixtures thereof.
  • composition of the reaction mixture has the following composition in terms of molar ratios of oxides:
  • the process for preparing the ITQ-62 material may further comprise a step of calcining the crystalline material obtained, calcination that can be carried out under vacuum, in air, nitrogen, hydrogen, argon, helium or any other gas and combinations thereof and at a temperature between 200 ° C and 1200 ° C, preferably between 200 and 1000 ° C for a time that can be between 2 minutes and 25 hours.
  • the ITQ-62 material after calcination has a pore system free of organic matter, whose X-ray diffractogram shows the peaks listed in Table 3. During this calcination they can remain inside the channels or on the surface of the organic waste material from structure managing agent. These residues can be eliminated by a subsequent treatment of washing with water, any alcohol with less than six carbons or mixtures thereof, as well as by aqueous or alcoholic solutions of inorganic salts.
  • said washing process or processes may comprise at least the following stage: a) suspension of the material in a solution of a compound selected from an acid, a base, an ammonium salt, a sodium salt, of any alkali metal , any alkaline earth metal or mixtures thereof.
  • a solution is an aqueous, alcoholic, organic solution or mixture of both.
  • the washing process is carried out at a temperature preferably between 0 ° C and 200 ° C.
  • the diffraction diagram of the resulting material presents the characteristic diffraction peaks of the ITQ-62 material.
  • the calcined ITQ-62 material or the calcined and washed ITQ-62 material may be subjected to one or more post-synthesis processes.
  • Such treatments may preferably consist of treating the ITQ-62 with aqueous, alcoholic, organic solutions or mixtures thereof containing trivalent elements X, preferably selected from Al, Ga, B, Cr, Fe In, and mixtures thereof with the in order to incorporate them into the zeolitic network.
  • This post-synthesis treatment can be performed at alkaline, acidic or neutral pHs at temperatures preferably between 0 and 200 ° C for a preferred time between 1 hour to 15 days.
  • the resulting material has the characteristic diffraction peaks of this ITQ-62 material.
  • the post-synthesis treatment may comprise at least: a) suspending the material in a solution preferably selected from an aqueous, alcoholic, organic solution and combinations thereof, containing at least one trivalent element X selected from Al, Ga, B, Cr, Fe, In or mixtures thereof; b) recovery of the solid by filtration, centrifugation or any liquid solids separation technique; c) activation of the material by calcination at temperatures above 200 ° C.
  • said treatments are treatment of incorporation of trivalent metals so that they can increase the concentration of some trivalent element in the composition.
  • the concentration and nature of the trivalent element can be modified with post-synthesis processes.
  • the crystalline material with trivalent metals incorporated by post-synthesis treatments has a molar composition in its anhydrous state that is given by the equation:
  • X is a trivalent element such as Al, B, Fe, In, Ga, Cr or mixtures thereof
  • Y is a tetravalent element such as Ti, Sn, Zr, V or mixtures thereof
  • Z corresponds to an element selected from Si or Ge, or mixtures thereof.
  • the value of (y + z) / x is at least 9, and can be between 20 and infinity and the value z / y is at least 10. From the given values it is clearly deduced that the ITQ-62 crystalline material is can synthesize in the absence of added trivalent elements.
  • the X-ray diffractogram of the zeolite after post-synthesis treatment to incorporate trivalent elements in its structure presents the characteristic diffraction peaks of the ITQ-62 material.
  • the organic component present in the ITQ-62 material as synthesized can be removed, for example by extraction and / or by heat treatment by heating at a temperature above 200 ° C for a period of time that can be between 2 minutes and 25 hours.
  • the compensation cations in the material in its uncalcined form, or after thermal treatment can be exchanged in the case of being present, by other cations such as metal ions, H + and H + precursors such as NH 4 + .
  • cations that can be introduced by ion exchange those that can have a positive role in the activity of the material as a catalyst are preferred, and more specifically cations such as H + , rare earth cations, and group VIII metals are preferred, as well as from the NA, NIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VI IB group of the periodic table of the elements.
  • the crystalline material of the present invention can be intimately combined with hydrogenating-dehydrogenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and combinations thereof.
  • hydrogenating-dehydrogenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and combinations thereof.
  • the introduction of these elements can be carried out in the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing.
  • These elements can be introduced in their cationic form and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the present invention also relates to the use of the material described above according to the present invention and obtained according to the process of the present invention described above in different processes, preferably as a catalyst and as an adsorbent.
  • the material of the present invention can be used as a catalyst, for example in hydrocarbon conversion processes, hydrocarbon dewaxing processes, alcohol conversion processes, alcohol conversion processes with less than four carbons in olefins, Nitrogen pollutant removal processes in gaseous or liquid streams, nitrogen oxides removal processes from gaseous streams, nitrogen oxides removal processes from gaseous streams in the presence of reducing gases where the reducing gas can be selected from ammonia, a hydrocarbon and combinations thereof.
  • Figure 1 View of the structure of the ITQ-62 zeolite along the a axis (oxygens omitted for clarity).
  • Figure 2 View of the structure of the ITQ-62 zeolite along the b axis (oxygens omitted for clarity).
  • Figure 3 View of the structure of the ITQ-62 zeolite along the c axis (oxygens omitted for clarity).
  • Figure 4 Rietveld tuning of the X-ray diffraction diagram of a sample of ITQ-62 calcined at 923K, measured using copper's K alpha radiation. The dots show the experimental diagram. The line along them shows the calculated diagram for the proposed structure. The difference between the two is shown below. The vertical lines under the diagrams indicate the positions of the Bragg reflections.
  • Figure 5 X-ray diffraction diagram of an example of a sample of uncalcined ITQ-62 material.
  • Figure 6 X-ray diffraction diagram of an example sample of calcined ITQ-62 material.
  • Example 1 Preparation of the N 2 , N 2 , N 2 , N 5 , N 5 , N 5 , 3a, 6a-octamethyl octahydropentalene-2,5-diamonium hydroxide structure directing agent.
  • the resulting solid is suspended in a mixture of 300.0 mL HCI (1 M) and 30.0 mL of glacial acetic acid and then heated at reflux for 24 h (from an initial brown green to orange color).
  • the resulting mixture is cooled first to room temperature and then in an ice bath, then extracted five times with CH 2 CI 2 ; drying the set of organic phases on MgS0 4 .
  • the crude obtained is filtered through a pleat filter and concentrated in vacuo to obtain 32.7 g (75%) of the desired diketone.
  • This diketone is transformed into the corresponding diamine, by a reductive amination reaction described below.
  • the mixture is partially concentrated in vacuo and the crude
  • the crude obtained is extracted three times with CH 2 CI 2 , drying the set of organic phases on MgSO 4 ,. It is concentrated in vacuo to obtain 21.4 g (95%) of the desired diamine.
  • the diamine is transformed into the corresponding diamonium by a quaternization reaction of tertiary amines with methyl iodide, as described below.
  • 21.6 of the previously desired diamine are dissolved in 100.0 ml_ of MeOH and slowly added thereto through a 45.0 ml_ (722.8 mmol) CH 3 I pressure funnel diluted in 40.0 ml_ of MeOH. Almost immediately a yellowish precipitate appears. The mixture remains with continuous stirring 72 h and then 45.0 ml (722.8 mmol) of CH 3 I is added, then continuing with continuous stirring until one week is completed.
  • the precipitate obtained is filtered under vacuum by washing with abundant diethyl ether to provide 37.1 g of the desired quaternary ammonium salt.
  • the filtrate is concentrated in vacuo and the viscous solid obtained is washed with abundant acetone and a new precipitate appears which, after filtration and drying under vacuum, provides 2.0 g more of the ammonium salt (80%).
  • the mixture obtained is placed in an autoclave provided with an internal polytetrafluoroethylene sheath and heated at 150 ° C for 17 days in an oven equipped with a rotation system.
  • a solid prepared as described in Example 2 is introduced into a tubular oven and calcined in a stream of dry air at 650 ° C for 5 hours to decompose the retained organic matter inside.
  • the X-ray diffraction diagram of the calcined ITQ-62 zeolite is shown in Figure 6 and shows the most characteristic peaks shown in Table 5 and indicates that the material is stable during this process.
  • the mixture obtained is placed in an autoclave equipped with an internal polytetrafluoroethylene sheath and heated at 150 ° C for 7 days in an oven equipped with a rotation system.
  • Example 9 Preparation of zeolite ITQ-62 13.33 g of a solution of the structure directing agent described in Example 1 (R (OH) 2 ) containing 0.3 equivalents of hydroxide in 1000 g are added. 3.46 g of tetraethylorthosilicate (TEOS) and 0.17 g of germanium oxide (Ge0 2 ) are then added.
  • TEOS tetraethylorthosilicate
  • Ge0 2 germanium oxide
  • the mixture obtained is placed in an autoclave equipped with an internal polytetrafluoroethylene sheath and heated at 150 ° C for 14 days in an oven equipped with a rotation system.
  • Example 10 Refinement of the structure of an ITQ-62 zeolite according to the Rietveld method.
  • the structure of the ITQ-62 zeolite can be satisfactorily refined using the Rietveld method applied to an X-ray diffraction diagram obtained from a sample prepared as described in example 3.
  • the spatial group, refinement parameters and positions Atomic crystallographic coordinates (x / a, y / byz / c) of the ITQ-62 zeolite are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

En la presente invención, se presenta un material cristalino microporoso, su procedimiento de obtención y uso, que tiene una composición: x X2O3: y YO2: z ZO2 en la que X es un elemento trivalente tal como Al, B, Fe, In, Ga, Cr, o mezclas de estos, donde (y+z)/x puede tomar valores entre 9 e infinito; Y corresponde a un elemento tetravalente tal como Ti,Sn, Zr, V o mezclas de ellos, donde z/y puede tomar valores entre 10 e infinito; Z corresponde a un elemento tetravalente seleccionado entre Si y Ge o mezclas de ellos.

Description

MATERIAL ITQ-62, SU PROCEDIMIENTO DE OBTENCIÓN Y SU USO
DESCRIPCIÓN Campo de la Técnica
La presente invención pertenece al campo técnico de los materiales cristalinos microporosos de naturaleza zeolítica, útiles como adsorbentes, catalizadores o componentes de catalizadores, para diferentes procesos.
Antecedentes
Las zeolitas son aluminosilicatos cristalinos porosos que han encontrado importantes aplicaciones como catalizadores, adsorbentes e intercambiadores iónicos. Estos materiales zeolíticos tienen estructuras bien definidas que forman canales y cavidades en su interior de tamaño y forma uniforme que permiten la adsorción de determinadas moléculas, mientras que impiden el paso al interior del cristal de otras moléculas de tamaño demasiado grande para difundir a través de los poros. Esta característica confiere a estos materiales propiedades de tamiz molecular. Estos tamices moleculares pueden incluir en la red, además de Si, otros elementos del grupo NIA del sistema periódico, todos ellos tetraédricamente coordinados. La carga negativa generada por los elementos del grupo NIA tetraédricamente coordinados en posiciones de red está compensada por la presencia en el cristal de cationes, como por ejemplo cationes alcalinos o alcalinotérreos. Estos cationes pueden ser intercambiados total o parcialmente por otro tipo de cationes mediante técnicas de intercambio iónico, pudiendo variar así las propiedades de un silicato dado seleccionando los cationes deseados.
Muchas zeolitas han sido sintetizadas en presencia de una molécula orgánica que actúa como agente director de estructura. Las moléculas orgánicas que actúan como agentes directores de estructura (ADE) contienen generalmente nitrógeno en su composición, y pueden dar lugar a cationes orgánicos estables en el medio de reacción. Desde un punto de vista de sus posibles aplicaciones, las zeolitas que contienen sistemas de canales con distintas aperturas de poro son especialmente deseables ya que aportan selectividades en los procesos catalíticos que no pueden obtenerse con materiales con canales con aperturas idénticas en todos ellos. Es por ello, que se ha desarrollado una importante actividad científica en este sentido.
Descripción de la invención
La presente invención se refiere, por un lado, a un material cristalino microporoso, que puede poseer la siguiente composición química en su forma calcinada:
x X203: y Y02: z Z02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr, y combinaciones de los mismos, preferentemente Al, B y combinaciones de los mismos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V y combinaciones de los mismos preferentemente Ti, Sn y combinaciones de los mismos;
Z es un elemento tetravalente seleccionado entre Si, Ge y combinaciones de los mismos, preferentemente Si;
el valor de (y+z)/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito;
el valor de z/y está comprendido entre 10 e infinito, preferentemente entre 15 e infinito; y porque los elementos X, Y y Z se localizan en posiciones cristalinas como las descritas en la tabla 1. Además, dicho material puede presentar un diagrama de difracción como el descrito en la tabla 3.
De los valores dados se deduce que el material cristalino ITQ-62 se puede obtener en ausencia de elementos trivalentes añadidos.
Según una realización preferida, el material cristalino microporoso descrito en la presente invención, se ha denominado ITQ-62. La estructura de este material presenta una red microporosa constituida por dos sistemas de canales con aperturas formadas por 8 y 12 tetraedros T04 en la misma dirección, que se cruzan con otros dos sistemas de canales en el plano perpendicular, siendo el material accesible a moléculas de interés en catálisis, en diferentes procesos, como por ejemplo en procesos de adsorción o de separación. Además, presenta unidades estructurales de menor tamaño con forma de cubo, que no son accesibles dado que solo poseen ventanas formadas por cuatro tetraedros.
La estructura de la zeolita ITQ-62 puede describirse por su celda unidad, que es la unidad estructural más pequeña que contiene todos los elementos estructurales de este material y cuyas proyecciones a lo largo de los ejes cristalográficos se muestran en las figuras 1 a 3. La tabla 1 muestra la lista de posiciones atómicas de todos los átomos en coordinación tetraédrica en una celda unidad. Todos estos átomos están conectados entre sí a través de oxígenos puente que unen átomos tetraédricos contiguos dos a dos. En total, cada celda unidad contiene 48 átomos en coordinación tetraédrica, denominados T1 , T2, T3, T4 hasta T48, distintos de oxígeno.
Según una realización preferida, el material descrito posee átomos en coordinación tetraédrica unidos a través de átomos de oxigeno puente que conectan átomos en coordinación tetraédrica contiguos, conteniendo 48 átomos en coordinación tetraédrica en su celda unidad, denominados T1 , T2, T3, T4 hasta T48, que están localizados en las posiciones cristalográficas con coordenadas atómicas cartesianas x, y y z que se muestran en la Tabla 1.
Tabla 1
Coordenadas x (Á) y (A) z (Á)
atómicas
T1 2.6 7.1 1.5
T2 13.1 15.7 1.5
T3 18.6 10.2 1.5
T4 8.0 1.5 1.5
T5 18.6 7.1 1.5
T6 8.0 15.7 1.5
T7 2.6 10.2 1.5
T8 13.1 1.5 1.5
T9 4.9 1.5 1.5
T10 15.5 10.2 1.5
T1 1 16.2 15.7 1.5
T12 5.6 7.1 1.5
T13 16.2 1.5 1.5 T14 5.6 10.2 1.5
T15 4.9 15.7 1.5
T16 15.5 7.1 1.5
T17 1.5 5.3 3.8
T18 12.1 13.9 3.8
T19 19.6 12.0 3.8
T20 9.0 3.4 3.8
T21 1.5 12.0 3.8
T22 12.1 3.4 3.8
T23 19.6 5.3 3.8
T24 9.0 13.9 3.8
T25 4.0 3.4 3.8
T26 14.6 12.1 3.8
T27 17.1 13.8 3.8
T28 6.6 5.2 3.8
T29 4.0 13.8 3.8
T30 14.6 5.2 3.8
T31 17.1 3.4 3.8
T32 6.6 12.1 3.8
T33 2.6 10.2 6.0
T34 13.1 1.5 6.0
T35 18.6 7.1 6.0
T36 8.0 15.7 6.0
T37 18.6 10.2 6.0
T38 8.0 1.5 6.0
T39 2.6 7.1 6.0
T40 13.1 15.7 6.0
T41 4.9 15.7 6.0
T42 15.5 7.1 6.0
T43 16.2 1.5 6.0
T44 5.6 10.2 6.0
T45 16.2 15.7 6.0
T46 5.6 7.1 6.0
T47 4.9 1.5 6.0 T48 15.5 10.2 6.0
Cada uno de los átomos T de la Tabla 1 se encuentra rodeado por cuatro átomos de oxígeno como primeros vecinos y otros cuatro átomos T como segundos vecinos, de tal forma que los átomos T quedan conectados dos a dos a través de oxígenos puente formando enlaces T-O-T. La presencia de cationes o la diferente naturaleza de los átomos T pueden modificar los valores presentados en la Tabla 1 , por lo que cada coordenada cristalográfica puede modificarse hasta 1 Á del valor dado en la Tabla 1.
La zeolita ITQ-62 tiene en su forma sin calcinar un diagrama de difracción de rayos X cuyos picos de difracción más importantes vienen dados en la tabla 2, y en la tabla 3 para su forma calcinada.
Tabla 2
Intensidad
3
Relativa
6.5 mf
8.3 mf
10.1 d
1 1.5 md
13.1 d
13.5 md
14.3 md
15.4 f
15.7 md
17.5 md
17.8 md
19.6 md
20.2 d
21.6 m
22.0 md
22.9 md
23.4 d
24.3 md 24.8 md
25.2 md
25.5 m
26.0 md
a (± 0.5)
Tabla 3
Figure imgf000007_0001
a (± 0.5)
Estos difractogramas de rayos X se obtuvieron con un difractometro Panalytical X'Pert Pro equipado con una rendija de divergencia fija utilizando la radiación Ka del cobre. La intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y se considera muy fuerte (mf)= 80-100, fuerte (f)=60-80, media (m)= 40- 60, débil (d}=20-40, y muy débil (md)= 0-20. Debe tenerse en cuenta que los datos de difracción listados para estas muestras como líneas sencillas o únicas, pueden estar formados por múltiples solapamientos o superposición de reflexiones que, en ciertas condiciones, tales como diferencias en la composición química, pueden aparecer corno líneas resueltas o parcialmente resueltas. Generalmente, los cambios en la composición química pueden originar variaciones en los parámetros de la celda unidad y/o cambios en la simetría del cristal, sin que se produzca un cambio en la estructura. Estas modificaciones, que incluyen también cambios en intensidades relativas pueden deberse también a diferencias en el tipo y cantidad de cationes de compensación, composición de red, tamaño de cristal y forma de los mismos, orientación preferente o al tipo de tratamientos térmicos o hidrotérmicos sufridos.
Según una realización particular de la presente invención, el valor de x puede ser igual a cero por lo que puede poseer una composición química:
y Y02: z Z02
Según otra realización particular, el valor de y es igual a cero por lo que puede poseer una composición química:
x X203 : z Z02
donde el valor de z/x puede estar comprendido entre 9 e infinito, y más preferentemente entre 20 e infinito.
Según otra realización preferente, el material de la presente invención, ITQ-62, puede poseer una composición química en su forma sin calcinar:
n R: x X203 : y Y02: z Z02 donde:
- R es un agente director de estructura, preferentemente dicho R contiene nitrógeno, y más preferentemente R está seleccionado entre una sal de un catión alquilamonio, un policatión alquilamonio y combinaciones de los mismos.
- X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr y combinaciones de los mismos, preferentemente Al, B y combinaciones de los mismos;
- Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V y combinaciones de los mismos, preferentemente entre Ti, Sn, y combinaciones de los mismos; - Z es un elemento tetravalente seleccionado entre Si, Ge y combinaciones de los mismos, preferentemente Si;
- el valor de valor de n/(x+y+z) está comprendido entre 1 y 0,001 ; Según una realización preferente, el agente director de estructura definito como R es un policatión alquilamonio y más preferentemente está seleccionado entre hidróxido de N2,N2,N2,N5,N5,N5,3a,6a-octametiloctahidropentaleno-2,5-diamonio, cualquiera de sus sales y combinaciones de los mismos.
De los valores dados según esta realización particular, se deduce claramente que el material cristalino ITQ-62 se puede sintetizar en ausencia de elementos trivalentes añadidos. Además, la relación n/z puede estar comprendida entre 1 y 0.001 en el material ITQ-62 según se sintetiza. El difractograma de rayos X de la zeolita en su forma sintetizada según esta realización particular presenta los picos de difracción que se listan en la Tabla 2.
Según una realización particular, x puede ser 0 y el material ITQ-62 puede poseer una composición química:
n R: y Y02: z Z02
donde:
el valor de n/(y+z) puede estar comprendido entre 1 y 0,001.
Según otra realización particular, y puede ser 0 y el material ITQ-62 puede poseer una composición química
n R: x X203 : z Z02
donde:
el valor de z/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito, y el valor de n/(x+z) está comprendido entre 1 y 0,001.
La presente invención también se refiere al procedimiento de obtención del material cristalino microporoso, ITQ-62, descrito anteriormente. Según la presente invención, el procedimiento de preparación del material ITQ-62 puede comprender al menos los siguientes pasos: a) preparación de una mezcla que comprende, al menos, H20, una fuente de iones fluoruro, un óxido u otra fuente del material tetravalente Z, un agente director de estructura (R), una fuente del elemento trivalente X, un óxido u otra fuente del material tetravalente Y, donde la mezcla de síntesis tiene una composición molar de óxidos en los siguientes rangos:
(Y02+Z02)/X203 mayor de 2, preferentemente mayor de 5.
H20/(Y02+Z02) comprendida entre 1-50, preferentemente 2-30.
R/(Y02+ Z02) comprendida entre 0.05-3.0, preferentemente entre 0.05-1.
F7(Y02+Z02) comprendida entre 0.01-3.0, preferentemente entre 0.05-1.
Z02/Y02 mayor de 5, preferentemente entre 8-25.
Si02/Ge02 mayor de 1 , preferentemente mayor de 5. b) mantener la mezcla a una temperatura seleccionada entre 80 y 200°C hasta que se formen los cristales del material
c) recuperación del material cristalino.
Según una realización preferente, Z puede estar seleccionado entre Si, Ge y combinaciones de los mismos, preferentemente Si; X puede estar seleccionado entre Al, B, Fe, In, Ga, Cr y combinaciones de los mismos, preferentemente Al, B y combinaciones de los mismos e Y puede estar seleccionado entre Ti, Sn, Zr, V y combinaciones de los mismos, preferentemente entre Ti, Sn y combinaciones de los mismos.
Según otra realización preferente, el agente director de estructura R puede ser un compuesto que contiene N, preferentemente puede estar seleccionado entre una sal de un catión alquilamonio, un policatión alquilamonio o combinaciones de los mismos. Y más preferentemente puede ser un policatión alquilamonio, concretamente R puede estar está seleccionado entre hidróxido de N2,N2,N2,N5,N5,N5,3a,6a- octametiloctahidropentaleno-2,5-diamonio, cualquiera de sus sales y combinaciones de los mismos.
La cristalización del material se puede llevar a cabo en agitación, en autoclaves a temperatura comprendida entre 80 y 200°C, a tiempos suficientes para conseguir la cristalización, por ejemplo entre 12 horas y 90 días. Al finalizar la etapa de cristalización, se separan los cristales del material de las aguas madres, y se recuperan tal y como se ha indicado anteriormente.
Debe tenerse en cuenta que los componentes de la mezcla de síntesis pueden provenir de distintas fuentes, y dependiendo de estos pueden variar tiempos y condiciones de cristalización. Con el fin de facilitar la síntesis, se pueden añadir cristales del mismo material o de este material calcinado como semillas, en cantidades de hasta 15% en peso respecto del total de óxidos, a la mezcla de síntesis. Estas pueden ser adicionadas previamente o durante la cristalización.
Según una realización particular, este material se podría preparar a partir de una mezcla de reacción que contiene H20, una fuente de aniones fluoruro, opcionalmente un óxido o una fuente del elemento trivalente X, como por ejemplo Al y/o B, un óxido o una fuente del elemento o elementos tetravalentes Z, como por ejemplo Si, una fuente de Ge, como por ejemplo Ge02 y un agente orgánico director de estructura (R) generalmente un catión orgánico, que puede contener átomos distintos de C, H y N en su composición. Pueden utilizarse como agentes directores de estructura compuestos del tipo alquilamonio, y más preferentemente es el hidróxido de N2,N2,N2,N5,N5,N5,3a,6a-octametiloctahidropentaleno-2,5-diamonio, cualquiera de sus sales o mezclas de ellas.
La composición de la mezcla de reacción tiene la siguiente composición en términos de relaciones molares de óxidos:
Reactivos Rango útil Rango preferido
(Y02+Z02)/X203 mayor de 2 mayor de 5
H20/(Y02+Z02) 1-50 2-30
R/(Y02 + Z02) 0.05-3.0 0.05-1.0
F/(Y02+ Z02) 0.01-3.0 0.05-1.0
Z02/Y02 mayor de 5 8-25
Si02/Ge02 mayor de 1 mayor de 5
Según una realización particular, el procedimiento de preparación del material ITQ-62 puede comprender, además, una etapa de calcinación del material cristalino obtenido, calcinación que se puede llevar a cabo a vacío, en aire, nitrógeno, hidrógeno, argón, helio o cualquier otro gas y combinaciones de los mismos y a una temperatura entre 200°C y 1200°C, preferentemente entre 200 y 1000°C durante un tiempo que puede ser entre 2 minutos y 25 horas. El material ITQ-62 tras la calcinación posee un sistema de poros libre de materia orgánica, cuyo difractograma de rayos X presenta los picos que se listan en la Tabla 3. Durante esta calcinación pueden quedar en el interior de los canales o sobre la superficie del material residuos orgánicos provenientes del agente director de estructura. Estos residuos pueden ser eliminados mediante un tratamiento posterior de lavado con agua, cualquier alcohol con menos de seis carbonos o mezclas de ellos, así como por disoluciones acuosas o alcohólicas de sales inorgánicas.
Según una realización particular, dicho proceso o procesos de lavado puede comprender al menos la siguiente etapa: a) suspensión del material en una disolución de un compuesto seleccionado entre un ácido, una base, una sal amónica, una sal sódica, de cualquier metal alcalino, cualquier metal alcalino-terreo o mezclas de ellos. De manera preferente dicha disolución es una disolución acuosa, alcohólica, orgánica o mezcla de ambas.
El proceso de lavado se lleva a cabo a una temperatura preferentemente comprendida entre 0°C y 200°C. El diagrama de difracción del material resultante presenta los picos de difracción característicos del material ITQ-62.
Además, el material ITQ-62 calcinado o el material ITQ-62 calcinado y lavado pueden ser sometidos a uno o varios procesos post-síntesis.
Dichos tratamientos pueden consistir de manera preferente en tratar la ITQ-62 con disoluciones acuosas, alcohólicas, orgánicas o mezclas de ellas que contengan elementos trivalentes X, seleccionados preferentemente entre Al, Ga, B, Cr, Fe In, y mezclas de ellos con el fin de incorporarlos a la red zeolítica. Este tratamiento postsíntesis se puede realizar a pHs alcalinos, ácidos o neutros a temperaturas comprendidas preferentemente entre 0 y 200°C durante un tiempo preferido entre 1 hora a 15 días. El material resultante presenta los picos de difracción característicos de este material ITQ-62.
Posteriormente se puede recuperar del sólido lavado mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos y puede ser posteriormente activado mediante calcinación a temperaturas superiores a 200°C.
Según una realización preferida, el tratamiento post-síntesis puede comprender al menos: a) suspender el material en una disolución seleccionada preferentemente entre una disolución acuosa, alcohólica, orgánica y combinaciones de las mismas, que contiene al menos un elemento trivalente X seleccionado entre Al, Ga, B, Cr, Fe, In o mezclas de ellos; b) recuperación del sólido mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos; c) activación del material mediante calcinación a temperaturas superiores a 200°C. Según una realización preferente dichos tratamientos son tratamiento de incorporación de metales trivalentes de manera que pueden aumentar la concentración de algún elemento trivalente en la composición. Por otro lado, la concentración y naturaleza del elemento trivalente se puede modificar con procesos post-síntesis.
Según una realización particular, el material cristalino con metales trivalentes incorporados mediante tratamientos post-síntesis tiene una composición molar en su estado anhidro que viene dado por la ecuación:
x X203: y Y02: z Z02 en la que X es un elemento trivalente tal como Al, B, Fe, In, Ga, Cr o mezclas de estos, Y es un elemento tetravalente tal como Ti, Sn, Zr, V o mezclas de ellos, y Z corresponde a un elemento seleccionado entre Si o Ge, o mezclas de ellos. El valor de (y+z)/x es al menos 9, y puede estar comprendido entre 20 e infinito y el valor z/y es de al menos 10. De los valores dados se deduce claramente que el material cristalino ITQ-62 se puede sintetizar en ausencia de elementos trivalentes añadidos. El difractograma de rayos X de la zeolita tras el tratamiento post-síntesis para incorporar elementos trivalentes en su estructura presenta los picos de difracción característicos del material ITQ-62. El componente orgánico presente en el material ITQ-62 según se sintetiza se puede eliminar, por ejemplo por extracción y/o por tratamiento térmico calentando a temperatura por encima de 200° C durante un período de tiempo que puede estar comprendido entre 2 minutos y 25 horas.
Los cationes de compensación en el material en su forma sin calcinar, o después de un tratamiento térmico, pueden intercambiarse, en el caso de estar presentes, por otros cationes tales como iones metálicos, H+ y precursores de H+ como por ejemplo NH4 +. Entre los cationes que pueden introducirse por intercambio iónico se prefieren aquellos que pueden tener un papel positivo en la actividad del material como catalizador, y más específicamente se prefieren cationes tales como H+, cationes de tierras raras, y metales del grupo VIII, así como del grupo NA, NIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VI IB de la tabla periódica de los elementos.
Asimismo, es posible introducir cationes en la red de la zeolita ITQ-62 mediante tratamientos post-síntesis. Estos tratamientos consisten en suspender la muestra de ITQ-62 calcinada o calcinada y lavada en una disolución acuosa, alcohólica, orgánica o mezclas de ambos que contiene el elemento trivalente que se desea incorporar a temperatura entre 0 y 200°C durante periodos comprendidos entre 1 hora y 15 días.
Con el fin de preparar catalizadores, el material cristalino de la presente invención puede combinarse íntimamente con componentes hidrogenantes-deshidrogenantes como platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro y combinaciones de los mismos. La introducción de estos elementos se puede llevar a cabo en la etapa de cristalización, por intercambio (si ha lugar), y/o por impregnación o por mezcla física. Estos elementos pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada.
La presente invención también se refiere al uso del material descrito anteriormente según la presente invención y obtenido según el procedimiento de la presente invención descrito anteriormente en diferentes procesos, preferentemente como catalizador y como adsorbente. Existen diferentes procesos donde se puede utilizar el material de la presente invención como catalizador, por ejemplo en procesos de conversión de hidrocarburos, procesos de desparafínado de hidrocarburos, procesos de conversión de alcoholes, procesos de conversión de alcoholes con menos de cuatro carbonos en olefinas, procesos de eliminación de contaminantes nitrogenados en corrientes gaseosas o líquidas, procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas, procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de gases reductores donde el gas reductor puede estar seleccionado entre amoniaco, un hidrocarburo y combinaciones de los mismos. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no 25 pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
Breve descripción de las figuras
Figura 1 : Vista de la estructura de la zeolita ITQ-62 a lo largo del eje a (oxígenos omitidos para mayor claridad).
Figura 2: Vista de la estructura de la zeolita ITQ-62 a lo largo del eje b (oxígenos omitidos para mayor claridad). Figura 3: Vista de la estructura de la zeolita ITQ-62 a lo largo del eje c (oxígenos omitidos para mayor claridad).
Figura 4: Afinamiento de Rietveld del diagrama de difracción de rayos X de una muestra de ITQ-62 calcinada a 923K, medido usando la radiación K alfa del cobre. Los puntos muestran el diagrama experimental. La línea a lo largo de los mismos muestra el diagrama calculado para la estructura propuesta. La diferencia entre ambos se muestra debajo. Las líneas verticales bajo los diagramas señalan las posiciones de las reflexiones de Bragg. Figura 5: Diagrama de difracción de rayos X de un ejemplo de muestra de material ITQ-62 sin calcinar.
Figura 6: Diagrama de difracción de rayos X de un ejemplo de muestra de material ITQ-62 calcinado.
Figura 7: Representación esquemática de la síntesis del catión
N2,N2,N2,N5,N5,N5,3a,6a-octametiloctahidropentaleno-2,5-diamonio.
La presente invención se ilustra mediante los siguientes ejemplos que no pretenden ser limitantes de la misma. EJEMPLOS
Ejemplo 1. Preparación del agente director de estructura hidróxido de N2,N2,N2,N5,N5,N5,3a,6a-octametiloctahidropentaleno-2,5-diamonio.
Sobre una disolución recién preparada y fuertemente agitada de 5.6 g NaHC03 en 360.0 ml_ de H20 (pH=8) se adicionan 48.2 ml_ (526.3 mmol) de 1 ,3- acetonadicarboxilato de dimetilo seguidos de 23.0 ml_ (263.2 mmol) de 2,3- butanodiona. La mezcla permanece con agitación continua durante 72 h. Transcurrido este periodo el abundante precipitado obtenido se filtra a vacio y se enfría en un baño de hielo, acidificándose hasta pH=5 con HCI (5%). El crudo resultante se extrae tres veces con CHCI3, lavando el conjunto de fases orgánicas con salmuera y secándolas sobre MgS04. La mezcla se filtra a través de filtro de pliegues y el filtrado obtenido se concentra a vacio utilizándose en la siguiente etapa sin mayor purificación.
El sólido resultante se suspende en una mezcla de 300.0 mL HCI (1 M) y 30.0 mL de ácido acético glacial y a continuación se calienta a reflujo durante 24 h (pasando de un color verde pardo inicial a naranja). La mezcla resultante se enfría primero a temperatura ambiente y luego en un baño de hielo, extrayéndose a continuación cinco veces con CH2CI2; secando el conjunto de fases orgánicas sobre MgS04. El crudo obtenido se filtra a través de filtro de pliegues y se concentra a vacío obteniendo 32.7 g (75%) de la dicetona deseada.
Esta dicetona es transforma en la correspondiente diamina, mediante una reacción de aminación reductiva que se describe a continuación.
350.0 mL de una disolución 2.0 M de dimetilamina en MeOH se diluyen con 200.0 mL de MeOH. La disolución se enfría en un baño de hielo y sobre ella se gotea una disolución de HCI 5 N en MeOH hasta conseguir pH=7-8. Entonces se adicionan 16.7 g (100.7 mmol) de la dicetona anteriormente preparada disueltos en la mínima cantidad posible de MeOH, seguidos de 10.2 g (161.2 mmol) de NaBH3CN. La temperatura se deja subir a temperatura ambiente y se deja con agitación continua durante 72 h.
El posible exceso de NaBH3CN se neutraliza adicionando HCI 5 N en MeOH hasta alcanzar pH=2, desplazando el HCN formado con una corriente de N2 hasta una disolución saturada en KOH. La mezcla se concentra parcialmente a vacío y el crudo resultante se basifica con una disolución de KOH (25%) hasta alcanzar pH=12 y se satura con NaCI. El crudo obtenido se extrae tres veces con CH2CI2, secando el conjunto de fases orgánicas sobre MgS04,. Se concentra a vacio obteniendo 21.4 g (95%) de la diamina deseada.
En un tercer paso, la diamina se transforma en el correspondiente diamonio mediante una reacción de cuaternización de aminas terciarias con ioduro de metilo, tal y como se describe a continuación. 21.6 de la diamina anteriormente deseada se disuelven en 100.0 ml_ de MeOH y sobre ella se adicionan lentamente a través de un embudo de presión compensada 45.0 ml_ (722.8 mmol) de CH3I diluidos en 40.0 ml_ de MeOH. Casi de inmediato aparece un precipitado amarillento. La mezcla permanece con agitación continua 72 h y entonces se añaden 45.0 mi (722.8 mmol) de CH3I quedando a continuación con agitación continua hasta completar una semana. El precipitado obtenido se filtra a vacío lavándose con abundante éter dietílico proporcionando 37.1 g de la sal de amonio cuaternario deseada. El filtrado se concentra a vacío y el sólido viscoso obtenido se lava con abundante acetona apareciendo un nuevo precipitado que tras filtrarse y secarse a vacío proporciona 2.0 g más de la sal de amonio (80%).
Finalmente, este sólido, tras disolverlo en metanol, se convierte en el hidróxido correspondiente empleando una resina de intercambio aniónico en exceso de resina 3:1 molar, en agitación, durante 12 horas. Ejemplo 2. Preparación de zeolita ITQ-62
Se añaden 19,01 g de una disolución del agente director de estructura descrito en el ejemplo 4 (R(OH)2) que contiene 0.27 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.46 g de tetraetilortosilicato (TEOS) y 0.34 g de óxido de germanio (Ge02). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.37 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. La composición del gel es: Si02 : 0.2 Ge02 : 0.3 R(OH)2 : 0.6 NH4F : 8.4 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 17 días en una estufa provista de un sistema de rotación.
El difractograma de rayos X del sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C se muestra en la figura 5 y presenta el listado de los picos más característicos que aparece en la tabla 4.
Tabla 4
Intensidad
Relativa
6.5 100
8.3 87
10.1 19
1 1.5 3
13.1 22
13.5 9
14.3 3
15.4 77
15.7 5
17.5 1 1
17.8 16
19.6 17
20.2 32
21.6 62
22.0 8
22.9 1 1
23.4 21
24.3 9
24.8 15
25.2 1 1
25.5 49
Figure imgf000019_0001
Ejemplo 3-Preparación de la zeolita ITQ-62 en su forma calcinada.
Un sólido preparado tal y como se describe en el ejemplo 2 se introduce en un horno tubular y se calcina en corriente de aire seco a 650°C durante 5 horas para descomponer la materia orgánica retenida en su interior.
El diagrama de difracción de rayos X de la zeolita ITQ-62 calcinada se muestra en la figura 6 y presenta los picos más característicos que aparece en la tabla 5 e indica que el material es estable durante este proceso.
Tabla 5
Intensidad
Relativa
6.6 100
8.4 61
10.2 1
1 1.7 4
13.2 5
14.4 2
15.5 21
15.9 2
17.9 1
19.9 2
20.6 5
21.6 18
22.2 2
23.1 3
23.4 5
23.7 4
24.4 3
24.9 4
25.2 4 25.6 8
26.1 3
Ejemplo 4-Preparación de la zeolita ITQ-62
Se añaden 13,33 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.30 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.46 g de tetraetilortosilicato (TEOS) y 0.17 g de óxido de germanio (Ge02). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.33 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. La composición del gel es:
Si02 : 0.1 Ge02 : 0.27 R(OH)2 : 0.55 NH4F : 7.7 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 7 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62.
Ejemplo 5. Preparación de zeolita ITQ-62
Se añaden 14,93 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.27 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.44 g de tetraetilortosilicato (TEOS) y 0.084 g de óxido de germanio (Ge02). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.3 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. Se añade una suspensión en agua de 0.05 g de zeolita ITQ-62 preparada tal como se describe en el ejemplo 5. La composición del gel es: Si02 : 0.05 Ge02 : 0.26 R(OH)2 : 0.52 NH4F : 7.3 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 8 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62. Ejemplo 6. Preparación de zeolita ITQ-62
Se añaden 14.92 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.27 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.45 g de tetraetilortosilicato (TEOS) y 0.17 g de óxido de germanio (Ge02). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.33 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. La composición del gel es:
Si02 : 0.1 Ge02 : 0.27 R(OH)2 : 0.55 NH4F : 7.7 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 175° C durante 7 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62. Ejemplo 7. Preparación de zeolita ITQ-62
Se añaden 33.58 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.27 equivalentes de hidróxido en 1000 g. A continuación se adicionan 6.87 g de tetraetilortosilicato (TEOS) y 0.17 g de óxido de germanio (Ge02) y 0.081 g de ácido bórico (H3B03). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.64 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. La composición del gel es:
Si02 : 0.05 Ge02 : 0.02 B203 : 0.27 R(OH)2 : 0.55 NH4F : 7.6 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 14 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62. Ejemplo 8. Preparación de zeolita ITQ-62
Se añaden 21 ,46 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.23 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.45 g de tetraetilortosilicato (TEOS) y 0.18 g de óxido de germanio (Ge02) y 0.033g de Hidróxido de Aluminio (AI(OH)3). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.34 g de fluoruro de amonio (NH4F) disuelto en 2 g de H20. Se deja la mezcla evaporando en agitación alcanzar la composición final que se indica. La composición del gel es:
Si02 : 0.1 Ge02 : 0.012 Al203 : 0.28 R(OH)2 : 0.56 NH4F : 7.8 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 12 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62. Ejemplo 9. Preparación de zeolita ITQ-62 Se añaden 13.33 g de una disolución del agente director de estructura descrito en el ejemplo 1 (R(OH)2) que contiene 0.3 equivalentes de hidróxido en 1000 g. A continuación se adicionan 3.46 g de tetraetilortosilicato (TEOS) y 0.17 g de óxido de germanio (Ge02). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añade 0.18 g de una disolución de ácido fluorhídrico (48 % de HF en peso). La composición del gel es:
Si02 : 0.1 Ge02 : 0.27 R(OH)2 : 0.55 HF : 7.7 H20.
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 150° C durante 14 días en una estufa provista de un sistema de rotación. El sólido obtenido al filtrar, lavar con agua destilada y secar a 100°C, presenta un diagrama de difracción de rayos X que contiene los picos característicos del material ITQ-62.
Ejemplo 10. Refinamiento de la estructura de una zeolita ITQ-62 según el método de Rietveld.
La estructura de la zeolita ITQ-62 puede ser satisfactoriamente refinada empleando el método de Rietveld aplicado a un diagrama de difracción de Rayos X obtenido de una muestra preparada según se describe en el ejemplo 3. El grupo espacial, los parámetros del refinamiento y las posiciones atómicas en coordenadas cristalográficas (x/a, y/b y z/c) de la zeolita ITQ-62 se muestran en la Tabla 6.
Tabla 6
Grupo espacial: C m m m
Parámetros de celda unidad:
a= 21.1537(18) angstroms
b= 17.2740(15) angstroms
c= 7.5875(6) angstroms
alpha=beta=gamma=90°
Posiciones atómicas: Si1/Ge1 0.12141(4) 0.41104(4) 0.20259(8)
Si2/Ge2 0.23315(5) 0.08903(4) 0.20277(8)
Si3/Ge3 0.07274(3) 0.30510(7) 0.50000
Si4/Ge4 0.19023(3) 0.19941(5) 0.50000
01 0.0779(8) 0.3512(9) 0.3160(16)
02 0.1919(3) 0.4074(10) 0.2783(17)
03 0.1943(9) 0.1556(8) 0.3108(15)
04 0.1149(6) 0.2267(9) 0.50000
05 0.1079(13) 0.3850(15) 0.0000
06 0.2233(16) 0.1228(12) 0.0000
07 0.0999(12) 0.5000 0.234(4)
08 0.2082(11) 0.0000 0.237(4)
09 0.0000 0.2757(15) 0.50000
010 0.2500 0.25000 0.50000

Claims

REIVINDICACIONES
1. - Un material cristalino microporoso, caracterizado porque posee la siguiente composición química en su forma calcinada:
x X203: y Y02: z Z02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr y combinaciones de los mismos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V y combinaciones de los mismos;
Z es un elemento tetravalente seleccionado entre Si, Ge y combinaciones de los mismos;
el valor de (y+z)/x está comprendido entre 9 e infinito;
el valor de z/y está comprendido entre 10 e infinito;
y porque los elementos X, Y y Z se localizan en posiciones cristalinas como las descritas en la tabla 1.
2. - Un material cristalino microporoso según la reivindicación 1 , caracterizado porque presenta un diagrama de difracción como el descrito en la tabla 3.
3. - Un material cristalino microporoso según las reivindicaciones 1 y 2, caracterizado porque el valor de (y+z)/x está comprendido entre 20 e infinito; el valor de z/y está comprendido entre 15 e infinito.
4.- Un material cristalino microporoso según las reivindicaciones 1 a 3, caracterizado porque X está seleccionado entre Al, B y combinaciones de los mismos.
5. - Un material cristalino microporoso según las reivindicaciones 1 a 3, caracterizado porque Y está seleccionado entre Ti, Sn, y combinaciones de los mismos.
6. - Un material cristalino microporoso según cualquiera de las reivindicaciones 1 a 5, caracterizado porque x es igual a cero y posee la siguiente composición química:
y Y02 : z Z02
7. - Un material cristalino microporoso según cualquiera de las reivindicaciones 1 a 5, caracterizado porque y es igual a cero y posee la siguiente composición química:
x X203 : z Z02
donde el valor de z/x está comprendido entre 9 e infinito.
8. - Un material cristalino microporoso según una de las reivindicaciones 1 a 7, caracterizado porque posee una composición química en su forma sin calcinar:
n R : x X203 : z Z02 : y Y02
donde:
R es un agente director de estructura;
el valor de n/(x+y+z) está comprendido entre 1 y 0,001 ;
y porque tiene un patrón de rayos X representado en la tabla 2.
9. - Un material cristalino microporoso según la reivindicación 8, caracterizado porque el agente director de estructura R contiene N.
10. - Un material cristalino microporoso según la reivindicación 9, caracterizado porque R está seleccionado entre una sal de un catión alquilamonio, un policatión alquilamonio y combinaciones de los mismos.
1 1. - Un material cristalino microporoso según la reivindicació 10, caracterizado porque R es un policatión alquilamonio.
12. Un material cristalino microporoso según la reivindicació 1 1 , caracterizado porque R está seleccionado entre hidróxido de N2,N2,N2,N5,N5,N5,3a,6a- octametiloctahidropentaleno-2,5-diamonio, cualquiera de sus sales o combinaciones de los mismos.
13.- Un material cristalino microporoso según cualquiera de las reivindicaciones 8 a 12, caracterizado porque x es igual a cero y por la siguiente composición química:
n R : y Y02 : z Z02
donde el valor de n/(y+z) está comprendido entre 1 y 0,001.
14.- Un material cristalino microporoso según cualquiera de las reivindicaciones 8 a 12, caracterizado porque y es igual a cero y por la siguiente composición química: n R: x X203 : z Z02
donde el valor de z/x está comprendido entre 9 e infinito y el valor de n/(x+z) está comprendido entre 1 y 0,001.
15.- Un material cristalino microporoso según cualquiera de las reivindicaciones anteriores, caracterizado porque posee átomos en coordinación tetraédrica unidos a través de átomos de oxigeno puente que conectan átomos en coordinación tetraédrica contiguos, conteniendo 48 átomos en coordinación tetraédrica en su celda unidad, denominados T1 , T2, T3, T4 hasta T48, que están localizados en las posiciones cristalográficas con coordenadas atómicas cartesianas x, y y z que se muestran en la Tabla 1.
16.- Procedimiento de preparación del material descrito según las reivindicaciones 1 a 15, caracterizado porque comprende al menos los siguientes pasos: a) preparación de una mezcla que comprende, al menos, H20, una fuente de iones fluoruro, un óxido u otra fuente del material tetravalente Z, un agente director de estructura (R), una fuente del elemento trivalente X, un óxido u otra fuente del material tetravalente Y, donde la mezcla de síntesis tiene una composición molar de óxidos en los siguientes rangos:
(Y02+Z02)/X203 mayor de 2
H20/(Y02+Z02) entre 1-50
R/(Y02 + Z02) entre 0.05-3.0
F/(Y02+Z02) entre 0.01-3.0
Z02/Y02 mayor de 5
Si02/Ge02 mayor de 1 b) mantener la mezcla a una temperatura seleccionada entre 80 y 200°C hasta que se formen los cristales del material. c) recuperación del material cristalino.
17.- Procedimiento de obtención de un material según la reivindicación 16, caracterizado porque Z está seleccionado entre Si, Ge y combinaciones de los mismos, X está seleccionado entre Al, B, Fe, In, Ga, Cr y combinaciones de los mismos e Y está seleccionado entre Ti, Sn, Zr, V y combinaciones de los mismos.
18. - Procedimiento de obtención de un material según la reivindicación 17, caracterizado porque X está seleccionado entre Al, B, y combinaciones de los mismos.
19. - Procedimiento de obtención de un material según la reivindicación 17, caracterizado porque Y está seleccionado entre Ti, Sn, y combinaciones de los mismos.
20. - Procedimiento de obtención de un material según las reivindicaciones 16 a 19, caracterizado porque el agente director de estructura R es un compuesto que contiene N.
21.- Procedimiento de obtención de un material según la reivindicación 20, caracterizado porque R está seleccionado entre una sal de un catión alquilamonio, un policatión alquilamonio o combinaciones de los mismos.
22. - Procedimiento de obtención de un material según la reivindicación 21 , caracterizado porque R es un policatión alquilamonio.
23. - Procedimiento de obtención de un material según la reivindicación 22, caracterizado porque R está seleccionado entre hidróxido de N2,N2,N2,N5,N5,N5,3a,6a- octametiloctahidropentaleno-2,5-diamonio, cualquiera de sus sales y combinaciones de los mismos.
24. - Procedimiento de obtención de un material según cualquiera de las reivindicaciones 16 a 23, caracterizado porque comprende, además, una etapa calcinación del material cristalino obtenido.
25. - Procedimiento de obtención de un material según la reivindicación 24, caracterizado porque la calcinación se lleva a cabo a una temperatura entre 200 y 1200°C.
26.- Procedimiento de obtención de un material según cualquiera de las reivindicaciones 16 a 25, caracterizado porque comprende, además, uno o varios procesos post-síntesis.
27.- Procedimiento de obtención de un material según la reivindicación 26, caracterizado porque dicho tratamiento post-síntesis comprende al menos: a) suspender el material en una disolución que contiene al menos un elemento trivalente X seleccionado entre Al, Ga, B, Cr, Fe, In o mezclas de ellos; b) recuperación del sólido mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos; c) activación del material mediante calcinación a temperaturas superiores a 200°C.
28.- Procedimiento de obtención de un material según la reivindicación 27, caracterizado porque la disolución del paso a) está seleccionada entre una disolución acuosa, alcohólica, orgánica y combinaciones de las mismas.
29.- Uso de un material descrito según las reivindicaciones 1 a 15 y obtenido según el proceso descrito en las reivindicaciones 16 a 28 como catalizador.
30. -Uso del material descrito según la reivindicación 29 como catalizador en procesos de conversión de hidrocarburos.
31. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de desparafínado de hidrocarburos.
32. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de conversión de alcoholes.
33. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de conversión de alcoholes con menos de cuatro carbonos en olefinas.
34. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de eliminación de contaminantes nitrogenados en corrientes gaseosas o líquidas,
35. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas.
36. - Uso del material descrito según la reivindicación 29 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de gases reductores.
37. - Uso del material descrito según la reivindicación 36 donde el gas reductor es amoniaco.
38. - Uso del material descrito según la reivindicación 36 donde el gas reductor es, al menos, un hidrocarburo.
39. - Uso de un material descrito según cualquiera de las reivindicaciones 1 a 15 y obtenido según el proceso descrito en las reivindicaciones 16 a 28 como adsorbente.
PCT/ES2017/070439 2016-06-16 2017-06-15 Material itq-62, su procedimiento de obtención y su uso WO2017216410A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201630820 2016-06-16
ES201630820A ES2650083B1 (es) 2016-06-16 2016-06-16 Material itq-62, su procedimiento de obtención y su uso

Publications (1)

Publication Number Publication Date
WO2017216410A1 true WO2017216410A1 (es) 2017-12-21

Family

ID=60663460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070439 WO2017216410A1 (es) 2016-06-16 2017-06-15 Material itq-62, su procedimiento de obtención y su uso

Country Status (2)

Country Link
ES (1) ES2650083B1 (es)
WO (1) WO2017216410A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097256B2 (en) * 2017-06-13 2021-08-24 China Petroleum & Chemical Corporation Molecular sieve SCM-14, a preparation process and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094851A1 (fr) * 2009-02-20 2010-08-26 Ifp Procede de preparation d'une zeolithe de type structural isv
WO2013019462A1 (en) * 2011-08-04 2013-02-07 Exxonmobil Chemical Patents Inc. Emm-23 molecular sieve material, its synthesis and use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094851A1 (fr) * 2009-02-20 2010-08-26 Ifp Procede de preparation d'une zeolithe de type structural isv
WO2013019462A1 (en) * 2011-08-04 2013-02-07 Exxonmobil Chemical Patents Inc. Emm-23 molecular sieve material, its synthesis and use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOAL, BEN W. ET AL.: "Synthesis of german osilicate molecular sieves from mono-and di-quaternary ammonium OSDAs constructed from benzyl imidazolium derivatives: Stabilization of large micropore volumes including new molecular sieve CIT-13", CHEMISTRY OF MATERIALS, vol. 28, no. 7, 18 March 2016 (2016-03-18), pages 2158 - 2164, XP055335305 *
JIANG, JIUXING ET AL.: "Investigation of Extra-Large Pore Zeolite Synthesis by a High-Throughput Approach", CHEMISTRY OF MATERIALS, vol. 23, no. 21, 12 October 2012 (2012-10-12), pages 4709 - 4715, XP055450708 *
LIU, BINYAO ET AL.: "Theoretical analysis on geometries and electronic structures of antiaromatic pentalene and its N-substituted derivatives: monomer, oligomers and polymer", JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, vol. 25, no. 4, 4 October 2011 (2011-10-04), pages 278 - 286, XP055450711 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097256B2 (en) * 2017-06-13 2021-08-24 China Petroleum & Chemical Corporation Molecular sieve SCM-14, a preparation process and use thereof

Also Published As

Publication number Publication date
ES2650083B1 (es) 2018-10-29
ES2650083A1 (es) 2018-01-16

Similar Documents

Publication Publication Date Title
CA2947090C (en) Microporous crystalline material, itq-55, method for preparation and use
US7344696B2 (en) Porous crystalline material (zeolite ITQ-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
ES2263369B1 (es) Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
JP7055807B2 (ja) Mww骨格構造を有するホウ素含有ゼオライトの固体熱合成
JP2016527178A (ja) 増大した外表面積を有するゼオライトssz−70
ES2728311T3 (es) Material cristalino microporoso de naturaleza zeolítica, zeolita ITQ-39, método de preparación y usos
ES2650083B1 (es) Material itq-62, su procedimiento de obtención y su uso
MXPA06010176A (es) Material cristalino microporoso de naturaleza zeolitica con estructura lta (itq-29), su procedimiento de preparacion y usos del mismo en procesos de transformacion y separacion de compuestos organicos.
CA2870579C (en) Itq-49 zeolitic material, method for the production thereof and use of same
ES2204257A1 (es) Sintesis de itq-21 en ausencia de iones fluoruro.
EP2986559B1 (en) Molecular sieve cok-5 and its synthesis
RU2740447C1 (ru) Способ приготовления цеолита структуры мтт
ES2421063B1 (es) Material ITQ-38, su procedimiento de obtención y su uso
ES2380471B1 (es) Material itq-45, su procedimiento de obtención y su uso.
Palacio Synthesis and characterization of nanocrystalline mordenite, high silica zeolite RHO, and copper faujasite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812810

Country of ref document: EP

Kind code of ref document: A1