WO2004071686A1 - ドライブシャフト用継目無鋼管およびその製造方法 - Google Patents

ドライブシャフト用継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2004071686A1
WO2004071686A1 PCT/JP2004/000781 JP2004000781W WO2004071686A1 WO 2004071686 A1 WO2004071686 A1 WO 2004071686A1 JP 2004000781 W JP2004000781 W JP 2004000781W WO 2004071686 A1 WO2004071686 A1 WO 2004071686A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
drive shaft
recess
depth
manufacturing
Prior art date
Application number
PCT/JP2004/000781
Other languages
English (en)
French (fr)
Inventor
Kouichi Kuroda
Tatsuya Okui
Keisuke Hitoshio
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2005504938A priority Critical patent/JP4315154B2/ja
Priority to DE602004011184T priority patent/DE602004011184T2/de
Priority to EP04705922A priority patent/EP1595609B1/en
Publication of WO2004071686A1 publication Critical patent/WO2004071686A1/ja
Priority to US11/191,909 priority patent/US20050266927A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/18Elongation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls

Definitions

  • the present invention relates to a seamless steel pipe for a drive shaft and a method for manufacturing the same, and more particularly, to a seamless steel pipe used as a hollow member that is optimal for reducing the weight of a drive shaft for an automobile and has excellent fatigue strength, and this seamless pipe. It relates to a method for efficiently producing steel pipes.
  • the middle part of the member is made thinner and larger in diameter, and both ends to be fastened to a constant velocity joint
  • the use of an integrally molded drive shaft with a smaller diameter and a larger wall thickness is under consideration.
  • both ends of the hollow member are subjected to cold drawing, etc. to reduce the outer diameter of both shaft ends and increase the wall thickness at the same time. It is integrally molded.
  • Automotive drive shafts are important because they transmit the torque of the rotating shaft of the engine to the tires
  • the inner surface of the steel pipe can be processed smoothly and finished to a specified size.However, in order to obtain a smooth inner surface, it is necessary to repeat drawing and intermediate annealing several times. Therefore, there is a problem that the manufacturing cost increases.
  • Patent Publication No. 2822849 discloses that seamless steel pipes are efficiently manufactured using a stretch reducer by the Mannesmann pipe manufacturing method, and the inner surface of the steel pipe is shot-plasted.
  • a method has been proposed in which the inner surface is cut by grinding or the like to produce a seamless steel pipe for an automobile such as a drive shaft. According to this manufacturing method, although the amount of inner surface grinding by the sho, and / or the flat plate is increased, the fatigue strength of the hollow member for the drive shaft can be appropriately improved by relatively small amount of inner surface cutting. are doing.
  • the Mannesmann pipe manufacturing method which manufactures seamless steel pipes hot, consists of a drilling process, which involves drilling a hole in the center of a solid billet, and elongation rolling, whose main purpose is to process the wall thickness of the drilled hollow shell. It consists of a process and a constant-diameter rolling process in which the outer diameter of the raw tube is reduced to a target size. .
  • FIG. 1 is a diagram illustrating an example of a manufacturing process of the Mannesmann pipe manufacturing method for manufacturing a seamless steel pipe by hot working.
  • a solid round billet 1 heated to a predetermined temperature is used as a material to be rolled, and the round billet 1 is fed to a piercing mill (so-called piercer) 3 and its shaft is Drill a hole in the core and make a hollow shell 2 To manufacture.
  • the manufactured hollow shell 2 is expanded as it is or through an elongator having the same configuration as that of the above-described piercing and rolling mill, if necessary, to be expanded and thinned, and then to a subsequent elongating and rolling machine (mandrel mill 4). Feeding and elongation rolling.
  • the hollow shell 2 When the hollow shell 2 is stretched and rolled by the mandrel mill 4, the hollow shell 2 is cooled simultaneously with the stretching by the charged mandrel bar 4b and the rolling rolls 4r that regulate the outer surface of the shell. For this reason, the hollow shell 2 that has passed through the mandrel mill 4 is then charged into the reheating furnace 5 and reheated. After that, it passes through a stretch reducer 6 and then goes through a refinement process of polishing and shape correction and sizing, to produce a seamless steel pipe as a product.
  • the rolling rolls for rolling down the hollow shell 2 are arranged around the pass line where the rolled material advances. They are arranged in pairs or in pairs. ⁇ ⁇ '. ⁇ ⁇ ..
  • the hollow shell 2 obtained by the piercing mill 3 and the mandrel mill 4 is passed through a rolling roll 6r, and then drawn and rolled to finish dimensions.
  • the stretcher's transducer 6 is provided so as to match the pass line with the mill center, and a pair of rolling rolls for rolling down the hollow shell 2 face each other around the pass line. It is composed of three rolling rolls 6 r placed in E, and these rolling rolls 6 r are arranged in a plurality of sets S in tandem. Between adjacent roll stands, the rolling rolls 6r are arranged so as to intersect with the rolling direction shifted by 60 ° in a plane perpendicular to the pass line.
  • the hollow shell is finished by squeeze rolling without using a mandrel or other inner surface regulating tool. Wrinkles are easy to occur.
  • the hot-rolled seamless steel pipe is By cutting the surface from 20 / z ra to 500 / z ni, wrinkles generated on the inner surface of the steel pipe are removed and the fatigue strength is improved.
  • enormous processing time is required for internal grinding by such shot blasting.
  • the steel pipes used for drive shafts are small diameter pipes with an inner diameter of about 15 mm to 25 mm.However, in order to secure the above-mentioned grinding amount for the inner surfaces of these pipes, In order to perform shot processing on steel, enormous processing time from tens of minutes to several hours is required. For this reason, the manufacturing method proposed in Japanese Patent No. 2822849 raises a large problem that the manufacturing cost is increased and the mass productivity required for industry cannot be secured.
  • the stretch reducer since the outer diameter is reduced by rolling with three rolling rolls, the core tube is subjected to reduction from three directions with respect to the pass line. For this reason, the inner surface shape of the hot-finished steel pipe is not a perfect circle, but a square or polygonal circle, and the inner surface has an uneven shape. It is difficult to correct such irregularities on the inner surface to a perfect circle only by grinding such as shot blasting.
  • the steel pipe for the drive shaft is subjected to cold shaft drawing at the ends of both pipes by a swaging machine or the like, so that the product shape is changed in the longitudinal direction and the wall thickness is changed.
  • the inner diameter reduction rate associated with this cold shaft drawing is about 50 to 70%, and when a tube having an uneven surface on its inner surface is subjected to such processing, the uneven shape is used as a starting point. However, deeper wrinkles will grow.
  • the present invention relates to the production of a conventional seamless steel pipe for an automobile such as a drive shaft. It is made in view of the problem, and the relatively low inner surface cutting and the subsequent cold drawing of the steel pipe that has been hot finished by the Mannesmann pipe method have excellent fatigue strength and at the same time lighter body weight It is an object of the present invention to provide a seamless steel pipe for a drive shaft and a method of manufacturing the same.
  • the present inventors have conducted various studies in order to solve the above-mentioned problems.
  • the growth and progress of the wrinkles in the cold-axis drawing described above are not necessarily limited to the wrinkle depth existing in the steel pipe after hot rolling.
  • Clarified that the fatigue life of the drive shaft as a final product does not depend solely on the wrinkle depth of the inner surface of the steel pipe before cold-shaft drawing.
  • the findings clarified by the present inventors will be described.
  • the drive shaft is an important safety component that transmits the torque of the rotating shaft of the automobile engine to the tires, it is desirable that the surface wrinkle that can be the starting point of fatigue rupture does not occur.
  • a cold shaft drawing force 11 is applied to both ends of the member steel pipe to be integrally formed with the drive shaft.
  • the inner surface may have wrinkles and grow due to the uneven shape formed on the inner surface of the cross section perpendicular to the longitudinal direction of the steel pipe. Therefore, it is necessary to evaluate the performance of the hollow member used as a drive shaft at the stage when it has been cold-drawn and finished into a final product.
  • the manufacturing method proposed in the above-mentioned Patent No. 2822284 is a hot-finished steel pipe before cold-shaft drawing, that is, a semi-finished product stage as a drive shaft. Since the method of removing internal wrinkles is adopted in this method, the production cost is increased and the production efficiency is reduced.
  • FIG. 2 is a diagram conceptually illustrating the distribution of shear stress acting on the inner surface and the outer surface of the drive shaft when transmitting the rotating shaft torque. As is clear from the shear stress distribution shown in Fig. 2, a larger shear stress acts on the outer surface of the drive shaft than on the inner surface.
  • the present invention was studied based on the above findings, and was completed by clarifying the conditions under which the integrally molded drive shaft can secure sufficient fatigue characteristics, and a method for efficiently manufacturing this hollow member.
  • the gist of the method is to manufacture seamless steel pipes for drive shafts (1) and (2) and seamless pipes for drive shafts (3).
  • the unevenness that forms the inner surface of the cross section perpendicular to the longitudinal direction of the steel pipe is such that the depth d to the bottom of the recess is 10.0 ⁇ or less, and the surface roughness of the inner surface of the steel pipe Is a steel pipe having a center line average roughness Ra of 1 to 4 ⁇ , and when the depth d to the bottom of the recess is 50 m or more, the entrance width w of the recess is 0. It is a seamless steel pipe for drive shafts that has a characteristic of 5 d or more.
  • the reheating conditions after elongation rolling were set to 800 to 150 ° C, and the maximum hole type ellipticity in constant diameter rolling ( A drive shaft characterized by rolling under a condition of 1.1 or less (long and short radius) and hot-finished, then subjecting the hot-finished steel pipe to internal grinding with sand plast, and then performing cold drawing.
  • This is a method for manufacturing a seamless steel pipe.
  • the entrance width w of the recess is not limited.
  • the “irregular shape forming the inner surface” indicates the state of the inner surface quality before cold shaft processing as a seamless steel pipe for a drive shaft. More specifically, the occurrence of inner wrinkles and the like caused by the hot-finished steel pipe being squared or polygonalized or vertical streak-like inner wrinkles affected by subsequent inner grinding and cold drawing It shows the situation. Therefore, in the following description, the expressions “concavo-convex shape” and “inner wrinkle” may be used together.
  • FIG. 1 is a diagram illustrating an example of a manufacturing process of the Mannesmann pipe manufacturing method for manufacturing a seamless steel pipe by hot working.
  • FIG. 2 is a diagram conceptually illustrating the distribution of shear stress acting on the inner surface and the outer surface of the drive shaft when transmitting the rotating shaft torque.
  • FIG. 3 is a diagram showing the state of streaks and squareness generated on the inner surface of the steel pipe as an uneven shape forming the inner surface in a cross section perpendicular to the longitudinal direction of the steel pipe.
  • FIG. 4 is a view showing a groove shape of a rolling roll of the stretch reducer.
  • FIG. 5 is a diagram showing a test piece for evaluating fatigue characteristics used in the examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • the seamless steel pipe for a drive shaft of the present invention not only the average unevenness of the unevenness forming the inner surface but also the inner surface of the steel pipe so that the drive shaft can exhibit excellent fatigue strength.
  • the feature is that the largest uneven shape is managed in a predetermined range over the entire area.
  • Fig. 3 is a diagram showing the state of streaks and wrinkles generated on the inner surface of the steel pipe as an uneven shape that forms the inner surface in a cross section perpendicular to the longitudinal direction of the steel pipe, and (a) shows the entrance of the recess. (B) shows the case where the width of the recess is wide, and (b) shows the case where the width of the entrance of the recess is wide.
  • the depth to the bottom of the recess is d
  • the width of the entrance is Is defined as w.
  • d is less than 100 / xm. If the depth to the bottom of the recess is relatively deep and d is more than 50 / zm, Is managed when w is 0.5 d or more.
  • the width w of the recess is not limited.
  • the seamless steel pipe for a drive shaft of the present invention it is necessary to measure the unevenness of the inner surface of the steel pipe over a predetermined distance, and manage the level index of the average unevenness within a predetermined range. That is, the surface roughness of the inner surface of the steel pipe is controlled at a center line average roughness Ra of 1 to 4 ⁇ .
  • the center line average roughness Ra mentioned herein is specified in JISBO601.
  • the hollow shell is a pass liner.
  • the rolls are rolled down from three directions by rolling rolls, but many streaks and squaring occur due to the absence of the inner surface control tool. Then, by performing drawing, streak-like wrinkles and squareness can be improved, and the entire inner and outer surfaces can be smoothed.
  • the center line average roughness Ra is at most 5 to 10 ⁇ , but the center line average roughness is obtained by cold drawing.
  • the roughness Ra is smoothed to 1 to 4 ⁇ m, which has a remarkable effect on the improvement of fatigue life. Therefore, the surface roughness of the inner surface of the steel pipe of the present invention needs to be 1 to 4 ⁇ in terms of centerline average roughness Ra.
  • the larger irregularities are specified. Manage within a certain range, and set the average level index of the irregularities on the inner surface of the steel pipe within the specified range. By controlling, these effects are combined, and the progress of the wrinkle depth in the cold-shaft drawing at the final stage can be sufficiently suppressed, and the fatigue strength can be improved. ...
  • the amount of cold shaft drawing is determined according to the product shape of the drive shaft. Generally, the outer diameter reduction ratio is set at about 30% and the inner diameter reduction rate is set at about 0.60%. In the case of such a cold-shaft drawing amount, the conditions of the concave-convex shape of the inner surface and the surface roughness of the inner surface defined by the steel pipe of the present invention are remarkably effective in improving the fatigue strength. Demonstrate fruit.
  • the hardness in the inner surface layer 500 O / zm of the steel pipe means that the distance from the inner surface side to the wall thickness direction in a section perpendicular to the longitudinal direction of the steel pipe is 100 / zm, 200 / / m, average value of hardness measured at each point of 300 im, 400 ⁇ and 50 ⁇ m.
  • the chemical composition of the target steel type is not specified, but as a composition example suitable for the drive shaft, C: 0.20 to 0.50%, Si : 0.1 to 0.5% and Mn: 0.4 to 2.0%, and the remainder can be exemplified by a composition comprising impurities such as P and S and Fe.
  • FIG. 1 As an example of a method for manufacturing a steel pipe for a drive shaft of the present invention, as shown in FIG. 1, a Mannesmann pipe method using a mandrel mill and a stretch reducer can be mentioned.
  • the reheating conditions after rolling by a mandrel mill were set to 800 to 1,050 ° C, and the rolling temperature at the stretch reducer was sufficiently increased.
  • the aim is to achieve uniformity. This makes it possible to appropriately improve the roundness of the inner surface of the steel pipe by the stretch reducer rolling, and effectively suppress the occurrence of diversification of the inner surface in the rolling process.
  • FIG. 4 is a view showing a groove shape of a rolling roll of a stretch reducer.
  • the rolling stand provided in the stretch reducer is composed of three rolling rolls 6 r.
  • the hole shape of the rolling roll 6r is managed by the maximum hole type ellipticity represented by the ratio of the roll hole long radius raZ short radius]: b.
  • a maximum roll ellipticity (rZrb) of 1.1 or less is used for a rolling roll.
  • the uniformity of the reduction amount is to be improved.
  • the roundness on the inner surface of the steel pipe after stretch reducer rolling is improved, and the inner surface diversification is effectively suppressed. be able to.
  • the inner surface of a hot-finished steel pipe with increased roundness is ground, and then the smoothness of the inner surface is increased by cold drawing to efficiently achieve fatigue strength. Excellent inner surface quality of steel pipes for drive shafts.
  • the inner surface of the hot-finished steel pipe is sand-plast ground
  • the inner surface can be smoothed by cold drawing, so that the cutting process using the preceding sand plast can be made relatively simple
  • the purpose can be achieved by the amount of cutting.
  • the present invention can be applied if the grinding time is about 10 minutes and the grinding amount can be secured in a range of 20 ⁇ m to 30 ⁇ m.
  • the inner surface is finished by contacting the inner surface regulating tool of the plug with the inner surface of the steel pipe, so that not only the outer surface but also the inner surface roughness can be reduced.
  • the surface roughness of the inner surface of the hot-finished steel pipe alone which was about 5 to 0.5 Lm at the center line surface roughness Ra, was reduced by cold drawing. It can be smoothed to 1-4 ⁇ . Effects of the steel pipe for a drive shaft of the present invention and the method of manufacturing the same will be specifically described based on Examples 1 to 3.
  • elongation rolling is performed with a mandrel mill. Reheating was performed under the condition of 900 ° C, and outer diameter reduction rolling was performed with a stretch reducer to produce a hot-finished steel pipe having an outer diameter of 5 lram, an inner diameter of 35 mm, and a wall thickness of 8 mm. After that, internal grinding was performed by sand plast under various conditions while changing the grinding time.
  • the steel pipe after internal grinding is pickled and lubricated, cold drawn using a cylindrical plug, and then subjected to annealing at 700 ° C for 20 minutes to obtain an outer diameter of 4 mm. 5 ⁇ , inner diameter 3 1 m m, a drive shaft for steel pipe wall thickness of 7 mm were prepared.
  • a hot-rolled steel pipe with an outer diameter of 45 mra, an inner diameter of 31 mtn, and a wall thickness of 7 mm was manufactured by rolling with a stretch reducer. Inner surface grinding was performed in the same manner as described above to produce a steel pipe for a drive shaft.
  • each of the test drive shaft steel pipes was cut to 500 mm, and one sample for micro-mouth observation was taken from both ends of the cut steel pipe, and the sample was cut perpendicular to the longitudinal direction of the steel pipe. Microscopic observation of the uneven shape appearing on the inner surface of the cross section.
  • the maximum depth d max to the bottom of the recess existing in the vertical cross section was measured, and the depth d of the recess where d was 50 zm or more and the width w of the entrance were measured, and w / d was investigated. Further, the surface roughness Ra of the inner surface of each of the obtained steel tubes for drive shafts was measured.
  • test drive shaft steel pipe was subjected to cold shaft drawing of about 30% to evaluate the fatigue life when used as the drive shaft of the final product.
  • the evaluation dimensions here were an outer diameter of 32 mm, an inner diameter of 14 mm, a wall thickness of 9 mm, and an inner diameter reduction rate of about 55 ° / 0 in cold shaft drawing. Differences in the wrinkle growth during cold-shaft drawing due to differences in the inner surface quality of the test drive shaft steel pipes were evaluated as fatigue test results.
  • a test piece 7 for evaluating fatigue properties was formed by testing a parallel test part 7a with an appropriate length range on the outer surface, shaving it at the center of the piece, and holding grip parts at both ends. 7b formed. After quenching and tempering each test piece 7 having the shape shown in Fig. 5, torsional fatigue tests were performed with various load torques.
  • Table 1 shows the test conditions and test results described above.
  • cold drawing after hot finishing Specified steel pipes and hot-finished steel pipes that have been used as test steel pipes shall be used as test steel pipes.
  • the unevenness forming the inner surface has a depth d up to the bottom of the recess of 100 / xm or less, of which the depth d to the bottom of the recess is 50 ⁇ m. If it is not less than m, the entrance width w of the recess is 0.5 d or more (wZd ⁇ O.5), and the surface roughness of the inner surface is 1 to 4 as the center line average roughness Ra.
  • the torsional load torque is high in a fatigue test after cold-shaft drawing.
  • the center line average roughness Ra was measured by dividing the steel pipe in half in the axial direction, that is, vertically, and measuring the inner surface in the axial direction with a surface roughness meter.
  • Example 2 After performing the same hot process and grinding treatment as in Example 1, cold drawing was performed to produce a steel pipe for a drive shaft. Approximately 38% cold-shaft drawing was performed on the test drive shaft steel pipe, and the fatigue life when used as a final product drive shaft was evaluated.
  • the evaluation dimensions here were an outer diameter of 28 ram, an inner diameter of 9 mm, and a wall thickness of 9.5 mm.
  • the inner diameter reduction ratio during cold shaft drawing was about 71%, and the fatigue properties were evaluated under more severe conditions than in Example 1.
  • Example 2 At the time of evaluation, a sample for micro observation was prepared and 0 d max and wZ d were investigated as in Example 1, and at the same time, the Pitch hardness at the inner surface layer of 500 ⁇ m of the steel pipe was measured.
  • the concave-convex shape that forms the inner surface in the cross section perpendicular to the longitudinal direction of the steel pipe has a depth d to the bottom of the concave of d 10 Oxm or less, of which the depth to the bottom of the concave
  • d is 50 ⁇ or more
  • the steel pipe whose entrance width w of the recess is 0.5 d or more (w, d ⁇ 0.5) and the hardness in the inner surface layer of the material is Vickers hardness H v ⁇ 200 If so, it can be seen that the fatigue strength has been improved.
  • the production conditions of the present invention were confirmed.
  • the chemical composition of the test material was as follows: C: 0.45%, Si: 0.23%, Mn: 0.76%, and Cr: 0.16% by mass%, and the balance Fe. .
  • the reheated hollow shell was rolled using 20 sets of three-roll rolling stands. In this rolling, a large number of rolls rolled without using a mandrel bar or other core metal.
  • Example 1 in order to investigate the difference in the fatigue characteristics due to the difference in the manufacturing process, as a comparative example for confirming the effect due to the presence or absence of cold drawing, an outer diameter of 45 mm, A hot-finished steel pipe with an inner diameter of 31 mm and a wall thickness of 7 mm was manufactured, subjected to internal grinding, and then annealed at 700 ° C for 20 minutes to manufacture a steel pipe for a drive shaft.
  • the hardness of the drive shaft steel pipe before cold shaft drawing is as follows: In the surface layer of 500 ⁇ m, ⁇ 1933196 was completed.
  • Example 2 Under the same conditions as in Example 1, the steel pipe for the drive shaft subjected to the test was subjected to about 30% drawing and then finally hardened to be used as a drive shaft of the final product.
  • the fatigue life at the time was evaluated.
  • the evaluation dimensions here were ⁇ 32 ram, an inner diameter of 14 mm, and a wall thickness of 9 mm.
  • Table 3 shows the results of an evaluation test of the fatigue life according to the state of unevenness of the inner surface, surface roughness, the presence or absence of cold drawing, and the inner surface grinding time by sandblasting.
  • the amount of grinding varies depending on the inner diameter of the steel pipe, but it has been confirmed that a wall thickness of 20 m30 ⁇ m is sufficient. If cold drawing is performed thereafter, the inner surface of the steel pipe is smoothened by cold drawing, so that a hollow member for steel with excellent fatigue strength can be efficiently obtained.
  • the inner surface of the steel pipe is formed by performing simple inner surface cutting and subsequent cold drawing on the steel pipe that has been hot finished by the Mannesmann pipe method.
  • Roughness Depth of concave part d, surface roughness Ra and width of concave part entrance w are specified, or similarly, concave part depth d of concave and convex part, Vickers hardness Hv of inner surface layer, concave part entrance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Extraction Processes (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Vehicle Body Suspensions (AREA)

Description

明 細 書
ト用継目無鋼管およびその製造方法
技術分野
本発明は、 ドライブシャフト用継目無鋼管およびその製造方法に関し、 さらに 詳しくは、 自動車用ドライブシャフトの軽量化に最適で、 かつ疲労強度に優れる中 空部材として用いられる継目無鋼管、 およびこの継目無鋼管を効率的に製造する方 法に関するものである。
背景技術
最近では、 地球環境を保護する必要性が高まるなかで、 自動車車体の軽量化を図 り、 一層、 省エネルギー ^果を達成することが要請されている。 このため、 車体軽 量ィ匕の観点から、 自動車用部品を中実部材から中空部材に切り替える試みがなされ ている。. このような試み なかで、 自動車のドライブシャフトについても中空部材 がー部で採用されはじめている。
具体的には、 自動車用ドライブシャフトに要求されるねじり剛性 ¾Γ確保しつつ、 さらなる軽量化を図るために、 部材の中間部を薄肉で大径化するとともに、 等速ジ ョィントと締結する両端部を小径で厚肉化した、 一体成形のドライブシャフ.トの採 用が検討されている。 このようなドライブシャフトを鋼管から製造するには、 中空 部材の両端部に冷間で軸絞り加工等を施して、 両軸端部の外径を減少させると同時 に肉厚を増加させることによって一体成形される。
自動車用ドライブシャフトは、 エンジンの回転軸トルクをタイヤに伝達する重要
保安部品である。 そこで、 ドライブシャフトの疲労強度を確保するため、 その強度、 剛性を高めておくことが好ましいことから、 焼入れなどの熱処理が施される。 焼入 れを施した場合には、 そうした熱処理によって良好な疲労強度を保ちつつ、 9 8 1 M P a以上の高強度化を図ることも可能となる。
通常、 前述の冷間軸絞り加工では、 加工に際して鋼管内面を規制する工具を用い ないため、 加工条件によっては加工後のドライプシャフトの内面にしわが発生する 場合がある。 ドライブシャフトに内面しわが発生すると、 著しく疲労強度を低下さ せることになる。 そこで、 ドライブシャフトの中空部材に用いられる鋼管の製造に は、 鋼管内にプラグその他の芯金を挿入して、 冷間抽伸を所定寸法まで繰り返す方 法が検討されている。
ところが、 冷間抽伸を繰り返す方法では、 鋼管の内表面が滑かに加工でき、 所定 寸法に仕上げられるが、 平滑な内面を得るには、 数回に亘る抽伸加工と中間焼鈍を 繰り返す必要があるため、 製造コストが嵩むという問題がある。
上記の問題を解決するため、 特許第 2 8 2 2 8 4 9号公報では、 マン ネスマン製管法でストレツチレデューサーを用いて能率的に継目無鋼管を製造し て、 この鋼管内面をショットプラスト研削等によって内面切削して、 ドライブシ ャフト等の自動車用継目無鋼管を製造する方法が提案されている。 この製造方法 によれば、:ショ、/、·トブラ トによる内面研削量が増加するものの、 比較的僅少 な内面切削によつて、 ドラィブシャフ 用中空部材の疲労強度 を適切 向上させる こ とができる と している。
継目無鋼管を熱間で製造するマンネスマン製管法は、 中実のビレッ ト の中心部に孔を明ける穿孔工程と、 この穿孔された中空素管の肉厚加工 を主たる'目的とする延伸圧延工程と、 素管外径を減径して目標寸法に仕 上げる定径圧延工程どによって構成される。 .
通常、 穿孔工程ではマンネスマンピアサ、 交叉型穿孔圧延機、 プレス ピアシングミル等の穿孔圧延機が、 延伸圧延工程ではマンドレルミル、 プラグミル、 アッセルミル等の圧延機が、 さらに定径圧延工程ではス ト レツチレデューサゃサイザ一等の孔型圧延機がそれぞれ用いられる。 図 1は、 継目無鋼管を熱間で製造するマンネスマン製管法の製造工程 の一例を説明する図である。 この製管方法は、 所定温度に加熱された中 実の丸ビレツ ト 1を被圧延材とし、 この丸ビレツ ト 1を穿孔圧延機 (い わゆる、 ピアサ) 3に送給して、 その軸心部に穿孔を明けて中空素管 2 を製造する。 次いで、 製造された中空素管 2をそのまま、 あるいは必要 に応じて上記穿孔圧延機と同一構成のェロングータに通して拡径、 薄肉 化を行った後、 後続する延伸圧延装置 (マンドレルミル 4 ) に送給して 延伸圧延する。
マンドレルミル 4で延伸圧延される際に、 中空素管 2は装入されたマ ンドレルバ一 4 bと素管外面を規制する圧延ロール 4 rによって延伸と 同時に冷却される。 このため、 マン ドレルミル 4を通過した中空素管 2 は、 次いで再熱炉 5に装入され、 再加熱される。 その後、 ス ト レツチレ デューサ 6に通して磨管、 形状修正おょぴサイジングを行う精整工程を 経て製品となる継目無鋼管が製造される。
このような製管 ¾において、 穿孔圧延機 3、 マン ドレルミル 4および ス トレツチレデューサ 6では、 中空素管 2を圧下する圧延ロールが被圧 延材が進行するパスラインを中心にして、. 1組または複数組で対向配置 . .されている。 . · ' . · ·..
例えば、 ス トレツヂレデューサ 6では、 穿孔圧延機 3およびマン ドレ . . ルミル 4で得られた中空素管 2を圧延ロール 6 rに通して、 ^絞り圧延 , して仕上げ寸法に加工する。 このため、 図 1に示すように、 ス トレツチレ ' デューサ 6はパスラインとミルセンタ,がー致するように設けられ、 中 空素管 2を圧下する一対の圧延ロールは、 パスラインを中心として対向 E置された 3個の圧延ロール 6 rからなり、 これらの圧延ロール 6 r力 S 複数組タンデムに配される。 隣接するロールスタンド間ではそれぞれの 圧延ロール 6 rがパスラインに対して垂直な面内で圧下方向を 6 0 ° 毎 ずらして交差配置される。
ところが、 上述の通り、 ス トレツチレデューサでは、 マンドレルなどの内 面規制工具を用いることなく、 中空素管を外径絞り圧延によって仕上げるので、 熱 間仕上げされた鋼管の内面に縦筋状のしわが発生し易い。
前記特許第 2 8 2 2 8 4 9号公報では、 熱間圧延された継目無鋼管の内 面を 2 0 /z ra 〜 5 0 0 /z ni 切削加工することによって、 鋼管内面に発生した しわを除去して、 疲労強度の向上を図ることとしている。 しかし、 このよう なショットブラストによる内面研削には膨大な処理時間が必要になる。
具体的には、 ドライブシャフト用として採用される鋼管は、 内径が 1 5瞧〜 2 5匪程度の小径管が対象となるが、 これらの管内面に対して、 上記研削量を確保す るためにショット加工を施すには、 数十分から数時間の膨大な処理時間が必要とな る。 このため、 前記特許第 2 8 2 2 8 4 9号公報で提案された製造方法では、 製造コストが嵩むとともに、 工業上必要とされる量産性が確保できないという大き な問題となる。
さらに、 ストレツチレデューサでは 3個の圧延ロールからなる外径絞り圧延 であるため、 中^素管はパスラインに対し 3方向から圧下を受ける。 このため、 熱 間仕上げされた鋼管の内面形状は、 真円にならず、 角張りや多角形化した円となり、 その内表面には凹凸形状が形成される。 このような内表面の凹凸形状を真円に矯正 することは、 ショットブラスト等の研削加工だけでは困難である。
また、 :ドライブシャフト用鋼管は'、 スウェージングマシン等により、 '両管端部に 冷間軸絞り加工が施されて、 長手方向に^ 、 肉厚が変化した製品形状に仕上げら れる。. この冷間軸絞り加工に伴う内径縮径率は 5 0〜 7 0 %程度になり、 内表面に 凹凸形状を有する管材がこのような加工を受けると、 この凹凸形状を起点と.して、 さらに深いしわを成長させることになる。
通常、 中空部材を用いたドライブシャフトでは、 焼入により高強度化されるが、 高強度化された材料では、 内面しわを起点とする疲労き裂が容易に進展し、 疲労強 度の低下が顕著となる。 したがって、 上述した 9 8 I M P a以上の高強度の部材で は、 高強度化にともなって疲労き裂発生の応力集中感受性が高まり、 内面品質の問 題が顕在化することが多い。 発明の開示
本発明は、 従来のドライブシャフト等の自動車用継目無鋼管の製造にともなう 問題点に鑑みてなされたものであり、 マンネスマン製管法によって熱間 仕上げされた鋼管に比較的少ない内面切削加工と、 その後の冷間抽伸を 施すことによって、 疲労強度に優れると同時に、 車体軽量化に最適なド ' ライブシャフト用継目無鋼管およびその製造方法を提供することを目的 としている。
本発明者らは、 上述の課題を解決するため、 種々の検討を加えた結果、 前述の冷間軸絞り加工におけるしわの成長、 進展は、 必ずしも熱間圧延後の鋼管に 存在するしわ深さに依存するのではないこと、 および最終製品としてのドライブシ ャフトの疲労寿命は、 冷間軸絞り加工前の鋼管内面しわ深さのみに依存するのでは ないことを.明確にした。 以下に、 本発明者らが明らかにした知見を説明する。
ドライブシャフトは、 自動車エンジンの回転軸トルクをタイヤに伝達する重要保 安部品であるため、 疲労破壌の起点となり得る表面しわ疵は宪生させないことが望 ましい。 その中空部材から最終製品形状への仕上げ工程は、 部材鋼管の両端に冷間 軸絞り力 11ェが施されて、 ドライブシャフトに一体成形される。
しかしながら、 この冷間軸絞り加工にともなって、 鋼管の長手方向に垂直な断面 の内表面に形成された凹凸形状で、 内面しわが発生し、 成長する場合がある。 した がって、 ドライブシャフトとして用いられる中空部材の性能は、 冷間軸絞り加工が 施されて最終製品に仕上げられた段階で評価する必要がある。
上記の観点からでは、 前記特許第 2 8 2 2 8 4 9号公報で提案された製造方 法では、 冷間軸絞り加工前の熱間仕上げ鋼管であって、 すなわちドライブシャフト として半製品の段階で内面しわを除去する方法を採用しているので、 製造コストの 増大と生産効率の低下を招来するに過ぎないことになる。
換言すると、 単に冷間軸絞り力 [I.ェ前のドライブシャフト用鋼管のしわ深さを改善 することに着目するのではなく、 むしろ、 その後の冷間軸絞り加工において成長す る内面しわの進展を抑制できる鋼管の内面品質を明確にすることによって、 冷間軸 絞り加工前に許容できるしわ深さを把握し、 徒に長時間の内面研削を施すことなく、 低い製造コストで効率的に所定の疲労強度を確保することができる。 図 2は、 回転軸トルクを伝達する際にドライブシャフトの内表面および外表面 に作用するせん断応力の分布を概念的に説明する図である。 図 2に示すせん断応 力分布から明らかなように、 ドライブシャフトの外表面には、 内表面に比べて大き なせん断応力が作用する。
したがって、 ドライブシャフトの内表面に完全にしわの無い状態で、 内表面とも 疲労限度せん断応力が十分に大きい場合には、 疲労き裂は、 内表面より大きなせん 断応力の作用する外面側から発生、 成長することになる。
しかしながら、 内表面にしわ疵が存在すると、 そのしわを起点と して き裂が進展するため、 作用するせん断応力が小さくても内表面側から疲労き裂が発 生する場合がある。
言い換えると、 内表面にしわが存在する場合でも、 内表面側の疲労限度 せん断応力が外面側で規定されるせん断応力を超えるように、 内表面側 • に発生するしわも管理できれば、 冷間軸絞り加工で発生、 成長するしわ . は、 結果として製品の疲労寿命に影響を与えることがなく、 実用上、 問 · 題と.ならない。 .
本発明は、 上記の知見に基づいて検討され、 さらに一体成形されたドラ イブシャフトが十分な疲労特性を確保できる条件、 およびこの中空部材を効率的に 製造できる方法を明らかにして完成された.ものであり、 下記(1)、 (2)のドライブシ ャフト用継目無鋼管、 および (3)のドライブシャフト用継目無 管の製造方法を要旨 としている。
(1) 鋼管の長手方向に垂直な断面における内表面を形成する凹凸形状が、 凹部の底 までの深さ dが 1 0. 0 μ πι以下であり、 かつ、 鋼管の内表面の表面粗さが中心線平 均粗さ R aで 1〜4 μ πιである鋼管であって、 前記凹部の底までの深さ dが 5 0 m以上である場合に、 その凹部の入り口幅 wが 0 . 5 d以上であることを特^¾とす るドライブシャフト用継目無鋼管である。
. (2) 鋼管の長手方向に垂直な断面における内表面を形成する囬凸形状が、 凹部の底 までの深さ dが 1 0 0 /i m以下であり、 かつ、 鋼管の内表面層 5 0 0 μ πιにおける 硬度がビッカース硬度 H vで 2 0 0以下である鋼管であって、 前記凹部の底までの 深さ dが 5 0 /z m以上である場合に、 その凹部の入り口幅 wが 0 . 5 d以上である ことを特徴とするドライブシャフト用継目無鋼管である。
(3) マンネスマン製管法によって継目無鋼管を熱間加工する際に、 延伸圧延後の 再加熱条件を 8 0 0〜 1 0 5 0 °Cとし、 定径圧延での最大孔型楕円率 (長半径 短 半径) を 1 . 1以下の条件で圧延して熱間仕上げした後、 前記熱間仕上げの鋼管に サンドプラストで内面研削を施し、 次いで冷間抽伸を行うことを特徴とするドライ ブシャフト用継目無鋼管の製造方法である。
上記(1)および(2)のドライブシャフト用継目無鋼管では、 凹部の底までの深さ dが 5 0 μ πι未満である場合には、 いかなる凹部の入り口幅 wであっても、 冷間軸 加工の後にドライブシャフトとして必要な疲労強度を確保することができる。
このため、 凹部の底までの深さ dが 5 0 /z m未満である場合には、 その凹部の入 り口幅 wを制限しないものとする。
本発明において 「内表面を形成する凹凸形状」 とは、 ドライブシャフト用継 目無鋼管として、 冷間軸加工される前の内面品質状況を示すものである。 さらに詳 しくは、 熱間仕上げされ 鋼管の角張りや多角形化、 または縦筋状の内面しわの発 生に起因し、 その後の内面研削および冷間抽伸の影響を受けた内面しわ等の発生状 況を示すものである。 したがって、 以下の説明 おいては 「凹凸形状」 および 「内面しわ」 の表現を併用する場合がある。 図面の簡単な説明
図 1は、 継目無鋼管を熱間で製造するマンネスマン製管法の製造工程 の一例を説明する図である。
図 2は、 回転軸トルクを伝達する際にドライブシャフトの内表面および外表面 に作用するせん断応力の分布を概念的に説明する図である。
図 3は、 鋼管内面に発生した筋状しわや角張りの状況を、 鋼管の長手方向に垂 直な断面における内表面を形成する凹凸形状として示した図である。 図 4は、 ストレツチレデューサ一の圧延ロールにおける孔型形状を示す図であ る。
図 5は、 実施例で使用した疲労特性の評価試験片を示す図である。 発明を実施するための最良の形態
本発明のドライブシャフト用継目無鋼管では、 ドライブシャフトが優れた疲労 強度が発揮できるように、 内表面を形成する凹凸形状のうち、 平均的な凹凸形状の 大きさのみならず、 鋼管の内表面の全体を見渡して、 その中で最も大きい凹凸形状 を所定の範囲で管理することを特徴としている。
図 3は、 鋼管内面に発生した筋状しわや角張りの状況を、 鋼管の長手方向に垂 直な断面における内表面を形成する凹凸形状として示した図であり、 (a ) は凹部 の入り口幅が狭い場合を、 (b ) は凹部の入り口幅が広い場合を示している。 本発 明では、 鋼管断面の内表面に部分的に点在する凹凸形状の大きさを識別するため、 図 3に示すように、 その凹部の底までの深さを d、 およびその入り口の幅を wと規 定する。
そして、 疲労強度を確保するため、 dが 1 0 0 /x m以下であることを前提条件と し、 そのうち凹部の底までの深さが比較的深く、 dが 5 0 /z m以上である場合には、 wが 0 . 5 d以上で管理する。
ところが、 M部の底までの深さが浅く、 dが 5 0 μ πι未満である場合には、 いか なる凹部の入り口幅 wであっても、 冷間軸加工の後にドライブシャフトとして必要 な疲労強度を確保することができるので、 その凹部の入り口幅 wを制限しない。
さらに、 本発明のドライブシャフト用継目無鋼管では、 鋼管の内表面の凹凸形 状を所定の距離にわたって測定して、 平均的な凹凸形状のレベル指標を所定の範囲 で管理する必要がある。 すなわち、 鋼管の内表面の表面粗さを中心線平均粗さ R a で 1 ~ 4 μ πιで管理する。 ここでいう中心線平均粗さ R aは、 J I S B O 6 0 1に規定するものである。
前述の通り、 ストレツチレデューサでの外径絞り圧延では、 中空素管がパスライ ンに対し 3方向から圧延ロールによる圧下を受けるが、 内面規制工具を用いないた め、 多数の筋状しわや角張りが発生する。 その後、 抽伸加工を施すことによって、 筋状しわや角張りを改善できるとともに、 内外面全体の平滑ィ匕が図られる。
本発明者らの検討によれば、 ストレツチレデューサ圧延ままの熱間仕上げ鋼管で は、 せいぜい中心線平均粗さ R aで 5〜 1 0 μ πιであるが、 冷間抽伸によって中心 線平均粗さ R aで 1〜4 μ mにまで平滑化され、 それによつて疲労寿命の改善に顕 著な効果が得られる。 このため、 本発明の鋼管の内表面の表面粗さは、 中心線平均 粗さ R aで 1〜4 μ πιとする必要がある。
上述したように、 鋼管の内表面を形成する凹凸形状のうち、 大きい凹凸形状を所. 定の範囲で管理するとともに、 鋼管の内表面の凹凸形状の平均的なレベル指標を所 定の範囲に管理することによって、 これらの作用が相まって、 最終段階での冷間軸 絞り加工でのしわ深さの進展が十分に抑制され、 疲労強度を向上させることができ る。 . . . .
冷間軸絞り加工量は、 ドライブシャフト製品形状に応じて決まるのである力 一 般的には、 外径縮径率が 3 0 %および内径縮径率が.6 0 %前後に設定される。 この ような冷間軸絞り加工量を対象とした場合に、 本発明の鋼管が規定する内表面の凹 凸形状および内表面の表面粗さの条件は、 疲労強度を向上させるために、 著しい効 果を発揮する。
本発明の他のドライブシャフト用継目無鋼管では、 ドライブシャフトが優れた 疲労強度を確保するため、 鋼管の内表面を形成する凹凸形状のうち、 大きい凹凸形 状を所定の範囲で管理するとともに、 鋼管の内表面層 5 0 0 μ mにおける硬度をビ ッカース硬度 H v≤ 2 0 0とすることによって、 前記の冷間軸絞り加工量がより高 い場合にも、 前記の場合と同様に、 優れた効果を発揮することができる。
この場合に、 鋼管の内表面層 5 0 O /z mにおける硬度とは、 鋼管の長手方向に 垂 jiな断面における内表面側から肉厚方向への距離が 1 0 0 /z m、 2 0 0 // m、 3 0 0 i m, 4 0 0 μ πιおよび 5 0ひ μ mの各点で測定した硬度の平均値をいう。 内面側でのしわ発生に及ぼす硬度分布の影響を検討した結果、 外面側の硬度が多 少変化しても、 内面側のしわ発生には直接的な影響を及ぼさない。 また、 内面側の 数 μπι〜数 10 mの最表層の近傍では、 冷間抽伸時に内面規制工具によるせん断 変形が作用するので、 肉厚部での平均的な硬度分布に比べ、 硬度が多少高くなる場 合がある。 しかし、 上述した鋼管の内表面層 500 /zmにおける硬度をビッカース 硬度で測定して結果を整理すれば、 しわ進展との相関が得られる。
本発明のドライブシャフト用継目無鋼管では、 対象とする鋼種の化学組成 を規定していないが、 ドライブシャフ トに好適な組成例として、 C : 0. 2 0〜 0. 5 0 %、 S i : 0. 1〜 0. 5 %およぴ M n : 0. 4〜 2. 0 %を含有し、 残部は P、 S等の不純物おょぴ F eからなる組成を例示 することができる。
さらに、 疲労強度に加え諸特性を改善するには、 上記の組成に加え、 C r : 0〜 1. 5 %、 T i : 0〜 O . 0 5 %、 N b : 0〜 0. 0 5 %、 V : 0 〜 0. 1 %·、 M o : 0〜 1 %、 N i : 0〜 0. 5 %、 ( u : 0〜 0. 5 %、 B.: 0〜 0. 0 5 %および C a : 0〜 0. 0 1 %のうち 1種または 2種以上の成分を含有させることができる。
本発明のドライブシャフト用鋼管の製造方法の一例として、 前記図 1に示すよ . うに、 マンドレルミルおよびストレツチレデューサーを用いたマンネスマン製管法 を挙げることができる。
具体的には、 継目無鋼管を熱間製管する際に、 マンドレルミルによる圧延後の再 加熱条件を 800〜1050°Cとして、 ストレツチレデューサ一での圧延温度を充 分に高温にするとともに、 均一化を図ることとしている。 これにより、 ストレッチ レデューサー圧延による鋼管内面の真円度を適切に向上させ、 圧延過程での内面の 多角化の発生を有効に抑制することができる。
図 4は、 ストレツチレデューサ一の圧延ロールにおける孔型形状を示す図であ る。 前述の通り、 ス トレツチレデューサに設けられる圧延スタンドは、 3個 の圧延口ール 6 r力 らなる。 通常、 圧延ロール 6 rにおける孔型形状は、 ロー ル孔型の長半径 r aZ短半径]: bの比で示される最大孔型楕円率で管理される。 本発明の製造方法では、 高温、 かつ均一に再加熱された中空素管をストレツチレ デューサ一で圧延する場合に、 最大孔型楕円率 (r aZr b) が 1. 1以下の圧延 ロールを用いて、 圧下量の均一性を高めることとしている。
上述の再加熱条件および圧延ロールの最大孔型楕円率 (r aZr b) を規定する ことによって、 ストレツチレデューサー圧延後の鋼管内面における真円度を向上さ せ、 内面多角化を有効に抑制することができる。 本宪明の製造方法では、 前述の通 り、 真円度が高められた熱間仕上げ鋼管の内面を研削し、 その後、 冷間抽伸で内面 の平滑度を高めることによって、 効率的に疲労強度に優れたドライブシャフト用鋼 管の内面品質を作り込める。
すなわち、 熱間仕上げ鋼管の内面をサンドプラスト研削した後に、 冷間抽伸にて 内表面の平滑化が図れるため、 前段のサンドプラストによる切削処理を比較的簡易 にでき、 短時間の処理および僅かな切削量で目的を達成することができる。 例えば、 後述する実施例で示すように、 本発明では、 研削時間は 10分程度で、 かつ研削量 は 20 μ m〜 30 μ m確保できれば適用することができる。
また、 冷間抽伸では、 鋼管内面にプラグの内面規制工具を接触させて内面を仕上 げるため、 外面のみならず内面粗さを小さくすることができる。 熱間仕上げ鋼管の 研削加工のみでは、 内表面の表面粗さは、 中心線表面粗さ R aで 5〜: L .0 μ m程度 であったものが、 冷間抽伸加工を施すことで、 1〜4 μπιにまで平滑化できる。 本発明のドライブシャフト用鋼管およびその製造方法の効果を、 実施例 1〜 3に基づいて具体的に説明する。
(実施例 1 )
熱間仕上げ後に冷間抽伸した鋼管、 または熱間仕上げままの鋼管に、 冷間軸絞り 加工を施し、 ねじり疲労強度を調査することにより製品の評価試験を実施した。 供 試材の化学組成は、 質量0 /。で C : 0. 40%s S i : 0. 28%N Mn: 1. 07 %s C r : 0. 14%、 T i : 0. 032%および B : 0. 0014%を含有し、 残部は F eとした。
まず、 丸ビレッ トに穿孔圧延を行った後、 マンドレルミルで延伸圧延を施して、 9 0 0 °Cの条件で再加熱を行い、 ストレツチレデューサで外径絞り圧延して、 外径 5 l ram、 内径 3 5 mm、 肉厚 8 mmの熱間仕上げ鋼管を製造した。 その後に、 研 削時間を変えて、 種々の条件でサンドプラストによる内面研削を施した。
次に、 内面研削後の鋼管に酸洗、 潤滑処理を施して、 円筒プラグを用いて冷間抽 伸を行った後、 7 0 0 °C X 2 0分の焼鈍処理を施して、 外径 4 5隨、 内径 3 1 m m、 肉厚 7 mmのドライブシャフト用鋼管を製造した。
さらに、 比較例として、 冷間抽伸の有無による影響を確認するため、 ストレツ チレデューサで圧延して外径 4 5 mra、 内径 3 1 mtn、 肉厚 7 mmの熱間仕上げ鋼 管を製造し、 上記と同様に内面研削を施して、 ドライブシャフト用鋼管を製造した。 次に、 供試された各ドライブシャフト用鋼管を 5 0 0瞧に切断し、 切断した鋼管 の両管端からミク口観察用の試料をそれぞれ 1個採取して、 鋼管の長手方向に垂直 な断面の内表面に現れる凹凸形状をミクロ観察した。
このミクロ観察では、 垂直な断面に存在する凹部の底までの最大深さ d maxを測定 するととも 、 dが 5 0 z m以上の凹部の深さ dと入り口の幅 wとを測定し、 w/ dを調査した。 さらに、 得ちれた各ドライブシャフト用鋼管の内表面の表面粗さ R aの測定を実施した。
さらに、 供試されたドライブシャフト用鋼管に、 約 3 0 %の冷間軸絞り加工を施 して、 最終製品のドライブシャフトとして用いられた際の疲労寿命を評価した。 こ こでの評価寸法は、 外径 3 2瞧、 内径 1 4 mm、 肉厚 9議とし、 冷間軸絞り加工での 内径縮径率は約 5 5 °/0とした。 供試されたドライブシャフト用鋼管の内面品質の相 違によって、 冷間軸絞り加工でのしわ成長状況に相違が生じるが、 それらを疲労試 験結果として評価した。
図 5に示すように、 疲労特性の評価試験片 7は、 外面において適当な長さ範囲 の平行な試験部 7 aを試験,片中央部に削り出して形成し、 その両端側に掴持部 7 bを形成した。 図 5に示す形状の各試験片 7に焼入れ、 焼戻した後、 その負荷ト ルクを種々に変え、 ねじり疲労試験を行なった。
以上の試験条件と試験結果を表 1に示す。 ここでは、 熱間仕上げ後冷間抽伸さ れた鋼管、 および熱間仕上げままの鋼管であって、 ト用鋼管に供 試されたものを供試鋼管とする。
表 1
Figure imgf000015_0001
注) 表中で *を付したものは、 本発明で規定した範囲を外れたことを示す。 鋼管の長手方向に垂直な断面における内表面を形成する凹凸形状が、 凹部の底ま での深さ dが 1 0 0 /x m以下であり、 そのうち凹部の底までの深さ dが 5 0 μ m以 上である場合にその凹部の入り口幅 wが 0 . 5 d以上 (wZ d ^ O . 5 ) となって おり、 内表面の表面粗さが中心線平均粗さ R aで 1 〜 4 μ mである鋼管では、 冷間 軸絞り加工後の疲労試験においてねじり負荷トルクが高い値となっている。
こ こで、 中心線平均粗さ R aは、 鋼管を軸方向に半割、 すなわち、 .縦 割して、 内表面を軸方向に表面粗さ計で測定した。
一方、 凹部の底までの最大深さ d maxが 5 0 μ πι未満と平滑化されていれば、 凹部 の入り口幅 wが前記の条件を具備しない場合であっても、 内面側を起点とする破壌 は発生しない (供試 No. 9 ) 。
上述の通り、 実施例 1では、 熱間仕上げままの鋼管に冷間抽伸を行うことによつ て、 表面粗さ R aの改善が促進され、 凹凸形状の制御と鋼管内表面の平滑化とが相 まって、 ドライブシャフト用鋼管の疲労特性が顕著に改善された。 (実施例 2 )
実施例 1と同様の熱間工程と研削処理を施した後、 冷間抽伸を行ってドライブシ ャフト用鋼管を製造した。 供試されたドライブシャフト用鋼管に約 3 8 %の冷間軸 絞り加工を施して、 最終製品のドライブシャフトとして使用する場合の疲労寿命を 評価した。
ここでの評価寸法は、 外径 2 8 ram、 内径 9瞧、 肉厚 9 . 5瞧とした。 冷間軸絞り加 ェでの内径縮径率は約 7 1 %となっており、 実施例 1よりも厳しい条件で疲労特性 を評価した。
評価に際しては、 実施例 1 と同様に、 ミクロ観察用の試料を作製し、0 d maxおよび wZ dを調査するとともに、 鋼管の内表面層 5 0 0 μ mにおけるピツカ ース硬度 を測定した。
ただし、 鋼管の内表面層 5 0 0 mにおける硬度は、 冷間軸絞り加工前の熱処理 条件を 7 8 0〜 7 9 0 °Cに均熱し、 その後の徐冷時間を種々調整することによって 調整した。 それぞれの試験条件と試験結果を表 2に示す。
'5
' ·. ·' -- , 表 2
0
Figure imgf000016_0001
注) 表中で *を付したものは、 本発明で規定した範囲を外れたこと
5 を示す。 表 2に示す結果から、 鋼管の長手方向に垂直な断面における内表面を形成する凹 凸形状が、 凹部の底までの深さ dが 10 O xm以下であり、 そのうち凹部の底まで の深さ dが 50 μπι以上である場合にその凹部の入り口幅 wが 0. 5 d以上 (w, d≥0. 5) である鋼管であって、 材料内表面層における硬度がビッカース硬度 H v≤ 200であれば、 疲労強度が向上していることが分かる。
さらに、 望ましくは H V≤ 180を確保すれば、 一層、 疲労特性を向上できるこ とが確認、できた。
(実施例 3)
本発明の製造条件について確認を行った。 供試材の化学組成は、 質量%で C: 0. 45%、 S i : 0. 23 %、 Mn : 0. 76 %および C r : 0. 16 %を 含有し、 残部は F eとした。
前記図 1に示すように、 マンネスマン製管法によって丸ビレツ トに穿孔圧延 を行った後、 マンドレルミルで主として肉厚加工を施した後、 次いで再熱炉に装入 し、 900°Cにて再加熱した。
次のストレッチレデューサーでは、 再加熱された中空素管を 20組の 3ロール圧 延スタンドによつて圧延を施した。 この圧延に際しては、 マンドレルバ一その他の 芯金を用いることなく多数組のロール群で圧延した。
ストレツチレデューサ一によつて熱間仕上げされた鋼管に対して、 サンドプラ ストによる内面研削を行った後、 酸洗、 潤滑処理を施して、 円筒プラグを用いて 冷間抽伸加工を加えた、 次いで 700°CX 20分の焼鈍処理を施して、 外径 45m m、 内径 31mm、 肉厚 7mmのドライブシャフト用鋼管を製造した。
また、 実施例 1と同様に、 製造工程の相違による疲労特性の相違を調査するため、 冷間抽伸の有無による影響を確認する比較例として、 ストレツチレデューサでの圧 延ままで外径 45mm, 内径 31 mm, 肉厚 7 mmの熱間仕上げ鋼管を製造し、 内 面研削を施して、 次いで 700°CX 20分の焼鈍処理してドライブシャフト用鋼管 を製造した。
これによつて、 冷間軸絞り加工前のドライブシャフト用鋼管としての硬度は、 内 表面層 5 0 0 μ mにおいて Η ν 1 9 3 1 9 6に仕上げられた。
さらに、 実施例 1と同じ条件で、 供試されたドライブシャフト用鋼管に約 3 0 % の^絞り加工を施した後、 最終的に焼き入れ処理を行い、 最終製品のドライブシ ャフトとして用いられる際の疲労寿命を評価した。 ここでの評価寸法は、 ^ 3 2 ram、 内径 1 4 mm、 肉厚 9 mmとした。
表 3に内表面の凹凸状況、 表面粗さ、 冷間抽伸の有無、 およびサンドブラスト による内面研削時間とに応じた疲労寿命の評価試験結果を示す。
表 3
Figure imgf000018_0001
注) 表中で *を付したものは、 本発明で規定した範囲を外れたことを示す < 表 3の結果から明らかなように、 本発明で規定する条件で製造された
ャフト用鋼管であれば、 内面研削に長時間を要することなく、 優れた疲労強度を確 保することができる。
また、 研削量については鋼管の内径寸法によって変動するが、 肉厚で 2 0 m 3 0 μ m確保できれば充分であることを確認している。 その後に冷間抽伸すれ ば、 冷間抽伸によって鋼管内面が内面平滑化するので、 効率的に疲労強度に優れた ト用の中空部材を得ることができる。 産業上の利用の可能性
本発明のドライブシャフト用継目無鋼管によれば、 マンネスマン製管法によ つて熱間仕上げされた鋼管に簡易な内面切削加工と、 その後の冷間抽伸 を施すことによって、 鋼管内表面を形成する凹凸形状 凹部深さ dと、 表面粗さ R aと、 凹部入り口幅 wとを規定し、 または、 同様に、 凹凸形状の凹部深さ dと、 内表面層のビッカース硬度 H vと、 凹部入り口幅 wとを規定することにより、 疲労 強度に優れると同時に、 車体軽量化に最適なドライブシャフト用の中空 部材を製造することができる。 したがって、 本発明の製造方法を適用す ることによって、 自動車用ドライブシャフ トを低廉な製造コス トで、 力 つ効率的に製造できるので、 工業的に効果が大きなものとなる。

Claims

請 求 の 範 囲
1 . 鋼管の長手方向に垂直な断面における内表面を形成する凹凸形状が、 凹部の底 までの深さ dが 1 0 0 μ πι以下であり、 かつ、 鋼管の内表面の表面粗さが中心線平 均粗さ R aで 1〜4 /i mである鋼管であって、 前記凹部の底までの深さ dが 5 0 μ m以上である場合に、 その凹部の入り口幅 wが 0 . 5 d以上であることを特徴とす るドライブシャフト用継目無鋼管。
ただし、 前記凹部の底までの深さ dが 5 0 /z m未満である場合に、 その凹部の 入り口幅 wを制限しないものとする
2 . 鋼管の長手方向に垂直な断面における内表面を形成する凹凸形状が、 凹部の底 までの深さ dが 1 0 0 μ πι以下であり、 かつ、 鋼管の内表面層 5 0 0 /i inにおける 硬度がビッカース硬度 H vで 2 0 0以下である鋼管であって、 前記凹部の底までの 深さ dが 5 0 μ πι以上である場合に、 その凹部の入り口幅 wが 0 . 5 d以上である ことを特徴とするドライブシャフト用継目無鋼管。
.ただし、 前記凹部の底までの深さ dが 5 0 μ m未満である場合に、 その凹部の 入り口幅 Wを制限しないものとする
3 . マンネスマン製管法によって継目無鋼管を熱間加工する際に、 延伸圧延後の再 加熱条件を 8 0 0〜1 0 5 0 °Cとし、 定径圧延での最大孔型楕円率 (長半径/短半 径) を 1 . 1以下の条件で圧延して熱間仕上げした後、 前記熱間仕上げの鋼管にサ ンドブラストで内面研削を施し、 次いで冷間抽伸を行うことを特徴とするドライブ シャフト用継目無鋼管の製造方法。
4 . 内面研削で少なくとも 2 0 mの研削量を確保し、 次いで冷間抽伸を行うこと により鋼管内表面の表面粗さを中心線平均粗さ R aで l〜4 /i mとすることを特徴 とする請求項 3に記載のドライブシャフト用継目無鋼管の製造方法。
PCT/JP2004/000781 2003-01-31 2004-01-28 ドライブシャフト用継目無鋼管およびその製造方法 WO2004071686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005504938A JP4315154B2 (ja) 2003-01-31 2004-01-28 ドライブシャフト用継目無鋼管
DE602004011184T DE602004011184T2 (de) 2003-01-31 2004-01-28 Nahtloses stahlrohr für eine antriebswelle und verfahren zu seiner herstellung
EP04705922A EP1595609B1 (en) 2003-01-31 2004-01-28 Seamless steel tube for drive shaft and method of manufacturing the same
US11/191,909 US20050266927A1 (en) 2003-01-31 2005-07-29 Seamless steel tube for drive shaft and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003024496 2003-01-31
JP2003-024496 2003-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/191,909 Continuation US20050266927A1 (en) 2003-01-31 2005-07-29 Seamless steel tube for drive shaft and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2004071686A1 true WO2004071686A1 (ja) 2004-08-26

Family

ID=32866205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000781 WO2004071686A1 (ja) 2003-01-31 2004-01-28 ドライブシャフト用継目無鋼管およびその製造方法

Country Status (9)

Country Link
US (1) US20050266927A1 (ja)
EP (1) EP1595609B1 (ja)
JP (1) JP4315154B2 (ja)
KR (1) KR100644843B1 (ja)
CN (1) CN100384553C (ja)
AR (1) AR042932A1 (ja)
AT (1) ATE383209T1 (ja)
DE (1) DE602004011184T2 (ja)
WO (1) WO2004071686A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221250A (ja) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
WO2008123363A1 (ja) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. 一体成形型ドライブシャフト用冷間仕上継目無鋼管およびそれを用いたドライブシャフト、並びにその冷間仕上継目無鋼管の製造方法
JP2009018333A (ja) * 2007-07-13 2009-01-29 Sumitomo Metal Ind Ltd 金属管の製造方法
JP2014029328A (ja) * 2012-06-29 2014-02-13 Nsk Ltd トルク測定装置付回転伝達装置
WO2014207953A1 (ja) * 2013-06-25 2014-12-31 日本精工株式会社 回転伝達装置
JP2015087224A (ja) * 2013-10-30 2015-05-07 日本精工株式会社 トルク測定装置付回転伝達装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008732B1 (en) * 2006-03-29 2013-10-30 Nippon Steel & Sumitomo Metal Corporation Cold finish seamless steel pipe for drive shaft and method for producing the same
DE102006031564A1 (de) * 2006-07-07 2008-01-10 Gesenkschmiede Schneider Gmbh Verfahren zur Herstellung eines rotationssymmetrischen Teils, insbesondere Welle
CN101980814B (zh) * 2008-03-31 2013-04-10 住友金属工业株式会社 无缝管的制造方法
DE102010028898A1 (de) * 2010-05-11 2011-11-17 Tedrive Holding B.V. Seitenwelle zwischen einem Achsdifferenzial und den Rädern eines Kraftfahrzeugs
US8246477B2 (en) * 2010-05-20 2012-08-21 Moyno, Inc. Gear joint with super finished surfaces
CN102019300A (zh) * 2010-11-10 2011-04-20 江苏华程工业制管股份有限公司 冷拔管的制造方法
CN102649211B (zh) * 2011-02-24 2014-07-02 宝钢特钢有限公司 不锈钢无缝钢管的制造方法
CN102632102A (zh) * 2012-04-16 2012-08-15 常熟市无缝钢管有限公司 电梯控制开关用异型管材的加工方法
CN102921763A (zh) * 2012-12-05 2013-02-13 天津市大地工贸有限公司 一种无缝钢管加工工艺
JP6075270B2 (ja) * 2013-11-06 2017-02-08 日本精工株式会社 トルク測定装置付回転伝達装置
JP6075266B2 (ja) * 2013-10-29 2017-02-08 日本精工株式会社 トルク測定装置付回転伝達装置
JP6075269B2 (ja) * 2013-11-05 2017-02-08 日本精工株式会社 トルク測定装置付回転伝達装置
CN103921066B (zh) * 2014-03-18 2017-01-11 江苏飞翔精密机械制造有限公司 一种减震器用无缝钢管的制造方法
CN107159726A (zh) * 2016-03-07 2017-09-15 西安九洲生物材料有限公司 一种金属微管的生产方法
CN109227039A (zh) * 2018-09-20 2019-01-18 珠海市机械厂有限公司 一种液压油缸缸筒的加工方法
CN111853043B (zh) * 2020-06-18 2023-05-23 浙江久鼎机械有限公司 一种汽车传动轴用冷轧无缝钢管及其制备工艺
CN112620369B (zh) * 2020-12-01 2022-11-22 浙江骏达钢管制造有限公司 一种高性能不锈钢无缝钢管的加工装置
CN115679195B (zh) * 2021-07-30 2023-10-17 宝山钢铁股份有限公司 一种汽车驱动轴用无缝钢管及其制造方法
DE102022114337A1 (de) 2022-06-08 2023-12-14 Mannesmann Precision Tubes Gmbh Verfahren zur Herstellung eines nahtlosen Präzisionsstahlrohrs, derartiges Präzisionsstahlrohr und entsprechende Herstellungsanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122608A (ja) * 1987-11-06 1989-05-15 Nkk Corp 内面超平滑継目無管の製造方法
JPH0716616A (ja) * 1993-07-06 1995-01-20 Sumitomo Metal Ind Ltd 鋼管の絞り圧延方法
JP2822849B2 (ja) * 1992-06-19 1998-11-11 日本鋼管株式会社 自動車用継目無鋼管の製造法
JP2002361319A (ja) * 2001-06-05 2002-12-17 Sumitomo Metal Ind Ltd 内面平滑性に優れた継目無鋼管の製造方法および継目無鋼管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760713B2 (ja) * 1992-09-24 1998-06-04 新日本製鐵株式会社 耐火性及び靱性の優れた制御圧延形鋼の製造方法
JPH06128628A (ja) * 1992-10-16 1994-05-10 Toyota Motor Corp 高強度中空鋼管の製造方法
CN2183226Y (zh) * 1993-08-12 1994-11-23 中国科学院力学研究所 用于解决薄钢板热处理退火粘结问题的冷轧工作辊
US6390924B1 (en) * 1999-01-12 2002-05-21 Ntn Corporation Power transmission shaft and constant velocity joint
CN2528559Y (zh) * 2001-12-25 2003-01-01 石家庄钢铁有限责任公司 带肋钢筋三线切分轧制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122608A (ja) * 1987-11-06 1989-05-15 Nkk Corp 内面超平滑継目無管の製造方法
JP2822849B2 (ja) * 1992-06-19 1998-11-11 日本鋼管株式会社 自動車用継目無鋼管の製造法
JPH0716616A (ja) * 1993-07-06 1995-01-20 Sumitomo Metal Ind Ltd 鋼管の絞り圧延方法
JP2002361319A (ja) * 2001-06-05 2002-12-17 Sumitomo Metal Ind Ltd 内面平滑性に優れた継目無鋼管の製造方法および継目無鋼管

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221250A (ja) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
WO2008123363A1 (ja) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. 一体成形型ドライブシャフト用冷間仕上継目無鋼管およびそれを用いたドライブシャフト、並びにその冷間仕上継目無鋼管の製造方法
JP5273036B2 (ja) * 2007-03-30 2013-08-28 新日鐵住金株式会社 一体成形型ドライブシャフト用冷間仕上継目無鋼管およびそれを用いたドライブシャフト、並びにその冷間仕上継目無鋼管の製造方法
JP2009018333A (ja) * 2007-07-13 2009-01-29 Sumitomo Metal Ind Ltd 金属管の製造方法
JP2014029328A (ja) * 2012-06-29 2014-02-13 Nsk Ltd トルク測定装置付回転伝達装置
WO2014207953A1 (ja) * 2013-06-25 2014-12-31 日本精工株式会社 回転伝達装置
US10480635B2 (en) 2013-06-25 2019-11-19 Nsk Ltd. Rotation transmission device
JP2015087224A (ja) * 2013-10-30 2015-05-07 日本精工株式会社 トルク測定装置付回転伝達装置

Also Published As

Publication number Publication date
EP1595609B1 (en) 2008-01-09
EP1595609A1 (en) 2005-11-16
DE602004011184T2 (de) 2009-01-02
JP4315154B2 (ja) 2009-08-19
EP1595609A4 (en) 2006-03-22
AR042932A1 (es) 2005-07-06
US20050266927A1 (en) 2005-12-01
DE602004011184D1 (de) 2008-02-21
KR20050094055A (ko) 2005-09-26
CN1744955A (zh) 2006-03-08
KR100644843B1 (ko) 2006-11-13
JPWO2004071686A1 (ja) 2006-06-01
CN100384553C (zh) 2008-04-30
ATE383209T1 (de) 2008-01-15

Similar Documents

Publication Publication Date Title
WO2004071686A1 (ja) ドライブシャフト用継目無鋼管およびその製造方法
JP4853514B2 (ja) ドライブシャフト用冷間仕上継目無鋼管の製造方法
JP5273036B2 (ja) 一体成形型ドライブシャフト用冷間仕上継目無鋼管およびそれを用いたドライブシャフト、並びにその冷間仕上継目無鋼管の製造方法
CN110052792B (zh) 一种液压缸用缸筒的制造方法
CN107931331B (zh) 一种高精度二辊冷轧无缝钢管的生产方法
JP2003311317A (ja) 継目無管の製造方法
WO2005068098A9 (ja) 継目無管の製造方法
WO2005075121A1 (ja) 冷間仕上げ継目無鋼管
WO2007111131A1 (ja) 継目無管の製造方法
JP2008221250A (ja) 継目無鋼管の製造方法
JP2822849B2 (ja) 自動車用継目無鋼管の製造法
CN112536406A (zh) 一种避免表面开裂的锻造拔长方法
CN109702014B (zh) 挂车车轴定方装置、挂车车轴及其制备方法
JPH01247532A (ja) スプリング用継目無鋼管の製造方法
JP4182556B2 (ja) 継目無鋼管の製造方法
CN112496216A (zh) 一种30Cr15MoN高氮马氏体不锈钢钢棒的锻造生产工艺
CN105773078B (zh) 一种汽车半轴的加工成型工艺
JP2004009126A (ja) 中空スタビライザー用電縫溶接鋼管
RU2238810C2 (ru) Способ изготовления и эксплуатации дорнов пилигримовых станов из стали марки сд2 (25х2м1ф) для производства горячекатаных труб большого и среднего диаметров
JPH1058013A (ja) 小径継目無金属管の製造方法
JPH06240357A (ja) 高靭性・高強度鋼管の製造方法
CN118417306A (zh) 一种横截面组织均匀的冷镦钢10b21的生产方法
RU2530430C1 (ru) ЗАГОТОВКА-СЛИТОК ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА ПОД ПРОШИВКУ И ПОСЛЕДУЮЩУЮ РАСКАТКУ ЕЕ НА ДВУХВАЛКОВОМ СТАНЕ ПОПЕРЕЧНО- ВИНТОВОЙ ПРОКАТКИ В ПЕРЕДЕЛЬНЫЕ ГИЛЬЗЫ-ЗАГОТОВКИ ДЛЯ ПРОИЗВОДСТВА МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 610×36,53×3200-3550 мм ИЗ СТАЛИ МАРКИ 08Х18Н10Т ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ
CN114653869A (zh) 一种扭力轴制造工艺
CN115305328A (zh) 一种新型材料强化机械性能工艺

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504938

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057013830

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11191909

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048033283

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004705922

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057013830

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004705922

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004705922

Country of ref document: EP