WO2004060022A1 - 発光装置及びその作製方法 - Google Patents

発光装置及びその作製方法 Download PDF

Info

Publication number
WO2004060022A1
WO2004060022A1 PCT/JP2003/016539 JP0316539W WO2004060022A1 WO 2004060022 A1 WO2004060022 A1 WO 2004060022A1 JP 0316539 W JP0316539 W JP 0316539W WO 2004060022 A1 WO2004060022 A1 WO 2004060022A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
light
substrate
emitting device
pair
Prior art date
Application number
PCT/JP2003/016539
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Kurihara
Original Assignee
Semiconductor Energy Laboratory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co., Ltd. filed Critical Semiconductor Energy Laboratory Co., Ltd.
Priority to AU2003296080A priority Critical patent/AU2003296080A1/en
Priority to JP2004562904A priority patent/JP4610343B2/ja
Publication of WO2004060022A1 publication Critical patent/WO2004060022A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the invention disclosed in this specification relates to a light-emitting device having a light-emitting layer containing an organic compound, a method for manufacturing the device, or an electronic device in which the device is mounted as a component.
  • the light-emitting device described in this specification includes, for example, EL display. Background art
  • the EL element includes a layer containing an organic compound (hereinafter, referred to as an EL layer) from which luminescence generated by application of an electric field (ElectroLuminescenc) is obtained, an anode, and a cathode.
  • Luminescence includes light emission when returning from the singlet excited state to the ground state (fluorescence) and light emission when returning from the triplet excited state to the ground state (phosphorescence).
  • An EL element has a structure in which an EL layer is sandwiched between a pair of electrodes, and the EL layer usually has a laminated structure.
  • a laminated structure called “hole transport layer Z light-emitting layer Z electron transport layer” is given.
  • This structure has a very high luminous efficiency, and most light-emitting devices currently under research and development adopt this structure.
  • a hole injection layer, a hole transport layer / a light emitting layer, an electron transport layer, or a hole injection layer, a hole transport layer, a Z light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order on the anode.
  • the structure to do is good.
  • the light emitting layer may be doped with a fluorescent dye or the like.
  • these layers may be formed using a low molecular material or a high molecular material.
  • EL layer all layers provided between the cathode and the anode are collectively referred to as an EL layer. Therefore, the above-described hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are all included in the EL layer.
  • a light-emitting element formed by a cathode, an EL layer, and an anode is called an EL element, and includes a method in which an EL layer is formed between two types of striped electrodes provided so as to be orthogonal to each other (simple method).
  • Matrix type or a method in which an EL layer is formed between pixel electrodes connected to a TFT and arranged in a matrix and a counter electrode (active matrix type).
  • active matrix type which has a switch for each pixel (or one dot)
  • the active matrix type which has a switch for each pixel (or one dot) is considered to be more advantageous because it can be driven at a lower voltage.
  • the EL element is extremely susceptible to deterioration, and is easily oxidized or absorbed by the presence of oxygen or water to be deteriorated. Thus, there is a problem that the emission luminance of the EL element is reduced and the life is shortened. Therefore, conventionally, the arrival of oxygen or water to the EL element is prevented by covering the EL element with a counter substrate, sealing dry air inside, and attaching a desiccant.
  • the substrate on which the element is formed and the counter substrate are bonded and adhered with a sealant (for example, Patent Document 1).
  • the step of bonding the substrate on which the EL element is formed and the counter substrate with a sealant in this manner is called a sealing or sealing step.
  • the structure of the EL element is such that the electrode on the substrate is formed as an anode, an organic compound layer is formed on the anode, and the cathode is formed on the organic compound layer.
  • Light was extracted from the anode, which is a transparent electrode, to the TFT (hereinafter referred to as the bottom emission structure).
  • the electrode on the substrate is formed as an anode, a layer containing an organic compound is formed on the anode, and a transparent layer is formed on the layer containing the organic compound.
  • a top emission structure a structure in which a cathode serving as an electrode is formed (hereinafter, referred to as a top emission structure)
  • a counter substrate formed of a material that blocks light cannot be used. This is the same for a dual emission structure that simultaneously emits light from the upper surface and the lower surface.
  • the top emission structure and the dual emission structure can reduce the number of material layers through which light emitted from the layer containing an organic compound passes, and can suppress stray light between material layers having different refractive indexes.
  • the bottom emission structure remove the desiccant to prevent the desiccant from absorbing moisture. Careful handling was required, and it was necessary to work quickly when enclosing.
  • disposing a desiccant on the pixel portion hinders display.
  • the substrate on which the EL element is formed and the opposing substrate are bonded with a UV-curable or thermosetting sealant, and the EL element is placed in a space sealed by the sealant, the opposing substrate, and the substrate.
  • a UV-curable or thermosetting sealant Existing. It is preferable that water and oxygen do not exist in this space and do not enter the space. If water and oxygen exist, there is a problem that the EL element is deteriorated.
  • Sealants are also referred to as sealants.
  • the UV-curable sealant is more advantageous for mass production because the UV-curable sealant and the thermosetting sealant cure quickly and require a smaller device scale. Therefore, many sealing devices for mass production have only a UV irradiation function as a seal hardening function, but in such a case, a thermosetting sealing agent cannot be used.
  • sealants before curing are in contact with each other for a long time, they may be mixed and lose their shape. In addition, since the mixed portion of the mixed sealant does not cure uniformly, the bonding strength may be reduced.
  • an object of the present invention disclosed in the present specification is to provide a light emitting device having a structure capable of overcoming the above problems and preventing oxygen or moisture from reaching an EL element, and a method for manufacturing the same. I do.
  • only the bottom emission structure In a top emission structure and a dual emission structure, no sealing agent is enclosed, and even if a sealing device having only a UV irradiation function is used, all sealing agents are not damaged by UV irradiation to the EL element.
  • Another challenge is to cure and seal the EL element.
  • the invention disclosed in this specification includes a first electrode, an organic compound layer in contact with the first electrode, and a second electrode in contact with the organic compound layer, between a pair of substrates at least one of which is translucent.
  • a light-emitting device including a pixel portion having a plurality of EL elements each including an electrode, wherein the first sealant surrounds the pixel portion, and the pixel is disposed in an area surrounded by the first sealant.
  • a second sealant provided so as to cover the entire surface of the portion, and a structure in which a pair of substrates is fixed with the first sealant and the second sealant.
  • a sealant including a gap material (filament, fine particles, etc.) for maintaining a pair of substrates can be used
  • a transparent sealant can be used as the first sealant.
  • Light emitted from the EL element is emitted through the second sealant and one of the pair of substrates.
  • One of the pair of substrates may be a transparent sealing substrate, and the other substrate may be a substrate provided with the EL element, to provide a top emission structure in which these substrates are bonded. Further, the light emitted from the EL element may be emitted through the second sealant and one of the pair of substrates and emitted through the other substrate.
  • the first sealant surrounding the pixel portion is formed by a pair of first patterns provided so as to sandwich the pixel portion.
  • a second pattern surrounding the pixel portion and the pair of first patterns, and a space between the pair of first patterns is filled with at least a second sealant.
  • the pair of first patterns may be, for example, two linear patterns
  • the second pattern may be, for example, a square pattern
  • the corners of the square pattern may be curved.
  • the second sealant is a thermosetting resin, does not include a gap material, and has a light-transmitting property after thermosetting. Also, before bonding the pair of substrates, the vicinity of the midpoint of each of the two sides of the second pattern existing along the pair of the first patterns is slightly separated as shown in FIG. 2 (A). When a pair of substrates are bonded together, they are bonded. When the second pattern has a shape with curved corners, no bubbles are formed at the corners during lamination.
  • both ends of the pair of first patterns are not in contact with the second pattern, and there is an opening between both ends of the pair of first patterns and the second pattern.
  • These openings are present near the four corners of the pixel portion or the four corners of the second pattern.
  • the second sealant is extruded in the direction of the pixel portion, and the pixel portion can be sealed without air bubbles entering the pixel portion.
  • the surface of the substrate on the sealing side is smooth and excellent in flatness so that air bubbles are not mixed.
  • the second sealant immediately after application has a height higher than the first sealant, when bonding the two substrates together, the second sealant is crushed before the first sealant. It spreads to cover the base. At this time, the presence of the pair of first patterns allows the pixel portion to be reliably filled with the second sealant.
  • the first sealant extends after the second sealant has spread over the entire surface of the pixel portion. At this time, near the midpoint of each of the two sides of the second pattern, which exists along the pair of first patterns. Gaps are closed. At this time, the second sealant is completely shielded from the outside air by the first sealant. Therefore, both the first sealing agent and the second sealing agent can prevent water or oxygen from reaching the EL element.
  • the first sealant is first cured by UV irradiation, and then the second sealant is cured by heating.
  • the second sealant is heated for a long time to cure, but the first sealant is already mixed and does not mix with the second sealant.
  • a light-blocking mask or the like is attached to the pixel portion to selectively prevent the pixel portion from being irradiated with UV.
  • the substrate surface is pressed vertically in a direction in which the sealant between the substrates is crushed until the sealant is completely cured.
  • the invention disclosed in the present specification does not require a long press in the heating step for curing the second sealant after the first sealant is cured. That is, in the encapsulation process, it is usually necessary to keep pressing the substrate until the seal is hardened at the time of bonding the substrates, but in the present invention, after the first sealant is hardened first by UV irradiation, In this case, the gap between the substrates is always kept, and the press is not required. Therefore, the sealing device is only for UV curable sealant. Among them, sealing can be performed with a UV-curable sealing agent and a thermosetting sealing agent.
  • the second sealant covering the pixel portion is cured by heating without UV irradiation.
  • the pixel portion is not damaged by UV irradiation, which eliminates the problem of a decrease in emission luminance and a shortened life of the EL element. (The invention's effect)
  • the pixel portion in the sealing process of the top emission structure and the dual emission structure, even in the sealing device having only the UV irradiation function, the pixel portion can be formed without damaging the EL element by the UV irradiation.
  • the covering sealant can be cured. Therefore, a highly reliable light emitting device can be obtained.
  • the first sealant around the pixel portion is cured in a short time by UV irradiation before the second sealant, after the first sealant is cured, the first sealant and the second sealant are cured. Even if the sealant has been in contact for a long time, the two do not mix, so they do not lose their shape and the adhesive strength does not decrease. Therefore, a highly reliable light emitting device can be obtained.
  • FIG. 1 is a diagram showing the first embodiment.
  • FIG. 2 is a diagram showing the first embodiment.
  • FIG. 3 is a diagram showing the second embodiment.
  • FIG. 4 is a diagram showing the third embodiment.
  • FIG. 5 is a diagram illustrating a configuration of an active matrix light emitting device according to a first embodiment.
  • FIG. 6 is a diagram illustrating a second embodiment.
  • FIG. 7 is a view showing that the light transmittance is improved by the second sealing agent.
  • FIG. 8 is a diagram illustrating an example of the electronic device according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of the electronic device according to the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a top view of an active matrix type light emitting device embodying the invention disclosed in this specification.
  • 11 is a first substrate
  • 12 is a second substrate
  • 13 is a pixel portion
  • 14 is a drive circuit portion
  • 15 is a terminal portion
  • 16a and 16b are first portions.
  • the sealant, 17a is a second sealant.
  • the material of the first substrate 11 is not particularly limited, but it is preferable that the material of the first substrate 11 has the same coefficient of thermal expansion for bonding to the second substrate 12.
  • a light-transmitting substrate such as a glass substrate, a quartz substrate, or a plastic substrate is used.
  • a top emission type a semiconductor substrate or metal Substrates can also be used.
  • the substrate has a light-transmitting property.
  • the first substrate 11 is provided with a pixel portion 13 having a plurality of EL elements, a drive circuit portion 14, and a terminal portion 15.
  • the first sealants 16a and 16b are arranged so as to surround the pixel portion 13 and the drive circuit portion 14. Further, a part of the first sealant overlaps with the terminal portion 15 (or the wiring extending from the terminal electrode).
  • the first sealant includes a gap material for maintaining a distance between the pair of substrates. Since the gap material is included, it is preferable that the first sealant and the element (TFT, etc.) do not overlap so that a short circuit or the like does not occur when any load is applied.
  • the first sealant includes a pair of first patterns 16a and second patterns 16b.
  • the pair of first patterns 16a is linear and provided inside the second pattern 16b.
  • the upper surface shape of the second pattern 16b is rectangular, and surrounds the pixel portion 13 and the pair of first patterns 16a.
  • the corners of the second rectangular pattern 16b may be curved.
  • two linear patterns are arranged so as to sandwich the pixel portion, and a rectangular pattern having a curved corner is arranged so as to surround the pixel portion.
  • the pair of substrates includes a first sealant denoted by 16a and 16b disposed around the pixel portion, and a first sealant. It is fixed with a second sealant 1 a that is in contact with and covers the pixel portion. That is the second sealing agent, t is blocked completely from the outside air by the first sealing agent.
  • the second sheet one Le agent, and a light-transmitting material after curing, also contains gap material Therefore, it has higher translucency than the first sealant.
  • the second sealant 17a protrudes from the opening 18 between the end of the pair of first patterns and the second pattern.
  • FIG. 2A shows an example of a top view of a sealing substrate (second substrate 22) before bonding.
  • FIG. 2A illustrates an example in which a light-emitting device having one pixel portion is formed from one substrate.
  • first sealant indicated by 26a and 26b is formed on a second substrate 22 using a dispenser
  • first sealant is placed between a pair of first patterns 26a of the first sealant.
  • a second sealant 27a having a lower viscosity than the sealant is dropped.
  • the top view in the dropped state corresponds to FIG. 2 (A).
  • the second substrate is bonded to the first substrate having the pixel portion 23 including the EL element.
  • the first substrate is further provided with a drive circuit portion 2 and a terminal portion 25 (see the top view immediately after the first substrate and the second substrate are attached to each other). As shown in Fig.
  • the viscosity of the first sealant is high, so it spreads only slightly when pasted, but the viscosity of the second sealant is low, so that as shown in Fig. 2 (B), The second sealant spreads quickly in a plane.
  • the second sealant is supplied from the opening 28 between the end of the pair of first patterns 26a of the first sealant and the second pattern 26b in the direction of the arrow a in FIG. 2B. To Extruded. This makes it possible to prevent bubbles from being present in the region filled with the second sealant.
  • the first sealant indicated by 26a and 26b does not mix immediately when it comes into contact with the second sealant 27b, and the second sealant must be mixed with the second sealant if it does not mix with the second sealant. It has a viscosity that does not change at the formation position depending on the sealant.
  • the second sealant 27b protrudes from the opening 28, and the protruding peripheral edge of the second sealant 27b is curved.
  • the second sealant 26 b of the first sealant is completely connected in the direction of the arrow in FIG. 2 (B).
  • the sealant 27 b is completely shielded from the outside air, so that oxygen and moisture can be blocked. Also, the bonding area of the total increases, so that the bonding strength also increases.
  • the first sealing agent or the second sealing agent is formed on the second substrate 22 and then the substrates are attached to each other.
  • the first sealant or the second sealant may be formed on one substrate.
  • UV irradiation is performed to cure the first sealant.
  • the pixel portion is selectively protected from UV irradiation using a light shielding mask or the like.
  • a light-shielding mask having a Cr film formed on quartz glass was used.
  • the second sealant is cured by heating.
  • the heating temperature at this time is set so that the EL element is not damaged. Specifically, the temperature is preferably from 60 ° C. to 100 ° C.
  • the heating time is preferably from 1 hour to 3 hours.
  • Figure 2 (B) shows the dashed lines.
  • In 29 becomes the substrate cutting line.
  • a dividing line may be set in parallel along the second pattern 26b of the first sealant formed on the terminal portion 25. According to the procedure described above, the shape of the second sealant 17a shown in FIG. 1A can be obtained.
  • FIG. 1 (A) shows an example in which the second sealant 17 a protrudes from the opening 18.
  • various shapes can be obtained. It can be.
  • Various shapes can be obtained by adjusting the pressing time, speed, pressure, and the like.
  • the second sealant 17b does not protrude from the opening, and the peripheral edge of the second sealant just draws an arc to fill the gap between the first sealant. It has a filling shape.
  • the periphery of the second sealant 17c may have a shape that is concave from the opening and is curved.
  • the one pattern is not limited to a linear shape, and it is sufficient that a pair of patterns is arranged symmetrically with respect to the pixel portion.
  • the second pattern of the first sealant is not limited to a square shape. It suffices if there is no break in bonding the substrates.
  • the shape of the first sealant may be slightly curved so that the second sealant having a low viscosity is easily spread.
  • FIG. 3 shows a part of a cross-sectional structure in a pixel portion of the invention disclosed in this specification.
  • 300 is the first substrate, 301 a, 30 lb is the insulating layer, 302 is the first electrode 308 is the first electrode, 309 is the insulator, 310 is the lower layer, 311 is the second electrode, 312 is the transparent protective layer, 313 is the second sealant, 31 4 is a second substrate.
  • a TFT 302 (p-channel TFT) provided on the first substrate 300 is an element for controlling a current flowing through the light emitting EL layer 310, and 304 is a drain region (or a source region). is there.
  • Reference numeral 306 denotes a drain electrode (or source electrode) connecting the first electrode and the drain region (or source region).
  • a wiring 307 such as a power supply line and a source wiring is formed at the same time.
  • the first electrode and the drain electrode are formed separately, but they may be the same.
  • an insulating layer 301a serving as a base insulating film (here, the lower layer is a nitride insulating film and the upper layer is an oxide insulating film) is formed, and is provided between the gate electrode 305 and the active layer. Is provided with a gate insulating film.
  • one pixel is provided with one or more TFTs (n-channel TFT or p-channel TFT).
  • a TFT having one channel formation region 303 is shown here, the present invention is not particularly limited to this, and a TFT having a plurality of channels may be used.
  • Reference numeral 308 denotes a first electrode, that is, an anode (or a cathode) of the OLED.
  • a film containing a gold material or a compound material as a main component or a stacked film thereof may be used in a total thickness of 100 nm to 800 nm.
  • a titanium nitride film is used as the first electrode 308.
  • an insulator 309 (referred to as a bank, a partition, a barrier, a bank, or the like) covering an end portion (and the wiring 307) of the first electrode 308 is provided.
  • an inorganic material silicon oxide, silicon nitride, silicon oxynitride, or the like
  • a photosensitive or non-photosensitive organic material polyimide, acrylic, polyamide, polyimide amide, resist, or benzocyclobutene
  • a stack of these layers can be used, a photosensitive organic resin covered with a silicon nitride film is used here.
  • the insulator when a positive photosensitive acrylic is used as the material of the organic resin, it is preferable that only the upper end of the insulator has a curved surface having a radius of curvature.
  • a negative type which becomes insoluble in an etchant by photosensitive light or a posi type which becomes soluble in an etchant by light can be used.
  • the layer 310 containing an organic compound is formed by an evaporation method or a coating method.
  • a vacuum degree of 5 X 1 0- 2 T orr ( 0. 6 6 5 P a) below preferably is evacuated to 1 0 one 4 ⁇ 1 0- 6 P a deposition
  • the deposition is performed in a chamber.
  • the organic compound has been vaporized by resistance heating before vapor deposition, and the shutter must be opened during vapor deposition. Scatters in the direction of the substrate.
  • the vaporized organic compound is scattered upward and is deposited on the substrate through an opening provided in the mail mask.
  • Alq 3 , Al Q 3 partially doped with red light-emitting dye Nile Red, A 1 q 3 > p—Et TAZ, and TPD (aromatic diamine) are sequentially laminated by vapor deposition. Can give a white color.
  • a layer containing an organic compound is formed by a coating method using spin coating, it is preferable to perform baking by vacuum heating after coating.
  • an aqueous solution of poly (ethylenedioxythiophene) Z poly (styrenesulfonate) (PEDOTZP SS) acting as a hole injection layer is applied to the entire surface, baked, and then the luminescent center dye (1 , 1,4,4-tetraphenyl-1,3-butadiene (TPB), 4-dicyanomethylene-12-methyl-6- (p-dimethylaminostyryl) -14H-pyran (DCM 1), Nile Red, coumarin 6, etc.)
  • TPB 1,4,4-tetraphenyl-1,3-butadiene
  • DCM 1 4-dicyanomethylene-12-methyl-6- (p-dimethylaminostyryl) -14H-pyran
  • a coated polyvinyl carbazole (PVK) solution may be applied to the entire surface and fired.
  • PEDOTZP SSS uses water as a solvent and is insoluble in organic solvents. Therefore, there is no need to worry about redissolving when PVK is applied from above. Since PEDOTZP SSS and PVK have different solvents, it is preferable not to use the same film forming chamber.
  • the layer 310 containing an organic compound can be made into a single layer, and the 1,3,4-year-old oxadiazole derivative (PBD) can be dispersed in the hole transporting polyvinyl carbazole (PVK). Good. Also 30 1;%? 80 is dispersed as an electron transporting agent, and white light can be obtained by dispersing an appropriate amount of the four dyes (TPB, coumarin 6, DCM1, and Nile Red).
  • Reference numeral 311 denotes a second electrode made of a conductive film, that is, a cathode (or an anode) of the OLED.
  • Examples of the material of the second electrode 311 include alloys such as Mg Ag, Mg In, Al Li, CaF 2 , and Ca N, or elements belonging to Group 1 or 2 of the periodic table and aluminum.
  • a light-transmitting film formed by co-evaporation may be used.
  • an aluminum film with a thickness of 1 nm to 10 nm or an aluminum film containing a small amount of Li is used.
  • the material in contact with the layer 310 containing an organic compound can be formed of a material other than an oxide, and the reliability of the light emitting device can be improved.
  • a light-transmitting layer made of C a F 2 , MgF 2 , or B a F 2 (thickness l nm to 5 nm) is used as a cathode buffer layer. ) May be formed.
  • an auxiliary electrode may be provided on the second electrode 311 in a region which is not a light emitting region.
  • a resistive heating method by vapor deposition may be used, and the cathode may be selectively formed using a vapor deposition mask.
  • Reference numeral 312 denotes a transparent protective layer formed by a vapor deposition method, which protects the second electrode 311 made of a metal thin film. Further, the transparent protective layer 312 is covered with a second sealing agent 313. Since the second electrode 311 is an extremely thin metal film, it is easily oxidized when exposed to oxygen, and may react with a solvent or the like contained in the sealant to deteriorate.
  • the second electrode 3 11 made of such a metal thin film is used as a transparent protective layer 3 1 2, for example.
  • a transparent protective layer 3 1 2 for example, by covering with C a F 2 , MgF 2 , or B a F 2 , the reaction between the second electrode 311 and components such as a solvent contained in the second sealant 313 is prevented. In addition, it effectively blocks oxygen and moisture without using a desiccant.
  • C a F 2 , MgF 2 , and B a F 2 can be formed by a vapor deposition method, and by continuously forming a cathode and a transparent protective layer by a vapor deposition method, contamination of impurities and The electrode surface can be prevented from contacting the outside air.
  • the transparent protective layer 312 can be formed under conditions that hardly damage the layer containing an organic compound. Further, C a F 2, MgF 2 or by sandwiching providing a layer having a B a F 2 consisting of light-transmitting, and further protect the second electrode 31 1 and below the second electrode 3 1 1 You may.
  • a metal having no oxygen atom (a material having a large work function) such as a titanium nitride film is used as the first electrode, and a metal having no oxygen atom itself (a material having a small work function) is used as the second electrode.
  • material for example, an aluminum thin film, further C a F 2, MgF 2 or by covering with B a F 2, anoxia close to zero as possible the region between the first electrode and the second electrode, State can be maintained.
  • the second sealant 313 bonds the second substrate 314 and the first substrate 300 by the method described in Embodiment Mode 1.
  • a material having a light-transmitting property after curing, and a thermosetting resin may be used as the second sealant 313, a material having a light-transmitting property after curing, and a thermosetting resin may be used.
  • a heat-resistant thermosetting epoxy resin having a specific gravity of 1.17 (25 ° C), a viscosity of 900 OmPa ⁇ s, and a tensile shear adhesive strength of ⁇ 2 Tg (glass transition point) 74 is used.
  • the overall transmittance can be improved.
  • the light transmittance when a second sealant was filled between a pair of glass substrates and the light transmittance when a nitrogen gas was filled between a pair of glass substrates were determined.
  • Figure 7 shows a graph in which the former transmittance is represented by a solid line and the latter is represented by a dotted line. As shown by the solid line in FIG. 7, the light transmittance when the second sealant is filled between the pair of glass substrates is 85% or more in the visible light region.
  • the vertical axis indicates the light transmittance
  • the horizontal axis indicates the light wavelength.
  • FIG. 3B shows a simplified laminated structure in the light emitting region. Light emission is emitted in the direction of the arrow shown in FIG.
  • the insulating layer 301a and the insulating layer 301b are collectively shown as an insulating layer 301.
  • a first electrode 318 made of a transparent conductive film is used as shown in FIG. 3C instead of the first electrode 308 made of a metal layer, light emission is emitted to both the upper surface and the lower surface. can do.
  • the transparent conductive film ITO (indium tin oxide alloy), indium oxide zinc oxide alloy ( ⁇ 2 ⁇ 3 —Zn ⁇ ), zinc oxide (ZnO), or the like may be used.
  • a transparent conductive film may be formed by a sputtering method using an evening gate in which silicon oxide is mixed with ITO. This embodiment can be freely combined with Embodiment 1.
  • Fig. 4 shows an example in which a plurality of pixel sections are formed on one substrate, that is, an example in which multiple substrates are formed. Here, an example in which four panels are formed using one substrate is shown.
  • a filler containing filler (diameter 6 / m to 24 m) and having a viscosity of 370 Pa ⁇ s is used.
  • the first sealants 32a and 32b have a simple seal pattern, they can be formed by a printing method.
  • the second sealing agent 33 having a light-transmitting property after curing is dropped.
  • a heat-resistant thermosetting epoxy resin having a specific gravity of 1.17 (25 ° C), a viscosity of 900 OmPas, a tensile shear adhesive strength of 15 NZmm 2 , and a Tg (glass transition point) of 74 is used.
  • the first substrate provided with the pixel portion 34 and the second substrate provided with the sealant are bonded to each other.
  • the second sealant 33 is spread so as to have a shape as shown in FIG. 1 (A), FIG. 1 (B), or FIG. 1 (C), and the first sealant 32, Fill between 32 b.
  • the first sealant 32a, 32b the second sealant 33 can be filled without bubbles.
  • UV irradiation is performed to cure the first sealants 32a and 32b.
  • the pixel area is selectively protected from UV irradiation using a light shielding plate or the like.
  • the second sealant 33 is cured by heating.
  • the heating temperature at this time should be such that the EL element is not damaged. Specifically from 60 Preferably between 100 ° C and 100 ° C.
  • the heating time is preferably about 1 hour to 3 hours.
  • a scribe line 35 indicated by a chain line is formed using a scriber device.
  • the scribe line 35 may be formed along the second pattern of the first sealant.
  • the bonded first substrate and the second substrate are separated using a breaking force device.
  • a breaking force device As shown in FIG. 4E, four panels can be manufactured from the pair of substrates.
  • Embodiment 1 can be freely combined with Embodiment 1 or Embodiment 2.
  • FIG. 5 shows an example of a light-emitting device including an EL element having a layer containing an organic compound as a light-emitting layer.
  • FIG. 5A is a top view illustrating the light-emitting device
  • FIG. 5B is a cross-sectional view of FIG. 5A cut along A-A ′.
  • 1101 shown by a dotted line is a source signal line driving circuit
  • 1102 is a pixel portion
  • 1103 is a gate signal line driving circuit.
  • 1104 is a sealing substrate
  • 1105 is a first sealant
  • the inside surrounded by the first sealant 1105 is a transparent second sealant 110
  • the second sealant 1107 protrudes at the four upper corners of the pixel region.
  • Reference numeral 1108 denotes wiring for transmitting signals input to the source signal line driving circuit 1101 and the gate signal line driving circuit 1103, and is connected to an external input terminal. Receives video signals and clock signals from FPC (Flexible Printed Circuit) 1109. Although only the FPC is shown here, a printed wiring board (PWB) may be attached to the FPC.
  • the light-emitting device in this specification includes not only the light-emitting device body but also a state in which an FPC or a PWB is attached.
  • a driving circuit and a pixel portion are formed over the substrate 110.
  • a source signal line driving circuit 1101 and a pixel portion 1102 are shown as driving circuits.
  • the source signal line driver circuit 1101 is a CMOS circuit formed by combining the n-channel TFT 1123 and the p-channel TFT 1124.
  • the TFT forming the drive circuit may be formed by a known CMOS circuit, a PMOS circuit, or an NMOS circuit.
  • a one-piece driver in which a drive circuit is formed on a substrate is shown. However, this is not always necessary, and the driver can be formed not on the substrate but outside.
  • the pixel portion 1102 includes a plurality of TFTs including a switching TFT 111, a current controlling TFT 111, and a first electrode (anode) 113 electrically connected to a drain thereof. It is formed by pixels.
  • the first electrode 1 1 1 3 is in direct contact with the TFT drain, so that the lower layer of the first electrode 1 1 1 3 can be in ohmic contact with the silicon drain. It is preferable that the material layer has a large work function on the surface in contact with the layer containing an organic compound.
  • the material layer has a large work function on the surface in contact with the layer containing an organic compound.
  • the first electrode 111 may be a single layer of a titanium nitride film, or may be a laminate of three or more layers.
  • insulators are formed at both ends of the first electrode (anode) 111.
  • the insulator 111 may be formed using an organic resin film or an insulating film containing silicon.
  • an insulator having a shape shown in FIG. 5 is formed using a positive photosensitive acrylic resin film as the insulator 111.
  • the insulator 111 may be covered with a protective film formed of an aluminum nitride film, an aluminum nitride oxide film, or a silicon nitride film.
  • This protective film is an insulating film mainly composed of silicon nitride or silicon nitride oxide obtained by a sputtering method (DC method or RF method), or a thin film mainly composed of carbon. If a silicon target is formed in an atmosphere containing nitrogen and argon, a silicon nitride film can be obtained. Further, a silicon nitride target may be used. Further, the protective film may be formed using a film forming apparatus using remote plasma. Further, in order to allow light to pass through the protective film, the thickness of the protective film is preferably as small as possible.
  • a layer 115 containing an organic compound is selectively formed by an evaporation method using an evaporation mask or an inkjet method. Further, a second electrode (cathode) 1116 is formed on the layer 1115 containing the organic compound. As a result, an EL element 111 composed of the first electrode (anode) 111, the layer containing the organic compound 111, and the second electrode (cathode) 111 is formed.
  • the light emitting element 1 1 18 is an example of white light emission Therefore, a color filter including a colored layer 1 131 and a BM (light-shielding layer) 1 132 (an overcoat layer is not shown here for simplicity) is provided. What is indicated by 1 1 1 7 is a transparent protective layer.
  • a full-color display can be obtained without using a color filter.
  • the sealing substrate 1104 is bonded with the first sealing agent 1105 and the second sealing agent 1107.
  • the first sealant 1105 and the second sealant 1107 are materials that do not transmit moisture and oxygen as much as possible.
  • the sealing substrate 1104 is made of a glass substrate, a quartz substrate, FRP (Fiberglass-Reinforced Plastics), P VF (polyvinyl fluoride), Mylar, polyester, acrylic, or the like, in addition to the glass substrate and the quartz substrate.
  • a plastic substrate can be used.
  • the sealing substrate 1104 may be sealed with a third sealing agent so as to further cover the side surface (exposed surface). It is possible.
  • the EL element By enclosing the EL element in the first sealant 1105 and the second sealant 1107 in the manner described above, the EL element can be completely shut off from the outside, and when moisture and oxygen are The substance which promotes the deterioration of the organic compound layer can be prevented from entering. Therefore, a highly reliable light emitting device can be obtained.
  • This embodiment can be freely combined with any one of Embodiment Modes 1 to 3.
  • FIG. 6A an example different from the cross-sectional structure shown in Embodiment 2 is shown in FIG.
  • 700 is the first substrate
  • 700a and 701b are insulating layers
  • 7002 is an insulator
  • 710 is an insulating layer
  • 710 is an insulating layer
  • 11 is a second electrode
  • 712 is a transparent protective layer
  • 713 is a second sealant
  • 714 is a second substrate.
  • a TFT 702 (p-channel TFT) provided on the first substrate 700 is an element for controlling a current flowing through the EL layer 710 that emits light
  • 704 is a drain region (or source). Region)
  • 705 is a gate electrode.
  • one pixel is provided with one or more TFTs (n-channel TFTs or P-channel TFTs).
  • TFTs n-channel TFTs or P-channel TFTs.
  • a TFT having one channel formation region 703 is shown here, the present invention is not particularly limited thereto, and a TFT having a plurality of channels may be used.
  • first electrodes 708 a to 708 c formed of a stack of metal layers are formed, and insulators (banks, After forming 709, etching is performed in a self-aligned manner using the insulator 709 as a mask, and a part of the insulator is etched and a part (central part) of the first electrode is removed.
  • a step is formed in the first electrode by thin etching. By this etching, the center of the first electrode is made thin and flat, and the end of the first electrode covered with an insulator is made thick. That is, the first electrode has a shape in which the concave portion is formed. Then, a layer containing an organic compound is formed on the first electrode. 10 and the second electrode 7 11 are formed to complete the EL element.
  • the structure shown in Fig. 6 (A) reflects or converges the light emitted in the horizontal direction on the slope formed at the step of the first electrode, and moves in one direction (the direction passing through the second electrode). This is to increase the amount of light emitted.
  • the metal layer 708 b on which the slope is formed is preferably made of a material that reflects light, for example, a material containing aluminum, silver, or the like as a main component, and a metal in contact with the layer containing an organic compound 710.
  • the layer 708a is preferably an anode material having a large work function or a cathode material having a small work function. Since a wiring 707 such as a power supply line and a source wiring is also formed at the same time, it is preferable to select a material having low resistance.
  • the inclination angle (also referred to as a taper angle) of the inclined surface toward the center of the first electrode is preferably more than 50 ° and less than 60 °, and more preferably 54.7 °.
  • the angle of inclination, the material and film thickness of the organic compound layer, or the second layer are appropriately adjusted so that the light reflected on the inclined surface of the first electrode is not dispersed between the layers and does not become stray light. It is necessary to set the electrode material and film thickness.
  • a stacked layer of a titanium film (60 nm) and a titanium nitride film (film thickness 100 nm) is used as 708a, and an aluminum film (350 nm) containing a small amount of Ti is used as 708b. ), And a titanium film (100 nm) as 708 c.
  • This 708 c protects 708 b to prevent hillocks and alteration of the aluminum film.
  • a titanium nitride film may be used to provide a light-shielding property to prevent reflection of the aluminum film.
  • 704a made of silicon is used as 708a.
  • a titanium film was used as a lower layer of 708a in order to obtain a good ohmic contact, other metal films may be used without particular limitation.
  • 708a may be a single layer of a titanium nitride film.
  • FIG. 6 (B) shows a structure different from that of FIG. 6 (A).
  • the number of masks is increased by using the insulating layer 801c as an interlayer insulating film and providing the first electrode and the drain electrode (or the source electrode) in different layers. This is a structure that can increase the area of the light emitting region.
  • 800 is the first substrate
  • 801a, 801b, and 801c are insulating layers
  • 802 is a chopper (p-channel TFT)
  • 803 is a channel formation region
  • 804 is a drain.
  • Area (or source area) 805 is the gate electrode
  • 806 is a drain electrode (or source electrode)
  • 807 is a wiring
  • 808 is a first electrode
  • 809 is an insulator
  • 810 is an EL layer
  • 811 is a second electrode
  • 8 12 is a transparent protective layer
  • 8 13 is a second sealant
  • 8 14 is a second substrate.
  • a double-sided light-emitting device can be manufactured.
  • This embodiment can be freely combined with any one of Embodiment Modes 1 to 3 and Embodiment 1.
  • Such electronic devices include video cameras, digital cameras, head-mounted displays (goggle-type displays), car navigation systems, projectors, power stereos, personal computers, and personal digital assistants (mobile computers, mobile phones or e-books). Etc.).
  • Figures 8 and 9 show examples of these.
  • FIG. 8A shows a personal computer, which includes a main body 2001, an image input section 2002, a display section 2003, a keyboard 204, and the like.
  • Fig. 8 (B) shows a video camera.
  • Main unit 210 display unit 210, audio input unit 210, operation switch 210, battery 210, image receiving unit 210 Including 6 mag.
  • Figure 8 (C) shows a mobile computer (mobile computer). It includes a body 2201, a camera section 2202, an image receiving section 2203, an operation switch 2204, a display section 2205, and the like.
  • FIG. 8 (D) shows a player using a recording medium on which a program is recorded (hereinafter, referred to as a recording medium), including a main body 2401, a display section 2402, a speaker section 2403, a recording medium 2404, an operation switch 2405, and the like.
  • a recording medium including a main body 2401, a display section 2402, a speaker section 2403, a recording medium 2404, an operation switch 2405, and the like.
  • This player can use a DVD (DigtiAls Tilt e DiSc), a CD, or the like as a recording medium, and can perform music appreciation, movie appreciation, games, and the Internet.
  • FIG. 8E shows a digital camera, which includes a main body 2501, a display portion 2502, an eyepiece portion 2503, an operation switch 2504, an image receiving portion (not shown), and the like.
  • Figure 9 (A) shows a mobile phone, including a main body 2901, an audio output unit 2902, an audio input unit 2903, a display unit 2904, an operation switch 2905, an antenna 2906, an image input unit (CCD, image sensor, etc.) 2907, etc. including.
  • FIG. 9B illustrates a portable book (electronic book) including a main body 3001, display portions 3002 and 3003, a storage medium 3004, an operation switch 3005, an antenna 3006, and the like.
  • FIG. 9C illustrates a display, which includes a main body 3101, a support base 3102, a display section 3103, and the like.
  • the display shown in Fig. 9 (C) is a small, medium or large display, for example, a screen size of 5 to 20 inches.
  • a substrate having one side of lm and mass-produce it by performing multiple-paneling it is preferable to use a substrate having one side of lm and mass-produce it by performing multiple-paneling.
  • the application range of the invention disclosed in this specification is extremely wide, and the invention can be applied to manufacturing methods of electronic devices in various fields.
  • the electronic apparatus of the present embodiment can be realized by using a configuration formed by any combination of Embodiment Modes 1 to 3 and Embodiments 1 and 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

EL素子の設けられた基板と透明な封止基板の2枚の基板を貼りあわせる際、2枚の基板間隔を保持する第1のシール剤で画素部周辺が囲まれ、その画素部は透明な第2のシール剤で全面が覆われ、第1のシール剤と第2のシール剤とで2枚の基板が固定される。そのことによって、乾燥剤を封入することなく、かつUV照射機能のみを持つ封止装置を用いてもEL素子にUV照射によるダメージを与えず全てのシール剤を硬化させ、EL素子を封止できる。

Description

明細書 発光装置及びその作製方法 技術分野
本明細書で開示する発明は、 有機化合物を含む発光層を有する発光装置、 その装置の作製方法、又はその装置を部品として搭載した電子機器に関する 本明細書中に記載の発光装置とは、 例えば ELディスプレイである。 背景技術
近年、 自発光型の素子として EL素子を有した発光装置の研究が活発化し ており、特に、 EL材料として有機材料を用いた発光装置が注目されている。 この発光装置は ELディスプレイとも呼ばれている。 なお、 EL素子は、 電 場を加えることで発生するルミネッセンス (E l e c t r o Lum i n e s c e n c e) が得られる有機化合物を含む層 (以下、 EL層と記す) と、 陽極と、 陰極とを有する。 ルミネッセンスには、 一重項励起状態から基底状 態に戻る際の発光 (蛍光) と三重項励起状態から基底状態に戻る際の発光 ( リン光) とがある。
E L素子は一対の電極間に E L層が挟まれた構造となっているが、 E L層 は通常、 積層構造となっている。 代表的には 「正孔輸送層 Z発光層 Z電子輸 送層」 という積層構造が挙げられる。 この構造は非常に発光効率が高く、 現 在、 研究開発が進められている発光装置は殆どこの構造を採用している。 また、 他にも陽極上に正孔注入層 Z正孔輸送層/発光層/電子輸送層、 ま たは正孔注入層ノ正孔輸送層 Z発光層 Z電子輸送層 電子注入層の順に積層 する構造も良い。 発光層に対して蛍光性色素等をドーピングしても良い。 また、 これらの層は、 低分子系の材料を用いて形成しても良いし、 高分子 系の材料を用いて形成しても良い。
なお、 ここでは陰極と陽極との間に設けられる全ての層を総称して E L層 という。 したがって、 上述した正孔注入層、 正孔輸送層、 発光層、 電子輸送 層及び電子注入層は、 全て E L層に含まれるものとする。
また、 陰極、 E L層及び陽極で形成される発光素子を E L素子といい、 こ れには、 互いに直交するように設けられた 2種類のストライプ状電極の間に E L層を形成する方式 (単純マトリクス方式) 、 又は T F Tに接続されマト リクス状に配列された画素電極と対向電極との間に E L層を形成する方式 ( アクティブマトリクス方式) の 2種類がある。 しかし、 画素密度が増えた場 合には、 画素 (又は 1 ドット) 毎にスィッチが設けられているアクティブマ トリクス型の方が低電圧駆動できるので有利であると考えられている。
また、 E L素子は極めて劣化しやすく、 酸素もしくは水の存在により容易 に酸化もしくは吸湿して劣化するため、 E L素子における発光輝度の低下や 寿命が短くなる問題がある。 そこで、 従来では、 E L素子に対向基板を被せ て内部にドライエアを封入し、 さらに乾燥剤を貼り付けることによって、 E L素子への酸素の到達、 もしくは水分の到達を防止している。 素子が形成さ れている基板と対向基板とは、 シール剤により接着され貼り合わされている (例えば特許文献 1 ) 。 このように E L素子の形成されている基板と対向基板とをシール剤により 貼り合わせる工程を封止あるいは封止工程と呼ぶ。
また、 E L材料は U V照射によりダメージをうけるため、 発光素子におけ る発光輝度の低下や寿命が短くなる問題がある。
また、 E L素子の構造は、 基板上の電極が陽極として形成され、 陽極上に 有機化合物層が形成され、 有機化合物層上に陰極が形成される E L素子を有 し、 有機化合物層において生じた光を透明電極である陽極から T F Tの方へ 取り出す (以下、 下面出射構造とよぶ) というものであった。
(特許文献 1 )
特開 2 0 0 2— 3 5 2 9 5 1 発明の開示
(発明が解決しょうとする課題)
上記下面出射構造では、 E L素子に対向基板を被せることが可能であるが、 基板上の電極を陽極として形成し、 陽極上に有機化合物を含む層を形成し、 有機化合物を含む層上に透明電極である陰極を形成するという構造 (以下、 上面出射構造とよぶ) とする場合には、 光を遮断する材料で形成された対向 基板を適用することができない。 これは上面および下面から同時に出射する 両面出射構造においても同様である。 下面出射構造に比べて、 上面出射構造 および両面出射構造は、 有機化合物を含む層から発光する光が通過する材料 層を少なくでき、 屈折率の異なる材料層間での迷光を抑えることができる。 また、 下面出射構造では、 乾燥剤が吸湿しないようにするため、 乾燥剤の取 り扱いに細心の注意が必要であり、 封入する際には素早く作業をする必要が あった。 また、 上面出射構造および両面出射構造では、 画素部上に乾燥剤を 配置すると、 表示の邪魔になる。
また E L素子の形成されている基板と対向基板とは、 U V硬化性あるいは 熱硬化性のシール剤により接着されており、 E L素子は、 シール剤、 対向基 板、 基板により密閉された空間内に存在している。 この空間内には水および 酸素が存在しないこと、 および侵入しないことが好ましく、 水および酸素が 存在した場合、 E L素子が劣化してしまう問題がある。 シール剤はシール材 とも表現される。
また U V硬化性のシール剤と熱硬化性のシール剤とでは、 硬化が迅速なこ と、 装置規模が小さくて済むことなどの理由により U V硬化性のシール剤の ほうが量産化に有利である。 そのため量産化のための封止装置では、 シール 硬化の機能として U V照射機能のみを持つ封止装置も多く存在するが、 その 場合、 熱硬化性のシール剤を使用することが出来ない。
また、 E L素子は U V照射や熱衝撃によりダメージをうけるため、 E L素 子における発光輝度の低下や寿命が短くなる問題がある。
硬化前のシール剤同士が長時間接していると混合してしまい型くずれが生 じる恐れがある。 また混合したシール剤は混合部が均一に硬化しないため接 着強度が低下する恐れがある。
そこで本明細書で開示する発明は、 上記問題点を克服するとともに、 E L 素子への酸素の到達、 もしくは水分の到達を防止する構造とした発光装置お よびその作製方法を提供することを課題とする。 また、 下面出射構造だけで はなく上面出射構造および両面出射構造において、 乾燥剤を封入することな く、 かつ U V照射機能のみを持つ封止装置を用いても E L素子に U V照射に よるダメージを与えず全てのシール剤を硬化させ、 E L素子を封止すること も課題とする。
(課題を解決するための手段)
本明細書で開示する発明は、 少なくとも一方が透光性である一対の基板間 に、 第 1の電極と該第 1の電極上に接する有機化合物層と該有機化合物層上 に接する第 2の電極とを有する E L素子を複数有する画素部を備えた発光装 置であって、 その画素部を囲む第 1のシール剤と、 該第 1のシール剤によつ て囲まれた領域にその画素部の全面を覆うように設けられた第 2のシール剤 とを有し、 第 1のシール剤と第 2のシール剤とで一対の基板が固定された構 造とする。 第 1のシール剤として一対の基板間隔を保持するギャップ材 (フ イラ一、 微粒子など) を含むシール剤を、 第 2のシール剤として透明なシ一 ル剤を用いることができる。 上記 E L素子からの発光は、 第 2のシール剤と 上記一対の基板の一方を透過して放出される。 その一対の基板の一方を透明 な封止基板、 他方の基板を上記 E L素子が設けられた基板として、 これらの 基板を貼り合わせた上面出射構造とすることができる。 さらに、 その E L素 子からの発光は、 第 2のシール剤とその一対の基板の一方を透過して放出さ れると共に、 他方の基板を透過して放出されるようにしてもよい。
上記第 1のシール剤のシ ルパターン形状を、 四角形状、 円形状、 半円形 状など空気の逃げ道のない形状にし、 第 2のシール剤を滴下して 2枚の基板 を貼りあわせた場合、 角に気泡が残る恐れがある。 そこで本明細書で開示する発光装置では、 図 1及び図 2に示すように、 画 素部を囲む第 1のシール剤は、 その画素部を挟むように設けられた一対の第 1のパターンと、 その画素部と一対の第 1のパ夕一ンを囲む第 2のパターン からなり、 一対の第 1のパターン間は少なくとも第 2のシール剤により充填 されている。 一対の第 1のパターンとは例えば 2本の線状パ夕一ンであり、 第 2のパターンとは例えば四角形状パターンであり、 四角状パターンの角は 湾曲していてもよい。 この第 2シール剤は熱硬化性の樹脂であり、 ギャップ 材は含まず、 熱硬化後には透光性を有する。 また一対の基板を貼り合わせる 前において、 一対の第 1のパターンに沿って存在する、 第 2のパターンの 2 辺それぞれの中点付近は、図 2 (A)に示すようにわずかながら離れており、 一対の基板を貼り合わる際に結合するようになっている。 第 2のパターンを 角が湾曲した形状にすると、 張り合わせの際、 角に気泡が形成されないよう になる。
また、 一対の第 1パターンの両端は第 2パターンに接しておらず、 一対の 第 1のパターンの両端と第 2のパターン間が開口している。 この開口部は画 素部の四隅付近または第 2のパターンの四隅付近に存在しており、 この開口 部を設けることで、 第 2のシール剤を用いて 2枚の基板を貼りあわせる際、 開口部の方向に第 2のシール剤が押し出され、 画素部上に気泡が混入するこ となく封止することができる。 また、 気泡が混入しないように封止側の基板 の表面は平坦性の優れた滑らかなものとすることが好ましい。
また塗布直後の第 2のシール剤は第 1シール剤よりも高さがあるため、 2 枚の基板を貼り合わせる際、 第 1シール剤よりも先に押しつぶされながら画 素部を覆うように広がっていく。 このとき一対の第 1パターンが存在するこ とで、 画素部を確実に第 2のシール剤で充填することが出来る。 また、 第 2 のシール剤が画素部の全面に広がったあとに第 1のシール剤が伸び、 このと き一対の第 1パターンに沿つて存在する、 第 2パターンの 2辺それぞれの中 点付近の隙間が塞がるようになつている。 このとき第 2のシール剤は、 第 1 のシール剤により完全に外気から遮断されている。 そのため第 1のシール剤 および第 2のシール剤の両方により、 E L素子への水あるいは酸素の到達を 防止できる。
2枚の基板を貼り合わせた後、 第 1のシール剤が U V照射により先に硬化 し、 次いで第 2のシ一ル剤が加熱により硬化する。 第 2のシール剤は硬化の ために長時間加熱させるが、 第 1 :のシール剤はすでに硬化しているので第 2 のシール剤と混合することはない。
また、 U V照射している間は、 画素部に遮光マスクなどをつけ、 選択的に 画素部に U Vが照射されないようにする。
また、封止工程では基板貼り合わせの際、シール剤が完全に硬化するまで、 基板間のシール剤が潰れる方向に、 基板面を垂直にプレスし続ける。
本明細書で開示する発明では第 1のシール剤が硬化した後の、 '第 2シール 剤硬化のための加熱工程における長時間のプレスを必要としない。 つまり、 通常、 封止工程では基板貼り合わせの際にシールが硬化するまで基板をプレ スし続けなければならないが、 本発明では U V照射により第 1のシール剤が 先に硬化してしまった後では基板間のギャップは常に保たれた状態となりプ レスの必要が無くなる。 そのため、 封止装置が U V硬化性シール剤専用のも のにおいても、 U V硬化性シール剤および熱硬化性シール剤共用のものにお いても封止することが出来る。
また、 上面出射構造および両面出射構造の E L素子の封止においては、 画 素部を覆う第 2のシール剤には U V照射を行わず、 加熱により硬化させる。 そのため、 画素部が U V照射によるダメージを受けることがないため、 これ により E L素子における発光輝度の低下や寿命が短くなる問題がなくなる。 (発明の効果)
本明細書で開示する発明により、 上面出射構造および両面出射構造の封止 工程の際、 U V照射機能のみを有する封止装置においても、 E L素子に U V 照射によるダメージを与えることなく、 画素部を覆うシール剤を硬化させる ことが出来る。 従って、 信頼性の高い発光装置を得ることが出来る。
また、 画素部周辺の第 1のシール剤を第 2シール剤よりも先に、 U V照射 により短時間で硬化させるため、 第 1のシ一ル剤硬化後、 第 1のシール剤と 第 2のシール剤とが長時間接していても両者が混合することがないので、 型 くずれせず、 接着強度が落ちることがない。 従って、 信頼性の高い発光装置 を得ることが出来る。
また、 第 1シール剤の前記第 2パターンは切れ目がないため、 第 1のシー ル剤により第 2のシール剤を完全に外気と遮断することで、 第 1のシール剤 および第 2のシール剤の両方により、 E L素子への水あるいは酸素の到達を 防止できる。 従って、 信頼性の高い発光装置を得ることが出来る。 図面の簡単な説明 図 1は実施の形態 1を示す図である。
図 2は実施の形態 1を示す図である。
図 3は実施の形態 2を示す図である。
図 4は実施の形態 3を示す図である。
図 5は実施例 1のァクティブマトリクス型発光装置の構成を示す図である, 図 6は実施例 2を示す図である。
図 7は第 2のシ一ル剤により光の透過率が向上することを示す図である。 図 8は実施例 3の電子機器の一例を示す図である。
図 9は実施例 3の電子機器の一例を示す図である。 発明を実施するための最良の形態
本明細書で開示する発明の実施形態について以下に示す。
(実施の形態 1 )
図 1は、 本明細書で開示する発明を実施したァクティブマトリクス型の発 光装置の上面図である。
図 1 (A) において、 1 1は第1基板、 1 2は第 2基板、 1 3は画素部、 1 4は駆動回路部、 1 5は端子部、 1 6 aと 1 6 bは第 1シール剤、 1 7 a は第 2シ一ル剤である。
第 1基板 1 1の材料としては、 特に限定されないが、 第 2基板 1 2と貼り 合わせるため、 熱膨張係数が同一のものとすることが好ましい。 下面出射型 とする場合には、 透光性を有する基板、 例えばガラス基板、 石英基板、 ブラ スチック基板とする。 また、 上面出射型とする場合には、 半導体基板や金属 基板をも用いることができる。 また、 両面出射型とする場合にも基板が透光 性を有するものとする。 第 1基板 1 1には、 E L素子を複数有する画素部 1 3、 駆動回路部 1 4、 端子部 1 5が設けられている。
ここでは、 画素部 1 3と駆動回路部 1 4とを囲んで、 1 6 aと 1 6 bで示 される第 1のシール剤が配置される例を示している。 また、 第 1のシール剤 の一部は、 端子部 1 5 (または端子電極から延びた配線) と重なっている。 なお、 第 1のシ一ル剤は、 一対の基板間隔を維持するためのギャップ材が含 まれている。 ギャップ材が含まれているため、 なんらかの荷重が加えられた 場合にショートなどが生じないよう第 1のシール剤と素子 (T F Tなど) と が重ならないようにすることが好ましい。
また、 第 1のシール剤は、 一対の第 1パターン 1 6 aと第 2パターン 1 6 bからなる。 一対の第 1パターン 1 6 aは線状であり、 第 2パターン 1 6 b の内側に設けられる。 第 2パターン 1 6 bの上面形状は四角形状であり、 画 素部 1 3および一対の第 1パターン 1 6 aを囲んでいる。 四角形状の第 2パ ターン 1 6 bの角は湾曲していてもよい。 第 2パターン 1 6 bの四隅付近、 つまり一対の第 1パターン 1 6 aの端部と第 2パターン 1 6 bの間には開口 部 1 8がある。 言い換えると、 第 1のシール剤は、 2本の線状パターンが画 素部を挟むように配置され、 且つそれを囲むように角の湾曲した四角形状パ ターンが配置されている。
また、 第 1のシール剤の、 一対の第 1パターン 1 6 a間には、 少なくとも 第 2のシール剤 1 7 aが充填されている。 一対の基板は、 画素部を囲んで配 置される 1 6 aと 1 6 bで示される第 1のシール剤と、 該第 1のシール剤に 接し且つ前記画素部を覆う第 2のシール剤 1 Ί aとで固定されている。 つま り第 2のシール剤は、第 1のシール剤により完全に外気から遮断されている t また、 第 2のシ一ル剤は、 硬化後には透光性を有する材料とし、 ギャップ 材も含んでいないため、 第 1のシール剤よりも透光性が高い。 この第 2のシ —ル剤 1 7 aは、 一対の第 1パターンの端部と第 2パターンの間にある開口 部 1 8から突出している。
第 2のシール剤 1 7 aが図 1 (A) に示す形状となるしくみを図 2を用い て以下に説明する。 図 2 (A) には、 貼りあわせる前の封止基板 (第 2の基 板 2 2 ) の上面図の一例を示している。 図 2 ( A) では一枚の基板から 1つ の画素部を有する発光装置を形成する例を示している。
まず、 第 2の基板 2 2上にディスペンサーを用いて 2 6 aと 2 6 bで示さ れる第 1シール剤を形成した後、 第 1シール剤の一対の第 1パターン 2 6 a 間に第 1シール剤よりも粘度の低い第 2シール剤 2 7 aを滴下する。 なお、 滴下した状態での上面図が図 2 (A) に相当する。 次いで、 第 2の基板を E L素子を備えた画素部 2 3を有する第 1の基板と貼りあわせる。 本実施の形 態では、第 1の基板には更に駆動回路部 2 と端子部 2 5が設けられている ( 第 1の基板と第 2の基板を貼り合せた直後の上面図を図 2 ( B ) に示す。 第 1シール剤の粘度は高いため、 貼り合せた際にわずかしか広がらないが、 第 2シール剤の粘度は低いため、 貼り合せた際、 図 2 ( B ) に示すように第 2 シール剤は平面的に素早く広がることとなる。
第 2シール剤は、 第 1シール剤の一対の第 1パターン 2 6 aの端部と第 2 パターン 2 6 bの間にある開口部 2 8から、 図 2 ( B ) 中の矢印 aの方向に 押し出される。 そのことによって、 第 2シール剤が充填される領域に気泡が 存在しないようにすることができる。 2 6 aと 2 6 bで示される第 1シール 剤は第 2シール剤 2 7 bと接してもすぐには混ざることはなく、 第 1シール 剤は第 2シール剤と混合しなければ第 2シール剤によって形成位置は変化し ない粘度を有している。
図 2 ( B )では、第 2シール剤 2 7 bは前記開口部 2 8から突出しており、 突出している前記第 2シール剤 2 7 bの周縁は湾曲している。 第 1シール剤 の前記第 2パ夕一ン 2 6 bは、 第 1の基板と第 2の基板を貼り合わせる際に 図 2 ( B ) の矢印 の方向に侔びて完全につながるため、 第 2シール剤 2 7 bは完全に外気から遮断されており、 酸素や水分のブロッキングが実現でき る。また、 ト一タルの接着面積も増大するため、貼り合わせ強度も増加する。 なお、 ここでは第 2の基板 2 2に第 1のシール剤または第 2のシール剤を形 成した後、 基板を貼りあわせる例を示したが、 特に限定されず、 素子が形成 されている第 1の基板に第 1のシール剤または第 2のシール剤を形成しても よい。
次いで、 U V照射を行って第 1シール剤を硬化させる。 この際、 遮光マス クなどを用いて U V照射から選択的に画素部を保護する。 なお、 本実施例で は、遮光マスクは石英ガラス上に C r膜が成膜されたものを用いた。その後、 加熱により第 2シール剤を硬化させる。 このときの加熱温度は E L素子がダ メ一ジを受けない程度にする。 具体的には 6 0 °Cから 1 0 0 の間が好まし レ^ また加熱時間は 1時間から 3時間が好ましい。
次いで、 第 2基板 2 2の一部を分断する。 図 2 ( B ) には鎖線で示したラ イン 2 9が基板分断ラインとなる。 分断する際には、 端子部 2 5上に形成さ れた第 1シール剤の前記第 2パターン 2 6 bに沿って平行に分断ラインを設 定すればよい。 以上に示した手順に従えば、 図 1 (A) に示す第 2シール剤 1 7 aの形状を得ることができる。
また、 図 1 (A) では第 2シール剤 1 7 aが開口部 1 8から突出している 例を示したが、第 2シール剤の粘度や量や材料を適宜変更することによって、 様々な形状とすることができる。 また、 プレスの時間、 速度、 圧力などを調 整することにより様々な形状とすることができる。
例えば、 図 1 ( B ) において第 2のシール剤 1 7 bは開口部から突出してお らず、 ちょうど第 2のシ一ル剤の周縁が、 弧を描いて第 1のシール剤の隙間 を埋めている形状となっている。 また、 図 1 ( C ) に示すように、 第 2のシ ール剤 1 7 cの周縁が前記開口部から凹んで湾曲している形状としてもよい < また、 第 1のシール剤の前記第 1パターンは線状に限定されず、 画素部を 挟んで一対のパターンがそれぞれ対称に配置されていればよく、 第 1のシー ル剤の前記第 2パターンは四角形状に限定されず、 一対の基板を貼り合わせ た際に切れ目のない状態であればよい。 例えば、 貼りあわせる際、 粘度の低 い第 2のシール剤が広がりやすいように第 1のシール剤の形状を若干湾曲さ せてもよい。
(実施の形態 2 )
ここでは本明細書で開示する発明の画素部における断面構造の一部を図 3 に示す。
図 3 (A) において、 3 0 0は第 1の基板、 3 0 1 a、 3 0 l bは絶縁層、 302は丁 1\ 308が第 1の電極、 309は絶縁物、 3 10は£ 層、 3 1 1は第 2の電極、 3 12は透明保護層、 3 1 3は第 2のシール剤、 31 4は第 2の基板である。
第 1の基板 300上に設けられた TFT 30 2 (pチャネル型 T FT)は、 発光する EL層 3 1 0に流れる電流を制御する素子であり、 304はドレイ ン領域 (またはソース領域) である。 また、 306は第 1の電極とドレイン 領域 (またはソース領域) とを接続するドレイン電極 (またはソース電極) である。 また、 ドレイン電極 306と同じ工程で電源供給線やソース配線な どの配線 307も同時に形成される。 ここでは第 1電極とドレイン電極とを 別々に形成する例を示したが、 同一としてもよい。 第 1の基板 300上には 下地絶縁膜 (ここでは、 下層を窒化絶縁膜、 上層を酸化絶縁膜) となる絶縁 層 30 1 aが形成されており、 ゲート電極 305と活性層との間には、 ゲ一 ト絶縁膜が設けられている。 また、 30 1 bは有機材料または無機材料から なる層間絶縁膜である。 また、 ここでは図示しないが、 一つの画素には、 他 にも TFT (nチャネル型 TFTまたは pチャネル型 TFT) を一つ、 また は複数設けている。 また、 ここでは、 一つのチャネル形成領域 303を有す る TFTを示したが、 特に限定されず、 複数のチャネルを有する TFTとし てもよい。
また、 308は、 第 1の電極、 即ち、 OLEDの陽極 (或いは陰極) であ る。 第 1の電極 308の材料としては、 T i、 T i N、 T i S i XNY、 N i 、 W、 WS i x、 WNX、 WS i xNY、 NbN、 Mo、 C r、 P t、 Z n、 S n、 I n、 または Moから選ばれた元素、 または前記元素を主成分とする合 金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚 1 0 0 n m~ 8 0 0 n mの範囲で用いればよい。 ここでは、 第 1の電極 3 0 8として窒化チタン膜を用いる。 窒化チタン膜を第 1の電極 3 0 8として用 いる場合、 表面に U V照射や塩素ガスを用いたプラズマ処理を行って仕事関 数を増大させることが好ましい。
また、 第 1の電極 3 0 8の端部 (および配線 3 0 7 ) を覆う絶縁物 3 0 9 (バンク、 隔壁、 障壁、 土手などと呼ばれる) を有している。 絶縁物 3 0 9 としては、 無機材料 (酸化シリコン、 窒化シリコン、 酸化窒化シリコンなど ) 、感光性または非感光性の有機材料(ポリイミド、 アクリル、 ポリアミド、 ポリイミドアミド、 レジストまたはベンゾシクロブテン) 、 またはこれらの 積層などを用いることができるが、 ここでは窒化シリコン膜で覆われた感光 性の有機樹脂を用いる。 例えば、 有機樹脂の材料としてポジ型の感光性ァク リルを用いた場合、 絶縁物の上端部のみに曲率半径を有する曲面を持たせる ことが好ましい。 また、 絶縁物として、 感光性の光によってエツチャントに 不溶解性となるネガ型、 あるいは光によってエツチャントに溶解性となるポ ジ型のいずれも使用することができる。
また、 有機化合物を含む層 3 1 0は、 蒸着法または塗布法を用いて形成す る。 なお、 信頼性を向上させるため、 有機化合物を含む層 3 1 0の形成前に 真空加熱を行って脱気を行うことが好ましい。例えば、蒸着法を用いる場合、 真空度が 5 X 1 0— 2 T o r r ( 0 . 6 6 5 P a ) 以下、 好ましくは 1 0一4 〜 1 0—6 P aまで真空排気された成膜室で蒸着を行う。 蒸着の際、 予め、 抵 抗加熱により有機化合物は気化されており、 蒸着時にシャッターが開くこと により基板の方向へ飛散する。 気化された有機化合物は、 上方に飛散し、 メ 夕ルマスクに設けられた開口部を通って基板に蒸着される。
例えば、 A l q3、 部分的に赤色発光色素であるナイルレッドをドープし た A l Q3、 A 1 q 3> p— E t TAZ、 TPD (芳香族ジァミン) を蒸着法 により順次積層することで白色を得ることができる。
また、 スピンコートを用いた塗布法により有機化合物を含む層を形成する 場合、 塗布した後、 真空加熱で焼成することが好ましい。 例えば、 正孔注入 層として作用するポリ (エチレンジォキシチォフェン) Zポリ (スチレンス ルホン酸) 水溶液 (PEDOTZP S S) を全面に塗布、 焼成し、 その後、 発光層として作用する発光中心色素(1, 1, 4, 4ーテトラフエ二ルー 1, 3—ブタジエン (TPB) 、 4ージシァノメチレン一 2—メチル _ 6— (p ージメチルアミノースチリル) 一 4 H—ピラン(D C M 1 )、ナイルレッド、 クマリン 6など) ド一プしたポリビニルカルバゾ一ル (PVK) 溶液を全面 に塗布、 焼成すればよい。 なお、 PEDOTZP S Sは溶媒に水を用いてお り、有機溶剤には溶けない。従って、 PVKをその上から塗布する場合にも、 再溶解する心配はない。 また、 PEDOTZP S Sと P VKは溶媒が異なる ため、 成膜室は同一のものを使用しないことが好ましい。
また、 有機化合物を含む層 3 10を単層とすることもでき、 ホール輸送性 のポリビニルカルバゾール (PVK) に電子輸送性の 1, 3, 4—才キサジ ァゾール誘導体 (PBD) を分散させてもよい。 また、 30 1; %の?80 を電子輸送剤として分散し、 4種類の色素(TPB、 クマリン 6、 DCM1、 ナイルレツド) を適当量分散することで白色発光が得られる。 また、 31 1は、 導電膜からなる第 2の電極、 即ち、 OLEDの陰極 (或 いは陽極)である。第 2の電極 3 1 1の材料としては、 Mg Ag、 Mg I n、 A l L i、 C aF2、 C a Nなどの合金、 または周期表の 1族もしくは 2族 に属する元素とアルミニウムとを共蒸着法により形成した透光性を有する膜 を用いればよい。 ここでは、 第 2の電極を通過させて発光させる上面出射型 であるので、 1 nm〜 10 nmのアルミニウム膜、 もしくは L iを微量に含 むアルミニウム膜を用いる。
第 2の電極 31 1として A 1膜を用いる構成とすると、 有機化合物を含む 層 3 10と接する材料を酸化物以外の材料で形成することが可能となり、 発 光装置の信頼性を向上させることができる。 また、 l nm〜1 0 nmのアル ミニゥム膜を形成する前に陰極バッファ層として C a F2、 MgF2、 または B a F2からなる透光性を有する層 (膜厚 l nm〜5 nm) を形成してもよ い。
また、 陰極の低抵抗化を図るため、 発光領域とならない領域の第 2の電極 3 1 1上に補助電極を設けてもよい。 また、 陰極形成の際には蒸着による抵 抗加熱法を用い、 蒸着マスクを用いて選択的に形成すればよい。
また、 31 2は蒸着法により形成する透明保護層であり、 金属薄膜からな る第 2の電極 3 1 1を保護する。 さらに透明保護層 3 12を第 2のシ一ル剤 3 1 3で覆う。 第 2の電極 3 1 1は極薄い金属膜であるため、 酸素に触れれ ば容易に酸化などが発生しやすく、 シール剤に含まれる溶剤などと反応して 変質する恐れがある。
このような金属薄膜からなる第 2の電極 3 1 1を透明保護層 3 1 2、 例え ば C a F2、 MgF2、 または B a F2で覆うことによって、 第 2の電極 3 1 1と第 2のシール剤 3 1 3に含まれる溶剤などの成分とが反応することを防 ぐとともに、 乾燥剤を使うことなく、 酸素や水分を効果的にブロックする。 また、 C a F2、 MgF2、 B a F2は、 蒸着法で形成することが可能であり、 連続的に陰極と透明な保護層とを蒸着法で形成することによって、 不純物の 混入や電極表面が外気に触れることを防ぐことができる。 加えて、 蒸着法を 用いれば、 有機化合物を含む層へダメージをほとんど与えない条件で透明保 護層 31 2を形成することができる。 また、 第 2の電極 3 1 1の上下に C a F2、 MgF2、 または B a F2からなる透光性を有する層を設けて挟むこと によって、 さらに第 2の電極 31 1を保護してもよい。
また、 第 1の電極として材料自身に酸素原子のない金属 (仕事関数の大き い材料) 、 例えば窒化チタン膜を用い、 第 2の電極として材料自身に酸素原 子のない金属 (仕事関数の小さい材料) 、 例えばアルミニウム薄膜を用い、 さらに C a F2、 MgF2、 または B a F2で覆うことによって、 第 1の電極 と第 2の電極との間の領域を限りなくゼロに近い無酸素状態を維持できる。 また、 第 2のシール剤 3 1 3は実施の形態 1に示した方法で第 2の基板 3 14と第 1の基板 300とを貼り合せている。 第 2のシール剤 3 13として は、 硬化後に透光性を有する材料であり、 熱硬化性の樹脂を用いればよい。 ここでは比重 1. 1 7 (25°C) 、 粘度 900 OmP a · s、 引張せん断接着 強度 Ι δΝΖππη2 Tg (ガラス転移点) 74 である高耐熱の熱硬化型 エポキシ榭脂を用いる。 また、 第 2のシール剤 3 13を一対の基板間に充填 することによって、 全体の透過率を向上させることができる。 一対のガラス基板の間に第 2のシール剤を充填した場合の光の透過率、 一 対のガラス基板の間に窒素ガスを充填した場合の光の透過率をそれぞれ求め た。 図 7に、 前者の透過率を実線で、 後者の透過率を点線で表したグラフを 示す。 図 7に実線で示すように、 一対のガラス基板の間に第 2のシール剤を 充填した場合の光の透過率は可視光領域で 85 %以上を示している。 なお、 図 7において縦軸は光の透過率を示し、 横軸は光の波長を示している。
また、 図 3 (B) には、 発光領域における積層構造を簡略化したものを示 す。 図 3 (B) に示す矢印の方向に発光が放出される。 図 3 (B) 及び図 3 (C) において、 絶縁層 30 1 aと絶縁層 30 1 bをまとめて絶縁層 30 1 で示す。
また、 金属層からなる第 1の電極 308に代えて、 図 3 (C) に示すよう に透明導電膜からなる第 1の電極 3 1 8を用いた場合、 上面と下面の両方に 発光を放出することができる。 透明導電膜としては、 I TO (酸化インジゥ ム酸化スズ合金) 、 酸化インジウム酸化亜鉛合金 ( Ι η23— Z n〇) 、 酸 化亜鉛 (Z nO) 等を用いればよい。 I TOに酸化珪素を混合した夕一ゲッ トを用いて、 スパッ夕法により透明導電膜を形成してもよい。 また、 本実施 の形態は実施の形態 1と自由に組み合わせることができる。
(実施の形態 3)
1枚の基板に複数の画素部を形成する場合、 即ち多面取りの例を図 4に示 す。 ここでは 1枚の基板を用いて 4つのパネルを形成する例を示す。
まず、 図 4 (A) に示すように、 不活性気体雰囲気で第 2基板 3 1上にデ イスペンサ装置で第 1パターン 32 aと第 2パターン 32 bを有する第 1シ —ル剤を所定の位置に形成する。 半透明な第 1シール剤 32 a、 32 bとし てはフィラ一 (直径 6 / m〜24 m) を含み、 且つ、 粘度 370 P a · s のものを用いる。 また、 32 aと 32 bで示される第 1シール剤は簡単なシ —ルパターンであるので、 印刷法で形成することもできる。
次いで、 図 4 (B) に示すように、 第 1パターン 32 aと第 2パターン 3 2 bを有する第 1シール剤に囲まれた領域 (ただし、 第 1パターンの端部と 第 2パターンの間に開口部を有する) に、 硬化後に透光性を有する第 2シ一 ル剤 3 3を滴下する。 ここでは比重 1. 1 7 (25°C) 、 粘度 900 OmP a - s、 引張せん断接着強度 1 5NZmm2、 Tg (ガラス転移点) 74 で ある高耐熱の熱硬化型エポキシ樹脂を用いる。
次いで、 図 4 (C) に示すように、 画素部 34が設けられた第 1基板と、 シール剤が設けられた第 2基板とを貼りあわせる。 なお、 シール剤によって 一対の基板を貼りつける直前には真空でァニ一ルを行って脱気を行うことが 好ましい。 ここでは、 図 1 (A) 、 図 1 (B) 、 図 1 (C) のいずれかに示 したような形状となるように第 2のシール剤 33を広げて第 1のシール剤 3 2 , 32 bの間に充填させる。 第 1のシール剤 32 a、 32 bの形状およ び配置により気泡が入ることなく第 2のシール剤 33を充填することができ る。
次いで、 UV照射を行って、第 1のシール剤 32 a、 32 bを硬化させる。 UV照射の際には、 遮光板などを用いて選択的に画素領域を UV照射から保 護する。 その後加熱により第 2のシール剤 33を硬化させる。 このときの加 熱温度は EL素子がダメージを受けない程度にする。 具体的には 60 から 1 0 0 °Cの間が好ましい。また加熱時間は 1時間から 3時間程度が好ましい。 次いで、 図 4 (D ) に示すように、 スクライバー装置を用いて鎖線で示し たスクライブライン 3 5を形成する。 スクライブライン 3 5は、 第 1シール 剤の前記第 2パターンに沿って形成すればよい。
次いで、 ブレイ力一装置を用いて、 貼り合わせた第 1基板及び第 2基板を 分断する。 こうして、 図 4 ( E ) に示すように、 一対の基板から 4つのパネ ルを作製することができる。
また、 本実施の形態は、 実施の形態 1または実施の形態 2と自由に組み合 わせることができる。
以上の構成からなる本明細書で開示する発明について、 以下に示す実施例 でもってさらに詳細な説明を行うこととする。
(実施例 1 )
本実施例では、 有機化合物を含む層を発光層とする EL素子を備えた発光装 置の一例を図 5に示す。
なお、 図 5 (A) は発光装置を示す上面図、 図 5 ( B ) は図 5 (A) を A 一 A ' で切断した断面図である。 点線で示された 1 1 0 1はソース信号線駆 動回路、 1 1 0 2は画素部、 1 1 0 3はゲート信号線駆動回路である。また、 1 1 0 4は封止基板、 1 1 0 5は第 1のシール剤であり、 第 1のシール剤 1 1 0 5で囲まれた内側は、透明な第 2のシール剤 1 1 0 7で充填されている なお、 第 2のシール剤 1 1 0 7は画素領域上四隅で突出している。
なお、 1 1 0 8はソース信号線駆動回路 1 1 0 1及びゲ一ト信号線駆動回 路 1 1 0 3に入力される信号を伝送するための配線であり、 外部入力端子と なる FP C (フレキシブルプリン卜サーキット) 1 109からビデオ信号や クロック信号を受け取る。 なお、 ここでは F P Cしか図示されていないが、 この F PCにはプリント配線基盤 (PWB) が取り付けられていても良い。 本明細書における発光装置には、 発光装置本体だけでなく、 それに F PCも しくは P W Bが取り付けられた状態も含むものとする。
次に、 断面構造について図 5 (B) を用いて説明する。 基板 1 1 10上に は駆動回路及び画素部が形成されているが、 ここでは、 駆動回路としてソー ス信号線駆動回路 1 1 01と画素部 1 1 02が示されている。
なお、 ソース信号線駆動回路 1 1 0 1は nチャネル型 TFT 1 123と p チャネル型 TFT 1 1 24とを組み合わせた CMOS回路が形成される。 ま た、 駆動回路を形成する TFTは、 公知の CMOS回路、 PMOS回路もし くは NMOS回路で形成しても良い。 また、 本実施例では、 基板上に駆動回 路を形成したドライバ一一体型を示すが、 必ずしもその必要はなく、 基板上 ではなく外部に形成することもできる。
また、 画素部 1 102はスィツチング用 T FT 1 1 1 1と、 電流制御用 T FT 1 1 12とそのドレインに電気的に接続された第 1の電極 (陽極) 1 1 1 3を含む複数の画素により形成される。
ここでは第 1の電極 1 1 1 3が T FTのドレインと直接接している構成と なっているため、 第 1の電極 1 1 1 3の下層は、 シリコンからなるドレイン とォーミックコンタクトのとれる材料層とし、 有機化合物を含む層と接する 表面に仕事関数の大きい材料層とすることが望ましい。 例えば、 窒化チタン 膜とアルミニウムを主成分とする膜と窒化チタン膜との 3層構造とすると、 配線としての抵抗も低く、且つ、良好なォ一ミックコンタクトがとれ、且つ、 陽極として機能させることができる。 また、 第 1の電極 1 1 1 3は、 窒化チ タン膜の単層としてもよいし、 3層以上の積層を用いてもよい。
また、 第 1の電極 (陽極) 1 1 1 3の両端には絶縁物 (バンク、 隔壁、 障 壁、 土手などと呼ばれる) 1 1 1 4が形成される。 絶縁物 1 1 1 4は有機樹 脂膜もしくは珪素を含む絶縁膜で形成すれば良い。 ここでは、 絶縁物 1 1 1 4として、 ポジ型の感光性アクリル樹脂膜を用いて図 5に示す形状の絶縁物 を形成する。 また、 絶縁物 1 1 1 4を窒化アルミニウム膜、 窒化酸化アルミ ニゥム膜、 または窒化珪素膜からなる保護膜で覆ってもよい。 この保護膜は スパッ夕法 (D C方式や R F方式) により得られる窒化珪素または窒化酸化 珪素を主成分とする絶縁膜、 または炭素を主成分とする薄膜である。 シリコ ンターゲットを用い、 窒素とアルゴンを含む雰囲気で形成すれば、 窒化珪素 膜が得られる。 また、 窒化シリコンターゲットを用いてもよい。 また、 保護 膜は、 リモートプラズマを用いた成膜装置を用いて形成してもよい。 また、 保護膜に発光を通過させるため、 保護膜の膜厚は、 可能な限り薄くすること が好ましい。
また、 第 1の電極 (陽極) 1 1 1 3上には、 蒸着マスクを用いた蒸着法、 またはインクジェット法によって有機化合物を含む層 1 1 1 5を選択的に形 成する。 さらに、 有機化合物を含む層 1 1 1 5上には第 2の電極 (陰極) 1 1 1 6が形成される。 これにより、 第 1の電極 (陽極) 1 1 1 3、 有機化合 物を含む層 1 1 1 5、 及び第 2の電極 (陰極) 1 1 1 6からなる E L素子 1 1 1 8が形成される。 ここでは発光素子 1 1 1 8は白色発光とする例である ので、 着色層 1 1 3 1と BM (遮光層) 1 132からなるカラーフィルター (簡略化のため、 ここではォ一バーコート層は図示しない) が設けられてい る。 1 1 1 7で示すのは透明保護層である。
また、 R、 G、 Bの発光が得られる有機化合物を含む層をそれぞれ選択的 に形成すれば、 カラ一フィル夕一を用いなくともフルカラ一の表示を得るこ とができる。
また、 基板 1 1 10上に形成された EL素子 1 1 1 8を封止するために第 1シール剤 1 1 05、 第 2シール剤 1 107により封止基板 1 1 04を貼り 合わせる。 なお、 第 1シール剤 1 105、 第 2シール剤 1 1 07としてはェ ポキシ系樹脂を用いるのが好ましい。 また、 第 1シール剤 1 105、 第 2シ —ル剤 1 107はできるだけ水分や酸素を透過しない材料であることが望ま しい。
また、 本実施例では封止基板 1 104を構成する材料としてガラス基板や 石英基板の他、 FRP (Fiberglass-Reinforced Plastics) 、 P VF (ポリ ビニルフロライド) 、 マイラ一、 ポリエステルまたはアクリル等からなるプ ラスチック基板を用いることができる。 また、 第 1シール剤 1 105、 第 2 シール剤 1 107を用いて封止基板 1 104を接着した後、 さらに側面 (露 呈面) を覆うように第 3のシール剤で封止することも可能である。
以上のようにして EL素子を第 1シール剤 1 1 05、 第 2シール剤 1 1 0 7に封入することにより、 EL素子を外部から完全に遮断することができ、 外部から水分や酸素といつた有機化合物層の劣化を促す物質が侵入すること を防ぐことができる。 従って、 信頼性の高い発光装置を得ることができる。 また、 本実施例は実施の形態 1乃至 3のいずれか一と自由に組み合わせるこ とができる。
(実施例 2 )
本実施例では、 実施の形態 2で示した断面構造と異なる例を図 6に示す。 図 6 (A) において、 7 0 0は第 1の基板、 7 0 1 a、 7 0 1 bは絶緣層、 7 02は丁 1\ 7 0 9は絶縁物、 7 1 0は£ 層、 7 1 1は第 2の電極、 7 1 2は透明保護層、 7 1 3は第 2のシール剤、 7 14は第 2の基板である。 第 1の基板 7 0 0上に設けられた TFT 7 0 2 ( pチャネル型 T F T)は、 発光する EL層 7 1 0に流れる電流を制御する素子であり、 7 04はドレイ ン領域 (またはソース領域) 、 7 0 5はゲート電極である。 また、 ここでは 図示しないが、 一つの画素には、 他にも T FT (nチャネル型 TFTまたは Pチャネル型 T FT) を一つ、 または複数設けている。 また、 ここでは、 一 つのチャネル形成領域 7 0 3を有する T FTを示したが、 特に限定されず、 複数のチャネルを有する TFTとしてもよい。
また、 図 6 (A) に示す構造は、 金属層の積層からなる第 1の電極 7 0 8 a〜7 0 8 cを形成し、 該第 1の電極の端部を覆う絶縁物 (バンク、 隔壁と 呼ばれる) 70 9を形成した後、 該絶縁物 7 0 9をマスクとして自己整合的 にエッチングを行い、 該絶縁物の一部をエッチングするとともに第 1の電極 の一部 (中央部) を薄くエッチングして第 1の電極に段差を形成する。 この エッチングによって第 1の電極の中央部は薄く、 且つ、 平坦な面とし、 絶縁 物で覆われた第 1の電極の端部は厚い形状となる。 即ち、 第 1の電極は凹部 が形成された形状となる。 そして、 第 1の電極上には有機化合物を含む層 7 1 0、 および第 2の電極 7 1 1を形成して E L素子を完成させる。
図 6 (A) に示す構造は、 第 1の電極の段差部分に形成された斜面で横方 向の発光を反射または集光させて、 ある一方向 (第 2の電極を通過する方向 ) に取り出す発光量を増加させるものである。
従って、 斜面が形成される金属層 7 0 8 bは、 光を反射する金属、 例えば アルミニウム、 銀などを主成分とする材料とすることが好ましく、 有機化合 物を含む層 7 1 0と接する金属層 7 0 8 aは、 仕事関数の大きい陽極材料、 或いは、 仕事関数の小さい陰極材料とすることが好ましい。 電源供給線ゃソ —ス配線などの配線 7 0 7も同時に形成されるため、 低抵抗な材料を選択す ることが好ましい。
また、 第 1の電極の中央部に向かう傾斜面における傾斜角度 (テーパー角 度とも呼ぶ) は、 5 0 ° を超え、 6 0 ° 未満、 さらに好ましくは 5 4 . 7 ° であることが好ましい。 なお、 この第 1の電極の傾斜面で反射された光が層 間で分散したりしないよう、 また迷光とならないように適宜、 傾斜角度、 有 機化合物層の材料および膜厚、 または第 2の電極の材料および膜厚を設定す ることが必要である。
本実施例では、 7 0 8 aとしてチタン膜 (6 0 n m) と窒化チタン膜 (膜 厚 1 0 0 n m) の積層、 7 0 8 bとして T iを微量に含むアルミニウム膜 ( 3 5 0 n m) 、 7 0 8 cとしてチタン膜 ( 1 0 0 n m) とする。 この 7 0 8 cは、 7 0 8 bを保護してアルミニウム膜のヒロック発生、変質などを防ぐ。 また 7 0 8 cとして、 窒化チタン膜を用い、 遮光性を持たせ、 アルミニウム 膜の反射を防いでもよい。 また、 7 0 8 aとしてシリコンからなる 7 0 4と の良好なォーミックコンタクトを取るために 708 aの下層にチタン膜を用 いたが、 特に限定されず、 他の金属膜を用いてもよい。 また、 708 aは窒 化チタン膜の単層としてもよい。
また、 本実施例では窒化チタン膜を陽極として用いるため、 UV処理ゃプ ラズマ処理を行う必要があるが、 708 b、 708 cをエッチングする際に 同時に窒化チタン膜表面へのプラズマ処理が行われるため、 陽極として十分 な仕事関数を得ることができる。
また、 '窒化チタン膜に代わる陽極材料としては、 N i、 W、 WS i x、 W Nx、 WS i XNY、 NbN、 Mo、 C r、 P i:、 Z n、 S n、 I n、 または Moから選ばれた元素、 または前記元素を主成分とする合金材料もしくは化 合物材料を主成分とする膜またはそれらの積層膜を総膜厚 1 0 Ο ηπ!〜 80 0 nmの範囲で用いればよい。
また、 図 6 (A) に示した構造は、 絶縁物 709をマスクとして自己整合 的にエッチングを行うため、 マスク数の増加はなく、 ト一タルとして少ない マスク数および工程数で上面出射型の発光装置を作製することができる。 また、 図 6 (A) と異なる構造を図 6 (B) に示す。 図 6 (B) の構造は、 絶縁層 80 1 cを層間絶縁膜として用い、 第 1の電極とドレイン電極 (また はソース電極) とを異なる層に設けることで、 マスク数は増加する一方、 発 光領域の面積を増大させることができる構造である。
図 6 (B) において、 800は第 1の基板、 80 1 a、 80 1 b、 80 1 cは絶縁層、 802は丁 丁 (pチャネル型 TFT) 、 803はチャネル形 成領域、 804はドレイン領域(またはソ一ス領域)、 80 5はゲート電極、 8 0 6はドレイン電極 (またはソース電極) 、 8 0 7は配線、 8 0 8は第 1 の電極、 8 0 9は絶縁物、 8 1 0は E L層、 8 1 1は第 2の電極、 8 1 2は 透明保護層、 8 1 3は第 2のシール剤、 8 1 4は第 2の基板である。
また、 第 1の電極 8 0 8として透明導電膜を用いれば両面発光型の発光装 置を作製することができる。
また、 本実施例は実施の形態 1乃至 3、 実施例 1のいずれか一と自由に組 み合わせることができる。
(実施例 3 )
本発明を実施することによって有機化合物を含む層を有するモジュール ( アクティブマトリクス型 E Lモジュール、 パッシブマトリクス型 E Lモジュ ール) を組み込んだ全ての電子機器が完成される。
その様な電子機器としては、 ビデオカメラ、 デジタルカメラ、 ヘッドマウ ントディスプレイ (ゴーグル型ディスプレイ) 、 カーナビゲ一シヨン、 プロ ジェクタ、 力一ステレオ、 パーソナルコンピュータ、 携帯情報端末 (モバイ ルコンピュータ、 携帯電話または電子書籍等) などが挙げられる。 それらの 一例を図 8、 図 9に示す。
図 8 (A) はパーソナルコンピュータであり、 本体 2 0 0 1、 画像入力部 2 0 0 2、 表示部 2 0 0 3、 キーポード 2 0 0 4等を含む。
図 8 ( B ) はビデオカメラであり、 本体 2 1 0 1、 表示部 2 1 0 2、 音声 入力部 2 1 0 3、 操作スィツチ 2 1 0 4、 バッテリー 2 1 0 5、 受像部 2 1 0 6等を含む。
図 8 ( C ) はモバイルコンピュー夕 (モービルコンピュータ) であり、 本 体 220 1、 カメラ部 220 2、 受像部 2203、 操作スィツチ 2204、 表示部 2205等を含む。
図 8 (D) はプログラムを記録した記録媒体 (以下、 記録媒体と呼ぶ) を 用いるプレーヤ一であり、 本体 240 1、 表示部 2402、 スピーカ部 24 03、 記録媒体 2404、 操作スィッチ 2405等を含む。 なお、 このプレ —ャ一は記録媒体として DVD (D i g t i a l Ve r s a t i l e D i s c) 、 CD等を用い、 音楽鑑賞や映画鑑賞やゲームやインタ一ネットを 行うことができる。
図 8 (E) はデジタルカメラであり、 本体 250 1、 表示部 2502、 接 眼部 2503、 操作スィッチ 2504、 受像部 (図示しない) 等を含む。 図 9 (A) は携帯電話機であり、 本体 290 1、 音声出力部 2902、 音 声入力部 2903、 表示部 2904、 操作スィツチ 2905、 アンテナ 29 06、 画像入力部 (CCD、 イメージセンサ等) 2907等を含む。
図 9 (B) は携帯書籍 (電子書籍) であり、 本体 300 1、 表示部 300 2、 3003、 記憶媒体 3004、 操作スィツチ 3005、 アンテナ 300 6等を含む。
図 9 (C) はディスプレイであり、 本体 3 101、 支持台 3 1 02、 表示 部 3 1 03等を含む。
ちなみに図 9 (C) に示すディスプレイは中小型または大型のもの、 例え ば 5〜20インチの画面サイズのものである。 また、 このようなサイズの表 示部を形成するためには、 基板の一辺が lmのものを用い、 多面取りを行つ て量産することが好ましい。 以上の様に、 本明細書で開示する発明の適用範囲は極めて広く、 あらゆる 分野の電子機器の作製方法に適用することが可能である。 また、 本実施例の 電子機器は実施の形態 1乃至 3、 実施例 1、 2のどのような組み合わせから なる構成を用いても実現することができる。

Claims

請求の範囲
1 . 少なくとも一方が透光性である一対の基板間に、 第 1の電極と該第 1 の電極上に接する有機化合物層と該有機化合物層上に接する第 2の電極とを 有する E L素子を複数有する画素部を備えた発光装置であって、
前記画素部を囲む第 1のシール剤と、 該第 1のシール剤によって囲まれた 領域に前記画素部の全面を覆うように設けられた第 2のシール剤とを有し、 前記第 1のシール剤と前記第 2のシール剤とで前記一対の基板が固定され ていることを特徴とする発光装置。
2 . 少なくとも一方が透光性である一対の基板間に、 第 1の電極と該第 1 の電極上に接する有機化合物層と該有機化合物層上に接する第 2の電極とを 有する E L素子を複数有する画素部を備えた発光装置であって、
前記画素部を囲む第 1のシール剤と、 該第 1のシール剤によって囲まれた 領域に前記画素部の全面を覆うように設けられた第 2のシール剤とを有し、 前記第 1のシール剤は、 前記画素部を挟むように設けられた一対の第 1の パターンと、 前記画素部と前記一対の第 1のパターンを囲む第 2のパターン からなり、 前記一対の第 1のパターン間は少なくとも第 2のシール剤により 充填され、 前記一対の第 1のパターンの両端と前記第 2のパターン間は開口 していることを特徴とする発光装置。
3 . 少なくとも一方が透光性である一対の基板間に、 第 1の電極と該第 1 の電極上に接する有機化合物層と該有機化合物層上に接する第 2の電極とを 有する E L素子を複数有する画素部を備えた発光装置であって、 前記画素部を囲む第 1のシール剤と、 該第 1のシール剤によって囲まれた 領域に前記画素部の全面を覆うように設けられた第 2のシール剤とを有し、 前記第 1のシール剤は、 前記画素部を挟むように設けられた 2本の線状パ ターンと、 前記画素部と前記 2本の線状パターンを囲む角の湾曲した四角形 状パターンからなり、 前記 2本の線状パターン間は少なくとも第 2のシール 剤により充填され、 前記 2本の線状パターンの両端と前記角の湾曲した四角 形状パターン間は開口していることを特徴とする発光装置。
4 . 請求項 2又は請求項 3において、 前記第 2のシ一ル剤は前記開口から 突出していることを特徴とする発光装置。
5 .請求項 1乃至請求項 3のいずれか一において、前記第 1のシール剤は、 前記一対の基板の間隔を保持するギャップ材を含むことを特徴とする発光装
6 . 請求項 1乃至請求項 3のいずれか一において、 前記第 1のシール剤は U V硬化性のエポキシ樹脂でなり、 前記第 2のシール剤は熱硬化性のェポキ シ樹脂でなり熱硬化後に透光性を有することを特徴とする発光装置。
7 . 請求項 1乃至請求項 3のいずれか一において、 前記第 2の電極と前記 第 2のシール剤との間には C a F 2、 M g F 2、 または B a F 2からなる透光 性を有する保護層が設けられていることを特徴とする発光装置。
8 . 請求項 1乃至請求項 3のいずれか一において、 前記 E L素子からの発 光は、 前記第 2のシール剤と前記一対の基板の一方を透過して放出されるこ とを特徴とする発光装置。
9 . 請求項 1乃至請求項 3のいずれか一において、 前記 E L素子からの発 光は、 前記第 2のシール剤と前記一対の基板の一方を透過して放出されると 共に、 前記前記一対の基板の他方を透過して放出されることを特徴とする発
1 0 . 請求項 1乃至請求項 3のいずれか一において、 前記発光装置は、 ビ デォカメラ、 デジタルカメラ、 ゴーグル型ディスプレイ、 力一ナビゲーショ ン、 パーソナルコンピュ一夕、 D V Dプレーヤー、 携帯電話機、 または携帯 情報端末に搭載されることを特徴とする発光装置。
1 1 . 第 1の基板上に、 一対の第 1のパターンと該一対の第 1のパターン を囲むように第 2のパターンとを第 1のシール剤により形成し、
前記一対の第 1のパターン間に、 硬化後に透光性を有し且つ前記第 1のシ ール剤よりも粘度の低い第 2のシール剤を滴下し、
E L素子を備えた画素部を有する第 2の基板と前記第 1の基板とを、 前記 一対の第 1のパターン間に前記画素部が配置されるように貼り合わせると共 に、 前記貼り合わせの際に前記第 2のシール剤を前記画素部の全面を覆うよ うに広げ、
前記第 1のシール剤と前記第 2のシール剤を硬化させることを特徴とする 発光装置の作製方法。
1 2 . 第 1の基板上に、 一対の第 1のパターンと該一対の第 1のパ夕一ン を囲むように第 2のパターンとを第 1のシール剤により形成し、
前記一対の第 1のパターン間に、 硬化後に透光性を有し且つ前記第 1のシ ール剤よりも粘度の低い第 2のシール剤を滴下し、
E L素子を備えた画素部を有する第 2の基板と前記第 1の基板とを、 前記 一対の第 1のパターン間に前記画素部が配置されるように貼り合わせると共 に、 前記貼り合わせの際に前記一対の第 1のパターンの両端と前記第 2のパ ターンとの間の開口から突出するように前記第 2のシール剤を広げ、
前記第 1のシール剤と前記第 2のシール剤を硬化させることを特徴とする 発光装置の作製方法。 '
1 3 . 第 1の基板上に、 2本の線状パターンと該 2本の線状パターンを囲 むように角の湾曲した四角形状パターンとを第 1のシール剤により形成し、 前記 2本の線状パ夕一ン間に、 硬化後に透光性を有し且つ前記第 1のシー ル剤よりも粘度の低い第 2のシール剤を滴下し、
E L素子を備えた画素部を有する第 2の基板と前記第 1の基板とを、 前記 2本の線状パターン間に前記画素部が配置されるように貼り合わせると共に 前記貼り合わせの際に前記第 2のシール剤を前記画素部の全面を覆うように 広げ、
前記第 1のシール剤と前記第 2のシール剤を硬化させることを特徴とする 発光装置の作製方法。
1 4 . 第 1の基板上に、 2本の線状パターンと該 2本の線状パターンを囲 むように角の湾曲した四角形状パターンとを第 1のシール剤により形成し、 前記 2本の線状パターン間に、 硬化後に透光性を有し且つ前記第 1のシ一 ル剤よりも粘度の低い第 2のシール剤を滴下し、
E L素子を備えた画素部を有する第 2の基板と前記第 1の基板とを、 前記 2本の線状パターン間に前記画素部が配置されるように貼り合わせると共に 前記貼り合わせの際に前記 2本の線状パターンの両端と前記角の湾曲した四 角形状パ夕一ンとの間の開口から突出するように前記第 2のシール剤を広げ. 前記第 1のシール剤と前記第 2のシール剤を硬化させることを特徴とする 発光装置の作製方法。
1 5 . 請求項 1 1又は請求項 1 2において、
前記第 2のパターンは、 前記一対の第 1のパターンに沿って存在する前記 第 2のパターンの 2辺それぞれの中点付近に隙間を有するように形成され、 前記第 1の基板と前記第 2の基板を貼り合わせる際、 前記隙間が塞がるこ とによって前記第 2のシール剤が第 1のシール剤により完全に外気から遮断 されることを特徴とする発光装置の作製方法。
1 6 . 請求項 1 3又は請求項 1 4において、
前記角の湾曲した四角形状のパターンは、 前^ 2本の線状パターンに沿つ て存在する前記角の湾曲した四角形状パターンの 2辺それぞれの中点付近に 隙間を有するように形成され、
前記第 1の基板と前記第 2の基板を貼り合わせる際、 前記隙間が塞がるこ とによつて前記第 2のシール剤が第 1のシール剤により完全に外気から遮断 されることを特徴とする発光装置の作製方法。
1 7 . 請求項 1 1乃至請求項 1 4のいずれか一において、 前記第 1のシー ル剤と前記第 2のシ一ル剤の硬化は、 前記第 1のシール剤を U V照射により 硬化させた後に、 前記第 2のシール剤を加熱することにより硬化させて行う ことを特徴とする発光装置の作製方法。
1 8 . 請求項 1 1又は請求項 1 2において、 前記第 1のシール剤と前記第 2のシール剤を硬化させた後、 前記第 2のパターンに沿って前記第 1の基板 及び前記第 2の基板を分断することを特徴とする発光装置の作製方法。
1 9 . 請求項 1 3又は請求項 1 4において、 前記第 1のシール剤と前記第 2のシ一ル剤を硬化させた後、 前記角の湾曲した四角形状のパターンに沿つ て前記第 1の基板及び前記第 2の基板を分断することを特徴とする発光装置 の作製方法。
PCT/JP2003/016539 2002-12-26 2003-12-24 発光装置及びその作製方法 WO2004060022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003296080A AU2003296080A1 (en) 2002-12-26 2003-12-24 Light-emitting device and method for manufacturing same
JP2004562904A JP4610343B2 (ja) 2002-12-26 2003-12-24 発光装置及びその作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002378668 2002-12-26
JP2002-378668 2002-12-26

Publications (1)

Publication Number Publication Date
WO2004060022A1 true WO2004060022A1 (ja) 2004-07-15

Family

ID=32677442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016539 WO2004060022A1 (ja) 2002-12-26 2003-12-24 発光装置及びその作製方法

Country Status (6)

Country Link
US (5) US7109655B2 (ja)
JP (1) JP4610343B2 (ja)
CN (1) CN100531484C (ja)
AU (1) AU2003296080A1 (ja)
TW (1) TWI352553B (ja)
WO (1) WO2004060022A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085957A (ja) * 2004-09-15 2006-03-30 Tohoku Pioneer Corp 自発光パネルの製造方法
JP2007073397A (ja) * 2005-09-08 2007-03-22 Sony Corp 表示装置の製造方法および表示装置
JP2008235089A (ja) * 2007-03-22 2008-10-02 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
WO2011055686A1 (en) * 2009-11-04 2011-05-12 Canon Kabushiki Kaisha Organic electroluminescent element and display including same
JP2011138097A (ja) * 2009-12-03 2011-07-14 Sony Corp 表示装置、表示装置の製造方法および電子機器
JP2013214368A (ja) * 2012-03-30 2013-10-17 Furukawa Electric Co Ltd:The 有機エレクトロルミネッセンス素子封止用樹脂組成物、これを用いた有機エレクトロルミネッセンス素子およびディスプレイ装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI352553B (en) * 2002-12-26 2011-11-11 Semiconductor Energy Lab Light emitting device and a method for manufacturi
KR100552971B1 (ko) * 2003-10-09 2006-02-15 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
TWI238675B (en) * 2004-01-19 2005-08-21 Hitachi Displays Ltd Organic light-emitting display and its manufacture method
US7764012B2 (en) * 2004-04-16 2010-07-27 Semiconductor Energy Laboratory Co., Ltd Light emitting device comprising reduced frame portion, manufacturing method with improve productivity thereof, and electronic apparatus
US7791270B2 (en) 2004-09-17 2010-09-07 Semiconductor Energy Laboratory Co., Ltd Light-emitting device with reduced deterioration of periphery
KR100700013B1 (ko) * 2004-11-26 2007-03-26 삼성에스디아이 주식회사 유기전계발광소자 및 그의 제조 방법
TWI405496B (zh) * 2004-12-13 2013-08-11 Sanyo Electric Co 有機電場發光元件之封裝方法,及發光面板以及顯示面板之製造方法
JP4631683B2 (ja) * 2005-01-17 2011-02-16 セイコーエプソン株式会社 発光装置、及び電子機器
US7572655B2 (en) * 2005-03-23 2009-08-11 E. I. Du Pont De Nemours And Company Electronic devices having a layer overlying an edge of a different layer and a process for forming the same
WO2006104020A1 (en) * 2005-03-25 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
US8269227B2 (en) 2005-06-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US20070007533A1 (en) * 2005-07-08 2007-01-11 Yi-Tyng Wu Pixel array strcuture
KR100784557B1 (ko) * 2006-09-22 2007-12-11 엘지전자 주식회사 전계발광패널
KR100770104B1 (ko) * 2006-09-28 2007-10-24 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 제조 방법과 이를 위한이송 장치
JP2008170756A (ja) 2007-01-12 2008-07-24 Sony Corp 表示装置
US8716850B2 (en) * 2007-05-18 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8330339B2 (en) 2007-06-28 2012-12-11 Samsung Display Co., Ltd. Light emitting display and method of manufacturing the same
US8258696B2 (en) 2007-06-28 2012-09-04 Samsung Mobile Display Co., Ltd. Light emitting display and method of manufacturing the same
KR100879864B1 (ko) * 2007-06-28 2009-01-22 삼성모바일디스플레이주식회사 발광 표시 장치 및 그의 제조 방법
KR20090015734A (ko) * 2007-08-09 2009-02-12 엘지이노텍 주식회사 광원 장치
JP2010093068A (ja) * 2008-10-08 2010-04-22 Hitachi Displays Ltd 有機el表示装置およびその製造方法
KR101319096B1 (ko) * 2009-02-24 2013-10-17 엘지디스플레이 주식회사 탑 에미션 인버티드형 유기발광 다이오드 표시장치 및 그의제조방법
US20110058770A1 (en) * 2009-09-10 2011-03-10 E. I. Du Pont De Nemours And Company Sub-surface engraving of oled substrates for improved optical outcoupling
KR101065318B1 (ko) * 2009-12-03 2011-09-16 삼성모바일디스플레이주식회사 플렉서블 디스플레이 장치의 제조 방법
SG181534A1 (en) * 2009-12-17 2012-07-30 3M Innovative Properties Co Display panel assembly and methods of making same
TWI422072B (zh) 2009-12-30 2014-01-01 Au Optronics Corp 上蓋結構及發光元件之封裝結構及發光元件之封裝方法
KR101097337B1 (ko) * 2010-03-05 2011-12-21 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101641860B1 (ko) * 2010-05-12 2016-07-29 엘지이노텍 주식회사 발광소자 어레이, 조명장치 및 백라이트 장치
KR101722026B1 (ko) * 2010-10-22 2017-04-12 삼성디스플레이 주식회사 평판 표시 패널, 평판 표시 패널용 원장기판, 및 평판 표시 패널 제조 방법
US8654537B2 (en) 2010-12-01 2014-02-18 Apple Inc. Printed circuit board with integral radio-frequency shields
EP2717338B1 (en) * 2011-05-27 2018-08-01 Sharp Kabushiki Kaisha Light emitting device and lighting device
KR101421168B1 (ko) * 2011-09-20 2014-07-21 엘지디스플레이 주식회사 유기전계발광 표시소자 및 그 제조방법
TWI466352B (zh) * 2011-09-30 2014-12-21 Au Optronics Corp 有機電激發光元件陣列及有機電激發光元件
CN102760841B (zh) * 2012-07-11 2014-11-26 深圳市华星光电技术有限公司 有机发光二极管器件及相应的显示装置
KR101420332B1 (ko) * 2012-11-14 2014-07-16 삼성디스플레이 주식회사 유기 발광 디스플레이 장치
JP2014160788A (ja) 2013-02-21 2014-09-04 Panasonic Corp 部品実装装置および部品実装方法
JP5903668B2 (ja) * 2013-02-21 2016-04-13 パナソニックIpマネジメント株式会社 部品実装装置および部品実装方法
JP6182985B2 (ja) * 2013-06-05 2017-08-23 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、電子機器
KR20150071538A (ko) * 2013-12-18 2015-06-26 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
KR102178796B1 (ko) * 2014-01-22 2020-11-16 삼성디스플레이 주식회사 표시 장치
JP6439114B2 (ja) * 2014-03-07 2018-12-19 株式会社Joled 表示装置および電子機器
KR102223676B1 (ko) * 2014-06-24 2021-03-08 삼성디스플레이 주식회사 디스플레이 장치
WO2015198604A1 (ja) * 2014-06-26 2015-12-30 株式会社Joled 薄膜トランジスタ及び有機el表示装置
TWI699023B (zh) * 2014-06-30 2020-07-11 日商半導體能源研究所股份有限公司 發光裝置,模組,及電子裝置
CN105304508B (zh) * 2014-07-30 2019-10-18 日月光半导体制造股份有限公司 电子封装模块的制造方法及其结构
KR102360783B1 (ko) 2014-09-16 2022-02-10 삼성디스플레이 주식회사 디스플레이 장치
KR102342804B1 (ko) * 2014-12-30 2021-12-22 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102350366B1 (ko) * 2014-12-31 2022-01-11 엘지디스플레이 주식회사 유기 발광 표시 장치
CN104505470B (zh) * 2015-01-04 2017-12-08 京东方科技集团股份有限公司 显示面板及其制作方法以及显示装置
US9590005B1 (en) * 2016-01-25 2017-03-07 Omnivision Technologies, Inc. High dynamic range image sensor with reduced sensitivity to high intensity light
KR102627284B1 (ko) * 2016-05-12 2024-01-22 엘지디스플레이 주식회사 캐소드 전극과 보조 캐소드 전극의 접속구조 형성 방법과 그를 이용한 유기발광 다이오드 표시장치
CN108123053A (zh) * 2016-11-29 2018-06-05 京东方科技集团股份有限公司 发光器件和显示装置
CN206774584U (zh) * 2017-06-06 2017-12-19 京东方科技集团股份有限公司 薄膜封装结构和显示装置
CN108428804A (zh) * 2018-04-19 2018-08-21 武汉华星光电技术有限公司 Oled显示面板及其封装方法
CN112424969A (zh) 2018-05-18 2021-02-26 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
CN109524576B (zh) * 2018-12-13 2020-12-29 合肥鑫晟光电科技有限公司 一种oled显示基板及其制备方法、显示装置
JP6625307B1 (ja) * 2019-07-04 2019-12-25 三菱電機株式会社 液晶表示装置及び液晶表示装置の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454420A (en) * 1987-08-25 1989-03-01 Matsushita Electric Ind Co Ltd Liquid crystal display element
JPH055890A (ja) * 1991-06-27 1993-01-14 Sanyo Electric Co Ltd 液晶表示パネルおよびその製造方法
JP2000068050A (ja) * 1998-08-24 2000-03-03 Casio Comput Co Ltd 電界発光素子及びその製造方法
WO2001091520A1 (fr) * 2000-05-23 2001-11-29 Nagase & Co., Ltd. Ecran electroluminescent organique et procede de fabrication de celui-ci
JP2001338755A (ja) * 2000-03-21 2001-12-07 Seiko Epson Corp 有機el素子およびその製造方法
JP2001345175A (ja) * 2000-06-01 2001-12-14 Stanley Electric Co Ltd 有機el表示装置
JP2002025764A (ja) * 2000-07-05 2002-01-25 Toyota Motor Corp 有機el素子の封止方法
JP2002216950A (ja) * 2001-01-24 2002-08-02 Sony Corp 表示装置
JP2003243161A (ja) * 2002-02-12 2003-08-29 Seiko Epson Corp 電気光学装置の製造方法及び製造装置、電気光学装置、電子機器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US44035A (en) * 1864-08-30 Weeding-hoe
EP0781075B1 (en) * 1994-09-08 2001-12-05 Idemitsu Kosan Company Limited Method for sealing organic el element and organic el element
US6420031B1 (en) * 1997-11-03 2002-07-16 The Trustees Of Princeton University Highly transparent non-metallic cathodes
JP4059968B2 (ja) 1997-12-18 2008-03-12 Tdk株式会社 有機el素子の製造方法
JPH11264991A (ja) * 1998-01-13 1999-09-28 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法
US6396208B1 (en) * 1998-01-27 2002-05-28 Nec Corporation Organic electroluminescent device and its manufacturing process
TW401631B (en) 1998-10-23 2000-08-11 Highlight Optoelectronics Inc Organic light emitting display and its packaging method
US6608283B2 (en) * 2000-02-08 2003-08-19 Emagin Corporation Apparatus and method for solder-sealing an active matrix organic light emitting diode
TW452952B (en) * 2000-03-30 2001-09-01 Delta Optoelectronics Inc Packaging method of electro-luminescent device
JP3608613B2 (ja) * 2001-03-28 2005-01-12 株式会社日立製作所 表示装置
JP2002299067A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd El素子及びこれを用いた照光装置
JP2002352951A (ja) 2001-05-24 2002-12-06 Tohoku Pioneer Corp 有機el表示パネル及びその製造方法
JP4894987B2 (ja) * 2001-06-29 2012-03-14 三洋電機株式会社 表示用パネルの製造方法
JP4614588B2 (ja) * 2001-06-29 2011-01-19 三洋電機株式会社 エレクトロルミネッセンス表示装置の製造方法
US6664730B2 (en) * 2001-07-09 2003-12-16 Universal Display Corporation Electrode structure of el device
TW502552B (en) 2001-07-09 2002-09-11 Ind Tech Res Inst UV-cut film of organic electroluminescent display
TW511304B (en) 2001-12-11 2002-11-21 Ind Tech Res Inst Organic electroluminescent device with fluorine-containing inorganic layer
TW515062B (en) 2001-12-28 2002-12-21 Delta Optoelectronics Inc Package structure with multiple glue layers
US6791660B1 (en) * 2002-02-12 2004-09-14 Seiko Epson Corporation Method for manufacturing electrooptical device and apparatus for manufacturing the same, electrooptical device and electronic appliances
KR100477745B1 (ko) * 2002-05-23 2005-03-18 삼성에스디아이 주식회사 유기 전계발광 소자의 봉지방법 및 이를 이용하는 유기전계발광 패널
JP4240276B2 (ja) * 2002-07-05 2009-03-18 株式会社半導体エネルギー研究所 発光装置
KR101032337B1 (ko) * 2002-12-13 2011-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광장치 및 그의 제조방법
TWI352553B (en) * 2002-12-26 2011-11-11 Semiconductor Energy Lab Light emitting device and a method for manufacturi

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454420A (en) * 1987-08-25 1989-03-01 Matsushita Electric Ind Co Ltd Liquid crystal display element
JPH055890A (ja) * 1991-06-27 1993-01-14 Sanyo Electric Co Ltd 液晶表示パネルおよびその製造方法
JP2000068050A (ja) * 1998-08-24 2000-03-03 Casio Comput Co Ltd 電界発光素子及びその製造方法
JP2001338755A (ja) * 2000-03-21 2001-12-07 Seiko Epson Corp 有機el素子およびその製造方法
WO2001091520A1 (fr) * 2000-05-23 2001-11-29 Nagase & Co., Ltd. Ecran electroluminescent organique et procede de fabrication de celui-ci
JP2001345175A (ja) * 2000-06-01 2001-12-14 Stanley Electric Co Ltd 有機el表示装置
JP2002025764A (ja) * 2000-07-05 2002-01-25 Toyota Motor Corp 有機el素子の封止方法
JP2002216950A (ja) * 2001-01-24 2002-08-02 Sony Corp 表示装置
JP2003243161A (ja) * 2002-02-12 2003-08-29 Seiko Epson Corp 電気光学装置の製造方法及び製造装置、電気光学装置、電子機器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601712B2 (en) 2002-07-05 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7985606B2 (en) 2002-07-05 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light emitting device
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
US8455916B2 (en) 2002-07-05 2013-06-04 Semiconductor Energy Laboratory, Ltd. Light emitting device and method of manufacturing the same
US10566569B2 (en) 2002-07-05 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9929377B2 (en) 2002-07-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Arrangement of sealing materials for display device
US8927979B2 (en) 2002-07-05 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2006085957A (ja) * 2004-09-15 2006-03-30 Tohoku Pioneer Corp 自発光パネルの製造方法
JP2007073397A (ja) * 2005-09-08 2007-03-22 Sony Corp 表示装置の製造方法および表示装置
JP2008235089A (ja) * 2007-03-22 2008-10-02 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法
KR101415098B1 (ko) 2009-11-04 2014-07-04 캐논 가부시끼가이샤 유기 일렉트로루미네슨트 소자와 그것을 구비한 표시장치
WO2011055686A1 (en) * 2009-11-04 2011-05-12 Canon Kabushiki Kaisha Organic electroluminescent element and display including same
JP2011119233A (ja) * 2009-11-04 2011-06-16 Canon Inc 有機el素子とそれを用いた表示装置
US9711576B2 (en) 2009-12-03 2017-07-18 Joled Inc. Display, method of manufacturing display and electronic device
JP2011138097A (ja) * 2009-12-03 2011-07-14 Sony Corp 表示装置、表示装置の製造方法および電子機器
JP2013214368A (ja) * 2012-03-30 2013-10-17 Furukawa Electric Co Ltd:The 有機エレクトロルミネッセンス素子封止用樹脂組成物、これを用いた有機エレクトロルミネッセンス素子およびディスプレイ装置

Also Published As

Publication number Publication date
US20050040762A1 (en) 2005-02-24
US20130092919A1 (en) 2013-04-18
US20170155091A1 (en) 2017-06-01
AU2003296080A1 (en) 2004-07-22
JP4610343B2 (ja) 2011-01-12
US7948175B2 (en) 2011-05-24
TW200420181A (en) 2004-10-01
TWI352553B (en) 2011-11-11
US20110221335A1 (en) 2011-09-15
CN100531484C (zh) 2009-08-19
US9577218B2 (en) 2017-02-21
US8330363B2 (en) 2012-12-11
JPWO2004060022A1 (ja) 2006-05-11
US7109655B2 (en) 2006-09-19
CN1732715A (zh) 2006-02-08
US10103355B2 (en) 2018-10-16
US20070052347A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2004060022A1 (ja) 発光装置及びその作製方法
JP4240276B2 (ja) 発光装置
JP4401657B2 (ja) 発光装置の製造方法
US7531847B2 (en) Light emitting device having organic light-emitting element
JP2004103337A (ja) 発光装置およびその作製方法
JP2003332073A (ja) 発光装置およびその作製方法
JP4215750B2 (ja) 発光装置の作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004562904

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A76332

Country of ref document: CN

122 Ep: pct application non-entry in european phase