WO2004055929A1 - 2次電池を有する燃料電池システム - Google Patents

2次電池を有する燃料電池システム Download PDF

Info

Publication number
WO2004055929A1
WO2004055929A1 PCT/JP2003/015498 JP0315498W WO2004055929A1 WO 2004055929 A1 WO2004055929 A1 WO 2004055929A1 JP 0315498 W JP0315498 W JP 0315498W WO 2004055929 A1 WO2004055929 A1 WO 2004055929A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
fuel cell
supply system
voltage
power
Prior art date
Application number
PCT/JP2003/015498
Other languages
English (en)
French (fr)
Inventor
Tetsuhiro Ishikawa
Tsuyoshi Yano
Tadaichi Matsumoto
Katsuhiko Nishiyama
Hiroshi Yoshida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2004560605A priority Critical patent/JP3960337B2/ja
Priority to DE10393874.5T priority patent/DE10393874B8/de
Publication of WO2004055929A1 publication Critical patent/WO2004055929A1/ja
Priority to US11/151,540 priority patent/US7354671B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04917Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power supply system including a fuel cell and a secondary battery.
  • Fuel cells are attracting attention as environmentally friendly clean power sources. Normally, it is sometimes difficult to cope with load fluctuations with a single fuel cell, so a hybrid power supply system combining a fuel cell and a secondary battery has been proposed. In the eight-hybrid power supply system, it is desired to stop the output of the fuel cell and supply power only from the secondary battery in a specific state such as when the fuel cell is malfunctioning or when starting up.
  • the present invention has been made to solve the above-mentioned problems in the prior art, and in an electric power supply system combining a fuel cell and a secondary battery, an operation module for supplying power only with the secondary battery.
  • the purpose is to provide technology that realizes
  • a first aspect of the present invention is a power supply system for supplying power to a load, comprising: a first and a second power supply wiring for connecting to the load; and a first and a second power supply wiring.
  • a fuel cell system having a fuel cell connected between the first and second power sources
  • a secondary power supply system connected in parallel with the fuel cell between wirings; a switch for opening and closing a connection between the fuel cell and the first power supply wiring; a secondary power supply system and the switch
  • a controller for controlling the secondary power supply system when the fuel cell is connected to the first power supply wiring. It is characterized in that the voltage between both ends is increased.
  • the voltage between both ends of the secondary power supply system connected in parallel with the fuel cell is increased. Excessive current from the fuel cell that can be generated when connecting to the stem can be suppressed.
  • the power supply system further includes a backflow prevention device connected between the fuel cell and the first power supply wiring, wherein the control unit is configured to connect the fuel cell to the first power supply wiring.
  • the voltage across the secondary power supply system may be increased to a first voltage higher than the voltage between both ends when the fuel cell is opened. In this way, when the fuel cell is connected to the power supply system, the current flowing from the fuel cell can be reduced to zero, and the output current from the fuel cell can be reduced by gradually lowering the voltage across the secondary power supply system after connection. Can be gradually increased.
  • the control unit may further include, after connecting the fuel cell to the first power supply line, setting a voltage across the secondary power supply system lower than a voltage between both ends when the fuel cell is opened. You may make it fall to a voltage.
  • the secondary power supply system configured to operate optimally at a voltage lower than the voltage between both ends when the fuel cell is opened.
  • the reason that the secondary power system is configured to operate optimally at a voltage lower than the voltage between both ends when the fuel cell is opened is that when the fuel cell is connected, it is lower than the voltage between both ends when the fuel cell is opened. This is because the secondary power system is designed to operate at low voltage.
  • control unit may control the fuel supply from the first power supply wiring.
  • the voltage between both ends of the secondary power supply system may be decreased to a voltage lower than the voltage between both ends when the fuel cell is opened according to disconnection of the fuel cell.
  • the secondary power supply system configured to operate optimally at a voltage lower than the voltage between both ends when the fuel cell is opened can be operated efficiently.
  • the secondary power supply system includes: a rechargeable secondary battery; and a DC_DC converter capable of increasing / decreasing a voltage of DC input power input from the secondary battery and outputting DC power.
  • the control unit when the fuel cell is disconnected from the first power supply wiring, the output voltage of the DC-DC converter is set at both ends when the fuel cell is opened. Control may be started so as to approach the output voltage of the secondary battery more than the voltage.
  • the term “rechargeable secondary battery” has a broad meaning including not only a battery but also a capacitor.
  • the secondary power supply system includes a rechargeable secondary battery, and a DC-DC converter capable of increasing / decreasing a voltage of a DC input power input from the secondary battery and outputting a DC output power.
  • the control unit is configured to cause an output voltage of the DC-DC converter to approach an output voltage of the secondary battery in accordance with disconnection of the fuel cell from the first power supply wiring. Such control may be started.
  • the DC-DC converter of the secondary power supply system can be operated most efficiently. This is because the efficiency of the DC-DC converter overnight increases as the output voltage approaches the input voltage.
  • control unit may be configured so that the fuel cell has a predetermined size. When the power cannot be supplied, the fuel cell may be separated from the first power supply wiring.
  • a second aspect of the present invention is a power supply system for supplying power to a load, comprising: a backflow prevention device having one end connected to one end of the load; the other end of the load; and the backflow prevention device.
  • a fuel cell system having a fuel cell connected between the other end of the fuel cell, a secondary power supply system connected in parallel with the fuel cell, and a control unit for controlling the secondary power supply system.
  • the control unit has a specific control mode in which the output voltage of the fuel cell is stopped by setting the voltage between both ends of the secondary power supply system to be higher than the voltage between both ends when the fuel cell is opened. I do.
  • the power supply system according to the second aspect of the present invention has a specific control mode for stopping the output of the fuel cell by setting the voltage between both ends of the secondary power supply system to be higher than the voltage between both ends when the fuel cell is opened.
  • the fuel cell can be installed in the hybrid power supply system without any intermediary.
  • control unit may perform control in the specific control mode when the fuel cell is in a specific state including at least one of activation of the fuel cell and abnormality of the fuel cell. May be.
  • the secondary power supply system includes a rechargeable secondary battery, and a DC-DC converter capable of increasing / decreasing a voltage of a DC input power input from the secondary battery and outputting a DC output power.
  • the secondary battery is configured such that the voltage across the battery when outputting a predetermined power is equal to or higher than the voltage across the fuel cell when the fuel cell is open, and the DC-DC
  • the converter has a short-circuit mode that is an operation mode for short-circuiting the secondary battery and the fuel cell, and the specific control mode is an operation mode of the DC-DC converter.
  • the control mode for setting the short-circuit mode may be adopted.
  • the short-circuit mode can be realized, for example, by providing a short-circuit switch between the secondary battery and the fuel cell or load.
  • the secondary battery has a first power electrode and a second power electrode
  • the DC-DC converter has a first load electrode, a second load electrode, and one end of a ⁇ switch.
  • a series circuit in which one end of the second switch is connected in series at a first connection point, and the other end of the first switch is connected to the first power supply electrode, and the second switch is connected to the second power supply electrode.
  • the pole is connected to the second load electrode, and in the short-circuit mode, the control unit closes the first switch and the third switch, and the connection control switch and the second switch.
  • the fourth switch may be in an open operation mode.
  • FIG. 1 is a schematic configuration diagram of an electric vehicle including a hybrid power supply system as a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing how the secondary power supply system 20 and the FC system 30 supply power to the motor drive circuit 40.
  • FIG. 3 is an explanatory diagram showing how the sharing ratio fluctuates by controlling the output voltage of the secondary power supply system 20.
  • FIG. 4 is an explanatory diagram illustrating a configuration of a secondary power supply system 20 including the DC-DC converter 21 and the secondary battery 23 according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing the relationship between the input / output voltage ratio and the conversion efficiency in the DC-DC converter 21 of the first embodiment of the present invention.
  • FIG. 6 is a time chart showing the operation of the hybrid power supply system according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing the control contents of the hybrid power supply system according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing the content of the FC system connection control performed in step S120.
  • FIG. 9 is a flowchart showing the logic of the DC-DC converter voltage command.
  • FIG. 10 is a schematic configuration diagram of an electric vehicle including a hybrid power supply system according to a second embodiment of the present invention.
  • FIG. 11 is an explanatory diagram showing the configuration of the secondary power supply system 20a according to the second embodiment of the present invention.
  • FIG. 12 is a flowchart showing the control contents of the hybrid power supply system 100a according to the second embodiment of the present invention.
  • Figure 13 is a flowchart showing the logic of the DC-DC converter control command. is there.
  • Fig. 14 shows the time series of the voltage applied to the gate terminals of the four switches Q1, Q2, Q3, and Q4 by the control unit 300a in the normal control mode when power is supplied. It ’s Muchaiyat.
  • FIG. 15 is an explanatory diagram showing an operation state of the bidirectional DC—DC converter circuit 21 a when supplying power to the load 200.
  • FIG. 16 is an explanatory diagram showing the operation of the bidirectional DC-DC converter circuit 21a in the short-circuit mode.
  • FIG. 17 is an explanatory diagram showing an operation state of the hybrid power supply system 100a in the short-circuit mode.
  • FIG. 18 is a flowchart illustrating an example of a process for determining the command content of the required power of the drive circuit.
  • FIG. 19 is a graph showing a constant power discharge curve of the secondary battery 23a.
  • FIG. 1 is a schematic configuration diagram of an electric vehicle including a hybrid power supply system according to a first embodiment of the present invention.
  • This electric vehicle (hereinafter simply referred to as “vehicle system”) includes a hybrid power supply system 100, a load 200 including wheels, and a control unit 300.
  • the hybrid power system 100 has two power wires
  • a secondary power supply system 20 and a fuel cell system 30 (also referred to as “FC system”) are connected in parallel between 12 and 14.
  • the secondary power supply system 20 and the fuel cell system 30 are provided with voltmeters 22 and 36 for measuring the voltage between both ends, respectively.
  • an FC switch 32 and a backflow prevention diode D # are connected in series.
  • the power supply wires 12 and 14 are connected to the motor drive circuit 40 of the load 200.
  • the motor drive circuit 40 is a circuit for driving the motor 42, and is composed of, for example, a transistor stein.
  • the power generated by the motor 42 is transmitted to the wheel drive shaft 46 via the gear mechanism 44.
  • the control unit 300 is electrically connected to the FC system 30, the FC switch 32, and the motor drive circuit 40, and executes various controls including control of these circuits.
  • Various control operations of the control unit 300 are realized by the control unit 300 executing a computer program stored in a memory (not shown) incorporated in the control unit 300.
  • Various recording media such as a ROM and a hard disk can be used as the memory.
  • the motor drive circuit 40 converts the DC power supplied from the hybrid power supply system 100 into three-phase AC power and supplies it to the motor 42.
  • the magnitude of the supplied three-phase AC power is determined by a motor drive circuit 40 controlled by the control unit 300 in accordance with an input from an accelerator (not shown).
  • the vehicle system is configured such that the magnitude of the three-phase AC power supplied to the motor 42 does not depend on the output voltage of the hybrid power supply system 100.
  • FIG. 2 is a block diagram showing how the secondary power supply system 20 and the FC system 30 supply power to the motor drive circuit 40.
  • Fig. 2 (a) shows the case where the required power of the motor drive circuit 40 is larger than the FC power which is the output power of the FC system 30.
  • Fig. 2 (b) shows that the required power of the motor drive circuit 40 is FC Indicates a case that is smaller than the power are doing.
  • the secondary power supply system 20 supplies power to the motor drive circuit 40 simultaneously with the FC system 30 (FIG. 2 (a)).
  • the accelerator circuit not shown
  • the required power of the drive circuit increases instantaneously, both the secondary power supply system 20 and the FC system 30 supply power.
  • the FC system 30 supplies power to both the motor drive circuit 40 and the secondary power supply system 20.
  • FIG. 3 is an explanatory diagram showing how the output of the FC system 30 is controlled by adjusting the output voltage of the secondary power supply system 20.
  • FIG. 3 (a) shows the relationship between the FC voltage, which is the output voltage of the FC system 30, and the FC current, which is the output current. As can be seen from FIG. 3A, the FC current decreases as the FC voltage increases, and the FC current increases as the FC voltage decreases.
  • FC voltage is V.
  • the FC current is I.
  • the FC power is P. It is.
  • the FC voltage decreases to V, the FC current increases and the FC power increases.
  • the FC voltage is saturating, and the FC power, which is the product of the FC current and the FC voltage, starts to fall in the opposite direction.
  • Haipuriddo power supply system 1 00 FC voltage to protect the FC system 30 is configured so as not to be operational minimum voltage V mi less than n. This result Fruit, FC system 30 will be operated by the output voltage between the open circuit voltage OC V and operational minimum voltage V mi n.
  • Fig. 3 (b) shows the FC system 30 (Fig.
  • FC power is shown as a hatched area
  • FC power is the same as that shown in Fig. 3 (a).
  • the secondary power supply voltage is V.
  • the secondary power supply voltage is V.
  • ⁇ 00 indicates that the FC power can be controlled by adjusting the secondary power supply voltage (the output voltage of the secondary power supply system 20).
  • the output of 0 can be adjusted. For example, if the rechargeable battery is low,
  • the secondary power supply voltage it is preferable to reduce the secondary power supply voltage. By doing so, the output of the FC system 30 can be increased, and the chances of charging the secondary battery can be increased. On the other hand, when the charge amount of the secondary battery is excessive, it is preferable to increase the secondary power supply voltage. This makes it possible to reduce the output of the FC system 30 and increase the chances of discharging the secondary battery.
  • FIG. 4 shows the DC-DC converter 21 and the secondary battery 2 according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a configuration of a secondary power supply system 20 having 3 and 4.
  • the DC-DC converter 21 has two switches Q 1 and Q 2, a transformer, a die D 2, and a capacitor C.
  • the secondary power system 20 has two terminals T 1 2. DC power of any voltage can be output within a predetermined range at T14.
  • the DC-DC converter 21 is configured as a flyback-type bidirectional converter as can be seen from FIG. This bidirectional converter can supply power from the secondary battery 23 or charge the secondary battery 23 with power from the FC system 30 or the motor drive circuit 40.
  • the power supply by the secondary power supply system 20 is performed by the control unit 300 fixing the switch Q2 to the power supply J and turning on and off the switch Q1.
  • the switch Q1 When the switch Q1 is turned on and off, magnetic energy is accumulated in the primary winding of the transformer T (secondary battery 23 side) at the moment when the switch Q1 is turned on, and the switch Q1 is turned on. As soon as is turned off, an electromotive force is generated in the secondary winding (output side).
  • the output voltage of the secondary power supply system 20 can be controlled by changing the duty (on / off ratio) of the switch Q1.
  • the charging of the secondary battery 23 is performed by the control unit 300 fixing the switch Q1 to ⁇ 0 ⁇ and turning on and off the switch Q2.
  • FIG. 5 is an explanatory diagram showing the relationship between the input / output voltage ratio and the conversion efficiency in the DC-DC converter 21 of the first embodiment of the present invention.
  • the input / output voltage ratio is the value obtained by dividing the output voltage of the DC-DC converter 21 by the input voltage.
  • Conversion efficiency is the value obtained by dividing the output power by the input power. As can be seen from FIG. 5, the conversion efficiency has a peak when the input / output voltage ratio is “1”, so that the output voltage of the secondary power supply system 20 and the output voltage of the secondary battery 23 become equal. It is preferable to configure the hybrid power supply system 100 so as to be operated more frequently.
  • FIG. 6 is a time chart showing the operation of the hybrid power supply system according to the first embodiment of the present invention.
  • FIG. 6 shows an example sequence: (1) start-up of FC system 30, (2) normal operation of hybrid power system, (3) F 9 shows a state of the hybrid power supply system 100 in a sequence such as a malfunction of the C system 30 and (4) a normal operation of the eight hybrid power supply system.
  • the operation state of the FC switch 32, the DC-DC converter 21 command voltage, and the FC current are shown as a time chart.
  • the normal operation of the hybrid power supply system means a parallel operation state in which electric power can be supplied from both the FC system 30 and the secondary battery 23.
  • the control unit 300 turns off the FC switch 32 (time t in FIG. 6A).
  • the activation of the FC system 30 refers to, for example, a process of enabling a reformer (not shown) that generates hydrogen gas to generate hydrogen gas of a predetermined quality so that the FC system 30 can exhibit a predetermined performance.
  • the FC switch 32 is turned off, so that the FC system 30 starts supplying power after a state where predetermined performance can be exhibited. As a result, when the FC system 30 is started, no FC current flows (FIG. 6 (c)).
  • the command voltage of the DC-DC converter 21 is set to the voltage.
  • the voltage VL is the output voltage of the secondary battery 23 when the secondary battery 23 can operate most efficiently.
  • the command voltage of the DC-DC converter 21 is set to the voltage VL in order to increase the conversion efficiency by setting the input / output voltage ratio of the DC-DC converter 21 to “1”.
  • the control unit 300 increases the command voltage DC- DC converter 21 to the voltage V H.
  • the voltage V H is higher than the open-circuit voltage OCV of the FC system 30 (FIG. 3) (time 1 :).
  • the reason why the command voltage of the DC-DC converter 21 is set to a voltage higher than the open circuit voltage of the FC system 30 is that a large current does not suddenly flow from the FC system 30 when the FC switch 32 (FIG. 1) is turned on. That is to ensure.
  • the FC switch 32 is turned on, normal operation of the hybrid power supply system 100 is started. Even if the output voltage of the DC-DC converter 21 is connected in a state where it is higher than the open circuit voltage OCV of the FC system 30, backflow does not occur because of the backflow prevention diode D1.
  • the FC-current does not flow because the output voltage of the DC-DC converter 21 is higher than the open-circuit voltage OCV of the FC system 30 (time t 2 ).
  • the FC current starts to flow (FIG. 6 (c), FIG. 3 (b)).
  • the FC current can be gradually increased by gradually lowering the output voltage of the DC-DC converter 21.
  • the control unit 300 determines the DC- DC converter 2 first command voltage according to the state of charge of the secondary battery 23 as described above. It is preferable that hybrid power supply system 100 is configured so that the command voltage is adjusted near voltage VL . As a result, the hybrid power supply system 100 becomes the most efficient operating state in normal operation as a whole system.
  • the control unit 300 disconnects the FC system 30 from the hybrid power supply system 100 (time t 3 ).
  • the malfunction of the FC system 30 can be detected based on, for example, the quality of hydrogen gas generated inside the FC system 30 or the observed value of the internal resistance of the FC system 30.
  • the disconnection of the FC system 30 is performed by turning off the FC switch 32.
  • the control unit 300 fixes the command voltage of the DC-DC converter 21 to the voltage VJ. This makes it possible to operate the secondary power supply system 20 with high conversion efficiency. it can.
  • the control unit 300 When the recovery of the FC system 30 is confirmed, the control unit 300 performs a process for connecting the FC system 30 to the hybrid power supply system 100. Confirmation of the recovery of the FC system 30 can also be performed based on, for example, the quality of hydrogen gas generated inside the FC system 30 or the observed value of the internal resistance of the FC system 30.
  • FC Shi The process for connecting the stearyl ⁇ 3 0, an operation to raise the DC- DC converter 2 1 of the output voltage to the voltage V H (time t 4).
  • FIG. 7 is a flowchart showing the control contents of the hybrid power supply system 100 according to the first embodiment of the present invention.
  • the control unit 300 determines whether or not the connection of the FC system 30 is possible.
  • the control unit 300 sets the connection flag to ⁇ 0 ⁇ . In step S120, the control unit 300 performs control for connecting the FC system 30 to the hybrid power supply system 100.
  • FIG. 8 is a flowchart showing the contents of the FC system connection control performed in step S120.
  • the control unit 300 determines whether the FC switch 32 is "0" or "OFF". This determination can be made, for example, by comparing the output voltage of FC system 30 with the output voltage of secondary power supply system 20. FC system 30 output voltage and secondary power system 20 Can be measured using the voltmeter 36 and the voltmeter 22, respectively. Specifically, when both are almost the same, it is determined that the FC switch 32 is "ON”, and the process proceeds to step S125 described later. On the other hand, if they do not match, it is determined that the FC switch 32 is "OFF", and the process proceeds to step S122.
  • step S122 the control unit 300 determines whether or not the set connection flag is “0NJ.” If the connection flag is “0FF”, that is, if the connection is not possible, the control unit 300 performs the following steps. The process proceeds to S130 (FIG. 7). On the other hand, when the connection flag is ⁇ 0 ⁇ , that is, when connection is possible, the process proceeds to step S123. In step S123, control section 300 determines whether or not the secondary power supply voltage is higher than FC open circuit voltage 0 CV. If it is determined that the secondary power supply voltage is higher than the FC open circuit voltage 0 CV, the process proceeds to step S124. In step S124, control unit 300 sets FC switch 32 to rONJ and connects FC system 30 to hybrid power supply system 100. On the other hand, if it is not determined that the secondary power supply voltage is higher than the FC open circuit voltage 0 CV, the process proceeds to step S 130 (FIG. 7) described later.
  • step S125 the control unit 300 determines whether or not the set connection flag is ⁇ 0 ⁇ "as in step S122. If the connection flag is “0FF”, the FC switch 32 is immediately set to “0FF” to disconnect the FC system 30 from the hybrid power supply system 100, and the process proceeds to step S130. On the other hand, if the connection flag is “0N”, the process proceeds to step S 30 without disconnecting the FC system 30 from the eight-bridged power supply system 100. In step S130, voltage command section 310 (FIG. 4) of control section 300 determines the command voltage of DC-DC converter 21.
  • FIG. 9 is a flowchart showing the logic of the DC-DC converter voltage command.
  • the voltage command unit 310 sets F as in step S121. Judge whether the C switch 32 is “ON” or “OFF”. If it is determined that the FC switch 32 is "ON”, the process proceeds to step S135. In step S135, the normal control described above is performed. On the other hand, if it is determined that the FC switch 32 is "FF”, the process proceeds to step S132.
  • step S132 voltage command section 310 determines whether the set connection flag is "0N" or "OFF". If the connection flag is “OF FJ, that is, if the connection is not possible, the process proceeds to step S133.
  • step S133 the voltage command unit 310 sends the DC-DC converter command 21 Adjust the voltage to match the output voltage of the secondary battery 23. With the FC system 30 disconnected, increase the conversion efficiency of the DC-DC converter 21 to make the secondary power system 20 more efficient. It is for driving.
  • step S134 the voltage command section 310 sets the command voltage of the DC—DC converter 21 to a voltage higher than the FC system open voltage 0 CV. As a result, the FC system 30 can be connected in step S120 (steps S123, S124).
  • the voltage between both ends of the secondary power supply system 20 connected in parallel with the FC system 30 becomes higher than a value that can be obtained in normal operation. Excessive current from the fuel cell that can be generated when the FC system 30 is connected to the power supply system can be suppressed.
  • FIG. 0 is a schematic configuration diagram of an electric vehicle including the hybrid power supply system according to the second embodiment of the present invention.
  • the secondary power supply system 20 and the control unit 300 are replaced with a secondary power supply system 20a and a control unit 300a, respectively.
  • Two This is different from the vehicle system of the first embodiment (FIG. 1) in that the FC switch 32 connected in series between the first and second embodiments is eliminated.
  • FIG. 11 is an explanatory diagram showing the configuration of the secondary power supply system 20a.
  • the secondary power supply system 20a includes a bidirectional DC-DC converter circuit 21a and a rechargeable secondary battery 23a.
  • the secondary battery 23 a When the charging rate is equal to or higher than a predetermined value, the secondary battery 23 a is higher than the open-circuit voltage 0 CV of the FC system 30 when supplying the power of the maximum value of the expected drive circuit required power. It is configured to be able to supply power at a high voltage.
  • the assumed maximum value of the required power of the driving circuit corresponds to “predetermined power” in the claims.
  • the bidirectional DC-DC converter circuit 21a includes a secondary battery-side series circuit, a load-side series circuit, an inductance, and a capacitor C.
  • the secondary battery side series circuit includes a switch Q1 and a switch Q2.
  • the load side series circuit includes a switch Q3 and a switch Q4.
  • MOS-FET is used as the four switches Q1, Q2, Q3, and Q4.
  • the two switches Q 1 and Q 2 of the secondary battery side series circuit are connected to the secondary battery 23 a side as follows.
  • One end of the switch Q1 and one end of the switch Q2 are connected at a connection point J1.
  • the other end of the switch Q1 is connected to a power source of the secondary battery 23a.
  • the other end of the switch Q2 is connected to the anode of the secondary battery 23a.
  • the gate terminals of the two switches Q 1 and Q 2 are connected to the control unit 300a.
  • the two switches Q 3 and Q 4 of the load-side series circuit are connected to the load 200 as follows.
  • One end of switch Q3 and one end of switch Q4 are connected at connection point "2".
  • the other end of the switch Q3 is connected to the cathode of the load 200.
  • the other end of the switch Q4 is connected to the anode of the load 200.
  • the gate terminals of the two switches Q3 and Q4 are connected to the control unit 300a.
  • the inductance L is connected between the connection point “1” and the connection point “2”.
  • the anode of the secondary battery 23a is connected to the anode of the load 200.
  • the two-way DC-DC converter circuit 21a operates in the mode in which power is supplied from the secondary battery-side series circuit to the load-side series circuit, and the power is supplied from the load-side series circuit to the secondary battery-side series circuit. It can work bi-directionally in two modes, a feeding mode and a feeding mode. Such an operation is realized by the control unit 300a appropriately performing the opening and closing operation of the four switches CH, Q2, Q3, and Q4.
  • FIG. 12 is a flowchart showing the control contents of the hybrid power supply system 100a according to the second embodiment of the present invention.
  • the control unit 300a determines whether or not the output of the FC system 30 can be performed. This determination is for determining whether to allow the FC system 30 to output electric power. In the present embodiment, the determination is the same as the determination of whether connection is possible in the first embodiment.
  • the control section 300a sets the output flag to ⁇ 0 ⁇ . The initial state of the output flag is “OF F”.
  • step S220 the voltage command section 310a of the control section 300a (FIG. 11) determines the content of the control command for the DC-DC converter 21a.
  • the DC-DC converter 21a has two operation modes: normal control mode and short-circuit mode.
  • the normal control mode is an operation mode in which DC power of an arbitrary voltage is output within a predetermined range, similarly to the DC-DC converter 2 of the first embodiment.
  • the short-circuit mode is an operation mode in which the secondary battery 23a and the drive circuit 40 are short-circuited to suppress heat loss in the DC-DC converter 21a. The details of the short-circuit mode will be described later.
  • FIG. 13 is a flowchart showing the logic of the DC-DC converter control command.
  • step S222 voltage command section 310a determines whether the set output flag is "0NJ" or "OF F". As a result, if the output flag is rOF Fj, that is, if output is not possible, the process proceeds to step S224. Is advanced. On the other hand, if the output flag is ⁇ 0 ⁇ , that is, if output is possible, the process proceeds to step S226.
  • step S266 voltage command unit 310a performs normal control. That is, the voltage command unit 310a adjusts the command voltage of the DC-DC converter 21a according to the state of charge of the secondary battery 23a, as in the first embodiment.
  • FIG. 14 is a time chart showing, in chronological order, voltages applied to the gate terminals of the four switches CM, Q2, Q3, and Q4 by the control unit 300a during power supply in the normal control mode.
  • the on / off control (opening / closing) of the four switches Q1, Q2, Q3, and Q4 is performed, whereby the DC power from the secondary battery 23a is boosted and supplied to the load 200.
  • FIG. 15 is an explanatory diagram showing an operation state of the bidirectional DC-DC converter circuit 21a when supplying power to the load 200. Specifically, the following voltage conversion operation is performed by ON / OFF control of the four switches Q1, Q2, Q3, and Q4.
  • the voltage of the power supplied to the load 200 is controlled by the duty ratio (0
  • the duty ratio is increased, the voltage of the power supplied to the load 200 can be increased, and if the duty ratio is reduced, the voltage of the power supplied to the load 200 can be reduced. Furthermore, if the duty ratio is reduced, the rechargeable battery Power can be supplied to the 23a side to charge the secondary battery 23a.
  • 0 and “0F FJ” in the duty ratio are defined as follows: “ON” means that two switches ⁇ 3 ⁇ 4 ⁇ , Q 4 is turned on, and two Switches Q2 and Q3 are turned off (Fig. 15 (a)). "OF Fj is a state in which two switches Q 1 and Q 4 are turned off and two switches Q 2 and Q 3 are turned off (Fig. 15 (b)).
  • the bidirectional DC-DC converter circuit 21a appropriately shares the load between the FC system 30 and the secondary battery 23a similarly to the bidirectional DC-DC converter circuit 21 of the first embodiment. Is performing voltage conversion to supply power to the side.
  • step S224 the control section 300a controls the DC-DC converter 21a so that the operation mode becomes the short-circuit mode.
  • FIG. 16 is an explanatory diagram showing the operation of the bidirectional DC-DC converter circuit 21a in the short-circuit mode.
  • the control unit 300a fixes the two switches Q1 and Q3 to the key and fixes the two switches Q2 and Q4 to off. By such control, the load 200 side and the secondary battery 23a side are connected via the inductance L without switching operation.
  • FIG. 17 is an explanatory diagram showing an operation state of the hybrid power supply system 100a in the short-circuit mode.
  • the load 200 and the secondary battery 23a are connected only to the electric wire and the inductance L. Since neither the wires nor the inductors generate almost any power loss, it can be seen that the switching loss and other power losses in the bidirectional DC-DC converter circuit 2 ⁇ a are almost zero.
  • the FC system 30 does not output power. This is because the output voltage of the bidirectional DC-DC converter circuit 21a in the short-circuit mode becomes equal to the output voltage of the secondary battery 23a higher than the open-circuit voltage of the FC system 30.
  • the control unit 300a commands the required power of the drive circuit. In the present embodiment, the required power of the drive circuit is determined in consideration of the output power of the hybrid power supply system 100a.
  • FIG. 18 is a flowchart showing an example of a process for determining the command content of the required power of the drive circuit.
  • the operation mode of the bidirectional DC-DC converter circuit 21a when the operation mode of the bidirectional DC-DC converter circuit 21a is in the short-circuit mode, the power that the hybrid power supply system 100a can output, that is, the secondary battery 23a can be output.
  • the output power of the hybrid power supply system 100a is equal to the output power of the secondary battery 23a in the short-circuit mode.
  • the secondary battery 23 a when the charging rate is equal to or more than the predetermined value, the secondary battery 23 a is supplied with the maximum power of the assumed required driving circuit power. In addition, it is configured so that power can be supplied at a voltage higher than the open circuit voltage 0 CV of the FC system 30.
  • step S231 the control unit 300a estimates the required power of the drive circuit according to the input from an unillustrated axel as in the first embodiment.
  • step S232 the control section 300a determines whether the operation mode of the bidirectional DC-DC converter circuit 21a is the normal control mode or the short-circuit mode. As a result, when the operation mode is the normal control mode, the process proceeds to step S233, and when the operation mode is the short-circuit mode, the process proceeds to step S234.
  • step S233 the control unit 300a determines the required power of the drive circuit without adjusting the required power estimated in step S231.
  • step S2334 control unit 300a estimates the available output power of secondary battery 23a. This is because the outputtable power of the secondary battery 23a varies depending on the state of charge of the secondary battery 23a.
  • FIG. 19 is a graph showing a constant power discharge curve of the secondary battery 23a.
  • the constant power discharge curve is a curve that represents the relationship between the voltage and the charging rate when outputting constant power. You. As can be seen from this figure, in the secondary battery 23a, the internal resistance greatly fluctuates at two points, near 0% and near 100%, so that the charging rate is close to 0% or 100%. If it is nearby, it can be estimated by measuring this fluctuation with a voltmeter 22.
  • the charge / discharge is based on when the charge reaches one of two locations near 0% and 100%.
  • the charging rate can be estimated by integrating the current value over time.
  • step S235 the control unit 300a determines whether the required power of the drive circuit exceeds the outputtable power of the secondary battery 23a. This determination is based on, for example, whether or not the output voltage of the secondary battery 23a does not fall below the open-circuit voltage of the FC system 30 within a predetermined time when power is supplied at the required power of the drive circuit. It can be performed based on such a criterion. As a result, if not, the required power estimated in step S231 is determined as it is as the required power of the drive circuit (S233), and if it exceeds, step S233 Processing proceeds to 6.
  • step S236 the control unit 300a adjusts the required power according to the available output power of the secondary battery 23a.
  • this adjustment is performed by limiting the output voltage of the secondary battery 23 a so as not to become lower than the open-end voltage of the FC system 30 within a predetermined time. By doing so, it is possible to prevent unexpected output of power from the FC system 30 that is not in the output enabled state.
  • the secondary battery 23a when the charging rate is equal to or higher than the predetermined value, the secondary battery 23a supplies power at a voltage higher than the open circuit voltage OCV of the FC system 30 regardless of the drive circuit required voltage.
  • the output voltage does not fall below the open-circuit voltage of the FC system 30 within a predetermined time if the charging rate of the secondary battery 23a decreases. It is configured to adjust the drive circuit required power. As a result, the unexpected output from the FC system 30 is suppressed while the FC system Stem 30 can be installed in a hybrid power supply system without the intervention of a switch.
  • the hybrid power supply system 100a avoids switching loss in the bidirectional DC-DC converter circuit 21a. Power can be supplied with high efficiency.
  • the criterion for determining whether the required power of the drive circuit exceeds the outputable power of the secondary battery 23a is not limited to the above, but depends on the characteristics of the system such as the characteristics of the fuel cell and the characteristics of the secondary battery. Can be determined accordingly. Further, the output voltage of the secondary battery 23a may be monitored, and the required power of the drive circuit may be immediately limited in response to the decrease.
  • a “secondary battery” only needs to be rechargeable and has a broad meaning including not only a battery but also a capacitor.
  • the voltage across the secondary power supply system 20 is higher than the open-circuit voltage of the FC system 30.
  • a configuration may be adopted in which the voltage is increased up to a voltage near the open circuit voltage (less than the open circuit voltage).
  • E— 2 there is a flyback method as a DC—DC converter.
  • a method called an ON-OFF method is employed, but for example, a ford method or a push-pull method may be employed.
  • the DC-DC converter 21 using a transformer is used.
  • a DC-DC converter not using a transformer may be used.
  • the backflow prevention diode D 1 is connected between the power supply wiring 12 and the FC system 30.
  • the backflow of the current to the FC system 30 is prevented.
  • a switch whose on / off control is performed as described above may be used. In this case, this switch corresponds to the “backflow prevention device” in the claims.
  • the voltage across the rechargeable battery when outputting a predetermined power is higher than the voltage across the fuel cell when it is opened.
  • a predetermined power the maximum value of the power required by the driving circuit
  • it is configured so that the voltage is lower than that, it may be configured so that the voltage is lower than this.
  • a specific control mode in which the voltage across the secondary power supply system is equal to or higher than the voltage between both ends when the fuel cell is opened can be realized even if the voltage is boosted by the DC-DC converter.
  • the former configuration there is an advantage that a specific control mode can be realized when the operation mode of the DC-DC converter is the short-circuit mode.
  • the secondary battery and the load or fuel cell are controlled by the on / off combination of the four switches Q1, Q2, Q3, and Q4 used for step-up and step-down in the DC-DC converter.
  • the short-circuit mode may be realized by providing a short-circuit switch between the secondary battery and the fuel cell or load.
  • the short-circuit mode is realized by a combination of the on and off of the four switches CM, Q2, Q3, and Q4, a highly reliable system can be easily realized by omitting the short-circuit switches. There are advantages. Industrial applicability
  • the present invention is applicable to a power supply system including a fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、負荷に電力を供給するための電源システムである。本電源システムは、負荷に接続するための第1と第2の電源配線と、第1と第2の電源配線の間に接続された燃料電池を有する燃料電池システムと、第1と第2の電源配線の間に燃料電池と並列に接続された2次電源システムと、燃料電池と前記第1の電源配線との間の接続を開閉するためのスイッチと、2次電源システムとスイッチとを制御するための制御部とを備える。この制御部は、燃料電池を第1の電源配線に接続する際に、2次電源システムを制御して、2次電源システムの両端電圧を上昇させることを特徴とする。

Description

明細書
2次電池を有する燃料電池システム
技術分野
本発明は、 燃料電池と 2次電池とを備える電源システムに関する。
背景技術
燃料電池は、環境に優しいクリーンな電源として注目されている。通常は、燃 料電池単体では負荷変動に対処するのが困難な場合があるので、燃料電池と 2次 電池とを組み合わせたハイプリッド電源システムが提案されている。八イブリッ ド電源システムでは、燃料電池の不調時や起動時といった特定の状態においては、 燃料電池の出力を停止して 2次電池からの電力のみで電力を供給することが望 まれている。
しかし、ハイプリッド電源システムの内部で燃料電池をシステムから切り離す ためには大きな容量のスィッチが必要であった。 さらに、燃料電池をシステムに 接続する際において、燃料電池から過大な電流が流れる可能性があるという問題 も生じていた。
発明の開示
本発明は、 この発明は、従来技術における上述の課題を解決するためになされ たものであり、燃料電池と 2次電池とを組み合わせた電源システムにおいて、 2 次電池のみで電力を供給する作動モ一ドを実現する技術を提供することを目的 とする。
本発明の第 1の態様は、 負荷に電力を供給するための電源システムであって、 前記負荷に接続するための第 1 と第 2の電源配線と、 前記第 1 と第 2の電源配線 の間に接続された燃料電池を有する燃料電池システムと、 前記第 1と第 2の電源 配線の間に前記燃料電池と並列に接続された 2次電源システムと、 前記燃料電池 と前記第 1の電源配線との間の接続を開閉するためのスィッチと、 前記 2次電源 システムと前記スィッチとを制御するための制御部とを備え、 前記制御部は、 前 記燃料電池を前記第 1の電源配線に接続する際に、 前記 2次電源システムを制御 して、 前記 2次電源システムの両端電圧を上昇させることを特徵とする。
本発明の第 1の態様の電源システムによれば、 燃料電池を電源配線に接続する 際に、 燃料電池と並列に接続された 2次電源システムの両端電圧を上昇させるの で、 燃料電池を電源 ステムに接続する際に発生し得る燃料電池から過大な電流 を抑制することができる。
上記電源システムにおいて、 さらに、 前記燃料電池と前記第 1の電源配線との 間に接続された逆流防止デバイスを備え、 前記制御部は、 前記燃料電池を前記第 1の電源配線に接続する際に、 前記 2次電源システムの両端電圧を前記燃料電池 の開放時の両端電圧以上の高さの第 1の電圧に上昇させるようにしても良い。 こうすれば、 燃料電池を電源システムに接続する際に燃料電池から流れる電流 をゼロにすることができるので、 接続後に 2次電源システムの両端電圧を徐々に 下げることにより、燃料電池からの出力電流を緩やかに大きくすることができる。 上記電源システムにおいて、 前記制御部は、 前記燃料電池を前記第 1の電源配 線に接続した後に、 前記 2次電源システムの両端電圧を前記燃料電池の開放時の 両端電圧よりも低い第 2の電圧に下降させるようにしても良い。
こうすれば、 燃料電池が接続された後に、 燃料電池の開放時の両端電圧よりも 低い電圧で最適に作動するように構成された 2次電源システムや燃料電池を効率 的に運転することができる。 2次電源システムが燃料電池の開放時の両端電圧よ りも低い電圧で最適に作動するように構成されているのは、 燃料電池が接続され ているときには燃料電池の開放時の両端電圧よりも低い電圧で作動することを想 定して 2次電源システムが設計されているからである。
上記電源システムにおいて、 前記制御部は、 前記第 1の電源配線からの前記燃 料電池の切り離しに応じて、 前記 2次電源システムの両端電圧を前記燃料電池の 開放時の両端電圧よりも低い電圧に下降させるようにしても良い。
こうすれば、 燃料電池が切り離されたときには、 燃料電池の開放時の両端電圧 よりも低い電圧で最適に作動するように構成された 2次電源システムを効率的に 運転することができる。
上記電源システムにおいて、前記 2次電源システムは、充電可能な 2次電池と、 前記 2次電池から入力される直流の入力電力の電圧を昇降して直流電力を出力可 能な D C _ D Cコンバ一夕とを備えており、 前記制御部は、 前記第 1の電源配線 からの前記燃料電池の切リ離しに応じて、 前記 D C— D Cコンバ一夕の出力電圧 が前記燃料電池の開放時の両端電圧よりも前記 2次電池の出力電圧に近づくよう な制御を開始するようにしても良い。
こうすれば、 燃料電池が切り離されたときには、 2次電源システムが有する D C— D Cコンバ一夕を効率的に運転することができる。 D C— D Cコンバータの 効率は、 出力電圧が燃料電池の開放時の両端電圧よリも入力電圧に近いほうが効 率が良いからである。 なお、 本明細書では、 「充電可能な 2次電池」 は、 バッテリ だけでなくキャパシタをも含む広い意味を有する。
上記電源システムにおいて、前記 2次電源システムは、充電可能な 2次電池と、 前記 2次電池から入力される直流の入力電力の電圧を昇降して直流の出力電力を 出力可能な D C— D Cコンバータとを備えており、 前記制御部は、 前記第 1の電 源配線からの前記燃料電池の切り離しに応じて、 前記 D C— D Cコンパ一夕の出 力電圧が前記 2次電池の出力電圧に近づくような制御を開始するようにしても良 い。
こうすれば、 燃料電池が切り離されたときに、 2次電源システムが有する D C 一 D Cコンバ一夕を最も効率的に運転することができる。 D C— D Cコンバ一夕 の効率は、 出力電圧が入力電圧に近づくほど効率が良くなるからである。
上記電源システムにおいて、 前記制御部は、 前記燃料電池が所定の大きさの電 力を供給できない状態にあるときに、 前記第 1の電源配線から前記燃料電池を切 り離すように構成しても良い。
本発明の第 2の態様は、 負荷に電力を供給するための電源システムであって、 前記負荷の一端に対してその一端が接続される逆流防止デバイスと前記負荷の他 端と前記逆流防止デバイスの他端との間に接続された燃料電池とを有する燃料電 池システムと、 前記燃料電池と並列に接続された 2次電源システムと、 前記 2次 電源システムを制御する制御部と、 を備え、 前記制御部は、 前記 2次電源システ 厶の両端電圧を、 前記燃料電池の開放時の両端電圧以上の高さとして前記燃料電 池の出力を停止する特定の制御モードを有することを特徴とする。
本発明の第 2の態様の電源システムは、 2次電源システムの両端電圧を燃料電 池の開放時の両端電圧以上の高さとして燃料電池の出力を停止させる特定の制御 モードを有するので、 スィッチを介することなく燃料電池をハイブリツド電源シ ステムに装備することができる。
上記電源システムにおいて、 前記制御部は、 前記燃料電池の起動と前記燃料電 池の異常の少なくとも一方を含む特定の状態に前記燃料電池がある場合に、 前記 特定の制御モードで制御を行うようにしても良い。
上記電源システムにおいて、前記 2次電源システムは、充電可能な 2次電池と、 前記 2次電池から入力される直流の入力電力の電圧を昇降して直流の出力電力を 出力可能な D C— D Cコンバータとを備えており、 前記 2次電池は、 所定の電力 を出力しているときの両端電圧が前記燃料電池の開放時の両端電圧以上の高さと なるように構成されており、 前記 D C— D Cコンバータは、 前記 2次電池と前記 燃料電池とを短絡させる作動モードである短絡モ一ドを有し、 前記特定の制御モ —ドは、 前記 D C— D Cコンバ一夕の作動モ一ドを前記短絡モードとする制御モ 一ドであるようにしても良い。
こうすれば、 2次電池の出力電圧が燃料電池や負荷に直接印加されるので、 燃 料電池の出力を停止するとともにスイッチング損失を回避して燃料電池の出力停 止時における電源システムの高効率化を図ることができる。 短絡モードは、 たと えば 2次電池と燃料電池や負荷との間に短絡用のスィツチを設けることによって 実現することができる。
上記電源システムにおいて、 前記 2次電池は、 第 1電源電極と第 2電源電極 とを有し、 前記 D C— D Cコンバータは、 第 1負荷電極と、 第 2負荷電極と、 第 ^スィッチの一端と第 2スィッチの一端とが第 1接続点で直列に接続された直列 回路であって、 前記第 1電源電極に前記第 1スィッチの他端が接続されるととも に、 前記第 2電源電極に前記第 2スィツチの他端が接続された第 2電源側直列回 路と、 第 3スィッチの一端と第 4スィッチの一端とが第 2接続点で直列に接続さ れた直列回路であって、 前記第 1負荷電極に前記第 3スィツチの他端が接続され るとともに、 前記第 2負荷電極に前記第 4スィツチの他端が接続された負荷側直 列回路と、 前記第 1接続点と前記第 2接続点との間に接続されたインダクタンス と、 を備え、 前記第 2電源電極は、 前記第 2負荷電極に接続されており、 前記前 記短絡モードは、 前記制御部が、 前記第 1スィッチと前記第 3スィッチとを閉じ るとともに、 前記接続制御スィッチと前記第 2スィッチと前記第 4スィッチとを 開く作動モードであるようにしても良い。
こうすれば、 短絡用のスィッチを省略して簡易に信頼性の高いシステムを実現 することができる。
なお、 本発明は、 種々の態様で実現することが可能であり、 例えば、 ハイプリ ッド電源システムおよびその制御装置や制御方法、それらのシステムを備える移 動体(たとえば燃料電池自動車) およびその制御方法、 それらのシステムまたは 方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログ ラムを記録した記録媒体、そのコンピュータプログラムを含み搬送波内に具現化 されたデータ信号、 および電力供給方法等の態様で実現することができる。 図面の簡単な説明 図 1は、本発明の第 1実施例としてのハイプリッド電源システムを備える電気 自動車の概略構成図である。
図 2は、 2次電源システム 2 0と F Cシステム 3 0とがモータ駆動回路 4 0に 電力を供給する様子を示すブロック図である。
図 3は、 2次電源システム 2 0の出力電圧の制御によって分担比率が変動する 様子を示す説明図である。
図 4は、本発明の第 1実施例における D C— D Cコンバータ 2 1 と 2次電池 2 3とを有する 2次電源システム 2 0の構成を示す説明図である。
図 5は、本発明の第 1実施例の D C— D Cコンバ一夕 2 1における入出力電圧 比と変換効率との間の関係を示す説明図である。
図 6は、本発明の第 1実施例におけるハイプリッド電源システムの作動の様子 を示すタイムチャートである。
図 7は、本発明の第 1実施例におけるハイプリッド電源システムの制御内容を 示すフローチヤ一卜である。
図 8は、ステップ S 1 2 0で行われる F Cシステム接続制御の内容を示すフロ —チヤ一卜である。
図 9は、 D C— D Cコンバータ電圧指令のロジックを示すフローチヤ一卜であ る。
図 1 0は、本発明の第 2実施例におけるハイプリッド電源システムを備える電 気自動車の概略構成図である。
図 1 1は、本発明の第 2実施例の 2次電源システム 2 0 aの構成を示す説明図 である。
図 1 2は、本発明の第 2実施例におけるハイブリッド電源システム 1 0 0 aの 制御内容を示すフローチャートである。
図 1 3は、 D C— D Cコンバータ制御指令のロジックを示すフローチヤ一卜で ある。
図 1 4は、通常制御モードにおいて電力供給時に制御部 3 0 0 aが 4つのスィ ツチ Q 1、 Q 2、 Q 3、 Q 4の各ゲ一卜端子に印可する電圧を時系列で表すタイ 厶チヤ一卜である。
図 1 5は、負荷 2 0 0に電力を供給するときの双方向 D C— D Cコンバータ回 路 2 1 aの作動状態を示す説明図である。
図 1 6は、双方向 D C— D Cコンバータ回路 2 1 aの短絡モードにおける作動 の様子を示す説明図である。
図 1 7は、短絡モードにおけるハイブリッド電源システム 1 0 0 aの作動状態 を示す説明図である。
図 1 8は、駆動回路の要求電力の指令内容を決定するための処理の一例を示す フローチヤ一卜である。
図 1 9は、 2次電池 2 3 aの定電力放電曲線を表すグラフである。 発明を実施するための最良の形態
次に、 本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A . 本発明の第 1実施例におけるハイプリッド電源システムの構成:
B . 本発明の第 1実施例におけるハイプリッド電源システムの作動:
C . 本発明の第 2実施例におけるハイプリッド電源システムの構成:
D . 本発明の第 2実施例におけるハイブリッド電源システムの作動:
A . 本発明の第 1実施例におけるハイプリッド電源システムの構成:
図 1は、 本発明の第 1実施例としてのハイプリッド電源システムを備える電気 自動車の概略構成図である。 この電気自動車 (以下、 単に 「車両システム」 と呼 ぶ) は、 ハイブリッド電源システム 1 0 0と、 車輪を含む負荷 2 0 0と、 制御部 3 0 0と、 を備えている。 ハイプリッド電源システム 1 0 0は、 2本の電源配線 1 2, 1 4の間に互いに並列に接続された 2次電源システム 2 0と燃料電池シス テム 3 0 (「F Cシステム」 とも呼ぶ) とを有している。 2次電源システム 2 0と 燃料電池システム 3 0には、 両端電圧を測定するための電圧計 2 2 , 3 6がそれ ぞれ設けられている。 また、 燃料電池システム 3 0と、 第 1の電源配線 1 2との 間には、 F Cスィッチ 3 2と、 逆流防止用ダイオード D Ίとが直列に接続されて いる。
電源配線 1 2 , 1 4は、 負荷 2 0 0のモータ駆動回路 4 0に接続されている。 モータ駆動回路 4 0は、 モータ 4 2を駆動するための回路であり、 例えば卜ラン ジスタインバー夕で構成されている。 モー夕 4 2で発生した動力は、 ギヤ機構 4 4を介して車輪駆動軸 4 6に伝達される。
制御部 3 0 0は、 F Cシステム 3 0と、 F Cスィッチ 3 2と、 モ一夕駆動回路 4 0とに電気的に接続されており、 これらの回路の制御を含む各種の制御を実行 する。 制御部 3 0 0の各種の制御動作は、 制御部 3 0 0に内蔵されている図示し ないメモリ内に格納されたコンピュータプログラムを、 制御部 3 0 0が実行する ことによって実現される。 このメモリとしては、 R O Mやハードディスクなどの 種々の記録媒体を利用することが可能である。
モータ駆動回路 4 0は、 ハイブリッド電源システム 1 0 0から供給された直流 電力を三相交流電力に変換してモータ 4 2に供給する。 供給される三相交流電力 の大きさは、 図示しないアクセルからの入力に応じて制御部 3 0 0が制御するモ 一夕駆動回路 4 0によって決定される。 このように、 モータ 4 2に供給される三 相交流電力の大きさがハイプリッド電源システム 1 0 0の出力電圧には依存しな いように車両システムが構成されている。
図 2は、 2次電源システム 2 0と F Cシステム 3 0とがモータ駆動回路 4 0に 電力を供給する様子を示すブロック図である。 図 2 ( a ) は、 モータ駆動回路 4 0の要求電力が F Cシステム 3 0の出力電力である F C電力よりも大きい場合を、 図 2 ( b ) は、 モータ駆動回路 4 0の要求電力が F C電力よりも小さい場合を示 している。
モータ駆動回路 40の駆動回路要求電力が FC電力よりも大きい場合には、 F Cシステム 30とともに 2次電源システム 20も同時にモータ駆動回路 40に電 力を供給する (図 2 (a))。 たとえば図示しないアクセルが踏み込まれて瞬間的 に駆動回路要求電力が大きくなつたときに、 2次電源システム 20と FCシステ 厶 30の双方が電力を供給することになる。
モータ駆動回路 40の駆動回路要求電力が FC電力よりも小さい場合には、 F C電力のうちの余剰電力が 2次電源システム 20に供給され、 後述する 2次電池 に充電される (図 2 (b))。 たとえばアイドリング中に駆動回路要求電力が小さ くなつたときには、 F Cシステム 30は、 モータ駆動回路 40と 2次電源システ 厶 20の双方に電力を供給することになる。
なお、 モータ 42の回生制動によってモー夕駆動回路 40から電力が供給され るときには、 2次電源システム 20のみにその電力が供給される。 FCシステム 30と電源配線 1 2との間には、 FCシステム 30の保護のための逆流防止用の ダイオード D 1が備えられているからである (図 1 )。
図 3は、 2次電源システム 20の出力電圧の調整によって FCシステム 30の 出力が制御される様子を示す説明図である。 図 3 (a) は、 FCシステム 30の 出力電圧である F C電圧と出力電流である F C電流との間の関係を示している。 図 3 (a) から分かるように、 FC電圧が高くなると FC電流が小さくなり、 F C電圧が低くなると F C電流が大きくなる関係にある。
具体的には、 F C電圧が V。のときには、 FC電流は I 。であり、 FC電力は P 。である。 FC電圧が V,に下降すると、 FC電流は に、 FC電力は にそれ ぞれ上昇する。 しかし、 V,からさらに FC電圧が下降しても、 FC電流の増加 は飽和しつつあり、 F C電流と F C電圧の積である F C電力は逆に下降し始める。 なお、 ハイプリッド電源システム 1 00は、 F Cシステム 30を保護するため に FC電圧が運用最小電圧 Vmi n未満とならないように構成されている。 この結 果、 FCシステム 30は、 開放電圧 OC Vと運用最小電圧 Vmi nの間の出力電圧 で運用されることになる。
図 3 (b)は、 2次電源システム 20が並列に接続された FCシステム 30 (図
1 )の電力供給状態を示している。電力 P tは、ある瞬間の駆動回路要求電力(図 2) である。 FC電力は、 「一」 のハッチングが施された領域として示してあり、
2次電源電力は、 「十」のハッチングが施された領域として示してある。 FC電力 は、 図 3 (a) に示されたものと同一である。
たとえば 2次電源電圧が V。のときには、 F C電力の値は駆動回路要求電力 P tよりも小さい P。なので、 2次電源システム 20は、 駆動回路要求電力 P tと P。の差分 (=P t— P。:) の電力を供給することになる。 一方、 2次電源電圧が
V ,に下降すると、 F C電力の値は駆動回路要求電力 P tよりも大きい P Ίに上昇 するので、 FC電力のうちの余剰電力 (=p,— P t) が 2次電源システム 20 に供給されることになる (図 2 (b))。 このように、 ハイブリッド電源システム
Ί 00は、 2次電源電圧 (2次電源システム 20の出力電圧) を調整することに よって F C電力を制御可能であることが分かる。
これによリ、 たとえば後述する 2次電池の充電状態に応じて、 FCシステム 3
0の出力を調整することができる。たとえば 2次電池の充電量が少ない場合には、
2次電源電圧を小さくすることが好ましい。 こうすれば、 FCシステム 30の出 力を大きくし、 2次電池への充電の機会を多くすることができるからである。 一 方、 2次電池の充電量が過大である場合には、 2次電源電圧を大きくすることが 好ましい。 こうすれば、 F Cシステム 30の出力を小さくし、 2次電池の放電の 機会を多くすることができるからである。
図 4は、 本発明の第 1実施例における D C— D Cコンバ一夕 21と 2次電池 2
3とを有する 2次電源システム 20の構成を示す説明図である。 DC— DCコン バ一夕 21は、 2つのスィッチ Q 1、 Q 2と、 トランス丁と、ダイ才ード D 2と、 コンデンサ Cとを有している。 2次電源システム 20は、 2つのターミナル T 1 2、 T 1 4に所定の範囲で任意の電圧の直流電力を出力することができる。
この D C— D Cコンバータ 2 1は、 図 4から分かるようにフライバック方式の 双方向コンバータとして構成されている。 この双方向コンバータは、 2次電池 2 3から電力を供給することも、 F Cシステム 3 0やモータ駆動回路 4 0からの電 力を 2次電池 2 3に充電することもできる。
2次電源システム 2 0による電力の供給は、制御部 3 0 0がスィッチ Q 2を Γ才 ン J に固定して、 スィッチ Q 1をオンオフ動作させることによって行われる。 ス イッチ Q 1をオンオフ動作させると、 スィッチ Q 1が 「オン」 となった瞬間に卜 ランス Tの 1次側巻き線 (2次電池 2 3側) に磁気エネルギが蓄積され、 スイツ チ Q 1が 「オフ」 となった瞬間に 2次側巻き線 (出力側) に起電力が発生する。 2次電源システム 2 0の出力電圧は、 スィッチ Q 1のデューティ (オンオフ比) を変化させることによって制御可能である。 一方、 2次電池 2 3の充電は、 制御 部 3 0 0がスィッチ Q 1を Γ 0 Ν」 に固定して、 スィッチ Q 2をオンオフ動作さ せることによって行われる。
図 5は、 本発明の第 1実施例の D C— D Cコンバ一夕 2 1における入出力電圧 比と変換効率との間の関係を示す説明図である。 入出力電圧比は、 D C— D Cコ ンバ一夕 2 1の出力電圧を入力電圧で除した値である。 変換効率は、 D C— D C コンバータ 2 〗出力電力を入力電力で除した値である。 図 5から分かるように、 入出力電圧比が 「1」 のときに変換効率のピークがあるので、 2次電源システム 2 0の出力電圧と 2次電池 2 3の出力電圧とが等しくなる状態で運用される場合 が多くなるようにハイプリッド電源システム 1 0 0を構成することが好ましい。
B . 本発明の第 1実施例におけるハイプリッド電源システムの作動:
図 6は、 本発明の第 1実施例におけるハイプリッド電源システムの作動の様子 を示すタイ厶チャートである。図 6は、一例としてのシーケンス、すなわち、 (1 ) F Cシステム 3 0の起動、 (2 ) ハイブリッド電源システムの通常運転、 (3 ) F Cシステム 30の不調、 (4)八イブリッド電源システムの通常運転といったシ一 ケンスにおけるハイプリッド電源システム 1 00の状態を示している。
ハイプリッド電源システム 1 00の状態としては、 F Cスィッチ 32の動作状 態、 DC— DCコンバータ 21指令電圧、 および FC電流がタイムチャートとし て示されている。 また、 本明細書において、 ハイブリッド電源システムの通常運 転とは、 F Cシステム 30と 2次電池 23の両方から電力が供給可能な並列運転 状態を意味している。
F Cシステム 30の起動時には、 制御部 300は、 FCスィッチ 32をオフに している (図 6 (a) の時刻 t。)。 FCシステム 30の起動とは、 たとえば水素 ガスを発生する図示しない改質器が所定の品質の水素ガスを発生できるようにな つて FCシステム 30が所定の性能を発揮できるようにする処理をいう。 FCシ ステ厶 30の起動時には、 FCスィッチ 32がオフにされているので、 所定の性 能を発揮できる状態になつてから F Cシステム 30が電力の供給を開始すること になる。 この結果、 FCシステム 30の起動時には、 FC電流が流れないことに なる (図 6 (c))。
FCシステム 30の起動時には、 DC— DCコンバータ 21の指令電圧は、 電 圧 \ しに設定されている。 電圧 VLは、 2次電池 23が最も効率良く運転できると きの 2次電池 23の出力電圧である。 D C— D Cコンバ一夕 21の指令電圧を電 圧 VLに設定するのは、 DC— DCコンバータ 21の入出力電圧比を 「1」 とし て、 変換効率を高めるためである。
ただし、 F Cシステム 30の起動が完了に近づくと、 制御部 300は、 DC— DCコンバータ 21の指令電圧を電圧 VHに上昇させる。 電圧 VHは、 FCシステ 厶 30の開放電圧 OCV (図 3) よりも高い電圧である (時刻 1:,)。 DC-DC コンバータ 21の指令電圧を FCシステム 30の開放電圧よりも高い電圧とする のは、 FCスィッチ 32 (図 1 ) をオンにしたときに、 FCシステム 30から急 激に大きな電流が流れないようにするためである。 FCスィッチ 32がオンにされると、 ハイブリッド電源システム 1 00の通常 運転が開始される。 なお、 DC— DCコンバータ 2 1の出力電圧が FCシステム 30の開放電圧 OCVよりも高い状態で接続されても、 逆流防止用のダイオード D 1があるので逆流は生じない。
ハイプリッド電源システムの通常運転の開始時には、 D C— D Cコンバー夕 2 1の出力電圧が F Cシステム 30の開放電圧 OC Vよりも高いので、 FC電流は 流れない (時刻 t 2)。 しかし、 その後、 2次電源電圧である DC— DCコンパ一 夕 2 1の出力電圧が下降して FCシステム 30の開放電圧 OCVより小さくなる と、 FC電流が流れ始める (図 6 (c)、 図 3 (b))。 このように、 本実施例の構 成では、 DC— DCコンバータ 21の出力電圧を徐々に降下させることにより、 FC電流を徐々に大きくすることができる。
ハイプリッド電源システムの通常運転(期間 t 2〜 t 3)では、制御部 300は、 前述のように 2次電池 23の充電状態に応じて DC— DCコンバータ 2 1の指令 電圧を決定する。 指令電圧は、 電圧 VL近傍で調整されるようにハイブリッド電 源システム 1 00が構成されていることが好ましい。 これにより、 ハイブリッド 電源システム 1 00は、 システム全体として通常運転で最も効率の良い作動状態 となるからである。
通常運転中に FCシステム 30の不調が検知されると、 制御部 300は、 ハイ プリッド電源システム 1 00から F Cシステム 30を切り離す (時刻 t 3)。 F C システム 30の不調の検知は、 たとえば FCシステム 30内部で生成される水素 ガスの品質や F Cシステム 30の内部抵抗の観測値に基づいて行うことができる。 FCシステム 30の切り離しは、 FCスィッチ 32をオフにすることにより行わ れる。
ハイブリッド電源システム 1 00からの F Cシステム 30の切り離しが確認さ れると、 制御部 300は、 DC— DCコンバータ 21の指令電圧が電圧 V Jこ固 定される。 これにより、 2次電源システム 20を高い変換効率で運転することが できる。
F Cシステム 3 0の回復が確認されると、 制御部 300は、 ハイブリッド電源 システム 1 00に F Cシステム 3 0を接続するための処理を行う。 FCシステム 3 0の回復の確認も、 たとえば F Cシステム 3 0内部で生成される水素ガスの品 質や F Cシステム 30の内部抵抗の観測値に基づいて行うことができる。 F Cシ ステ厶 3 0を接続するための処理とは、 DC— DCコンバータ 2 1の出力電圧を 電圧 VHまで上昇させる操作である (時刻 t 4)。
F Cシステム 3 0の回復後 (時刻 t 5以降) の接続で行われる処理は、 前述の FCシステム 3 0の起動後の接続で行われる処理とほぼ同一である。 ただし、 F Cシステム 3 0の回復後の接続で行われる処理は、 接続後における DC— DCコ ンバー夕 2 1の出力電圧の下降速度が F Cシステム 3 0の起動後の接続で行われ る処理よりも緩やかに設定されている。 このような処理を行うのは、 一度不調と なった F Cシステム 3 0が再度不調となりやすいことを考慮したものである。 図 7は、 本発明の第 1実施例におけるハイプリッド電源システム 1 0 0の制御 内容を示すフローチャートである。 ステップ S 1 1 0では、 制御部 300は、 F Cシステム 3 0の接続の可否を判定する。 FCシステム 3 0の接続の可否は、 前 述のように F Cシステム 30内部で生成される水素ガスの品質に基づいて行うこ とができる。 FCシステム 3 0の接続が可能と判定されると、 制御部 3 00は、 接続フラグを Γ0 Ν」 にセットする。 ステップ S 1 20では、 制御部 3 00は、 F Cシステム 3 0をハイプリッド電源システム 1 00に接続するためのの制御を 行う。
図 8は、 ステップ S 1 2 0で行われる F Cシステム接続制御の内容を示すフロ 一チャートである。 ステップ S 1 2 1では、 制御部 3 00は、 FCスィッチ 3 2 が Γ0Ν」 と 「O F F」 のいずれであるかを判定する。 この判定は、 たとえば F Cシステム 3 0の出力電圧と 2次電源システム 2 0の出力電圧とを比較すること により行うことができる。 F Cシステム 3 0の出力電圧と 2次電源システム 2 0 の出力電圧は、それぞれ電圧計 36と電圧計 22を用いて計測することができる。 具体的には、 両者が常にほぼ同一である場合には、 FCスィッチ 32が「ON」 であると判定されて、 後述するステップ S 1 25に処理が進む。 一方、 両者が一 致しない場合には、 FCスィッチ 32が 「O F F」 であると判定されて、 ステツ プ S 1 22に処理が進む。
ステップ S 1 22では、 制御部 300は、 セッ卜された接続フラグが 「0NJ であるか否かを判断する。 接続フラグが 「0 F F」 の場合、 すなわち接続不可の 場合には、 後述するステップ S 1 30 (図 7) に処理が進む。 一方、 接続フラグ が Γ0Ν」のとき、すなわち接続可の場合には、ステップ S 1 23に処理が進む。 ステップ S 1 23では、 制御部 300は、 2次電源電圧が F C開放電圧 0 C V よリも高いか否かを判定する。 2次電源電圧が F C開放電圧 0 C Vよりも高いと 判定されると、 ステップ S 1 24に処理が進む。 ステップ S 1 24では、 制御部 300は、 F Cスィツチ 32を rONJ にして F Cシステム 30をハイブリッド 電源システム 1 00に接続する。 一方、 2次電源電圧が FC開放電圧 0C Vより も高いと判定されなかった場合には、 後述するステップ S 1 30 (図 7) に処理 が進む。
—方、 ステップ S 1 25では、 制御部 300は、 ステップ S 1 22と同様にセ ッ卜された接続フラグが Γ0Ν」 であるか否かを判断する。 接続フラグが 「0 F F」 の場合には、 直ちに FCスィッチ 32を 「0 F F」 にして FCシステム 30 をハイプリッド電源システム 1 00から切り離して、 ステップ S 1 30に処理が 進む。 一方、 接続フラグが 「0N」 の場合には、 F Cシステム 30を八イブリツ ド電源システム 1 00から切り離すことなくステップ S〗 30に処理が進む。 ス テツプ S 1 30では、 制御部 300が有する電圧司令部 3 1 0 (図 4) は、 DC 一 D Cコンバータ 2 1の指令電圧を決定する。
図 9は、 DC— DCコンバータ電圧指令のロジックを示すフローチヤ一卜であ る。 ステップ S 1 3 1では、 電圧司令部 3 1 0は、 ステップ S 1 2 1と同様に F Cスィッチ 32が 「ON」 と 「O F F」 のいずれであるかを判定する。 FCスィ ツチ 32が 「ON」 であると判定されると、 ステップ S 1 35に処理が進む。 ス テツプ S 1 35では、前述の通常制御が行われる。一方、 FCスィッチ 32が ΓΟ F F」 であると判定されると、 ステップ S 1 32に処理が進む。
ステップ S 1 32では、 電圧司令部 3 1 0は、 セッ卜された接続フラグが 「0 N」 と 「O F F」 のいずれであるか否かを判断する。 接続フラグが 「OF FJ の 場合、 すなわち接続不可の場合には、 ステップ S 1 33に処理が進む。 ステップ S 1 33では、 電圧司令部 3 1 0は、 DC— DCコンバ一夕 2 1の指令電圧を 2 次電池 23の出力電圧に一致させるように調整する。 FCシステム 30が切り離 された状態で D C— D Cコンバ一夕 2 1の変換効率を高めて 2次電源システム 2 0を効率的に運転するためである。
—方、 接続フラグが 「0N」 のとき、 すなわち接続可の場合には、 ステップ S 1 34に処理が進む。 ステップ S 1 34では、 電圧司令部 3 1 0は、 D C— D C コンバ一夕 2 1の指令電圧を F Cシステム開放電圧 0 C Vよリ高い電圧に設定す る。 これにより、 ステップ S 1 20において FCシステム 30の接続が可能とな る (ステップ S 1 23, S 1 24)。
このように、 燃料電池である FCシステム 30を電源配線に接続する際に、 F Cシステム 30と並列に接続された 2次電源システム 20の両端電圧を通常運転 において取り得る値よりも上昇させるので、 FCシステム 30を電源システムに 接続する際に発生し得る燃料電池から過大な電流を抑制することができる。
C. 本発明の第 2実施例におけるハイプリッド電源システムの構成:
図 Ί 0は、 本発明の第 2実施例におけるハイブリッド電源システムを備える電 気自動車の概略構成図である。 この電気自動車は、 2次電源システム 20と制御 部 300とが、 それぞれ 2次電源システム 20 aと制御部 300 aとに置き換え られているとともに、 第 1実施例において燃料電池システム 30と電源配線 1 2 との間に直列に接続された F Cスィッチ 3 2が削除されている点で第 1実施例の 車両システム (図 1 ) と異なる。
図 1 1は、 2次電源システム 2 0 aの構成を示す説明図である。 2次電源シス テム 2 0 aは、 双方向 D C— D Cコンバータ回路 2 1 aと、 充電可能な 2次電池 2 3 aとを備えている。 2次電池 2 3 aは、 充電率が所定の値以上の場合には、 想定される駆動回路要求電力の最大値の電力を供給する場合において、 F Cシス テム 3 0の開放電圧 0 C Vよりも高い電圧で電力を供給することができるように 構成されている。なお、本実施例では、想定される駆動回路要求電力の最大値は、 特許請求の範囲における 「所定の電力」 に相当する。
双方向 D C— D Cコンバータ回路 2 1 aは、 2次電池側直列回路と、 負荷側直 列回路と、 インダクタンスしと、 コンデンサ Cと、 を備えている。 2次電池側直 列回路は、 スィッチ Q 1とスィッチ Q 2とを備えている。 負荷側直列回路は、 ス イッチ Q 3とスィッチ Q 4とを備えている。 なお、 本実施例では、 4つのスイツ チ Q 1 、 Q 2、 Q 3、 Q 4として M O S— F E Tを使用している。
2次電池側直列回路の 2つのスィッチ Q 1 、 Q 2は、 2次電池 2 3 a側に以下 のように接続されている。 スィッチ Q 1の一端とスィッチ Q 2の一端は、 接続点 J 1で接続されている。 スィッチ Q 1の他端は、 2次電池 2 3 aの力ソードに接 続されている。 スィッチ Q 2の他端は、 2次電池 2 3 aのアノードに接続されて いる。 2つのスィッチ Q 1 、 Q 2のゲ一卜端子は、 制御部 3 0 0 aに接続されて いる。
負荷側直列回路の 2つのスィツチ Q 3、 Q 4は、 負荷 2 0 0側に以下のように 接続されている。 スィッチ Q 3の一端とスィッチ Q 4の一端は、 接続点」 2で接 続されている。スィッチ Q 3の他端は、負荷 2 0 0のカソードに接続されている。 スィッチ Q 4の他端は、 負荷 2 0 0のアノードに接続されている。 2つのスイツ チ Q 3、 Q 4のゲ一卜端子は、 制御部 3 0 0 aに接続されている。
また、インダクタンス Lは、接続点」 1と接続点」 2との間に接続されている。 2次電池 23 aのアノードは、 負荷 200のアノードに接続されている。
双方向 DC— DCコンパ一夕回路 2 1 aは、 2次電池側直列回路から負荷側直 列回路に電力を供給するモードと、 負荷側直列回路から 2次電池側直列回路に向 かって電力を供給するモードとの 2つのモードで双方向に作動することができる。 このような動作は、 制御部 300 aが 4つのスィッチ CH、 Q2、 Q3、 Q4の 開閉動作を適切に行うことによって実現される。
D. 本発明の第 2実施例におけるハイプリッド電源システムの作動:
図 1 2は、 本発明の第 2実施例におけるハイブリッド電源システム 1 00 aの 制御内容を示すフローチャートである。 ステップ S 21 0では、 制御部 300 a は、 FCシステム 30の出力の可否を判定する。 この判定は、 FCシステム 30 に電力を出力させても良いか否かの判定であり、 本実施例では、 第 1実施例にお ける接続の可否の判定と同一の内容の判定である。 FCシステム 30の出力が可 能と判定されると、 制御部 300 aは、 出力フラグを Γ0Ν」 にセットする。 な お、 出力フラグの初期状態は 「OF F」 である。
ステップ S 220では、制御部 300 aが有する電圧司令部 3 1 0 a (図 1 1 ) は、 DC— DCコンバータ 21 aの制御指令の内容を決定する。 DC— DCコン バー夕 21 aは、 通常制御モードと短絡モードの 2つの作動モードを有する。 通常制御モードは、 第 1実施例の DC— DCコンバータ 2〗 と同様に所定の範 囲で任意の電圧の直流電力を出力する作動モードである。 短絡モードは、 2次電 池 23 aと駆動回路 40を短絡させて DC— DCコンバータ 21 aにおける熱損 失を抑制する作動モードである。 なお、 短絡モードの詳細については後述する。 図 1 3は、 DC— DCコンバータ制御指令のロジックを示すフローチャートで ある。 ステップ S 222では、 電圧司令部 31 0 aは、 セッ卜された出力フラグ が 「0NJ と 「OF F」 のいずれであるか否かを判断する。 この結果、 出力フラ グが rOF Fj の場合、 すなわち出力不可の場合には、 ステップ S 224に処理 が進められる。 一方、 出力フラグが Γ0Ν」 の場合、 すなわち出力可能の場合に は、 ステップ S 226に処理が進められる。
ステップ S 266では、 電圧司令部 31 0 aは、 通常制御を行う。 すなわち、 電圧司令部 31 0 aは、 第 1実施例と同様に 2次電池 23 aの充電状態に応じて D C— D Cコンバ一夕 21 aの指令電圧を調整する。
図 1 4は、 通常制御モードにおいて電力供給時に制御部 300 aが 4つのスィ ツチ CM、 Q2、 Q3、 Q 4の各ゲート端子に印可する電圧を時系列で表すタイ 厶チャートである。このような電圧の印可によって、 4つのスィッチ Q 1、 Q2、 Q3、 Q 4のオンオフ制御 (開閉) が行われ、 これにより 2次電池 23 aからの 直流電力が昇圧されて負荷 200に供給される。
図 1 5は、 負荷 200に電力を供給するときの双方向 DC— DCコンバータ回 路 21 aの作動状態を示す説明図である。 具体的には、 4つのスィッチ Q 1、 Q 2、 Q3、 Q 4のオンオフ制御によって以下の電圧変換動作が行われている。
(1 ) 時刻 t l O (図 1 4) では、 2つのスィッチ Q l、 Q 4がオンにされ、 2 つのスィッチ Q 2、 Q 3がオフにされる (図 1 5 (a))。 これにより、 インダク タンスしが 2次電源 3側に接続される。 この時に、 インダクタンス Lに磁気エネ ルギが蓄積される。
(2) 時刻 t l 1では、 2つのスィッチ Q 1、 Q4がオフにされ、 2つのスイツ チ Q2、 Q 3がオンにされる (図 1 5 (b))。 これにより、 インダクタンスしが 負荷 200側に接続される。 この時に、 インダク夕ンスしに蓄積された磁気エネ ルギが負荷 200側に電力として供給される。
負荷 200側に供給される電力の電圧は、 制御部 300 aがデューティ比 (0
N— O F F比) を調整することによって制御することができる。 デューティ比を 大きくすれば、 負荷 200側に供給される電力の電圧を高くすることができ、 デ ユーティ比を小さくすれば、 負荷 200側に供給される電力の電圧を低くするこ とができる。 さらに、 デューティ比を小さくすれば、 負荷 200側から 2次電池 23 a側に電力を供給して、 2次電池 23 aを充電することもできる。
ここで、 デューティ比 (ON— OF F比) における Γ0Ν」 と 「0F FJ は、 以下のように定義される。 「ON」 は、 2つのスィッチ <¾ Ί、 Q 4がオンにされ、 2つのスィッチ Q2、 Q 3がオフにされる状態である (図 1 5 (a))。 「OF Fj は、 2つのスィッチ Q 1、 Q 4がオフにされ、 2つのスィッチ Q 2、 Q3が才ン にされる状態である (図 1 5 (b))。
このように、 双方向 DC— DCコンバータ回路 21 aは、 第 1実施例の双方向 DC— DCコンバータ回路 21と同様に、 FCシステム 30と 2次電池 23 aと で適切に分担して負荷 200側に電力を供給するために電圧変換動作を行ってい る。
—方、 ステップ S 224 (図〗 3) では、 制御部 300 aは、 作動モードが短 絡モードとなるように DC— DCコンバータ 21 aを制御する。
図 1 6は、 双方向 DC— DCコンバータ回路 2 1 aの短絡モードにおける作動 の様子を示す説明図である。 制御部 300 aは、 2つのスィッチ Q 1、 Q 3を才 ンに固定するとともに、 2つのスィッチ Q2、 Q4をオフに固定する。 このよう な制御によって、 インダクタンス Lを介して負荷 200側と 2次電池 23 a側が スィツチング動作なしで接続されることになる。
図 1 7は、 短絡モードにおけるハイブリッド電源システム 1 00 aの作動状態 を示す説明図である。 図 1 7から分かるように、 負荷 200と 2次電池 23 aと が電線とインダクタンス Lだけで接続されている。 電線もインダク夕ンスしも電 力損失をほとんど生じさせないので、 双方向 DC— DCコンバータ回路 2 Ί aに おけるスイッチング損失その他の電力損失はほとんどゼロとなることが分かる。 双方向 DC— DCコンバータ回路 21 aが短絡モードにある場合には、 FCシ ステ厶 30は電力を出力しないことになる。 双方向 DC— DCコンバータ回路 2 1 aの短絡モードにおける出力電圧は、 FCシステム 30の開放端電圧よりも高 い 2次電池 23 aの出力電圧に等しくなるからである。 ステップ S 2 3 0 (図 1 2 ) では、 制御部 3 0 0 aは、 駆動回路の要求電力を 指令する。 駆動回路の要求電力は、 本実施例では、 ハイブリッド電源システム 1 0 0 aの出力可能な電力を考慮して決定される。
図 1 8は、 駆動回路の要求電力の指令内容を決定するための処理の一例を示す フローチヤ一卜である。 この処理は、 双方向 D C— D Cコンバータ回路 2 1 aの 作動モードが短絡モードにある場合に、 ハイプリッド電源システム 1 0 0 aが出 力可能な電力、 すなわち、 2次電池 2 3 aが出力可能な電力に要求電力を制限す る処理である。 ハイブリッド電源システム 1 0 0 aが出力可能な電力は、 短絡モ —ドにおいては 2次電池 2 3 aの出力可能電力に等しいからである。
なお、 2次電池 2 3 aは、 前述のように、 本実施例では、 充電率が所定の値以 上の場合には、 想定される駆動回路要求電力の最大値の電力を供給する場合にお いて、 F Cシステム 3 0の開放電圧 0 C Vよりも高い電圧で電力を供給すること ができるように構成されている。
ステップ S 2 3 1では、 制御部 3 0 0 aは、 第 1実施例と同様に図示しないァ クセルからの入力に応じて駆動回路の要求電力を推定する。
ステップ S 2 3 2では、 制御部 3 0 0 aは、 双方向 D C— D Cコンバータ回路 2 1 aの作動モードが通常制御モードか短絡モードのいずれであるかを判断する。 この結果、 作動モードが通常制御モードである場合には処理がステップ S 2 3 3 に進み、作動モードが短絡モードである場合には処理がステップ S 2 3 4に進む。 ステップ S 2 3 3では、 制御部 3 0 0 aは、 ステップ S 2 3 1で推定された要 求電力を調整することなく駆動回路の要求電力として決定する。 一方、 ステップ S 2 3 4では、 制御部 3 0 0 aは、 2次電池 2 3 aの出力可能電力を推定する。 2次電池 2 3 aの出力可能電力は、 2次電池 2 3 aの充電状態に応じて変動する からである。
図 1 9は、 2次電池 2 3 aの定電力放電曲線を表すグラフである。 定電力放電 曲線とは、 一定の電力を出力させるときの電圧と充電率との関係を表す曲線であ る。 この図からわかるように、 2次電池 2 3 aは、 充電率が 0 %近傍と 1 0 0 % 近傍の 2個所で内部抵抗が大きく変動するので、 充電率が 0 %近傍や 1 0 0 %近 傍にある場合には、 電圧計 2 2でこの変動を計測することによって、 そのことを 推定することができる。
さらに、 2次電池 2 3 aが他の充電率の状態にある場合には、 充電率が 0 %近 傍と 1 0 0 %近傍の 2個所のいずれかに到達したときを基準として充放電の電流 値を時間積分することによつて充電率を推定することができる。
ステップ S 2 3 5では、 制御部 3 0 0 aは、 駆動回路の要求電力が 2次電池 2 3 aの出力可能電力を上回っていないかどうかを判断する。 この判断は、 たとえ ば駆動回路の要求電力で電力を供給した場合に 2次電池 2 3 aの出力電圧が予め 定められた所定の時間以内に F Cシステム 3 0の開放端電圧以下とならないか否 かという基準に基づいて行うことができる。この結果、上回っていない場合には、 ステップ S 2 3 1で推定された要求電力がそのまま駆動回路の要求電力として決 定され(S 2 3 3 )、 上回っている場合には、 ステップ S 2 3 6に処理が進められ る。
ステップ S 2 3 6では、 制御部 3 0 0 aは、 2次電池 2 3 aの出力可能電力に 応じて要求電力を調整する。 この調整は、 本実施例では、 2次電池 2 3 aの出力 電圧が所定の時間以内で F Cシステム 3 0の開放端電圧以下とならないように制 限することにより行われる。 こうすれば、 出力可能状態にない F Cシステム 3 0 から電力の出力を不意に起こさせないようにすることができるからである。 このように、 第 2実施例では、 2次電池 2 3 aは充電率が所定の値以上の場合 には駆動回路要求電圧に拘わらず F Cシステム 3 0の開放電圧 O C Vよりも高い 電圧で電力を供給することができるように構成されているとともに、 2次電池 2 3 aの充電率が低下した場合には出力電圧が所定の時間内には F Cシステム 3 0 の開放端電圧以下とならないように駆動回路要求電力を調整するように構成され ている。 これにより、 F Cシステム 3 0からの不測の出力を抑制しつつ、 F Cシ ステ厶 3 0をスィッチを介することなくハイプリッド電源システムに装備するこ とができる。
さらに、 本実施例では、 F Cシステム 3 0が電力を出力することができないと きには、 ハイブリッド電源システム 1 0 0 aは、 双方向 D C— D Cコンバータ回 路 2 1 aにおけるスイッチング損失を回避して高い効率で電力を供給することが できるという利点もある。
なお、 駆動回路の要求電力が 2次電池 2 3 aの出力可能電力を上回っていない かどうかの判断基準は、 上述のものに限られず燃料電池の特性や 2次電池の特性 といったシステムの特性に応じて決定することができる。 さらに、 2次電池 2 3 aの出力電圧を監視するとともに、 その低下に応じて直ちに駆動回路の要求電力 に制限を加えるように構成しても良い。
また、 「2次電池」は、充電可能であれば良く、バッテリだけでなくキャパシタ をも含む広い意味を有する。 E . 変型例:
なお、 この発明は上記の実施例や実施形態に限られるものではなく、 その要旨 を逸脱しない範囲において種々の態様において実施することが可能であり、 例え ぱ次のような変形も可能である。
E - 1 . 第 1実施例では、 F Cシステム 3 0をハイプリッド電源システム 1 0 0に接続する際に、 2次電源システム 2 0の両端電圧を F Cシステム 3 0の開放 電圧よりも高くしているが、 たとえば開放電圧の近傍 (開放電圧未満) の電圧ま で上昇させるように構成しても良い。 F Cシステム 3 0をハイプリッド電源シス テム〗 0 0に接続しょうとする際に、 2次電源システム 2 0の両端電圧が上昇し ていれば開放電圧に達していなくても、 上昇した分だけ燃料電池である F Cシス テム 3 0からの過大な電流を抑制することができるからである。
E— 2 . 第 1実施例では、 D C— D Cコンバータとしてフライバック方式ある いは O N— O F F方式と呼ばれる方式を採用しているが、 たとえばフォーヮード 方式やプッシュプル方式を採用しても良い。 また、 上記実施例では、 変圧器を用 いた D C— D Cコンバータ 2 1が使用されているが、 変圧器を用いない D C— D Cコンバータであっても良い。
E— 3 . 第 1実施例では、 電源配線 1 2と F Cシステム 3 0との間に逆流防止 用ダイオード D 1が接続されているが、 たとえば F Cシステム 3 0への電流の逆 流を防止するようにオンオフ制御されたスィッチであっても良い。この場合には、 このスィッチが特許請求の範囲における 「逆流防止デバイス」 に相当する。
E— 4 . 第 2実施例では、 2次電池は、 所定の電力 (想定される駆動回路要求 電力の最大値) を出力しているときの両端電圧が燃料電池の開放時の両端電圧以 上の高さとなるように構成されているが、 これより低い電圧であるように構成し ても良い。 D C— D Cコンバータによって昇圧するよう構成にしても、 2次電源 システムの両端電圧を燃料電池の開放時の両端電圧以上の高さとする特定の制御 モードを実現することができるからである。 ただし、 前者のように構成すれば、 D C— D Cコンバータの作動モードを短絡モードとしたときにおいて、 特定の制 御モードを実現することができるという利点がある。
E - 5 .第 2実施例では、 D C— D Cコンバータにおいて昇圧や降圧に使用さ れる 4つのスィッチ Q 1、 Q 2、 Q 3、 Q 4のオンオフの組合せによって 2次電 池と負荷や燃料電池との間が短絡されているが、たとえば 2次電池と燃料電池や 負荷との間に短絡用のスィッチを設けることによって短絡モード実現するよう にしても良い。 ただし、 4つのスィッチ CM 、 Q 2、 Q 3、 Q 4のオンオフの組 合せによって短絡モードを実現すれば、短絡用のスィッチを省略して簡易に信頼 性の高いシステムを実現することができるという利点がある。 産業上の利用可能性
この発明は、 燃料電池を備える電源システムに適用可能である。

Claims

請求の範囲
1 . 負荷に電力を供給するための電源システムであって、
前記負荷に接続するための第 1と第 2の電源配線と、
前記第 1と第 2の電源配線の間に接続された燃料電池を有する燃料電池システ 厶と、
前記第 1 と第 2の電源配線の間に前記燃料電池と並列に接続された 2次電源シ ステムと、
前記燃料電池と前記第 1の電源配線との間の接続を開閉するためのスィツチと、 前記 2次電源システムと前記スィツチとを制御するための制御部と、
を備え、
前記制御部は、前記燃料電池を前記第 1の電源配線に接続する際に、前記 2次 電源システムを制御して、前記 2次電源システムの両端電圧を上昇させることを 特徵とする電源システム。
2 . 請求項 1記載の電源システムであって、 さらに、
前記燃料電池と前記第 Ίの電源配線との間に接続された逆流防止デバイスを備 え、
前記制御部は、前記燃料電池を前記第 1の電源配線に接続する際に、前記 2次 電源システムの両端電圧を前記燃料電池の開放時の両端電圧以上の高さの第 1 の電圧に上昇させる、 電源システム。
3 . 請求項 1または 2に記載の電源システムであって、
前記制御部は、前記燃料電池を前記第 1の電源配線に接続した後に、前記 2次 電源システムの両端電圧を前記燃料電池の開放時の両端電圧よりも低い第 2の 電圧に下降させる、 電源システム。
4 . 請求項 1ないし 3のいずれかに記載の電源システムであって、 前記制御部は、 前記第〗の電源配線からの前記燃料電池の切リ離しに応じて、 前記 2次電源システムの両端電圧を前記燃料電池の開放時の両端電圧よリも低 い電圧に下降させる、 電源システム。
5 . 請求項 4記載の電源システムであつて、
前記 2次電源システムは、 充電可能な 2次電池と、 前記 2次電池から入力され る直流の入力電力の電圧を昇降して直流電力を出力可能な D C— D Cコンバ一夕 とを備えており、
前記制御部は、 前記第 1の電源配線からの前記燃料電池の切り離しに応じて、 前記 D C— D Cコンバ一夕の出力電圧が前記燃料電池の開放時の両端電圧より も前記 2次電池の出力電圧に近づくような制御を開始する、 電源システム。
6 . 請求項 4記載の電源システムであって、
前記 2次電源システムは、 充電可能な 2次電池と、 前記 2次電池から入力され る直流の入力電力の電圧を昇降して直流の出力電力を出力可能な D C— D Cコン バー夕とを備えており、
前記制御部は、 前記第 1の電源配線からの前記燃料電池の切り離しに応じて、 前記 D C— D Cコンバ一夕の出力電圧が前記 2次電池の出力電圧に近づくよう な制御を開始する、 電源システム。
7 . 請求項 1ないし 6のいずれかに記載の電源システムであって、 前記制御部は、前記燃料電池が所定の大きさの電力を供給できな L、状態にある ときに、前記第 Ίの電源配線から前記燃料電池を切り離すように構成されている、 電源システム。
8 . 負荷に電力を供給するために電源システムを制御する制御装置であって、 前記電源システムは、
前記負荷に接続するための第 1と第 2の電源配線と、
前記第 1と第 2の電源配線の間に接続された燃料電池を有する燃料電池システ 厶と、
前記第 Ίと第 2の電源配線の間に前記燃料電池と並列に接続された 2次電源シ ステムと、
前記燃料電池と前記第 1の電源配線との間の接続を開閉するためのスィツチと、 を備え、
前記制御装置は、前記スィツチを制御して前記燃料電池を前記第 1の電源配線 に接続する際に、前記 2次電源システムを制御して前記 2次電源システムの両端 電圧を上昇させることを特徴とする、 制御装置。
9 . 負荷に電力を供給するための方法であって、
( a ) 前記負荷に接続するための第 1と第 2の電源配線と、 前記第 1と第 2の電 源配線の間に接続された燃料電池を有する燃料電池システムと、 前記第 1と第 2 の電源配線の間に前記燃料電池と並列に接続された 2次電源システムと、 前記燃 料電池と前記第 1の電源配線との間の接続を開閉するためのスィッチと、 を準備 する工程と、
( b ) 前記 2次電源システムと前記スィッチとを制御する工程と、
を備え、
前記工程(b ) は、 前記スィッチを制御して前記燃料電池を前記第〗の電源配 線に接続する際に、前記 2次電源システムを制御して前記 2次電源システムの両 端電圧を上昇させる工程を含むことを特徴とする、 電力供給方法。
1 0 . 負荷に電力を供給するための電源システムであって、 前記負荷の一端に対してその一端が接続される逆流防止デバィスと、 前記負荷 の他端と前記逆流防止デバイスの他端との間に接続された燃料電池と、 を有する 燃料電池システムと、
前記燃料電池と並列に接続された 2次電源システムと、
前記 2次電源システムを制御する制御部と、
を備え、
前記制御部は、前記 2次電源システムの両端電圧を、前記燃料電池の開放時の 両端電圧以上の高さとして前記燃料電池の出力を停止させる特定の制御モード を有することを特徴とする、 電源システム。
1 1 . 請求項 1 0記載の電源システムであって、
前記制御部は、前記燃料電池の起動と前記燃料電池の異常の少なくとも一方を 含む特定の状態に前記燃料電池がある場合に、前記特定の制御モードで制御を行 う、 電源システム。
1 2 . 請求項 Ί 0または 1 1 に記載の電源システムであって、
前記 2次電源システムは、 充電可能な 2次電池と、 前記 2次電池から入力され た直流の入力電力の電圧を昇降して直流の出力電力を出力可能な D C— D Cコン バー夕とを備えており、
前記 2次電池は、 所定の電力を出力しているときの両端電圧が前記燃料電池の 開放時の両端電圧以上の高さとなるように構成されており、
前記 D C— D Cコンバータは、 前記 2次電池と前記燃料電池とを短絡させる作 動モードである短絡モードを有し、
前記特定の制御モードは、前記 D C— D Cコンバ一夕の作動モードを前記短絡 モードとする制御モードである、 電源システム。
1 3 . 請求項 1 2記載の電源システムであって、
前記 2次電池は、 第 1電源電極と第 2電源電極とを有し、
前記 D C— D Cコンバータは、
第 1負荷電極と、
第 2負荷電極と、
第 1スィッチの一端と第 2スィッチの一端とが第 1接続点で直列に接続された 直列回路であって、 前記第 1電源電極に前記第 1スィツチの他端が接続されると ともに、 前記第 2電源電極に前記第 2スィツチの他端が接続された第 2電源側直 列回路と、
第 3スィツチの一端と第 4スィツチの一端とが第 2接続点で直列に接続された 直列回路であって、 前記第 1負荷電極に前記第 3スィッチの他端が接続されると ともに、 前記第 2負荷電極に前記第 4スィツチの他端が接続された負荷側直列回 路と、
前記第 1接続点と前記第 2接続点との間に接続されたインダクタンスと、 を備え、
前記第 2電源電極は、 前記第 2負荷電極に接続されており、
前記前記短絡モードは、前記制御部が、前記第 1スィツチと前記第 3スィッチ とを閉じるとともに、前記接続制御スィツチと前記第 2スィッチと前記第 4スィ ツチとを開く作動モードである、 電源システム。
1 4 . 燃料電池を搭載する燃料電池自動車であって、
請求項 1 0ないし 1 3に記載の電源システムと、
前記電源システムから供給された電力に応じて車輪を回転駆動する駆動部と、 を備え、
前記制御部は、 前記 2次電源システムが供給可能な電力である供給可能電力を推定する 2次電 源システム監視部と、
前記推定された供給可能電力に応じて、 前記駆動部の要求電力を制限する要求 電力決定部と、
を備えることを特徴とする、 燃料電池自動車。
1 5 . 請求項 1 4記載の燃料電池自動車であって、
前記 2次電源システム監視部は、 前記 2次電源システムが供給している電力の 電圧を計測し、
前記要求電力決定部は、 さらに、前記計測された電圧に応じて前記駆動部の要 求電力を制限する、 燃料電池自動車。
1 6 . 負荷に電力を供給するために電源システムを制御する制御装置であつ て、
前記電源システムは、
前記負荷の一端に対してその一端が接続される逆流防止デバイスと、 前記負荷 の他端と前記逆流防止デバイスの他端との間に接続された燃料電池と、 を有する 燃料電池システムと、
前記燃料電池と並列に接続された 2次電源システムと、
を備え、
前記制御装置は、前記 2次電源システムを制御して、前記 2次電源システムの 両端電圧を前記燃料電池の開放時の両端電圧以上の高さとする特定の制御モー ドを有することを ί寺徴とする、 制御装置。
1 7 . 負荷に電力を供給するための方法であって、
( a ) 前記負荷の一端に対してその一端が接続される逆流防止デバイスと、 前記 負荷の他端と前記逆流防止デバイスの他端との間に接続された燃料電池と、 を有 する燃料電池システムを準備する工程と、
( b ) 前記 2次電源システムを制御する工程と、
を備え、
前記工程(b ) は、 前記 2次電源システムの両端電圧を、 前記燃料電池の開放 時の両端電圧以上の高さとする特定の制御モードを有することを特徴とする、電 力供給方法。
PCT/JP2003/015498 2002-12-16 2003-12-03 2次電池を有する燃料電池システム WO2004055929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004560605A JP3960337B2 (ja) 2002-12-16 2003-12-03 2次電池を有する燃料電池システム
DE10393874.5T DE10393874B8 (de) 2002-12-16 2003-12-03 Verfahren zur Bereitstellung elektrischer Leistung für einen Verbraucher, Leistungsversorgungssystem und Steuervorrichtung sowie Verwendung des Leistungsversorgungssystems in einem Brennstoffzellenfahrzeug
US11/151,540 US7354671B2 (en) 2002-12-16 2005-06-14 Fuel cell system having secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-363251 2002-12-16
JP2002363251 2002-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/151,540 Continuation US7354671B2 (en) 2002-12-16 2005-06-14 Fuel cell system having secondary cell

Publications (1)

Publication Number Publication Date
WO2004055929A1 true WO2004055929A1 (ja) 2004-07-01

Family

ID=32588198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015498 WO2004055929A1 (ja) 2002-12-16 2003-12-03 2次電池を有する燃料電池システム

Country Status (5)

Country Link
US (1) US7354671B2 (ja)
JP (1) JP3960337B2 (ja)
CN (1) CN100389517C (ja)
DE (1) DE10393874B8 (ja)
WO (1) WO2004055929A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238589A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp 電力システム
WO2006104268A1 (ja) * 2005-03-31 2006-10-05 Toyota Jidosha Kabushiki Kaisha 電圧変換装置および車両
WO2006118315A1 (ja) * 2005-05-02 2006-11-09 Toyota Jidosha Kabushiki Kaisha 多相電圧変換装置および車両
WO2008114758A1 (ja) * 2007-03-12 2008-09-25 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
CN102780016A (zh) * 2011-05-12 2012-11-14 本田技研工业株式会社 燃料电池系统
CN102991370A (zh) * 2011-09-09 2013-03-27 本田技研工业株式会社 燃料电池系统
WO2017130854A1 (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 モータ制御装置
JP2020528254A (ja) * 2018-02-14 2020-09-17 エルジー・ケム・リミテッド バッテリーと平滑キャパシタとの間のエネルギー伝達のための電源回路、バッテリー管理システム及びバッテリーパック

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131411B2 (ja) * 2004-05-27 2008-08-13 トヨタ自動車株式会社 電気自動車の制御装置
KR100637224B1 (ko) * 2005-04-21 2006-10-20 삼성에스디아이 주식회사 연료 전지를 이용한 전력 공급 장치, 전력 공급 장치의 제어 방법 및 컴퓨터로 읽을 수 있는 기록매체
WO2007036275A1 (de) * 2005-09-28 2007-04-05 Volkswagen Aktiengesellschaft Hybridantriebsstrang eines kraftfahrzeugs
JP4379430B2 (ja) * 2006-04-24 2009-12-09 トヨタ自動車株式会社 電源システムおよび車両
JP2008047537A (ja) * 2006-08-17 2008-02-28 Samsung Sdi Co Ltd 燃料電池システム及び燃料電池動作方法
DE102006041925A1 (de) * 2006-09-07 2008-03-27 Bayerische Motoren Werke Ag Bordnetz-System eines Fahrzeugs vorbereitet für dessen Abschleppen
US7609050B2 (en) * 2007-02-20 2009-10-27 Gm Global Technology Operations, Inc. Method and system for determing current in an electrical component in a power conversion system
TWI350020B (en) 2007-10-26 2011-10-01 Nan Ya Printed Circuit Board Energy management module and driving device utilizing the same
US20100285379A1 (en) * 2007-11-13 2010-11-11 Schrieber Jeffrey W Transitioning an electrochemical cell stack between a power producing mode and a pumping mode
CN101453133B (zh) * 2007-12-06 2011-12-07 南亚电路板股份有限公司 能量管理模块以及驱动装置
US7968240B2 (en) * 2008-01-15 2011-06-28 GM Global Technology Operations LLC System and method for shorting a fuel cell stack
JP4353305B2 (ja) * 2008-03-21 2009-10-28 トヨタ自動車株式会社 電源制御回路
US8486570B2 (en) 2008-12-02 2013-07-16 General Electric Company Apparatus for high efficiency operation of fuel cell systems and method of manufacturing same
CN102280925A (zh) * 2011-08-09 2011-12-14 潍坊万隆电气有限公司 车辆电源互联桥式供电系统
CA2993493C (en) 2015-07-28 2019-06-18 Nissan Motor Co., Ltd. Control device for fuel cell vehicle
FR3053851B1 (fr) * 2016-07-07 2020-06-26 Symbiofcell Dispositif de commande d'un systeme d'alimentation pour vehicule a couplage pile a combustible/batteries
CN106787737B (zh) * 2017-03-08 2019-02-22 广东工业大学 一种双向直流变换器
US10249893B2 (en) * 2017-04-26 2019-04-02 GM Global Technology Operations LLC Fuel cell architectures, monitoring systems, and control logic for characterizing fluid flow in fuel cell stacks
DE102021202537A1 (de) * 2021-03-16 2022-09-22 Thyssenkrupp Ag Verfahren zum Betreiben eines Unterseebootes mit einer Brennstoffzelle und einem Akkumulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171831A (ja) * 1995-12-20 1997-06-30 Sanyo Electric Co Ltd ハイブリッド燃料電池システム及びその運転方法
JP2001229943A (ja) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2001229950A (ja) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2002118979A (ja) * 2000-10-04 2002-04-19 Toyota Motor Corp 燃料電池を有する直流電源
JP2002334712A (ja) * 2001-05-09 2002-11-22 Denso Corp 燃料電池システム
JP2003304606A (ja) * 2002-04-08 2003-10-24 Nissan Motor Co Ltd 燃料電池搭載車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE134424C (ja) *
JPS6217958A (ja) * 1985-07-16 1987-01-26 Sanyo Electric Co Ltd 燃料電池発電システムの制御装置
JPH09298806A (ja) 1996-05-01 1997-11-18 Yamaha Motor Co Ltd 電動車両用電力供給方法及びその装置
DE19954306B4 (de) * 1999-11-11 2004-09-02 Ballard Power Systems Ag Vorrichtung zur elektrischen Energieerzeugnung mit einer Brennstoffzelle in einem Fahrzeug und Verfahren zum Betrieb einer derartigen Vorrichtung
JP2001204106A (ja) 2000-01-18 2001-07-27 Matsushita Electric Ind Co Ltd 電力システムおよび電気自動車
US6979504B2 (en) * 2001-07-25 2005-12-27 Ballard Power Systems Inc. Fuel cell system automatic power switching method and apparatus
JP2003197229A (ja) 2001-12-26 2003-07-11 Toyota Motor Corp 燃料電池とキャパシタとを備えるハイブリッド電源システム
JP3936584B2 (ja) 2002-01-08 2007-06-27 荏原バラード株式会社 燃料電池発電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171831A (ja) * 1995-12-20 1997-06-30 Sanyo Electric Co Ltd ハイブリッド燃料電池システム及びその運転方法
JP2001229943A (ja) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2001229950A (ja) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2002118979A (ja) * 2000-10-04 2002-04-19 Toyota Motor Corp 燃料電池を有する直流電源
JP2002334712A (ja) * 2001-05-09 2002-11-22 Denso Corp 燃料電池システム
JP2003304606A (ja) * 2002-04-08 2003-10-24 Nissan Motor Co Ltd 燃料電池搭載車両の制御装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238589A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp 電力システム
JP4622578B2 (ja) * 2005-02-24 2011-02-02 トヨタ自動車株式会社 電力システム
DE112006000761B4 (de) * 2005-03-31 2014-07-17 Toyota Jidosha Kabushiki Kaisha Spannungsumwandlungsvorrichtung und Fahrzeug
WO2006104268A1 (ja) * 2005-03-31 2006-10-05 Toyota Jidosha Kabushiki Kaisha 電圧変換装置および車両
JPWO2006104268A1 (ja) * 2005-03-31 2008-09-11 トヨタ自動車株式会社 電圧変換装置および車両
KR100927453B1 (ko) * 2005-03-31 2009-11-19 도요타 지도샤(주) 전압변환장치 및 차량
US7715217B2 (en) 2005-03-31 2010-05-11 Toyota Jidosha Kabushiki Kaisha Voltage conversion device and vehicle
JP4557005B2 (ja) * 2005-03-31 2010-10-06 トヨタ自動車株式会社 電圧変換装置および車両
WO2006118315A1 (ja) * 2005-05-02 2006-11-09 Toyota Jidosha Kabushiki Kaisha 多相電圧変換装置および車両
WO2008114758A1 (ja) * 2007-03-12 2008-09-25 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
CN102780016A (zh) * 2011-05-12 2012-11-14 本田技研工业株式会社 燃料电池系统
CN102780016B (zh) * 2011-05-12 2015-09-30 本田技研工业株式会社 燃料电池系统
US9240603B2 (en) 2011-05-12 2016-01-19 Honda Motor Co., Ltd. Method of controlling fuel cell system
CN102991370A (zh) * 2011-09-09 2013-03-27 本田技研工业株式会社 燃料电池系统
US9070917B2 (en) 2011-09-09 2015-06-30 Honda Motor Co., Ltd. Method of controlling fuel cell system
WO2017130854A1 (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 モータ制御装置
JPWO2017130854A1 (ja) * 2016-01-27 2018-11-22 パナソニックIpマネジメント株式会社 モータ制御装置
JP2020528254A (ja) * 2018-02-14 2020-09-17 エルジー・ケム・リミテッド バッテリーと平滑キャパシタとの間のエネルギー伝達のための電源回路、バッテリー管理システム及びバッテリーパック
US11258291B2 (en) 2018-02-14 2022-02-22 Lg Energy Solution, Ltd. Power supply circuit for energy transfer between battery and smoothing capacitor, battery management system and battery pack

Also Published As

Publication number Publication date
DE10393874T5 (de) 2005-10-13
US20050233192A1 (en) 2005-10-20
CN100389517C (zh) 2008-05-21
JPWO2004055929A1 (ja) 2006-04-20
US7354671B2 (en) 2008-04-08
JP3960337B2 (ja) 2007-08-15
DE10393874B8 (de) 2014-04-17
DE10393874B4 (de) 2014-02-13
CN1726609A (zh) 2006-01-25

Similar Documents

Publication Publication Date Title
WO2004055929A1 (ja) 2次電池を有する燃料電池システム
JP5434195B2 (ja) 燃料電池システム及びこれを備えた車両
JP5434196B2 (ja) 燃料電池システム及びこれを備えた車両
US8603687B2 (en) Fuel cell system
TW557264B (en) Hybrid vehicle and control method therefor
US8673514B2 (en) Fuel cell system and boost converter for fuel cell
US9415732B2 (en) Vehicle power unit
US20100104906A1 (en) Fuel cell power supply device
US20150137592A1 (en) Power conversion system suppressing reduction in conversion efficiency
JP2017037781A (ja) 燃料電池システムの制御方法、燃料電池自動車の制御方法及び燃料電池自動車
CN105228851A (zh) 车用电源系统
CN102474177B (zh) 变换器控制装置
JP2009089536A (ja) 電源システム
JP5434197B2 (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP2017126477A (ja) 燃料電池システム及びその制御方法
JP2008178287A (ja) ハイブリッド電力供給装置、ハイブリッド電力供給装置の制御方法、電子機器および記録媒体
CN111746308B (zh) 电力系统及其控制方法
JP4240234B1 (ja) 燃料電池システム
JP2017085869A (ja) 電源システムの制御装置
JP2020010517A (ja) 充電制御装置及び充電制御システム
JP2015504811A (ja) 自動車両のための始動中に電圧を維持するための装置
JP5509655B2 (ja) 燃料電池システム及びこれを備えた車両
JP2007236132A (ja) 車両用制御装置
JP4334500B2 (ja) 電源システム
JP7205451B2 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004560605

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11151540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A6233X

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10393874

Country of ref document: DE

Date of ref document: 20051013

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393874

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607