WO2004053489A1 - 免疫反応測定方法 - Google Patents

免疫反応測定方法 Download PDF

Info

Publication number
WO2004053489A1
WO2004053489A1 PCT/JP2003/015754 JP0315754W WO2004053489A1 WO 2004053489 A1 WO2004053489 A1 WO 2004053489A1 JP 0315754 W JP0315754 W JP 0315754W WO 2004053489 A1 WO2004053489 A1 WO 2004053489A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
antibody
antigen
reaction
dicarboxylic acid
Prior art date
Application number
PCT/JP2003/015754
Other languages
English (en)
French (fr)
Inventor
Akihito Kamei
Tatsurou Kawamura
Keiko Yugawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2004558449A priority Critical patent/JP4512492B2/ja
Priority to US10/516,067 priority patent/US7202041B2/en
Priority to EP03777421A priority patent/EP1512972B1/en
Priority to DE60326717T priority patent/DE60326717D1/de
Publication of WO2004053489A1 publication Critical patent/WO2004053489A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/961Chemistry: molecular biology and microbiology including a step of forming, releasing, or exposing the antigen or forming the hapten-immunogenic carrier complex or the antigen per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property

Definitions

  • the present invention relates to an immunoreactivity measurement method for measuring an antigen or an antibody, which is a substance to be measured, contained in a sample, and an immunoreactivity measurement reagent used therefor.
  • an immunoreactivity measurement method using a highly specific antigen-antibody reaction is widely used, and at present, immunoreaction measurement methods using various principles are also used. Developed and used.
  • the nephelometry and the nephelometry are optical methods for measuring this turbidity.
  • the nephelometry measures the turbidity based on the amount of light scattered in the reaction system, and the turbidimetry measures the scattering in the reaction system. Measure turbidity based on the amount of transmitted light reduced by
  • reaction system can be used, and a target that can be measured by either method can be measured by the other method.
  • turbidity generated by the formation of an aggregated complex is visually determined on a slide glass or the like, and the same reaction system as the nephelometry and the nephelometry is used. be able to.
  • polyethylene dalicol is highly effective even at a relatively low concentration
  • polyethylene glycol having an average molecular weight of 600 is used at a concentration of 2 to 6% by weight.
  • the method is widely used.
  • a concentration of 4% by weight is said to have less nonspecific turbidity and a higher effect.
  • the effect of promoting the antigen-antibody reaction by a water-soluble polymer tends to increase as the molecular weight thereof increases and the concentration of the aqueous solution used increases.
  • the higher the signal intensity depending on the degree of antigen-antibody reaction, that is, the concentration of antigen the better the S / N ratio can be maintained and the more stable the measurement can be performed. it can.
  • the zone phenomenon refers to a phenomenon in which an aggregate or a complex is hardly generated when any one of an antigen and an antibody is present in excess of an equivalent region where a maximum aggregate is formed.
  • the lattice theory of Heidelberger et al. Is well known. For example, the fundamental theory by William E. Paul The details are described in Fundamental Immunology J, 1984, and edited by Tomio Tada, "Basic Immunology", 1987, p. 714-716.
  • the antigen concentration is often measured using antibodies. Also, measured values are often more important when the antigen concentration is higher than when it is lower. For this reason, zone phenomena due to excess antigen often become a problem. In regions other than the zone, large molecular chains consisting of complexes in which antibodies and antigens are alternately bound are formed, and their amount and size increase depending on the antigen concentration when the antibody concentration is constant. By measuring the amount of the molecular chain and its magnitude as an optical change, the antigen concentration can be quantitatively determined. In addition, depending on the concentration of the antibody and the antigen, the antigen-antibody complex can be sufficiently confirmed with the naked eye as turbidity or aggregates in the solution. it can.
  • the antigen is present in excess of the antibody in the antigen excess region, the amount of the antibody whose binding site is saturated with the antigen increases. For this reason, it is difficult to generate the molecular chains as described above, and it is difficult to distinguish the reaction result in this case from the reaction result when the antigen is at a low concentration. Therefore, correct quantification and judgment cannot be performed depending on the antigen concentration, and in order to avoid this, there is a problem that the measurement concentration range is limited.
  • Japanese Patent Application Laid-Open No. 09-08984 discloses that under neutral conditions of pH 6.0 to 8.0, the concentration of sodium chloride is set to 20 to 250 1 ⁇ , and the immune reaction is suppressed, and the substance to be measured is not diluted.
  • Hei 11-344494 discloses that, for example, under neutral conditions of pH 7.4, the concentration of sodium chloride is set to 0.05 to 0.08 M, and one of the immune reactions to the insoluble carrier particles
  • an immunological agglutination reaction in which an antibody or an antigen is bound, at least one dicarboxylic acid selected from the group consisting of malic acid, daltaric acid, adipic acid, succinic acid and salts and esters thereof is reacted with the reaction system.
  • a method has been proposed in which the content is contained in an amount of 1 to 20% by weight.
  • an object of the present invention is to provide an immunoreaction measurement method capable of easily improving a measured value, and an immunoreaction measurement reagent used therefor, in view of the above conventional problems.
  • Another object of the present invention is to provide an immunoreaction measurement method capable of mitigating the limitation of the measurement range due to a zone phenomenon occurring in an antigen-excess region, and an immunoreaction measurement reagent used therefor. Disclosure of the invention
  • the present invention relates to an immunoreactivity measurement method for measuring an antigen or an antibody, which is a substance to be measured, contained in a sample, (A) a dicarboxylic acid having a hydroxyl group, a dicarboxylic acid having a double bond, a chemical formula (1): a linear dicarboxylic acid represented by H ⁇ C (CH 2 ) nC OOH (n is an integer), and At least one compound selected from the group consisting of these salts (hereinafter, also referred to as “specific compound”); and an antibody or antigen that is a specific binding substance specifically binding to the analyte.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond
  • a chemical formula (1) a linear dicarboxylic acid represented by H ⁇ C (CH 2 ) nC OOH (n is an integer), and At least one compound selected from the group consisting of these salts (hereinafter, also referred to as “specific compound”
  • (B) a method for measuring an immunological reaction, comprising a step of detecting an antigen-antibody complex generated by an antigen-antibody reaction between the substance to be measured and the specific binding substance in the reaction solution.
  • the dicarboxylic acid having a hydroxyl group is malic acid and tartaric acid
  • the dicarboxylic acid having a double bond is itaconic acid, fumaric acid and maleic acid.
  • the pH of the reaction solution is preferably set to 4.0 to 6.0.
  • the pH of the reaction solution may be set to 4.5 to 5.0.
  • the pH of the reaction solution may be set to 5.0 to 6.0.
  • the concentration of the specific compound in the reaction solution is preferably set to 0.1 M or less.
  • concentration of the specific compound in the reaction solution may be set in a range of 0.01 to 0.1M.
  • the concentration of the specific compound in the reaction solution may be set in a range from 0.01 to 0.05 M.
  • the reaction solution preferably contains 2 to 6% by weight of polyethylene dalicol. No.
  • the antigen-antibody complex is an aggregation complex.
  • the aggregate is detected by measuring an optical change caused by the aggregate.
  • the optical change amount is a change amount of the scattered light intensity.
  • the specific binding substance is an antibody including a monoclonal antibody.
  • the specific binding substance is preferably a mixture of one or more monoclonal antibodies prepared so as to be capable of forming an aggregated complex.
  • said antigen is human albumin.
  • the present invention relates to an immunoreactivity measurement reagent used for an immunoreactivity measurement method for measuring an antigen or an antibody as a substance to be measured contained in a sample as described above, which comprises a dicarboxylic acid having a hydroxyl group, A dicarboxylic acid having a bond, at least one selected from the group consisting of a linear dicarboxylic acid represented by the chemical formula (1): H ⁇ C (CH 2 ) n COOH (n is an integer), and salts thereof A compound (specific compound) and an antibody or an antigen that is a specific binding substance that specifically binds to the analyte, wherein the antigen-antibody reaction between the analyte and the specific binding substance is performed.
  • the present invention relates to a reagent for measuring an immunological reaction, which is prepared so that the pH of a reaction solution when it is generated becomes acidic.
  • the dicarboxylic acid having a hydroxyl group is preferably malic acid and tartaric acid, and the dicarboxylic acid having a double bond is preferably diconic acid, fumaric acid and maleic acid.
  • the reagent for measuring an immune reaction further contains a buffer.
  • the reagent for measuring an immune reaction is preferably prepared such that the pH of the reaction solution is 4.0 to 6.0. This pH may be 4.5-6.0.4.5-5.0 or 5.0-6.0.
  • the reagent for measuring an immune reaction be prepared so that the concentration of the specific compound is 0.1 M or less in the reaction solution.
  • the reagent for measuring an immune reaction is prepared so that the concentration of the specific compound is in the range of 0.01 to 0.1 M in the reaction solution.
  • the reagent for measuring the immunological reaction is prepared so that the concentration of the specific compound is in the range of 0.01 to 0.05 M in the reaction solution.
  • the reagent for measuring an immune reaction further contains polyethylene dalicol, and the concentration of the polyethylene glycol when an antigen-antibody reaction occurs is 2 to 6% by weight.
  • the specific binding substance is an antibody including a monoclonal antibody.
  • the specific binding substance is a mixture of one or more monoclonal antibodies prepared so as to form an aggregated complex.
  • said antigen is human albumin.
  • FIG. 1 is a graph showing the results of an immune reaction measurement in Example 2 of the present invention.
  • FIG. 2 is a graph showing the results of an immunological reaction measurement using a reagent containing malonic acid and the like in Example 3 of the present invention.
  • FIG. 3 shows immunity using the reagent containing succinic acid in Example 3 of the present invention. It is a graph which shows a reaction measurement result.
  • FIG. 4 is a graph showing the results of an immune reaction measurement using a reagent containing L (-)-monomalic acid in Example 4 of the present invention.
  • FIG. 5 is a graph showing the results of an immunoreactivity measurement using a reagent containing L (+)-tartaric acid in Example 4 of the present invention.
  • FIG. 6 is a graph showing the results of an immunological reaction measurement using a reagent containing itaconic acid in Example 4 of the present invention.
  • FIG. 7 is a graph showing the results of an immunoreaction measurement using a reagent containing malonic acid in Example 5 of the present invention.
  • FIG. 8 is a graph showing the results of an immunoreaction measurement using a reagent containing succinic acid in Example 5 of the present invention.
  • FIG. 9 is a graph showing the results of an immunological reaction measurement using a reagent containing daltaric acid in Example 5 of the present invention.
  • FIG. 10 is a graph showing the results of an immunoreaction measurement using a reagent containing adipic acid in Example 5 of the present invention.
  • FIG. 11 is a graph showing the results of an immunoreaction measurement using a reagent containing pimelic acid in Example 5 of the present invention. '
  • FIG. 12 is a graph showing the results of an immunoreaction measurement using a reagent containing suberic acid in Example 5 of the present invention.
  • FIG. 13 is a graph showing the results of an immunoreaction measurement using a reagent containing azelaic acid in Example 5 of the present invention.
  • FIG. 14 is a graph showing the results of an immunoreactivity measurement using a reagent containing L (-1) monomalic acid in Example 6 of the present invention.
  • FIG. 15 is a graph showing the results of an immunoreaction measurement using a reagent containing itaconic acid in Example 6 of the present invention.
  • FIG. 16 shows the results obtained by using the reagent containing succinic acid in Example 6 of the present invention. It is a graph which shows an epidemiological reaction measurement result.
  • FIG. 17 is a graph showing the results of measuring the immune reaction in Example 7 of the present invention.
  • FIG. 18 is a graph showing the results of measuring the immune reaction in Example 8 of the present invention.
  • the present invention relates to an immunoreaction measurement method capable of easily increasing a measured value and an immunoreaction measurement reagent used for the method.
  • the present invention relates to a method for measuring an immune reaction, which can alleviate the limitation of the measurement range due to a zone phenomenon occurring in an antigen-excess region, and a reagent for measuring an immune reaction used therein.
  • the present inventors have conducted intensive studies and found that when an antigen-antibody reaction occurs, a dicarboxylic acid having a hydroxyl group, a dicarboxylic acid having a double bond, a chemical formula (1): HOOC (CH 2 ) n COOH (n)
  • a compound (specific compound) selected from the group consisting of linear dicarboxylic acids represented by the following formulas and salts thereof with the reaction system, and keeping the reaction solution acidic. It has been found that the measurement value of the immune reaction due to the binding of the antigen and antibody can be improved. They also found that the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area could be relaxed.
  • an aggregate complex is formed by an antigen-antibody reaction.
  • This formation involves temporary aggregation due to specific antigen-antibody reactions and secondary aggregation between aggregated complexes.
  • the above-mentioned specific compound mainly acts on secondary aggregation between aggregated complexes.
  • the aggregation is promoted by the action of ions when the aggregation complex is regarded as a kind of colloid.
  • Multivalent Ruponic Acid Since the ions have very strong agglomerating action, they promote secondary aggregation between complexes.
  • polyvalent carboxylic acids have a high ionic strength, and on the other hand, have an action of slightly suppressing the antigen-antibody reaction.
  • the dissociation rate of the lipoxyl group of the above-mentioned specific compound is reduced, so the ionic strength is reduced and the inhibitory effect on the antigen-antibody reaction is reduced.
  • the formation of aggregation complexes increases, and the aggregation of colloids Secondary aggregation between aggregated complexes due to the action becomes remarkable. Then, the reaction of forming an aggregated complex is likely to occur, and the measured value is improved.
  • the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area is eased.
  • the immunoreactivity measurement method is an immunoreactivity measurement method for measuring an antigen or an antibody, which is a substance to be measured, contained in a sample, comprising: (A) a dicarboxylic acid having a hydroxyl group; At least one selected from the group consisting of dicarboxylic acids having the formula, chemical formula (1): H ⁇ OC (CH 2 ) n CO 0 H (n is an integer), and salts thereof.
  • an antibody or an antigen which is a specific binding substance that specifically binds to the analyte, to the sample to obtain an acidic reaction solution, and (B) the reaction solution A step of detecting an antigen-antibody complex generated by an antigen-antibody reaction between the substance to be measured and the specific binding substance.
  • reaction solution may contain both the above-mentioned acid and a salt thereof.
  • the specific compound gives the reaction solution a buffering capacity, and the reaction solution is set to be acidic. By doing so, it is not necessary to further add another buffer to make the reaction solution acidic, and the effect of improving the measured value of the immune reaction can be efficiently exhibited. In addition, the effect of alleviating the limitation of the measurement range due to the zone phenomenon generated in the antigen-excess area is also efficiently exhibited. be able to. Of course, a buffer may be further added to the reaction solution.
  • the present invention also relates to a reagent used in an immunoreaction measurement method for measuring an antigen or an antibody which is a substance to be measured contained in a sample. Also concerns.
  • the present invention includes the specific compound and an antibody or an antigen that is a specific binding substance that specifically binds to the analyte, wherein the antigen of the analyte and the specific binding substance is
  • the present invention relates to a reagent for measuring an immune reaction, which is prepared so that a reaction solution when an antibody reaction occurs is made acidic.
  • the reagent may include both the above-mentioned acids and salts thereof.
  • the reagent is prepared so that the specific compound provides a buffering capacity and the reaction solution when the antigen-antibody reaction between the substance to be measured and the specific binding substance occurs becomes acidic. By doing so, it is not necessary to further add another buffer to make the reaction solution acidic, and the effect of improving the measured value of the immune reaction can be efficiently exhibited. In addition, the effect of alleviating the limitation of the measurement range due to the zone phenomenon generated in the antigen excess region can be efficiently exhibited.
  • the reagent may further contain a buffering agent. ⁇ The concentration of the specific compound contained in the reaction solution is 0.01 M so that a sufficient buffer capacity can be obtained in the reaction solution. It is preferable that this is the case.
  • the concentration is preferably 0.1 M or less. In order to satisfy both of these requirements, it is preferable that the ratio be 0.01 M to 0.1 M, and more preferably, 0.01 M to 0.05 M.
  • the concentration of the specific compound contained in the reaction solution is 0.1 M or less.
  • the concentration is 0.1 M to 0.1 M for the above-described reason. More preferably, it is in the range of 0.01 to 0.05M.
  • the specific compound is used at a concentration that shows a buffering capacity against water. It can be dissolved and has a great effect of improving the measured value of the immune response. In addition, the effect of mitigating the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area is great.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, and a chemical formula (1): HOOC (CH 2 ) nCOOH (where n is an integer) are used in the immunological reaction measuring method and the immunological reagent according to the present invention.
  • linear dicarboxylic acids represented by the following formulas and salts thereof include L (-) monomalic acid, D-malic acid, DL-malic acid, DL-sodium malate, L (-)- Sodium malate, L (+) —tartaric acid, DL—tartaric acid, D (—) monotartaric acid, mesotartaric acid monohydrate, (+) potassium tartrate monohydrate (21), (+) sodium potassium tartrate Hydrate, (+) ammonium tartrate, (+) potassium bitartrate, (+) sodium bitartrate monohydrate, (+) sodium tartrate dihydrate, itaconic acid, itaconic anhydride, fumaric acid , Monosodium fumarate, fuma Sodium acid, ferrous fumarate, maleic acid, maleic anhydride, sodium maleate, disodium maleate, malonic acid, sodium malonate, disodium malonate, thallium malonate, dithalium malonate, Succinic acid, ammonium succinate, diso
  • Preferred examples of the dicarboxylic acid having a hydroxyl group include malic acid and tartaric acid.
  • tartaric acid is considered to have the effect of improving the measured value of the immune response due to the antigen-antibody binding and the effect of reducing the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess region in a wider pH range.
  • the dicarboxylic acid having a double bond for example, itaconic acid, fumaric acid, maleic acid and the like are preferable. Among these, itaconic acid and maleic acid are preferred because they have higher solubility and can easily stabilize the pH of the reaction solution.
  • diconic acid is particularly preferred because it has a large effect of improving the measured value of the immune reaction due to the binding of the antigen-antibody and a large effect of alleviating the limitation of the measurement range due to the zone phenomenon generated in the antigen-excess region. .
  • the effect of improving the measured value of the immune response due to antigen-antibody binding and the effect of alleviating the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess region can be obtained over a wider range of pH.
  • malonic acid is particularly preferred.
  • phosphate buffers such as sodium dihydrogen phosphate and sodium sodium hydrogen phosphate, sodium acetate, sodium dihydrocodylate, and -(N-morpholino) ethanesulfonic acid and the like.
  • the amount of the buffer to be contained in the reaction solution depends on the type of the buffer used, the amount of the sample (analyte) containing the analyte, and the amount of the antibody or the antibody to the antigen or antibody that is the analyte to the reaction system. What is necessary is just to adjust suitably according to the antigen supply method etc. in the range which does not impair the effect of this invention.
  • the pH of the reaction solution is set to 4.0 to 6.0. At this time, immunization with the specific compound The effect of improving the measured value of the reaction is great.
  • the effect of mitigating the limitation of the measurement range due to the zone phenomenon generated in the antigen-excess area is great.
  • the pH of the reaction solution may be set to 4.5 to 5.0, or may be set to 5.0 to 6.0.
  • the reagent for immunoreaction according to the present invention has a pH of 4.0 to 6.0, more preferably 4.5 to 5.0, when mixed with a reaction solution when an antigen-antibody reaction occurs. Alternatively, it is preferably prepared so as to be set to 5.0 to 6.0.
  • the reaction solution and the reagent for immunoreaction in the immunoreaction measurement method according to the present invention may include other optional components known in the art as long as the effects of the present invention are not impaired, depending on the use and the like. Can be added.
  • a homogeneous immunoreactivity measurement method such as a nephelometry method, a turbidimetric method, or a slide agglutination method
  • PEG polyethylene glycol
  • the content is preferably 2 to 6% by weight of the reaction solution, and 4% by weight, from the viewpoint that nonspecific aggregation is small and the effect of improving measurement sensitivity is high. % Is more preferable.
  • the concentration at which an antigen-antibody reaction occurs is preferably 2 to 6% by weight, more preferably 4% by weight.
  • Tween 20 In order to reduce nonspecific turbidity due to self-aggregation of antigen or antibody, Tween 20, octyl dalcoside, sodium lauryl sulfate (SDS), sucrose monolaurate, A surfactant such as CHAP S can be added.
  • the content according to the present invention is determined from the viewpoint that the inhibition of the antigen-antibody reaction is small.
  • the amount In the method for measuring an immune reaction, the amount is preferably 0.3% by weight or less, more preferably 0.1% by weight or less of the reaction solution.
  • the content of the reagent for immunoreaction according to the present invention is preferably not more than 0.3% by weight, more preferably not more than 0.1% by weight, when the antigen antibody reaction occurs. Is particularly preferred.
  • the measurement system to which the immunoreactivity measurement method and the immunoreactivity measurement reagent according to the present invention are applied is not particularly limited.
  • the homogeneous measurement system is preferable in that the effects of the present invention described above can be expected.
  • the nephelometry and the nephelometry, which are widely used for measurement with automatic measuring instruments, are particularly preferable because the steps required to determine the zone phenomena occurring in the antigen-excess area can be omitted or simplified. .
  • the antigen-antibody complex is preferably an aggregation complex.
  • the optical change amount is a change amount of the scattered light intensity or the transmitted light amount.
  • the change amount of the scattered light intensity that responds sensitively to the size of the aggregated complex is more preferable.
  • the sample used for the immunoreaction measurement method and the immunoreaction measurement reagent according to the present invention may be any sample containing an antigen or an antibody to be measured, and examples thereof include body fluids such as urine and blood.
  • the antigen or antibody which is the substance to be measured contained in the sample is not particularly limited, and may be any substance that can be generally measured using an antigen-antibody reaction.
  • proteins, nucleic acids, lipids, bacteria, viruses, haptens and the like can be mentioned. Among these, proteins are preferred because they are the main measurement targets in clinical tests using antigen-antibody reactions.
  • Proteins include hormones such as LH (luteinizing hormone), FSH (follicle stimulating hormone), hCG (chorionic gonadotropin), various immunoglobulin classes and subclasses, complement components, and various infectious diseases. Markers, CRP, albumin, rheumatoid factor and blood group antigens. Of these, human albumin is particularly preferred.
  • the same metal ion as that retained by the antigen is added to the reaction solution.
  • this metal ion may be present in the reaction solution.
  • the amount of metal ions added to the reaction solution is represented by a dicarboxylic acid having a hydroxyl group, a dicarboxylic acid having a double bond, and a chemical formula (1): HOOC (CH 2 ) nC OOH (n is an integer). It may be set based on the chelating ability and concentration of the linear dicarboxylic acids and salts thereof, and the ability of the antigen to retain metal ions.
  • the antibody used in the immunoreaction measurement method and the immunoreaction measurement reagent according to the present invention is not particularly limited, and may be any of IgG, IgG, and the like as long as they specifically bind to the antigen.
  • Antibodies of any of the classes IgM, IgE, IgA and IgD may be used.
  • IgG antibodies are more preferable because they have few nonspecific reactions, are relatively commercially available in many cases, and are easily available.
  • ⁇ Also animal species from which the antibodies are derived
  • the antibody is not particularly limited, but antibodies derived from rabbits, goats and mice are preferred because they are relatively easily available and have many uses.
  • a polyclonal antibody or a monoclonal antibody may be used as the specific binding substance. That is, a polyclonal antibody and a monoclonal antibody may be used alone or as a mixture, but it is preferable to include a monoclonal antibody from the viewpoint that a similar antibody can be produced permanently. It is more preferable that the mixture is a mixture of one or more monoclonal antibodies prepared so as to be capable of forming an aggregated complex.
  • Monoclonal antibodies are produced by the hybridoma cell line.
  • the hybridoma cell line is derived from a fused cell population that combines antibody production and strong proliferation, obtained by cell fusion of B cells that produce antibodies and bone marrow tumor cells (myeloid cells). It was established by isolating and growing only one cell. Therefore, the properties of the antibodies they produce are the same.
  • the hybridoma cell line has a strong proliferation ability and can be cryopreserved. For this reason, it is possible to obtain antibodies having the same properties permanently by culturing and purifying the hybridoma cell line in a culture solution or peritoneal cavity, if the appropriate management is performed.
  • polyclonal antibodies are obtained by administering an antigen to an animal, causing a large amount of an antibody that binds to the antigen to appear in the blood, and collecting or purifying all or part of the blood. For this reason, its properties depend on individual differences among animals, growth environments, conditions, and the like, and it is difficult to continuously obtain antibodies of the same nature. Thus, the use of monoclonal antibodies always ensures the same It becomes possible to use antibodies of a specific nature. For this reason, the supply of the antibody as a reagent is stabilized, and as a result, the stability of the results of the immunoreaction measurement by the immunoreaction measurement method and the immunoreaction measurement reagent can be increased.
  • the requirement that must be met for a specific binding substance to be composed of a monoclonal antibody is that it specifically binds to an antigen and forms an aggregated complex. That is, when the antigen is a substance having a plurality of binding sites for one kind of monoclonal antibody, an aggregated complex can be generated by one kind of monoclonal antibody. However, if the antigen is a substance that has only one binding site for one type of monoclonal antibody (the first monoclonal antibody), it is necessary to use at least two types of monoclonal antibodies. is there. The requirement for the second monoclonal antibody is that it must be capable of binding to another site of the antigen and forming an aggregated complex when bound to the antigen together with the first monoclonal antibody.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, a linear dicarboxylic acid represented by the chemical formula (1): H ⁇ C (CH 2 ) n COOH (where n is an integer), and At least one compound selected from the group consisting of salts of the following: acidifying a reaction solution described below, preferably a buffer containing a buffer such that the pH of the reaction solution is set to 4.0 to 6.0. Add to the solution.
  • a dispersion or solution containing an antibody or an antigen against the antigen or antibody to be measured and a sample (sample) is mixed with the above-mentioned buffer, and then the other is added thereto.
  • a reaction solution is prepared by mixing, and the immune reaction generated in the reaction solution is measured.
  • the concentration of the compound in the reaction solution has the effect of improving the measured value
  • Any range may be used as long as the effect of alleviating the limitation of the measurement range due to the zone phenomenon occurring in the antigen excess region is recognized.
  • the concentration of the compound is 0.1 M or less, preferably from 0.01 to 0.1 M, more preferably from 0.01 to 0.05 M.
  • the compound may also serve as a buffer.
  • the method of adding the specific compound, the method of adding a buffer to keep the pH of the reaction solution acidic, and the method of adjusting the pH of the reaction solution are not limited to the above methods.
  • the specific compound and the buffer may be present in a solution containing an antibody or an antigen against the antigen or antibody to be measured so as to satisfy the above requirements in advance.
  • an antibody or antigen against the antigen or antibody to be measured and the specific compound are separately prepared, they may be prepared as follows.
  • the solution containing the antibody or antigen against the antigen or antibody to be measured may have any composition as long as the effect of the specific compound can be obtained.
  • the solution containing the above compound is adjusted to adjust the pH of the reaction solution to 4.0 to 6.0 so that the buffer capacity necessary to keep the reaction solution during the antigen-antibody reaction acidic can be obtained. Is preferred.
  • the concentration of the specific compound in the reaction solution may be arbitrarily determined as long as the effect of improving the measured value and the effect of alleviating the limitation of the measurement range due to a zone phenomenon occurring in the antigen excess region can be obtained.
  • the buffering agent is such that the concentration of the specific compound is 0.1 M or less, preferably 0.01 to 0.1 M, and more preferably 0.01 to 0.05 M.
  • pure water is added to the mixture obtained by mixing the above and the specific compound to adjust the concentration.
  • the buffer and the specific compound may be present in separate solutions.
  • the specific compound itself may also serve as a buffer.
  • the specific compound may be present in a solution containing an antibody or an antigen against the antigen or antibody to be measured. In this case, a solution containing an antibody or an antigen against the antigen or antibody to be measured is dialyzed or filtered with a gel using a prepared solution containing the specific compound so as to satisfy the requirements shown above.
  • the specific compound may be contained by substituting the low molecular component.
  • dicarboxylic acid having a hydroxyl group dicarboxylic acid having a double bond, and a chemical formula (1): HOOC (CH 2 ) n
  • HOOC (CH 2 ) n At least one compound selected from the group consisting of linear dicarboxylic acids represented by COOH (where n is an integer) and salts thereof is present in the reaction system of the immune reaction, and the reaction system is made acidic.
  • COOH where n is an integer
  • salts thereof is present in the reaction system of the immune reaction, and the reaction system is made acidic.
  • the limitation of the measurement range due to the zone phenomenon occurring in the antigen excess region can be eased.
  • the measurement concentration range can be expanded.
  • the antibody may be immobilized on a fine particle carrier such as latex, gold colloid, or magnetic fine particles. Further, the antibody may be labeled with an enzyme, a dye, a fluorescent substance, a luminescent substance, or the like.
  • the buffer and pH of the antibody solution are not particularly limited.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond
  • a chemical formula (1) H ⁇ C (CH 2 ) n C ⁇ ⁇
  • H (n is an integer) and salts thereof the pH of the reaction system is maintained in an acidic range.
  • dialysis may be performed with an acidic buffer containing the specific compound.
  • HC 1 etc. when the pH of the compound dissolved in pure water is closer to the target than the target pH, and above for the acidic side It may be carried out using the hydroxide or the like shown in. Further, the mixing may be performed by adjusting the mixing ratio of the specific compound.
  • an antibody solution that can be used for measurement by the slide agglutination method, turbidimetric method, and turbidimetric method, dicarboxylic acid having a hydroxyl group, dicarboxylic acid having a double bond, HOOC (CHOC 2 ) n C OOH (n is an integer), and an immune reaction was measured using a reagent comprising a buffer solution containing at least one compound selected from the group consisting of linear dicarboxylic acids represented by the following formulas and salts thereof.
  • reagents such as salts and buffering agents not particularly described used were those manufactured by Wako Pure Chemical Industries, Ltd.
  • the primary reagent was used as polyethylene glycol (PEG) 600, and the special reagent was used as the other reagent.
  • Two antibody solutions were prepared, one using a rabbit ego anti-human albumin polyclonal antibody and one using a mixture of three types of mouse anti-human albumin monoclonal antibodies.
  • an antibody solution using a heron anti-human albumin polyclonal antibody was prepared as follows. ⁇ A heron anti-human albumin polyclonal antibody was purified from antisera collected from ⁇ heron immunized with human albumin using protein A column chromatography. As the protein A-immobilized gel packed in the column, a gel manufactured by Amersham-Pharmacia was used. As the equilibration buffer used for purification, a buffer with a pH of 8.9 containing 1.5 M glycine and 3.0 M sodium chloride was used. A pH 4.0 buffer containing 1 M citric acid was used.
  • Purification was performed by the following method. After equilibration of the column by flowing equilibration buffer 5 times the gel volume packed in the column, the antiserum containing 10% to 20% of the antibody in the total binding volume of the column was diluted with the equilibration buffer to 2 volumes. After dilution by a factor of 1 and flowing through a column, the antibodies in the serum were bound to protein A. Next, equilibrate until serum components not adsorbed on protein A do not come out of the column. The buffer was flushed and the column was washed.
  • an elution buffer was applied to the column to elute the antibody bound to protein A.
  • the eluted antibody fraction is placed in a dialysis tube having a molecular weight cut off of 10,000, and about 100 times the volume of 0.05 M 3_ (N-morpholino) propanesulfonate (manufactured by Dojin) represented as MO PS), sodium chloride 0. 1 5 M, and dialyzed several times with buffer p H 7. 4 containing 0.0 4% by weight of N a N 3, to replace the buffer components .
  • MO PS N-morpholino propanesulfonate
  • the antibody concentration was estimated by measuring the absorbance at 280 nm, and adjusted with the same buffer solution used for the dialysis to give an antibody concentration of 3. OmgZml to obtain an antibody solution.
  • an antibody solution using a mixture of three kinds of mouse anti-human albumin monoclonal antibodies was prepared as follows.
  • the mouse anti-human albumin monoclonal antibody includes the cell line No. F ERM BP-7938 of the National Institute of Advanced Industrial Science and Technology (AIST)
  • strain 7938 As the monoclonal antibody produced by the 7938 strain, a monoclonal antibody obtained by purifying from mouse ascites by the same protein A column chromatography as above was used. When each monoclonal antibody is mixed in the antibody solution, the monoclonal antibody produced by the 7938 strain is 0.0333.3 mg / m 1 and the FU-301 is 0.033 33 mg / ml. The FU-303 was adjusted to 0.033 33 mg Zml, and mixed so that the final concentration of the total monoclonal antibody in the antibody solution was about 0.1 mg / m 1.
  • the concentration and mixing ratio of each antibody solution prepared above are not particularly limited to these.
  • the prepared antibody solution can be stored at room temperature.However, from the viewpoint of preventing denaturation of the antibody, low-temperature storage is more preferable, and storage at 4 ° C is recommended. Is more preferred.
  • L (-)-malic acid or L (+)-tartaric acid is used as the dicarboxylic acid having a hydroxyl group, and itaconic acid is used as the dicarboxylic acid having a double bond.
  • a buffer containing L (-)-malic acid was prepared as follows. Weigh L (one) -malic acid and polyethylene glycol 600 so that the final concentration is 0.05 M with L (one) monomalic acid and 4% by weight with polyethylene glycol 600. A volume of pure water corresponding to about 90% of the volume of the buffer solution finally obtained was added to dissolve them. An aqueous solution of NaOH was added to the resulting solution to adjust the pH to 4.5, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution.
  • a buffer containing L (+)-tartaric acid was prepared as follows. Weigh L (+)-tartaric acid and polyethylene glycol 600 so that the final concentration is 0.05 M in L (+)-tartaric acid and 4% by weight in polyethylene glycol 600. Pure water having a volume equivalent to about 90% of the volume of the buffer solution finally obtained was added to dissolve them. An aqueous solution of NaOH was added to the resulting solution to adjust the pH to 4.5, and pure water was added to prepare a desired volume of the solution to obtain a buffer.
  • a buffer containing itaconic acid was prepared as follows. Final concentrations are 0.05 M with itaconic acid and 4% by weight with polyethylene glycol 600 Itaconic acid and polyethylene glycol 600 were weighed so as to obtain a volume of pure water corresponding to about 90% of the volume of the buffer solution finally obtained, and these were dissolved. The pH was adjusted to 4.5 by adding an aqueous NaH solution to the resulting solution, and pure water was added to prepare a desired volume of the solution to obtain a buffer solution.
  • a buffer containing malonic acid was prepared as follows. Weigh malonic acid and polyethylene glycol 600 so that the final concentration will be 0.05 M in malonic acid and 5% by weight in polyethylene glycol 600, and about the volume of the buffer solution finally obtained. Pure water in a volume equivalent to 90% was added to dissolve them. A Na ⁇ H aqueous solution was added to the resulting solution to adjust the pH to 5.0, and pure water was added to prepare a desired volume of the solution to obtain a buffer solution.
  • a buffer containing succinic acid was prepared as follows. Weigh succinic acid and polyethylene dalicol 600 so that the final concentration is 0.05 M with succinic acid and 5% by weight with polyethylene glycol 600, and adjust the volume of the buffer solution finally obtained. Pure water in a volume equivalent to about 90% was added to dissolve them. An aqueous NaOH solution was added to the resulting solution to adjust the pH to 5.0, and pure water was added to prepare a solution having a desired volume, thereby obtaining a buffer solution.
  • a buffer containing dartartic acid was prepared as follows. Weigh daltaric acid and polyethylene glycol 600 so that the final concentration will be 0.05 M with dallic acid and 5 wt% with polyethylene glycol 600, and determine the final buffer concentration. A volume of pure water corresponding to about 90% of the volume was added and dissolved. The pH was adjusted to 5.0 by adding an aqueous NaOH solution to the resulting solution, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution.
  • a buffer containing adipic acid was prepared as follows. Final concentrations are 0.05 M for adipic acid and 5% by weight for polyethylene glycol 600. Adipic acid and polyethylene dalicol 600 000 were weighed as described above, and a volume of pure water corresponding to about 90% of the volume of the buffer finally obtained was added to dissolve them. The pH was adjusted to 5.0 by adding an aqueous solution of NaOH to the resulting solution, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution.
  • a buffer containing pimelic acid was prepared as follows. Pimelic acid and polyethylene glycol 600 are weighed so that the final concentrations are 0.05 M in pimelic acid and 5% by weight in polyethylene glycol 600, and the volume of buffer finally obtained Pure water was added in a volume equivalent to about 90% of the solution to dissolve them. The pH was adjusted to 5.0 by adding an aqueous solution of NaOH to the resulting solution, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution.
  • a buffer containing suberic acid was prepared as follows. Weigh suberic acid and polyethylene glycol 600 so that the final concentrations are 0.05 M with suberic acid and 5% by weight with polyethylene glycol 600, and add the final buffer. A volume of pure water corresponding to about 90% of the volume was added and dissolved. The pH of the resulting solution was adjusted to 5.0 by adding an aqueous solution of NaOH, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution.
  • a buffer solution containing azelaic acid was prepared as follows. Weigh azeline acid and polyethylene dalicol 600 so that the final concentrations are 0.05 M with azeline acid and 5% by weight with polyethylene glycol 600, respectively. A volume of pure water corresponding to about 90% of the volume was added. These were dissolved. The pH of the resulting solution was adjusted to 5.0 by adding an aqueous solution of NaOH, and pure water was added to prepare a solution of a desired volume to obtain a buffer solution. In addition, each buffer obtained above was stored at room temperature.
  • Example 2 Example 2
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond
  • the comparison with the conventional method was carried out by measuring human albumin as a substance to be measured by immunonephelometry.
  • the reagents were the same as in Example 1, each buffer containing L (-)-malic acid, 'L (+)-tartaric acid, or itaconic acid, and an antibody solution containing a heron anti-human albumin polyclonal antibody.
  • a buffer for forming a neutral reaction system for comparison a buffer having a pH of 7.4 containing 0.05 M MOPS and 4% by weight of polyethylenedaricol 600 was used.
  • the same antibody solution as described above was used.
  • a PBS buffer solution containing 0.04% by weight of NaN 3 8 g / L NaCl, 0.2 g / L KC1, 1.15 g / L NaCl) a. pH 7.
  • the antibody solution and sample (antigen solution) were stored at 4 ° C until use, and each buffer was stored at room temperature.
  • the following devices were used as the measuring device.
  • the light source used was a semiconductor laser with a wavelength of 680 nm modulated at 270 Hz and an output of about 15 mW (available from Kiko Ichiken Co., Ltd., model number MLXS—D—12—6). 8 0— 3 5) was used.
  • the detector used was a silicon photodiode for visible / infrared precision photometry (model number S2387-66R manufactured by Hamamatsu Photonics KK). ⁇ 0.1 cm thick optical glass was used as the cell. The plates were stuck together and a square prism with a capacity of about 200 ⁇ 1 was used.
  • the cell was placed at 0.5 cm from the light source so that one surface was perpendicular to the light source.
  • the detector was placed 5.5 cm away from the cell at a 90 ° angle to the light source.
  • a light-shielding tube was provided between the detector and the cell so that stray light did not enter the detector.
  • the current signal depending on the light amount detected by the detector is amplified to a voltage signal of 100 times through a current-voltage conversion circuit (106 VZA) and an amplifier circuit using an operational amplifier. After that, it is phase-sensitive detected through a lock-in amplifier (Nuefu circuit design block, Model No. 5610B), and is input to the computer by GPIB control.
  • a lock-in amplifier Nuefu circuit design block, Model No. 5610B
  • the reaction solution was obtained by mixing buffer solution 1781, human albumin solution 91 and antibody solution 71. That is, in the reaction solution, the final concentration of the antibody was about 0.1 lmgZml, and the final concentration of human albumin was obtained by multiplying the concentration of the human albumin solution used for measurement by 0.46.
  • the above volumes of buffer and human albumin solution were added to the cell, and mixed by stirring.
  • the above volume of the antibody solution was added and mixed with stirring to obtain a reaction solution and cause an antigen-antibody reaction.
  • the measurement of the scattered light intensity was started 10 seconds before the addition of the antibody solution, and was continued at 0.5 second intervals for 300 seconds.
  • the measured value was obtained as a voltage value.
  • the effect of cell contamination on the measurement was measured by placing pure water in the cell before measurement of each reaction, and was removed by correcting the measured value.
  • the average value of the measured values for each obtained time between 200 and 300 seconds was calculated, and this was used as did.
  • the measurement was performed at room temperature (about 20 ° C).
  • FIG. 1 shows the measurement results.
  • FIG. 1 shows a plot of the results of measuring the human albumin solution at each concentration up to 300 mgZdl for each buffer.
  • the vertical axis represents the voltage value
  • the horizontal axis represents the concentration of the human albumin solution used for the measurement.
  • the measured value (OmgZd 1) of the same buffer without human albumin was subtracted from the measured value of the human albumin solution at each concentration obtained for each buffer. Things.
  • the higher the measured voltage value the more scattered light was incident on the detector, the higher the turbidity of the reaction system, and the more the antigen-antibody complex was formed by the antigen-antibody reaction.
  • the buffer using 0.05 M L (-) monomalic acid, L (+) -tartaric acid and itaconic acid also has 3 Omg. Due to the zone phenomenon occurring in the antigen-excess area with the peak at / d 1, the measured values showed a similar decreasing trend. However, it was found that by improving the measured values, the measurement could be performed in a wider antigen concentration range without being affected by the decrease in the measured values due to the zone phenomenon occurring in the antigen-excess area.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, and a chemical formula (1): HOOC (CH 2 ) nC 0 OH (n Is an integer)
  • n Is an integer The effect of an acidic reaction system containing at least one compound selected from the group consisting of linear dicarboxylic acids represented by It was compared with the case of a neutral reaction system that has been commonly used. The comparison with the conventional method was carried out by measuring human albumin as a substance to be measured by immunonephelometry.
  • the same buffer as in Example 1 containing malonic acid, daltaric acid, adipic acid, pimelic acid, suberic acid or azeleic acid, and an antibody solution containing a heron anti-human albumin polyclonal antibody were used. What was obtained in combination was used. Further, a solution obtained by combining the same buffer solution containing succinic acid as in Example 1 with an antibody solution containing a mouse anti-human albumin monoclonal antibody was used.
  • a buffer having a pH of 7.4 containing 0.05 M of MOPS and 4% by weight of polyethylene glycol 600 was used as a buffer for forming a neutral reaction system.
  • a buffer solution containing malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid use an antibody solution containing a heron anti-human albumin polyclonal antibody.
  • an antibody solution containing a mouse anti-human albumin monoclonal antibody was used.
  • the human albumin solution used as the antigen solution was Nagahama control urine (10 g ZL urea, 10 g ZL NaCl, 0.5 g L creatinine, 0.2 g ZL acetone) Dissolved in distilled water as described above) was used in which human albumin was dissolved to a concentration of 0, 5, 10, 30, 50, 100 or SOO mgZdl.
  • the antibody solution and sample (antigen solution) were stored at 4 ° C until use, and each buffer was stored at room temperature.
  • This device is basically the same as the second embodiment, but has a different configuration.
  • the light source used was a semiconductor laser with a wavelength of 785 nm modulated at 270 Hz and an output of about 20 mW.
  • the cell was placed at 1 cm from the light source so that one surface was perpendicular to the light source.
  • the detector was placed 1 cm away from the cell at a 90 ° angle to the light source.
  • a light-shielding tube was provided between the detector and the cell to prevent stray light from entering the detector.
  • the current signal dependent on the amount of light detected by the detector passes through a current-voltage conversion circuit (106 V / A),
  • the human albumin solution at each concentration was measured as follows.
  • the reaction mixture was obtained by mixing buffer 5341, human albumin solution 2 ⁇ H1 and antibody solution 211. That is, in the reaction solution, the final concentration of the antibody is approximately 0.036 multiplied by the concentration of the antibody solution used for the measurement.
  • the final concentration of human albumin was obtained by multiplying the concentration of the human albumin solution used for the measurement by about 0.046.
  • the above volumes of buffer and human albumin solution were added to the cell, and mixed by stirring. Subsequently, the above volume of the antibody solution was added and mixed with stirring to produce an antigen-antibody reaction. Seven minutes later, the scattered light intensity was measured at 1-second intervals for 10 seconds. The measured value was obtained as a voltage value. The effect of cell contamination on the measurement was eliminated by placing pure water in the cell before each reaction, and correcting the measured values. The average value of the measured values obtained as described above was determined, and this was used as the measured value in the human albumin solution at each concentration. The measurement was performed at room temperature (about 20 V).
  • FIG. 3 is a plot of the results of measuring human albumin solutions at various concentrations up to SOO mgZdl using an antibody solution comprising an albumin polyclonal antibody.
  • the vertical axis represents the voltage value
  • the horizontal axis represents the concentration of the human albumin solution used for the measurement.
  • Each plotted value is obtained by subtracting the measured value (OmgZd 1) of the same buffer without human albumin from the measured value of the human albumin solution at each concentration obtained for each buffer. .
  • FIG. 2 shows that the buffer of Comparative Example (pH 7.4 buffer containing 0.05 M MM-PS and 5% by weight of polyethylene glycol) was used (X in FIG. 2). Except for the blank value (when the human albumin concentration is 0 O mgZd 1), higher measured values were obtained when each buffer of this example was used (see Fig. 2, ⁇ , ⁇ , garden, ⁇ ). I knew it could be done. In addition, due to the zone phenomenon occurring in the antigen-excess area, the measured values showed a decreasing trend in all cases. did. However, in Example 3, for the same reason as in Example 2, it can be measured in a wider antigen concentration range than in Comparative Example without being affected by the decrease in measured values due to the zone phenomenon occurring in the antigen-excess area. all right.
  • Figure 3 plots the results of measuring human albumin solutions at various concentrations up to 300 mg / d1 using a buffer solution containing succinic acid and an antibody solution containing a mouse anti-human albumin monoclonal antibody.
  • Fig. 3 shows that a higher measured value was obtained with the buffer containing succinic acid of the present example (Hata) than with the buffer of the comparative example (X).
  • the measured values showed a decrease in all cases due to the zone phenomenon occurring in the antigen-excess area. In this case as well, for the same reason as in Example 2. It was found that the measurement could be performed in a wider antigen concentration range without being affected by the decrease in the measured value due to the zone phenomenon occurring in the antigen-excess area.
  • the measured value of the antigen-antibody reaction was improved by using the immunoreaction reagent according to the present invention.
  • the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area was eased.
  • the order of mixing the antibody solution, buffer, and sample is not particularly limited.
  • the mixing ratio can be determined according to the required measurement range of the antigen concentration.
  • a reagent and a sample are mixed to form a buffer, a dicarboxylic acid having a hydroxyl group, and a dicarboxylic acid having a double bond.
  • Both compounds and additives such as polyethylene glycol 600 were diluted compared to before mixing. However, if the difference between the concentration before dilution and the concentration after dilution is up to about 10%, the measurement result obtained will not be much different from the measurement result expected at the concentration before dilution. Had little effect. In addition, in order to avoid concentration changes due to dilution, it was possible to adjust the concentration of each substance in the reagent to the target concentration during mixing, taking into account dilution due to mixing.
  • a dicarboxylic acid having a hydroxyl group and a dicarboxylic acid having a double bond were examined.
  • L (-)-malic acid and L (+)-tartaric acid were used as the dicarboxylic acid having a hydroxyl group, and itaconic acid was used as the dicarboxylic acid having a double bond.
  • Human albumin was used as the substance to be measured.
  • the same human albumin solution as that used in Example 2 was used as a sample.
  • the same antibody solution as in Example 1 containing a rabbit heron anti-human albumin polyclonal antibody was used as the antibody solution.
  • ⁇ [ ⁇ ? A buffer containing pH 7.4 containing 3 and 4% by weight of polyethylene glycol was used.
  • the antibody solution used was an antibody solution containing the same rabbit anti-human albumin polyclonal antibody as described above. .
  • FIGS. Figure 4 plots the results for L (-)-malic acid
  • Figure 5 plots the results for L (+)-tartaric acid
  • Figure 6 plots the results for itaconic acid.
  • the vertical axis represents the voltage value
  • the horizontal axis represents the concentration of the human albumin solution used for the measurement.
  • the immunoreactivity assay using a buffer solution containing a dicarboxylic acid having a hydroxyl group, a dicarboxylic acid having a double bond, and a salt thereof has at least taken into consideration the pH characteristics of these compounds.
  • the pH of the reaction system in the range of 4.0 to 5.0, it was found that the measured value of the antigen-antibody reaction was improved. It was also found that the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area was eased.
  • the pH of the reaction solution at the time of the occurrence of the antigen-antibody reaction is at least 4.0 to 5.0 by considering the pH characteristics of these compounds. It was found that it is preferable to prepare the reagent so as to be set during the period.
  • the pH dependence of the effect of the linear dicarboxylic acid represented by the chemical formula (1): H ⁇ OC (CH 2 ) n CO ⁇ H (where n is an integer) on the antigen-antibody reaction was examined. It was examined by the nephelometry.
  • the human albumin solution as a sample, c were the same as in Example 3 Further, the antibody solution used was the same as in Example 1.
  • the reagents were mixed with the following buffer solutions each containing malonic acid, daltaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, and an antibody solution containing the heron anti-human albumin polyclonal antibody as in Example 1. What was used was used. In addition, a mixture of a buffer solution containing succinic acid described later and an antibody solution containing the same mouse anti-human albumin monoclonal antibody as in Example 1 was used.
  • succinic acid 0.05 M succinic acid and 5% by weight of polyethylene glycol 600 Prepared buffer solutions of 4.0, 4.5, 5.0, 5.5 and 6.0, respectively.
  • a buffer solution of pH 7.4 containing 0.05 M MOPS and 5% by weight of polyethylene glycol 600 was used.
  • the antibody solution malonic acid, daltaric acid,
  • an antibody solution containing a polyclonal antibody such as a heron anti-human albumin antibody.
  • Albumin monoclonal An antibody solution containing the antibody was used. The measurement of the immune reaction was performed in the same manner as in Example 3.
  • FIGS. Figure 7 shows the results for malonic acid
  • Figure 8 shows the results for succinic acid
  • Figure 9 shows the results for glutaric acid
  • Figure 10 shows the results for adipic acid
  • Figure 11 shows the results for pimelic acid.
  • FIG. 12 plots the results for suberic acid
  • FIG. 13 plots the results for azeleic acid.
  • the vertical axis represents the voltage value
  • the horizontal axis represents the concentration of the human albumin solution.
  • a buffer solution containing malonic acid at pH 4.5-6.0 a buffer solution containing succinic acid at pH 5.0-6.0, and glutar at pH 5.0-6.0.
  • Buffer containing acid, buffer containing adipic acid at pH 5.0-6.0, buffer containing pimelic acid at pH 5.0-6.0, pH 5.0-6.0 Measurements were higher when using a buffer containing suberic acid and a buffer containing azelaic acid with a pH of 5.0 to 6.0 than when using a buffer containing M ⁇ PS in the comparative example. Value. It was also found that the limitation of the measurement range due to the zone phenomenon occurring in the antigen-excess area was eased.
  • a linear dicarboxylic acid represented by the chemical formula (1): HOO C (CH 2 ) n CO OH (n is an integer), and a reagent for measuring an immunoreaction using a salt thereof have a pH characteristic of these compounds.
  • at least the pH of the reaction solution when an antigen-antibody reaction occurs is set to 4.5 to 6.0. It has been found preferable to prepare the reagents as described above.
  • the immunoreactivity measurement method of the present invention was obtained while maintaining the effect of improving the measured value of the antigen-antibody reaction and the effect of alleviating the limitation of the measurement range due to the zone phenomenon occurring in the antigen excess region.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, a linear dicarboxylic acid represented by the chemical formula (1): HCHC (CH 2 ) nC O OH (n is an integer)
  • n is an integer
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, a chemical formula (1): H ⁇ OC (CH 2 ) nC OOH (n is an integer)
  • the pH at which an antigen-antibody reaction occurs is 4.0 to 6.0. It was confirmed that the reagent could be prepared so as to be set in between.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond
  • salts thereof a compound selected from the group consisting of:
  • Example 3 The same human albumin solution as in Example 3 was used.
  • antibody solution the same antibody solution as that of Example 1 containing a rabbit ego anti-human albumin polyclonal antibody was used.
  • Buffers should contain L (-)-malic acid, itaconic acid, and succinic acid. Each of them was prepared by the method shown below.
  • L (I)-To examine the concentration dependence when malic acid is used contain 4% by weight polyethylene glycol 600, pH 5.0, L
  • FIGS. Figure 14 plots the results for L (-)-monomalic acid
  • Figure 15 plots the results for itaconic acid
  • Figure 16 plots the results for succinic acid.
  • the vertical axis represents the voltage value
  • the horizontal axis represents the concentration of the human albumin solution.
  • the dicarboxylic acid having a hydroxyl group the dicarboxylic acid having a double bond
  • the concentration of at least one compound selected from the group consisting of linear dicarboxylic acids represented by HO 0 C (CH 2 ) n C 0 OH (n is an integer) and salts thereof is 0. It was found that setting to 1 M or less is preferable. In addition, when the reaction solution is provided with a buffering ability by the compound, the concentration is
  • the reagent for measuring an immunological reaction comprises a dicarboxylic acid having a hydroxyl group, a dicarboxylic acid having a double bond, and a chemical formula (1)
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond
  • Human albumin was used as the substance to be measured. Human albumin solution The preparation was performed in the same manner as in Example 2, and the concentrations were 0, 5, 10, 20, 30. 30, 50, 70, 100, 200, and 300 mg / dl. Prepared. As the antibody solution, the same antibody solution containing a peregrine anti-human albumin polyclonal antibody as in Example 1 was used.
  • a spectrofluorometer (model number RF-5300 PC manufactured by Shimadzu Corporation) was used.
  • a constant-temperature cell holder (model number 206-6-15440 manufactured by Shimadzu Corporation) is placed in the sample chamber of the spectrofluorometer, and a constant-temperature water tank (COOLN IT BATH EL—15) manufactured by TA ITEC Corporation Connected to. Water at a temperature of 25 ° C was circulated to maintain a constant temperature during measurement.
  • the measurement conditions of the spectrofluorometer were set to 670 nm for both excitation and emission wavelengths, the bandwidth was set to 3 nm for both the fluorescence side and the excitation side, and the sensitivity was set to high sensitivity.
  • the measurement was performed as follows. After 2.87 ml of the buffer solution and 0.1 ml of the antibody solution were mixed with stirring, 0.03 ml of a human albumin solution was added thereto and mixed with stirring to obtain a reaction solution. That is, the final concentration of the antibody and human albumin in the reaction solution was about 0.1 OmgZml for the antibody, and the concentration of the human albumin solution used for measurement was multiplied by 0.01 for human albumin. .
  • This was transferred to a quartz cell for fluorescence analysis and installed on a spectrofluorometer, and a T-type thermocouple (RS Component Inc., model No. 2 19—46966) was immersed in the cell. Then, from the point of lapse of 2 minutes after the mixing of human albumin, the time course measurement was carried out at an interval of 0.04 seconds for 300 seconds.
  • the temperature inside the cell during the measurement was monitored by connecting a T-type thermocouple to a digital multi-thermometer overnight (Model No. TR 2 1 1 4 manufactured by Adpantest Co., Ltd.).
  • the effect was measured by adding pure water into the cell before the measurement of each reaction, and was removed by correction.
  • the average value of each measured value during 200 to 300 seconds obtained by the measurement was determined, and this was used as the measured value for the human albumin solution of each concentration.
  • measure the pH of the mixed solution with a pH meter to determine the effect on the pH of the reaction mixture of each buffer, antibody solution, and each concentration of the human albumin solution.
  • the pH of the mixture of each buffer, antibody solution, and human albumin solution at each concentration used in each measurement was the same as the pH of the buffer.
  • FIG. 17 shows the measurement results.
  • FIG. 17 shows a plot of the results of adding each human albumin solution up to 300 mg / dl for each buffer solution and measuring the results.
  • the vertical axis indicates the scattered light intensity, and the horizontal axis indicates the concentration of the human albumin solution used for the measurement.
  • the buffer containing L (-) monomalic acid, L (+)-tartaric acid, itaconic acid, fumaric acid, and maleic acid of the present example is composed of only succinic acid, which is a comparative example.
  • the measured value was higher than when the buffer was used.
  • the limitation of the measurement range due to the zone phenomenon generated in the antigen-excess area was relaxed.
  • a dicarboxylic acid having a hydroxyl group a dicarboxylic acid having a double bond, a linear dicarboxylic acid represented by the chemical formula (1): HOO C (CH 2 ) nCOOH (n is an integer), and salts thereof.
  • HOO C (CH 2 ) nCOOH a linear dicarboxylic acid represented by the chemical formula (1): HOO C (CH 2 ) nCOOH (n is an integer)
  • Human albumin was used as the substance to be measured. Human albumin solution. The same one as in Example 3 was used. As the antibody solution, an antibody solution containing the same polyps anti-human albumin polyclonal antibody as in Example 1 was used. Buffers include 0.025 M L (+)-tartaric acid, 0.025 M succinic acid, and pH 4.0, 4 containing 4% by weight polyethylenedaricol 600,000. 5, 5.0, 5.5, and 6.0 buffers were used. When L (+)-tartaric acid and succinic acid were used alone, the effective pH of L (+)-tartaric acid was 4.0-5.0, and the succinic acid was within the range examined in Examples 4 and 5. The effective pH of the acid was between 5.0 and 6.0.
  • a buffer of pH 7.4 containing ⁇ ⁇ 3 of 0.05 and 4% by weight of polyethylene glycol 600 was used.
  • An antibody solution containing an anti-human albumin polyclonal antibody was used.
  • Fig. 18 shows the measurement results obtained.
  • the vertical axis indicates the voltage value, and the horizontal axis indicates the concentration of the human albumin solution used for the measurement.
  • dicarboxylic acid having a hydroxyl group dicarboxylic acid having a double bond
  • n is an integer
  • an immunological reaction capable of easily improving measured values.
  • the present invention can provide a reaction measurement method and an immunoreaction measurement reagent used therefor. Further, it is possible to provide an immunoreaction measurement method capable of alleviating the limitation of the measurement range due to a zone phenomenon occurring in an antigen excess region and an immunoreaction measurement reagent used therefor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、試料中に含まれる被測定物質である抗原または抗体を測定する方法に関し、ヒドロキシル基を有するジカルボン酸、二重結合を有するジカルボン酸、HOOC(CH2)nCOOH(nは整数)で表される直鎖状ジカルボン酸、およびこれらの塩よりなる群から選択される少なくとも1種の化合物と、前記被測定物質に対して特異的に結合する特異結合物質である抗体または抗原とを、試料と混合し、酸性の反応液を得、この反応液において被測定物質と特異結合物質との抗原抗体反応により生じた抗原−抗体複合体を検出する。これにより、測定値が向上し、抗原過剰領域で生じる地帯現象による測定範囲の限定を緩和することができる。

Description

明 細 書 免疫反応測定方法 技術分野
本発明は、 試料中に含まれる被測定物質である抗原または抗体を測定 する免疫反応測定方法、 およびそれに用いる免疫反応測定用試薬に関す る。 背景技術
医療分野では、 様々な疾患の診断および病状の経過を調べるために、 ヒトの体液中に存在する各疾患に特徴的な蛋白質の含有量を調べること が広く利用されている。
これらの蛋白質の含有量測定としては、 主として、 特異性の高い抗原 抗体反応を利用した免疫反応測定方法が広く用いられており、 現在では, 免疫反応測定方法にも様々な原理を利用したものが開発され、 利用され ている。
それらの中でも、 比朧法、 比濁法、 およびスライ ド凝集法などの抗原 と抗体の反応により生じる凝集複合体を検出する測定方法がよく知られ ている。 これらの方法は、 溶液中に抗原および抗体が一様に分散された 状態で行うものであるため、 均一系の免疫反応測定方法と総称される。 そして、 これらの反応では凝集複合体が生成し、 反応液が抗原および 抗体量に依存した濁りを生じる。 比朧法および比濁法はこの濁りを光学 的に測定する方法であり、 比朧法は反応系で散乱された光量をもとに濁 りを測定し、 比濁法は反応系での散乱により減少した透過光量をもとに 濁りを測定する。 一般的に、 両方法の測定対象としては、 同一の反応液 (反応系) を用いることができ、 いずれか一方の方法で測定できる対象 は残りの一方の方法でも測定することができる。
また、 スライ ド凝集法は、 凝集複合体の生成により生じた濁りを、 ス ライ ドグラス上などで目視などにより判定する方法であり、 比朧法およ び比濁法と同一の反応系を用いることができる。
上記のような従来の均一系の免疫反応測定方法では、 抗原抗体反応を 促進させて微量成分を高感度に測定するために、 様々な添加剤を用いる ことが試みられている。 よく知られている例としては、 反応系にポリェ チレンダリコ一ル (P E G ) 、 デキストラン、 ポリビエルピロリ ドンま たはポリ塩化ビニルなどの水溶性高分子を混在させ、 抗原抗体反応によ る凝集複合体の形成を促進させ、 反応時間および測定感度を向上させる 方法が挙げられる。
これらの水溶性高分子の中でも、 ポリエチレンダリコールが比較的低 濃度でも効果が高いことが知られており、 平均分子量が 6 0 0 0のポリ エチレングリコールを 2〜 6重量%の濃度で使用する方法が広く用いら れている。 特に 4重量%濃度が、 非特異的な混濁が少なく、 効果が高い とされている。
水溶性高分子による抗原抗体反応の促進効果は、 一般にその分子量が 大きく、 用いる水溶液の濃度が高いほど大きい傾向にある。 抗原抗体反 応の測定を考えた場合、 抗原抗体反応の程度すなわち抗原の濃度に依存 した信号強度が高い程、 良好な S / N比を維持することができ、 安定し た測定を行うことができる。 しかし、 抗原抗体反応の更なる促進によつ て、 上記効果を得ようとした場合、 従来の水溶性高分子の添加では、 よ り高濃度あるいは、 高分子量の水溶性高分子を添加する必要がある。 し かし、 水溶性高分子を溶解した溶液の粘性が増大するため、 その分析操 作上の取り扱いが困難になるという問題があった。 また、 均一系の免疫反応測定方法においては、 地帯現象と呼ばれる現 象が一般に知られている。 地帯現象とは、 最大の凝集複合体を形成する 当量域よりも、 抗原と抗体のいずれかが過剰に存在する場合に、 凝集複 合体が生じ難くなる現象のことをいう。 多価抗体と 2価以上の抗原との 間の結合反応に関しては、 ハイデルベルガ一 (Hidelberger) らの格子説 が有名であり、 例えば、 ウィリアム ィー ポール (William E. Paul) 編、 「ファンダメンタルィムノロジー (Fundamental Immunology) J 、 1 9 8 4年、 および多田富雄監訳、 「基礎免疫学」 、 1 9 8 7年、 p . 7 1 4 - 7 1 6にその詳細が記載されている。
実際の均一系の免疫反応測定においては、 抗体を用いて抗原濃度を測 定する場合が多い。 また、 抗原濃度が低い場合よりも高い場合に、 測定 値が重要な意味を持つ場合が多い。 そのため、 抗原過剰による地帯現象 が問題となる場合が多い。 地帯以外の領域では、 抗体と抗原が交互に結 合した複合体よりなる巨大な分子鎖が生じ、 その量や大きさは、 抗体濃 度を一定とすると、 抗原濃度に依存して増加する。 この分子鎖の量ゃ大 きさを光学的な変化量として測定することにより、 抗原濃度を定量的に 捉えることができる。 また、 抗原一抗体複合体は、 抗体および抗原の濃 度によっては、 溶液中の濁りや凝集物として肉眼でも十分に確認が可能 なものとなるため、 目視などにより定性的な判定を行うこともできる。
しかし、 抗原過剰域では抗原が抗体に比べて過剰に存在するため、 結 合部位が抗原により飽和された抗体の量が増加する。 このため、 先に述 ベたような分子鎖が生じ難くなり、 この場合の反応結果を、 抗原が低濃 度の場合の反応結果と区別しにくくなる。 したがって、 抗原濃度に依存 した正しい定量や判定を行うことができず、 また、 これを回避するため には、 測定濃度範囲が制限されるという問題があった。
この地帯現象を改善するための方法としては、 以下のような方法が提 案されている。
例えば特開平 0 9— 08984号公報には、 pH6. 0〜8. 0の中 性条件下で塩化ナトリウム濃度を 20〜2 50 1^とし、 免疫反応を 抑制して被測定物質'を希釈なしで測定する方法が開示されており、 特開 平 1 0 _ 3 3 26 94号公報には、 pH 3. 5〜5. 5の酸性条件下、 または、 pH9. 0〜 1 2. 0のアルカリ性条件下で、 塩化ナトリウム 濃度を 1 0〜250 gZLとし、 免疫反応を抑制して被測定物質を希釈 なしで測定する方法が開示されている。 そして、 特開平 1 1— 3444 94号公報には、 例えば、 pH 7. 4の中性条件下で、 塩化ナトリウム 濃度を 0. 0 5〜0. 08 Mとし、 不溶性担体粒子に免疫反応の一方で ある抗体または抗原を結合させた免疫学的凝集反応において、 リンゴ酸, ダルタル酸、 アジピン酸、 コハク酸およびこれらの塩ならびにエステル よりなる群から選択される少なくとも 1種のジカルボン酸を、 反応系に 1〜2 0重量%で含有させる方法が提案されている。
しかし、 これらの公報に記載された方法では、 いずれの場合も地帯領 域以外の測定域において、 免疫反応の測定値を低下させてしまうという 問題があった。
そこで、 本発明は、 上記従来の問題点に鑑み、 容易に測定値の向上が 可能な免疫反応測定方法、 およびそれに用いる免疫反応測定用試薬を提 供することを目的とする。 また、 本発明は、 抗原過剰領域で生じる地帯 現象による測定範囲の限定を緩和することができる免疫反応測定方法お よびそれに用いる免疫反応測定用試薬を提供することを目的とする。 発明の開示
本発明は、 試料中に含まれる被測定物質である抗原または抗体を測定 する免疫反応測定方法であって、 (A) ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカル ボン酸、 化学式 ( 1 ) : H〇〇 C (CH2) nC OOH (nは整数) で表 される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択され る少なくとも 1種の化合物 (以下、 「特定化合物」 ともいう。 ) と、 前 記被測定物質に対して特異的に結合する特異結合物質である抗体または 抗原とを、 前記試料と混合し、 酸性の反応液を得る工程、 ならびに
(B) 前記反応液において前記被測定物質と前記特異結合物質との抗原 抗体反応により生じた抗原一抗体複合体を検出する工程を含むことを特 徵とする免疫反応測定方法に関する。
前記ヒドロキシル基を有するジカルボン酸がリンゴ酸および酒石酸で あり、 前記二重結合を有するジカルボン酸がィタコン酸、 フマル酸およ びマレイン酸であるのが好ましい。
前記直鎖状ジカルボン酸のメチレン鎖の長さが n = 1〜 7の整数であ るのが好ましい。
前記反応液にさらに緩衝剤を添加するのが好ましい。
前記反応液の p Hを 4. 0〜 6. 0に設定するのが好ましい。
前 3反応液の p Hを 4. 5〜 6. 0に設定するのが好ましい。
また、 前記反応液の pHを 4. 5〜 5. 0に設定してもよい。
また、 前記反応液の P Hを 5. 0〜 6. 0に設定してもよい。
前記反応液中の前記特定化合物の濃度は、 0. 1 M以下に設定される のが好ましい。
また、 前記反応液中の前記特定化合物の濃度は、 0. 0 1〜 0. 1 M の範囲に設定しても良い。
前記反応液中の前記特定化合物の濃度は、 0. 0 1〜 0. 0 5 Mの範 囲に設定されても良い。
前記反応液がポリエチレンダリコールを 2〜 6重量%含むのが好まし い。
前記抗原一抗体複合体が凝集複合体であるのが好ましい。
前記工程 (B ) において、 前記凝集複合体に起因する光学的変化量を 測定することにより前記凝集複合体を検出するのが好ましい。
前記光学的変化量が散乱光強度の変化量であるのが好ましい。
前記特異結合物質がモノクローナル抗体を含む抗体であることが好ま しい。
また、 前記特異結合物質は、 凝集複合体を生成可能なように調製され た 1種類以上のモノクローナル抗体の混合物であることが好ましい。 前記抗原がヒトアルブミンであるのが好ましい。
さらに本発明は、 上述のような試料中に含まれる被測定物質である抗 原または抗体を測定する免疫反応測定方法に用いる免疫反応測定用試薬 であって、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジ カルボン酸、 化学式 ( 1 ) : H〇〇 C ( C H 2) n C O O H ( nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択 される少なくとも 1種の化合物 (特定化合物) と、 前記被測定物質に対 して特異的に結合する特異結合物質である抗体または抗原とを含み、 前 記被測定物質と前記特異結合物質との抗原抗体反応が生じるときの反応 液の p Hが酸性になるように調製されたことを特徴とする免疫反応測定 用試薬に関する。
この場合も、 前記ヒドロキシル基を有するジカルボン酸がリンゴ酸お よび酒石酸であり、 前記二重結合を有するジカルボン酸がィ夕コン酸、 フマル酸およびマレイン酸であるのが好ましい。
前記直鎖状ジカルボン酸のメチレン鎖の長さが n = 1〜 7の整数であ るのが好ましい。
前記免疫反応測定用試薬は、 さらに緩衝剤を含むのが好ましい。 前記免疫反応測定用試薬は、 前記反応液の p Hが 4. 0〜 6. 0とな るように調製されていることが好ましい。 この p Hは、 4. 5〜 6. 0. 4. 5〜 5. 0または 5. 0〜 6. 0であってもよい。
前記免疫反応測定用試薬は、 前記特定化合物の濃度が、 前記反応液に おいて 0. 1 M以下になるように調製されていることが好ましい。
また、 前記免疫反応測定用試薬は、 前記特定化合物の濃度が、 前記反 応液において 0. 0 1〜 0. 1 Mの範囲になるように調製されているこ とが好ましい。
さらに、 前記免^反応測定用試薬は、 前記特定化合物の濃度が、 前記 反応液において 0. 0 1〜 0. 0 5 Mの範囲になるように調製されてい ることが好ましい。
前記免疫反応測定用試薬は、 さらにポリエチレンダリコールを含み、 抗原抗体反応が生じるときの前記ポリエチレングリコールの濃度が 2〜 6重量%であるのが好ましい。
前記特異結合物質がモノクローナル抗体を含む抗体であることが好ま しい。
前記特異結合物質が凝集複合体を生成可能なように調製された 1種類 以上のモノクローナル抗体の混合物であることが好ましい。
前記抗原がヒトアルブミンであるのが好ましい。 図面の簡単な説明
図 1は、 本発明の実施例 2における免疫反応測定結果を示すグラフで ある。
図 2は、 本発明の実施例 3におけるマロン酸等を含む試薬を用いた免 疫反応測定結果を示すグラフである。
図 3は、 本発明の実施例 3におけるコハク酸を含む試薬を用いた免疫 反応測定結果を示すグラフである。
図 4は、 本発明の実施例 4における L (一) 一リンゴ酸を含む試薬を 用いた免疫反応測定結果を示すグラフである。
図 5は、 本発明の実施例 4における L ( + ) —酒石酸を含む試薬を用 いた免疫反応測定結果を示すグラフである。
図 6は、 本発明の実施例 4におけるイタコン酸を含む試薬を用いた免 疫反応測定結果を示すグラフである。
図 7は、 本発明の実施例 5におけるマロン酸を含む試薬を用いた免疫 反応測定結果を示すグラフである。
図 8は、 本発明の実施例 5におけるコハク酸を含む試薬を用いた免疫 反応測定結果を示すグラフである。
図 9は、 本発明の実施例 5におけるダルタル酸を含む試薬を用いた免 疫反応測定結果を示すグラフである。
図 1 0は、 本発明の実施例 5におけるアジピン酸を含む試薬を用いた 免疫反応測定結果を示すグラフである。
図 1 1は、 本発明の実施例 5におけるピメリン酸を含む試薬を用いた 免疫反応測定結果を示すグラフである。 '
図 1 2は、 本発明の実施例 5におけるスベリン酸を含む試薬を用いた 免疫反応測定結果を示すグラフである。
図 1 3は、 本発明の実施例 5におけるァゼライン酸を含む試薬を用い た免疫反応測定結果を示すグラフである。
図 1 4は、 本発明の実施例 6における L (一) 一リンゴ酸を含む試薬 を用いた免疫反応測定結果を示すグラフである。
図 1 5は、 本発明の実施例 6におけるィタコン酸を含む試薬を用いた 免疫反応測定結果を示すグラフである。
図 1 6は、 本発明の実施例 6におけるコハク酸を含む試薬を用いた免 疫反応測定結果を示すグラフである。
図 1 7は、 本発明の実施例 7における免疫反応測定結果を示すグラフ である。
図 1 8は、 本発明の実施例 8における免疫反応測定結果を示すグラフ である。 発明を実施するための最良の形態
本発明は、 容易に測定値の向上が可能な免疫反応測定方法およびそれ に用いる免疫反応測定用試薬に関する。 特に本発明は、 抗原過剰領域で 生じる地帯現象による測定範囲の限定を緩和することができる免疫反応 測定方法およびそれに用いる免疫反応測定用試薬に関する。
本発明者らは、 鋭意検討の結果、 抗原抗体反応が起こる際に、 ヒドロ キシル基を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学 式 ( 1 ) : H O O C ( C H 2) n C O O H ( nは整数) で表される直鎖状 ジカルボン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化合物 (特定化合物) を反応系と混合し、 前記反応液を酸性に保 つことにより、 抗原抗体の結合による免疫反応の測定値を向上させるこ とができることを見出した。 また、 抗原過剰領域で生じる地帯現象によ る測定範囲の限定を緩和させることができることを見出した。
上記効果については、 以下のような仮説が考えられる。 免疫比濁、 比 朧法などの均一系の免疫反応測定では、 抗原抗体反応により凝集複合体 が生じる。 この生成には、 特異的な抗原抗体反応による一時的な凝集と, 凝集複合体同士の二次的な凝集が含まれている。 上記特定化合物は主と して、 凝集複合体同士の二次的な凝集に作用していると考えられる。 凝 集複合体を一種のコロイ ドとみなすと、 その凝集はイオンの作用により 促進されることが一般的に知られている。 多価力ルポン酸ィオンはコロ ィ ドの凝集作用の非常に強いイオンであるため、 複合体同士の二次的な 凝集を促進する。 しかし、 多価カルボン酸はイオン強度が高いため、 一 方で抗原抗体反応を若干抑制する作用を示す。
酸性条件下では、 上記特定化合物の持つ力ルポキシル基の解離率が低 下するため、 イオン強度が下がり、 抗原抗体反応への抑制作用が低下し. 凝集複合体の生成が増し、 コロイ ドの凝集作用による凝集複合体同士の 二次的な凝集が顕著になる。 そして、 凝集複合体生成反応が起こりやす くなり、 測定値が向上する。 また、 抗原過剰領域で生じる地帯現象によ る測定範囲の限定が緩和される。
本発明に係る免疫反応測定方法は、 試料中に含まれる被測定物質であ る抗原または抗体を測定する免疫反応測定方法であって、 (A ) ヒドロ キシル基を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学 式 ( 1 ) : H〇O C ( C H 2 ) n C O 0 H ( nは整数) で表される直鎖状 ジカルボン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化合物と、 前記被測定物質に対して特異的に結合する特異結合物 質である抗体または抗原とを、 前記試料に添加し、 酸性の反応液を得る 工程、 ならびに (B ) 前記反応液において前記被測定物質と前記特異結 合物質との抗原抗体反応により生じた抗原一抗体複合体を検出する工程 を含むことを特徴とする。
ここで、 前記反応液 (反応系) は、 上記の酸とそれらの塩との両方を 含んでいてもよい。
前記特定化合物によって反応液に緩衝能が与えられ、 反応液が酸性に 設定される。 このようにすると、 反応液を酸性にするために他の緩衝剤 をさらに添加する必要がなく、 かつ上記免疫反応の測定値を向上させる 効果を効率的に発揮させることができる。 また、 抗原過剰領域で生じる 地帯現象による測定範囲の限定を緩和する効果も、 効率的に発揮させる ことができる。 もちろん、 前記反応液にさらに緩衝剤を添加してもよい, また、 本発明は、 上記した試料中に含まれる被測定物質である抗原ま たは抗体を測定する免疫反応測定方法に用いる試薬にも関する。 すなわ ち、 本発明は、 前記特定化合物と、 前記被測定物質に対して特異的に結 合する特異結合物質である抗体または抗原とを含み、 前記被測定物質と 前記特異結合物質との抗原抗体反応が生じるときの反応液が酸性になる ように調製されたことを特徴とする免疫反応測定用試薬に関する。 前記 試薬は、 上記の酸とそれらの塩との両方を含んでいてもよい。
前記試薬は、 前記特定化合物により緩衝能が与えられ、 被測定物質と 特異結合物質との抗原抗体反応が生じるときの反応液が酸性になるよう に調製される。 このようにすると、 反応液を酸性にするために他の緩衝 剤をさらに添加する必要がなく、 かつ上記免疫反応の測定値を向上させ る効果を効率的に発揮させることができる。 また、 抗原過剰領域で生じ る地帯現象による測定範囲の限定を緩和する効果を効率的に発揮させる ことができる。 もっとも、 前記試薬はさらに緩衝剤を含んでいてもよい < 前記反応液に含まれる、 前記特定化合物の濃度は、 前記反応液に十分 な緩衝能が得られるようにするため、 0. 0 1 M以上であることが好ま しい。 また、 測定値を向上させる効果、 および抗原過剰領域で生じる地 帯現象による測定範囲の限定を緩和する効果を効率的に発揮させるとい う観点からは、 0. 1 M以下であるのが好ましい。 これら要件を両立さ せるには、 0. 0 1〜 0. 1 M、 さらには 0. 0 1〜 0. 0 5 Mである のが好ましい。
したがって、 本発明に係る免疫反応用試薬を用いた場合も、 上記理由 により、 前記反応液に含まれる前記特定化合物の濃度が、 0. 1 M以下. 好ましくは 0. 0 1〜 0. 1 M、 さらに好ましくは 0. 0 1〜 0. 0 5 Mとなるのが良い。 前記特定化合物は、 水に対して緩衝能を示す濃度で 溶解することができ、 免疫反応の測定値を向上させる効果が大きい。 ま た、 抗原過剰領域で生じる地帯現象による測定範囲の限定を緩和する効 果が大きい。
ここで、 本発明に係る免疫反応測定方法および免疫反応用試薬で用い られるヒドロキシル基を有するジカルボン酸、 二重結合を有するジカル ボン酸、 化学式 ( 1 ) : HOOC (CH2) nCOOH (nは整数) で表 される直鎖状ジカルボン酸、 およびこれらの塩としては、 例えば、 L (一) 一リンゴ酸、 D—リンゴ酸、 D L—リンゴ酸、 DL—リンゴ酸ナ トリウム、 L (-) —リンゴ酸ナトリウム、 L ( + ) —酒石酸、 DL— 酒石酸、 D (—) 一酒石酸、 メソ酒石酸一水和物、 (+ ) 酒石酸力リウ ム一水 ( 2 1 ) 、 (+ ) 酒石酸ナトリウムカリウム四水和物、 (+ ) 酒石酸アンモニゥム、 (+ ) 酒石酸水素カリウム、 (+ ) 酒石酸水素ナ トリウム一水和物、 (+ ) 酒石酸ナトリウム二水和物、 ィタコン酸、 ィ タコン酸無水物、 フマル酸、 フマル酸一ナトリウム、 フマル酸ナトリウ ム、 フマル酸第一鉄、 マレイン酸、 無水マレイン酸、 マレイン酸ナトリ ゥム、 マレイン酸ニナトリウム、 マロン酸、 マロン酸ナトリウム、 マロ ン酸ニナトリウム、 マロン酸タリウム、 マロン酸二タリウム、 コハク酸, コハク酸アンモニゥム、 コハク酸ニナトリウム、 ダルタル酸、 アジピン 酸、 アジピン酸アンモニゥム、 アジピン酸二アンモニゥム、 アジピン酸 二カリウム、 ピメリン酸、 スベリン酸、 ァゼライン酸などが挙げられ、 これらを単独または組み合わせて使用することができる。
前記ヒドロキシル基を有するジカルボン酸としては、 例えば、 リンゴ 酸および酒石酸などが好ましい。 このなかでも、 抗原抗体の結合による 免疫反応の測定値の向上効果と、 抗原過剰領域で生じる地帯現象による 測定範囲の限定の緩和効果とが、 より広い p H範囲で得られるという点 から、 酒石酸が特に好ましい。 前記二重結合を有するジカルボン酸としては、 例えば、 ィタコン酸、 フマル酸およびマレイン酸などが好ましい。 このなかでも、 溶解度がよ り高く、 反応液の P Hを容易に安定させることができるという点から、 ィタコン酸およびマレイン酸が好ましい。 さらに、 抗原抗体の結合によ る免疫反応の測定値を向上させる効果と、 抗原過剰領域で生じる地帯現 象による測定範囲の限定を緩和させる効果が大きいという点から、 ィ夕 コン酸が特に好ましい。
前記化学式 (1) : HOOC (CH2) nC OOH (nは整数) で表さ れる直鎖状ジカルボン酸としては、 メチレン鎖の長さが n = 1〜 7の整 数で表されるものが好ましい。 具体的には、 それぞれ慣用名で、 マロン 酸 (n= l) 、 コハク酸 (n = 2) 、 グルタル酸 (n = 3) 、 アジピン 酸 (n = 4) 、 ピメリン酸 (n= 5 ) 、 スベリン酸 (n = 6) およびァ ゼライン酸 (n = 7) などが好ましい。 このなかでも、 抗原抗体の結合 による免疫反応の測定値を向上させる効果と、 抗原過剰領域で生じる地 帯現象による測定範囲の限定を緩和させる効果とが、 より広い範囲の p Hで得られるという点から、 マロン酸が特に好ましい。
緩衝剤としては、 当該分野で公知のものを用いることができ、 例えば, リン酸ニ水素ーナトリゥムおよびリン酸水素ニナトリゥムなどを含むリ ン酸系の緩衝剤、 酢酸ナトリウム、 力コジル酸ナトリウム、 ならびに 2 ― (N—モルホリノ) エタンスルホン酸などが挙げられる。
この場合、 前記反応液に含まれるべき緩衝剤の量は、 用いる緩衝剤の 種類、 被測定対象物を含む試料 (検体) の量、 および反応系に対する被 測定物質である抗原または抗体に対する抗体または抗原の供給方法など に応じて、 本発明の効果が損なわれない範囲で適宜調整すればよい。 本発明の免疫反応測定方法においては、 前記反応液の p Hを 4. 0〜 6. 0に設定するのが好ましい。 このときに前記特定化合物による免疫 反応の測定値を向上させる効果が大きい。 また、 抗原過剰領域で生じる 地帯現象による測定範囲の限定を緩和させる効果が大きい。 さらに、 前 記反応液の pHを 4. 5〜 6. 0に設定するのがより好ましい。 前記反 応液の p Hを 4. 5〜 5. 0に設定してもよく、 5. 0〜 6. 0に設定 してもよい。
また、 本発明に係る免疫反応用試薬は、 抗原抗体反応が生じるときの 反応液と混合された場合に前記反応液の P Hが 4. 0〜 6. 0、 さらに は 4. 5〜 5. 0または 5. 0 ~ 6. 0に設定されるように、 調製され ていることが好ましい。
また、 本発明に係る免疫反応測定方法における反応液および免疫反応 用試薬には、 用途などに応じて、 本発明の効果を損なわない範囲であれ ば、 当該分野で公知である他の任意の成分を添加することができる。 例 えば、 比朧法、 比濁法、 スライ ド凝集法などの均一系の免疫反応測定法 に適用する場合には、 前記反応液および免疫反応用試薬に、 ポリエチレ ングリコール (P E G) を添加することができる。
その含有量は、 非特異的凝集が少なく、 測定感度向上の効果が高いと いう観点から、 本発明の免疫反応測定方法においては、 反応液の 2〜 6 重量%であることが好ましく、 4重量%であることがさらに好ましい。 同様に、 本発明の免疫反応用試薬においては、 抗原抗体反応が生じると きの濃度が 2〜 6重量%であることが好ましく、 4重量%であることが さらに好ましい。
また、 抗原または抗体の自己凝集による非特異的混濁を低減するため に、 前記反応液および免疫反応用試薬に、 トウィーン 2 0、 ォクチルダ ルコシド、 ラウリル硫酸ナトリウム (S D S) 、 スクロースモノラウレ ートまたは CHAP Sなどの界面活性剤を添加することができる。 その 含有量は、 抗原抗体反応の阻害が少ないという観点から、 本発明に係る 免疫反応測定方法においては、 反応液の 0 . 3重量%以下であることが 好ましく、 さらに 0 . 1重量%以下であることが特に好ましい。
同様に、 本発明に係る免疫反応用試薬においては、 その含有量は、 抗 原抗体反応が生じるときの濃度が 0 . 3重量%以下であることが好まし く、 さらに 0 . 1重量%以下であることが特に好ましい。
本発明に係る免疫反応測定方法および免疫反応測定用試薬が適用され る測定系は特に限定されないが、 特に、 抗原過剰領域で生じる地帯現象 を有する比朧法、 比濁法、 スライ ド凝集法などの均一系の測定系が、 上 述した本発明の効果が期待できる点で好ましい。 特に自動測定機器によ る測定が普及している比朧法、 比濁法が、 抗原過剰領域で生じる地帯現 象の判定に要する工程を省略または簡略化することができる点で特に好 ましい。
本発明に係る免疫反応測定方法において、 前記抗原一抗体複合体が凝 集複合体であることが好ましい。 また、 工程 (B ) において、 凝集複合 体に起因する光学的変化量を測定することにより、 前記凝集複合体を検 出することが好ましい。 光学的変化量が、 散乱光強度または透過光量の 変化量であることがさらに好ましい。 特に、 凝集複合体の大きさに鋭敏 に反応する散乱光強度の変化量であることが、 さらに好ましい。
本発明に係る免疫反応測定方法および免疫反応測定用試薬に対して用 いられる試料は、 被測定物質である抗原または抗体を含むものであれば よく、 例えば、 尿、 血液などの体液が挙げられる。 また、 試料中に含ま れる被測定物質である抗原または抗体は特に限定されず、 一般に抗原抗 体反応を利用して測定できる物質であればいずれでもよい。 例えば、 蛋 白質、 核酸、 脂質、 細菌、 ウィルスおよびハプテンなどが挙げられる。 このなかでも、 蛋白質が抗原抗体反応を用いた臨床検査上の主たる測定 対象であるため好ましい。 蛋白質としては、 例えば LH (黄体形成ホルモン) 、 F S H (卵胞刺 激ホルモン) 、· h C G (絨毛性性腺刺激ホルモン) などのホルモンや、 各種免疫グロブリンクラスやサブクラス、 補体成分、 各種感染症のマー カー、 C R P、 アルブミン、 リウマチ因子および血液型抗原などが挙げ られる。 このなかでも、 ヒトアルブミンが特に好ましい。
ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカルボン 酸、 化学式 ( 1 ) : HOOC (CH2) nCOOH (nは整数) で表され る直鎖状ジカルボン酸、 およびこれらの塩は、 キレート作用を持ってお り、 反応液に存在する C a 2+や F e 3+などの二価および三価の金属ィォ ンを効率的に捕捉する性質を有する。 このため、 抗原が分子構造内に金 属イオンを保持している場合、 この抗原に対して特異的に結合する抗体 が、 抗原から金属イオンが脱離したときに、 当該抗原とも特異的に結合 することが好ましい。 このようにすると、 抗原が、 分子構造内に金属ィ オンを保持し、 金属イオンの脱離により分子構造に変化を生じる物質で あっても、 測定を行うことができる。
また、 抗原が分子構造内に金属イオンを保持し、 金属イオンの脱離に より分子構造に変化を生じる場合、 抗原が保持しているものと同じ金属 イオンを反応液に添加し、 反応液において抗原抗体反応が生じるときに 反応液内にこの金属イオンを存在させてもよい。 この際、 反応液に添加 する金属イオンの量は、 ヒドロキシル基を有するジカルボン酸、 二重結 合を有するジカルボン酸、 化学式 ( 1 ) : HOOC (CH2) nC OOH (nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩のキレ ート能、 濃度、 および抗原が持つ金属イオンの保持能などに基づいて設 定すればよい。
本発明に係る免疫反応測定方法および免疫反応測定用試薬に用いられ る抗体は特に限定されず、 抗原と特異結合するものであれば、 I g G、 I g M、 I g E、 I g A、 I g Dのいずれのクラスの抗体でもよい。 こ のなかでも、 非特異的な反応が少なく、 また、 比較的市販されているも のが多く、 入手も容易であるという点から、 I g G抗体がより好ましい < また、 抗体の由来動物種に関しても、 特に限定されないが、 比較的入手 も容易であり、 使用例も多いという点から、 ゥサギ、 ャギ、 マウス由来 の抗体が好ましい。
また、 特異結合物質としては、 ポリクロ一ナル抗体およびモノクロ一 ナル抗体のいずれを用いてもよい。 すなわち、 ポリクローナル抗体とモ ノクローナル抗体を、 単独あるいは混合して用いてもよいが、 永久に同 様な抗体を産生できるという観点から、 モノクローナル抗体を含むこと が好ましい。 また、 凝集複合体を生成可能なように調製された 1種類以 上のモノクローナル抗体の混合物であることがより好ましい。
モノクローナル抗体は、 ハイプリ ドーマ細胞株により産生される。 ハ イブリ ドーマ細胞株は、 抗体を産生する B細胞と骨髄腫瘍細胞 (ミエ口 一マ細胞) とを細胞融合することにより得られた、 抗体産生能と強い増 殖能とを併せ持つ融合細胞集団より一つの細胞のみを分離し、 増殖させ て確立したものである。 このため、 これらが産生する抗体の性状は同じ である。 また、 ハイプリ ドーマ細胞株は増殖能が強く、 凍結保存が可能 である。 このため、 適切な管理をしていれば尽きることがなく、 ハイブ リ ドーマ細胞株を培養液あるいは腹腔中で培養し、 精製することにより. 永久に同じ性状の抗体を得続けることができる。
一方、 ポリクローナル抗体は、 動物に抗原を投与し、 血液中に抗原に 結合する抗体を多量に出現させ、 この血液の全部あるいは一部を採取し 精製することにより得られる。 このため、 その性質は動物の個体差、 生 育環境、 状態などに依存し、 同一性状の抗体を得続けることが困難であ る。 このように、 モノクローナル抗体を使用することにより、 常に同じ 性状の抗体を使用することが可能となる。 このため、 試薬としての抗体 の供給が安定し、 結果として、 免疫反応測定方法及び免疫反応測定用試 薬による免疫反応測定結果の安定性を増すことができる。
特異結合物質をモノクローナル抗体により構成するために満たすべき 要件は、 抗原と特異的に結合し、 凝集複合体を形成する、 ということで ある。 すなわち、 抗原が、 1種類のモノクローナル抗体に対して複数の 結合部位を持つ物質である場合は、 1種類のモノクローナル抗体により . 凝集複合体を生成させることが可能である。 しかし、 抗原が、 1種類の モノクローナル抗体 (第 1のモノクロ一ナル抗体) に対して 1つの結合 部位しか持たない物質である場合は、 少なくとも、 2種類のモノクロ一 ナル抗体を用いることが必要である。 第 2のモノクローナル抗体の要件 としては、 抗原の他の部位に結合し、 前記第 1のモノクローナル抗体と 共に、 抗原と結合させた場合に凝集複合体を生成できることが必要であ る。
本発明に係る免疫反応測定方法の一例を以下に示す。
まず、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : H〇〇 C ( C H 2 ) n C O O H ( nは整数) で 表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択さ れる少なくとも 1種の化合物を、 後述する反応液を酸性に、 好ましくは. 反応液の p Hを 4 . 0〜6 . 0に設定するように緩衝剤を含む緩衝液に 添加する。
そして、 被測定物質である抗原もしくは抗体に対する抗体もしくは抗 原を含有する分散液または溶液、 および試料 (検体) のいずれか一方と 上記の緩衝液とを混合し、 続いて残りの他方をこれに混合して反応液を 調製し、 その反応液において生じた免疫反応を測定する。
このとき、 反応液中の化合物の濃度は、 測定値を向上させる効果、 お よび抗原過剰領域で生じる地帯現象による測定範囲の限定を緩和させる 効果が認められる範囲であれば任意でよい。 好ましくは、 前記化合物の 濃度は 0. 1 M以下、 好ましくは 0. 0 1〜 0. 1 M、 さらに好ましく は 0. 0 1〜 0. 0 5 Mとする。 また、 前記化合物は緩衝剤の役割を兼 ねていてもよい。
前記特定化合物を添加する方法、 前記反応液の P Hを酸性に保っため に緩衝剤を添加する方法、 および前記反応液の P Hを調整する方法は上 記の方法に限定されない。 例えば、 被測定物質である抗原または抗体に 対する抗体または抗原を含有する溶液中に、 あらかじめ上記要件を満た すように、 前記特定化合物および緩衝剤を存在させてもよい。
本発明に係る免疫反応用試薬の調製方法の一例を以下に示す。
被測定物質である抗原または抗体に対する抗体または抗原と、 前記特 定化合物とを別々に調製する場合は、 それぞれ以下のように調製すれば よい。 被測定物質である抗原または抗体に対する抗体または抗原を含有 する溶液は、 前記特定化合物の効果が得られる限り任意の組成でよい。 上記化合物を含む溶液は、 抗原抗体反応時の反応液を酸性に保っため に必要な緩衝能が得られるように、 反応液の pHが 4. 0〜 6. 0とな るように調整するのが好ましい。 また、 反応液中の前記特定化合物の濃 度については、 測定値を向上させる効果、 および抗原過剰領域で生じる 地帯現象による測定範囲の限定を緩和させる効果が得られる範囲であれ ば任意でよい。 好ましくは、 前記特定化合物の濃度が 0. 1 M以下、 好 ましくは、 0. 0 1〜 0. 1 M、 さらに好ましくは 0. 0 1〜 0. 0 5 Mとなるように、 緩衝剤と前記特定化合物とを混合して得られた混合物 に純水を加えて濃度を調整する。 上記要件が満たされていれば、 前記緩 衝剤と前記特定化合物は、 それぞれ別々の溶液中に存在してもよい。 ま た、 前記特定化合物自体が緩衝剤を兼ねてもよい。 また、 被測定物質である抗原または抗体に対する抗体または抗原を含 有する溶液中に、 前記特定化合物を存在させてもよい。 この場合は、 上 記で示した要件を満たすように、 調製した前記特定化合物を含む溶液で, 被測定物質である抗原または抗体に対する抗体または抗原を含有する溶 液を透析またはゲルでろ過し、 低分子成分を置換することにより、 前記 特定化合物を含ませればよい。
以上のように、 本発明に係る免疫反応測定方法および免疫反応測定用 試薬によれば、 ヒドロキシル基を有するジカルボン酸、 二重結合を有す るジカルボン酸、 化学式 ( 1 ) : H O O C ( C H 2) n C O O H ( nは整 数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から 選択される少なくとも 1種の化合物を免疫反応の反応系に存在させ、 反 応系を酸性にし、 抗原抗体の結合による免疫反応の測定値を向上させる ことができる。 さらには、 抗原過剰領域で生じる地帯現象による測定範 囲の限定を緩和させることができる。
従来の水溶性高分子を添加する方法では、 抗原抗体反応の測定におい て、 測定値を向上させ、 良好な S Z N比を維持し、 安定した測定を行う ため、 より高濃度あるいは高分子量の水溶性高分子を添加する必要があ る。 このため、 溶液の粘性が増大し、 分析操作上の取り扱いが困難にな るという問題があった。 これに対して、 本発明において用いる前記特定 化合物は分子量が低いため、 溶液の粘性が低く、 分析操作上の取り扱い が容易である。
また、 抗原過剰領域で生じる地帯現象による測定範囲の限定を緩和し, 被測定物質の高濃度での測定値の落ち幅を軽減したことにより、 測定値 が高く陽性と判定される領域を広げることが可能となり、 測定濃度範囲 を広げることができる。
以下に、 本発明の実施例を具体的に説明するが、 本発明はこれらのみ に限定されない。 以下の実施例では示さなかったが、 抗体をラテックス、 金コロイ ド、 磁気微粒子などの微粒子担体に固定化してもよい。 また、 抗体に酵素、 色素、 蛍光物質、 発光物質などを標識してもよい。
また、 本発明において、 抗体溶液の緩衝剤および p Hは特に限定され ない。 例えば、 一液系の試薬を構成する場合には、 抗体溶液に、 ヒドロ キシル基を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学 式 ( 1 ) : H〇〇 C (CH2) nC〇〇H (nは整数) で表される直鎖状 ジカルボン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化合物を含ませるため、 また、 反応系の PHを酸性領域に維持す るため、 前記特定化合物を含む酸性緩衝液で透析すればよい。
また、 以下の実施例においては、 p Hの調整に N a OHを使用したが、 KOH、 L i OH、 NH4OH、 C a (OH) 2または Mg (OH) 2など の水酸化物を使用してもよい。 また、 前記特定化合物を含む 1 0種類の 緩衝液の調製に、 L (-) 一リンゴ酸、 L ( + ) —酒石酸、 ィタコン酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ピメリン酸、 スベリン 酸、 およびァゼライン酸を使用したが、 特定化合物として上述した他の 化合物を用いてもよい。
複数の特定化合物を用いる場合の P Hの調整について、 純水に化合物 を溶解させた際の p Hが目的とする p Hよりアル力リ側の場合は HC 1 などを、 酸性側の場合は上記で示した水酸化物などを利用して行えばよ い。 また、 上記の特定化合物の混合比を調整して行ってもよい。 実施例 1
本実施例では、 スライ ド凝集法、 比濁法および比朧法による測定に使 用することが可能な抗体溶液、 ならびにヒドロキシル基を有するジカル ボン酸、 二重結合を有するジカルボン酸、 HOOC (CH2) nC OOH (nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりな る群から選択される少なくとも 1種の化合物を含む緩衝液からなる試薬 を用いて、 免疫反応を測定した。
なお後述する緩衝液などの調製には、 M i l l i — Q S P TO C
(M i 1 1 i p o r e社製) でろ過した純水を使用した。 また、 特に記 載のない塩および緩衝剤などの試薬は、 いずれも和光純薬工業 (株) 製 のものを使用した。 また、 ポリエチレングリコール (P E G) 6 0 0 0 としては 1級試薬を用い、 それ以外のものとしては特級試薬を使用した,
( 1 ) 抗体溶液の調製
抗体溶液には、 ゥサギ抗ヒトアルブミンポリクローナル抗体を用いた ものと、 3種類のマウス抗ヒトアルブミンモノクローナル抗体を混合し たものとを用意した。
まず、 ゥサギ抗ヒトアルブミンポリクローナル抗体を用いた抗体溶液 を次のように調製した。 ゥサギ抗ヒトアルブミンポリクローナル抗体は, ヒトアルブミンを免疫したゥサギより採取した抗血清より、 プロテイン Aカラムクロマトグラフィーを用いて精製した。 カラムに充填したプロ ティン A固定化ゲルとしては、 アマシャム · フアルマシア社製のものを 使用した。 精製に用いた平衡化緩衝液としては、 1. 5 Mのグリシン、 および 3. 0 Mの塩化ナトリウムを含む p H 8. 9の緩衝液を使用した < また、 溶出緩衝液としては、 0. 1 Mのクェン酸を含む pH 4. 0の緩 衝液を使用した。
精製は次のような方法で行った。 カラムに充填したゲル容量の 5倍の 平衡化緩衝液を流してカラムを平衡化した後、 カラム全結合容量の 1 0 〜 2 0 %の抗体を含む抗血清を平衡化緩衝液で容量を 2倍に希釈して力 ラムに流し、 血清中の抗体をプロテイン Aに結合させた。 続いて、 プロ ティン Aに吸着しない血清成分がカラムより出てこなくなるまで平衡化 緩衝液を流し、 カラムを洗浄した。
そして、 カラムに溶出緩衝液を流し、 プロテイン Aに結合した抗体を 溶出させた。 溶出した抗体分画を分画分子量 1万の透析チューブに入れ、 約 1 0 0倍容量の 0. 0 5 Mの 3 _ (N—モルホリノ) プロパンスルホ ン酸 (D o j i n社製) (以下、 MO P Sと表す) 、 0. 1 5 Mの塩化 ナトリウム、 および 0. 0 4重量%のN a N3を含む p H 7. 4の緩衝液 で数回透析して、 緩衝液成分を置換した。
続いて、 抗体濃度を 2 8 0 nmの吸光度測定により推定し、 透析で用 いたものと同じ緩衝液で調整して抗体濃度を 3. OmgZm l とし、 抗 体溶液とした。
次に、 3種類のマウス抗ヒトアルブミンモノクローナル抗体を混合し て用いた抗体溶液を以下のように調製した。
マウス抗ヒトアルブミンモノクローナル抗体には、 抗体工業技術院生 命工学工業技術研究所受託番号 F E RM B P - 7 9 3 8号の細胞株
(以下、 7 9 3 8株と表す) が産生するモノクローナル抗体、 ならびに バイオテスト研究所製の FU— 3 0 1、 および FU— 3 0 3を用いた。 7 9 3 8株が産生するモノクローナル抗体としては、 マウス腹水から、 上記と同様のプロテイン Aカラムクロマトグラフィ一で精製して得られ たものを用いた。 抗体溶液中に各モノクローナル抗体を混合する際には、 7 9 3 8株が産生するモノクローナル抗体を 0. 0 3 3 3 mg/m 1 、 FU— 3 0 1を 0. 0 3 3 3mg/m l、 FU— 3 0 3を 0. 0 3 3 3 mgZm l とし、 また、 抗体溶液中の総モノクローナル抗体の最終濃度 が約 0. 1 m g/m 1 になるように混合した。
なお、 上記で調製した各抗体溶液の濃度および混合比は、 特にこれに 限定されない。 また、 調製した抗体溶液は室温でも保存できるが、 抗体 の変性防止の点からは、 低温保存がより好ましく、 4 °Cで保存すること がより好ましい。
(2) 緩衝液の調製
緩衝液には、 以下に示す 1 0種類の化合物を用いた。
ヒドロキシル基を有するジカルボン酸としては L (-) —リンゴ酸ま たは L ( + ) —酒石酸を用い、 二重結合を有するジカルボン酸としては ィタコン酸を用い、 化学式 ( 1 ) : HOO C (CH2) nC OOH (nは 整数) で表される直鎖状ジカルボン酸としては、 マロン酸 (n== l ) 、 コハク酸 (n = 2) 、 ダルタル酸 (n = 3 ) 、 アジピン酸 (n = 4) 、 ピメリン酸 (n= 5) 、 スベリン酸 (n= 6 ) およびァゼライン酸 (n = 7 ) を用いた。
L (-) —リンゴ酸を含む緩衝液を次のように調製した。 最終濃度が, L (一) 一リンゴ酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 4重量%になるように L (一) —リンゴ酸およびポリエチレングリコー ル 6 0 0 0を計量し、 最終的に得る緩衝液の体積の約 9 0 %に相当する 体積の純水を加え、 これらを溶解させた。 得られた溶液に N a OH水溶 液を添加して pHを 4. 5に調整し、 純水を加え、 目的とする体積の溶 液を調製し、 緩衝液を得た。
L ( + ) —酒石酸を含む緩衝液を次のように調製した。 最終濃度が、 L ( + ) —酒石酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 4 重量%になるように、 L ( + ) —酒石酸およびポリエチレングリコ一ル 6 0 0 0を計量し、 最終的に得る緩衝液の体積の約 9 0 %に相当する体 積の純水を加え、 これらを溶解させた。 得られた溶液に N a OH水溶液 を添加して p Hを 4. 5に調整し、 純水を加え、 目的とする体積の溶液 を調製し、 緩衝液を得た。
ィタコン酸を含む緩衝液を次のようにして調製した。 最終濃度が、 ィ タコン酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 4重量%に なるようにイタコン酸およびポリエチレングリコール 6 0 0 0を計量し, 最終的に得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 こ れらを溶解させた。 得られた溶液に N a〇 H水溶液を添加することによ つて p Hを 4 . 5に調整し、 純水を加え、 目的とする体積の溶液を調製 し、 緩衝液を得た。
マロン酸を含む緩衝液を次のように調製した。 最終濃度が、 マロン酸 で 0 . 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になるよう にマロン酸およびポリエチレングリコール 6 0 0 0を計量し、 最終的に 得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 これらを溶 解させた。 得られた溶液に N a〇H水溶液を添加して p Hを 5 . 0に調 整し、 純水を加えて、 目的とする体積の溶液を調製し、 緩衝液を得た。
コハク酸を含む緩衝液を次のように調製した。 最終濃度が、 コハク酸 で 0 . 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になるよう にコハク酸およびポリエチレンダリコール 6 0 0 0を計量し、 最終的に 得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 これらを溶 解させた。 得られた溶液に N a O H水溶液を添加して p Hを 5 . 0に調 整し、 純水を加えて、 目的とする体積の溶液を調製し、 緩衝液を得た。
ダルタル酸を含む緩衝液を次のように調製した。 最終濃度が、 ダル夕 ル酸で 0 . 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になる ようにダルタル酸およびポリエチレングリコール 6 0 0 0を計量し、 最 終的に得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 これ らを溶解させた。 得られた溶液に N a O H水溶液を添加することによつ て; p Hを 5 . 0に調整し、 純水を加えて、 目的とする体積の溶液を調製 し、 緩衝液を得た。
アジピン酸を含む緩衝液を次のように調製した。 最終濃度が、 アジピ ン酸で 0 . 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になる ようにアジピン酸およびポリエチレンダリコール 6 0 0 0を計量し、 最 終的に得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 これ らを溶解させた。 得られた溶液に N a OH水溶液を添加することによつ て p Hを 5. 0に調整し、 純水を加えて、 目的とする体積の溶液を調製 し、 緩衝液を得た。
ピメリン酸を含む緩衝液を次のように調製した。 最終濃度が、 ピメリ ン酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になる ようにピメリン酸およびポリエチレングリコール 6 0 0 0を計量し、 最 終的に得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え、 これ らを溶解させた。 得られた溶液に N a OH水溶液を添加することによつ て p Hを 5. 0に調整し、 純水を加えて、 目的とする体積の溶液を調製 し、 緩衝液を得た。
スベリン酸を含む緩衝液を次のように調製した。 最終濃度が、. スベリ ン酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%になる ようにスベリン酸およびポリエチレングリコール 6 0 0 0を計量し、 最 終的に得る緩衝液の体積の約 9 0 %に相当す'る体積の純水を加え、 これ らを溶解させた。 得られた溶液に N a OH水溶液を添加することによつ て pHを 5. 0に調整し、 純水を加えて、 目的とする体積の溶液を調製 し、 緩衝液を得た。
ァゼライン酸を含む緩衝液を次のように調製した。 最終濃度が、 ァゼ ライン酸で 0. 0 5 M、 ポリエチレングリコール 6 0 0 0で 5重量%に なるようにァゼライン酸およびポリエチレンダリコール 6 0 0 0を計量 し、 最終的に得る緩衝液の体積の約 9 0 %に相当する体積の純水を加え. これらを溶解させた。 得られた溶液に N a OH水溶液を添加して pHを 5. 0に調整し、 純水を加えて、 目的とする体積の溶液を調製し、 緩衝 液を得た。 なお、 上記で得られた各緩衝液は室温下で保存した。 実施例 2
本実施例では、 ヒドロキシル基を有するジカルボン酸、 二重結合を有 するジカルボン酸、 化学式 ( 1 ) : HOO C (CH2) nC 0 OH (nは 整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群か ら選択される少なくとも 1種の化合物を含む酸性の反応系を用いた本発 明の抗原抗体反応に対する効果を、 免疫反応測定方法で一般的に使用さ れている中性反応系の場合と比較した。 従来法との比較は、 被測定物質 としてヒトアルブミンを免疫比朧法で測定することにより行った。
試薬としては、 実施例 1 と同様の L (-) —リンゴ酸、 'L ( + ) —酒 石酸、 またはィタコン酸を含む各緩衝液と、 ゥサギ抗ヒトアルブミンポ リクローナル抗体を含む抗体溶液とを混合して得られる試薬を用いた。 また、 比較用の中性反応系を形成する緩衝液として、 0. 0 5 Mの M OP S , および 4重量%のポリエチレンダリコール 6 0 0 0を含む p H 7. 4の緩衝液を用いた。 抗体溶液には、 上記と同じものを用いた。 試料として、 0. 0 4重量%の N a N3を含む P B S緩衝液 ( 8 g /L の N a C l、 0. 2 g/Lの KC 1、 1. 1 5 g / Lの N a 2 H P〇 4 · 1 2 H20、 および 0. 2 g /Lの KH2P〇4を含む。 pH 7. 4) に、 濃度が 0、 1、 5、 1 0、 3 0、 5 0、 1 0 0または 3 0 0mg/d l になるように抗原であるヒトアルブミン (和光純薬工業 (株) 製) を溶 解させて得られた抗原溶液を用いた。
なお、 抗体溶液および試料 (抗原溶液) は使用時まで 4°Cで保存し、 各緩衝液は室温下に保存した。
測定装置には、 以下のようなものを使用した。 光源には、 2 7 0 H z で変調した波長 6 8 0 nmの出射出力約 1 5 mWの半導体レーザ一ボイ ン夕 (キコ一技研 (株) 製の型番 ML X S— D— 1 2— 6 8 0— 3 5 ) を用いた。 検出器としては、 可視赤外精密測光用シリコンフォトダイォ 一ド (浜松フォトニクス (株) 製の型番 S 238 7 - 66 R) を用いた < セルとしては、 厚さ 0. 1 cmの光学ガラス板を貼り合わせて、 容量約 200 ^ 1の正四角柱形状のものを用いた。
光源より 0. 5 cmの位置に、 一面が光源と垂直になるようにセルを 配置した。 検出器は、 光源と 90 ° の角度をなす方向でセルより 5. 5 cm離れた位置に配置した。 検出器に迷光が入射しないように、 検出器 とセルとの間に遮光筒を設けた。 検出器により検知された光量に依存す る電流信号は、 電流電圧変換回路 (1 06 VZA) およびオペアンプに よる増幅回路を経て 1 00倍の電圧信号に増幅される。 その後、 ロック インアンプ (ェヌエフ回路設計ブロック製、 型番 5 6 1 0 B) を通して 位相敏感検波し、 GP I B制御によりコンピュータに取り込まれる。 各緩衝液について、 各濃度のヒトアルブミン溶液の測定を次のように 行った。 反応液は、 緩衝液 1 78 1、 ヒトアルブミン溶液 9 1およ び抗体溶液 7 1を混合して得た。 すなわち、 反応液において、 抗体の 最終濃度は約 0. l lmgZm l とし、 ヒトアルブミンの最終濃度は測 定に使用したヒトアルブミン溶液の濃度に 0. 046を乗じたものであ つた。
まず、 セル内に上記容量の緩衝液およびヒトアルブミン溶液を加え、 攪拌混合した。 続いて、 上記容量の抗体溶液を加えて攪拌混合し、 反応 液を得るとともに抗原抗体反応を生じさせた。 散乱光強度の測定は、 抗 体溶液を加える 1 0秒前から開始し、 0. 5秒間隔で 300秒間継続し た。 測定値は電圧値として得られた。 セルの汚れが測定に与える影響は. 各反応の測定前にセル中に純水を入れて測定し、 測定値を補正すること により除いた。 得られた各時間における測定値の 200〜300秒の間 の平均値を求め、 これを各濃度のヒトアルブミン溶液における測定値と した。 測定は室温 (約 2 0°C) で行った。
その測定結果を図 1に示す。 各緩衝液について、 3 0 0 mgZd l ま での各濃度のヒトアルブミン溶液を測定した結果をプロッ トしたものを 図 1に示した。 縦軸は電圧値を表し、 横軸は測定に使用したヒトアルブ ミン溶液の濃度を表す。 なお、 プロッ トされた各値は、 各緩衝液につい て得られた各濃度のヒトアルブミン溶液の測定値より、 同じ緩衝液での ヒトアルブミンを含まない場合の測定値 ( OmgZd 1 ) を差し引いた ものである。 測定電圧値が高い程、 検出器に入射した散乱光が多く、 反 応系の濁度が高く、 抗原抗体反応による抗原一抗体複合体が多く形成さ れたことを示す。
図 1より、 比較例の緩衝液を用いた場合 (図 1の X) より、 本実施例 の各緩衝液をそれぞれ用いた場合 (図 1の秦、 〇、 ▲) のほうが、 高い 測定値が得られることがわかった。 また、 比較例の緩衝液を用いた場合 (X) は、 3 O mg/d 1 をピークとして抗原過剰領域で生じる地帯現 象により、 測定値は減少した。
これに対し、 0. 0 5 Mの L (-) 一リンゴ酸、 L ( + ) —酒石酸、 およびィタコン酸をそれぞれ用いた緩衝液の場合 (図 1の秦、 〇、 ▲) も、 3 Omg/d 1 をピークとして抗原過剰領域で生じる地帯現象によ り、 測定値は同様の減少傾向を示した。 しかし、 測定値が向上すること により、 より広い抗原濃度範囲において抗原過剰領域で生じる地帯現象 による測定値の減少の影響を受けずに測定できることがわかった。
本実施例の測定結果より、 比較例である MOP Sを含む緩衝液の場合 (図 1の X) 、 ヒ卜アルブミン溶液の濃度が 5 Omg/d 1 までの範囲 において抗原過剰領域で生じる地帯現象の影響を考えることなく測定で きた。 これに対して、 L (一) —リンゴ酸、 L ( + ) 一酒石酸、 および ィタコン酸を用いた各緩衝液の場合 (図 1の秦、 〇、 ▲) 、 ヒトアルブ ミン溶液の濃度が約 1 00 mgZd 1までの範囲において抗原過剰領域 で生じる地帯現象の影響を考えることなく測定でき、 比較例の場合より も測定可能な濃度範囲が広いことがわかった。 実施例 3
本実施例においても、 上述した実施例 2の場合と同様にして、 ヒドロ キシル基を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学 式 ( 1 ) : HOOC (CH2) nC 0 OH (nは整数) で表される直鎖状 ジカルボン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化合物を含む酸性反応系の抗原抗体反応への効果を、 免疫反応測 定方法で一般的に使用されている中性反応系の場合と比較して調べた。 従来法との比較は、 被測定物質としてヒトアルブミンを免疫比朧法で測 定することにより行った。
試薬には、 実施例 1と同様のマロン酸、 ダルタル酸、 アジピン酸、 ピ メリン酸、 スベリン酸またはァゼライン酸をそれぞれ含む各緩衝液と、 ゥサギ抗ヒトアルブミンポリクローナル抗体を含む抗体溶液とを組み合 わせて得られるものを用いた。 また、 実施例 1と同様のコハク酸を含む 緩衝液と、 マウス抗ヒトアルブミンモノクローナル抗体を含む抗体溶液 とを組み合わせて得られるものを用いた。
比較例として、 中性反応系を形成するための緩衝液には、 0. 0 5 M の MO P S、 および 4重量%のポリエチレングリコール 6 0 0 0を含む p H 7. 4の緩衝液を用いた。 抗体溶液には、 マロン酸、 グルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸を含む各緩衝液と 対比する場合は、 ゥサギ抗ヒトアルブミンポリクロ一ナル抗体を含む抗 体溶液を用い、 コハク酸を含む緩衝液と対比する場合は、 マウス抗ヒト アルブミンモノク口一ナル抗体を含む抗体溶液を用いた。 試料として用いた抗原溶液であるヒトアルブミン溶液は、 長浜コント ロール尿 ( 1 0 g ZLの尿素、 l O gZLの N a C l、 0. 5 g Lの クレアチニン、 0. 2 gZLのアセトンとなるように蒸留水に溶解) に, 濃度が 0、 5、 1 0、 3 0、 5 0、 1 0 0または S O O mgZd l にな るようにヒトアルブミンを溶解させたものを用いた。 なお、 抗体溶液お よび試料 (抗原溶液) は使用時まで 4°Cで保存し、 各緩衝液は室温下に 保存した。
測定装置には以下のようなものを用いた。 この装置は、 実施例 2と原 理的には同じであるが、 構成が異なる。 光源としては、 2 7 0 H zで変 調した波長 7 8 5 nmの出射出力約 2 0 mWの半導体レーザーボイン夕
(キコ一技研 (株) 製の型番 ML X S— D— 1 2— 7 8 5— 7 0 ) を用 いた。 検出器としては、 可視赤外精密測光用シリコンフォトダイオード
(浜松フォトニクス (株) 製の型番 S 2 3 8 7 - 6 6 R) を用いた。 セ ルとしては、 厚さ 0. 1 c mの光学ガラス板を貼り合わせて、 容量が約 6 0 0 ^ 1の正四角柱形状のものを用いた。
光源より 1 c mの位置に、 一面が光源と垂直になるようにセルを配置 した。 検出器は、 光源と 9 0 ° の角度をなす方向でセルより 1 c m離れ た位置に配置した。 検出器に迷光が入射しないように、 検出器とセルと の間に遮光筒を設けた。 検出器により検知された光量に依存した電流信 号は、 電流電圧変換回路 ( 1 0 6 V/A) を経た後、 ロックインアンプ
(ェヌエフ回路設計ブロック製、 型番 5 6 1 0 B) を通して位相敏感検 波し、 G P I B制御によりコンピュータに取り込まれる。
各緩衝液について、 各濃度のヒトアルブミン溶液の測定を次のように して行った。 緩衝液 5 3 4 1、 ヒトアルブミン溶液 2 Ί H 1および抗 体溶液 2 1 1 を混合して反応液を得た。 すなわち、 反応液において、 抗体の最終濃度は、 測定に使用した抗体溶液の濃度に約 0. 0 3 6を乗 じたものとし、 ヒトアルブミンの最終濃度は、 測定に使用したヒトアル ブミン溶液の濃度に約 0. 0 4 6を乗じたものとした。
まず、 セル内に上記容量の緩衝液およびヒトアルブミン溶液を加え、 攪拌混合した。 続いて、 上記容量の抗体溶液を加えて攪拌混合し、 抗原 抗体反応を生じさせた。 7分後に、 1秒間隔で 1 0秒間散乱光強度を測 定した。 測定値は電圧値として得られた。 セルの汚れが測定に与える影 響は、 各反応の測定前にセル中に純水を入れて測定し、 測定値を補正す ることにより除いた。 上述のようにして得た測定値の加算平均値を求め、 これを各濃度のヒトアルブミン溶液における測定値とした。 測定は室温 (約 2 0V) で行った。
測定結果を図 2および 3に示す。 図 2はマロン酸 (秦) 、 ダルタル酸 (〇) 、 アジピン酸 (▲) 、 ピメリン酸 (△) 、 スベリン酸 (園) 、 ァ ゼライン酸 (口) をそれぞれ含む各緩衝液と、 ゥサギ抗ヒトアルブミン ポリクローナル抗体からなる抗体溶液とを用いて、 S O O mgZd l ま での各濃度のヒトアルブミン溶液を測定した結果をプロットしたもので ある。 縦軸は電圧値を表し、 横軸は測定に使用したヒトアルブミン溶液 の濃度を表している。 プロットざれた各値は、 各緩衝液について得られ た各濃度のヒトアルブミン溶液の測定値より、 同じ緩衝液でのヒトアル ブミンを含まない場合の測定値 ( OmgZd 1 ) を差し引いたものであ る。
図 2より、 比較例の緩衝液 ( 0. 0 5 MのMM〇P S、 5重量%のポ リエチレングリコールを含む p H 7. 4の緩衝液) を用いた場合 (図 2 の X) より、 本実施例の各緩衝液を用いた場合 (図 2の參、 〇、 ▲、 園、 □) のほうが、 ブランク値 (ヒトアルブミン濃度が 0 O mgZd 1 のとき) を除き、 高い測定値が得られることがわかった。 また、 抗原過 剰領域で生じる地帯現象により、 測定値はいずれの場合も減少傾向を示 した。 しかし、 実施例 3では、 実施例 2と同様の理由により、 比較例よ りもより広い抗原濃度範囲において抗原過剰領域で生じる地帯現象によ る測定値の減少の影響を受けずに測定できることがわかった。
図 3は、 コハク酸を含む緩衝液と、 マウス抗ヒトアルブミンモノクロ ーナル抗体を含む抗体溶液とを用いて、 3 0 O m g / d 1 までの各濃度 のヒトアルブミン溶液を測定した結果をプロットしたものである (鲁) , 図 3より、 比較例の緩衝液を用いた場合 (X ) より、 本実施例のコハク 酸を含む緩衝液を用いた場合 (秦) のほうが高い測定値が得られること がわかった。 また、 抗原過剰領域で生じる地帯現象により、 測定値はい ずれの場合も減少を示した。 この場合も、 実施例 2と同様の理由により . より広い抗原濃度範囲において抗原過剰領域で生じる地帯現象による測 定値の減少の影響を受けずに測定できることがわかった。
以上のように実施例 2および 3より、 本発明に係る免疫反応測定方法 により、 抗原抗体反応の測定値が向上することを確認できた。 また、 こ れにより抗原過剰領域で生じる地帯現象による測定範囲の限定が緩和さ れることを確認できた。
さらに、 本発明に係る免疫反応用試薬を用いることにより、 抗原抗体 反応の測定値が向上することを確認できた。 また、 抗原過剰領域で生じ る地帯現象による測定範囲の限定が緩和されることを確認できた。
なお、 抗体溶液、 緩衝液および試料を混合する順序は特に制限されず. 混合比率は、 必要とする抗原濃度の測定範囲に応じて決定することがで きた。
また、 上記測定では、 試薬と試料とを混合することにより、 緩衝剤、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカルボン酸. 化学式 ( 1 ) : H O O C ( C H 2 ) n C O O H ( nは整数) で表される直 鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択される少なく とも 1種の化合物、 ならびにポリエチレングリコール 6 0 0 0などの添 加剤が混合前に比べて希釈された。 しかし、 希釈される前の濃度に対す る希釈後にの濃度の差が 1 0 %程度までであれば、 得られる測定結果は. 希釈前の濃度で予想された測定結果とは大差がなく、 希釈による影響は ほとんどなかった。 また、 希釈による濃度変化を回避するために、 混合 による希釈を考慮して、 混合時に試薬中の各物質の濃度が目的濃度にな るように調製することもできた。 実施例 4
ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカルボン 酸、 化学式 ( 1 ) : H〇〇C (CH2) nC O OH ( nは整数) で表され る直鎖状ジカルボン酸がそれぞれ示す、 抗原抗体反応に対する効果の P H依存性を、 免疫比朧法により調べた。
本実施例では、 ヒドロキシル基を有するジカルボン酸、 二重結合を有 するジカルボン酸について調べた。 ヒドロキシル基を有するジカルボン 酸としては L (一) —リンゴ酸および L ( + ) —酒石酸を用い、 二重結 合を有するジカルボン酸としてはィタコン酸を用いた。 被測定物質とし てはヒトアルブミンを用いた。 試料であるヒトアルブミン溶液には、 実 施例 2と同様のものを用いた。 また、 抗体溶液には、 実施例 1 と同様の ゥサギ抗ヒトアルブミンポリクローナル抗体を含む抗体溶液を用いた。 ヒドロキシル基を有するジカルボン酸を用いた場合の p H依存性を調 ベるために、 0. 0 5Mの L (一) —リンゴ酸、 および 4重量%のポリ エチレングリコール 6 0 0 0を含み、 pHがそれぞれ、 4. 0、 4. 5 および 5. 0の各緩衝液を調製した。 また、 0. 0 5 Mの L ( + ) —酒 石酸、 および 4重量%のポリエチレングリコール 6 0 0 0を含み、 p H がそれぞれ、 4. 0、 4. 5および 5. 0の各緩衝液を調製した。 また、 二重結合を有するジカルボン酸を用いた場合の P H依存性を調 ベるため、 0. 0 5 Mのィタコン酸および 4重量%のポリエチレングリ コール 6 0 0 0を含み、 p Hがそれぞれ、 4. 0、 4. 5および 5. 0 の各緩衝液を調製した。
さらに、 比較例として、 0. 0 5 ^^の^[〇? 3、 および 4重量%のポ リエチレングリコール 6 0 0 0を含む pH 7. 4の緩衝液を用い、 抗体 溶液には、 上記と同様のゥサギ抗ヒトアルブミンポリクロ一ナル抗体を 含む抗体溶液を用いた。
免疫反応の測定は、 実施例 2と同様の方法により行った。
得られた測定結果を図 4〜 6に示す。 図 4は L (一) —リンゴ酸につ いての結果、 図 5は L ( + ) —酒石酸についての結果、 また、 図 6はィ タコン酸についての結果をそれぞれプロッ トしたものである。 縦軸は電 圧値を表し、 横軸は測定に使用したヒトアルブミン溶液の濃度で示す。
図 4〜 6より、 pH4. 5〜 5. 0の L (-) —リンゴ酸を含む緩衝 液、 p H 4. 0〜 5. 0の L ( + ) —酒石酸を含む緩衝液、 および p H 4. 5〜 5. 0のィタコン酸を含む緩衝液を用いた場合の方が、 比較例 の緩衝液を用いた場合 (図 4〜 6の X) よりも高い測定値を示すことが わかった。 また、 抗原過剰領域で生じる地帯現象による測定範囲の限定 が緩和されることがわかった。
以上の結果より、 ヒドロキシル基を有するジカルボン酸、 二重結合を 有するジカルボン酸、 およびこれらの塩を含む緩衝液を用いた免疫反応 測定法では、 これらの化合物の p H特性を考慮して、 少なくとも、 反応 系の p Hを 4. 0〜 5. 0の範囲に設定することにより、 抗原抗体反応 の測定値が向上することがわかった。 また、 抗原過剰領域で生じる地帯 現象による測定範囲の限定が緩和されることがわかった。
また、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 およびこれらの塩を用いた免疫反応測定用試薬では、 これら 化合物の p H特性を考慮することにより、 少なくとも、 抗原抗体反応が 生じるときの反応液の pHが 4. 0〜 5. 0の間に設定されるように試 薬を調製するのが好ましいことがわかった。 実施例 5
本実施例では、 化学式 ( 1 ) : H〇OC (CH2) nCO〇H (nは整 数) で表される直鎖状ジカルボン酸が示す抗原抗体反応に対する効果の pH依存性を、 免疫比朧法により調べた。 上記の直鎖状ジカルボン酸に は、 マロン酸 (n= l ) 、 コハク酸 (n = 2) 、 グルタル酸 (n = 3) 、 アジピン酸 (n = 4) 、 ピメリン酸 (n= 5) 、 スベリン酸 (n= 6 ) およびァゼライン酸 (n = 7 ) を用いた。
試料であるヒトアルブミン溶液には、 実施例 3と同様のものを用いた c また、 抗体溶液には、 実施例 1と同様のものを用いた。
試薬には、 後述するマロン酸、 ダルタル酸、 アジピン酸、 ピメリン酸, スベリン酸、 ァゼライン酸をそれぞれ含む各緩衝液と、 実施例 1 と同様 のゥサギ抗ヒトアルブミンポリクローナル抗体を含む抗体溶液とを混合 したものを用いた。 また、 後述するコハク酸を含む緩衝液と、 実施例 1 と同様のマウス抗ヒトアルブミンモノクローナル抗体を含む抗体溶液を 混合したものを用いた。
マロン酸を用いた場合の p H依存性を調べるため、 0. 0 5 Mのマロ ン酸、 および 5重量%のポリエチレングリコ一ル 6 0 0 0を含み、 p H がそれぞれ、 4. 0、 4. 5、 5. 0、 5. 5および 6. 0の各緩衝液 を調製した。
コハク酸を用いた場合の p H依存性を調べるため、 0. 0 5 Mのコハ ク酸、 および 5重量%のポリエチレングリコール 6 0 0 0を含み、 p H がそれぞれ、 4. 0、 4. 5、 5. 0、 5. 5および 6. 0の各緩衝液 を調製した。
ダルタル酸を用いた場合の P H依存性を調べるために、 0. 0 5 Mの ダルタル酸、 および 5重量%のポリエチレングリコール 6 0 0 0を含み、 pHがそれぞれ、 4. 5、 5. 0および 6. 0の各緩衝液を調製した。 アジピン酸を用いた場合の p H依存性を調べるために、 0. 0 5 Mの アジピン酸、 および 5重量%のポリエチレンダリコール 6 0 0 0を含み、 p Hがそれぞれ、 4. 5、 5. 0、 5. 5および 6. 0の各緩衝液を調 製した。
ピメリン酸を用いた場合の p H依存性を調べるために、 0. 0 5 Mの ピメリン酸、 および 5重量%のポリエチレングリコール 6 0 0 0を含み、 p Hがそれぞれ、 4. 5、 5. 0、 5. 5および 6. 0の各緩衝液を調 製した。
スベリン酸を用いた場合の p H依存性を調べるために、 0. 0 5 Mの スベリン酸、 および 5重量%のポリエチレンダリコール 6 0 0 0を含み, p Hがそれぞれ、 5. 0、 5. 5および 6. 0の各緩衝液を調製した。 ァゼライン酸を用いた場合の P H依存性を調べるために、 0. 0 5 M のァゼライン酸、 および 5重量%のポリエチレンダリコール 6 0 0 0を 含み、 pHがそれぞれ、 5. 0、 5. 5および 6. 0の各緩衝液を調製 した。
さらに、 比較例においては、 0. 0 5 Mの MO P S、 および 5重量% のポリエチレングリコール 6 0 0 0を含む pH 7. 4の緩衝液を用い、 抗体溶液としては、 マロン酸、 ダルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸を含む各緩衝液と対比する場合は、 ゥサギ抗 ヒトアルブミンポリクローナル抗体を含む抗体溶液を用い、 コハク酸を 含む緩衝液と対比する場合は、 マウス抗ヒトアルブミンモノクローナル 抗体を含む抗体溶液を用いた。 免疫反応の測定は、 実施例 3と同様の方 法により行った。
得られた測定結果を図 7〜 1 3に示す。 図 7はマロン酸についての結 果、 図 8はコハク酸についての結果、 また、 図 9はグルタル酸について の結果、 図 1 0はアジピン酸についての結果、 図 1 1はピメリン酸につ いての結果、 図 1 2はスベリン酸についての結果、 図 1 3はァゼライン 酸についての結果をそれぞれプロットしたものである。 縦軸は電圧値を 表し、 横軸はヒトアルブミン溶液の濃度を示す。
図 7〜 1 3より、 pH4. 5〜 6. 0のマロン酸を含む緩衝液、 p H 5. 0〜 6. 0のコハク酸を含む緩衝液、 pH 5. 0〜 6. 0のグルタ ル酸を含む緩衝液、 p H 5. 0〜 6. 0のアジピン酸を含む緩衝液、 p H 5. 0〜 6. 0のピメリン酸を含む緩衝液、 p H 5. 0〜 6. 0のス ベリン酸を含む緩衝液、 および P H 5. 0〜 6. 0のァゼライン酸を含 む緩衝液を用いた場合のほうが、 比較例の M〇 P Sを含む緩衝液を用い た場合よりも高い測定値を示すことがわかった。 また、 抗原過剰領域で 生じる地帯現象による測定範囲の限定が緩和されることがわかった。 以上の結果より、 化学式 ( 1 ) : H〇〇 C (C H2) nC OOH (nは 整数) で表される直鎖状ジカルボン酸、 およびこれらの塩を含む緩衝液 を用いた免疫反応測定法では、 これらの化合物の pH特性を考慮し、 少 なくとも、 反応液の p Hを 4. 5〜 6. 0に設定することにより、 抗原 抗体反応の測定値が向上することがわかった。 また、 抗原過剰領域で生 じる地帯現象による測定範囲の限定が緩和されることがわかった。
また、 化学式 ( 1 ) : HOO C (CH2) nC O OH (nは整数) で表 される直鎖状ジカルボン酸、 およびこれらの塩を用いた免疫反応測定用 試薬では、 これら化合物の pH特性を考慮することにより、 少なくとも, 抗原抗体反応が生じるときの反応液の pHが 4. 5〜 6. 0に設定され るように試薬を調製するのが好ましいことがわかった。
以上のように実施例 4および 5より、 抗原抗体反応の測定値を向上さ せる効果および抗原過剰領域で生じる地帯現象による測定範囲の限定を 緩和させる効果を保ちながら、 本発明の免疫反応測定法では、 ヒドロキ シル基を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学式 ( 1 ) : H〇〇C (CH2) nC O OH (nは整数) で表される直鎖状ジ カルボン酸、 およびこれらの塩よりなる群から選択される化合物を用い ることにより、 反応系の p Hを 4. 0〜 6. 0に設定できることを確認 できた。
また、 本発明に係る免疫反応測定用試薬においては、 ヒドロキシル基 を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学式 ( 1 ) : H〇OC (CH2) nC OOH (nは整数) で表される直鎖状ジカルポ ン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化 合物を用いることにより、 抗原抗体反応が生じるときの p Hが 4. 0〜 6. 0の間に設定されるように試薬を調製できることを確認できた。 実施例 6
次に、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : HOO C (CH2) nCOOH (nは整数) で 表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択さ れる少なくとも 1種の化合物が示す、 抗原抗体反応に対する効果の濃度 依存性を調べた。
ヒトアルブミン溶液には、 実施例 3と同様のものを用いた。 また、 抗 体溶液は、 実施例 1 と同様のゥサギ抗ヒトアルブミンポリクローナル抗 体を含む抗体溶液を用いた。
緩衝液には、 L (一) —リンゴ酸、 ィタコン酸、 およびコハク酸をそ れぞれ用いて、 以下に示す方法で調製したものを用いた。
L (一) —リンゴ酸を用いた場合の濃度依存性を調べるために、 4重 量%のポリエチレングリコール 6 0 0 0を含み、 p Hが 5. 0で、 L
(一) 一リンゴ酸をそれぞれ 0. 0 1、 0. 0 2、 0. 0 5、 0. 1お よび 0. 2 M含む各緩衝液を調製した。
イタコン酸を用いた場合の効果の濃度依存性を調べるために、 4重量 %のポリエチレングリコール 6 0 0 0を含み、 p Hが 5. 0で、 ィ夕コ ン酸をそれぞれ 0. 0 1、 0. 0 2、 0. 0 5、 0. 1、 および 0. 2 M含む各緩衝液を調製した。
コハク酸を用いた場合の効果の濃度依存性を調べるために、 4重量% のポリエチレングリコ一ル 6 0 0 0を含み、 p Hが 5. 0で、 コハク酸 をそれぞれ 0. 0 1、 0. 0 2、 0. 0 5、 0. 1、 および 0. 2 M含 む各緩衝液を調製した。 さらに、 比較例として、 0. 0 5 Mの MOP S- および 4重量%のポリエチレンダリコール 6 0 0 0を含む p H 7. 4の 緩衝液を用いた。 また、 抗体溶液には、 ゥサギ抗ヒトアルブミンモノク 口一ナル抗体を用いた。
免疫反応の測定は、 実施例 3と同様の方法により行った。
得られた測定結果を図 1 4〜 1 6に示す。 図 1 4は L (一) 一リンゴ 酸についての結果、 図 1 5はィタコン酸についての結果、 また、 図 1 6 はコハク酸についての結果をプロットしたものである。 縦軸は電圧値を 表し、 横軸はヒトアルブミン溶液の濃度を表す。
図 1 4〜 1 6より、 本実施例で調べた濃度範囲では、 いずれの場合も- ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカルボン酸. 化学式 ( 1 ) : H〇〇 C (CH2) nC O OH (nは整数) で表される直 鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択される少なく とも 1種の化合物の濃度が 0. 0 1〜 0. 1 Mの範囲において、 比較例 の MO P Sを含む緩衝液を用いた場合よりも高い測定値を示すことがわ かった。 また、 抗原過剰領域で生じる地帯現象による測定範囲の限定が 緩和されることがわかった。
以上の結果より、 本発明に係る免疫反応測定法では、 ヒドロキシル基 を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学式 ( 1 )
: HO 0 C (CH2) nC 0 OH (nは整数) で表される直鎖状ジカルボ ン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化 合物の濃度を 0. 1 M以下に設定するのが好ましいことがわかった。 ま た、 前記化合物により、 反応液に緩衝能を持たせる場合は、 前記濃度は
0. 0 1〜 0. 1 Mに設定するのが好ましいことがわかった。
以上と同様に、 本発明に係る免疫反応測定用試薬は、 ヒドロキシル基 を有するジカルボン酸、 二重結合を有するジカルボン酸、 化学式 ( 1 )
: HO 0 C (CH2) nC OOH (nは整数) で表される直鎖状ジカルポ ン酸、 およびこれらの塩よりなる群から選択される少なくとも 1種の化 合物の抗原抗体反応が生じるときの濃度が 0. 1 M以下に設定されるよ うに調製されるのが好ましいことがわかった。 また、 前記化合物により . 反応液に緩衝能を持たせる場合は、 前記濃度が 0. 0 1〜 0. 1 Mに設 定されるように試薬を調製するのが好ましいことがわかった。 実施例 7
次に、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : H〇〇 C (CH2) nCOOH (nは整数) で 表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択さ れる化合物を混合して使用した場合の抗原抗体反応に対する効果につい て、 免疫比朧法により確認した。
被測定物質としてはヒトアルブミンを用いた。 ヒトアルブミン溶液の 調製は、 実施例 2と同様の方法により行い、 濃度は 0、 5、 1 0、 2 0. 3 0、 5 0、 7 0、 1 0 0、 2 0 0および 3 0 0mg/d lのものを用 意した。 抗体溶液には、 実施例 1 と同様のゥサギ抗ヒトアルブミンポリ クローナル抗体を含む抗体溶液を用いた。
緩衝液としては、 L (―) —リンゴ酸、 L ( + ) 一酒石酸、 ィタコン 酸、 フマル酸およびマレイン酸をそれぞれ、 コハク酸と共に含み、 p H を 4. 5に設定したものを用いた。 p Hが 4. 5では、 コハク酸は効果 を持たず、 L (一) —リンゴ酸、 L ( + ) —酒石酸、 ィタコン酸、 フマ ル酸およびマレイン酸による効果を確認し易い。 比較例にはコハク酸の みを含む緩衝液を用いた。 表 1に各緩衝液の組成および p Hを示す。
組 成 PH
1 0. 02MのL (一) 一リンコ 、 0. 1Mのコハク酸
4重量%ポリエチレングリコール 6000 4. 5
2 0. 02Mの L (+) —酒 5¾、 0. 1Mのコハク酸
4重量%ポリエチレングリコール 6000 4. 5
3 0. 02Mのィタコン酸、 0. 1Mのコハク酸
4重量%ポリエチレングリコール 6000 4. 5
4 0. 02 Mのフマル酸、 0. 1Mのコハク酸
4重量%ポリエチレングリコール 6000 4. 5
5 0. 02Mのマレイン酸、 0. 1Mのコハク酸
4重暈%ポリエチレングリコ一ル 6000 4. 5
比 0. 12 Mのコハク酸
較 4重量%ポリエチレングリコ一ル 6000 4. 5 測定には、 分光蛍光光度計 (島津製作所 (株) 製の型番 R F— 5 3 0 0 P C) を使用した。 分光蛍光光度計の試料室に恒温セルホルダ (島津 製作所 (株) 製の型番 2 0 6 - 1 5440 ) を配置し、 恒温水槽 (TA I T E C (株) 製の商品名 COOLN I T BATH E L— 1 5 ) に 接続した。 温度を 2 5 °Cに保った水を循環させて、 測定時の温度を一定 に保つようにした。 分光蛍光光度計の測定条件は、 励起、 蛍光波長を共 に 6 7 0 nmとし、 蛍光側、 励起側共にバンド幅を 3 n mに、 感度は高 感度に設定した。
測定は次のように行った。 2. 8 7m l の緩衝液と 0. 1 m l抗体溶 液を攪拌混合した後、 これに 0. 0 3 m 1 のヒトアルブミン溶液を加え 攪拌混合し、 反応液を得た。 すなわち、 反応液における抗体およびヒト アルブミンの最終濃度は、 抗体については約 0. l OmgZm l とし、 ヒトアルブミンについては、 測定に使用したヒトアルブミン溶液の濃度 に 0. 0 1を乗じたものとした。 これを蛍光分析用の石英セルに移すと ともに分光蛍光光度計に設置し、 T型熱電対 (R Sコンポ一ネンッ社の 型番 2 1 9— 46 9 6 ) をセル内に浸漬した。 そして、 ヒトアルブミン を混合後 2分間経過した時点より、 タイムコース測定で、 0. 0 4秒間 隔で 3 0 0秒間測定した。
測定中のセル内の温度は、 T型熱電対をデジタルマルチサーモメ一夕 (アドパンテスト (株) 製の型番 TR 2 1 1 4) に接続してモニタした, セルの汚れが測定に与える影響は、 各反応の測定前にセル中に純水を入 れて測定し、 補正することにより除いた。 測定により得られた 2 0 0〜 3 0 0秒の間の各測定値の平均値を求め、 これを各濃度のヒトアルブミ ン溶液に対する測定値とした。 各緩衝液、 抗体溶液、 および各濃度のヒ トアルブミン溶液を混合した反応液の p Hへの影響を調べるために、 測 定終了後、 p H計で、 混合液の p Hの測定を行った。 その結果、 各測定に使用した各緩衝液、 抗体溶液、 各濃度のヒトアル ブミン溶液からなる混合液の p Hは、 いずれも緩衝液の p Hと同一であ つた。 熱電対で測定された各測定中のセル内の温度は 2 5. 5 ± 1 °Cに 保たれた。
測定結果を図 1 7に示す。 各緩衝液について、 300 mg/d lまで の各ヒトアルブミン溶液を加えて測定した結果をプロッ トしたものを図 1 7に示した。 縦軸は散乱光強度を示し、 横軸は測定に使用したヒトァ ルブミン溶液の濃度を示す。
本実施例の L (-) 一リンゴ酸、 L ( + ) —酒石酸、 ィタコン酸、 フ マル酸、 マレイン酸を含む緩衝液を用いた場合の方が、 比較例であるコ ハク酸のみからなる緩衝液を用いた場合よりも、 測定値が向上した。 ま た、 抗原過剰領域で生じる地帯現象による測定範囲の限定が緩和された < 以上の結果により、 ヒドロキシル基を有するジカルボン酸、 二重結合 を有するジカルボン酸、 化学式 ( 1 ) : HOO C (CH2) nC OOH (nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりな る群から選択される化合物を混合して使用した場合でも抗原抗体反応に 対して単体で使用した場合と同様の効果を示すことが確認された。
実施例 8
次に、 ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : HOO C (CH2) nCOOH (nは整数) で 表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選尺さ れる化合物を混合して使用した場合に、 抗原抗体反応に対する効果を示 す p Hの範囲について、 協働作用による拡大効果が見られるかどうかを, 免疫比朧法により調べた。
被測定物質としてはヒトアルブミンを用いた。 ヒトアルブミン溶液は. 実施例 3と同様のものを用いた。 また、 抗体溶液は、 実施例 1 と同様の ゥサギ抗ヒトアルブミンポリクローナル抗体を含む抗体溶液を用いた。 緩衝液としては、 0. 0 2 5 MのL ( + ) —酒石酸、 0. 0 2 5 Mの コハク酸、 ならびに 4重量%のポリエチレンダリコール 6 0 0 0を含む p H 4. 0、 4. 5、 5. 0、 5. 5、 および 6. 0の各緩衝液を用い た。 L ( + ) —酒石酸、 コハク酸をそれぞれ単独で用いた場合には、 実 施例 4および 5で調べた範囲では、 L ( + ) —酒石酸の有効 pHは 4. 0〜 5. 0、 コハク酸の有効 pHは 5. 0〜 6. 0であった。
比較例として、 0. 0 5 の^^〇 3、 および 4重量%のポリエチレ ングリコール 6 0 0 0を含む p H 7. 4の緩衝液を用い、 抗体溶液とし ては、 上記と同様のゥサギ抗ヒトアルブミンポリクローナル抗体を含む 抗体溶液を用いた。
免疫反応の測定は、 実施例 3と同様の方法により行った。
得られた測定結果を図 1 8に示す。 縦軸は電圧値を示し、 横軸は測 に使用したヒトアルブミン溶液の濃度を示す。
L ( + ) —酒石酸とコハク酸とを含む緩衝液を用いた場合では、 抗原 抗体反応に対する有効 pHが 4. 5〜 6. 0となり、 それぞれを単独で 含む緩衝液を用いた場合に比べて、 有効 p Hの範囲が拡大した。
以上より、 ヒドロキシル基を有するジカルボン酸、 二重結合を有する ジカルボン酸、 化学式 ( 1 ) : HOO C (CH2) nC OOH (nは整 数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から 選択される各化合物の特性を組み合わせることにより、 有効 p Hの範囲 を拡大できることが確認された。 産業上の利用の可能性
以上のように、 本発明によれば、 容易に測定値の向上が可能な免疫反 応測定方法およびそれに用いる免疫反応測定用試薬を提供することがで きる。 さらに、 抗原過剰領域で生じる地帯現象による測定範囲の限定を 緩和することが可能な免疫反応測定方法およびそれに用いる免疫反応測 定用試薬を提供することができる。

Claims

1. 試料中に含まれる被測定物質である抗原または抗体を測定する免疫 反応測定方法であって、
(A) ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : H〇〇 C (CH2) nC OOH (nは整数) で 胄
表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択さ れる少なくとも 1種の化合物と、 前記被測定物質に対して特異的に結合 の
する特異結合物質である抗体または抗原とを、 前記試料と混合し、 酸性 の反応液を得る工程、 ならびに
(B) 前記反応液において前記被測定物質と前記特異結合物質との抗 原抗体反応により生じた抗原—抗体複合体を検出する工程を含むことを 特徴とする免疫反応測定方法。 .
2. 前記ヒドロキシル基を有するジカルボン酸がリンゴ酸および酒石酸 であり、 前記二重結合を有するジカルボン酸がィタコン酸、 フマル酸お よびマレイン酸である請求の範囲第 1項記載の免疫反応測定方法。
3. 前記直鎖状ジカルボン酸のメチレン鎖の長さが n = 1〜 7の整数で ある請求の範囲第 1項記載の免疫反応測定方法。
4. 前記反応液にさらに緩衝剤を添加する請求の範囲第 1項記載の免疫 反応測定方法。
5. 前記反応液の pHを 4 0〜 6. 0に設定する請求の範囲第 1項記 載の免疫反応測定方法。
6. 前記反応液の p Hを 4 5〜 6. 0に設定する請求の範囲第 1 載の免疫反応測定方法。
7. 前記反応液の p Hを 4 5〜 5. 0に設定する請求の範囲第 1項記 載の免疫反応測定方法。
8. 前記反応液の p Hを 5. 0〜 6. 0に設定する請求の範囲第 1項記 載の免疫反応測定方法。
9. 前記ヒドロキシル基を有するジカルボン酸、 二重結合を有するジカ ルボン酸、 化学式 ( 1 ) : HOO C (CH2) nC OOH (nは整数) で 表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択さ れる少なくとも 1種の化合物の、 前記反応液における濃度が 0. 1 M以 下に設定される請求の範囲第 1項記載の免疫反応測定方法。
1 0. 前記ヒドロキシル基を有するジカルボン酸、 二重結合を有するジ カルボン酸、 化学式 ( 1 ) : HOOC (CH2) nCOOH (nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択 される少なくとも 1種の化合物の、 前記反応液における濃度が 0. 0 1 〜 0. 1 Mの範囲に設定される請求の範囲第 1項記載の免疫反応測定方 法。
1 1. 前記ヒドロキシル基を有するジカルボン酸、 二重結合を有するジ カルボン酸、 化学式 ( 1 ) : HOOC (CH2) nCOOH (nは整数) で表される直鎖状ジカルボン酸、 およびこれらの塩よりなる群から選択 される少なくとも 1種の化合物の、 前記反応液における濃度が 0. 0 1 〜 0. 0 5 Mの範囲に設定される請求の範囲第 1項記載の免疫反応測定 方法。
1 2. 前記反応液がポリエチレングリコールを 2〜 6重量%含む請求の 範囲第 1項記載の免疫反応測定方法。
1 3. 前記抗原一抗体複合体が凝集複合体である請求の範囲第 1項記載 の免疫反応測定方法。
1 4. 前記凝集複合体に起因する光学的変化量を測定することにより前 記凝集複合体を検出する請求の範囲第 1 3項記載の免疫反応測定方法。
1 5. 前記光学的変化量が散乱光強度の変化量である請求の範囲第 1 4 項記載の免疫反応測定方法。
1 6 . 前記特異結合物質がモノクローナル抗体を含む抗体である請求の 範囲 1項記載の免疫反応測定方法。
1 7 . 前記特異結合物質が、 凝集複合体を生成可能なように調製された 1種類以上のモノクローナル抗体の混合物である請求の範囲第 1項記載 の免疫反応測定方法。
1 8 . 前記抗原がヒトアルブミンであることを特徴とする請求の範囲第. 1項記載の免疫反応測定方法。
PCT/JP2003/015754 2002-12-10 2003-12-09 免疫反応測定方法 WO2004053489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004558449A JP4512492B2 (ja) 2002-12-10 2003-12-09 免疫反応測定方法およびそれに用いる免疫反応測定用試薬
US10/516,067 US7202041B2 (en) 2002-12-10 2003-12-09 Immunoreaction measurement method
EP03777421A EP1512972B1 (en) 2002-12-10 2003-12-09 Immunoreaction measurement method
DE60326717T DE60326717D1 (de) 2002-12-10 2003-12-09 Immunreaktionsmessverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-357459 2002-12-10
JP2002357459 2002-12-10
JP2002364195 2002-12-16
JP2002-364195 2002-12-16

Publications (1)

Publication Number Publication Date
WO2004053489A1 true WO2004053489A1 (ja) 2004-06-24

Family

ID=32510628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015754 WO2004053489A1 (ja) 2002-12-10 2003-12-09 免疫反応測定方法

Country Status (6)

Country Link
US (1) US7202041B2 (ja)
EP (1) EP1512972B1 (ja)
JP (1) JP4512492B2 (ja)
KR (1) KR20050083623A (ja)
DE (1) DE60326717D1 (ja)
WO (1) WO2004053489A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028225B2 (en) * 2001-09-25 2006-04-11 Path Communications, Inc. Application manager for monitoring and recovery of software based application processes
KR101239219B1 (ko) * 2009-10-15 2013-03-06 한국전자통신연구원 바이오 칩 및 바이오 칩 검출 방법
EP2807490B1 (en) 2012-01-26 2017-09-13 Leica Biosystems Richmond, Inc. Method for hematoxylin and eosin staining
BR112019023210A2 (pt) * 2017-05-09 2020-05-26 Immundiagnostik Ag Método para determinação de membros da família s100 de proteínas de ligação ao cálcio por meio de imunoturbidimetria

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261561A (ja) * 1988-08-26 1990-03-01 Dai Ichi Pure Chem Co Ltd 免疫反応の測定方法
JPH0682450A (ja) * 1992-09-04 1994-03-22 Eiken Chem Co Ltd 免疫学的測定試薬
JPH11344494A (ja) * 1998-06-01 1999-12-14 Eiken Chem Co Ltd 免疫学的凝集反応試薬およびこれを用いたプロゾーン現象の抑制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962413A (en) * 1974-05-14 1976-06-08 Cornell Research Foundation, Inc. Plate methods for diagnosing Brucella canis infection
JPS57182169A (en) * 1981-05-02 1982-11-09 Mitsubishi Chem Ind Ltd Measuring method for antigen-antibody reaction
JPS6057257A (ja) * 1983-09-09 1985-04-03 Hitachi Ltd イムノアツセイ法
US4931385A (en) * 1985-06-24 1990-06-05 Hygeia Sciences, Incorporated Enzyme immunoassays and immunologic reagents
DE4343479A1 (de) * 1993-12-21 1995-06-22 Boehringer Mannheim Gmbh Acylierte Proteinaggregate und deren Verwendung zur Entstörung von Immunoassays
JPH0989894A (ja) 1995-09-19 1997-04-04 Sanyo Chem Ind Ltd 免疫学的測定法
JPH10332694A (ja) 1997-06-03 1998-12-18 Sanyo Chem Ind Ltd 免疫学的測定法
AU2001280210A1 (en) * 2000-08-29 2002-03-13 Kyowa Medex Co., Ltd. Highly reproducible agglutination immunoassay method and reagents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261561A (ja) * 1988-08-26 1990-03-01 Dai Ichi Pure Chem Co Ltd 免疫反応の測定方法
JPH0682450A (ja) * 1992-09-04 1994-03-22 Eiken Chem Co Ltd 免疫学的測定試薬
JPH11344494A (ja) * 1998-06-01 1999-12-14 Eiken Chem Co Ltd 免疫学的凝集反応試薬およびこれを用いたプロゾーン現象の抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1512972A4 *

Also Published As

Publication number Publication date
JPWO2004053489A1 (ja) 2006-04-13
DE60326717D1 (de) 2009-04-30
US7202041B2 (en) 2007-04-10
EP1512972A4 (en) 2006-06-14
EP1512972A1 (en) 2005-03-09
EP1512972B1 (en) 2009-03-18
US20050176063A1 (en) 2005-08-11
KR20050083623A (ko) 2005-08-26
JP4512492B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1396724B1 (en) Method of assay by immunoreaction and reagent for use in the immunoreaction assay
JP3871677B2 (ja) 免疫反応測定方法及びそれに用いる免疫反応測定用試薬キット
JP6399632B2 (ja) 赤血球含有サンプル中の対象物を検出するためのイムノクロマトグラフィー用テストストリップ、および該テストストリップを使用するイムノクロマトグラフィー
WO2017209001A1 (ja) 抗ヒトヘモグロビンモノクローナル抗体若しくは抗体キット、抗ヒトヘモグロビンモノクローナル抗体固定化不溶性担体粒子、及びこれらを用いた測定試薬若しくは測定方法
JP5955843B2 (ja) 免疫学的測定方法に用いられるコンジュゲート
WO2004053489A1 (ja) 免疫反応測定方法
JPWO2018212221A1 (ja) インスリンの測定方法及び測定試薬
WO2022163605A1 (ja) 免疫学的測定方法
JP2006343214A (ja) 免疫反応測定方法及びそれに用いる免疫反応測定用試薬
WO2005031353A1 (ja) 免疫反応測定方法、ならびにそれに用いる試薬、キット、及び光学セル
JP5177677B2 (ja) 抗原およびその抗原に対する抗体を測定する方法、並びにそれに用いる測定用試薬
WO2016098177A1 (ja) 赤血球含有サンプル中の対象物を検出するためのイムノクロマトグラフィー用テストストリップ、および該テストストリップを使用するイムノクロマトグラフィー
CN100492008C (zh) 免疫反应测定方法
WO2024048583A1 (ja) 免疫学的測定方法、非特異反応抑制方法、免疫学的測定試薬、免疫学的測定試薬キット、組成物、非特異反応抑制剤、及び使用
JP6513189B2 (ja) 間接ELISAを利用するヒトFc包含タンパク質の力価測定キット及びこれを利用したFc包含タンパク質の力価測定方法
JP2007225417A (ja) ヒトアルブミン測定用抗体試薬
JP2004020369A (ja) 免疫反応測定キット及びそれを用いた免疫反応測定方法
JPH0862218A (ja) リウマチ因子の測定方法
JP2005195434A (ja) 免疫測定方法および免疫測定試薬

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10516067

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003777421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004558449

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A05962

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057002236

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003777421

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002236

Country of ref document: KR