WO2004044500A1 - ガス加熱方法及び加熱装置 - Google Patents

ガス加熱方法及び加熱装置 Download PDF

Info

Publication number
WO2004044500A1
WO2004044500A1 PCT/JP2003/013971 JP0313971W WO2004044500A1 WO 2004044500 A1 WO2004044500 A1 WO 2004044500A1 JP 0313971 W JP0313971 W JP 0313971W WO 2004044500 A1 WO2004044500 A1 WO 2004044500A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heating
exhaust gas
ceramic
heater
Prior art date
Application number
PCT/JP2003/013971
Other languages
English (en)
French (fr)
Inventor
Manabu Hashikura
Hirohiko Nakata
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP03770061A priority Critical patent/EP1568949A1/en
Priority to US10/504,238 priority patent/US20050085057A1/en
Publication of WO2004044500A1 publication Critical patent/WO2004044500A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between

Definitions

  • the present invention gas heating apparatus used in the reactor of heating method and various gases, processing apparatus and the NOX or NH 3 containing gas discharged from a semiconductor device or a liquid crystal manufacturing process if example embodiment, sterilization in hospitals And a gas heating device used in a device for treating harmful or toxic exhaust gas from a sterilization process.
  • the manufacturing process of a semiconductor device includes a wafer processing step of processing a semiconductor wafer to form an integrated circuit.
  • various processes such as a thin film forming process, an oxidation process, a doping process, and an etching process are performed to form an insulating film, an electrode wiring, a semiconductor film, and the like on the wafer surface.
  • Japanese Patent Application Laid-Open No. 9-1213596 discloses a method of mixing exhaust gas containing NOx generated from a process with a diluting gas. Process, preheating diluted exhaust gas, and selective corrosion of exhaust gas There has been proposed a treatment method and apparatus comprising an elimination step of removing nitrogen oxides by a reduction reaction. In this selective catalytic reduction reaction, NOx is reduced to nitrogen by adding a reducing gas such as ammonia to the NOx-containing exhaust gas and causing it to corrode with a catalyst composed of a metal complex such as Fe or Mn. Is what you do.
  • a reducing gas such as ammonia
  • the NOx-containing exhaust gas treatment device has an exhaust gas inlet 1a and a dilution gas inlet 1b, and is configured to supply a diluent gas composed of air or a mixed gas of oxygen and an inert gas. It has a mixing section 1 for mixing with exhaust gas, and an exhaust gas preheating section 2 connected to the mixing section 1.
  • the preheating section 2 has a cylindrical casing 2a filled with ceramic particles 3 and a cylindrical heater 4 provided outside the casing 2a so as to preheat diluted exhaust gas. It has become.
  • the preheated exhaust gas flows from the preheating section 2 to the reaction section 5, and a reducing gas such as NH 3 is added from a reducing gas introduction pipe 7.
  • a coil-shaped heater 6 is provided outside the casing 5a of the reaction section 5, and contacts the catalyst (not shown) in the casing 5a while keeping the NOx-containing exhaust gas at a predetermined temperature. NOx in exhaust gas is reduced and removed.
  • the exhaust gas from which NOx has been reduced and removed in the reaction section 5 is cooled in the cooling section 8 and then discharged outside through an exhaust gas outlet 8a.
  • the semi-fabric manufacturing process uses a perfluorinated (PFC) gas that is harmless to the human body, has no explosive properties, and is easy to handle, as the etching gas for dry etching and the cleaning gas for the CVD process.
  • PFC perfluorinated
  • CF 4 has 50,000 years
  • C 2 F 6 has 10,000 years
  • SF 6 has 3200 years.
  • these gases warming coefficient is very large
  • CF 4 is 6500-fold compared to C_ ⁇ 2 F 6 is 9200 times
  • Japanese Patent No. 3217704 proposes a method of efficiently disintegrating at a combustion temperature of 700 ° C. using an alumina-based catalyst. In this way, the exhaust gas before entering the erosion tank is indirectly heated by an electric heater in the heater until the decomposition of the PFC starts at about 650-750 ° C.
  • gases used for sterilization and sterilization in hospitals, etc. such as ethylene oxide gas, propylene oxide gas, formaldehyde gas, MR gas, etc. are also treated after being treated because their exhaust gases are toxic or harmful. Must be discharged outside. It is also necessary to remove harmful gases such as carbon monoxide and hydrocarbons emitted from combustion equipment and organic solvent drying equipment before releasing them to the atmosphere.
  • a harmful or toxic exhaust gas treatment device for example, as described in Japanese Patent Application Laid-Open No. Hei 9-1990
  • the treatment can be performed at a low temperature of 200 to 400 ° C. as compared with the case of direct combustion.
  • a harmful gas ethylene oxide gas
  • a blowing means heated, and then brought into contact with a catalyst for purification treatment.
  • the heater for heating the exhaust gas does not come into contact with the gas, and either indirectly heats the gas, or even if it comes into contact with the gas, the normal resistance heat generation occurs as a whole. Because of the use of a body, the heater is susceptible to corrosion by gas, and the flowing gas cannot be heated efficiently, so that the heating time is prolonged and power consumption is increased. Further, in order to heat a predetermined amount of gas, the heating chamber had to be enlarged, and there was a problem that the apparatus became large. Disclosure of the invention
  • the present invention provides a gas heating method capable of directly and efficiently heating a gas using a heater that can be heated at a high speed without being corroded by the gas, and
  • An object of the present invention is to provide a small and energy-saving gas heating device for implementing this method.
  • a gas heating method provided by the present invention is to arrange a flat ceramic heater or ceramic heater in a gas flow path or a heating chamber, and to form a flow path or The gas supplied to the heating chamber is heated by the ceramic heater or the heater unit.
  • a plurality of the ceramic screens or heater units are arranged in alternate stairs to form a zigzag gas flow path.
  • the gas heating device provided by the present invention is characterized in that a flat ceramic heater or a heater unit combining a plurality of ceramic heaters is arranged in a gas flow path or a heating chamber so as to come into contact with the gas. And, it is preferable that a plurality of the ceramic heaters or heater units are provided in a staggered staggered manner to form a zigzag gas flow path.
  • the gas heating device of the present invention is used in an exhaust gas treatment device for reducing and removing nitrogen oxides or ammonia in exhaust gas from a semiconductor manufacturing process, and the dilution gas mixed with the exhaust gas or the exhaust gas.
  • the exhaust gas is used as a heating section for heating the exhaust gas or a dilution gas mixed with the exhaust gas.
  • an exhaust gas treatment device that oxidizes and decomposes harmful or toxic exhaust gas from sterilization and sterilization processes it can be used as a heating unit that heats the exhaust gas or a dilution gas mixed with the exhaust gas.
  • the ceramic heater includes a flat ceramic base material and a heating element provided on the surface or inside of the ceramic base material. Further, the ceramic heater includes a flat ceramic substrate, a heating element having a spiral pattern provided on both side surfaces of the ceramic substrate, and a ceramic layer or a glass layer respectively covering the heating elements. It is good Good.
  • the ceramic substrate is preferably made of aluminum oxide, silicon dioxide, aluminum nitride, silicon nitride, silicon carbide, zirconium boride, or a composite thereof. Further, it is preferable that the heat generator of the ceramic ceramic is made of W, Mo, Ag-Pd, Ag, or nichrome.
  • FIG. 1 is a schematic cross-sectional view showing an apparatus for treating NOx-containing exhaust gas discharged from a conventional semiconductor device manufacturing process.
  • FIG. 2 is a schematic sectional view showing a specific example of the gas heating device according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a specific example of a ceramic heater used in the gas heating device of the present invention.
  • FIG. 4 is a schematic plan view showing a specific example of a circuit pattern of a ceramic heater used in the gas heating device of the present invention.
  • FIG. 5 is a schematic plan view showing a specific example of a light unit used in the gas heating device of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a specific example of a NOx-containing exhaust gas treating apparatus discharged from a semiconductor device manufacturing process using the gas heating apparatus of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a specific example of a harmful gas treatment device discharged from a sterilization / sterilization step using the gas heating device of the present invention.
  • a flat ceramic heater or a unit formed by combining a plurality of ceramic heaters is disposed in a gas flow path or a gas heating chamber, and the gas flowing through the flow path or the heating chamber is subjected to the above-mentioned ceramic heating. Heat directly by heater or heater unit. Since the gas contacts the surface of the ceramic heater or the heater unit or is heated by radiant heat from a short distance, the gas can be efficiently heated in a small space.
  • a zigzag gas flow path A is formed by arranging a plurality of ceramic heaters 30 or heater units in a staircase in a staggered manner in a heating chamber in which the gas in the apparatus 10 flows.
  • the contact area between the gas and the ceramic heater 30 or the heat sink is increased, the heat transfer coefficient to flowing gas is improved, and the heating chamber is downsized. be able to.
  • the configuration of the gas flow path A can be freely changed by changing the mounting position of the ceramic heater 30 or the heater unit.
  • a ceramic heater used as a heat source is composed of a flat ceramic base material and a heating element provided on the surface or inside thereof. Joule heat generated by the heating element when energized is converted into gas through ceramics with high thermal conductivity. The temperature can be increased and decreased rapidly as the overall thickness is reduced. Therefore, the standby time required for raising the temperature of the heater is reduced, and the power-on time can be reduced, so that power consumption can be reduced.
  • a ceramic substrate 31 which is thin and flat and has excellent thermal conductivity, heat resistance and corrosion resistance, and a heating element 3 2 (3) formed in a spiral pattern on both surfaces of the ceramic substrate 31. 2a, 32b).
  • These heating elements 32 (32a, 32b) are covered with ceramic layers or glass layers 33a, 33, respectively.
  • Reference numerals 34 and 34 in FIG. 4 denote electrodes for energizing the heating element 32.
  • the ceramic layer or glass layer 33a, 33b covering the heating elements 32a, 32b is made of the same type of ceramic as the ceramic substrate 31 or ceramics to prevent breakage and delamination during use. Glass having a small difference in thermal expansion coefficient from the substrate 31 is preferable.
  • the ceramic layer or the glass layer 33a and 33b having corrosion resistance as described above corrosion of the heating elements 32a and 32b can be prevented. I can do it.
  • the circuit pattern of the heating element 32 is, as shown in FIG. 4, a combination of one or more spiral patterns. By making such a spiral pattern, the density of the heating element 32 becomes high and uniform, so that more efficient heating and At the same time as rapid heating and rapid cooling become possible, the temperature distribution on the heater surface becomes uniform, and the temperature variation of the gas can be reduced.
  • a heater unit in which a plurality of ceramic heaters are combined can be used.
  • four ceramic heaters 30 are arranged in parallel, attached to a frame 36, and fixed with a support member 37 to form a heater unit 35.
  • Reference numeral 38 in FIG. 5 denotes a lead wire for supplying electricity to each ceramic capacitor 30.
  • the material of the support member 37 may be an insulator, but if it is made of a conductive material, it can be used as a lead wire, so that the lead wire 38 can be omitted.
  • a metal such as SUS or an insulator such as glass or resin can be used.
  • a heat source having a large contact area with the gas can be secured, which is advantageous when the volume of the heating chamber is large or when the gas flow rate is high.
  • the ceramic heater 30 may be three-dimensionally changed by changing the mounting position.
  • a heater circuit is formed on both surfaces of a thin ceramic base material by printing or the like, and then baked to form a heating element.
  • a ceramic layer or a glass layer is formed so as to cover the heating element.
  • a heater circuit is formed between the ceramic sheets, and then the firing is performed by baking the heating element, and at the same time, the ceramic substrate and each ceramic sheet are coated.
  • the layers can also be joined.
  • the ceramic substrate of the ceramics is made of aluminum oxide, silicon dioxide, aluminum nitride, silicon nitride, silicon carbide, zirconium boride, or a composite thereof.
  • silicon carbide and zirconium boride or a composite thereof can be directly heated without forming a heating element.
  • the heating element is preferably made of W, Mo, Ag-Pd, Ag, or nichrome.
  • the ceramic layer covering the heating element is preferably made of the same type of ceramic as the ceramic substrate. Further, as the glass layer covering the heating elements, small glass with a ceramic substrate and a thermal expansion coefficient difference, for example, Z n O- B 2 O 3 - S i 0, system glass and the like are preferable.
  • the gas heating apparatus of the present invention for example, Oite nitrogen oxides NO x or NH 3 in the exhaust gas issued discharged from a semiconductor manufacturing process to the exhaust gas processing apparatus for reducing removal, the NO x or NH 3 It can be used as a preheating section for preheating the contained exhaust gas or the dilution gas mixed with the exhaust gas. Further, in an exhaust gas treatment apparatus that decomposes and removes perfluorinated substances present in exhaust gas from a semiconductor manufacturing process, it can also be used as a heating unit that heats the exhaust gas or a dilution gas mixed with the exhaust gas.
  • an exhaust gas treatment device that oxidizes and decomposes toxic or harmful exhaust gas discharged from sterilization and sterilization processes in hospitals, etc.
  • it should also be used as a heating unit that heats the exhaust gas or the dilution gas mixed with the exhaust gas.
  • a heating unit that heats the exhaust gas or the dilution gas mixed with the exhaust gas.
  • This waste gas treatment device includes a preheating section 12 for preheating the dilution gas such as air supplied from the dilution gas inlet 12a, and an exhaust gas inlet 11a for the preheated dilution gas.
  • Mixing section 11 for mixing NOx-containing exhaust gas introduced from the reactor, and a reaction section 1 for reducing and removing nitrogen oxides NOx by selective contact reduction reaction by bringing the diluted exhaust gas into contact with a catalyst (not shown). 5 and have.
  • a plurality of ceramic heaters 30 or heater units are arranged in the casing 13 in a staggered staggered manner, and a zigzag gas flow path is formed. Therefore, the air which is the diluent gas introduced from the diluent gas inlet 12a flows through the zigzag gas flow path formed by the ceramic heater 30 or the heater unit while the ceramic heater 30 or The heat unit preheats to a temperature of about 380-400.
  • the preheated air is mixed with the N ⁇ x-containing exhaust gas supplied from the exhaust gas inlet 11 a in the mixing section 11, and reduced in the reaction section 15, such as NH 3 supplied from the reducing gas inlet pipe 17.
  • Gas is added.
  • the reaction section 15 is filled with a catalyst (not shown) made of a metal complex such as Fe and Mn, and a coil heater 16 is provided outside the casing 15a. While maintaining the temperature in the reaction section 15 at about 180 to 250 ° C. with the coiled heater 16, it reacts with NH 3 added with N 0 X in the exhaust gas on the corrosion medium. They are to be reduced and removed. In addition, excessively added NH 3 is converted to ⁇ 2 in air on the catalyst. The reaction was, are removed as N 2 and H 2 0.
  • the exhaust gas from which NO x has been reduced and removed in the NH 3 reaction section 15 is cooled to a temperature of about 80 ° C. or lower in the cooling section 18 and then discharged to the outside from the exhaust gas outlet 18 a.
  • the above-described gas heating device can be used in almost the same manner as the exhaust gas heating unit in an exhaust gas treatment device that decomposes and removes N ⁇ X, NH 3 or perfluoride present in the exhaust gas from the semiconductor manufacturing process. Can be.
  • a mixing section 1 for diluting gas and exhaust gas a preheating section 2 for the mixed gas
  • a reaction section 5 for reducing and removing nitrogen oxides using an erosion medium.
  • the preheating section 2 was large and the heating efficiency was very poor.
  • the ceramic heater 30 or heater unit as the heat source, the dilution gas can be efficiently preheated, and the preheating section 12 can be downsized. It can be integrated with the part 11 and the reaction part 15.
  • FIG. 7 shows a specific example of an exhaust gas treatment device that oxidizes and decomposes toxic or harmful exhaust gas from sterilization and sterilization processes in hospitals and the like, in which the gas heating device of the present invention is used in its heating section.
  • the exhaust gas treatment device shown in Fig. 7 has a heating unit 22 for heating the harmful exhaust gas used in the sterilization-sterilization process supplied from the harmful gas inlet 22a, and a catalyst for the heated harmful exhaust gas (Fig. (Not shown), and a mixing unit 21 for mixing the oxidatively decomposed gas with a diluent gas such as air introduced from the diluent gas inlet 2 la.
  • a cooling section 28 for cooling and discharging the exhaust gas from the exhaust gas outlet 28 a to the outside.
  • the configuration of the heating section 22 is almost the same as that of the preheating section 12 shown in FIG. 6, and a flat ceramic heater or heater unit 35 is provided in the casing 23 alternately in a staircase.
  • a heater unit 35 combining a plurality of flat ceramic heaters is connected to one end of the casing 23 so that only one end is alternately opened from the inner wall of the casing 23.
  • the other parts are fixed to the inner wall of the casing 23 and arranged stepwise, and a zigzag gas flow path is formed in the casing 23.
  • the harmful exhaust gas is generated by the jig formed by the ceramic heater or heater unit 35. During the zigzag flow in the zigzag gas flow path, it is heated to a temperature of about 400 to 600 ° C.
  • the configuration of the reaction section 25 is the same as that shown in FIG. 6, and the casing 25a is filled with an oxygen catalyst (not shown), and a coiled heater 26 is provided outside the casing. is there.
  • a ceramic heater as a heat source for gas heating, Joule heat generated in the heating element can be efficiently transmitted to gas through a ceramic substrate or a ceramic layer or a glass layer having high thermal conductivity. It is possible to increase and decrease the temperature rapidly as the thickness of the ceramic heater is reduced. Therefore, it is possible to shorten the stamping time required for the temperature rise in the evening, reduce the power supply time, and reduce the power consumption.
  • the gas heating apparatus can reduce the size of the gas flow passage and the heating chamber.
  • the size of the entire device can be reduced, for example, by integrating the structure.
  • the gas heating device according to the present invention is applied to a harmful exhaust gas treatment device used in a sterilization / sterilization process in a hospital. That is, as shown in FIG. 7, a heater unit 3 in which four ceramic heaters are combined in a casing 23 as a heating unit 22 for heating the harmful exhaust gas supplied from the harmful gas inlet 22 a. Four sets of 5 were installed in alternate stairs to form a zigzag gas flow path in casing 23.
  • the heating section 22 includes a SUS casing 23 having an inner diameter of 43 mm ⁇ 43 mm ⁇ height 48 mm, and the casing 23 has 4 2 O in the casing 23.
  • Four sets of flat heater units 35 of mm X 30 O mm X thickness 5 mm are arranged at intervals of 9 O mm from each other so as to be in a staircase shape.
  • each heater unit 35 has a structure in which four ceramic heaters 30 are combined in a flat plate shape and fixed by a frame 36 and a support member 37. At this time, the frame 36 was made of glass. As shown in FIG.
  • each ceramic heater 30 constituting each heater unit 35 is made of a plate-like A 1 N ceramic substrate 31 having a thickness of 0.6 mm and having a thickness of 0.6 mm.
  • Pd-Ag heating elements 32a and 32b are formed on the surface, and the layers are covered with glass layers 33a and 33b, respectively. 0.65 mm.
  • the circuit pattern of each heating element 32a, 32b is a pattern in which three spiral circuits are continuous, and electrodes 34, 3 for energization are provided at both ends of the pattern. It has four.
  • a gas heating method and a gas heating apparatus capable of directly and efficiently heating a gas by using a heater that can be heated at a high speed without being corroded by the gas are provided. Can be provided.
  • this gas heating device since this gas heating device is small and consumes little energy, it should be used as a preheating unit or heating unit for various types of exhaust gas treatment equipment, such as the exhaust gas or dilution gas mixed with the exhaust gas. This makes it possible to reduce the size of the entire apparatus and save energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

 ガスによる腐蝕を受けず、高速昇温が可能なヒータを用いて、ガスを直接且つ効率的に加熱することができるガス加熱方法、及び小型で省エネ化されたガス加熱装置を提供する。 ガスの流路又は加熱室内に平板状のセラミックスヒータ30又はセラミックスヒータを複数組み合わせたヒータユニットを、互い違いの階段状に複数配置してジグザグなガス流路Aを形成し、ガス流路Aに供給されるガスをセラミックスヒータ30又はヒータユニットで直接加熱する。このガス加熱装置10は、NOx含有排ガスや有害又は有毒な排ガスの処理装置において、これらの排ガスやその希釈ガスの加熱に用いることができる。

Description

明細書
ガス加熱方法及び加熱装置 技術分野
本発明は、 ガスの加熱方法並びに各種の反応装置に使用されるガス加熱装置、例 えば半導体装置や液晶の製造工程から排出される N O X又は N H 3含有排ガスの処 理装置や、病院等における滅菌及び殺菌工程からの有害又は有毒排ガスの処理装置 等に使用されるガス加熱装置に関する。 背景技術
半導体装置の製造工程には、半導体ゥェハを処理して集積回路を形成するゥェハ 処理工程が含まれる。 このウェハ処理工程では、 ウェハ表面に絶縁膜、 電極配線、 半導体膜などを形成するため、 薄膜形成工程、 酸化処理工程、 ドーピング工程、 及 びエッチング工程など、 種々の処理が行われる。
その際、 物理蒸着、 化学蒸着、 ェピタキシャル成長等の手段を用いているが、 こ れら処理では酸素ガス、 水素ガス、 亜酸化窒素ガス等を使用するため、処理後の排 ガスとして様々な使用済みガス又は副生ガスが発生する。特に、亜酸化窒素ガスな どを用いてウェハに熱酸化膜を形成する工程では、窒素酸化物 N O Xが含まれる排 ガスが発生する。 また、 窒化ガリウムのェピタキシャル工程では、 アンモニア NH 3を含む排ガスが発生する。
このような排ガスをそのまま外部に排出すると環境汚染を引き起こす場合があ るので、 その濃度を許容値以下にまで処理する必要がある。例えば、 窒素酸化物や N H 3を含む排ガス等については、 ウォー夕一シャワー中に通過させて窒素酸化物 や N H 3を除去する湿式吸着法、即ちスクラバ一法が知られている。 しかしながら、 このスクラパ一法では、 許容値以下の濃度にまで窒素酸化物や NH 3を除去するこ とは困難であった。
半導体製造工程から排出される N ,0 X含有排ガスの処理技術として、特開平 9一 2 1 3 5 9 6号公報には、ゥヱハ処理工程から発生する N O xを含む排ガスを希釈 ガスと混合する工程と、希釈化された排ガスを予熱する工程と、排ガスを選択接蝕 還元反応させて窒素酸化物を除去する除外工程とからなる処理方法及び装置が提 案されている。 尚、 この選択接触還元反応は、 NO X含有排ガスにアンモニア等の 還元ガスを添加し、 F eや Mn等の金属複合体等からなる触媒に接蝕させることに より、 NO Xを窒素に還元するものである。
また、 この NOx含有排ガスの処理装置は、 図 1に示すように、排ガス導入口 1 aと希釈ガス導入口 1 bを有し、空気又は酸素と不活性ガスの混合ガス等からなる 希釈ガスを排ガスに混合する混合部 1と、混合部 1に接続された排ガスの予熱部 2 とを備えている。この予熱部 2はセラミックス粒子 3が充填された筒状のケーシン グ 2 aと、 ケ一シング 2 aの外側に設けた筒状ヒータ 4とを有し、希釈された排ガ スを予熱するようになつている。
予熱された排ガスは予熱部 2から反応部 5に流入すると共に、還元ガス導入管 7 から NH3等の還元ガスが添加される。 反応部 5のケ一シング 5 aの外側にはコィ ル状ヒータ 6が設けてあり、 NOx含有排ガスを所定温度に保持しながらケ一シン グ 5 a内の触媒(図示せず) に接触させ、 排ガス中の NOxを還元除去するように なっている。反応部 5で NOxが還元除去された排ガスは、冷却部 8で冷却された 後、 排ガス出口 8 aから外部に排出される。
また、半尊体製造プロセスでは、 ドライエッチングのエッチングガスや CVDェ 程でのクリーニングガスに、人体に無害で爆発性がなく、取り扱いの容易な過フッ 化物 (PFC) ガスを使用している。実際にエッチング又はクリーニングで消費さ れるガス量は数〜数十 vo 1 %であり、残りは未反応のまま反応容器外に排出され る。
PFCは、 塩素を含まない FC (フルォロカ一ボン) や HFC (ヒドロフルォロ 力一ボン) のフロンと、 NF3や S F6などからなり、 分子間の結合力が高いので、 大気中に長時間安定に存在することができる。 例えば、 CF4が 50000年、 C 2F6が 1 0000年、 S F6が 3200年と寿命が非常に長い。 また一方で、 これ らのガスは温暖化係数が非常に大きく、 C〇 2と比較して C F 4が 6500倍、 C 2 F 6が 9200倍、 S F 6が 23900倍に及ぶ。
昨今の有害ガス排出規制により、 これらのガスは規制の対象となりつつある。そ こで、半導体製造工場における排気対策の一環として、 これらのガスを分解処理す る装置の設置が進められている。 また、 これらのガスの分解方法としては、薬剤方 式と燃焼方式が実用化されている。後者の燃焼方式としては、例えば特許第 3 2 1 7 0 3 4号公報において、アルミナ系触媒を用いて燃焼温度 7 0 0 °Cで効率良く分 解する方法が提案されている。 この方法で、蝕媒槽に入る前の排ガスは、 P F Cの 分解が開始される約 6 5 0〜7 5 0 °Cにまで、加熱器中の電気ヒータにより間接加 熱されている。
一方、病院等での滅菌処理や殺菌処理に使用されているガス、例えばエチレンォ キサイドガス、酸化プロピレンガス、 ホルムアルデヒドガス、 M Rガス等について も、その排ガスが有毒又は有害であることから、処理してから外部に排出する必要 がある。 また、燃焼装置や有機溶剤の乾燥装置等から排出される一酸化炭素や炭化 水素のような有害ガスについても、大気に放出する前にこれらの除去を行う必要が ある。
このような有害又は有毒な排ガスの処理装置として、例えば、特開平 9一 2 9 0 1 3 5号公報ゃ特開 2 0 0 0 - 3 2 5 7 5 1号公報に記載されているように、酸化 触媒を用いて酸化反応を促進させることにより分解処理する方法がある。この方法 によれば、直接燃焼させる場合と比較して 2 0 0〜4 0 0 °Cの低温で処理すること ができる。
例えば、特開 2 0 0 0— 3 2 5 7 5 1号公報に記載の装置では、エチレンォキサ ィドガスの流量を常時コントロールして蝕媒反応温度の発熱量を安定させると共 に、触媒機能が長期間安定する温度条件を維持している。 また、特開平 9— 2 9 0
1 3 5号公報に記載の装置では、有害ガスのエチレンォキサイトガスを送風手段に よってヒータに送り、加熱してから触媒と接触させることにより清净化処理するよ うになつている。
しかしながら、上記した従来の排ガス処理装置においては、排ガスを加熱するた めのヒータがガスと接触せず、間接的にガスを加熱するか、若しくはガスと接して もヒ一夕として通常の抵抗発熱体を使用しているため、ヒータがガスによる腐蝕を 受けやすいうえ、流れるガスを効率良く加熱することができず、加熱時間が長くな り、消費電力が大きくなるという欠点があった。 また、所定量のガスを加熱するた めには加熱室を大きくしなければならず、 装置が大型になるという問題もあった。 発明の開示
本発明は、 このような従来の事情に鑑み、 ガスによる腐蝕を受けず、 高速昇温が 可能なヒー夕を用いて、ガスを直接且つ効率的に加熱することができるガス加熱方 法、及びこの方法を実施するための小型で省エネ化されたガス加熱装置を提供する ことを目的とする。
上記目的を達成するため、本発明が提供するガス加熱方法は、ガスの流路又は加 熱室内に平板状のセラミツ.クスヒータ又はセラミックスヒータを複数組み合わせ たヒ一夕ュニットを配置し、流路又は加熱室に供給されたガスを該セラミックスヒ —夕又はヒータユニットで加熱することを特徴とする。特に、前記セラミックスヒ —夕又はヒータュニットが互い違いの階段状に複数配置され、ジグザグなガス流路 を形成していることが好ましい。
また、 本発明が提供するガス加熱装置は、 ガスの流路又は加熱室内に、平板状の セラミックスヒ一夕又はセラミックスヒータを複数組み合わせたヒー夕ユニット をガスと接触するように配置したことを特徴とする。特に、前記セラミックスヒー 夕又はヒー夕ュニットが互い違いの階段状に複数設置され、ジグザグなガス流路が 形成されていることが好ましい。
上記本発明のガス加熱装置は、具体的な使用例として、半導体製造工程からの排 ガス中の窒素酸化物又はアンモニアを還元除去する排ガス処理装置において、該排 ガス又は該排ガスに混合する希釈ガスを予熱する予熱部として用いる。 また、半導 体製造工程からの排ガス中に存在する過フッ化物を分解除去する排ガス処理装置 において、該排ガス又は該排ガスに混合する希釈ガスを加熱する加熱部として用い る。更に、滅菌及び殺菌工程からの有害又は有毒な排ガスを酸化分解する排ガス処 理装置において、該排ガス又は該排ガスに混合する希釈ガスを加熱する加熱部とし て用いることができる。
上記本発明のガス加熱装置においては、前記セラミックスヒータが、平板状のセ ラミックス基材と、セラミックス基材の表面又は内部に設けた発熱体とからなるこ とを特徴とする。また、前記セラミックスヒータは、平板状のセラミックス基材と、 セラミックス基材の両側表面にそれぞれ設けた渦巻き状パターンを有する発熱体 と、両発熱体をそれぞれ被覆するセラミックス層又はガラス層.とからなることが好 ましい。
更に、 上記セラミックスヒータにおいては、セラミックス基材が、酸化アルミ二 ゥム、二酸化珪素、窒化アルミニウム、窒化珪素、炭化珪素、ホウ化ジルコニウム、 又はそれらの複合物からなることが好ましい。 また、前記セラミックスヒ一夕の発 熱体が、 W、 M o、 A g— P d、 A g、 又はニクロムからなることが好ましい。 図面の簡単な説明
図 1は、従来の半導体装置の製造工程から排出される N O x含有排ガスの処理装 置を示す概略の断面図である。
図 2は、 本発明によるガス加熱装置の具体例を示す概略の断面図である。
図 3は、本発明のガス加熱装置に用いるセラミックスヒータの具体例を示す概略 の断面図である。
図 4は、本発明のガス加熱装置に用いるセラミックスヒータの回路パタ一ンの具 体例を示す概略の平面図である。
図 5は、本発明のガス加熱装置に用いるヒ一夕ュニットの具体例を示す概略の平 面図である。
図 6は、本発明のガス加熱装置を用いた、半導体装置の製造工程から排出される N O X含有排ガス処理装置の具体例を示す概略の断面図である。
図 7は、本発明のガス加熱装置を用いた、 滅菌'殺菌工程から排出される有害ガ ス処理装置の具体例を示す概略の断面図である。 発明を実施するための最良の形態
本発明においては、ガスの流路内あるいはガスの加熱室内に、平板状のセラミツ クスヒータ力、、又はセラミックスヒータを複数組み合わせたヒ一タュニットを配置 し、流路又は加熱室を流れるガスを上記セラミックスヒータ又はヒータュニットに より直接加熱する。ガスはセラミックスヒータ又はヒータユニットの表面に接触し 又は至近距離から輻射熱によって加熱されるため、少ないスペースでガスを効率良 く加熱することができる。
かかるガス加熱方法を実施するためには、例えば図 2に示すように、ガス加熱装 置 1 0のガスが流れる加熱室内に、セラミックスヒー夕 3 0又はヒータュニットを 互い違いの階段状に複数配置することにより、 ジグザグなガス流路 Aを形成する。 このような構造をとることにより、ガスとセラミックスヒータ 3 0又はヒ一夕ュニ ットとの接触面積が大きくなり、流れるガスへの熱伝達率を向上させると共に、加 熱室を小型化することができる。 尚、 ガス流路 Aの形態は、 セラミックスヒータ 3 0又はヒータュニッ卜の取り付け位置を変えることにより、自由に変更することが できる。
熱源として用いるセラミックスヒータは、平板状のセラミックス基材とその表面 又は内部に設けた発熱体とからなり、通電により発熱体で発生したジュ一ル熱を高 熱伝導率のセラミックスを介してガスに伝えることができ、しかも全体の厚さを薄 くするほど高速昇温及び急速降温が可能である。従って、 ヒータの昇温にかかるス 夕ンバイ時間が短くなると共に、通電時間を短縮することができるので消費電力を 削減することができる。
本発明に係わるセラミックスヒータとしては、図 3及び図 4に示す構造のものが 特に好ましい。 即ち、 薄い平板状で、 熱伝導性、耐熱性且つ耐食性に優れるセラミ ックス基材 3 1と、このセラミックス基材 3 1の両側の表面にそれぞれ渦巻き状パ ター に形成した発熱体 3 2 ( 3 2 a、 3 2 b ) とを備えている。 これらの発熱体 3 2 ( 3 2 a , 3 2 b ) は、 それぞれセラミックス層又はガラス層 3 3 a、 3 3 によって被覆されている。 尚、 図 4における符号 3 4、 3 4は、 発熱体 3 2に通電 するための電極である。
発熱体 3 2 a、 3 2 bを覆うセラミックス層又はガラス層 3 3 a、 3 3 bは、使 用中の破損や層剥離を防ぐため、 セラミックス基材 3 1と同種のセラミックスか、 若しくはセラミックス基材 3 1と熱膨張係数差の少ないガラスが好ましい。 また、 このように耐食性を有するセラミックス層又はガラス層 3 3 a、 3 3 bで発熱体 3 2 a、 3 2 bを覆うことにより、 発熱体 3 2 a、 3 2 bの腐食を防止することがで きる。
この発熱体 3 2の回路パターンは、 図 4に示すように、渦巻き状のパターンを 1 つ又はそれ以上組み合わせたものとする。このような渦巻き状パタ一ンとすること によって、発熱体 3 2の密度が高く且つ均一になるため、より一層効率的な加熱と、 急速加熱及び急速冷却が可能となると同時に、 ヒータ表面の温度分布が均一にな り、 ガスの温度パラツキを低減することができる。
また、セラミックスヒ一夕の代りに、複数のセラミックスヒータを複数組み合わ せたヒータユニットを用いることができる。例えば、 図 5に示すように、 4枚のセ ラミックスヒー夕 3 0を並列に並べて枠体 3 6に取り付け、支持部材 3 7で固定し てヒータユニット 3 5とする。 尚、 図 5における符号 3 8は、各セラミックスヒ一 夕 3 0に通電するためのリ一ド線である。支持部材 3 7の材質は、絶縁体でもよい が、 導電性の材質とすれば、 リード線として用いることができるので、 リード線 3 8を省略することも可能である。 また、 枠体 3 6の材質は、 S U S等の金属や、 ガ ラスや樹脂などの絶縁体を用いることができる。このようなヒ一夕ュニットによれ ば、ガスとの接触面積が大きな熱源を確保できるため、加熱室の容積が大きい場合 や、 ガスの流速が速い場合に有利である。 また、 これ以外にも、 ガスとの接触面積 を大きくするため、セラミックスヒ一タ 3 0の取り付け位置を変えることで、立体 的にしても良い。
上記セラミックスヒー夕の製造方法は、薄いセラミックス基材の両表面上に印刷 等の手法でヒー夕回路を形成した後、 焼き付けて発熱体とする。 次に、 この発熱体 を覆 ように、 セラミックス層又はガラス層を形成する。 尚、セラミックス基材上 の発熱体をセラミックス層で覆う場合には、セラミックスの各ダリ一ンシート間に ヒータ回路を形成した後、焼成することにより発熱体を焼き付けると同時にセラミ ックス基材と各セラミックス層を接合することもできる。
セラミックスヒ一夕のセラミックス基材としては、酸化アルミニウム、二酸化珪 素、 窒化アルミニウム、 窒化珪素、 炭化珪素、 ホウ化ジルコニウム、 又はそれらの 複合物からなることが好ましい。 尚、 上記セラミックスのうち、炭化珪素及びホウ 化ジルコニウム又はその複合物に関しては、発熱体を形成せずにそのまま通電加熱 することもできる。
'また、 発熱体は、 W、 M o、 A g— P d、 A g、 又はニクロムからなることが好 ましい。発熱体を覆うセラミックス層は、セラミックス基材と同種のセラミックス が好ましい。 更に、発熱体を覆うガラス層としては、セラミックス基材と熱膨張係 数差の少ないガラス、 例えば Z n O— B 2 O 3— S i 0 ,系ガラス等が好ましい。 上記した本発明のガス加熱装置の使用例として、例えば、半導体製造工程から排 出される排ガス中の窒素酸化物 N O x又は NH3を還元除去する排ガス処理装置に おいて、 その N O x又は NH 3含有排ガス又はその排ガスに混合する希釈ガスを予 熱する予熱部として用いることができる。 また、半導体製造工程からの排ガス中に 存在する過フッ化物を分解除去する排ガス処理装置において、その排ガス又はその 排ガスに混合する希釈ガスを加熱する加熱部として用いることもできる。 更には、 病院等での滅菌及び殺菌工程から排出される有毒又は有害な排ガスを酸化分解す る排ガス処理装置において、その排ガス又はその排ガスに混合する希釈ガスを加熱 する加熱部としても使用することができる。
例えば、半導体製造工程からの排ガス中に含まれる窒素酸化物を接蝕還元反応に より還元除去する Ν 0 X含有排ガスの処理装置について、その予熱部に本発明のガ ス加熱装置を用いた具体例を図 6に示す。 この Ν〇χ含有排ガスの処理装置は、希 釈ガス導入口 1 2 aから供給される空気等の希釈ガスを予熱するための予熱部 1 2と、予熱した希釈ガスに排ガス導入口 1 1 aから導入される N O x含有排ガスを 混合する混合部 1 1と、希釈された排ガスを触媒(図示せず) に接触させて選択接 触還元反応により窒素酸化物 N O xを還元除去する反応部 1 5とを備えている。 予 部 1 2は、そのケ一シング 1 3内に、セラミックスヒ一タ 3 0又はヒータュ ニットが互い違いの階段状に複数配置され、 ジグザグなガス流路が形成されてい る。従って、 希釈ガス導入口 1 2 aから取り入れた希釈ガスである空気は、 セラミ ックヒータ 3 0又はヒータユニットで形成されたジグザグなガス流路内を鏠うよ うに流れる間に、セラミックヒータ 3 0又はヒ一タュニットにより約 3 8 0〜4 0 0で程度の温度にまで予熱される。
予熱された空気は混合部 1 1で排ガス導入口 1 1 aから供給された N〇x含有 排ガスと混合され、 反応部 1 5で還元ガス尊入管 1 7から供給された NH 3等の還 元ガスが添加される。 反応部 1 5には F eや M n等の金属複合体等からなる触媒 (図示せず)が充填され、ケーシング 1 5 aの外側にコイル状ヒータ 1 6が設けて ある。このコイル状ヒータ 1 6で反応部 1 5内の温度を約 1 8 0〜2 5 0 °C程度に 保持しながら、 排ガス中の N 0 Xを添加した N H 3と蝕媒上で反応させて還元除去 するようになつている。 また、 過剰に添加された NH 3は触媒上で空気中の〇 2と 反応し、 N 2と H 20として除去される。 NH 3反応部 1 5で N O xが還元除去され た排ガスは、冷却部 1 8で約 8 0 °C以下の温度に冷却された後、排ガス出口 1 8 a から外部に排出される。
尚、上記したガス加熱装置は、半導体製造工程からの排ガス中に存在する N〇 X、 NH 3又は過フッ化物を分解除去する排ガス処理装置における排ガスの加熱部とし ても、 ほぼ同様に用いることができる。
従来の N O x含有排ガス処理装置では、 図 1に示すように、希釈ガスと排ガスの 混合部 1と、混合ガスの予熱部 2と、蝕媒を用いて窒素酸化物を還元除去する反応 部 5とが別々に配置され、予熱部 2は大きく且つ加熱の効率が非常に悪かった。 こ れに対して本発明では、熱源としてセラミックスヒータ 3 0又はヒータュニットを 用いることにより、希釈ガスを効率良く予熱できるうえ、予熱部 1 2を小型化する ことができ、従って予熱部 1 2を混合部 1 1及び反応部 1 5と一体型にすることも できる。
また、病院等における滅菌及び殺菌工程からの有毒又は有害な排ガスを酸化分解 する排ガス処理装置において、その加熱部に本発明のガス加熱装置を用いた具体例 を図 7に示す。図 7の排ガス処理装置は、有害ガス尊入口 2 2 aから供給される滅 菌-殺菌工程で使用された有害排ガスを加熱するための加熱部 2 2と、加熱した有 害排ガスを触媒(図示せず) に接触させて酸化分解する反応部 2 5と、酸化分解さ れたガスに希釈ガス導入口 2 l aから導入される空気等の希釈ガスを混合する混 合部 2 1と、これを冷却して排ガス出口 2 8 aから外部に排出する冷却部 2 8とを 備えている。
この有害排ガス処理装置においても、加熱部 2 2の構成は図 6に示す予熱部 1 2 とほぼ同様であり、ケ一シング 2 3内に平板状のセラミックスヒータ又はヒータュ ニット 3 5が互い違いの階段状に複数設置してある。更に具体的には、図 7に示す ように、 複数の平板状のセラミックスヒータを組み合わせたヒータユニット 3 5 が、 片端のみが互い違いにケ一シング 2 3の内壁から開放されるように、それぞれ 片端以外をケ一シング 2 3の内壁に固定して段違いに配置され、ケーシング 2 3内 にジグザグなガス流路が形成されている。
有害排ガスは、セラミックヒータ又はヒータュニット 3 5により形成されたジグ ザグなガス流路内を縫うように流れる間に、約 4 0 0〜6 0 0 °C程度の温度にまで 加熱される。 尚、 反応部 2 5の構成は図 6と同様であり、 ケーシング 2 5 a内に酸 ィヒ触媒(図示せず) が充填されると共に、その外側にはコイル状ヒー夕 2 6が設け てある。また、この図 7の有害排ガスの処理装置においても、図 6の装置と同様に、 有害ガスを希釈ガスと混合した後、反応部に供給して酸化分解反応をさせる構成を とることも可能である。
このように、本発明においては、ガス加熱用の熱源としてセラミックスヒータを 用いることにより、発熱体で発生したジュール熱を高熱伝導のセラミックス基材ゃ セラミックス層又はガラス層を通して効率良くガスに伝えることができ、しかもセ ラミックスヒ一タを薄くするほど急速昇温及び急速降温が可能である。従って、 ヒ —夕の昇温にかかるスタンパイ時間を短くできると共に、通電時間を短くでき、消 費電力も低減することができる。
また、ガス加熱用の熱源としてセラミックスヒータを用いることにより、本発明 によるガス加熱装置ではガスの流路ゃ加熱室を小型化できるため、このガス加熱装 置を用いる排ガス処理装置その他の反応装置について、その構造を一体型にするな ど、 装置全体の小型化を図ることができる。
卿例)
本発明によるガス加熱装置を、病院での滅菌 ·殺菌工程に使用される有害排ガス の処理装置に適用した。即ち、 図 7に示すように、有害ガス導入口 2 2 aから供給 される有害排ガスを加熱するための加熱部 2 2として、ケ一シング 2 3内に 4枚の セラミックスヒータを組み合わせたヒータュニット 3 5を互い違いの階段状に 4 組設置して、 ケ一シング 2 3内にジグザグなガス流路を形成した。
具体的には、 この加熱部 2 2は、内部が 4 3 0 mmX 4 3 O mmX高さ 4 8 O m mの S U S製のケーシング 2 3を備え、そのケ一シング 2 3内には 4 2 O mm X 3 0 O mm X厚さ 5 mmの平板状のヒータュニット 3 5が、互い違いの階段状になる ように、 相互に 9 O mmの間隔を隔てて 4組設置してある。 尚、 各ヒータュニット 3 5は、 図 5に示すように、 4枚のセラミックスヒータ 3 0を平板状に組み合わせ て枠体 3 6と支持部材 3 7で固定した構造のものである。 このとき、枠体 3 6はガ ラスを使用した。 また、各ヒ一夕ユニット 3 5を構成する各セラミックスヒータ 3 0は、 図 3に示 すように、 平板状の A 1 Nからなる厚さ 0. 6 mmのセラミックス基材 3 1の両側 表面に P d— A gの発熱体 3 2 a、 3 2 bを形成し、その上をそれぞれガラス層 3 3 a、 3 3 bで被覆した構造を有し、 ヒ一夕全体の厚さは 0. 6 0 5 mmである。 尚、 各発熱体 3 2 a、 3 2 bの回路パターンは、 図 4に示すように、 3個の渦巻き 状の回路が連続したパターンであり、パターンの両端に通電用の電極 3 4、 3 4を 備えている。
有害ガス尊入口 2 2 aから加熱部 2 2に酸化エチレンガスを 2 0 0 0リツトル Z分にて連続的に導入しながら、 各ヒ一夕ュニット 3 5に 7 kWの通電を行った。 その結果、 各ヒ一タュニット 3 5の温度は約 5 0 0秒で最高温度 4 0 0 °Cに達し、 加熱部 2 2の出口付近でのガス温度を約 3 5 0 °Cにまで加熱することができた。こ の加熱した酸化エチレンガスを反応部 2 5に導入し、約 4 0 0 °Cの温度で酸化触媒 と接触させた後、混合部 2 1で空気と混合して希釈し、冷却部 2 8で冷却して排出 させた。ガス排出口 2 8 aから排出されるガス中には、酸化エチレンはほとんど含 まれていなかった。 産業上の利用可能性
本発明によれば、ガスによる腐蝕を受けることがなく、高速昇温が可能なヒー夕 を用いることによって、ガスを直接且つ効率的に加熱できるガス加熱方法、及びそ のためのガス加熱装置を提供することができる。 また、 このガス加熱装置は小型で 消費エネルギーが少なくて済むため、このガス加熱装置を各種の排ガスの処理装置 に、その排ガス又はその排ガスに混合する希釈ガスなどの予熱部又は加熱部として 用いることにより、 装置全体の小型化及び省エネ化を図ることができる。

Claims

請求の範囲
1 . ガスの流路又は加熱室内に平板状のセラミックスヒ一夕又はセラミックス ヒータを複数組み合わせたヒータュニットを配置し、流路又は加熱室に供給された ガスを該セラミックスヒータ又はヒ一夕ュニッ卜で加熱することを特徴とするガ ス加熱方法。
2 . 前記セラミックスヒータ又はヒータュニットが互い違いの階段状に複数配 置され、 ジグザグなガス流路を形成していることを特徴とする、請求項 1に記載の ガス加熱方法。
3 . ガスの流路又は加熱室内に、平板状のセラミックスヒータ又はセラミック スヒータを複数組み合わせたヒータュニットをガスと接触するように配置したこ とを特徴とするガス加熱装置。
4 . 前記セラミックスヒー夕又はヒ一タュニッ卜が互い違いの階段状に複数設 置され、 ジグザグなガス流路が形成されていることを特徴とする、請求項 3に記載 のガス加熱装置。
5. 半尊体製造工程からの排ガス中の窒素酸化物又はァンモニァを還元除去す る排ガス処理装置において、該排ガス又は該排ガスに混合する希釈ガスを予熱する 予熱部として用いることを特徴とする、 請求項 3又は 4に記載のガス加熱装置。
6 . 半導体製造工程からの排ガス中に存在する過フッ化物を分解除去する排ガ ス処理装置において、該排ガス又は該排ガスに混合する希釈ガスを加熱する加熱部 として用いることを特徴とする、 請求項 3又は 4に記載のガス加熱装置。
7 . 滅菌及び殺菌工程からの有害又は有毒な排ガスを酸化分解する排ガス処理 装置において、該排ガス又は該排ガスに混合する希釈ガスを加熱する加熱部として 用いることを特徴とする、 請求項 3又は 4に記載のガス加熱装置。
8 . 前記セラミックスヒータが、 平板状のセラミックス基材と、セラミックス 基材の表面又は内部に設けた発熱体とからなることを特徴とする、請求項 3〜 7の いずれかに記載のガス加熱装置。
9 . 前記セラミックスヒータが、 平板状のセラミックス基材と、セラミックス 基材の両側表面にそれぞれ設けた渦巻き状パターンを有する発熱体と、両発熱体を それぞれ被覆するセラミックス層又はガラス層とからなることを特徴とする、請求 項 3〜 8のいずれかに記載のガス加熱装置。
10. 前記セラミックスヒータのセラミックス基材が、酸化アルミニウム、二 酸化珪素、 窒化アルミニウム、 窒化珪素、 炭化珪素、 ホウ化ジルコニウム又はそれ らの複合物からなることを特徴とする、請求項 3〜 9のいずれかに記載のガス加熱
11. 前記セラミックスヒータの発熱体が、 I Mo、 Ag— Pd、 Ag、 又 はニクロムからなることを特徴とする、請求項 3〜 10のいずれかに記載のガス加
PCT/JP2003/013971 2002-11-12 2003-10-30 ガス加熱方法及び加熱装置 WO2004044500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03770061A EP1568949A1 (en) 2002-11-12 2003-10-30 Gas heating method and gas heating device
US10/504,238 US20050085057A1 (en) 2002-11-12 2003-10-30 Gas heating method and gas heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-327706 2002-11-12
JP2002327706A JP2004162963A (ja) 2002-11-12 2002-11-12 ガス加熱方法及び加熱装置

Publications (1)

Publication Number Publication Date
WO2004044500A1 true WO2004044500A1 (ja) 2004-05-27

Family

ID=32310525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013971 WO2004044500A1 (ja) 2002-11-12 2003-10-30 ガス加熱方法及び加熱装置

Country Status (7)

Country Link
US (1) US20050085057A1 (ja)
EP (1) EP1568949A1 (ja)
JP (1) JP2004162963A (ja)
KR (1) KR20050074275A (ja)
CN (1) CN1685180A (ja)
TW (1) TW200416066A (ja)
WO (1) WO2004044500A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771514B1 (en) * 2004-02-03 2010-08-10 Airgard, Inc. Apparatus and method for providing heated effluent gases to a scrubber
JP2006015184A (ja) * 2004-06-30 2006-01-19 Micro Reactor System:Kk 環境浄化マイクロリアクターシステム
EP1972878B1 (en) * 2006-01-13 2016-09-28 NGK Insulators, Ltd. Support structure of heater
JP5318333B2 (ja) * 2006-05-11 2013-10-16 昭和電工株式会社 フッ素化合物含有ガスの処理方法及び処理装置
US7611684B2 (en) * 2006-08-09 2009-11-03 Airgard, Inc. Effluent gas scrubber and method of scrubbing effluent gasses
US7854792B2 (en) * 2008-09-17 2010-12-21 Airgard, Inc. Reactive gas control
DE102009051299A1 (de) * 2009-10-29 2011-05-05 Stange Elektronik Gmbh NH3-Abgasreinigungsanlage
EP2354704A1 (de) * 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heizeinrichtung zur Erzeugung extrem heißer Gase
US9120072B2 (en) 2011-03-07 2015-09-01 Kanken Techno Co., Ltd. Ammonia detoxification device
CN102607923B (zh) * 2012-04-11 2014-04-09 中国科学院半导体研究所 碳化硅材料腐蚀炉
CN103742929B (zh) * 2014-01-25 2016-02-10 通富热处理(昆山)有限公司 一种用于氮化炉的废气处理设备
JP6438708B2 (ja) * 2014-08-25 2018-12-19 ニチアス株式会社 加熱装置
CN104357806A (zh) * 2014-10-20 2015-02-18 西安航空制动科技有限公司 一种化学气相沉积炉预热装置
CN104451603B (zh) * 2014-11-26 2016-10-26 西安航空制动科技有限公司 一种气体预热装置
CN104613643A (zh) * 2015-01-22 2015-05-13 何向锋 一种电子热焰器
US9982364B2 (en) 2015-04-07 2018-05-29 Applied Materials, Inc. Process gas preheating systems and methods for double-sided multi-substrate batch processing
CN104835878A (zh) * 2015-04-30 2015-08-12 广东汉能薄膜太阳能有限公司 用于薄膜太阳能电池的尾气处理系统及尾气处理方法
CN105865214B (zh) * 2016-05-27 2018-12-04 中国恩菲工程技术有限公司 用于回转式阳极炉的烟气处理装置
KR101950885B1 (ko) * 2016-07-14 2019-02-21 김인수 보일러용 난방수 가열기
CN106086339A (zh) * 2016-08-29 2016-11-09 四川齐飞铝业有限公司 一种铝型材均匀在线淬火装置
CN106191399A (zh) * 2016-08-29 2016-12-07 四川齐飞铝业有限公司 采用多冷却方式的铝合金型材在线淬火装置
CN107588543A (zh) * 2017-11-03 2018-01-16 邹城市东基新热力管道防腐保温有限公司 一种井口防冻的远红外加热装置
CN108506948A (zh) * 2018-04-12 2018-09-07 阮红艺 一种废气处理用电加热炉
JP7010151B2 (ja) * 2018-06-14 2022-01-26 株式会社デンソー 熱風加熱装置におけるヒータユニット
CN109012017B (zh) * 2018-07-26 2024-03-08 重庆秋松环保科技有限公司 废气处理系统及方法
CN109028107A (zh) * 2018-10-30 2018-12-18 曹梅君 一种有机废气处理燃烧装置
CN111388734B (zh) * 2020-03-20 2021-07-06 大连海事大学 碳化硅材质的高温灭活病毒装置
KR102303003B1 (ko) * 2020-10-19 2021-09-17 (주)강원엔.티.에스 폐열재생히터를 이용한 공정가스 열분해장치
CN113026098B (zh) * 2021-03-02 2022-04-22 桂林雷光科技有限公司 一种外延设备的气体供应方法及装置
CN115235119A (zh) * 2022-08-01 2022-10-25 拓荆科技股份有限公司 流体加热装置及薄膜沉积设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150317A (ja) * 1994-11-29 1996-06-11 Teisan Kk 排ガス処理装置
JPH09213596A (ja) * 1996-01-31 1997-08-15 Hitachi Ltd 半導体製造方法ならびにこれに用いる排ガス処理方法および装置
JPH09290135A (ja) * 1996-04-30 1997-11-11 Shimakawa Seisakusho:Kk 触媒を用いたガス浄化装置
JPH10160249A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 温水装置
JP2000111099A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd 空気調和機の室外機
JP2002141159A (ja) * 2000-11-02 2002-05-17 Ibiden Co Ltd セラミックヒータ
JP2002299014A (ja) * 2001-04-02 2002-10-11 Canon Inc 熱源、加熱装置及び画像形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148815B2 (ja) * 1973-03-09 1976-12-23
US5438642A (en) * 1993-07-13 1995-08-01 Instantaneous Thermal Systems, Inc. Instantaneous water heater
US7188001B2 (en) * 1998-03-23 2007-03-06 Cepheid System and method for temperature control
US6144802A (en) * 1999-06-29 2000-11-07 Hyundai Electronics Industries Co., Ltd. Fluid heater for semiconductor device
JP2002151236A (ja) * 2000-11-07 2002-05-24 Sumitomo Electric Ind Ltd 流体加熱用ヒータ
US7158716B2 (en) * 2002-12-18 2007-01-02 Lasko Holdings, Inc. Portable pedestal electric heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150317A (ja) * 1994-11-29 1996-06-11 Teisan Kk 排ガス処理装置
JPH09213596A (ja) * 1996-01-31 1997-08-15 Hitachi Ltd 半導体製造方法ならびにこれに用いる排ガス処理方法および装置
JPH09290135A (ja) * 1996-04-30 1997-11-11 Shimakawa Seisakusho:Kk 触媒を用いたガス浄化装置
JPH10160249A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 温水装置
JP2000111099A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd 空気調和機の室外機
JP2002141159A (ja) * 2000-11-02 2002-05-17 Ibiden Co Ltd セラミックヒータ
JP2002299014A (ja) * 2001-04-02 2002-10-11 Canon Inc 熱源、加熱装置及び画像形成装置

Also Published As

Publication number Publication date
CN1685180A (zh) 2005-10-19
US20050085057A1 (en) 2005-04-21
EP1568949A1 (en) 2005-08-31
JP2004162963A (ja) 2004-06-10
KR20050074275A (ko) 2005-07-18
TW200416066A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
WO2004044500A1 (ja) ガス加熱方法及び加熱装置
JP3711052B2 (ja) 低温プラズマ及び誘電熱を用いて有害ガスを処理するための触媒反応器
KR100993563B1 (ko) 예열기능을 갖고서 휘발성 유기화합물을 산화ㆍ분해하는장치
EP2000195B1 (en) Method of making hcd gas harmless and apparatus therefor
JP2009270560A (ja) 排気ガス浄化装置
KR100737941B1 (ko) 2단 플라즈마 처리형 유해가스 처리장치
JP7140440B1 (ja) 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
US20230233982A1 (en) Gas processing furnace and exhaust gas processing device in which same is used
JP3780989B2 (ja) 脱臭器
CN115461131B (zh) 半导体制造废气的处理装置
JP2003024770A (ja) 触媒を用いた物質変換装置及び物質変換方法
HU188285B (en) Method for catalytic purifying gases
JP2011050929A (ja) ガス浄化装置、プラズマ生成用電極、及びガス浄化方法
JP2004195367A (ja) 触媒装置およびこの触媒装置を用いた有害排ガス処理装置並びに有害排ガス処理システム
JP2010227879A (ja) 気流発生装置
KR102480764B1 (ko) 탄소기반 소재를 적용한 열에너지 공급구조를 포함하는 유해가스처리용 촉매산화시스템
WO2023199410A1 (ja) 窒素化合物含有排ガスの処理方法及びその装置
WO2000074822A1 (fr) Procede et appareil permettant de decomposer du gaz d'hydrocarbure halogene
WO2022208901A1 (ja) 半導体製造排ガスの処理装置
JP2743641B2 (ja) 触媒浄化装置
JP2004165315A (ja) NOx又はNH3含有排ガスの処理装置用加熱ユニット
JP2004164938A (ja) ガス加熱用セラミックスヒータ
JP2003164755A (ja) ガス処理装置及びガス処理方法
JPH0549859A (ja) 触媒浄化装置
JPH09248428A (ja) 脱臭装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003770061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A0111X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047011786

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10504238

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003770061

Country of ref document: EP