WO2004042293A1 - Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur - Google Patents

Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur Download PDF

Info

Publication number
WO2004042293A1
WO2004042293A1 PCT/FR2003/003055 FR0303055W WO2004042293A1 WO 2004042293 A1 WO2004042293 A1 WO 2004042293A1 FR 0303055 W FR0303055 W FR 0303055W WO 2004042293 A1 WO2004042293 A1 WO 2004042293A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
plates
condenser
cooling
condenser according
Prior art date
Application number
PCT/FR2003/003055
Other languages
English (en)
Inventor
Carlos Martins
Jérôme GENOIST
Jacques Hoffnung
Original Assignee
Valeo Thermique Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32104360&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004042293(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Thermique Moteur filed Critical Valeo Thermique Moteur
Priority to US10/532,513 priority Critical patent/US7469554B2/en
Priority to AU2003301834A priority patent/AU2003301834A1/en
Priority to EP03810494A priority patent/EP1592930B1/fr
Priority to EP08158983.0A priority patent/EP1992891B1/fr
Publication of WO2004042293A1 publication Critical patent/WO2004042293A1/fr
Priority to US12/274,812 priority patent/US8122736B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • Condenser especially for a motor vehicle air conditioning circuit, and circuit comprising this condenser
  • the invention relates to air conditioning circuits of motor vehicles.
  • Modern motor vehicles are often equipped with an air conditioning system for their passenger compartment.
  • These circuits include in particular a condenser, in which an air conditioning fluid in the gaseous state is cooled so as to be condensed.
  • the invention relates both to a condenser itself and to such exchangers.
  • condenser In order not to burden the rest of the text, only the term condenser will be used. However, it should be understood that this covers both a heat exchanger intended to allow the condensation of a fluid, as a heat exchanger intended to allow a simple cooling of the fluid of an air conditioning circuit of a motor vehicle.
  • condensers generally consist of a bundle of tubes connected at each of their ends to manifolds.
  • the tubes are provided with heat exchange surfaces such as fins or corrugated spacers. They are cooled by heat exchange with atmospheric air and, for this purpose, they are placed at the front of the motor vehicle, generally in front of the engine cooling system radiator.
  • such a condenser can be cooled by a liquid, in particular by the liquid of the engine cooling circuit. It is therefore more compact than an air-cooled condenser. It is not necessary to have it on the front of the vehicle. It can therefore be placed near the evaporator, which shortens the length of the air conditioning circuit pipes. But a condenser of this type also has drawbacks, in particular, it does not ensure sufficient heat exchange.
  • the invention relates to a condenser, in particular for an air conditioning circuit for the passenger compartment of a motor vehicle, which overcomes these drawbacks.
  • This condenser must allow improved cooling of the air conditioning fluid of the air conditioning circuit by the water of the engine cooling circuit.
  • Pass means a group or sub-group of plates between which the fluid follows one and the same direction in one and the same direction.
  • the inlet and outlet orifices are located, in particular, at the level of two opposite edges of said plates.
  • the condenser consists of a stack of common plates. An end plate is disposed at each end of the stack of common plates.
  • the plates have communication passages to allow the passage of the refrigeration fluid and the cooling fluid from one flow channel to the other, annular conduits are provided alternately opposite the communication passages to prevent mixing of. fluids.
  • the current plates are provided with two communication passages intended for the passage of the air conditioning fluid and two communication passages intended for the passage of the cooling fluid.
  • each current plate has a total of four communication passages.
  • the plates are provided with raised peripheral edges, assembled in a sealed manner to delimit the first flow channels and the second flow channels.
  • the condenser comprises at least two passes over the cooling fluid.
  • the condenser has at least one inlet and one outlet for refrigeration fluid and at least one pass over the refrigerant communicating with said inlet, called inlet pass, and another pass communicating with said outlet, called outlet pass. , the section of passes decreasing from the entry pass to the exit pass.
  • the passes are carried out either by partition walls arranged in the manifolds of the tube exchangers, or by spacers arranged between the plates of the stacked plate exchangers.
  • the section of the passes decreases from the pass communicating with the inlet of the condenser, called the inlet pass, towards the pass communicating with the outlet of said condenser, called the outlet pass .
  • the condenser according to the invention may comprise at least three passes, the number of channels assigned to the input pass on the number of channels assigned to the output pass being between, for example, between 2 and 5, the section of the channels being provided constant from channel to channel.
  • the condenser plates are distributed in a first series to ensure the cooling of the refrigerating fluid until its condensation, and in a second series to ensure the cooling of the refrigerating fluid below its condensation temperature (sub-cooling).
  • the condenser of the invention comprises a bottle integrated between the first and the second series of plates.
  • turbulating elements elements which disturb the flow
  • the turbulator elements are disposed between the plates.
  • the plates themselves have reliefs which constitute turbulent elements.
  • the hydraulic diameter of the circulation channels is between 0.1 mm and 3 mm. It may, in particular, be from 0.1 to 0.5 mm for fluids intended not to change phase, except in exceptional conditions, and from 0.5 to 3 mm for fluids intended to be condensed. It will, for example, from 1 to 2.6 mm for the cooling fluid, which may be water, in particular that of the cooling circuit.
  • annular conduits are advantageously constituted by bowls formed in the plates. Collectors are thus defined without having to provide any additional room.
  • the cooling fluid consists of water from the cooling circuit of the motor vehicle engine.
  • the invention relates to an air conditioning circuit, in particular for the passenger compartment of a motor vehicle, comprising an evaporator, a compressor, a condenser, an expansion valve, in which a refrigerating fluid circulates, in which the condenser is in accordance with the present invention.
  • Figure lest a sectional view of a condenser according to the invention is a sectional view of a condenser according to the invention, comprising two passes on the refrigeration fluid;
  • Figure 3 is a schematic perspective view of a condenser according to the invention, comprising three passes on the refrigerant and one pass on the coolant;
  • Figure 4 is a schematic perspective view of a condenser according to the invention, comprising two passes on the refrigerant and two passes on the coolant;
  • Figure 5 is an exploded perspective view of a two pass exchanger on the refrigeration fluid and two pass on the coolant which illustrates the circulation of these two fluids;
  • Figure 6 is an external perspective view of a condenser according to the invention, comprising an integrated bottle;
  • Figure 7 is a left view of the condenser shown in Figure 6;
  • Figure 8 is a cross-sectional view of the condenser shown in Figures 6 and 7;
  • Figure 9 is a sectional view through a plane passing through
  • Figure 10 shows a first embodiment of a turbulator element inserted between the plates
  • Figure 11 shows another embodiment of a turbulator element inserted between the plates
  • Figure 12 shows corrugated rectilinear turbulators from reliefs formed in the plates
  • Figure 13 shows chevron turbulators from reliefs formed in the plates
  • Figure 14 shows a three pass condenser according to the invention.
  • FIG. 1 a cross-sectional view of a condenser according to the present invention. It comprises a multiplicity of common plates 2 stacked one on the other and each provided with a peripheral rim 3. The peripheral edges are assembled in leaktight manner to delimit between the plates 2 first flow channels for an FI refrigeration fluid. which alternate with second flow channels for a coolant F2.
  • the stack of common plates has an end plate 6 at each of its ends.
  • the refrigeration or air conditioning fluid FI enters the condenser through a tube d '' inlet (not shown in Figure 5) and out through an outlet pipe 14.
  • the coolant F2 enters the condenser through an inlet pipe 20 and out through an outlet pipe (not shown) .
  • the refrigerant FI enters the gaseous state. It circulates in the first channels by exchanging heat with the coolant F2, which causes its condensation. The fluid FI therefore leaves the condenser in the liquid state.
  • the refrigeration or air conditioning fluid is, for example, a fluid R134a or R744 (C0 2 ), while the cooling fluid F2 consists of water from the engine cooling circuit. It could also be an independent water loop.
  • the condenser shown in Figure 2 has two circulation passes for the air conditioning or refrigeration fluid.
  • This fluid enters the tubing 12, as shown schematically by the arrow FI, it enters an annular duct 24 playing the role of an inlet manifold and, from there, enters the first circulation channels provided between the plates 2 , as shown by arrow 26.
  • the air conditioning fluid arrives in an annular duct 28 and, from there, enters the first circulation channels provided between the plates 2 located below of the partition 30, as shown by the arrow 32.
  • the refrigeration fluid FI and the cooling fluid F2 do not necessarily flow through the condenser with the same number of passes.
  • the condenser has three passes shown diagrammatically by the arrows 40, 42 and 44 for the refrigeration fluid, and a single pass shown diagrammatically by the arrow 48 for the cooling fluid F2.
  • the fluid FI passes from the first pass to the second after having crossed the passage orifice 50, then from the second pass 42 to the third pass 44 after having crossed the passage communication 52. It emerges from the exchanger through the outlet pipe 14.
  • the coolant F2 enters through the inlet pipe 20, passes through the exchanger in a single pass 48 and leaves the condenser through the outlet pipe 22 .
  • the condenser has two circulation passes for the refrigerant and two passes also for the coolant.
  • FI refrigeration fluid enters the condenser through the inlet connection 12, traverses the plates according to the first pass 54 crosses the communication passage 56 and runs through 'the second pass 58 before exiting through the outlet pipe 14.
  • the coolant F2 enters the condenser through the inlet pipe 20, traverses the first pass as shown diagrammatically by the arrow 60, crosses the communication passage 62 before traversing the second pass 64. It then leaves the exchanger via the outlet pipe 24.
  • FIG. 5 An exploded perspective view which illustrates the circulation of fluids in a condenser according to the invention comprising two circulation passes for the air conditioning fluid FI and two passes for the cooling fluid F2.
  • the fluid FI enters the upper part of the exchanger through the inlet pipe 12 in the volume delimited by the end plate 6 and the adjacent plate 2. Part of the fluid runs through this space from left to right according to FIG. 5, as shown diagrammatically by the arrow 66.
  • the other part of the fluid enters an annular duct 68 disposed between the plates 2a and 2b, as shown diagrammatically by the arrow 70. Leaving the annular duct, it enters the space between the plates 2b and 2c.
  • the fraction of the fluid which has passed through the space between the end plate 6 and the first current plate 2a emerges from this space by a tubular conduit 72 disposed between the plates 2a and 2b.
  • the flat space between the plates 2b and 2c has only one communication passage 74 allowing the fluid F2 to exit.
  • This fluid crosses the annular passage 76 to reach between the plates 2d and 2e after having undergone a change of direction of circulation. It indeed crosses this space from right to left, whereas it circulated previously from left to right.
  • the coolant F2 which enters the condenser through an inlet pipe (not shown) located at the lower part of the exchanger circulates from left to right in the flat spaces between two successive plates. It passes from a space between two plates to the next space, these spaces alternating with spaces provided for the fluid FI by annular conduits similar to the conduits 70 or 76 mentioned above. Arrived in the space between the plates 2e and 2f, as shown schematically by the arrow 80, the fluid F2 enters the annular duct 82, as shown schematically by the arrow 84, and changes the direction of circulation. In the upper part of the condenser, it circulates from right to left whereas it circulated from left to right in the lower part. A second circulation pass is thus produced for the fluid F2 also.
  • the condenser of the invention comprises three different types of plates with regard to the number of communication passages.
  • the end plates, like plate 6, have only two communication passages, the first for the entry of one of the fluids, the second for the exit of the other fluid.
  • Current plates, like plate 2f have four communication passages. Two of these passages are dedicated to the first fluid FI, while the other two passages are dedicated to the fluid F2.
  • the plates located just before the end plate 6, like the plate 2a have three communication passages instead of four for the current plate.
  • the 2d plate which allows realize the circulation passes of the two fluids, comprises only two communication passages. Indeed, by removing two of the four communication passages, dividing partitions are produced which allow the direction of circulation of the fluid to be changed.
  • the plates 2c and 2e, adjacent to the plate 2d, have three communication passages, instead of four for the current plates. There are thus three types of plates.
  • the two end plates and the plate 2d have only two passages.
  • the plates adjacent to the end plates and to the plate 2d have three passages, while the current plates of the condenser have four.
  • the condenser according to the invention may include at least three passes “a", "b” and "c".
  • the number of channels assigned to the input pass “a”, that is to say the pass communicating with the entry of the refrigerant fluid in the condenser, on the number of channels assigned to the output pass “c” , that is to say the pass communicating with the outlet of the refrigeration fluid out of the condenser, is between 2 and 5, the section of the channels being constant from one pass to another.
  • a three-pass condenser it may be, by way of illustrative example, from 15 to 20 channels in the input pass "a”, from 8 to 10 channels in the intermediate pass “b” and 4 to 7 channels in the output pass "c".
  • FIGS 6 and 7 respectively, a sectional view and a left view of a second embodiment of a condenser according to the present invention. It is distinguished by the fact that its plates are divided into a first series 94 and a second series 96 separated one of the other by a frame 98 in which a bottle 100 is housed.
  • the first series of plates 94 is relatively larger than the second series 96. It is preferably located at the top of the exchanger, while the second series is located at the bottom.
  • the plates of the first series constitute a section for cooling the refrigerating fluid and the plates of the second series constitute a section of subcooling of this fluid.
  • the bottle 100 also called an intermediate reservoir, makes it possible to ensure the filtration and dehydration of the refrigeration fluid. It also makes it possible to compensate for these variations in volume and to ensure the separation of the liquid and gaseous phases. Its interposition between an upstream part and a downstream part 96 of the condenser makes it possible to circulate only fluid in the liquid state in the sub-cooling section.
  • the refrigeration fluid is thus cooled below its liquid-gas equilibrium temperature, which improves the performance of the condenser and makes them relatively independent of the quantity of fluid contained in the air conditioning circuit.
  • the circulation of the refrigeration fluid, as well as the circulation of the cooling fluid, can be carried out in one or more passes in the cooling section 94, as well as in the sub-cooling section 16.
  • the refrigeration fluid FI enters the cooling section 94 through the inlet pipe 12 located in the upper part of the condenser. It traverses the cooling section, in one or more passes, then passes into the bottle 100, in which it is filtered and dehydrated, then returns to the sub-cooling section 96 before leaving the exchanger through the outlet pipe 14 .
  • the coolant F2 circulates against the current of the refrigeration fluid. It enters the lower part of the condenser, in the sub-cooling section 96, through the inlet pipe 20 (see FIG. 7), - it crosses the sub-cooling section 96 then enters directly into the cooling section 94 before emerging from the condenser through the outlet pipe 22.
  • the frame 98 comprises two flanges 102 and a central portion 103 in which are formed three cylindrical bores 104 which constitute the bottle. One of these bores, the one on the right in Figure 7, receives a filter and drying salts.
  • the plates of the first series 94 and of the second series 96 come to bear on the flanges 102 of the frame 98. It will also be noted that, in this example, their concavities are opposite.
  • FIG. 8 and 9 There is shown in Figures 8 and 9, respectively, a longitudinal sectional view of the condenser passing through the longitudinal axis of the part of the bottle 100 comprising the filter and the drying salts and a cross section of this same exchanger.
  • the corresponding cylindrical bore 104 is extended by a cylindrical part 106 projecting from the condenser.
  • This cylindrical part receives a plug 108 comprising a hexagonal head 110 which makes it possible to close the bottle.
  • the plug 108 is provided with an O-ring seal 112.
  • An elongated cylindrical cartridge 114 is housed inside the cylindrical bore 104. It contains the desiccant 116 which makes it possible to dehydrate and filter the refrigeration fluid FI .
  • FIG 9 shows the particular shape of the plates 2 of the condenser.
  • Each plate has a flat-bottomed half-bowl 122 crossed by a passage orifice 124.
  • the flat bottoms of the bowls come into contact with one another.
  • they are assembled together in a leaktight manner.
  • annular conduits allowing the circulation of the refrigerating fluid FI and the cooling fluid F2 from one passage channel to the other without having to use additional parts placed between the plates.
  • one plate out of two could be flat, the bowl formed in the adjacent plate having a depth corresponding to the entire spacing between two successive plates.
  • FIG. 10 shows a first alternative embodiment of a turbulating element 132. It consists of a stamped sheet metal shaped so as to have rectilinear undulations 134 arranged, for example, in the direction of the length of the plates. In this case, the plates 2 have a generally planar bottom.
  • FIG. 11 shows another embodiment of a turbulator element 136. It includes stampings 138 having the general shape of slots. These slots are divided into two series offset from one another. Such a turbulator element 136 is disposed between plates 2 also having a generally planar bottom.
  • the turbulator elements 132 and 136 shown in Figures 10 and 11 require to manufacture an additional part and to insert it between the plates. It is possible to eliminate this additional part by producing the turbulator elements by reliefs coming from the plates themselves and obtained by a stamping operation.
  • the condenser comprises first plates 140 each having a bottom 142 having undulations 144 defined by generators extending in a first direction D1 and second plates 146 arranged alternately with the first plates 140 and each having a bottom 148 having undulations 150 defined by generatrices extending in a second direction D2 which is substantially perpendicular to the first direction Dl.
  • the respective undulations of the plates make it possible to give the channels a particular three-dimensional structure which promotes turbulent flow of the fluid FI and the fluid F2 and, consequently, a good heat exchange between them. This also makes it possible to suppress turbulator elements inserted between the plates.
  • the exchanger comprises a first series of plates 154 and a second series of plates 156 comprising corrugations 158 and 160 respectively in the form of chevrons. These undulations also define a three-dimensional structure of the fluid flow channels which promotes turbulent flow and good heat exchange between them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Le condenseur est constitué de plaques (2) empilées munies chacune d’un rebord périphérique relevé (3), assemblées de manière étanche pour déterminer des canaux d’écoulement entre les plaques pour un fluide de réfrigération (F1) et un fluide de refroidissements (F2). Les plaques comportent des passages de communication (124) pour permettre le passage du fluide de réfrigération et du fluide de refroidissement d’un canal d’écoulement à l’autre. Des conduits annulaires (122) sont prévus en regard des passages de communication pour interdire le mélange des fluides. Une bouteille (100) est interposée entre une section de refroidissement (94) et une section de sous-refroidissement (96). Application aux véhicules automobiles.

Description

Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
L'invention concerne les circuits de climatisation des véhicules automobiles.
Les véhicules automobiles modernes sont fréquemment équipés d'un circuit de climatisation de leur habitacle. Ces circuits comprennent notamment un condenseur, dans lequel un fluide de climatisation à l'état gazeux est refroidi de manière à être condensé .
Dans ce domaine il est également connu d'utiliser des fluides de climatisation, tels que le C02, avec lesquels le circuit peut fonctionner sans qu'ils ne changent de phase. Le circuit est alors muni d'un échangeur thermique permettant d'abaisser leur température, sans toutefois aller jusqu'à les condenser.
L'invention porte aussi bien sur un condenseur proprement dit que sur de tels échangeurs . Afin de ne pas alourdir la suite du texte, seul le terme condenseur sera utilisé. Toutefois, il faudra comprendre que celui-ci couvre aussi bien un échangeur thermique destiné à permettre la condensation d'un fluide, qu'un échangeur thermique destiné à permettre un simple refroidissement du fluide d'un circuit de climatisation d'un véhicule automobile.
Les condenseurs actuellement connus sont constitués généralement d'un faisceau de tubes raccordés à chacune de leurs extrémités à des boîtes collectrices. Les tubes sont munis de surfaces d'échange de chaleur telles que des ailettes ou des intercalaires ondulés. Ils sont refroidis par échange de chaleur avec l'air atmosphérique et, à cet effet, ils sont placés à l'avant du véhicule automobile, généralement devant le radiateur du circuit de refroidissement du moteur.
Ces condenseurs connus présentent plusieurs inconvénients. Ils ne permettent pas de réaliser un échange de chaleur sur l'eau du circuit de refroidissement du moteur. Leur surface frontale, et par conséquent leur encombrement, sont importants. En outre, ils doivent être nécessairement placés en face avant du véhicule automobile afin de pouvoir être refroidis de manière efficace .
Il est également connu de réaliser des condenseurs constitués d'une multiplicité de plaques . courantes empilées, assemblées pour délimiter de premiers canaux d'écoulement pour un fluide de réfrigération qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement. Un condenseur de ce type est décrit dans le document WO 01/88454.
Grâce à ces caractéristiques, un tel condenseur peut être refroidi par un liquide, en particulier par le liquide du circuit de refroidissement du moteur. Il est donc plus compact qu'un condenseur refroidi à l'air. Il n'est pas nécessaire de le disposer en face avant du véhicule. On peut donc le placer près de l' évaporateur, ce qui permet de raccourcir la longueur des canalisations du circuit de climatisation. Mais un condenseur de ce type présente aussi des inconvénients, en particulier, il ne permet pas d'assurer un échange thermique suffisant.
L'invention a pour objet un condenseur, notamment pour un circuit de climatisation de l'habitacle d'un véhicule automobile, qui remédie à ces inconvénients. Ce condenseur doit permettre un refroidissement amélioré du fluide de climatisation du circuit de climatisation par l'eau du circuit de refroidissement du moteur.
A cet effet , elle propose un condenseur du type défini ci- dessus qui comporte au moins deux passes sur le fluide ' de réfrigération.
Par «passe», il faut entendre un groupe ou sous-groupe de plaques entre lesquelles le fluide suit une seule et même direction dans un seul et même sens. Pour les plaques d'une même passe les orifices d'entrée et de sortie sont situés, notamment, au niveau de deux bords opposés desdites plaques. En passant d'une passe à l'autre, le sens de circulation du fluide s'inverse. On peut ainsi allonger le trajet du fluide dans l' échangeur. Grâce à ces caractéristiques, le condenseur conforme à l'invention présente des performances améliorées.
Le condenseur est constitué par un empilement de plaques courantes. Une plaque d'extrémité est disposée à chacune des extrémités de l'empilement des plaques courantes.
Les plaques comportent des passages de communication pour permettre le passage du fluide de réfrigération et du fluide de refroidissement d'un canal d'écoulement à l'autre, des conduits annulaires sont prévus alternativement en regard des passages de communication pour interdire le mélange des. fluides.
De préférence, les plaques courantes sont munies de deux passages de communication destinés au passage du fluide de climatisation et de deux passages de communication destinés au passage du fluide de refroidissement. Ainsi, chaque plaque courante comporte au total quatre passages de communication.
Dans une réalisation particulière, les plaques sont munies de bords périphériques relevés, assemblés de manière étanche pour délimiter les premiers canaux d'écoulement et les seconds canaux d' écoulement .
Dans une autre réalisation particulière, le condenseur comporte au moins deux passes sur le fluide de refroidissement. Avantageusement, le condenseur comporte au moins une entrée et une sortie de fluide de réfrigération et au moins une passe sur le fluide de réfrigération communiquant avec ladite entrée, dite passe d'entrée, et une autre passe communiquant avec ladite sortie, dite passe de sortie, la section des passes diminuant depuis la passe d'entrée vers la passe de sortie.
Dans les échangeurs de type connu, les passes sont réalisées soit par des cloisons de séparation disposées dans les boîtes collectrices des échangeurs à tubes, soit par des entretoises disposées entre les plaques des échangeurs à plaques empilées.
Au contraire, dans le condenseur de l'invention, on peut réaliser des passes de circulation des fluides sans ajout de pièces supplémentaires. Il suffit pour cela de supprimer certains passages de communication prévus dans les plaques courantes. A cet effet, un passage de communication du fluide de réfrigération, respectivement un passage de communication du fluide de refroidissement, est supprimé dans certaines plaques courantes pour déterminer des passes pour la circulation du fluide de réfrigération, respectivement pour la circulation du fluide de refroidissement.
Comme déjà indiqué, dans un mode de réalisation de l'invention, la section des passes diminue depuis la passe communiquant avec l'entrée du condenseur, dite passe d'entrée, vers la passe communiquant avec la sortie dudit condenseur, dite passe de sortie .
Le condenseur conforme à l'invention pourra comporter au moins trois passes, le nombre de canaux affectés à la passe d'entrée sur le nombre de canaux affectés à la passe de sortie étant compris, par exemple, entre 2 et 5, la section des canaux étant prévue constante d'un canal à l'autre.
Avantageusement , les plaques du condenseur sont réparties en une première série pour assurer le refroidissement du fluide de réfrigération jusqu' à sa condensation, et en une seconde série pour assurer le refroidissement du fluide de réfrigération en dessous de sa température de condensation ( sous- refroidissement) .
Avantageusement encore , le condenseur de l ' invention comporte une bouteille intégrée entre la première et la seconde série de plaques .
Afin d'améliorer l'échange de chaleur entre les fluides, des éléments qui perturbent l'écoulement, appelés éléments turbulateurs, peuvent être prévus. Dans une variante, les éléments turbulateurs sont disposés entre les plaques. Dans une autre variante, les plaques elles-mêmes comportent des reliefs qui constituent des éléments turbulateurs.
De préférence, le diamètre hydraulique des canaux de circulation est compris entre 0,1 mm et 3 mm. Il pourra, notamment, être de 0,1 à 0,5 mm pour des fluides destinés à ne pas changer de phase, sauf conditions exceptionnelles, et de 0,5 à 3 mm pour des fluides destinés à être condensés. Il sera, par exemple, de 1 à 2 , 6 mm pour le fluide de refroidissement, qui pourra être de l'eau, notamment celle du circuit de refroidissement.
Enfin, les conduits annulaires sont avantageusement constitués par des cuvettes formées dans les plaques. On définit ainsi des collecteurs sans avoir à prévoir aucune pièce supplémentaire.
De préférence, le fluide de refroidissement est constitué par l'eau du circuit de refroidissement du moteur du véhicule automobile .
Par ailleurs, l'invention concerne un circuit de climatisation, notamment pour l'habitacle d'un véhicule automobile, comprenant un évaporâteur, un compresseur, un condenseur, une valve de détente, dans lequel circule un fluide de réfrigération, dans lequel le condenseur est conforme à la présente invention.
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
la Figure lest une vue en coupe d'un condenseur conforme à l'invention ; la Figure 2 est une vue en coupe d'un condenseur conforme à l'invention, comportant deux passes sur le fluide de réfrigération ; la Figure 3 est une vue schématique en perspective d'un condenseur conforme à l'invention, comportant trois passes sur le fluide de réfrigération et une passe sur le liquide de refroidissement ; la Figure 4 est une vue schématique en perspective d'un condenseur conforme à l'invention, comportant deux passes sur le fluide de réfrigération et deux passes sur le liquide de refroidissement ; la Figure 5 est une vue éclatée en perspective d'un échangeur à deux passes sur le fluide de réfrigération et à deux passes sur le fluide de refroidissement qui illustre la circulation de ces deux fluides ; la Figure 6 est une vue extérieure en perspective d'un condenseur conforme à l'invention, comportant une bouteille intégrée ; la Figure 7 est une vue de gauche du condenseur représenté sur la Figure 6 ; la Figure 8 est une vue en coupe transversale du condenseur représenté sur les Figures 6 et 7 ; la Figure 9 est une vue en coupe par un plan passant par l'axe longitudinal de la bouteille du condenseur des Figures 6 à
8 ; la Figure 10 représente un premier mode de réalisation d'un élément turbulateur inséré entre les plaques ; la Figure 11 représente une autre forme de réalisation d'un élément turbulateur inséré entre les plaques ; la Figure 12 représente des turbulateurs rectilignes ondulés issus de reliefs formés dans les plaques ; la Figure 13 représente des turbulateurs en chevrons issus de reliefs formés dans les plaques ; et la Figure 14 représente un condenseur à trois passes conforme à l'invention.
On a représenté sur la Figure 1 une vue en coupe transversale d'un condenseur conforme à la présente invention. Il comprend une multiplicité de plaques courantes 2 empilées les unes sur les autres et munies chacune d'un rebord périphérique 3. Les bords périphériques sont assemblés de manière étanche pour délimiter entre les plaques 2 de premiers canaux d'écoulement pour un fluide de réfrigération FI qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement F2. L'empilement des plaques courantes comporte une plaque d'extrémité 6 à chacune de ses extrémités.
Afin de renforcer la tenue du condenseur à la pression, les plaques courantes 2 sont prises en sandwich entre une plaque de renforcement inférieure 8 et une plaque de renforcement supérieure 10. Le fluide de réfrigération ou de climatisation FI pénètre dans le condenseur par une tubulure d'' entrée (non représentée sur la Figure 5) et en ressort par une tubulure de sortie 14. Le fluide de refroidissement F2 pénètre dans le , condenseur par une tubulure d'entrée 20 et en ressort par une tubulure de sortie (non représentée) . Le fluide de réfrigération FI pénètre à l'état gazeux. Il circule dans les premiers canaux en échangeant de la chaleur avec le fluide de refroidissement F2, ce qui provoque sa condensation. Le fluide FI quitte donc le condenseur à l'état liquide. Le fluide de réfrigération ou de climatisation est, par exemple, un fluide R134a ou R744 (C02) , tandis que le fluide de refroidissement F2 est constitué par l'eau du circuit de refroidissement du moteur. Il pourra également s'agir d'une boucle d'eau indépendante.
Le condenseur représenté sur la Figure 2 comporte deux passes de circulation pour le fluide de climatisation ou réfrigération. Ce fluide pénètre dans la tubulure 12, comme schématisé par la flèche FI, il pénètre dans un conduit annulaire 24 jouant le rôle d'une boîte collectrice d'entrée et, de là, pénètre dans les premiers canaux de circulation prévus entre les plaques 2, comme schématisé par la flèche 26. Après avoir parcouru toute la surface d'échange de chaleur, le fluide de climatisation parvient dans un conduit annulaire 28 et, de là, pénètre dans les premiers canaux de circulation prévus entre les plaques 2 situées en dessous de la cloison de séparation 30, comme représenté par la flèche 32. Il traverse une seconde fois l' échangeur, de droite à gauche, selon une deuxième passe, pour parvenir dans la partie inférieure 34 du conduit annulaire jouant le rôle d'une boîte collectrice de sortie, comme schématisé par la flèche 36, et quitte le condenseur par la tubulure de sortie 14, comme schématisé par la flèche 38.
Comme on peut le remarquer sur la Figure 3 qui représente une vue en perspective d'un condenseur conforme à l'invention, le fluide de réfrigération FI et le fluide de refroidissement F2 ne parcourent pas nécessairement le condenseur avec un même nombre de passes. Dans l'exemple représenté, le condenseur comporte trois passes schématisées par les flèches 40, 42 et 44 pour le fluide de réfrigération, et une passe unique schématisée par la flèche 48 pour le fluide de ref oidissement F2. Le fluide FI passe de la première passe à la seconde après avoir franchi l'orifice de passage 50, puis de la deuxième passe 42 à la troisième passe 44 après avoir franchi le passage de communication 52. Il ressort de l' échangeur par la tubulure de sortie 14. Le fluide de refroidissement F2 pénètre par la tubulure d'entrée 20, parcourt l' échangeur en une seule passe 48 et ressort du condenseur par la tubulure de sortie 22.
Sur la Figure 4, le condenseur comporte deux passes de circulation pour le fluide de réfrigération et deux passes également pour le fluide de refroidissement. Le fluide de réfrigération FI pénètre dans le condenseur par la tubulure d'entrée 12, parcourt les plaques selon la première passe 54, franchit le passage de communication 56 et parcourt' la deuxième passe 58 avant de ressortir par la tubulure de sortie 14. Le fluide de refroidissement F2 pénètre dans le condenseur par la tubulure d'entrée 20, parcourt la première passe comme schématisé par la flèche 60, franchit le passage de communication 62 avant de parcourir la deuxième passe 64. Il ressort ensuite de 1 ' échangeur par la tubulure de sortie 24.
On a représenté schématiquement sur la Figure 5 une vue en perspective éclatée qui illustre la circulation des fluides dans un condenseur conforme à l'invention comportant deux passes de circulation pour le fluide FI de climatisation et deux passes pour le fluide F2 de refroidissement. Le fluide FI pénètre à la partie supérieure de l' échangeur par la tubulure d'entrée 12 dans le volume délimité par la plaque d'extrémité 6 et la plaque 2 adjacente. Une partie du fluide parcourt cet espace de gauche à droite selon la Figure 5, comme schématisé par la flèche 66. L'autre partie du fluide pénètre dans un conduit annulaire 68 disposé entre les plaques 2a et 2b, comme schématisé par la flèche 70. En sortant du conduit annulaire, il pénètre dans l'espace compris entre les plaques 2b et 2c. La fraction du fluide qui a traversé l'espace compris entre la plaque d'extrémité 6 et la première plaque courante 2a ressort de cet espace par un conduit tubulaire 72 disposé entre les plaques 2a et 2b. L'espace plan compris entre les plaques 2b et 2c ne comporte qu'un seul passage de communication 74 permettant la sortie du fluide F2. Ce fluide traverse le passage annulaire 76 pour parvenir entre les plaques 2d et 2e après avoir subi un changement de sens de circulation. Il parcourt en effet cet espace de droite à gauche, alors qu'il circulait précédemment de gauche à droite .
De la même manière, le fluide de refroidissement F2 qui pénètre dans le condenseur par une tubulure d'entrée (non représentée) située à la partie inférieure de l' échangeur circule de gauche à droite dans les espaces plans compris entre deux plaques successives. Il passe d'un espace compris entre deux plaques à 1 ' espace suivant, ces espaces alternant avec des espaces prévus pour le fluide FI par des conduits annulaires similaires aux conduits 70 ou 76 mentionnés précédemment. Parvenu dans l'espace compris entre les plaques 2e et 2f, comme schématisé par la flèche 80, le fluide F2 pénètre dans le conduit annulaire 82, comme schématisé par la flèche 84, et change de sens de circulation. Dans la partie supérieure du condenseur, il circule de droite à gauche alors qu' il circulait de gauche à droite dans la partie inférieure. On réalise ainsi une deuxième passe de circulation pour le fluide F2 également.
On remarque ainsi que le condenseur de l'invention comporte trois types différents de plaques en ce qui concerne le nombre de passages de communication. Les plaques d'extrémité, comme la plaque 6, comportent seulement deux passages de communication, le premier pour l'entrée de l'un des fluides, le second pour la sortie de l'autre fluide. Les plaques courantes, comme la plaque 2f, comportent quatre passages de communication. Deux de ces passages sont dédiés au premier fluide FI, tandis que les deux autres passages sont dédiés au fluide F2. Les plaques situées juste avant la plaque d'extrémité 6, comme la plaque 2a, comportent trois passages de communication au lieu de quatre pour la plaque courante. La plaque 2d, qui permet de réaliser les passes de circulation des deux fluides, comporte seulement deux passages de communication. En effet, en supprimant deux des quatre passages de communication, on réalise des cloisons de séparation qui permettent de changer le sens de circulation du fluide. Les plaques 2c et 2e, adjacentes à la plaque 2d, comportent trois passages de communication, au lieu de quatre pour les plaques courantes. Il y a ainsi trois types de plaques. Les deux plaques d'extrémité et la plaque 2d comportent deux passages seulement. Les plaques adjacentes aux plaques d'extrémité et à la plaque 2d comportent trois passages, tandis que les plaques courantes du condenseur en comportent quatre .
A la Figure 14, on constate que le condenseur conforme à l'invention pourra comporter au moins trois passes «a», «b» et «c» . Le nombre de canaux affectés à la passe d'entrée «a», c'est-à-dire la passe communiquant avec l'entrée du fluide réfrigération dans le condenseur, sur le nombre de canaux affectés à la passe de sortie «c», c'est-à-dire la passe communiquant avec la sortie du fluide réfrigération hors du condenseur, est compris entre 2 et 5 , la section des canaux étant constante d'une passe à l'autre.
Dans le cas d'un condenseur à trois passes on pourra avoir, à titre d'exemple illustratif, de 15 à 20 canaux dans la passe d'entrée «a», de 8 à 10 canaux dans la passe intermédiaire «b» et de 4 à 7 canaux dans la passe de sortie «c» . Dans l'exemple de la Figure 14 , les nombres de ces canaux sont respectivement Ml = 17 pour la passe «a», N2 = 10 pour la passe «b» et N3 = 6 pour la passe «c», d'où un rapport N /N3 = 17/6 = 2,83.
On a représenté sur les Figures 6 et 7, respectivement, une vue en coupe et une vue de gauche d'un second mode de réalisation d'un condenseur conforme à la présente invention. Il se distingue par le fait que ses plaques sont réparties en une première série 94 et une seconde série 96 séparées l'une de l'autre par un bâti 98 dans lequel est logée une bouteille 100. La première série de plaques 94 est relativement plus importante que la seconde série 96. Elle est de préférence située à la partie supérieure de l' échangeur, tandis que la seconde série est située à la partie inférieure.
Les plaques de la première série constituent une section de refroidissement du fluide de réfrigération et les plaques de la seconde série constituent une section de sous-refroidissement de ce fluide. La bouteille 100, également appelée réservoir intermédiaire, permet d'assurer la filtration et la déshydratation du fluide de réfrigération. Elle permet également de compenser ces variations de volume et d'assurer la séparation des phases liquides et gazeuses. Son interposition entre une partie amont et une partie aval 96 du condenseur permet de ne faire circuler que du fluide à l'état liquide dans la section de sous-refroidissement. Le fluide de réfrigération est ainsi refroidi au-dessous de sa température d'équilibre liquide-gaz, ce qui améliore les performances du condenseur et les rend relativement indépendantes de la quantité de fluide contenue dans le circuit de climatisation.
La circulation du fluide de réfrigération, ainsi que la circulation du fluide de refroidissement, peuvent être réalisées en une ou plusieurs passes dans la section de refroidissement 94, ainsi que dans la section de sous- refroidissement 16. Le fluide de réfrigération FI pénètre dans la section de refroidissement 94 par la tubulure d'entrée 12 située en partie supérieure du condenseur. Il parcourt la section de refroidissement, en une ou plusieurs passes, puis passe dans la bouteille 100, dans laquelle il est filtré et déshydraté, puis retourne dans la section de sous- refroidissement 96 avant de quitter l' échangeur par la tubulure de sortie 14.
Le fluide de refroidissement F2 circule à contre -courant du fluide de réfrigération. Il pénètre à la partie inférieure du condenseur, dans la section de sous-refroidissement 96, par la tubulure d'entrée 20 (voir Figure 7),- il traverse la section de sous-refroidissement 96 puis pénètre directement dans la section de refroidissement 94 avant de ressortir du condenseur par la tubulure de sortie 22. Comme on peut le voir plus particulièrement sur la Figure 7, le bâti 98 comporte deux semelles 102 et une partie centrale 103 dans laquelle sont formés trois alésages cylindriques 104 qui constituent la bouteille. L'un de ces alésages, celui de droite sur la Figure 7, reçoit un filtre et des sels dessicatifs. Les plaques de la première série 94 et de la seconde série 96 viennent en appui sur les semelles 102 du bâti 98. On remarquera par ailleurs que, dans cet exemple, leurs concavités sont opposées.
On a représenté sur les Figures 8 et 9, respectivement, une vue en coupe longitudinale du condenseur passant par l'axe longitudinal de la partie de la bouteille 100 comportant le filtre et les sels dessicatifs et une coupe transversale de ce même échangeur. L'alésage cylindrique 104 correspondant se prolonge par une partie cylindrique 106 faisant saillie hors du condenseur. Cette partie cylindrique reçoit un bouchon 108 comportant une tête hexagonale 110 qui permet d'obturer la bouteille. Le bouchon 108 est muni d'un joint d'étanchéité torique 112. Une cartouche cylindrique allongée 114 est logée à l'intérieur de l'alésage cylindrique 104. Elle contient le dessiccant 116 qui permet de déshydrater et de filtrer le fluide de réfrigération FI .
La Figure 9 permet d'apprécier la forme particulière des plaques 2 du condenseur. Chaque plaque comporte une demi- cuvette à fond plat 122 traversée par un orifice de passage 124. Lorsque les plaques de l' échangeur sont empilées, les fonds plats des cuvettes viennent au contact l'un- de l'autre. Durant l'opération de brasage de l' échangeur, ils sont assemblés entre eux de manière étanche. On réalise ainsi avantageusement des conduits annulaires permettant la circulation du fluide de réfrigération FI et du fluide de refroidissement F2 d'un canal de passage à l'autre sans avoir à utiliser de pièces supplémentaires disposées entre les plaques. Bien entendu, en variante de réalisation, une plaque sur deux pourrait être plane, la cuvette formée dans la plaque adjacente ayant une profondeur correspondant à la totalité de l'écartement entre deux plaques successives.
En outre, conformément à l'invention, des éléments turbulateurs (encore appelés perturbateurs) destinés à améliorer l'échange de chaleur peuvent être disposés entre les plaques. On a représenté sur la Figure 10 une première variante de réalisation d'un élément turbulateur 132. Il est constitué par une tôle emboutie conformée de manière à présenter des ondulations rectilignes 134 disposées, par exemple, dans le sens de la longueur des plaques. Dans ce cas, les plaques 2 présentent un fond généralement plan.
On a représenté sur la Figure 11 une autre forme de réalisation d'un élément turbulateur 136. Il comporte des emboutis 138 présentant la formé générale de créneaux. Ces créneaux sont répartis en deux séries décalées l'une par rapport à l'autre. Un tel élément turbulateur 136 est disposé entre des plaques 2 présentant également un fond généralement plan.
Les éléments turbulateurs 132 et 136 représentés sur les Figures 10 et 11 nécessitent de fabriquer une pièce supplémentaire et de l'intercaler entre les plaques. Il est possible de supprimer cette pièce supplémentaire en réalisant les éléments turbulateurs par des reliefs venus des plaques elles-mêmes et obtenus par une opération d'emboutissage.
Ainsi, sur la Figure 12, le condenseur comprend de premières plaques 140 présentant chacune un fond 142 ayant des ondulations 144 définies par des génératrices s 'étendant dans une première direction Dl et de secondes plaques 146 disposées en alternance avec les premières plaques 140 et présentant chacune un fond 148 ayant des ondulations 150 définies par des génératrices s 'étendant dans une seconde direction D2 qui est sensiblement perpendiculaire à la première direction Dl . Les ondulations respectives des plaques permettent de donner aux canaux une structure tridimensionnelle particulière qui favorise un écoulement turbulent du fluide FI et du fluide F2 et, par conséquent, un bon échange thermique entre eux. Ceci permet également de supprimer des éléments turbulateurs insérés entre les plaques .
On a représenté sur la Figure 13 une variante de réalisation des éléments turbulateurs de la Figure 12. L' échangeur comprend une première série de plaques 154 et une seconde série de plaques 156 comportant respectivement des ondulations 158 et 160 en forme de chevrons. Ces ondulations définissent également une structure tridimensionnelle des canaux d'écoulement des fluides qui favorise un écoulement turbulent et un bon échange thermique entre eux.

Claims

Revendications
1. Condenseur, notamment pour un circuit de climatisation de véhicule automobile comprenant une multiplicité de plaques courantes empilées (2) assemblées pour délimiter de premiers canaux d'écoulement pour un fluide de réfrigération (FI) qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement (F2) , caractérisé en ce qu'il comporte au moins deux passes sur le fluide de réfrigération.
2. Condenseur selon la revendication 1, caractérisé en ce que les plaques comportent des passages de communication (124) pour permettre le passage du fluide de réfrigération (FI) et du fluide de refroidissement (F2) d'un canal d'écoulement à l'autre, des conduits annulaires (68, 122) sont prévus alternativement en regard des passages de communication pour interdire le mélange des fluides.
3. Condenseur selon la revendication 1 ou 2 , caractérisé en ce que les plaques courantes sont munies de deux passages de communication destinés au passage du fluide de réfrigération (FI) et de deux passages de communication destinés au passage du fluide de refroidissement (F2) .
4. Condenseur selon l'une des revendications .1 à 3, caractérisé en ce que les plaques empilées (2) sont munies de bords périphériques relevés (3) , assemblés de manière étanche.
5. Condenseur selon l'une des revendications 1 .à 4, caractérisé en ce qu'il comporte au moins une entrée et une sortie de fluide de réfrigération et au moins une passe (a) sur le fluide de réfrigération communiquant avec ladite entrée, dite passe d'entrée, et une autre passe (c) communiquant avec ladite sortie, dite passe de sortie, la section des passes diminuant depuis la passe d'entrée vers la passe de sortie.
6. Condenseur selon- l'une des revendications 2 à 5, caractérisé en ce qu'un passage de communication du fluide de réfrigération, respectivement un passage de communication du fluide de refroidissement, est supprimé dans certaines plaques courantes pour déterminer des passes pour la circulation du fluide de réfrigération, respectivement pour la circulation du fluide de refroidissement.
7. Condenseur selon l'une des revendications 1 à 6, caractérisé en ce que les plaques (2) sont réparties en une première série (94) pour assurer le refroidissement du fluide de réfrigération jusqu'à sa condensation et en une seconde série (96) pour assurer le refroidissement du fluide de réfrigération en dessous de sa température de condensation.
8. Condenseur selon la revendication 7, caractérisé en ce qu'il comporte une bouteille (100) intégrée entre la première et la seconde série de plaques (94, 96) .
9. Condenseur selon l'une des revendications 1 à 8, caractérisé en ce que des éléments turbulateurs (132, 136) sont disposés entre les plaques (2) .
10. Condenseur selon l'une des revendications 1 à 8, caractérisé en ce que les plaques comportent des reliefs (144,
150, 158, 160) qui constituent des éléments turbulateurs.
11. Condenseur selon l'une des revendications 1 à 10, caractérisé en ce que le diamètre hydraulique des canaux d'écoulement des fluides (FI et F2) est compris entre 0,1 mm et 3 mm.
12. Condenseur selon l'une des revendications 2 à 11, caractérisé en ce que les conduits annulaires sont constitués par des cuvettes (122) formées dans les plaques (2) .
13. Condenseur selon l'une des revendications 1 à 12, caractérisé en ce que le fluide de refroidissement (F2) est constitué par l'eau du circuit de refroidissement du moteur du véhicule automobile.
14. Circuit de climatisation, notamment pour l'habitacle d'un véhicule automobile, comprenant un évaporateur, un compresseur, un condenseur, dans lequel circule un fluide de réfrigération, caractérisé en ce que le condenseur est conforme à l'une des revendications 1 à 13.
PCT/FR2003/003055 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur WO2004042293A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/532,513 US7469554B2 (en) 2002-10-31 2003-10-31 Condenser, in particular for a motor vehicle air conditioning circuit, and circuit comprising same
AU2003301834A AU2003301834A1 (en) 2002-10-31 2003-10-31 Condenser, in particular for a motor vehicle air conditioning circuit, and circuit comprising same
EP03810494A EP1592930B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur
EP08158983.0A EP1992891B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
US12/274,812 US8122736B2 (en) 2002-10-31 2008-11-20 Condenser for a motor vehicle air conditioning circuit, and circuit comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/13671 2002-10-31
FR0213671A FR2846733B1 (fr) 2002-10-31 2002-10-31 Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10532513 A-371-Of-International 2003-10-31
US12/274,812 Continuation US8122736B2 (en) 2002-10-31 2008-11-20 Condenser for a motor vehicle air conditioning circuit, and circuit comprising same

Publications (1)

Publication Number Publication Date
WO2004042293A1 true WO2004042293A1 (fr) 2004-05-21

Family

ID=32104360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003055 WO2004042293A1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur

Country Status (5)

Country Link
US (2) US7469554B2 (fr)
EP (2) EP1592930B1 (fr)
AU (1) AU2003301834A1 (fr)
FR (1) FR2846733B1 (fr)
WO (1) WO2004042293A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562010A2 (fr) * 2004-01-30 2005-08-10 Behr GmbH & Co. Echangeur de chaleur
DE102010026507A1 (de) 2010-07-07 2012-01-12 Behr Gmbh & Co. Kg Kältemittelkondensatormodul
DE102010043398A1 (de) 2010-11-04 2012-05-10 Behr Gmbh & Co. Kg Kraftfahrzeugklimaanlage
DE102011005177A1 (de) 2011-03-07 2012-09-13 Behr Gmbh & Co. Kg Kondensator
DE102011007784A1 (de) 2011-04-20 2012-10-25 Behr Gmbh & Co. Kg Kondensator
EP2434235B1 (fr) 2010-09-28 2019-02-20 Valeo Systemes Thermiques Ensemble d'un échangeur de chaleur biphasique et d'une bouteille
DE102020202323A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator
DE102020202326A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPN20050090A1 (it) * 2005-12-13 2007-06-14 Domnick Hunter Hiross Spa Essiccatore di gas compressi umidi
SE529769E (sv) * 2006-04-04 2014-04-22 Alfa Laval Corp Ab Plattvärmeväxlare vilken innefattar åtminstone en förstärkningsplatta vilken är anordnad utanför en av de yttre värmeväxlarplattorna
FR2923899B1 (fr) * 2007-11-20 2017-05-05 Valeo Systemes Thermiques Branche Thermique Moteur Condenseur pour circuit de climatisation avec bouteille integree
FR2924490A1 (fr) 2007-11-29 2009-06-05 Valeo Systemes Thermiques Condenseur pour circuit de climatisation avec partie de sous-refroidissement
FR2931542A1 (fr) * 2008-05-22 2009-11-27 Valeo Systemes Thermiques Echangeur de chaleur a plaques, notamment pour vehicules automobiles
US8448460B2 (en) * 2008-06-23 2013-05-28 GM Global Technology Operations LLC Vehicular combination chiller bypass system and method
WO2010060657A1 (fr) * 2008-11-26 2010-06-03 Valeo Systemes Thermiques Condenseur pour circuit de climatisation avec echangeur interne integre
FR2943774B1 (fr) * 2009-03-24 2013-12-20 Valeo Systemes Thermiques Condenseur a deux blocs d'echange de chaleur pour circuit de climatisation
FR2947041B1 (fr) * 2009-06-23 2011-05-27 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
FR2947045B1 (fr) * 2009-06-23 2013-11-29 Valeo Systemes Thermiques Bloc d'echangeur de chaleur, en particulier pour condenseur de climatisation
US8011201B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system mounted within a deck
FR2950682B1 (fr) 2009-09-30 2012-06-01 Valeo Systemes Thermiques Condenseur pour vehicule automobile a integration amelioree
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
FR2952172A1 (fr) * 2009-11-03 2011-05-06 Peugeot Citroen Automobiles Sa Condenseur de circuit de refrigeration a encombrement vertical reduit
JP5960955B2 (ja) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company 車両用コンデンサ
KR20120061534A (ko) * 2010-12-03 2012-06-13 현대자동차주식회사 수냉식 응축기
DE102011008429A1 (de) * 2011-01-12 2012-07-12 Behr Gmbh & Co. Kg Vorrichtung zur Wärmeübertragung für ein Fahrzeug
SG192616A1 (en) * 2011-02-08 2013-09-30 Carrier Corp Brazed plate heat exchanger for water-cooled heat rejction in a refrigeration cycle
DE102011007701A1 (de) * 2011-04-19 2012-10-25 Behr Gmbh & Co. Kg Kältemittelkondensatorbaugruppe
ITTO20110366A1 (it) * 2011-04-27 2012-10-28 Denso Thermal Systems Spa Gruppo integrato condensatore-accumulatore-sottoraffreddatore per veicoli
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
DE102011078136A1 (de) * 2011-06-27 2012-12-27 Behr Gmbh & Co. Kg Kältemittelkondensatormodul
KR101326841B1 (ko) * 2011-12-07 2013-11-11 현대자동차주식회사 차량용 컨덴서
KR101316858B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
KR101316859B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
CN102635984B (zh) * 2012-04-26 2016-04-06 海尔集团公司 室外机冷凝器及空调器
DE102012217090A1 (de) 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
DE102012217087A1 (de) * 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
DE102012220594A1 (de) * 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
KR101416358B1 (ko) * 2012-10-05 2014-07-08 현대자동차 주식회사 차량용 열교환기
KR101461872B1 (ko) * 2012-10-16 2014-11-13 현대자동차 주식회사 차량용 응축기
KR101461871B1 (ko) * 2012-10-19 2014-11-13 현대자동차 주식회사 차량용 응축기
DE102012023125B3 (de) * 2012-11-27 2013-11-28 Modine Manufacturing Co. Herstellungsverfahren gelöteter Plattenwärmetauscher, sowie danach hergestellte Plattenwärmetauscher
DE102012224353A1 (de) * 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Wärmeübertrager
FR3000183B1 (fr) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
WO2014116351A1 (fr) 2013-01-28 2014-07-31 Carrier Corporation Unité d'échange thermique à plusieurs faisceaux de tubes dotée d'un ensemble de collecteur
FR3001796A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’un condenseur et d’un sous-refroidisseur de climatisation
DE102013002545A1 (de) 2013-02-14 2014-08-14 Modine Manufacturing Co. Kondensator mit einem Stapel aus Wärmetauscherplatten
JP6094261B2 (ja) * 2013-02-27 2017-03-15 株式会社デンソー 積層型熱交換器
CN105074375B (zh) * 2013-02-27 2018-05-15 株式会社电装 层叠型热交换器
JP6160385B2 (ja) * 2013-09-17 2017-07-12 株式会社デンソー 積層型熱交換器
WO2014158529A1 (fr) * 2013-03-14 2014-10-02 Kci Licensing, Inc. Récipient destiné à la collecte de fluide et piège à humidité intégré
EP2784413A1 (fr) * 2013-03-28 2014-10-01 VALEO AUTOSYSTEMY Sp. Z. o.o. Échangeur de chaleur, en particulier condenseur
DE102013209157A1 (de) * 2013-05-16 2014-12-04 Behr Gmbh & Co. Kg Kondensator
DK2843324T3 (da) * 2013-08-27 2021-03-08 Johnson Controls Denmark Aps Skal- og pladevarmeveksler og anvendelse af en skal- og pladevarmeveksler
ES2877092T3 (es) * 2013-11-25 2021-11-16 Carrier Corp Intercambiador de calor de microcanal de doble trabajo
DE102013225321A1 (de) 2013-12-09 2015-06-11 MAHLE Behr GmbH & Co. KG Stapelscheibe für einen Wärmeübertrager und Wärmeübertrager
DE102014204936A1 (de) 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
DE102014004322B4 (de) * 2014-03-25 2020-08-27 Modine Manufacturing Company Wärmerückgewinnungssystem und Plattenwärmetauscher
US10317112B2 (en) 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
US10107490B2 (en) 2014-06-30 2018-10-23 Lam Research Corporation Configurable liquid precursor vaporizer
CN106132739B (zh) * 2014-07-24 2018-10-23 翰昂汽车零部件有限公司 车辆用空调系统
US11199365B2 (en) * 2014-11-03 2021-12-14 Hamilton Sundstrand Corporation Heat exchanger
US9982341B2 (en) * 2015-01-30 2018-05-29 Lam Research Corporation Modular vaporizer
DE102016001607A1 (de) 2015-05-01 2016-11-03 Modine Manufacturing Company Flüssigkeit-zu-Kältemittel-Wärmetauscher und Verfahren zum betrieb desselben
USD763715S1 (en) * 2015-05-14 2016-08-16 Timothy Raehsler Flow timer for gas grill
WO2016198907A1 (fr) * 2015-06-09 2016-12-15 Carrier Corporation Filtre-sécheur intégré dans un échangeur de chaleur à plaques
US10662527B2 (en) 2016-06-01 2020-05-26 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur
DK179183B1 (en) * 2017-03-01 2018-01-15 Danfoss As Dividing plate between Heat plates
WO2018162062A1 (fr) * 2017-03-09 2018-09-13 Abb Schweiz Ag Élément périphérique, rotor et machine électrique
JP2019002350A (ja) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 冷却システム
US10935288B2 (en) * 2017-08-28 2021-03-02 Hanon Systems Condenser
DE202018104653U1 (de) 2017-09-06 2018-09-05 Erbslöh Aluminium Gmbh Kondensator, insbesondere für ein Kraftfahrzeug
CN107687781B (zh) * 2017-09-21 2023-08-08 江苏宝得换热设备股份有限公司 一种多层充分热交换的储水式换热器
DE102018200808A1 (de) 2018-01-18 2019-07-18 Mahle International Gmbh Stapelscheibenwärmetauscher
IT201800004061A1 (it) * 2018-03-29 2019-09-29 Denso Thermal Systems Spa Sistema di climatizzazione per autobus.
EP3572754B1 (fr) * 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Échangeur de chaleur
DE102018129988A1 (de) 2018-07-09 2020-01-09 Hanon Systems Kompaktwärmeübertragereinheit und Klimaanlagenmodul, insbesondere für Elektrofahrzeuge
WO2020022726A1 (fr) * 2018-07-24 2020-01-30 한온시스템 주식회사 Condenseur du type à refroidissement par eau
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
EP3951305A4 (fr) * 2019-03-28 2022-11-30 Zhejiang Sanhua Automotive Components Co., Ltd. Échangeur thermique et dispositif d'échange thermique
DE102019210022A1 (de) * 2019-07-08 2021-01-14 Mahle International Gmbh Wärmeübertragermodul und Verfahren zum Herstellen des Wärmeübertragermoduls
KR20210025314A (ko) * 2019-08-27 2021-03-09 한온시스템 주식회사 수랭식 응축기
KR20210048408A (ko) 2019-10-22 2021-05-03 에이에스엠 아이피 홀딩 비.브이. 반도체 증착 반응기 매니폴드
FR3102552B1 (fr) * 2019-10-29 2022-07-29 Valeo Systemes Thermiques Dispositif d’échange d’énergie calorifique comportant deux échangeurs de chaleur à plaques
DK180416B1 (en) * 2019-11-04 2021-04-22 Danfoss As Plate-and-shell heat exchanger and a channel blocking plate for a plate-and-shell heat exchanger
FR3124588B1 (fr) * 2021-06-29 2023-11-24 Valeo Systemes Thermiques Echangeur thermique pour véhicule automobile
US20230173874A1 (en) * 2021-12-07 2023-06-08 Mahle International Gmbh Plate ihx as mounting plate for refrigerant module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE350706A (fr) *
EP0292245A1 (fr) * 1987-05-21 1988-11-23 Heatric Pty. Limited Echangeur de chaleur à plaques plates
US5129449A (en) * 1990-12-26 1992-07-14 Sundstrand Corporation High performance heat exchanger
DE29622191U1 (de) * 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler
JPH10267427A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
JP2000258082A (ja) 1999-03-09 2000-09-22 Sanyo Electric Co Ltd 水・冷媒熱交換器
EP1054225A1 (fr) * 1998-12-08 2000-11-22 Ebara Corporation Echangeur thermique du type a plaques pour trois fluides et procede de fabrication
JP2000356483A (ja) * 1999-06-16 2000-12-26 Nhk Spring Co Ltd 熱交換器
EP1063486A1 (fr) * 1999-06-21 2000-12-27 Valeo Thermique Moteur Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
FR2808869A1 (fr) * 2000-05-09 2001-11-16 Sanden Corp Condenseur de type a sous-refroidissement
WO2001088454A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Condenseur et echangeur thermique de vehicule automobile

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274482A (en) * 1978-08-21 1981-06-23 Nihon Radiator Co., Ltd. Laminated evaporator
US4592414A (en) * 1985-03-06 1986-06-03 Mccord Heat Transfer Corporation Heat exchanger core construction utilizing a plate member adaptable for producing either a single or double pass flow arrangement
CA1317772C (fr) 1985-10-02 1993-05-18 Leon A. Guntly Condenseur a circuit d'ecoulement de faible diametre hydraulique
SE502254C2 (sv) * 1990-12-17 1995-09-25 Alfa Laval Thermal Ab Plattvärmeväxlare och förfarande för framställning av en plattvärmeväxlare
DE4245046C8 (de) 1992-11-18 2008-08-21 Behr Gmbh & Co. Kg Kondensator für eine Klimaanlage eines Fahrzeuges
JP3243924B2 (ja) * 1994-04-01 2002-01-07 株式会社デンソー 冷媒凝縮器
ATE175491T1 (de) * 1994-04-12 1999-01-15 Showa Aluminum Corp Doppelwärmetauscher in stapelbauweise
DE4431413C2 (de) * 1994-08-24 2002-10-10 Rehberg Michael Plattenwärmetauscher für flüssige und gasförmige Medien
SE504799C2 (sv) * 1995-08-23 1997-04-28 Swep International Ab Trekrets-värmeväxlare
US5901573A (en) * 1995-11-02 1999-05-11 Calsonic Corporation Condenser structure with liquid tank
DE29624264U1 (de) 1995-11-22 2001-08-16 Volkswagen Ag Trockneranordnung am Kältemittel-Kondensator einer Fahrzeug-Klimaanlage
FR2758876B1 (fr) * 1997-01-27 1999-04-02 Valeo Thermique Moteur Sa Condenseur muni d'un reservoir de fluide refrigerant pour circuit de climatisation
JP3814917B2 (ja) * 1997-02-26 2006-08-30 株式会社デンソー 積層型蒸発器
US5752560A (en) * 1997-03-21 1998-05-19 Cherng; Bing Jye Electric sunshield for automobiles
JPH10332227A (ja) * 1997-05-29 1998-12-15 Showa Alum Corp 受液器付き凝縮器
KR100264815B1 (ko) * 1997-06-16 2000-09-01 신영주 다단기액분리형응축기
JPH11304293A (ja) 1997-07-10 1999-11-05 Denso Corp 冷媒凝縮器
JPH11287574A (ja) * 1998-03-31 1999-10-19 Hisaka Works Ltd ブレージングプレート式熱交換器
CA2260890A1 (fr) * 1999-02-05 2000-08-05 Long Manufacturing Ltd. Echangeurs de chaleur fermes
JP2000266492A (ja) * 1999-03-12 2000-09-29 Sanden Corp 積層型熱交換器
EP1065454A1 (fr) * 1999-07-02 2001-01-03 Modine Manufacturing Company condenseur à refroidissement par air
US6357516B1 (en) * 2000-02-02 2002-03-19 York International Corporation Plate heat exchanger assembly with enhanced heat transfer characteristics
EP1147930B1 (fr) 2000-03-24 2001-12-05 Modine Manufacturing Company Condenseur pour la climatisation de véhicule automobile
DE10018478A1 (de) 2000-04-14 2001-10-18 Behr Gmbh & Co Kondensator für eine Klimaanlage, insbesondere für eine Klimaanlage eines Kraftfahrzeuges
GB0012034D0 (en) * 2000-05-19 2000-07-05 Llanelli Radiators Ltd Compressor/condenser unit
US20030010483A1 (en) * 2001-07-13 2003-01-16 Yasuo Ikezaki Plate type heat exchanger
JP2003139460A (ja) * 2001-11-01 2003-05-14 Abi:Kk 変動磁場発生装置、冷凍装置および均一な変動磁場の発生方法
US6948559B2 (en) * 2003-02-19 2005-09-27 Modine Manufacturing Company Three-fluid evaporative heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE350706A (fr) *
EP0292245A1 (fr) * 1987-05-21 1988-11-23 Heatric Pty. Limited Echangeur de chaleur à plaques plates
US5129449A (en) * 1990-12-26 1992-07-14 Sundstrand Corporation High performance heat exchanger
DE29622191U1 (de) * 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler
JPH10267427A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
EP1054225A1 (fr) * 1998-12-08 2000-11-22 Ebara Corporation Echangeur thermique du type a plaques pour trois fluides et procede de fabrication
JP2000258082A (ja) 1999-03-09 2000-09-22 Sanyo Electric Co Ltd 水・冷媒熱交換器
JP2000356483A (ja) * 1999-06-16 2000-12-26 Nhk Spring Co Ltd 熱交換器
EP1063486A1 (fr) * 1999-06-21 2000-12-27 Valeo Thermique Moteur Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
FR2808869A1 (fr) * 2000-05-09 2001-11-16 Sanden Corp Condenseur de type a sous-refroidissement
WO2001088454A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Condenseur et echangeur thermique de vehicule automobile

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12 3 January 2001 (2001-01-03) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 15 6 April 2001 (2001-04-06) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562010A2 (fr) * 2004-01-30 2005-08-10 Behr GmbH & Co. Echangeur de chaleur
EP1562010A3 (fr) * 2004-01-30 2007-06-13 Behr GmbH & Co. KG Echangeur de chaleur
DE102010026507A1 (de) 2010-07-07 2012-01-12 Behr Gmbh & Co. Kg Kältemittelkondensatormodul
EP2420763A2 (fr) 2010-07-07 2012-02-22 Behr GmbH & Co. KG Module de condensateur de produit réfrigérant
EP2434235B1 (fr) 2010-09-28 2019-02-20 Valeo Systemes Thermiques Ensemble d'un échangeur de chaleur biphasique et d'une bouteille
DE102010043398A1 (de) 2010-11-04 2012-05-10 Behr Gmbh & Co. Kg Kraftfahrzeugklimaanlage
DE102011005177A1 (de) 2011-03-07 2012-09-13 Behr Gmbh & Co. Kg Kondensator
DE102011007784A1 (de) 2011-04-20 2012-10-25 Behr Gmbh & Co. Kg Kondensator
WO2012143451A1 (fr) 2011-04-20 2012-10-26 Behr Gmbh & Co. Kg Condenseur
US10107566B2 (en) 2011-04-20 2018-10-23 Mahle International Gmbh Condenser
DE102020202323A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator
DE102020202326A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator

Also Published As

Publication number Publication date
US20090071189A1 (en) 2009-03-19
FR2846733A1 (fr) 2004-05-07
US20060053833A1 (en) 2006-03-16
EP1592930B1 (fr) 2013-02-13
US8122736B2 (en) 2012-02-28
US7469554B2 (en) 2008-12-30
EP1592930A1 (fr) 2005-11-09
FR2846733B1 (fr) 2006-09-15
EP1992891A1 (fr) 2008-11-19
EP1992891B1 (fr) 2017-06-21
AU2003301834A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
EP1992891B1 (fr) Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
EP2118608B1 (fr) Echangeur de chaleur et ensemble intégré incorporant un tel échangeur
FR2847973A1 (fr) Echangeur de chaleur a inertie thermique pour circuit de fluide caloporteur, notamment de vehicule automobile.
WO2005040707A2 (fr) Echangeur de chaleur utilisant un fluide d'accumulation
WO2013001011A1 (fr) Echangeur thermique notamment pour vehicule automobile
FR2846736A1 (fr) Module d'echange de chaleur a plaques empilees, notamment pour un vehicule automobile
FR2912811A1 (fr) Echangeur de chaleur pour fluides a circulation en u
EP1762808A1 (fr) Elément de circuit à tubes plats, et échangeur de chaleur muni de tels éléments de circuit
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
EP2260253B1 (fr) Ensemble intégré de climatisation comprenant un échangeur de chaleur interne
FR2852383A1 (fr) Boite collectrice pour echangeur de chaleur a haute pression et echangeur de chaleur comportant cette boite collectrice
EP1770346B1 (fr) Echangeur de chaleur à tubes plats alternés
EP2105693A1 (fr) Echangeur de chaleur à puissance frigorifique élevée
EP3394551A1 (fr) Échangeur thermique, notamment pour véhicule automobile
EP2392877B1 (fr) Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille
FR3001795A1 (fr) Agencement d’echangeurs thermiques a plaques
WO2017109350A1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2020239533A1 (fr) Bouteille pour condenseur a eau de vehicule automobile
EP2072936B1 (fr) Echangeur de chaleur unitaire pour un circuit de climatisation
EP4396515A1 (fr) Échangeur de chaleur pour boucle de fluide réfrigérant
WO2023030977A1 (fr) Échangeur de chaleur pour boucle de fluide réfrigérant
WO2018002463A1 (fr) Boîte collectrice pour echangeur de chaleur et echangeur de chaleur equipe d'une telle boîte
FR3066402A1 (fr) Separateur de phases pour un circuit de fluide refrigerant
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3045805A1 (fr) Echangeur thermique, notamment pour vehicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003810494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006053833

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532513

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003810494

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10532513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP