EP2105693A1 - Echangeur de chaleur à puissance frigorifique élevée - Google Patents

Echangeur de chaleur à puissance frigorifique élevée Download PDF

Info

Publication number
EP2105693A1
EP2105693A1 EP09155369A EP09155369A EP2105693A1 EP 2105693 A1 EP2105693 A1 EP 2105693A1 EP 09155369 A EP09155369 A EP 09155369A EP 09155369 A EP09155369 A EP 09155369A EP 2105693 A1 EP2105693 A1 EP 2105693A1
Authority
EP
European Patent Office
Prior art keywords
exchanger according
elementary
fluid
path
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09155369A
Other languages
German (de)
English (en)
Other versions
EP2105693B1 (fr
Inventor
Sylvain Moreau
François Busson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2105693A1 publication Critical patent/EP2105693A1/fr
Application granted granted Critical
Publication of EP2105693B1 publication Critical patent/EP2105693B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to the field of heat exchangers between two fluids, in particular for cooling a cooling liquid with air.
  • heat exchangers are used in the field of air conditioning, for example motor vehicles.
  • a heat exchanger including an evaporator for a vehicle air conditioning loop, defines a combined path for a first fluid formed of a plurality of first elementary paths and a combined path for a second fluid formed of a plurality of second elementary paths. .
  • the first and second elementary paths are arranged alternately in a first direction so that each elementary path for one of the fluids is in thermal contact with at least one adjacent elementary path for the other fluid.
  • the first fluid is a coolant or a heat transfer fluid and the second fluid is air.
  • Each first elementary path has a U-shaped configuration whose two branches extend in a second direction and are offset relative to each other in a third direction.
  • the first, second and third directions are substantially perpendicular to each other.
  • each first path is made by means of tube made by folding, extrusion, by joining plates together or any other method of obtaining a heat exchanger circuit element.
  • Each first path communicates with collecting spaces to provide a combined path extending from an inlet manifold space to an outlet manifold space of the heat exchanger.
  • Each second elementary path extending in the third direction of an input face to an exit face of the exchanger.
  • Each second path is generally made by a heat exchange spacer formed in a metal strip having louvers to promote heat exchange between the first fluid and the second fluid.
  • At least one transition passage is formed between two collector spaces respectively belonging to two rows, so that, in the first elementary paths communicating directly with these two collector spaces, the fluid flows from one branch to the other in the same way. meaning in relation to the third direction.
  • the fluid flows from one branch to the other in the same direction relative to the direction of flow of air, in first elementary paths directly communicating with these two collecting spaces.
  • Such a heat exchanger is in particular known from the French patent application FR 2,825,791 which describes an evaporator for an air conditioning loop of a motor vehicle.
  • the need has arisen for an exchanger with increased performance.
  • the invention improves the situation.
  • the heat exchanger including an evaporator for a vehicle air conditioning loop, defines a combined path for a first fluid formed of a plurality of elementary paths and a combined path for a second fluid formed of a plurality of second elementary paths.
  • the first and second elementary paths being arranged alternately in a first direction so that each elementary path for one of the fluids is in thermal contact with at least one adjacent elementary path for the other fluid. Every first journey elementary is of elongated configuration in a second direction.
  • the first elementary paths consist of tubes having at least one wall with a wall thickness less than or equal to 0.3 mm.
  • the wall thickness of the elementary path is between 0.24 and 0.28 mm.
  • the heat exchange is particularly effective between the first and second fluids.
  • the tubes are coupled to at least one heat exchange spacer height in the first direction less than 5 mm, preferably between 3 mm and 4.5 mm.
  • the tubes define circulation channels of the first fluid having a hydraulic diameter of less than 1.2 mm, preferably between 0.85 mm and 1.10 mm and more particularly between 0.89 mm and 1, 07 mm.
  • the wall thickness of the tubes is less than or equal to 0.27 mm and the tubes have an internal height in the first direction is less than 1.5 mm, preferably between 1 mm and 1.3 mm.
  • the first elementary paths are arranged in two layers in a third direction.
  • the first, second and third directions are substantially perpendicular to each other.
  • Each second elementary path of the second fluid extends in the third direction of an entry face to an exit face of the heat exchanger.
  • the first elementary paths of a web are offset relative to each other in a first direction.
  • the entry face of the second fluid is close to the second sheet of first elementary paths.
  • the exit face of the second fluid is close to the first sheet of first elementary paths.
  • Each first elementary path opens into collecting spaces.
  • the collecting spaces are connected to first elementary paths of a web.
  • the collector spaces of the same ply communicate in pairs so as to establish a combined path extending from an inlet collector space to an outlet collector space located at opposite plies of the exchanger in the third direction.
  • at least one transition space is provided between two collector spaces respectively belonging to the two plies, so that the first fluid flows from the first ply to the second ply.
  • the surface of the transition space is between 60% and 80% of the area of the first elementary paths of the third pass, preferably between 65% and 75%.
  • the transition space is formed by a bulge of the sheets having a radius of between 8.5 mm and 10 mm.
  • the heat exchanger 1 comprises a stack of tubes 2 and heat exchange tabs 44 and 45.
  • Each tube 2 is formed of two plates 3 and 4 respectively formed from a metal strip shaped cups.
  • the plates 3 and 4 are identical to each other and have their concavities turned towards each other, respectively upwards and downwards of the figure 3 , that is, according to the direction xx.
  • Each plate 3 and 4 has a peripheral edge 5.
  • the peripheral edges 5 of the two plates 3 and 4 forming a tube 2 are mutually assembled in a fluid-tight manner, for example by brazing to define the internal volume of the tube 2.
  • the tube 2 forms two first elementary paths 13 and 14 for a first fluid, in particular a refrigerant circulating in an air conditioning loop of a vehicle automobile or a coolant circulating in a cooling circuit of a combustion engine of a motor vehicle.
  • Each tube 2 has two end regions 6 and 7, located respectively downwards and upwards of the figure 1 , that is to say in the zz direction, defined by deep stampings formed in the plates 3 and 4.
  • the end regions 6 and 7 occupy a minor fraction of the height of the exchanger 1 at the upper and lower parts. bottom of it, the rest of the height being occupied by a body region of smaller thickness, as detailed in sectional view on the figure 3 .
  • the interior volumes of the end regions 6 and 7 of each tube are separated from each other by a sealed junction zone 8 extending from the upper end region 6 to the lower end region. 7.
  • the sealed junction zone 8 is arranged between the fluid passages defining the elementary paths 13 and 14 at the half-width of the tube 2 in the yy direction, this junction zone 8 extending downwards in the zz direction to adjacent to the lower end 7 of the tube 2.
  • a plate 3 and a neighboring plate 4 belonging to two different tubes 2 are in mutual support by their bottoms 9 in the end regions 6 and 7, also illustrated in FIG. figure 10 , and separated from each other in the body region, by an interval packed with heat exchange tab 44 and 45 illustrated on the Figures 11 and 12 .
  • the heat exchange tabs 44 and 45 define a second elementary path for the air to be cooled, parallel to the plan of the figure 4 , that is to say in the direction yy, and in the direction of the arrow "AIR" illustrated on the Figures 1 and 2 .
  • the tubes 2 are thus coupled to at least one thermal exchange spacer 44 and / or 45.
  • Funds 9 in mutual contact are soldered together. At least a portion of the funds 9 are traversed by openings 10 communicating with each other the corresponding interior volumes. Watertight partitions 16 are arranged in certain openings 10 to close them to define a particular circuit, said multi pass.
  • the heat exchanger 1 comprises a fluid inlet insert 11 and a fluid outlet insert 12 disposed on an outer face of the end region 6 of a tube 2 arranged at one end of the exchanger 1, that is to say at the end in direction xx.
  • the inserts 11 and 12 may have different diameters.
  • the inserts 11 and 12 define an inlet or outlet tubing projecting from a short side of the heat exchanger 1.
  • the exemplary embodiment described by way of example in figure 1 has the fluid inlet 11 and fluid outlet inserts 12 arranged on the same side of the heat exchanger 1.
  • the present invention also covers the other arrangements in which the inserts are arranged at the two opposite ends of a same end zone or disposed at both ends of two end zones disposed on the same side of the exchanger or at two opposite ends of two end zones. These arrangements are dependent on the bulkheads 16 arranged in certain openings 10.
  • FIG 2 showing a diagram of an example of circulation of fluids in the heat exchanger 1 according to the present invention.
  • the refrigerant entering the heat exchanger 1 by the fluid inlet insert 11 is distributed through a collector space 17, between the inner volumes of the regions 6 between one end of the heat exchanger 1, located to the right of the figure 1 in the direction xx, and a partition 16 formed by the bottoms of two plates 3 and 4 not provided with openings 10.
  • From the collector space 17, the fluid travels in parallel the elementary paths 13 delimited by the tubes 2 which define it.
  • the elementary paths 13 near the inlet face of the fluid 15 form a first pass 31 and open into a second collecting space 18 formed by the interior volumes of the regions 7 of the same tubes 2 which form the collecting space 17.
  • the collecting space 18 communicates through an opening 10 with a third collecting space 19, which in turn is connected to a fourth collecting space 20, separated from the collecting space 17 by the partition 16, by means of elementary paths forming a second pass 32.
  • the collecting space 20 communicates through an opening 10 with a fifth collecting space 21, which in turn is connected to a sixth collecting space 22, separated from the collecting space 19 by a partition 16, the communication between the fifth and sixth collecting spaces being made via elementary paths forming a third pass 33.
  • the refrigerant entering through the insert 11 thus passes through all the branches located on the side of the inlet face of the fluid 15, then, between the sixth collecting space 22 and a seventh collecting space 23, flows in the opposite direction to the flow of air through passages 41, which are illustrated on the Figures 6 and 7 and will be detailed in relation to these figures.
  • the refrigerant then flows from the seventh collecting space 23 to the eighth collecting space 24 in passing through the elementary paths 14 forming the fourth pass 34, then moves in the first direction 51 or direction xx, communicating through an opening 10 to the ninth collecting space 25.
  • the refrigerant circulates in the fifth pass 35 and joined by the intermediate elementary paths 14 a tenth collecting space 26 separated from the collecting space 23 by the partition 16.
  • the tenth collecting space 26 communicates through an opening 10 with an eleventh collecting space 27.
  • the refrigerant circulates in the sixth pass 36 and joined via elementary paths 14 a twelfth collecting space 28 separated from the collecting space 25 by the partition 16.
  • the fluid then passes into the fluid outlet insert 12.
  • the exchanger 1 comprises a plurality of tubes 2, substantially identical to the passages and partition near. From a hydraulic point of view, the exchanger 1 forms two plies, respectively a first ply and a second ply said "upstream” and "downstream", each ply comprising a plurality of passes, and each pass comprising a plurality of first paths elementary.
  • a tube 2 defines a first elementary path of an upstream layer and a first elementary route of a downstream layer.
  • the path of the first fluid is in the form of two superimposed coils. Thanks to the fact that the coolant flows first on the downstream side, in the direction yy, in the direction of flow of air and then on the upstream side in the direction of flow of air, the temperature of cooling obtained at the outlet of the air is lower than before.
  • the refrigerant fluid makes a first pass 31 down the collector 17 near the insert 11 to the bottom of the exchanger.
  • the refrigerant then moves in the direction of the height of the heat exchanger 1, in the direction 52, that is to say the direction zz, through the openings 10 formed in the bottom of the tubes 2 while being limited by the partition 16 disposed in the bottom of the heat exchanger 1 on the side of the upstream face 15.
  • a partition 16 is also arranged to delimit the collecting space 17 and the collecting space 20.
  • the refrigerant then rises through the pass 32 until reaching the collector 20.
  • the refrigerant passes from the manifold 20 to the collector 21 through the openings 10 and then down through the third pass 33.
  • the refrigerant fluid moves from the upstream face 15 to the downstream face 29 and then back through the fourth pass 34 to reach the collector 24.
  • the refrigerant passes from the collector 24 to the collector 25 through the openings 10 and then down through the fifth pass 35 to the collector 26.
  • the refrigerant then moves laterally from the collector 26 to the collector 27 and then to the sixth I pass 36 through which the fluid rises to the collector space 28.
  • a partition 16 isolates the collector spaces 25 and 28 from each other.
  • Another partition 16 is disposed in the bottom of the exchanger to prevent a direct circulation of fluid bypassing the passages 34 and 35 in the bottom of the heat exchanger.
  • the relative disposition of the partitions 16 between the passes can be optimized. It is possible to provide a number of elementary paths per increasing pass from the first to the third pass and then decreasing from the third to the sixth pass.
  • the number of elementary paths of the first and sixth passes may be identical. The same is true of the number of elementary paths of the second and fifth passes and the third and fourth passes respectively. It is thus possible to align the partitions 16 of the front face 15 and the rear face 29.
  • the embodiment described in connection with the figures 1 and 2 is a six-pass heat exchanger. Nevertheless, the present invention is not limited to this type of heat exchanger. Indeed, according to the arrangements and the number of openings 10 and partitions 16 arranged, it is possible to obtain a heat exchanger having a pass number greater than or less than six. For example, it is possible to have 4 or 8-pass heat exchangers. Similarly, the present invention is not limited to heat exchangers having an even number of passes. It is quite possible within the scope of the invention to have heat exchangers having an odd number of passes.
  • an inner spacer 40 is disposed between the plates 3 and 4.
  • the inner spacer 40 may be made of the same material as the plates 3 and 4, for example aluminum alloy.
  • the inner spacer 40 has a thickness of less than 0.1 mm, preferably between 0.04 and 0.08 mm. This optimizes the flow of the cooling fluid and the heat transfer to the walls of the plates 3 and 4.
  • the inner spacer 40 may have a plurality of longitudinal corrugations in the direction of the elementary paths.
  • the corrugations can have a trapezoidal shape.
  • the pitch of the corrugation can be between 1 and 1.4 mm.
  • the large base of the trapezium may be between 120% and 140% of the pitch, and preferably between 128% and 140% of the pitch.
  • the small base of the trapezium can be between 60 and 80% of the pitch, and preferably between 60% and 72% of the pitch.
  • the folding radii between the Trapezoid walls can be between 0.15 and 0.25 mm.
  • the aluminum alloy sheet forming the plates 3 and 4 may have a thickness less than 0.3 mm, preferably between 0.24 and 0.28 mm. More preferably, a sheet having a thickness of less than or equal to 0.27 mm, for example equal to 0.27 mm, is used.
  • the internal height of a tube 2 forming the elementary path along the length of the heat exchanger 1, in the x-x direction, may be less than 1.5 mm, preferably between 1 and 1.3 mm.
  • the hydraulic diameter of a channel defined by an internal spacer 40 and the adjacent plate 3 or 4 may be less than 1.2 mm, preferably between 0.85 and 1.10 mm and more particularly between 0.89 mm and 1 mm. , 07 mm.
  • a branch of an elementary path may comprise a number of channels between 5 and 10.
  • the present invention is not limited to internal spacers of trapezoidal general shape.
  • a sinusoidal or triangular or crenellated profile may also be envisaged within the scope of the invention.
  • the tubes 2 may be devoid of internal dividers.
  • the plates 3 and 4 may be provided with bulges or bosses, also called 'dimples', to promote the mixing of the first fluid.
  • a plate 3 (similar to a plate 4) in front view.
  • the illustrated plate is of the type used for the third and fourth passes 33 and 34.
  • the lower collecting spaces are connected by a passage 41.
  • a collecting space without passage 41 On the figure 5 is shown in section along a plane parallel to the section plane of the figure 3 , a collecting space without passage 41. It may be an upper collector space, or collector spaces located between the first and second passes or between the fifth and sixth passes.
  • a partition 16 has been shown and is used for the elementary end paths thus making it possible to close off one end of a lower or upper collector, or else the end of the collector spaces 24 and 25 on the opposite side to the inserts. and 12 when such a partition is necessary to separate two adjacent collector spaces.
  • the figure 5 is a sectional view according to VV of the figure 4 .
  • the figure 6 is a sectional view according to VI-VI of the figure 4 .
  • the passage 41 has been formed between the lower collecting spaces making it possible to pass from the front face 15 to the rear face 29, that is to say from the passage 33 to the passage 34.
  • the passage 41 is offset in height relative to the corresponding lower collector spaces.
  • the passage 41 can thus be shifted from a height of between 1.2 and 4.2 mm and towards the body of the elementary paths in the zz direction, in other words towards the upper collecting spaces.
  • the higher pressure resistance is achieved by the fact that the brazed surface of the plates in contact between the passage 41 and the lower end of the plates 3 and 4 is increased.
  • the compressive strength is maintained because of the sealed junction zone 8 and the inner spacer 40 brazed together and forming a relatively tight mesh.
  • a passage similar to the passage 41 of the collector space can be made in the upper collector space.
  • the passage is shifted in height to the corresponding lower collecting spaces.
  • the passage 41 is formed by a bulge formed in the (es) plate (s) 3 and / or 4 of the tube 2.
  • the bulge forming the passage 41 has a radius 'a' of between 8.5 and 10 mm.
  • the bulge also includes fillet fillets 'b' having a radius of between 1 and 5 mm.
  • the depth 'd' of the half passage 41 is less than the depth of the lower manifold to maintain a chute 42 for the evacuation of condensates, illustrated on the figure 10 .
  • the chute 42 has a diameter of the order of 1 to 5 mm.
  • the passage 41 allows the communication between two collecting spaces of a same tube 2.
  • the area of a passage 41 may be between 60% and 80% of the area of the first elementary paths 13 of the third pass 33 and preferably between 65% and 75% of the area of the first paths. elementary 13 of the third pass 33.
  • the thickness of an elementary path along the length of the heat exchanger 1 is less than 1.5 mm, preferably between 1 and 1.3 mm.
  • the internal dimension of a collector is less than 45 mm, preferably between 35 and 40 mm.
  • an elementary path is associated with heat exchange pads 44 and 45 elongate in the direction of flow of the air to be cooled, that is to say the direction yy, transversely to the flow of the coolant.
  • the heat exchange tabs 44 and 45 can be fixed by brazing respectively to the plates 3 and 4 of an elementary path.
  • the heat exchange pads 44 and 45 may have a length in the direction of flow of air substantially equal to that of the plates 3 and 4.
  • the thickness of the sheet may be between 0.04 and 0.08 mm.
  • the corrugations have a generally rectangular shape with rounded edges elongated in the direction of flow of air.
  • Each corrugation may have a height 'e', in contact with the plate 3 and / or 4, between 0.45 and 0.6 mm in the direction of flow of the coolant.
  • the corrugations may have a width 'f' in the first direction of between 4.1 and 4.3 mm.
  • the corrugations may have a pitch 'fp' in the third direction of between 1.2 and 1.3 mm.
  • the heat exchange tabs 44 and 45 are provided with louvers 46 and 47 formed on either side of a flat surface forming a corrugation branch.
  • the louvers 46 and 47 have opposite shapes alternately.
  • the height of the louvers 46 and 47 may be between 0.3 and 0.45 mm in the direction of flow of the refrigerant.
  • the louvers 46 and 47 are intended to promote heat exchange between the first fluid and the second fluid, generally air.
  • each elementary path has an elongated cross section along the third direction.
  • Interlayers may extend projecting from an outer wall of the first elementary paths in the second elementary paths.
  • the collecting spaces may be tubular.
  • the circulation of the first fluid in the first elementary paths of a tube can be carried out in opposite directions.
  • An even number of passes may be distributed for a first portion of the upstream side in the flow direction of the second fluid and for a second portion of the downstream side in the flow direction of the second fluid.
  • a pass may include first neighboring elementary paths and in the same direction of flow of the first fluid. The number of elementary paths of a pass can be increasing and decreasing in the direction of flow of the first fluid.
  • the heat exchanger including an evaporator for a vehicle air conditioning loop, defines a combined path for a first fluid formed of a plurality of first elementary paths and a combined path for a second fluid formed of a plurality of second elementary paths.
  • the first and second elementary paths are arranged alternately in a first direction so that each elementary path for one of the fluids is in thermal contact with at least one adjacent elementary path for the other fluid.
  • Each first elementary path has an elongated configuration in a second direction.
  • the first elementary paths are arranged in two layers offset relative to each other in a third direction.
  • the first, second and third directions are substantially perpendicular to each other.
  • Each second elementary path extends in the third direction from an input face to an output face. The first elementary journeys lead to respective collecting spaces arranged in two rows corresponding to the layers.
  • the collecting spaces communicate in pairs to establish a combined path extending from an inlet manifold space to an outlet manifold space located at opposite ends of the exchanger in one direction.
  • At least one transition space is provided between two collector spaces respectively belonging to the two rows so that, in the first elementary paths communicating directly with said two collector spaces, the first fluid flows from one elementary path to the other according to the third direction.
  • a transition space forming a passage is provided between a collector of an upstream face and a collector of a downstream face in the direction of flow of the second fluid, said passage allowing the flow of the first fluid.
  • the passage may be formed by a bulge formed in the plates of the first elementary paths.
  • the heat exchanger with particularly thin sheets for the first elementary paths, for example of thickness less than 0.3 mm, advantageously less than or equal to 0.27 mm.
  • an increase in the cooling capacity of the order of 6% is obtained for an air temperature of 30 degrees at a relative humidity of 60%.
  • a drop in air temperature of about 1 degree can be obtained for air flows of between 250 and 600 kg / hour.
  • the heat exchangers according to the invention find a particular application in the heating, ventilation and / or air-conditioning installations of motor vehicles, in particular in the production of heat exchangers for motor vehicles integrated in these installations.
  • This may include engine cooling radiators, cockpit, condensers, gas coolers or air conditioning system evaporators, charge air coolers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un échangeur de chaleur (1), notamment évaporateur pour une boucle de climatisation de véhicule, définissant un trajet combiné pour un premier fluide formé d'une pluralité de premiers trajets élémentaires (13, 14) et un trajet combiné pour un deuxième fluide formé d'une pluralité de deuxièmes trajets élémentaires, les premiers et deuxièmes trajets élémentaires étant disposés en alternance dans une première direction de manière que chaque trajet élémentaire pour l'un des fluides soit en contact thermique avec au moins un trajet élémentaire adjacent pour l'autre fluide, chaque premier trajet élémentaire (13, 14) ayant une configuration allongée dans une deuxième direction. Les premiers trajets élémentaires (13, 14) sont constitués par des tubes (2) ayant au moins une paroi d'épaisseur de paroi inférieure ou égale à 0,3 mm, préférablement compris entre 0,24 mm et 0,28 mm.

Description

  • L'invention relève du domaine des échangeurs de chaleur entre deux fluides notamment pour le refroidissement d'un liquide de refroidissement par de l'air. De tels échangeurs de chaleur sont utilisés dans le domaine de la climatisation, par exemple de véhicules automobiles.
  • Un échangeur de chaleur, notamment un évaporateur pour une boucle de climatisation de véhicule, définit un trajet combiné pour un premier fluide formé d'une multiplicité de premiers trajets élémentaires et un trajet combiné pour un second fluide formé d'une multiplicité de seconds trajets élémentaires. Les premiers et seconds trajets élémentaires sont disposés en alternance dans une première direction de manière que chaque trajet élémentaire pour l'un des fluides soit en contact thermique avec au moins un trajet élémentaire adjacent pour l'autre fluide. En particulier, le premier fluide est un fluide réfrigérant ou un fluide de caloporteur et le second fluide est de l'air.
  • Chaque premier trajet élémentaire a une configuration en forme de "U" dont les deux branches s'étendent dans une seconde direction et sont décalées l'une par rapport à l'autre dans une troisième direction. Les première, seconde et troisième directions sont sensiblement perpendiculaires les unes aux autres. De façon générale, chaque premier trajet est réalisé par l'intermédiaire de tube réalisé par pliage, par extrusion, par assemblage de plaques entre elles ou tout autres modes d'obtention d'un élément de circuitage d'échangeur de chaleur.
  • Chaque premier trajet communique avec des espaces collecteurs de manière à établir un trajet combiné s'étendant d'un espace collecteur d'entrée à un espace collecteur de sortie de l'échangeur de chaleur.
  • Chaque second trajet élémentaire s'étendant dans la troisième direction d'une face d'entrée à une face de sortie de l'échangeur. Chaque second trajet est généralement réalisé par un intercalaire d'échange thermique formé dans un feuillard métallique ayant des persiennes pour favoriser l'échange thermique entre le premier fluide et le second fluide.
  • Au moins un passage de transition est ménagé entre deux espaces collecteurs appartenant respectivement à deux rangées, de telle sorte que, dans les premiers trajets élémentaires communiquant directement avec ces deux espaces collecteurs, le fluide circule d'une branche à l'autre dans le même sens par rapport à la troisième direction. Ainsi, le fluide circule d'une branche à l'autre dans le même sens par rapport à la direction d'écoulement de l'air, dans des premiers trajets élémentaires communiquant directement avec ces deux espaces collecteurs.
  • Un tel échangeur de chaleur est notamment connu de la demande de brevet Français FR 2 825 791 qui décrit un évaporateur pour une boucle de climatisation d'un véhicule automobile.
  • Le besoin est apparu d'un échangeur à performances accrues. L'invention vient améliorer la situation.
  • L'échangeur de chaleur, notamment un évaporateur pour une boucle de climatisation de véhicule, définit un trajet combiné pour un premier fluide formé d'une pluralité de trajets élémentaires et un trajet combiné pour un deuxième fluide formé d'une pluralité de deuxièmes trajets élémentaires, les premiers et deuxièmes trajets élémentaires étant disposés en alternance dans une première direction de manière que chaque trajet élémentaire pour l'un des fluides soit en contact thermique avec au moins un trajet élémentaire adjacent pour l'autre fluide. Chaque premier trajet élémentaire est de configuration allongée dans une deuxième direction. Selon la présente invention, les premiers trajets élémentaires sont constitués par des tubes ayant au moins une paroi d'épaisseur de paroi inférieure ou égale à 0,3 mm.
  • On obtient une augmentation de la puissance frigorifique de l'appareil, une homogénéisation de la température de l'air refroidi et une diminution de la masse de l'échangeur. Dans un mode de réalisation préféré, l'épaisseur de paroi du trajet élémentaire est comprise entre 0,24 et 0,28 mm.
  • Grâce à cette disposition, les échanges thermiques sont particulièrement efficaces entre les premier et deuxième fluides.
  • En particulier, selon diverses variantes de réalisation, les tubes sont couplés à au moins un intercalaire d'échange thermique de hauteur selon la première direction inférieure à 5 mm, préférablement comprise entre 3 mm et 4,5 mm.
  • Selon une alternative particulièrement avantageuse, les tubes définissent des canaux de circulation du premier fluide ayant un diamètre hydraulique inférieur à 1,2 mm, préférablement compris entre 0,85 mm et 1,10 mm et plus particulièrement entre 0,89 mm et 1,07 mm.
  • Par ailleurs, l'épaisseur de paroi des tubes est inférieure ou égale à 0,27 mm et les tubes ont une hauteur interne selon la première direction est inférieure à 1,5 mm, préférablement comprise entre 1 mm et 1,3 mm.
  • Les premiers trajets élémentaires sont disposés en deux nappes selon une troisième direction. Les première, deuxième et troisième directions sont sensiblement perpendiculaires les unes aux autres. Chaque deuxième trajet élémentaire du deuxième fluide s'étend dans la troisième direction d'une face d'entrée à une face de sortie de l'échangeur de chaleur. Les premiers trajets élémentaires d'une nappe sont décalés l'une par rapport à l'autre dans une première direction. La face d'entrée du deuxième fluide est proche de la deuxième nappe de premiers trajets élémentaires. La face de sortie du deuxième fluide est proche de la première nappe de premiers trajets élémentaires.
  • Chaque premier trajet élémentaire débouche dans des espaces collecteurs. Les espaces collecteurs sont reliés à des premiers trajets élémentaires d'une nappe. Les espaces collecteurs d'une même nappe communiquent deux à deux de manière à établir un trajet combiné s'étendant d'un espace collecteur d'entrée à un espace collecteur de sortie situés à des nappes opposées de l'échangeur dans la troisième direction. Selon une variante de réalisation, au moins un espace de transition est ménagé entre deux espaces collecteurs appartenant respectivement aux deux nappes, de telle sorte que le premier fluide circule de la première nappe à la deuxième nappe.
  • En particulier, la surface de l'espace de transition est comprise entre 60 % et 80 % de la surface des premiers trajets élémentaires de la troisième passe, préférablement compris entre 65 % et 75 %.
  • De façon préférentielle, l'espace de transition est formé par un renflement des tôles présentant un rayon compris entre 8,5 mm et 10 mm.
  • La présente invention sera mieux comprise à la lecture de la description détaillée de quelques modes de réalisation pris à titre d'exemple nullement limitatifs et illustrés par les dessins annexés sur lesquels :
    • la figure 1 est une vue en perspective d'un échangeur de chaleur selon la présente invention;
    • la figure 2 est un schéma d'un exemple de circulation des fluides dans l'échangeur de chaleur selon la présente invention;
    • la figure 3 est une vue en coupe transversale d'un tube selon la présente invention;
    • la figure 4 est une vue de côté d'un tube selon la présente invention;
    • la figure 5 est une vue partielle en coupe selon la direction V-V de la figure 4;
    • la figure 6 est une vue partielle en coupe selon la direction VI-VI de la figure 4;
    • la figure 7 est une vue de détail en coupe selon la direction VII-VII de la figure 4;
    • la figure 8 est une vue de détail de la figure 7 ;
    • la figure 9 est une vue de côté d'une plaque d'un tube selon la présente invention;
    • la figure 10 est une vue en coupe selon la direction X-X de la figure 9 de deux plaques voisines au niveau d'un espace collecteur selon la présente invention;
    • la figure 11 est une vue en coupe d'une portion de l'échangeur de chaleur comportant un tube équipé de deux jeux d'intercalaires d'échange thermique; et
    • la figure 12 est une vue de détail d'un intercalaire d'échange thermique selon la présente invention.
  • Comme on peut le voir sur les figures, l'échangeur de chaleur 1 comprend un empilement de tubes 2 et d'intercalaires d'échange thermique 44 et 45. On peut se référer à cet égard au document FR 2 747 462 dont le contenu est incorporé ici par référence. Chaque tube 2 est formé de deux plaques 3 et 4 formées respectivement à partir d'un feuillard métallique embouti en forme de cuvettes. Les plaques 3 et 4 sont identiques entre elles et ont leurs concavités tournées l'une vers l'autre, soit respectivement vers le haut et vers le bas de la figure 3, c'est-à-dire selon la direction x-x. Chaque plaque 3 et 4 présente un bord périphérique 5. Les bords périphériques 5 des deux plaques 3 et 4 formant un tube 2 sont mutuellement assemblés de façon étanche au fluide, par exemple par brasage pour délimiter le volume intérieur du tube 2. Le tube 2 forme deux premiers trajets élémentaires 13 et 14 pour un premier fluide, en particulier un fluide réfrigérant circulant dans une boucle de climatisation d'un véhicule automobile ou un fluide caloporteur circulant dans un circuit de refroidissement d'un moteur thermique d'un véhicule automobile.
  • Chaque tube 2 présente deux régions d'extrémité 6 et 7, situées respectivement vers le bas et vers le haut de la figure 1, c'est-à-dire selon la direction z-z, définies par des emboutis profonds formés dans les plaques 3 et 4. Les régions d'extrémité 6 et 7 occupent une fraction minoritaire de la hauteur de l'échangeur 1 aux parties supérieure et inférieure de celui-ci, le reste de la hauteur étant occupé par une région de corps de plus faible épaisseur, comme détaillée en vue en coupe sur la figure 3. Les volumes intérieurs des régions d'extrémité 6 et 7 de chaque tube sont séparés l'un de l'autre par une zone de jonction étanche 8 s'étendant de la région d'extrémité supérieure 6 jusqu'à la région d'extrémité inférieure 7. La zone de jonction étanche 8 est agencée entre les passages de fluide définissant trajets élémentaires 13 et 14 à mi-largeur du tube 2 dans la direction y-y, cette zone de jonction 8 se prolongeant vers le bas dans la direction z-z jusqu'au voisinage de l'extrémité inférieure 7 du tube 2. Une plaque 3 et une plaque 4 voisines appartenant à deux tubes 2 différents sont en appui mutuel par leurs fonds 9 dans les régions d'extrémité 6 et 7, illustrés également en figure 10, et séparées l'un de l'autre dans la région de corps, par un intervalle garni d'intercalaire d'échange thermique 44 et 45 illustrées sur les figures 11 et 12. Les intercalaires d'échange thermique 44 et 45 définissent un deuxième trajet élémentaire pour l'air à refroidir, parallèlement au plan de la figure 4, c'est-à-dire selon la direction y-y, et dans le sens de la flèche "AIR" illustrée sur les figures 1 et 2. Les tubes 2 sont donc couplés à au moins un intercalaire d'échange thermiques 44 et/ou 45.
  • Les fonds 9 en contact mutuel sont brasés ensemble. Au moins une partie des fonds 9 sont traversés par des ouvertures 10 faisant communiquer entre eux les volumes intérieurs correspondants. Des cloisons étanches 16 sont disposées dans certaines ouvertures 10 pour les obturer afin de définir un circuitage particulier, dit multi passe.
  • L'échangeur de chaleur 1 comprend un insert d'entrée de fluide 11 et un insert de sortie de fluide 12 disposés sur une face extérieure de la région d'extrémité 6 d'un tube 2 agencé à une extrémité de l'échangeur 1, c'est-à-dire à l'extrémité selon la direction x-x. Les inserts 11 et 12 peuvent présenter des diamètres différents. Les inserts 11 et 12 définissent une tubulure d'entrée ou de sortie faisant saillie par rapport à un petit côté de l'échangeur de chaleur 1.
  • L'exemple de réalisation décrit à titre d'exemple en figure 1 présente les inserts d'entrée de fluide 11 et de sortie de fluide 12 disposés du même coté de l'échangeur de chaleur 1. Toutefois, la présente invention couvre également les autres agencements dans lesquels les inserts sont disposés aux deux extrémités opposées d'une même zone d'extrémité ou disposés aux deux extrémités de deux zones d'extrémité disposées du même coté de l'échangeur ou encore disposés aux deux extrémités opposées de deux zones d'extrémité. Ces agencements sont dépendants des cloisons étanches 16 disposées dans certaines ouvertures 10.
  • On se réfère dorénavant à la figure 2 présentant un schéma d'un exemple de circulation des fluides dans l'échangeur de chaleur 1 selon la présente invention. Le fluide réfrigérant pénétrant dans l'échangeur de chaleur 1 par l'insert d'entrée de fluide 11 se répartit par l'intermédiaire d'un espace collecteur 17, entre les volumes intérieurs des régions 6 compris entre une extrémité de l'échangeur de chaleur 1, située à droite de la figure 1 selon la direction x-x, et une cloison 16 formée par les fonds de deux plaques 3 et 4 non munies d'ouvertures 10. A partir de l'espace collecteur 17, le fluide parcourt en parallèle les trajets élémentaires 13 délimités par les tubes 2 qui le définissent. Les trajets élémentaires 13 proches de la face d'entrée du fluide 15 forment une première passe 31 et débouchent dans un second espace collecteur 18 formé par les volumes intérieurs des régions 7 des mêmes tubes 2 qui forment l'espace collecteur 17.
  • L'espace collecteur 18 communique par une ouverture 10 avec un troisième espace collecteur 19, lequel est relié à son tour à un quatrième espace collecteur 20, séparé de l'espace collecteur 17 par la cloison 16, par l'intermédiaire de trajets élémentaires formant une deuxième passe 32. L'espace collecteur 20 communique par une ouverture 10 avec un cinquième espace collecteur 21, lequel est relié à son tour à un sixième espace collecteur 22, séparé de l'espace collecteur 19 par une cloison 16, la communication entre les cinquième et sixième espaces collecteurs étant faite par l'intermédiaire de trajets élémentaires formant une troisième passe 33.
  • Le fluide réfrigérant entrant par l'insert 11 traverse donc l'ensemble des branches situées du côté de la face d'entrée du fluide 15, puis, entre le sixième espace collecteur 22 et un septième espace collecteur 23, circule dans le sens opposé à l'écoulement de l'air grâce à des passages 41, qui sont illustrés sur les figures 6 et 7 et seront détaillés en relation avec ces figures.
  • Le fluide réfrigérant circule ensuite du septième espace collecteur 23 vers le huitième espace collecteur 24 en passant par les trajets élémentaires 14 formant la quatrième passe 34, puis se déplace selon la première direction 51 ou direction x-x, en communiquant par une ouverture 10 vers le neuvième espace collecteur 25. Le fluide réfrigérant circule dans la cinquième passe 35 et rejoint par l'intermédiaire de trajets élémentaires 14 un dixième espace collecteur 26 séparé de l'espace collecteur 23 par la cloison 16. Le dixième espace collecteur 26 communique par une ouverture 10 avec un onzième espace collecteur 27. Le fluide réfrigérant circule dans la sixième passe 36 et rejoint par l'intermédiaire de trajets élémentaires 14 un douzième espace collecteur 28 séparé de l'espace collecteur 25 par la cloison 16. Le fluide passe ensuite dans l'insert de sortie fluide 12.
  • D'un point de vue constructif, l'échangeur 1 comprend une pluralité de tubes 2, sensiblement identiques aux passages et cloison près. D'un point de vue hydraulique, l'échangeur 1 forme deux nappes, respectivement une première nappe et une deuxième nappe dite "amont" et "aval", chaque nappe comprenant une pluralité de passes, et chaque passe comprenant une pluralité de premiers trajets élémentaires. Un tube 2 définit un premier trajet élémentaire d'une nappe amont et un premier trajet élémentaire d'une nappe aval. Le parcours du premier fluide a la forme de deux serpentins superposés. Grâce au fait que le fluide réfrigérant circule d'abord sur le côté aval, selon la direction y-y, dans le sens d'écoulement de l'air puis sur le côté amont dans le sens d'écoulement de l'air, la température de refroidissement obtenue en sortie de l'air est plus basse qu'auparavant.
  • Le fluide réfrigérant effectue une première passe 31 en descendant du collecteur 17 voisin de l'insert 11 jusqu'au bas de l'échangeur. Le fluide réfrigérant se déplace alors dans le sens de la hauteur de l'échangeur de chaleur 1, selon la direction 52, c'est-à-dire la direction z-z, en passant par les ouvertures 10 ménagées dans le bas des tubes 2 tout en étant limité par la cloison 16 disposée dans le bas de l'échangeur de chaleur 1 du côté de la face amont 15. Une cloison 16 est également disposée pour délimiter l'espace collecteur 17 et l'espace collecteur 20. Le fluide réfrigérant remonte ensuite par la passe 32 jusqu'à atteindre le collecteur 20. Le fluide réfrigérant passe du collecteur 20 au collecteur 21 par les ouvertures 10 puis descend par la troisième passe 33. Le fluide réfrigérant se déplace de la face amont 15 à la face aval 29 puis remonte par la quatrième passe 34 jusqu'à atteindre le collecteur 24. Le fluide réfrigérant transite du collecteur 24 au collecteur 25 en passant par les ouvertures 10 puis descend par la cinquième passe 35 vers le collecteur 26. Le fluide réfrigérant se déplace ensuite latéralement du collecteur 26 au collecteur 27 puis vers la sixième passe 36 par laquelle le fluide remonte jusqu'à l'espace collecteur 28. Une cloison 16 isole les espaces collecteurs 25 et 28 l'un de l'autre.
  • Une autre cloison 16 est disposée dans le bas de l'échangeur afin d'éviter une circulation directe de fluide court-circuitant les passes 34 et 35 dans le bas de l'échangeur de chaleur. La disposition relative des cloisons 16 entre les passes peut être optimisée. On peut prévoir un nombre de trajets élémentaires par passe croissant de la première à la troisième passe puis décroissant de la troisième à la sixième passe. Le nombre de trajets élémentaires des première et sixième passes peut être identique. Il en va de même du nombre de trajets élémentaires des deuxième et cinquième passes et des troisième et quatrième passes respectivement. On peut ainsi aligner les cloisons 16 de la face avant 15 et de la face arrière 29.
  • L'exemple de réalisation décrit en relation avec les figures 1 et 2 est un échangeur de chaleur six passes. Néanmoins, la présente invention n'est pas limitée à ce type d'échangeur de chaleur. En effet, suivant les dispositions et le nombre d'ouvertures 10 et de cloisons 16 agencées, il est possible d'obtenir un échangeur de chaleur ayant un nombre de passe supérieur ou inférieur à six. Il est par exemple possible d'avoir des échangeurs de chaleur 4 ou 8 passes. De façon similaire, la présente invention n'est pas limitée à des échangeurs de chaleur ayant un nombre de passes pair. Il est tout à fait envisageable dans le cadre de l'invention d'avoir des échangeurs de chaleur ayant un nombre de passes impair.
  • Comme on le voit plus particulièrement sur la figure 3 qui présente un tube 2 en coupe selon un plan pris sensiblement au milieu du corps d'un tube 2, perpendiculairement à la deuxième direction z-z, ou direction 52. Selon un mode de réalisation de la présente invention, un intercalaire interne 40 est disposé entre les plaques 3 et 4. L'intercalaire interne 40 peut être réalisé dans le même matériau que les plaques 3 et 4, par exemple en alliage d'aluminium. L'intercalaire interne 40 présente une épaisseur inférieure à 0,1 mm, préférablement comprise entre 0,04 et 0,08 mm. On optimise ainsi l'écoulement du fluide réfrigérant et le transfert thermique vers les parois des plaques 3 et 4.
  • L'intercalaire interne 40 peut présenter une pluralité d'ondulations longitudinales dans le sens des trajets élémentaires. Les ondulations peuvent présenter une forme trapézoïdale. Le pas de l'ondulation peut être compris entre 1 et 1,4 mm. La grande base du trapèze peut être comprise entre 120 % et 140 % du pas, et préférentiellement entre 128 % et 140 % du pas. La petite base du trapèze peut être comprise entre 60 et 80% du pas, et préférentiellement entre 60 % et 72 % du pas. Les rayons de pliage entre les parois du trapèze peuvent être compris entre 0,15 et 0,25 mm.
  • La tôle en alliage d'aluminium formant les plaques 3 et 4 peut présenter une épaisseur inférieure à 0,3 mm, de préférence comprise entre 0,24 et 0,28 mm. Plus préférablement encore, on met en oeuvre une tôle d'épaisseur inférieure ou égale à 0,27 mm, par exemple égale à 0,27 mm. La hauteur interne d'un tube 2 formant le trajet élémentaire suivant la longueur de l'échangeur thermique 1, selon la direction x-x, peut être inférieure à 1,5 mm, préférablement comprise entre 1 et 1,3 mm. Le diamètre hydraulique d'un canal défini par un intercalaire interne 40 et la plaque adjacente 3 ou 4 peut être inférieur à 1,2 mm, préférablement compris entre 0,85 et 1,10 mm et plus particulièrement entre 0,89 mm et 1,07 mm. Une branche d'un trajet élémentaire peut comprendre un nombre de canaux compris entre 5 et 10.
  • La présente invention n'est pas limitée aux intercalaires internes de forme général trapézoïdale. Un profil sinusoïdal ou triangulaire ou crénelé peut également être envisagé dans le cadre de l'invention.
  • Selon une variante non représentée de la présente invention, les tubes 2 peuvent être dépourvus d'intercalaires internes. Alternativement, les plaques 3 et 4 peuvent être pourvues de renflements ou bossages, également appelés 'dimples', permettant de favoriser le brassage du premier fluide.
  • Sur la figure 4 est illustrée une plaque 3 (similaire à une plaque 4) en vue de face. La plaque illustrée est du type servant pour les troisième et quatrième passes 33 et 34. Les espaces collecteurs inférieurs sont reliés par un passage 41.
  • Sur la figure 5 est montré, en coupe selon un plan parallèle au plan de coupe de la figure 3, un espace collecteur dépourvu de passage 41. Il peut s'agir d'un espace collecteur supérieur, ou encore des espaces collecteurs situés entre les première et deuxième passes ou entre les cinquième et sixième passes. Une cloison 16 a été représentée et est mise en oeuvre pour les trajets élémentaires d'extrémités permettant ainsi d'obturer une extrémité d'un collecteur inférieur ou supérieur, ou encore l'extrémité des espaces collecteurs 24 et 25 du côté opposé aux inserts 11 et 12 lorsqu'une telle cloison est nécessaire pour séparer deux espaces collecteurs voisins.
  • Ainsi, la figure 5 est une vue en coupe selon V-V de la figure 4. La figure 6 est une vue en coupe selon VI-VI de la figure 4. Sur la figure 6, on voit que le passage 41 a été ménagé entre les espaces collecteurs inférieurs permettant de passer de la face avant 15 à la face arrière 29, c'est-à-dire de la passe 33 à la passe 34.
  • Comme on le voit plus particulièrement sur la figure 7 qui est une coupe selon la direction VII-VII de la figure 6, le passage 41 est décalé en hauteur par rapport aux espaces collecteurs inférieurs correspondants. Une telle disposition permet d'obtenir une meilleure résistance mécanique, notamment en tenue à la pression intérieure. Le passage 41 peut ainsi être décalé d'une hauteur comprise entre 1,2 et 4,2 mm et ce en direction du corps des trajets élémentaires selon la direction z-z, en d'autres termes vers les espaces collecteurs supérieurs. La résistance à la pression supérieure est obtenue grâce au fait que la surface brasée des plaques en contact situées entre le passage 41 et l'extrémité inférieure des plaques 3 et 4 est accrue. Du côté opposé à l'extrémité inférieure, la tenue à la pression est conservée en raison de la zone de jonction étanche 8 et de l'intercalaire interne 40 brasés ensemble et formant un maillage relativement serré.
  • Selon une variante de réalisation non représentée, un passage semblable au passage 41 de l'espace collecteur peut être réalisé dans l'espace collecteur supérieur. Dans ce cas, le passage est décalé en hauteur vers les espaces collecteurs inférieurs correspondants.
  • Plus particulièrement, et comme illustré sur la figure 8, le passage 41 est formé par un renflement réalisé dans la(es) plaque(s) 3 et/ou 4 du tube 2. Le renflement formant le passage 41 a un rayon 'a' compris entre 8,5 et 10 mm. Le renflement comprend également des congés de raccordement 'b' présentant un rayon compris entre 1 et 5 mm. La profondeur 'd' du demi passage 41 est inférieure à la profondeur du collecteur inférieur afin de conserver une goulotte 42 permettant l'évacuation des condensats, illustrée sur la figure 10. La goulotte 42 présente un diamètre de l'ordre de 1 à 5 mm.
  • En se référant à la figure 9 qui présente une vue partielle de face d'une plaque 3, le passage 41 permet la mise en communication entre deux espaces collecteurs d'un même tube 2.
  • Sur la figure 10, sont illustrées deux plaques 3 et 4 appartenant à des trajets élémentaires voisins. A titre d'exemple, la surface d'un passage 41 peut être comprise entre 60 % et 80 % de la surface des premiers trajets élémentaires 13 de la troisième passe 33 et de préférence entre 65 % et 75 % de la surface des premiers trajets élémentaires 13 de la troisième passe 33.
  • Dans un mode de réalisation, l'épaisseur d'un trajet élémentaire suivant la longueur de l'échangeur thermique 1 est inférieure à 1,5 mm, préférablement comprise entre 1 et 1,3 mm.
  • Dans une variante supplémentaire de réalisation, la dimension interne d'un collecteur est inférieure à 45 mm, préférablement compris entre 35 et 40 mm.
  • Comme on peut le voir sur les figures 11 et 12, un trajet élémentaire est associé à des intercalaires d'échange thermique 44 et 45 allongées dans le sens d'écoulement de l'air à refroidir, c'est-à-dire la direction y-y, transversalement à l'écoulement du liquide réfrigérant. Les intercalaires d'échange thermique 44 et 45 peuvent être fixées par brasage, respectivement aux plaques 3 et 4 d'un trajet élémentaire. Les intercalaires d'échange thermique 44 et 45 peuvent présenter une longueur dans le sens d'écoulement de l'air sensiblement égale à celle des plaques 3 et 4. L'épaisseur de la tôle peut être comprise entre 0,04 et 0,08 mm. Les ondulations présentent une forme générale rectangulaire à bords arrondis allongés suivant la direction d'écoulement de l'air. Chaque ondulation peut présenter une hauteur 'e', en contact avec la plaque 3 et/ou 4, comprise entre 0,45 et 0,6 mm dans le sens d'écoulement du liquide réfrigérant. Les ondulations peuvent présenter une largeur 'f' selon la première direction comprise entre 4,1 et 4,3 mm. Les ondulations peuvent présenter un pas 'fp' selon la troisième direction compris entre 1,2 et 1,3 mm.
  • En outre, les intercalaires d'échange thermique 44 et 45 sont munies de persiennes 46 et 47 ménagées de part et d'autre d'une surface plane formant une branche d'ondulation. Les persiennes 46 et 47 présentent des formes opposées de façon alternée. La hauteur des persiennes 46 et 47 peut être comprise entre 0,3 et 0,45 mm dans le sens d'écoulement du fluide réfrigérant. Les persiennes 46 et 47 ont pour but de favoriser l'échange thermique entre le premier fluide et le second fluide, généralement de l'air.
  • Dans un mode de réalisation, chaque trajet élémentaire présente une section transversale allongée selon la troisième direction.
  • Des intercalaires peuvent s'étendre en saillie d'une paroi extérieure des premiers trajets élémentaires dans les deuxièmes trajets élémentaires. Les espaces collecteurs peuvent être tubulaires. La circulation du premier fluide dans les premiers trajets élémentaires d'un tube peut s'effectuer dans des sens opposés.
  • Un nombre pair de passes peut être réparti pour une première partie du côté amont dans le sens d'écoulement du deuxième fluide et pour une deuxième partie du côté aval dans le sens d'écoulement du deuxième fluide. Une passe peut regrouper des premiers trajets élémentaires voisins et de même sens d'écoulement du premier fluide. Le nombre de trajets élémentaires d'une passe peut être croissant puis décroissant dans le sens d'écoulement du premier fluide.
  • Dans un mode de réalisation, l'échangeur de chaleur, notamment évaporateur pour une boucle de climatisation de véhicule, définit un trajet combiné pour un premier fluide formé d'une pluralité de premiers trajets élémentaires et un trajet combiné pour un deuxième fluide formé d'une pluralité de deuxièmes trajets élémentaires. Les premiers et deuxièmes trajets élémentaires sont disposés en alternance dans une première direction de manière que chaque trajet élémentaire pour l'un des fluides soit en contact thermique avec au moins un trajet élémentaire adjacent pour l'autre fluide. Chaque premier trajet élémentaire possède une configuration allongée dans une deuxième direction. Les premiers trajets élémentaires sont disposés en deux nappes décalées l'une par rapport à l'autre dans une troisième direction. Les première, deuxième et troisième directions sont sensiblement perpendiculaires les unes aux autres. Chaque deuxième trajet élémentaire s'étend dans la troisième direction d'une face d'entrée à une face de sortie. Les premiers trajets élémentaires débouchent dans des espaces collecteurs respectifs disposés en deux rangées correspondant aux nappes.
  • Les espaces collecteurs communiquent deux à deux pour établir un trajet combiné s'étendant d'un espace collecteur d'entrée à un espace collecteur de sortie situés à des extrémités opposées de l'échangeur dans une direction. Au moins un espace de transition est ménagé entre deux espaces collecteurs appartenant respectivement aux deux rangées de telle sorte que, dans les premiers trajets élémentaires communiquant directement avec lesdits deux espaces collecteurs, le premier fluide circule d'un trajet élémentaire à l'autre selon la troisième direction. Un espace de transition formant passage est ménagé entre un collecteur d'une face amont et un collecteur d'une face aval dans le sens d'écoulement du deuxième fluide, ledit passage permettant l'écoulement du premier fluide. Le passage peut être formé par un renflement ménagé dans les tôles des premiers trajets élémentaires. On peut ainsi réaliser l'échangeur de chaleur avec des tôles particulièrement fines pour les premiers trajets élémentaires, par exemple d'épaisseur inférieure à 0,3 mm, avantageusement inférieure ou égale à 0,27 mm. On obtient de la sorte une augmentation de la capacité de refroidissement de l'ordre de 6 % pour une température d'air de 30 degrés à une humidité relative de 60 %. On peut obtenir une baisse de la température de l'air d'environ 1 degré pour des débits d'air compris entre 250 et 600 kg/heure.
  • Les échangeurs de chaleur selon l'invention trouvent une application particulière dans les installations de chauffage, ventilation et/ou climatisation de véhicules automobiles en particulier dans la réalisation d'échangeurs de chaleur pour véhicules automobiles intégrés à ces installations. Il peut s'agir notamment de radiateurs de refroidissement du moteur, de radiateurs de chauffage de l'habitacle, de condenseurs, de refroidisseurs de gaz ou d'évaporateurs de circuit de climatisation, de refroidisseurs d'air de suralimentation, etc.
  • Bien évidemment, l'invention n'est pas limitée aux modes de réalisation décrits précédemment et fournis uniquement à titre d'exemple et englobe d'autres variantes que pourra envisager l'homme du métier dans le cadre des revendications et notamment toutes combinaisons des différents modes de réalisation décrits précédemment.

Claims (27)

  1. Echangeur de chaleur (1), notamment évaporateur pour une boucle de climatisation de véhicule, définissant un trajet combiné pour un premier fluide formé d'une pluralité de premiers trajets élémentaires (13, 14) et un trajet combiné pour un deuxième fluide formé d'une pluralité de deuxièmes trajets élémentaires, les premiers et deuxièmes trajets élémentaires étant disposés en alternance dans une première direction de manière que chaque trajet élémentaire pour l'un des fluides soit en contact thermique avec au moins un trajet élémentaire adjacent pour l'autre fluide, chaque premier trajet élémentaire (13, 14) ayant une configuration allongée dans une deuxième direction,
    caractérisé en ce que les premiers trajets élémentaires (13, 14) sont constitués par des tubes (2) ayant au moins une paroi d'épaisseur de paroi inférieure ou égale à 0,3 mm, préférablement compris entre 0,24 mm et 0,28 mm.
  2. Echangeur selon la revendication 1, dans lequel les tubes (2) sont couplés à au moins un intercalaire d'échange thermique (44, 45) de hauteur selon la première direction inférieure à 5 mm, préférablement comprise entre 3 mm et 4,5 mm.
  3. Echangeur selon la revendication 2, dans lequel l'intercalaire d'échange thermique (44, 45) a une épaisseur de tôle comprise entre 0,04 et 0,08 mm.
  4. Echangeur selon la revendication 2 ou 3, dans lequel l'intercalaire d'échange thermique (44, 45) présente des ondulations ayant une hauteur (e) comprise entre 0,45 et 0,6 mm.
  5. Echangeur selon la revendication 4, dans lequel les ondulations de l'intercalaire d'échange thermique (44, 45) ont une largeur (f) selon la première direction comprise entre 4,1 et 4,3 mm.
  6. Echangeur selon la revendication 4 ou 5, dans lequel les ondulations de l'intercalaire d'échange thermique (44, 45) présentent un pas (fp) selon la troisième direction compris entre 1,2 et 1,3 mm.
  7. Echangeur selon l'une des revendications précédentes, dans lequel les tubes (2) définissent des canaux de circulation du premier fluide ayant un diamètre hydraulique inférieur à 1,2 mm, préférablement compris entre 0,89 mm et 1,07 mm.
  8. Echangeur l'une des revendications précédentes, dans lequel l'épaisseur de paroi des tubes (2) est inférieure ou égale à 0,27 mm.
  9. Echangeur selon l'une des revendications précédentes, dans lequel les tubes (2) ont une hauteur interne selon la première direction est inférieure à 1,5 mm, préférablement comprise entre 1 mm et 1,3 mm.
  10. Echangeur selon l'une des revendications précédentes, dans lequel deux passes sont reliées par un passage (10) ménagé entre deux espaces collecteurs, les parois desdits passages étant formées par des tôles (3, 4) délimitant ledit premier trajet élémentaire.
  11. Echangeur selon l'une des revendications précédentes, dans lequel les premiers trajets élémentaires (13, 14) sont disposés en une première et une deuxième nappes selon une troisième direction.
  12. Echangeur selon la revendication 11, dans lequel chaque premier trajet élémentaire débouche dans des espaces collecteurs (17 à 28) reliés à des premiers trajets élémentaires (13, 14), les espaces collecteurs communiquant deux à deux de manière à établir un trajet combiné s'étendant d'un espace collecteur d'entrée (17) à un espace collecteur de sortie (28).
  13. Echangeur selon la revendication 12, dans lequel l'espace collecteur d'entrée (17) et l'espace collecteur de sortie (28) sont respectivement situés dans la première nappe et dans la deuxième nappe de l'échangeur.
  14. Echangeur selon l'une des revendications 11 à 13, dans lequel les premiers trajets élémentaires (13, 14) d'une nappe sont décalés l'une par rapport à l'autre dans une première direction.
  15. Echangeur selon l'une des revendications 11 à 14, dans lequel au moins un espace de transition (41) est ménagé entre deux espaces collecteurs (22, 23) appartenant respectivement aux deux nappes, de telle sorte que le premier fluide circule de la première nappe à la deuxième nappe.
  16. Echangeur selon la revendication 15, dans lequel la surface de l'espace de transition (41) est comprise entre 60 % et 80 % de la surface des premiers trajets élémentaires de la troisième passe (33), préférablement compris entre 65 % et 75 %.
  17. Echangeur selon la revendication 15 ou 16, dans lequel au moins un premier trajet élémentaire disposé à chaque extrémité de l'échangeur de chaleur (1) selon la première direction est dépourvu d'espace de transition (41).
  18. Echangeur selon l'une des revendications 15 à 17, dans lequel l'espace de transition (41) est formé par un renflement desdites tôles, le renflement présentant un rayon compris entre 8,5 mm et 10 mm.
  19. Echangeur selon l'une des revendications 15 à 18, dans lequel l'espace de transition (41) est décalé par rapport à l'espace collecteur adjacent selon la deuxième direction vers l'espace collecteur opposé de la même passe.
  20. Echangeur selon l'une des revendications précédentes, dans lequel chaque premier trajet élémentaire (13, 14) comporte un intercalaire interne (40).
  21. Echangeur selon la revendication 20, dans lequel l'insert forme des canaux de forme générale trapézoïdale.
  22. Echangeur selon l'une des revendications 20 ou 21, dans lequel l'épaisseur de l'intercalaire interne (40) est inférieure à 0,1 mm, préférablement comprise entre 0,04 mm et 0,08 mm,
  23. Echangeur selon l'une des revendications 20 à 22, dans lequel le pas de l'intercalaire interne (40) est compris entre 1 mm et 1,4 mm.
  24. Echangeur selon l'une des revendications 21 à 23, dans lequel la grande base de l'intercalaire interne (40) est comprise entre 120 % et 140% du pas, préférentiellement comprise entre 128 % et 140 % du pas.
  25. Echangeur selon l'une des revendications 21 à 24, dans lequel la petite base de l'intercalaire interne (40) est comprise entre 60 % et 80% du pas, préférentiellement comprise entre 60 % et 72 % du pas.
  26. Echangeur selon l'une des revendications 21 à 25, dans lequel les rayons de pliage de l'intercalaire interne (40) est compris entre 0,15 mm et 0,25 mm.
  27. Echangeur selon l'une des revendications précédentes, dans lequel deux premiers trajets élémentaires de même rang au sein de deux nappes sont formés par deux tôles (3, 4) assemblées sur leurs bords allongés selon la deuxième direction et sur leur milieu.
EP09155369.3A 2008-03-25 2009-03-17 Echangeur de chaleur à puissance frigorifique élevée Active EP2105693B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0801618A FR2929388B1 (fr) 2008-03-25 2008-03-25 Echangeur de chaleur a puissance frigorifique elevee

Publications (2)

Publication Number Publication Date
EP2105693A1 true EP2105693A1 (fr) 2009-09-30
EP2105693B1 EP2105693B1 (fr) 2017-04-12

Family

ID=39598400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09155369.3A Active EP2105693B1 (fr) 2008-03-25 2009-03-17 Echangeur de chaleur à puissance frigorifique élevée

Country Status (5)

Country Link
EP (1) EP2105693B1 (fr)
JP (1) JP2009236478A (fr)
CN (1) CN101598505B (fr)
ES (1) ES2626802T3 (fr)
FR (1) FR2929388B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012126687A1 (fr) * 2011-03-23 2012-09-27 Valeo Systemes Thermiques Renfort de liaison entre plaques d'un echangeur de chaleur
CN105650950A (zh) * 2016-03-02 2016-06-08 河南新科隆电器有限公司 一种复合冷凝器
JP2017166715A (ja) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 熱交換器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2966581B1 (fr) 2010-10-25 2014-12-26 Valeo Systemes Thermiques Echangeur de chaleur avec alimentation en fluide laterale
FR3064347A1 (fr) * 2017-03-23 2018-09-28 Valeo Systemes Thermiques Evaporateur, notamment pour circuit de climatisation de vehicule automobile, et circuit de climatisation correspondant
CN107941066A (zh) * 2017-11-20 2018-04-20 山东同创汽车散热装置股份有限公司 散热器的薄壁散热管及散热器芯体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747462A1 (fr) 1996-04-16 1997-10-17 Valeo Climatisation Evaporateur a pochettes empilees resistant a la pression
EP1058070A2 (fr) * 1999-06-04 2000-12-06 Denso Corporation Evaporateur de réfrigérant
FR2803376A1 (fr) * 1999-12-29 2001-07-06 Valeo Climatisation Evaporateur a tubes plats empilees possedant deux boites a fluide opposees
FR2825791A1 (fr) 2001-06-07 2002-12-13 Valeo Climatisation Evaporateur de puissance frigorifique elevee pour boucle de climatisation de vehicule
DE102004056557A1 (de) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Dimensionsoptimierte Vorrichtung zum Austausch von Wärme und Verfahren zur Optimierung der Dimensionen von Vorrichtungen zum Austausch von Wärme
US20070199687A1 (en) * 2004-03-11 2007-08-30 Behr Gmbh & Co. Kg Stacked-Plate Heat Exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048600B2 (ja) * 1990-06-29 2000-06-05 昭和アルミニウム株式会社 凝縮器
JP3459271B2 (ja) * 1992-01-17 2003-10-20 株式会社デンソー 自動車用空調装置のヒータコア
JPH08313183A (ja) * 1995-05-16 1996-11-29 Nippondenso Co Ltd 熱交換器、および熱交換器用コルゲートフィンの製造方法
JP2001324290A (ja) * 1999-06-04 2001-11-22 Denso Corp 冷媒蒸発器
JP4212306B2 (ja) * 2002-06-18 2009-01-21 株式会社日本クライメイトシステムズ 熱交換器のパイプ取付構造
JP2006226610A (ja) * 2005-02-17 2006-08-31 T Rad Co Ltd コルゲートフィン型熱交換器コア
JP4761790B2 (ja) * 2005-02-28 2011-08-31 カルソニックカンセイ株式会社 蒸発器
JP2007125590A (ja) * 2005-11-04 2007-05-24 Denso Corp 熱交換器および熱交換器の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747462A1 (fr) 1996-04-16 1997-10-17 Valeo Climatisation Evaporateur a pochettes empilees resistant a la pression
EP1058070A2 (fr) * 1999-06-04 2000-12-06 Denso Corporation Evaporateur de réfrigérant
FR2803376A1 (fr) * 1999-12-29 2001-07-06 Valeo Climatisation Evaporateur a tubes plats empilees possedant deux boites a fluide opposees
FR2825791A1 (fr) 2001-06-07 2002-12-13 Valeo Climatisation Evaporateur de puissance frigorifique elevee pour boucle de climatisation de vehicule
US20070199687A1 (en) * 2004-03-11 2007-08-30 Behr Gmbh & Co. Kg Stacked-Plate Heat Exchanger
DE102004056557A1 (de) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Dimensionsoptimierte Vorrichtung zum Austausch von Wärme und Verfahren zur Optimierung der Dimensionen von Vorrichtungen zum Austausch von Wärme

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012126687A1 (fr) * 2011-03-23 2012-09-27 Valeo Systemes Thermiques Renfort de liaison entre plaques d'un echangeur de chaleur
FR2973106A1 (fr) * 2011-03-23 2012-09-28 Valeo Systemes Thermiques Renfort de liaison entre plaques d'un echangeur de chaleur
US9976816B2 (en) 2011-03-23 2018-05-22 Valeo Systemes Thermiques Connecting reinforcement for between the plates of a heat exchanger
CN105650950A (zh) * 2016-03-02 2016-06-08 河南新科隆电器有限公司 一种复合冷凝器
JP2017166715A (ja) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 熱交換器

Also Published As

Publication number Publication date
ES2626802T3 (es) 2017-07-26
JP2009236478A (ja) 2009-10-15
FR2929388B1 (fr) 2015-04-17
CN101598505A (zh) 2009-12-09
CN101598505B (zh) 2013-11-27
EP2105693B1 (fr) 2017-04-12
FR2929388A1 (fr) 2009-10-02

Similar Documents

Publication Publication Date Title
EP1992891B1 (fr) Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
EP2105693B1 (fr) Echangeur de chaleur à puissance frigorifique élevée
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
EP2294348A1 (fr) Echangeur de chaleur a plaques, notamment pour vehicules automobiles
FR2912811A1 (fr) Echangeur de chaleur pour fluides a circulation en u
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP1762808A1 (fr) Elément de circuit à tubes plats, et échangeur de chaleur muni de tels éléments de circuit
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
FR2852383A1 (fr) Boite collectrice pour echangeur de chaleur a haute pression et echangeur de chaleur comportant cette boite collectrice
EP2734801A1 (fr) Echangeur thermique, tube plat et plaque correspondants
WO2010119100A1 (fr) Tube de circulation de fluide réfrigérant, faisceau d'échange de chaleur et échangeur de chaleur comportant de tels tubes
FR2929387A1 (fr) Echangeur de chaleur a resistance a la pression amelioree
WO2013050382A1 (fr) Tube de radiateur de refroidissement pour vehicule automobile et radiateur de refroidissement pour vehicule automobile comprenant un tel tube
EP3308096B1 (fr) Echangeur de chaleur pour vehicule automobile
FR3001795A1 (fr) Agencement d’echangeurs thermiques a plaques
EP1265045B1 (fr) Evaporateur de puissance frigorifique élevée pour boucle de climatisation de véhicule
EP1546627B1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicles automobiles
FR2850740A1 (fr) Echangeur de chaleur a plaques a haute tenue a la pression, en particulier pour circuit de climation de vehicule automobile
FR3045807A1 (fr) Echangeur thermique, notamment pour vehicule automobile
FR2925665A1 (fr) Tube plie pour echangeur de chaleur brase,procede de fabrication et echangeur de chaleur
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR2825792A1 (fr) Evaporateur fournissant une homogeneite de temperature amelioree pour boucle de climatisation de vehicule
BE511721A (fr)
FR3045805A1 (fr) Echangeur thermique, notamment pour vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100325

17Q First examination report despatched

Effective date: 20100428

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 884337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009045337

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2626802

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170726

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170412

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 884337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170713

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009045337

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210219

Year of fee payment: 13

Ref country code: IT

Payment date: 20210311

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210412

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220317

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240307

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240325

Year of fee payment: 16