WO2004037904A1 - 電気部品用樹脂成形品及びその製造方法 - Google Patents

電気部品用樹脂成形品及びその製造方法 Download PDF

Info

Publication number
WO2004037904A1
WO2004037904A1 PCT/JP2003/013497 JP0313497W WO2004037904A1 WO 2004037904 A1 WO2004037904 A1 WO 2004037904A1 JP 0313497 W JP0313497 W JP 0313497W WO 2004037904 A1 WO2004037904 A1 WO 2004037904A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin molded
molded product
parts
crosslinking agent
Prior art date
Application number
PCT/JP2003/013497
Other languages
English (en)
French (fr)
Other versions
WO2004037904A8 (ja
Inventor
Toshiyuki Kanno
Asuka Yajima
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to DE60312198T priority Critical patent/DE60312198T2/de
Priority to EP03758786A priority patent/EP1555283B1/en
Priority to JP2005501574A priority patent/JP4539558B2/ja
Priority to AU2003275594A priority patent/AU2003275594A1/en
Priority to KR1020057003963A priority patent/KR101057846B1/ko
Priority to US10/532,577 priority patent/US20060052537A1/en
Publication of WO2004037904A1 publication Critical patent/WO2004037904A1/ja
Publication of WO2004037904A8 publication Critical patent/WO2004037904A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention is suitable for use as, for example, a member for supporting a contact point of an electromagnetic switch or the like, a housing, or the like, and has thermal characteristics such as heat resistance, flame retardancy, and dimensional stability, and mechanical characteristics such as abrasion resistance.
  • TECHNICAL FIELD The present invention relates to a resin molded product for electric parts having excellent characteristics and a method for producing the same. Background art
  • resin molded products used for electrical parts, etc. have higher strength, dimensional stability, and abrasion resistance, as well as heat resistance, flame resistance, etc., compared to general-purpose plastics. Characteristic is required.
  • thermosetting resins such as epoxy resins and phenolic resins have been widely used.
  • electromagnetic switches which are examples of the above electrical components, are used as important components in control systems in a wide range of fields, such as circuits used in electronic application equipment such as PLC dippers and capacitor load switching. Since this molded product must withstand the heat generated at the contacts that require slidability and the load due to the repeated movement of the contacts, the above-mentioned mechanical strength, heat resistance, dimensional stability, and electrical It is one of the parts that require high physical properties such as properties and flame retardancy.
  • molded products can be thin-walled, have high productivity, and are required to have high dimensional accuracy, and are often manufactured by molding methods such as injection molding.
  • molding methods such as injection molding.
  • fats can be used.
  • thermoplastic resin since thermoplastic resin is used, the resin alone has limitations in heat resistance, mechanical strength, dimensional stability, and flame retardancy. Especially for the electromagnetic switch as described above, cost and weight reduction are included. It is difficult to satisfy all required characteristics. For this reason, the addition of various reinforcing materials and the modification of resins are being studied.
  • a modification of thermoplastic resin it is known that the thermoplastic resin is cross-linked by radiation such as electron beam or y-ray, and the mechanical strength and surface abrasion are improved by improving heat resistance.
  • a resin composition comprising a copolymer of polyamide and polyetheramide containing a polyfunctional acrylic monomer or a polyfunctional metathalylate monomer, wherein a heat-recoverable article cross-linked by irradiation with radiation is used.
  • JP-A-61-7336 Furthermore, as a cross-linked polyamide resin using a cross-linking agent that cross-links by heating,
  • A a polyamide resin
  • B one radical generator selected from a 1,2-diphenylethane derivative having a specific structure or a diisopropylpropyl oligomer
  • C at least two carbon atoms in a molecule.
  • Patent application title Polyamide-based resin yarn composed of a polyfunctional monomer having an inter-double bond and a crosslinked polyamide-based resin obtained by heating and crosslinking at a temperature of 220 to 320 ° C. 2001-40206.
  • crosslinking the resin with a silane coupling agent is also described in Non-Patent Documents J. Ap pp. Polymer. Sci., Vol. 28, 3387- 3398 (1983) .
  • a resin composition containing a polyamide-based polymer, an inorganic filler, and a silane coupling agent is molded and solidified, and heated after the injection step to form a silane cap.
  • a resin molded product for an electric component which is cross-linked and cured by a ring agent is disclosed in JP-A-2002-265563.
  • crosslinking by radiation as disclosed in JP-A-57-119911, JP-A-59-12935, and JP-A-61-7336 is disclosed.
  • the thermoplastic resin molding used shrinkage due to crosslinking and curing and resin decomposition occur. It is easy to be deformed by this.
  • the crosslinking aid may vaporize and foam, or the composition may change and gel.
  • the mold surface was contaminated, and the moldability was poor, and a thin-walled and precise molded product could not be obtained.
  • a flame retardant or the like is added, the resin bleeds out and a uniform resin composition cannot be obtained.
  • radiation crosslinking causes unreacted monomers or decomposed gas of the cross-linking agent or bleed-out of oligomerized products. This causes problems such as metal contamination of the electrodes and the like, and adhesion during driving, causing malfunctions, and further deteriorating mechanical properties such as wear resistance and causing dimensional changes.
  • JP-A-47-41745 and JP-A-51-37950 flame retardancy by blending melamine derivatives, cyanuric acid and isocyanuric acid is disclosed.
  • the resulting molded article has insufficient heat resistance, dimensional change, and mechanical properties. Disclosure of the invention
  • an object of the present invention is to have excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability, and particularly to be suitably used as a contact support member for electromagnetic switches, etc. ⁇ a housing or the like.
  • Another object of the present invention is to provide a resin molded product for an electric component which is suitable for injection molding using a thermoplastic resin and a method for producing the same.
  • a resin molded product for an electric component of the present invention includes a thermoplastic polymer, a crosslinking agent comprising a polyfunctional monomer or oligomer having an unsaturated group at an end of a main skeleton, and an inorganic filler. After molding and solidifying a resin composition containing reinforced fibers, the thermoplastic polymer is cross-linked by heating or radiation.
  • the main component polymer is three-dimensionally heated or irradiated.
  • Heat resistance and mechanical strength can be improved by cross-linking the network structure, and shrinkage and decomposition due to cross-linking can be suppressed by using inorganic fillers and reinforcing fibers in combination, resulting in chemical stability. It is possible to obtain a resin molded product having excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. Further, thin-wall molding can be performed.
  • the method for producing a resin molded product for an electric component of the present invention comprises an adsorption step of adsorbing a crosslinking agent comprising a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton to an inorganic filler.
  • molding can be performed in the same manner as a normal thermoplastic resin using an injection molding machine. Further, by performing crosslinking by heating or radiation after injection, the crosslinking reaction is promoted and curing is performed. As it proceeds, resin molded products with excellent mechanical strength, heat resistance and flame retardancy can be manufactured with good productivity.
  • the crosslinking agent is adsorbed on the inorganic filler, it is kneaded with the thermoplastic polymer and the reinforcing fiber, so that the crosslinking agent is uniformly dispersed.
  • the physical properties of the obtained resin molded product become uniform, and it is possible to obtain a resin molded product having excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. it can.
  • the crosslinking step is performed by irradiation with radiation, it is preferable to irradiate an electron beam or X- ray with a dose of 10 kGy or more. This can prevent uneven formation of the three-dimensional network structure due to insufficient dose and bleed-out due to residual unreacted cross-linking agent.
  • the irradiation dose is set to 10 to 45 kGy, deformation or shrinkage due to internal strain of the resin composition due to acid eh decomposition products caused by excessive dose can be prevented, A resin molded product excellent in the above physical properties can be obtained.
  • the heating is performed at a temperature higher than the temperature of the injection molding by 5 ° C. or more. This eliminates the need for a radiation irradiator or the like, and can be suitably used particularly for a resin composition containing a thermosetting resin.
  • the resin molded article for an electric component of the present invention and a method for producing the same, It is preferable to include at least the trifunctional crosslinking agent as the crosslinking agent. As a result, a uniform three-dimensional network structure is formed, and a resin molded product having excellent physical properties as described above can be obtained.
  • the crosslinking agent it is preferable to use two or more kinds of polyfunctional crosslinking agents as the crosslinking agent.
  • This makes it possible to control the reaction rate required for cross-linking by using a cross-linking agent having a different reactivity such as arylate and atalylate, thereby preventing shrinkage of the resin molded article due to rapid progress of the cross-linking reaction.
  • the reaction rate required for cross-linking can be controlled. The shrinkage of the product can be prevented.
  • the thermoplastic polymer is a polyamide resin
  • the main skeleton of the crosslinking agent is a cyclic compound containing an N element.
  • the compatibility of the amide group with the N element is further increased, and the compatibility with the polyamide resin is further improved.
  • the cyclic compound containing the N element, which is a cross-linking agent itself has flame retardancy, so that the flame retardancy of the resin molded article is improved.
  • the crosslinking agent is preferably a compound represented by the following general formula (I).
  • R 4 represents an alkylene group having 1 to 5 carbon atoms
  • R 5 represents hydrogen or a methyl group. 1 to! ⁇ 3 may be the same or different.
  • the above compound contains boron, and the boron atom has a large atomic radius, so that the crosslinking effect is increased, and the mechanical strength and heat resistance of the obtained molded product can be further improved.
  • the production 1 since the compatibility with the resin is good, the production 1 "is not reduced.
  • the above compounds Since it itself has an effect as a flame retardant auxiliary, it can be particularly preferably used in the present invention.
  • the crosslinking agent is contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic polymer. Is preferred. As a result, the mechanical strength of the molded product can be maintained, and the dimensional stability is improved.
  • the reinforcing fiber is contained in an amount of 5 to 40% by mass based on the whole resin composition, It is preferably glass fiber surface-treated with fat.
  • the reinforcing fibers By containing the reinforcing fibers, mechanical strength such as tension, compression, bending, and impact can be improved, and furthermore, physical properties can be prevented from deteriorating against moisture and temperature.
  • glass fibers that have been surface-treated with a resin are used in advance, adhesion to a thermoplastic polymer is improved.
  • the inorganic filler is added to the entire resin composition: It is preferably contained in an amount of from 15 to 15% by mass.
  • the resin composition contains a layered clay formed by laminating a silicate layer as the inorganic filler, The content is preferably 1 to 10% by mass based on the whole. According to this, a nano-layered clay is dispersed in a resin to form a hybrid structure with the resin. This improves the heat resistance, mechanical strength, and the like of the resulting flame-retardant resin processed product.
  • the resin composition contains a flame retardant, and the flame retardant is added in an amount of 2 to 35 mass with respect to the entire resin composition. %.
  • the flame retardant contains a monofunctional organic phosphorus compound having one terminal unsaturated group.
  • the flame retardant reacts with and binds to the resin. Out can be prevented, and the deterioration of the flame retardant effect over time can be prevented. Also, a high flame retardant effect can be obtained even with a small amount of addition.
  • the electric component is used for an electromagnetic switch.
  • electromagnetic switches resin molded products are used, for example, to support the contacts, and have high strength, heat resistance, flame resistance, and dimensional stability that can withstand the heat generated at the contacts and the repetitive movement of the contacts. And the like, and there is a high demand for fire safety. Therefore, the resin molded product of the present invention and the method for producing the same are particularly effective. Brief description of drawings ⁇
  • FIG. 1 is a photograph comparing the appearance after the soldering heat test in the examples.
  • FIG. 2 is a chart showing the results of a heat resistance test in Examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • the resin molded article for an electric component of the present invention contains a thermoplastic polymer, a crosslinking agent comprising a polyfunctional monomer or oligomer having an unsaturated group at an end of a main skeleton, an inorganic filler, and a reinforcing fiber. After molding and solidifying the resin composition, the thermoplastic polymer is cross-linked by heating or radiation.
  • thermoplastic polymer constituting the resin composition of the present invention will be described.
  • thermoplastic polymer used in the present invention is not particularly limited, and examples thereof include a polyamide resin, a polyester resin such as polybutylene terephthalate and polyethylene terephthalate, a polyacrylic resin, a polyimide resin, a polycarbonate resin, and a polyurethane resin.
  • Polystyrene resin such as urethane resin, polystyrene, acrylonitrile-styrene copolymer, atarilonitrile-butadiene-styrene copolymer, polyacetal resin, polyolefin resin, polyphenylene oxide, polyphenylene sulfide, poly Butadiene and the like can be mentioned.
  • polyamide-based luster and polybutylene terephthalate from the viewpoint of abrasion resistance and heat resistance.
  • the polyamide resin is not particularly limited as long as it is a polymer having an amide bond using an aminocarboxylic acid, lactam or diamine and dicarboxylic acid as main raw materials.
  • aliphatic polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 416, polyamide 6-6, polyamide 6-10, polyamide 6-12, and aromatic polyamides such as polyamide MXD 6 may be used. May be included.
  • two kinds of polyamides selected from these groups can be appropriately used as a blend or alloy, and are not limited as appropriate.
  • the present invention is not limited to the above homopolymer, and is a copolymer comprising at least two of the above homopolymers such as polyamide 6 and polyamide 66 (polyamide 6/6) and polyamide 6 and polyamide 12 (polyamide 6Z12). It may be a polymer.
  • the polyamide may be a modified polyamide copolymer.
  • modified polyamide copolymers include phenol derivatives, melamine derivatives, glycidyl derivatives, polyamides modified with bier group-containing compounds, polyamides modified with a polyester-based modified polymer, polyamides graft-polymerized with phthalic acid such as terephthalic acid, etc. Polyamide and the like.
  • crosslinking agent used in the present invention a cross-linking agent composed of a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton is used.
  • Examples of such a cross-linking agent include 2- to 4-functional compounds represented by the following general formulas (a) to (c).
  • X is a main skeleton
  • R 6 to R 9 are functional groups having an unsaturated group at the terminal
  • (a) is a bifunctional compound
  • (b) is a trifunctional compound
  • (C) is a tetrafunctional compound. --R 7 ... (a)
  • the main skeleton X is an aliphatic alkyl such as glycerin or a pentaerythrol derivative, trimellit, pyromellit, tetrahydrofuran, Examples include aromatic ring such as symmetric triazine, isocyanurone, cyanur, and trimethylenetrioxane, and structure such as bisphenol.
  • the main skeleton X is preferably a cyclic compound containing an N element such as an isocyanuric ring or a cyanuric ring.
  • N element such as an isocyanuric ring or a cyanuric ring.
  • R 4 represents an alkylene group having 1 to 5 carbon atoms
  • R 5 represents hydrogen or a methyl group
  • R 6 to R 9 may be the same or different.
  • diatalylate dimetharylate, diarylate, triatalylate, trimetatalylate, triarylate, tetraatalylate, tetrametharylate, tetraarylate, and the like.
  • diacrylate, triatalylate, etc. More preferably, it is an atalylate such as K tetraatalylate.
  • cross-linking agent examples include difunctional monomers or oligomers such as bisphenol F-EO-modified diacrylate, bisphenol A-EO-modified diacrylate, isocyanuric acid EO-modified diacrylate, and tripropylene daricol diacrylate.
  • diacrylates such as polypropylene glycol diacrylate, polyethylene glycol diacrylate, pentaerythritol diacrylate monostearate and the like, and dimethacrylates and diarylates thereof.
  • trifunctional monomer or oligomer examples include pentaerythritol triacrylate, trimethylolpropane triatalylate, trimethylolpropane PO-modified triatalylate, trimethylolpropane EO-modified triatalylate, and isocyanuric acid EO-modified triatalylate. And the like, and their trimethacrylates and triarylates.
  • examples of the tetrafunctional monomer or oligomer include ditrimethylolpropanthate acrylate, pentaerythritol tetraacrylate, and the like.
  • the above compound has a main skeleton X: trimellitic acid, pyromellitic acid, tetrahydrofurantetracarboxylic acid, 1,3,5-trihydroxybenzene, glycerin, pentaerythrone, N, N ,, N ', One of triarylenoisocyanurate, 2,4,6-tris (co-methyl) -1,3,5-trioxane, etc., which becomes a functional group having an unsaturated group at the terminal, It is obtained by reacting one selected from acrylyl bromide, aryl alcohol, arylamine, methallyl bromide, methallyl alcohol, methallylamine and the like.
  • a trifunctional compound represented by the following general formula (I) is also preferably used.
  • the above compound contains boron, and the boron atom has a large atomic radius, so that the crosslinking effect is increased, and the mechanical strength and heat resistance of the obtained molded article can be further improved. Further, since the compatibility with the resin is good, the moldability is not reduced. Further, the above compounds themselves have an effect as a flame retardant aid, and therefore can be particularly preferably used in the present invention.
  • the compounds of the above general formula (I) include the following compounds (I-11) to (1-6).
  • the compound represented by the above general formula (I) can be obtained by adding triarylborazine to a functional I 1 biogroup having an unsaturated group at the terminal, such as aryl bromide, aryl alcohol, arylamine, It is obtained by reacting one selected from methallyl bromide, methallyl alcohol, methallylamine and the like.
  • crosslinking agents may be used alone, but it is more preferable to use a plurality of them in combination to control the reactivity. Above all, use of two or more trifunctional crosslinking agents It is more preferable to use a bifunctional crosslinking agent and a trifunctional crosslinking agent together. Thereby, a network structure can be sequentially formed while suppressing a crosslinking reaction by a bifunctional crosslinking agent, so that shrinkage of the resin molded article due to crosslinking can be further suppressed.
  • the content of the crosslinking agent is preferably from 0.5 to 10 parts by mass, more preferably from 1.0 to 7.0 parts by mass, based on 100 parts by mass of the thermoplastic polymer. . If the content is less than 0.5 part by mass, crosslinking is insufficient, and the obtained resin molded product has poor mechanical, thermal, and electrical properties.If the content exceeds 10 parts by mass, crosslinking occurs. If the agent becomes excessive, unreacted monomers or decomposition gas of the cross-linking agent will be generated, or the oligomerized product will bleed out, causing metal contamination of electrodes and the like when used in electromagnetic switches, etc. It is not preferable because it adheres during driving and causes malfunctions, and furthermore, mechanical properties such as abrasion resistance are degraded and dimensional changes are caused.
  • the resin molded article of the present invention contains an inorganic filler.
  • the mechanical strength of the molded product can be improved, and the dimensional stability can be improved.
  • it serves as a substrate on which the cross-linking agent is adsorbed, and makes the cross-linking agent uniform.
  • inorganic filler conventionally known inorganic fillers can be used.
  • metal powders such as copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, and silver, fumed silica, and silicate.
  • magnesium oxide, calcium oxide, magnesium sulfate, potassium titanate, and diatomaceous earth it is particularly preferable to use porous ones. Specifically, talc, clay, calcium carbonate, etc. are used. Is preferred.
  • fillers may be used alone or in combination of two or more kinds, and may be those treated with a known surface treatment agent.
  • the content of the inorganic filler is preferably 1 to 15% by mass, and more preferably 2 to 10% by mass based on the whole resin composition. / 0 is more preferred. If the content is less than 1% by mass, the mechanical strength of the resin molded product is reduced, the dimensional stability is insufficient, and the adsorption of the crosslinking agent is insufficient, which is not preferable. On the other hand, if it exceeds 15% by mass, the resin molded product becomes brittle, which is not preferable.
  • the layered clay formed by laminating silicate layers is a clay having a structure in which silicate layers having a thickness of about lnm and a side length of about 100 nm are laminated. Therefore, the layered clay is dispersed in the resin on a nano order to form a hybrid structure with the resin, thereby improving the heat resistance, mechanical strength, etc. of the obtained resin molded product. .
  • the average particle size of the layered clay is preferably 100 nm or less! / ,.
  • the layered clay is preferably montmorillonite, kaolinite, force S such as my strength, etc., and montmorillonite is preferable in terms of excellent dispersibility.
  • the layered clay has a surface for improving dispersibility in resin.
  • Such a layered clay may be a commercially available one, for example, “Nanomer” (trade name, manufactured by Nissho Iwai Bentonite Co., Ltd.).
  • the content of the layered clay is preferably from 1 to 10% by mass based on the entire resin composition.
  • the layered clay may be used alone or in combination with another inorganic filler.
  • the resin molded product of the present invention contains a reinforcing fiber. Also according to this, the mechanical strength of the molded article can be improved and the dimensional stability can be improved.
  • any of glass fiber, carbon fiber, and metal fiber can be used, but glass fiber is preferably used in view of strength and adhesion to a thermoplastic polymer or an inorganic filler.
  • the glass fiber is preferably surface-treated, and is preferably coated with a resin. Thereby, the adhesiveness with the thermoplastic polymer can be further improved.
  • a known silane coupling agent can be used. Specifically, at least one alkoxy group selected from the group consisting of a methoxy group and an ethoxy group, an amino group, and a Bier group Examples thereof include a silane coupling agent having at least one reactive functional group selected from the group consisting of an acrylic group, a methacryl group, an epoxy group, a mercapto group, a halogen atom and an isocyanate group.
  • the coating resin is not particularly limited, and examples thereof include a urethane resin and an epoxy resin.
  • the compounding amount of the reinforcing fibers is preferably 5 to 40% by mass, more preferably 15 to 30% by mass, based on the whole resin composition. If the content is less than 5% by mass, the mechanical strength of the resin molded product is reduced, and the dimensional stability is insufficient, which is not preferable. If the content exceeds 40% by mass, molding becomes difficult. It is not preferred. Further, the resin composition of the present invention preferably contains a flame retardant.
  • flame retardant conventionally known flame retardants can be used and are not particularly limited.
  • Halogen flame retardants having a halogen element such as bromine in the molecule, phosphorus flame retardants having the phosphorus element in the molecule, cyanuric acid or isocyanurate Acid derivatives, melamine derivatives and the like can be preferably used. From the viewpoint of preventing decomposition of the flame retardant due to irradiation, it is preferable to use a halogen-based flame retardant.
  • halogen-based flame retardant examples include brominated polystyrene, brominated polyether ether, brominated polycarbonate, and brominated epoxy.
  • phosphorus-based flame retardants include monophosphate esters such as triphenyl phosphate and tricresyl phosphate, condensed phosphorus such as bisphenol A bis (diphenyl) phosphate and resorcinol bis (diphenyl) phosphate. Acid esters, polyphosphate ammonium, polyphosphoramide, red phosphorus, guanidine phosphate and the like. These flame retardants may be used alone or in combination of two or more.
  • phosphorus-based flame retardants it is particularly preferable to contain a monofunctional organic phosphorus compound having one unsaturated group at a terminal.
  • the unsaturated group at the terminal reacts with and binds to the resin, so that bleed out of the flame retardant can be prevented, and deterioration of the flame retardant effect with time can be prevented.
  • a high flame retardant effect can be obtained even with a small amount of addition.
  • a compound is not particularly limited, and examples thereof include a compound (II) having the following structural formula.
  • the above compound (II) is known, and for example, a compound commercially available from Sanko Chemical Co., Ltd. as a trade name (ACA) can be used.
  • ACA trade name
  • the compounding amount of the flame retardant is preferably 2 to 35% by mass based on the whole resin composition. If the content is less than 2% by mass, the flame retardancy is insufficient, which is not preferable. If the content is more than 35% by mass, excessive addition of the flame retardant causes bleeding out of the flame retardant and poor crosslinking. However, when used as an electromagnetic switch, durability and electrical characteristics are deteriorated, which is not preferable. Also, the heat resistance is inferior because the crosslink density is low, and the dimensional change is large, which is not desirable.
  • the resin composition of the present invention includes various commonly used additives other than those described above, for example, a crystal nucleating agent, coloring, within a range that does not significantly impair the heat resistance, weather resistance, and impact resistance of the object of the present invention.
  • Additives such as an agent, an antioxidant, a release agent, a plasticizer, a heat stabilizer, a lubricant, and an ultraviolet inhibitor can be added.
  • the colorant is not particularly limited, but those which do not fade upon irradiation with radiation are preferred.
  • inorganic pigments such as red iron black, carbon black, graphite and the like, and metal complexes such as phthalocyanine are preferably used.
  • an adsorption step of adsorbing a crosslinking agent comprising a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton to an inorganic filler is performed.
  • the production method of the present invention is characterized in that the crosslinking agent is previously adsorbed to the inorganic filler.
  • the cross-linking agent is dispersed very uniformly, and the resulting resin molded product has uniform physical properties, heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. It is possible to obtain a resin molded product excellent in all of the above.
  • a kneading step of kneading the resin composition containing the above-mentioned adsorbed inorganic filler, thermoplastic polymer, and reinforcing fiber is performed.
  • Mixing can be performed by a conventionally known mixer, blender, or the like used for ordinary mixing.
  • the melt-kneading can be carried out using a conventional melt-kneading machine such as a single-screw or twin-screw extruder, a panbury mixer, a kneader, and a mixing roll.
  • the kneading temperature can be appropriately selected according to the type of the thermoplastic polymer.For example, in the case of a polyamide-based resin, it is preferable to perform the kneading at 240 to 270 ° C. Pelletization and drying are preferred.
  • the above-mentioned pellet is injection-molded to obtain a molded product.
  • a conventionally known injection molding method can be used, and ordinary thermoplastic resin injection conditions can be used. Injection conditions can be appropriately selected depending on the type of the thermoplastic polymer used. For example, in the case of a polyamide resin, the cylinder temperature is 260 to 330 ° C. and the mold temperature is 60 to 130. C is preferred.
  • the extra spool during molding can be recycled as a thermoplastic resin.
  • Crosslinking is performed by heating or irradiation.
  • the radiation in the present invention means radiation in a broad sense, and specifically includes not only particle beams such as electron beams and rays but also electromagnetic waves such as X-rays and ultraviolet rays. Above all, it is preferable to perform the irradiation by electron beam or ⁇ -ray irradiation.
  • a known electron accelerator or the like can be used for the electron beam irradiation.
  • the acceleration energy is preferably 2.5 MeV or more.
  • Irradiation equipment using a known cobalt 60 radiation source or the like can be used for y-ray irradiation. Since y-rays have higher transparency than electron beams, it is particularly preferable because irradiation to molded articles is uniform. However, due to the high irradiation intensity, dose control is necessary to prevent excessive irradiation.
  • the irradiation dose of radiation is preferably 10 kGy or more, more preferably 10 to 45 kGy, and particularly preferably 15 to 40 kGy. Within this range, a resin molded article having excellent physical properties as described above can be obtained by crosslinking.
  • the irradiation dose is less than 10 kGy, the formation of a three-dimensional network structure due to cross-linking becomes non-uniform and unreacted cross-linking agent bleeds, which is not preferable. If the irradiation dose exceeds 45 kGy, oxidative decomposition products This is not preferable because internal strain remains in the resin composition due to the above, which causes deformation and shrinkage.
  • the reaction temperature is preferably 5 ° C. or more higher than the resin molding temperature, more preferably 10 ° C. or more.
  • the molded article for electrical parts of the present invention obtained in this manner has excellent heat resistance and flame retardancy as compared with the conventional thermoplastic green resin molded article, and therefore has high heat resistance and flame retardancy. It can be suitably used as an electrical component that requires the above, for example, a member for supporting a contact such as an electromagnetic switch, a housing, various sensors, a housing for an electronic device, a sealant, and the like.
  • a cross-linking agent was added to a system in which 4.5 parts by mass of talc having an average particle size of 2 / zm as an inorganic filler and 1.0 parts by mass of iron black having an average particle size of 1 to 2 ⁇ were used as a coloring agent.
  • Isocyanuric acid-modified triatalylate manufactured by Toa Gosei Co., Ltd .: ⁇ -315
  • Isocyanuric acid-modified triatalylate manufactured by Toa Gosei Co., Ltd .: ⁇ -315
  • the above adsorbed material was used as a thermoplastic polymer, a copolymer of 66-6 nylon (2123 B manufactured by Ube Industries, Ltd.) 65.8 parts by mass, and as a reinforcing fiber, a silane coupling agent 25.0 parts by mass of urethane resin-coated glass fiber after surface treatment with 0.4 parts by mass of an antioxidant (manufactured by Ciba-Geigy Co., Ltd .: Irganox 110.10), and then mixed. A composition was obtained.
  • the above resin composition was kneaded at 240 ° C. using a side flow type twin screw extruder, and then dried at 105 ° C. for 4 hours to obtain pellets.
  • the above-mentioned molded article was irradiated with ⁇ -rays at a dose of 20 kGy using Conoreto 60 as a radiation source as a radiation source to perform a crosslinking step, whereby a resin molded article of Example 1 was obtained.
  • Example 2 As a cross-linking agent, 2.0 parts by mass of N, N ', N "-triallyl isocyanurate and 1.0 part by mass of EO-modified isocyanuric acid triacrylate (manufactured by Toagosei Co., Ltd .: M-315) A pellet was obtained under the same conditions as in Example 2 except that the resin was used in combination, and injection molding and irradiation were performed under the same conditions as in Example 2 to obtain a resin molded product of Example 3. .
  • N, N ', N "-triallyl isocyanurate and 1.0 part by mass of EO-modified isocyanuric acid triacrylate manufactured by Toagosei Co., Ltd .: M-315
  • Injection molding and irradiation were performed under the same conditions as in Example 1 except that the cylinder temperature during injection molding was set to 280 ° C and the dose of y-ray for irradiation was set to 25 kGy. A fat molded product was obtained.
  • Injection molding and irradiation were carried out under the same conditions as in Example 1 except that the cylinder temperature during injection molding was set at 280 ° C and the dose of radiation for irradiation was set at 20 kGy. 4 resin molded products were obtained.
  • Example 2 Example 2 was repeated except that 100 parts by mass of the resin composition of Example 2 and 25 parts by mass of a flame retardant obtained by using a brominated polystyrene resin and antimony oxide in a ratio of 3: 1 by mass were further added. A pellet was obtained under the same conditions as.
  • Injection molding and radiation irradiation were performed under the same conditions as in Example 1 except that the cylinder temperature during injection molding was set at 280 ° C and the radiation dose of radiation was set at 20 kGy. A resin molded product of No. 5 was obtained.
  • a pellet was obtained under the same conditions as in Example 2 except that 100 parts by mass of the resin composition of Example 3 was further added with 10 parts by mass of a nonhalogen-based flame retardant, which is a phosphoric ester compound.
  • a nonhalogen-based flame retardant which is a phosphoric ester compound.
  • isocyanuric acid EO-modified triatalylate (manufactured by Toagosei Co., Ltd .: M-315), which is trifunctional and has a terminal unsaturated double bond, 1.65 parts by mass, pentaerthritol trimethylatali Using a combined amount of 1.65 parts by mass, a thermoplastic polymer, 65.8 parts by mass of PBT resin (manufactured by Toray Industries: Toraycon 1401 x 06), and epoxy as the reinforcing fiber Using 25.0 parts by weight of glass fiber surface-treated with a silane coupling agent, and 25 parts by weight of a flame retardant using a brominated polystyrene resin and antimony oxide in a 3: 1 weight ratio A pellet was obtained under the same conditions as in Example 1 except for the above. Injection molding and irradiation were performed under the same conditions as in Example 1 except that the cylinder temperature during injection molding was set at 250 ° C., to
  • Example 5 was the same as Example 5 except that the addition amount of the flame retardant was changed to 40 parts by mass. Thus, the resin molded product of Example 8 was obtained.
  • Example 5 was repeated under the same conditions as in Example 5 except that 15 parts by mass of a non-halogen flame retardant (bisphenol A bis (diphenyl) phosphate-based carboxylic acid ester) was added as the flame retardant. A molded resin product was obtained.
  • a non-halogen flame retardant bisphenol A bis (diphenyl) phosphate-based carboxylic acid ester
  • thermoplastic polymer As a cross-linking agent, 6 parts by mass of the above compound (1-1) is used, and as a thermoplastic polymer, 66 Nine resin (manufactured by Ube Industries, Ltd .: 220 B) 66.1 parts by mass is used. Pellets were obtained under the same conditions as in Example 1 except that the kneading temperature was set at 280 ° C. Injection molding and radiation irradiation were carried out under the same conditions as in Example 1 except that the temperature of the cylinder during injection molding was set at 280 ° C and the radiation dose of radiation was set at 30 kGy. A resin molded product of Example 10 was obtained.
  • Example 10 To the composition of Example 10, 20 parts by mass of brominated styrene (manufactured by Hueguchi Japan Co., Ltd.) and 8 parts by mass of antimony trioxide (manufactured by Nippon Seimitsu Co., Ltd.) were also added as flame retardants. Pellets were obtained, and injection molding and irradiation were performed under the same conditions as in Example 10 to obtain a resin molded product of Example 11.
  • brominated styrene manufactured by Hueguchi Japan Co., Ltd.
  • antimony trioxide manufactured by Nippon Seimitsu Co., Ltd.
  • thermoplastic resin made by Ube Industries, Ltd .: 2020B
  • glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber made by Asahi Fine Perglass Co., Ltd.
  • a silane coupling agent as a reinforcing fiber
  • a colorant made by Asahi Fine Perglass Co., Ltd.
  • antioxidant manufactured by CHIPAIGIG Co., Ltd .: 0.2 parts by mass
  • Example 13 The resin of Example 13 was produced in the same manner as in Example 12, except that the inorganic filler of Example 12 was changed to 5 parts by mass of a clay having a nano-particle diameter made of montmorillonite (Nissho Iwai Co., Ltd .: Niima I). A molded product was obtained.
  • Polybutylene terephthalate resin as thermoplastic resin (Toray Industries, Inc .: Toraycon 1 401X06) 55.3 parts by mass, 20 parts by mass of reinforcing fiber of Example 12, 5 parts by mass of inorganic filler of Example 12, 5 parts by mass of coloring of Example 12 0.5 parts by weight, 0.2 parts by weight of the antioxidant of Example 12, 3 parts by weight of the combination system of Example 3 as a crosslinking agent, and a non-reactive organophosphorus flame retardant as a flame retardant (Sanko Chemical Company: HCA-HQ) 9 parts by mass and 10 parts by mass of antimony oxide were kneaded at a kneading temperature of 245 ° C to obtain resin compound pellets, dried at 130 ° C for 3 hours, and molded. The molding was performed in the same manner as in Example 12, except that the cylinder temperature was changed to 250 ° C.
  • the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin molded article of Example 14.
  • a molded article was molded under the same conditions as in Example 2 except that 3 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF Corporation) was further added to the system of Example 2.
  • NOFMER BC thermal catalyst
  • a resin molded product of Comparative Example 1 was obtained under the same conditions as in Example 1 except that the molded product was not irradiated with radiation.
  • a resin molded product of Comparative Example 3 was obtained under the same conditions as in Comparative Example 2, except that the dose of X-ray was set to 50 kGy.
  • thermocatalytic resin modifier (NOFMER BC, manufactured by NOF Corporation) was used as a crosslinking agent. Thereafter, crosslinking was carried out by a heating reaction without irradiation, and a resin molded product of Comparative Example 4 was obtained.
  • Inorganic filler (calcium carbonate) 7.0 parts by mass as epoxy silane coupling agent (pre-silane (KBPS-402 manufactured by Shin-Etsu Chemical Co., Ltd .: KBPS-402)) (KBE-903, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.0 parts by mass was used in combination for adsorption treatment.
  • epoxy silane coupling agent pre-silane (KBPS-402 manufactured by Shin-Etsu Chemical Co., Ltd .: KBPS-402)
  • KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the mixture was mixed so as to be 91 parts by mass of 66 Nippon resin (manufactured by Asahi Kasei Corporation: Leona F G172 x 6 l), and a pellet was obtained using a twin-screw extruder set at 270 ° C. .
  • a molded article was obtained under the above conditions, and further subjected to a heat treatment at 250 ° C. for 15 minutes to strengthen the crosslinking, thereby obtaining a resin molded article of Comparative Example 5.
  • a resin molded product of Comparative Example 6 was obtained under the same conditions as in Example 11 except that the compound (1-1) as a crosslinking agent was not added to the composition of Example 11.
  • Test item Contents Example 11
  • Example 12 Example 13
  • Example 14 Example 15 Moldability Good Good Good Good Good Good Post-crosslinking good Good Good Good Good Good Appearance
  • non-passing non-passing: non-passing: no passing Metal contamination test Deformation, adhesion, deformation, adhesion, deformation, adhesion, deformation, adhesion, durability No dimensional changes No dimensional changes No dimensional changes No dimensional changes No dimensional changes No dimensional changes No pass Pass Pass Pass
  • the resin molded products of Examples 1 to 7 and 10 to 15 are all excellent in moldability, appearance, heat resistance, durability, mechanical properties, electrical properties, and flame retardancy. .
  • Example 8 in which the content of the flame retardant exceeds the preferred range of the present invention, and in Example 9 in which a phosphorus-based flame retardant was used as the flame retardant, bleeding of the flame retardant occurred, and the overcurrent resistance, It turns out that the evaluation etc. of a metal contamination test have fallen.
  • Comparative Example 1 in which the radiation was not cross-linked
  • Comparative Example 2 in which the inorganic filler, the cross-linking agent and the thermoplastic polymer were kneaded without performing the adsorption step, and Comparative Example 2, the irradiation amount of the radiation was preferable in the present invention.
  • any of the items of heat resistance, durability, mechanical characteristics, electrical characteristics, and flame retardancy are inferior to those of Examples 1 to 7 and 10 to 15.
  • this resin molded product for an electrical component having excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. Therefore, this resin molded product can be suitably used especially as a contact supporting member such as an electromagnetic switch or the like, a housing, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

明 細 書 電気部品用樹脂成形品及びその製造方法 技術分野
本発明は、 例えば、 電磁開閉器等の接点支持用の部材ゃハウジング等として好適に用 いられる、 耐熱性、 難燃性、 寸法安定性等の熱的特性、 耐磨耗性等の機械的特性に優れ る電気部品用の榭脂成形品及びその製造方法に関する。 背景技術
一般に、 電気部品等に用いられる樹脂成形品は、 汎用のプラスチックに比べて、 高度 の強度、 寸法安定性、 耐磨耗性等の機械的特性に加えて、 耐熱性、 難燃性等の熱的特性 が要求される。 このような電気部品用樹脂成形品としては、 従来より、 エポキシ樹脂や フヱノール系樹脂等の熱硬化性樹脂が多く使用されている。
しカゝし、 近年、 電気部品用樹脂成形品は、 薄肉成形品による軽量化、 機械特性や難燃 性の向上に加え、 更に環境への対応としてリサイクル性が要望されており、 これらの要 求性能の点から、 熱可塑性樹脂を用いた電気部品用樹脂成形品が検討されている。
一方、 上記の電気部品の一例である電磁開閉器は、 制御システムの重要な構成部品と して、 P L Cゃィンパータなど電子応用装置の使用回路ゃコンデンサ負荷開閉など幅広 い分野で使用されており、 この成形品は、 摺動性を要求される接点で発生する熱及び接 点の繰り返し運動による負荷に耐える必要があることから、 上記のような機械的強度、 耐熱性、 寸法安定性、 電気的特性、 難燃性等に関して高度の物性が要求される部品の一 つである。
また、 成形品は、 薄肉成形が可能で、 生産性が良く、 寸法精度が要求されるために射 出成形などの成形法によつて製造されることが多いことからも、 汎用の熱可塑性榭脂が 使用できることが好ましい。
しかし、 熱可塑性樹脂を使用する以上、 樹脂単独では耐熱性、 機械強度、 寸法安定性、 難燃性に限界があり、 特に上記のような電磁開閉器においては、 コスト ·軽量化等を含 めてすべての要求特性を満たすことは困難である。 このため、 各種の強化材の添加や、 樹脂の改質等が検討されている。 例えば、 熱可塑性樹脂の改質として、 電子線や y線等の放射線によって熱可塑性樹脂 を架橋し、 耐熱性の向上により機械強度 ·表面の磨耗性を向上されることが知られてお り、 電線の被覆の際に溶融ポリエチレン樹脂 (PE) を電子線架橋する方法や、 ポリエ ステル樹脂成形品を放射線重合することで榭脂改質可能なことが、 非特許文献 「ポリマ 一の友」 , Vo l . 17, No. 7, P435〜444 (1980) に開示されている。 また、 ポリアミド系樹脂に架橋剤を添加した後、 放射線照射によって架橋して耐熱性 等を向上させ、 架橋剤として、 トリァリルシアヌレートや、 トリアリルイソシァヌレー トを用いることが、 特開昭 57— 119911号公報, 特開昭 59— 12935号公報 に開示されている
また、 ポリアミドとポリエーテルアミドとの共重合体に、 多官能性アクリルモノマー 又は多官能性メタタリレートモノマーを含有せしめてなる樹脂組成物であって、 放射線 照射架橋されている熱回復性物品が、 特開昭 61- 7336号公報に開示されている。 更に、 加熱によって架橋する架橋剤を用いた架橋型ポリアミド系樹脂として、
(A) ポリアミド系樹脂と、 (B) 特定構造の 1, 2—ジフヱニルェタン誘導体又はジ ィソプロピルベンゼンオリゴマーから選ばれる 1種のラジカル発生剤と、 (C) 分子中 に少なくとも 2個以上の炭素間二重結合を有する多官能モノマーとからなるポリアミド 系樹脂糸且成物、 及ぴ、 それを 220〜320°Cの温度で加熱 ·架橋して得られる架橋型 ポリアミド系榭脂が、 特開 2001— 40206号公報に開示されている。
また、 その他の樹脂改質方法として、 シランカップリング剤によって樹脂を架橋硬ィ匕 させることも、 非特許文献 J . Ap p. P o l yme r. S c i . , Vo l . 28, 3 387〜3398 (1983) によって知られており、 例えば、 ポリアミドを主体とす るポリマーと、 無機充填剤と、 シランカップリング剤とを含有する樹脂組成物を成形固 化し、 射出工程後に加熱してシランカツプリング剤によって架橋硬化させる電気部品用 樹脂成形品が、 特開 2002— 265631号公報に開示されている。
更に、 難燃剤としてメラミン誘導体、 シァヌル酸、 イソシァヌル酸を配合してポリア ミド樹脂に難燃性を付与することも、 特開昭 47— 41745号公報, 特開昭 51— 3 9750号公報により検討されている。
し力 し、 上記の従来技術のうち、 特開昭 57— 119911号公報、 特開昭 59— 1 2935号公報、 特開昭 61-7336号公報に開示されているような、 放射線による 架橋を用いた熱可塑性樹脂成形品においては、 架橋硬化による収縮や樹脂分解を起こし やすく、 これによる変形を起こしやすかつた。 また、 樹脂中に練り込むときや成形の際 に、 架橋助剤が気化して発泡したり、 組成が変化しゲル化したりする恐れがあった。 更 に、 金型の表面を汚染して、 成形性が悪く薄肉 '精密な成形品が得られないという問題 点があった。 更に、 難燃剤等を添加した際にブリードアウトして均一な樹脂組成が得ら れないという問題もあった。
また、 上記の電磁開閉器やコネクタ、 又はブレイカー等の成形部材として使用する場 合、 放射線架橋によって、 架橋剤の未反応のモノマーや分解ガスが発生したり、 オリゴ マー化したものがブリードアゥトして電極等の金属汚染を起こしたり、 駆動時に付着し て誤動作を引き起こしゃすく、 更に耐磨耗性等の機械特性を低下させたり寸法変化を起 こすという問題があった。
また、 特開 2 0 0 1— 4 0 2 0 6号公報ゃ特開 2 0 0 2— 2 6 5 6 3 1号公報に開示 されているような、 熱触媒ゃシランカツプリング剤による架橋硬ィ匕を行なう樹脂組成物 においては、 射出成形時の金型中における加熱によっても、 架橋反応が一部進んでしま う。 このため、 架橋の制御が困難であり、 また、 成形時の余分のスプール部はリサイク ルができないという問題があつた。
また、 特開昭 4 7 - 4 1 7 4 5号公報や特開昭 5 1— 3 9 7 5 0号公報に開示されて いるような、 メラミン誘導体、 シァヌル酸、 イソシァヌル酸の配合による難燃性の付与 においても、 得られる成形品の耐熱性、 寸法変化、 機械特性が不充分であるという問題 があった。 発明の開示
したがって、 本発明の目的は、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性に優れ、 特に電磁開閉器等の接点支持用部材ゃハウジング等として好適に用 いることができ、 しかも熱可塑性樹脂を使用して射出成形に適した電気部品用の樹脂成 形品及びその製造方法を提供することにある。
上記課題を解決するため、 本発明の電気部品用樹脂成形品は、 熱可塑性ポリマーと、 主骨格の末端に不飽和基を有する多官能性のモノマー又はォリゴマーからなる架橋剤と、 無機充填剤と、 強化繊維とを含有する樹脂組成物を成形固化した後、 加熱又は放射線で 前記熱可塑性ポリマーを架橋してなることを特徴とする。
本発明の電気部品用樹脂成形品によれば、 加熱又は放射線で主成分ポリマーを 3次元 網目構造に架橋化反応させることにより、 耐熱性と機械強度を向上させることができ、 更に、 無機充填剤と、 強化繊維とを併用することによって架橋に伴う収縮や分解を抑え、 化学的安定性、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性の全て に優れる樹脂成形品を得ることができる。 更に薄肉成形加工も可能になる。
また、 放射線架橋の場合には、 射出成形等の加熱成形時には架橋反応は全く進行しな いので、 成形時の余分のスプール部は、 熱可塑性樹脂としてのリサイクルが可能である。 一方、 本発明の電気部品用樹脂成形品の製造方法は、 主骨格の末端に不飽和基を有す る多官能性のモノマー又はォリゴマーからなる架橋剤を無機充填剤に吸着させる吸着工 程と、 該吸着後の無機充填剤と、 熱可塑性ポリマーと、 強化繊維とを含有する樹脂組成 物を混練する混練工程と、 前記混練された樹脂組成物を射出成形する工程と、 前記射出 工程後の樹脂組成物を金型から取り出して、 加熱又は放射線照射する架橋工程とを含む ことを特 ί敷とする。
この製造方法によれば、 射出成形機を使用して通常の熱可塑性樹脂と同様な成形が可 能であり、 更に射出後に加熱又は放射線によって架橋させることにより、 架橋反応を促 進させて硬化を進行させるので、 機械的強度、 耐熱性、 難燃性に優れた樹脂成形品を生 産性よく製造できる。
また、 架橋剤を無機充填剤に吸着させた後に、 熱可塑性ポリマー及び強化繊維と混練 するので、 架橋剤の分散が均一に行なわれる。 これによつて、 得られる樹脂成形品の物 性が均一なものとなり、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形 性の全てに優れる樹脂成形品を得ることができる。
なお、 放射線照射で架橋工程を行う場合には、 線量が 1 0 k G y以上の電子線又は Ί 線を照射することが好ましい。 これにより、 線量不足による 3次元網目構造の不均一な 形成や、 未反応の架橋剤残留によるプリードアウトを防止できる。 また、 特に、 照射線 量を 1 0〜4 5 k G yとすれば、 線量過剰によって生じる酸ィヒ分解生成物に起因する、 榭脂組成物の内部歪みによる変形や収縮等も防止でき、 上記の物性に優れる樹脂成形品 が得られる。
また、 加熱で架橋工程を行う場合には、 前記射出成形の温度より 5 °C以上高い温度で 加熱することが好ましい。 これにより、 放射線照射装置等が不要であり、 特に熱硬化性 樹脂を含有する樹脂組成物に好適に用いることができる。
本発明の電気部品用樹脂成形品及びその製造方法のより好ましい態様によれば、 前記 架橋剤として、 少なくとも 3官能性の前記架橋剤を含有することが好ましい。 これによ り、 均一な 3次元網目構造が形成されるので、 上記の物性に優れる樹脂成形品が得られ る。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 架橋剤として、 2種類以上の多官能性の前記架橋剤を併用することが好ましい。 これに より、 例えばァリレートとアタリレートのように反応性の異なる架橋剤の併用によって 架橋に要する反応速度を制御できるので、 急激な架橋反応の進行による樹脂成形品の収 縮を防止することができる。 また、 例えば、 2官能性の前記架橋剤と 3官能性の前記架 橋剤とを併用することによつても、 架橋に要する反応速度を制御できるので、 急激な架 橋反応の進行による樹脂成形品の収縮を防止することができる。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 熱可塑性ポリマーがポリアミド系樹脂であって、 前記架橋剤の主骨格が、 N元素を含む 環状化合物であることが好ましい。 これにより、 アミド基の N元素との相溶性がより高 まるので、 ポリアミド系樹脂との相溶性がより向上する。 また、 架橋剤である N元素を 含む環状化合物はそれ自身が難燃性も有しているので、 樹脂成形品の難燃性が向上する。 本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 架橋剤が、 下記の一般式 (I) で示される化合物であることが好ましい。
Figure imgf000006_0001
(式 (I ) 中、 Ri R3は、 一 O— R4— CR5 = CH2、 - R 4 - O O C - C R 5 = C
R4— CRa = CH,、 -HNOC-CR5 = CH HN-CH -CR 5一 c
H2より選ばれる基を表す。 R4は炭素数 1〜 5のアルキレン基、 R 5は水素又はメチル 基を表す。 1〜!^3は同一又は異なっていてもよい。 )
上記の化合物はホウ素を含有し、 ホウ素原子は原子半径が大きいので架橋効果が大き くなり、 得られる成形品の機械強度 '耐熱性を更に向上することができる。 また、 樹脂 との相溶 1"生も良好であるので成形 1"生が低下することもない。 更に、 上記の化合物は、 そ れ自身が難燃助剤としての効果も有しているため、 特に本発明に好適に用いることがで さる。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 熱可塑性ポリマー 1 0 0質量部に対して、 前記架橋剤を 0 . 5〜1 0質量部含有するこ とが好ましい。 これにより、 成形品の機械的強度が維持できるとともに、 寸法安定性が 向上する。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 強化繊維を、 前記榭脂組成物全体に対して 5〜4 0質量%含有し、 前記強化繊維が、 樹 脂で表面処理されたガラス繊維であることが好ましい。 強化繊維の含有により、 引張り、 圧縮、 曲げ、 衝撃等の機械的強度を向上させることができ、 更に水分や温度に対する物 性低下を防止することができる。 また、 あらかじめ樹脂で表面処理されたガラス繊維を 用いたので、 熱可塑性ポリマーとの密着性が向上する。
本発明の電気部品用榭脂成形品及びその製造方法の更に好ましい態様によれば、 前記 無機充填剤を、 前記榭脂組成物全体に対して:!〜 1 5質量%含有することが好ましい。 これにより、 成形品の機械的強度が維持でき寸法安定性が向上するとともに、 過剰の含 有によって樹脂成形品が脆くなり、 割れ等が生じるのを防止できる。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、 前記層状のクレ 一を前記樹脂組成物全体に対して 1〜 1 0質量%含有することが好ましい。 これによれ ば、 ナノオーダーで層状のクレーが樹脂中に分散することにより樹脂とのハイプリット 構造を形成する。 これによつて、 得られる難燃性樹脂加工品の耐熱性、 機械強度等が向 上する。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 樹脂組成物が難燃剤を含有し、 該難燃剤を、 前記樹脂組成物全体に対して 2〜 3 5質量 %含有することが好ましい。 上記範囲の含有量とすることによって、 難燃性が向上でき るとともに、 過剰の添加によるプリードアウトや架橋不良を防止でき、 電磁開閉器とし て使用した際の、 耐久性や電気特性等の低下を防止できる。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 難燃剤として、 末端に 1つの不飽和基を有する単官能性の有機リン化合物を含有するこ とが好ましい。 これにより、 難燃剤が樹脂と反応して結合するので、 難燃剤のブリード アウトを防止でき、 難燃効果の経時劣化を防止できる。 また、 少量の添加であっても高 い難燃効果を得ることができる。
本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、 前記 電気部品が電磁開閉器に用いられるものであることが好ましい。 電磁開閉器においては、 例えば接点を支持するために樹脂成形品が使用されており、 接点で発生する熱及び接点 の繰返し運動に耐える高度の強度、 耐熱性、 難燃性、 更には寸法安定性等が要求され、 火災に対する安全性の要求が高いので、 本発明の樹脂成形品及びその製造方法が特に効 果的である。 図面の簡単な説明 ·
図 1は、 実施例におけるはんだ耐熱試験後の外観状態を比較した写真である。
図 2は、 実施例における耐熱性試験の結果を示す図表である。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
本発明の電気部品用樹脂成形品は、 熱可塑性ポリマーと、 主骨格の末端に不飽和基を 有する多官能性のモノマー又はオリゴマーからなる架橋剤と、 無機充填剤と、 強化繊維 とを含有する樹脂組成物を成形固化した後、 加熱又は放射線で前記熱可塑性ポリマーを 架橋してなる。
まず、 本発明の樹脂組成物を構成する熱可塑性ポリマーについて説明する。
本発明において用いる熱可塑性ポリマーとしては、 特に限定されず、 例えば、 ポリア ミ ド系樹脂、 ポリブチレンテレフタレート、 ポリエチレンテレフタレート等のポリエス テル系樹脂、 ポリアクリル系樹脂、 ポリイミド系榭脂、 ポリカーボネート樹脂、 ポリウ レタン系樹脂、 ポリスチレン、 アクリロニトリル一スチレン共重合体、 アタリロニトリ ル一ブタジエン一スチレン共重合体等のポリスチレン系榭脂、 ポリァセタール系榭脂、 ポリオレフイン系榭脂、 ポリフエ二レンォキシド、 ポリフエ二レンサルファイ ド、 ポリ ブタジエン等が挙げられるが、 なかでも、 耐磨耗性や耐熱性等の点から、 ポリアミド系 樹月旨、 ポリブチレンテレフタレートを用いることが好ましい。
ポリアミド系樹脂としては、 ァミノカルボン酸、 ラクタムあるいはジァミンとジカル ボン酸等を主たる原料としたァミド結合を有するポリマーであればよく特に限定されな い。 例えば、 ポリアミド 6、 ポリアミド 11、 ポリアミド 12、 ポリアミド 4一 6、 ポ リアミド 6— 6、 ポリアミド 6— 10、 ポリアミド 6— 12のような脂肪族ポリアミド でもよく、 またポリアミド MXD 6のような芳香族を含むポリアミドでもよい。 更に、 これらの群から選択される 2種のポリアミドを適宜ブレンド又はァロイとして用いるこ とも可能であ,り適宜限定されない。
また、 上記のホモポリマーには限定されず、 例えばポリアミド 6とポリアミド 66 ( ポリアミド 6/6) や、 ポリアミド 6とポリアミド 12 (ポリアミド 6Z12) のよう な、 上記のホモポリマーの少なくとも 2種からなる共重合体であってもよい。
更に、 本発明においてはポリアミドが変性ポリアミド共重合体であってもよい。 変性 ポリアミド共重合体としては例えば、 フエノール誘導体、 メラミン誘導体、 グリシジー ル誘導体、 ビエル基含有化合物等により変性されたポリアミド、 ポリエステル系の変性 ポリマーをグラフト重合したポリアミド、 テレフタール酸等のフタル酸変性されたポリ アミド等が挙げられる。
次に、 本発明に用いる架橋剤について説明する。 本発明における架橋剤としては、 主 骨格の末端に不飽和基を有する多官能性のモノマー又はォリゴマーからなる架橋剤を用 いる。
このような架橋剤としては、 以下の一般式 (a) 〜 (c) で表される 2〜4官能性の 化合物が挙げられる。 ここで、 Xは主骨格であり、 R 6〜R 9は末端に不飽和基を有す る官能性基であって、 (a) は 2官能性化合物、 (b) は 3宫能性化合物、 (c) は 4 官能性化合物である。 - -R7 … (a)
Figure imgf000009_0001
具体的には、 以下に示すような一般式の、 主骨格 Xが、 グリセリン、 ペンタエリスト ール誘導体等の脂肪族アルキルや、 トリメリット、 ピロメリット、 テトラヒドロフラン、 シンメ トリック トリアジン、 イソシァヌノレ、 シァヌル、 トリメチレントリオキサン等の 芳香族環、 ビスフエノール等である構造が挙げられる。
Figure imgf000010_0001
(a— 1)
Figure imgf000010_0002
(b— 1) (b-2)
Figure imgf000010_0003
(b-3) (b— 4)
Figure imgf000010_0004
(c-1) (c一 2) また、 熱可塑性ポリマーがポリアミド系樹脂の場合には、 主骨格 Xが、 イソシァヌル 環、 シァヌル環等の N元素を含む環状化合物であることが好ましい。 これにより、 アミ ド基の N元素との相溶性がより高まるので、 ポリアミ ド系樹脂との相溶性がより向上す る。 また、 N元素を含む環状化合物であるので、 同時に難燃性も向上するので好ましい。 末端に不飽和基を有する官能性基 R6〜R9としては、 一 O— R4— CR5 = CH2、 一 R4— OOC— CR5 = CH2、 一 R4— CR5 = CH2、 _HNO C— C R 5 = C H2、 一 HN— CH2— CR5 = CH2より選ばれる基が挙げられる。 ここで、 R4は炭素数 1〜 5のアルキレン基、 R 5は水素又はメチル基を表し、 R6〜R 9は同一又は異なっていて ちょい。
具体的には、 ジアタリレート、 ジメタタリレート、 ジァリレート、 トリアタリレート、 トリメタタリレート、 トリァリレート、 テトラアタリレート、 テトラメタタリレート、 テトラァリ レート等が挙げられるが、 反応性の点からはジァクリレート、 トリアタリレ 一 K テトラアタリレート等のアタリレートであることがより好ましい。
上記の架橋剤の具体例としては、 2官能性のモノマー又はオリゴマーとしては、 ビス フエノール F— EO変性ジァクリレート、 ビスフエノール A—EO変性ジァクリ レート、 ィソシァヌル酸 EO変性ジァクリレート、 トリプロピレンダリコールジァクリレート、 ポリプロピレングリコールジァクリレート、 ポリエチレングリコールジァクリレート、 ペンタエリスリ トールジァクリレートモノステアレート等のジァクリレートゃ、 それら のジメタタリレート、 ジァリレートが挙げられる。
また、 3官能性のモノマー又はオリゴマーとしては、 ペンタエリスリ トールトリァク リレート、 トリメチロールプロパントリアタリレート、 トリメチロールプロパン PO変 性トリアタリレート、 トリメチロールプロパン EO変性トリアタリレート、 イソシァヌ ル酸 EO変性トリアタリレート等のトリァクリレートや、 それらのトリメタクリレート、 トリァリレートが挙げられる。
また、 4官能性のモノマー又はオリゴマーとしては、 ジトリメチロールプロパンテト ラァクリレート、 ペンタエリスリ トールテトラァクリレート等が挙げられる。
上記の化合物は、 主骨格 Xとなる、 トリメリット酸、 ピロメリット酸、 テトラヒ ドロ フランテトラカルボン酸、 1, 3, 5—トリヒ ドロキシベンゼン、 グリセリン、 ペンタ エリストーノレ、 N, N,, N',一トリァリノレイソシァヌレート、 2, 4, 6—トリス (ク 口ロメチル) 一 1, 3, 5—トリオキサン等より選ばれる 1種に、 末端に不飽和基を有 する官能性基となる、 臭化ァリル、 ァリルアルコール、 ァリルァミン、 臭化メタリル、 メタリルアルコール、 メタリルアミン等より選ばれる 1種を反応させて得られる。 更に、 本発明に用いる架橋剤としては、 下記の一般式 (I) で示される 3官能性の化 合物も好ましく用いられる。
R1
Figure imgf000012_0001
式 (I) 中、 !^〜 3は、 上記の R6〜R9と同様に、 一 O— R4— CR5 = CH2、 一 R4— OOC— CR5 = CH2、 _R4— CR5 = CH2、 一 HNO C— C R 5 = C H2、 一 HN— CH2— CR5 = CH2より選ばれる基を表す。 R 4は炭素数 1〜 5のアルキレ ン基、 R 5は水素又はメチル基を表す。 !^〜尺3は同一又は異なっていてもよい。
上記の化合物はホウ素を含有し、 ホウ素原子は原子半径が大きいので架橋効果が大き くなり、 得られる成形品の機械強度 ·耐熱性を更に向上することができる。 また、 樹脂 との相溶性も良好であるので成形性が低下することもない。 更に、 上記の化合物は、 そ れ自身が難燃助剤としての効果も有しているため、 特に本発明に好適に用いることがで きる。
上記の一般式 (I) の化合物としては、 以下の化合物 (I一 1) 〜 (1—6) が挙げ られる。
I 2 2
WW \ NH
I
GH2=CHGHク z H CH,CH=CH2
(I一 1)
Figure imgf000012_0002
Figure imgf000013_0001
(1-3)
CH200CC(CH3)=GH2
CH2=C (CH3) COOCH H CH200CC (CH3) =GH2
(1-4)
Figure imgf000013_0002
(1-5)
Figure imgf000013_0003
(1-6) なお、 上記の一般式 (I) で示される化合物は、 トリクロロボラジンに、 末端に不飽 和基を有する官能 I1生基となる、 臭化ァリル、 ァリルアルコール、 ァリルァミン、 臭化メ タリル、 メタリルアルコール、 メタリルアミン等より選ばれる 1種を反応させて得られ る。
上記の架橋剤は、 単独で用いてもよいが、 反応性を制御するために、 複数を併用して 用いることがより好ましい。 なかでも、 2種類以上の 3官能性の架橋剤を併用すること が好ましく、 2官能性の架橋剤と 3官能性の架橋剤とを併用することがより好ましい。 これにより、 2官能性の架橋剤によって架橋反応を抑制しながら、 順次網目構造を形成 できるので、 架橋に伴う樹脂成形品の収縮をより抑えることができる。
架橋剤の含有量は、 前記熱可塑性ポリマー 1 0 0質量部に対して、 前記架橋剤を 0 . 5〜1 0質量部含有することが好ましく、 1 . 0〜7 . 0質量部がより好ましい。 含有 量が 0 . 5質量部より少ないと架橋が不充分であり、 得られる樹脂成形品の機械的物性、 熱的物性、 電気的物性が好ましくなく、 また、 1 0質量部を超えると、 架橋剤が過剰と なり、 架橋剤の未反応のモノマーや分解ガスが発生したり、 オリゴマー化したものがブ リードアウトして、 電磁開閉器等に用いた際に電極等の金属汚染を起こしたり、 駆動時 に付着して誤動作を引き起こしゃすく、 更に耐磨耗性等の機械特性を低下させたり寸法 変化を起こすので好ましくない。
次に、 本発明の樹脂成形品は無機充填剤を含有する。 これにより、 成形品の機械的強 度が向上するとともに、 寸法安定性を向上させることができる。 また、 架橋剤の吸着さ せる基体となって、 架橋剤の分散を均一化する。
無機充填剤としては、 従来公知のものが使用可能であり、 代表的なものとしては、 銅、 鉄、 ニッケル、 亜鉛、 錫、 ステンレス鋼、 アルミニウム、 金、 銀等の金属粉末、 ヒユー ムドシリカ、 珪酸アルミニウム、 珪酸カルシウム、 珪酸、 含水珪酸カルシウム、 含水珪 酸アルミニウム、 ガラスビーズ、 カーボンブラック、 石英粉末、 雲母、 タルク、 クレー、 マイ力、 酸化チタン、 酸化鉄、 酸化亜鉛、 炭酸カルシウム、 炭酸マグネシウム、 酸ィ匕マ グネシゥム、 酸化カルシウム、 硫酸マグネシウム、 チタン酸カリウム、 ケイソゥ土等が 挙げられるが、 これらの中でも特に多孔質のものを用いることが好ましく、 具体的には タルク、 クレー、 炭酸カルシウム等を用いることが好ましい。
なお、 これらの充填剤は、 単独でも、 2種以上を併用して用いてもよく、 また、 公知 の表面処理剤で処理されたものでもよい。
無機充填剤の含有量は、 樹脂組成物全体に対して 1〜 1 5質量%含有することが好ま しく、 2〜1 0質量。 /0がより好ましい。 含有量が 1質量%より少ないと、 榭脂成形品の 機械的強度が低下するとともに寸法安定性が不充分であり、 更に架橋剤の吸着が不充分 となるので好ましくない。 また、 1 5質量%を超えると、 樹脂成形品が脆くなるので好 ましくない。
上記の無機充填剤のうち、 シリケ一ト層が積層してなる層状のクレーを用いることが 特に好ましい。 シリケート層が積層してなる層状のクレーとは、 厚さが約 l n m、 一辺 の長さが約 1 0 0 n mのシリケ一ト層が積層された構造を有しているクレーである。 し たがって、 この層状のクレーはナノオーダーで樹脂中に分散されて榭脂とのハイプリッ ト構造を形成し、 これによつて、 得られる榭脂成形品の耐熱性、 機械強度等が向上する。 層状のクレーの平均粒径は 1 0 0 n m以下であることが好まし!/、。
層状のクレーとしては、 モンモリロナイト、 カオリナイト、 マイ力等が挙げられる力 S、 分散^"生に優れる点からモンモリロナイトが好ましい。 また、 層状のクレーは、 樹脂への 分散性を向上させるために表面処理されていてもよい。 このような層状のクレーは市販 されているものを用いてもよく、 例えば 「ナノマー」 (商品名、 日商岩井ベントナイト 株式会社製) などが使用できる。
層状のクレーの含有量は、 樹脂組成物全体に対して 1〜1 0質量%が好ましい。 なお、 層状のクレーは単独で使用してもよく、 他の無機充填剤と併用してもよい。
次に、 本 §明の樹脂成形品は強化繊維を含有する。 これによつても、 成形品の機械的 強度が向上するとともに、 寸法安定性を向上させることができる。
強化繊維はガラス繊維、 炭素繊維、 金属繊維のいずれも用いることができるが、 強度 及び熱可塑性ポリマーや無機充填剤との密着性の点からガラス繊維を用いることが好ま しい。
また、 ガラス繊維は、 表面処理されており、 更に樹脂で被覆されていることが好まし い。 これにより、 熱可塑性ポリマーとの密着性を更に向上することができる。
表面処爭剤としては、 公知のシランカップリング剤を用いることができ、 具体的には、 メトキシ基 ¾ぴエトキシ基よりなる群から選択される少なくとも 1種のアルコキシ基と、 アミノ基、 ビエル基、 アクリル基、 メタクリル基、 エポキシ基、 メルカプト基、 ハロゲ ン原子、 イソシァネート基よりなる群から選択される少なくとも一種の反応性官能基を 有するシラン力ップリング剤が例示できる。
また、 被覆樹脂としても特に限定されず、 ウレタン樹脂やエポキシ樹脂等が挙げられ る。
強化繊維の配合量は、 樹脂組成物全体に対して 5〜4 0質量%含有することが好まし く、 1 5〜3 0質量%がより好ましい。 含有量が 5質量%より少ないと、 榭脂成形品の 機械的強度が低下するとともに、 寸法安定性が不充分であるので好ましくなく、 また、 4 0質量%を超えると、 成形が困難になるので好ましくない。 更に、 本発明の樹脂組成物には、 難燃剤を含有することが好ましい。
難燃剤としては、 従来公知の難燃剤が使用でき特に限定されないが、 臭素等のハロゲ ン元素を分子内に有するハロゲン系難燃剤、 リン元素を分子内に有するリン系難燃剤、 シァヌール酸又はィソシァヌール酸の誘導体、 メラミン誘導体等が好ましく使用できる。 放射線照射による難燃剤の分解を防止する点からは、 ハロゲン系難燃剤を用いることが 好ましい。
ハロゲン系難燃剤としては臭素化ポリスチレン、 臭素化ポリフヱ-レンエーテル、 臭 素化ポリカーボネート、 臭素化エポキシなどが挙げられる。
—方、 リン系難燃剤としては、 トリフエ-ルホスフェート、 トリクレジルホスフエ一 トなどのモノリン酸エステル、 ビスフエノーノレ Aビス (ジフエ二ノレ) ホスフェート、 レ ゾルシノールビス (ジフエニル) ホスフェートなどの縮合リン酸エステル、 ポリ リン酸 アンモ-ゥム、 ポリリン酸アミド、 赤リン、 リン酸グァニジンなどが挙げられる。 これ らの難燃剤は単独で用いてもよく、 また 2種類以上併用することも可能である。
上記のリン系難燃剤のうち、 末端に 1つの不飽和基を有する単官能性の有機リン化合 物を含有することが特に好ましい。 これによつて、 末端の不飽和基が樹脂と反応して結 合するので、 難燃剤のブリードアウトを防止でき、 難燃効果の経時劣化を防止できる。 また、 少量の添加であっても高い難燃効果を得ることができる。 このような化合物とし ては特に限定されず、 例えば、 下記の構造式からなる化合物 (II) が挙げられる。
Figure imgf000016_0001
なお、 上記の化合物 (Π) は公知であり、 例えば、 商品名 (A C A) として三光化学 株式会社より市販されているものを用いることができる。
難燃剤の配合量は、 樹脂組成物全体に対して 2〜 3 5質量%含有することが好ましい。 含有量が 2質量%より少ないと、 難燃性が不充分であるので好ましくなく、 3 5質量% を超えると、 難燃剤の過剰の添加による、 難燃剤のプリードアウトや架橋不良が発生し て、 電磁開閉器として使用した際の、 耐久性や電気特性が低下するので好ましくない。 また、 架橋密度が低下するので耐熱性が劣り、 寸法変化率が大きくなるので好ましくな レ、。
なお、 本発明の樹脂組成物には、 本発明の目的である耐熱性、 耐候性、 耐衝撃性を著 しく損わない範囲で、 上記以外の常用の各種添加成分、 例えば結晶核剤、 着色剤、 酸ィ匕 防止剤、 離型剤、 可塑剤、 熱安定剤、 滑剤、 紫外線防止剤などの添加剤を添加すること ができる。
着色剤としては特に限定されないが、 放射線照射によって褪色しないものが好ましく、 例えば、 無機顔料である、 ベンガラ、 鉄黒、 カーボン、 黄鉛等や、 フタロシアユン等の 金属錯体が好ましく用いられる。
次に、 本発明の製造方法について説明する。
まず、 主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる 架橋剤を無機充填剤に吸着させる吸着工程を行なう。 このように、 本発明の製造方法に おいては、 あらかじめ架橋剤を無機充填剤に吸着させることを特徴としている。 これに より、 架橋剤の分散が非常に均一に行なわれ、 得られる樹脂成形品の物性が均一なもの となり、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及ぴ成形性の全てに優れ る樹脂成形品を得ることができる。
次に、 上記の吸着後の無機充填剤と、 熱可塑性ポリマーと、 強化繊維とを含有する樹 脂組成物を混練する混練工程を行なう。 混合は、 通常の混合に使用される従来公知のミ キサ一、 プレンダーなどによって行うことができる。 又、 溶融混練は、 単軸或いは二軸 押出機、 パンバリーミキサー、 ニーダー、 ミキシングロールなどの通常の溶融混練加工 機を使用して行うことができる。 混練温度は熱可塑性ポリマーの種類によって適宜選択 可能であるが、 例えばポリアミド系樹脂の場合には 2 4 0〜 2 7 0 °Cで行なうことが好 ましい、 また、 混練後の樹脂組成物はペレット化して乾燥させることが好ましい。
次に、 上記のペレットを射出成形して成形品を得る。 成形においては、 従来公知の射 出成形法を用いることができ、 通常の熱可塑性樹脂の射出条件を用いることができる。 射出条件としては、 用いる熱可塑性ポリマーの種類によって適宜選択可能であるが、 例 えばポリアミド系樹脂の場合、 シリンダー温度 2 6 0〜 3 3 0 °C、 金型温度 6 0〜 1 3 0。Cが好ましい。 なお、 この段階では全く架橋は進行していないので、 成形時の余分の スプール部は、 熱可塑性樹脂としてのリサイクルが可能である。
次に、 本発明の製造方法においては、 射出工程後に金型中又は金型から取り出して、 加熱又は放射線照射を行ない架橋を行なう。
架橋を放射線照射で行う場合には、 電子線、 α線、 γ線、 X線、 紫外線等が利用でき る。 なお、 本発明における放射線とは広義の放射線を意味し、 具体的には、 電子線やひ 線等の粒子線の他、 X線や紫外線等の電磁波までを含む意味である。 なかでも、 電子線 又は γ線照射によって行なうことが好ましい。 電子線照射は公知の電子加速器等が使用 できる。 加速エネルギーとしては、 2 . 5 M e V以上であることが好ましい。
y線照射は、 公知のコバルト 6 0線源等による照射装置を用いることができる。 y線 は電子線に比べて透過性が強いために、 成形品への照射が均一となり特に好ましい。 し かし、 照射強度が強いため、 過剰の照射を防止するために線量の制御が必要である。 放射線の照射線量は 1 0 k G y以上が好ましく、 1 0〜4 5 k G yがより好ましく、 1 5〜4 0 k G yが特に好ましい。 この範囲であれば、 架橋によって上記の物性に優れ る樹脂成形品が得られる。 照射線量が 1 0 k G y未満では、 架橋による 3次元網目構造 の形成が不均一となり、 未反応の架橋剤がブリードァゥトするので好ましくなく、 4 5 k G yを超えると、 酸化分解生成物による樹脂組成物に内部歪みが残留し、 これによつ て変形や収縮等が発生するので好ましくない。
架橋を加熱で行う場合には、 反応させる温度は、 榭脂の成形温度より 5 °C以上高い温 度とすることが好ましく、 1 0 °C以上高い温度とすることがより好ましい。
このようにして得られた本発明の電気部品用成形品は、 従来の単独の熱可塑†生樹脂成 形品に比べて耐熱性、 難燃性に優れるので、 高度な耐熱性、 難燃性が要求される電気部 品、 例えば電磁開閉器等の接点支持用の部材ゃハウジング、 各種センサー類、 電子デバ イスのハウジング、 封止剤等として好適に用いることができる。
実施例
以下、 実施例を用いて本発明を更に詳細に説明するが、 本発明は実施例に限定される ものではない。
実施例 1
無機充填剤として平均粒径 2 /z mのタルク 4 . 5質量部と、 着色剤として平均粒径 1 〜2 μ ηιの鉄黒 1 . 0質量部となるように混合した系に、 架橋剤として、 末端に不飽和 二重結合を有した 3官能性である、 ィソシァヌル酸 Ε Ο変性トリアタリレート (東亜合 成社製: Μ- 3 1 5 ) 3 . 3質量部となるように液状で添加して表面に吸着させ、 吸着 物を得た。 次に、 上記の吸着物に、 熱可塑性ポリマーとして、 6 6ノ 6ナイロンの共重合体 (宇 部興産社製: 2 1 23 B) 6 5. 8質量部、 強化繊維として、 シランカップリング剤で 表面処理した後にウレタン樹脂が被覆されたガラス繊維 25. 0質量部、 酸化防止剤 ( チバガイギ一社製:ィルガノックス 1 0 1 0) 0. 4質量部、 となるように加えて混合 して樹脂組成物を得た。
上記の樹脂組成物を、 サイドフロー型 2軸押出機を用いて' 240°Cで混練した後、 1 0 5 °Cで 4時間乾燥させてぺレッ トを得た。
上記のペレットを、 射出成形機 (FUNUC社製、 « 500 を用い、 シリンダー温 度 2 70°C、 金型温度 80°C、 射出圧力 800 k g · F / c m 射出速度 1 2 Omm / s、 冷却時間 1 5秒の条件で成形品を得た。
上記の成形品に、 放射線照射として、 コノ レト 6 0を線源として線量 20 k G yの γ 線を照射して架橋工程を行ない、 実施例 1の樹脂成形品を得た。
実施例 2
架橋剤として、 Ν、 Ν '、 Ν "—トリアリルイソシァヌレートを 3質量部用レ、、 熱可 塑性ポリマーとして、 6 6ナイロン樹脂 (宇部興産社製: 2020 Β) 6 6. 1質量部 を用い、 混練温度を 2 70°Cとした以外は実施例 1と同様の条件でペレツトを得た。 射出成形時のシリンダー温度を 280 °Cとし、 放射線照射の γ線の線量を 1 5 k G y とした以外は、 実施例 1と同様の条件で射出成形、 放射線照射を行ない、 実施例 2の樹 脂成形品を得た。
実施例 3
架橋剤として、 N、 N '、 N "—トリアリルイソシァヌレート 2. 0質量部と、 イソ シァヌル酸 EO変性トリァクリレート (東亜合成社製: M- 3 1 5 ) 1. 0質量部とを 併用して用いた以外は、 実施例 2と同様の条件でペレッ トを得て、 実施例 2と同様の条 件で射出成形、 放射線照射を行ない、 実施例 3の樹脂成形品を得た。
射出成形時のシリンダー温度を 280 °Cとし、 放射線照射の y線の線量を 25 k G y とした以外は、 実施例 1と同様の条件で射出成形、 放射線照射を行ない、 実施例 3の榭 脂成形品を得た。
実施例 4
架橋剤として、 ィソシァヌル酸 EO変性トリアタリレート (東亜合成社製: M— 3 1 5) 2. 5質量部と、 ジァリルイソシァヌル酸 0. 5質量部とを併用して用いた以外は、 実施例 2と同様の条件でペレッ トを得て、 実施例 2と同様の条件で射出成形、 放射線照 射を行ない、 実施例 4の樹脂成形品を得た。
射出成形時のシリンダー温度を 2 8 0 °Cとし、 放射線照射の Ί線の線量を 2 0 k G y とした以外は、 実施例 1と同様の条件で射出成形、 放射線照射を行ない、 実施例 4の樹 脂成形品を得た。
実施例 5
実施例 2の樹脂組成物 1 0 0質量部に、 更に、 臭素化ポリスチレン系樹脂と酸化アン チモンを 3 : 1の質量割合で併用した難燃剤 2 5質量部を添加した以外は、 実施例 2と 同様の条件でぺレッ トを得た。
射出成形時のシリンダー温度を 2 8 0 °Cとし、 放射線照射の Ί線の線量を 2 0 k G y とした以外は、 実施例 1と同様の条件で射出成形、 放射線照射を行ない、 実施例 5の榭 脂成形品を得た。
実施例 6
実施例 3の樹脂組成物 1 0 0質量部に、 更に、 燐酸エステル系化合物であるノンハロ ゲン系難燃剤 1 0質量部を添加した以外は、 実施例 2と同様の条件でペレツトを得た。 射出成形時のシリンダー温度を 2 8 0 °Cとした以外は実施例 1と同様の条件で射出成 形後、 放射線として 3 . 5 M e Vの電子線加速器を用レ、、 線量を 2 5 k G yで放射線照 射を行ない、 実施例 6の榭脂成形品を得た。
実施例 7
架橋剤として、 末端に不飽和二重結合を有した 3官能性である、 イソシァヌル酸 E O 変性トリアタリレート (東亜合成社製: M- 3 1 5 ) 1 . 6 5質量部、 ペンタエルスリ トールトリメチルアタリレート 1 . 6 5質量部を併用して用い、 熱可塑性ポリマーとし て、 P B T樹脂 (東レ社製: トレコン 1 4 0 1 x 0 6 ) を 6 5 . 8質量部、 強化繊維と して、 エポキシ系シランカップリング剤で表面処理されたガラス繊維 2 5 . 0質量部を 用い、 更に、 臭素化ポリスチレン系樹脂と酸化アンチモンを 3 : 1の質量割合で併用し た難燃剤 2 5質量部を添加した以外は、 実施例 1と同様の条件でペレツトを得た。 射出成形時のシリンダー温度を 2 5 0 °Cとした以外は.、 実施例 1と同様の条件で射出 成形、 放射線照射を行ない、 実施例 7の樹脂成形品を得た。
実施例 8
実施例 5において、 難燃剤の添加量を 4 0質量部とした以外は、 実施例 5と同様の条 件で実施例 8の榭脂成形品を得た。
実施例 9
実施例 5において、 難燃剤としてノンハロゲン系難燃剤 (ビスフエノール Aビス (ジ フエニル) ホスフェート系焼酸エステル系) を 1 5質量部添加した以外は、 実施例 5と 同様の条件で実施例 9の榭脂成形品を得た。
実施例 1 0
架橋剤として、 上記の化合物 (1—1 ) を 6質量部を用い、 熱可塑性ポリマーとして、 6 6ナイ口ン樹脂 (宇部興産社製: 2 0 2 0 B) 6 6 . 1質量部を用い、 混練温度を 2 8 0 °Cとした以外は、 実施例 1と同様の条件でペレットを得た。 射出成形時のシリンダ 一温度を 2 8 0 °Cとし、 放射線照射の Ί線の線量を 3 0 k G yとした以外は、 実施例 1 と同様の条件で射出成形、 放射線照射を行ない、 実施例 1 0の樹脂成形品を得た。
実施例 1 1
実施例 1 0の組成に、 更に、 難燃剤として臭素化スチレン (フエ口 ·ジャパン社製) 2 0質量部、 三酸ィ匕アンチモン (日本精鉱社製) 8質量部を添加して同様にペレットを 得て、 実施例 1 0と同様の条件で射出成形、 放射線照射を行ない、 実施例 1 1の樹脂成 形品を得た。
実施例 1 2
熱可塑性樹脂として 6 6ナイ口ン (宇部興産社製: 2020B ) 6 5 . 3質量部、 強化繊 維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭フアイ パーグラス社製: 03.JAFT2A k 25) 2 0質量部、 着色剤としてカーボンブラック 1質 量部、 酸化防止剤 (チパガイギ一社製:ィルガノィルガノックス 1 0 1 0 ) 0 . 2質量 部、 無機充填剤として平均粒径 2 μ mのタルク 5質量部、 架橋剤としてトリアリルイソ シァヌレート (日本化成社製: TAIC) 2 . 5質量部、 難燃剤としてリン元素を含有し た単官能性の化合物 (上記の化合物 (II) 、 三光化学社製: ACA) 6質量部を混合し、 サイドフロー型 2軸押出機 (日本製鋼社製) で 2 8 0 °Cで混練して樹脂ペレツトを得て 1 0 5 °C、 4時間乾燥した後、 上記ペレツトを射出成形機 (F UNU C社製: α 5 0 C ) を用いて樹脂温度 2 8 0 °C、 金型温度 8 0 °Cの条件で成形した。
その後、 上記成形品に、 コパルト 6 0を線源とした γ線を 2 5 k G y照射して実施例 1 2の樹脂成形品を得た。
実施例 1 3 実施例 12の無機充填剤を、 モンモリロナイトからなるナノ粒径のクレー (日商岩井 株社:ナイマ一) 5質量部に変えた以外は、 実施例 12と同様の方法で実施例 13の樹 脂成形品を得た。
実施例 14
熱可塑性樹脂としてポリブチレンテレフタレート樹脂 (東レ株式会社製: トレコン 1 401X06) 55. 3質量部、 実施例 12の強化繊維 20質量部、 実施例 12の無機 充填剤 5質量部、 実施例 12の着色剤 0. 5質量部、 実施例 12の酸化防止剤 0. 2質 量部、 架橋剤として実施例 3の併用系を 3質量部、 難燃剤として非反応型の有機りん系 難燃剤 (三光化学社製: HCA-HQ) 9質量部、 酸化アンチモン 10質量部を用い、 混 練温度を 245 °Cで混練りして樹脂コンパゥンドペレットを得て 130 °Cで 3時間乾燥 させ、 成形時のシリンダー温度を 250°Cの条件に変更した以外は実施例 12と同様に 成形した。
その後、 上記成形品に、 住友重機社製の加速器を用い、 加速電圧 4. 8MeVで、 照 射線量 40 kGyの電子線を照射して実施例 14の樹脂成形品を得た。
実施例 15
実施例 2の系に熱触媒 (日本油脂社製:ノフマー BC) を 3質量部、 更に添加した以 外は実施例 2と同様の条件で成形品を成形した。
その後、 上記成形品を、 245°C、 8時間加熱によって反応して実施例 15の樹脂成 形品を得た。
比較例 1
成形品の放射線照射を行なわない以外は、 実施例 1と同様の条件で、 比較例 1の樹脂 成形品を得た。
比較例 2
無機充填剤として平均粒径 2 //mのタルク 4. 5質量部と、 着色剤として平均粒径 1 〜2 111の鉄黒1. 0質量部と、 架橋剤として、 N、 N '、 N "—トリァリルイソシァ ヌレート 11. 3質量部と、 熱可塑性ポリマーとして、 66Z6ナイロンの共重合体 ( 宇部興産社製: 2123B) 57. 8質量部、 酸化防止剤 (チバガイギ一社製:ィルガ ノックス 1010) 0. 4質量部とを同時に混合した後、 強化繊維として、 シランカツ プリング剤で表面処理した後にウレタン樹脂が被覆されたガラス繊維 25. 0質量部を 更に混合して混練した以外は、 実施例 1と同様の条件で樹脂組成物を得て、 射出成形、 放射線照射を行ない、 比較例 2の樹脂成形品を得た。
比較例 3
Ύ線の線量を 50 k G yとした以外は比較例 2と同様の条件で、 比較例 3の樹脂成形 品を得た。
比較例 4
架橋剤として、 熱触媒タイプの樹脂改質剤 (日本油脂社製:ノフマー BC) を用いた 以外は実施例 2と同様な条件でペレットを得て、 射出成形を行なった。 その後、 放射線 照射は行なわずに、 加熱反応によって架橋化し、 比較例 4の樹脂成形品を得た。
比較例 5
無機充填剤 (炭酸カルシウム) 7. 0質量部にあらかじめシランカップリング剤とし て、 エポキシシラン官能' [·生シラン (信越化学社製: KBPS-402) 1. 0質量部と、 ァミノ官能性シラン (信越化学社製 K BE— 903) 1. 0質量部を併用して吸着処理 させた。
更に、 これを 66ナイ口ン榭脂 (旭化成社製: レオナ F G172 x 6 l) 91質量部 となるように混合して、 270°Cに設定した 2軸押出し機を用いてペレツトを得た。 このペレットを、 実施例に用いた射出成形機で、 シリンダ温度 280°C、 金型温度 8 5 °C、 射出速度 800 k g · f /cm2, 射出速度 100 mmZ s、 冷却時間 1 5秒の 条件で成形品を得て、 さらに架橋強化の為に、 250°C、 15分熱処理を施して比較例 5の樹脂成形品を得た。
比較例 6
実施例 1 1の組成に、 架橋剤である化合物 (1— 1) を添加しない以外は、 実施例 1 1と同様の条件で比較例 6の樹脂成形品を得た。
試験例 1
実施例 1〜: 15、 及び比較例 1〜6の樹脂成形品を、 電気部品用の代表例である、 電 磁開閉器用の接点部材として用い、 表 1に示す項目について評価を行なった。 その結果 をまとめて表 2〜 5に示す。 齷
表 1皿
00
ΐ π> σι
Figure imgf000024_0001
表 2
内容 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 成形性 良好 良好 良好 良好 良好 架橋後成 良好 良好 良好 良好 良好 形品外観 O
はんだ"耐熱試 2 %以下 2 %以下 2 %以下 2 o/o以下 2 %以 ο下 熱分解温度 374.8°C 379.5°C
耐熱性 378.3°C 378.1°C 395.2。C 加速駆動試験 変形,付着 変形,付着 変形,付着 変形,付着 変形,付着 性無:合格 性無:合格 性無:合格 性無:合格 性無:合格 金属汚染試験 合格 合格 合格 合格 合格 変形,付着, 変形,付着, 変形,付着, 変形,付着, 変形,付着, 耐久性 寸法変化無 寸法変化無 寸法変化無 寸法変化無 寸法変化無 合格 合格 合格 合格 合格
MLT試験 合格 合格 合格 合格
機械特性 合格 ヤング率 5.8GPa 6.3GPa 5.3GPa 5.7GPa 6.2GPa 過電流耐量 合格 合格 合格 合格
電気特性 合格
AC- 4 72A 合格 合格 合格 合格 合格 グロ一ワイヤ 8 5 0 °C 8 5 0 °C 8 5 0 °C 難燃性 試験 合格 合格 合格
UL試験 HB HB HB HB ν-ο 表 3
Figure imgf000025_0001
表 4
試験項目 内容 実施例 11 実施例 12 実施例 13 実施例 14 実施例 15 成形性 良好 良好 良好 良好 良好 架橋後成 良好 良好 良好 良好 良好 形品外観
はんだ耐熱試 2 %以下 2 %以下 2 %以下 2 %以下 5 % 熱分解温度 380.5°C 380.6°C 395.0°C 380.1°C 376.0°C 耐熱性
加速駆動試験 変形,付着 変形,付着 変形,付着 変形,付着 変形,付着 性無:合格 性無:合格 性無:合格 性無:合格 性無:合格 金属汚染試験 合格 合格 合格 合格 合格 変形,付着, 変形,付着, 変形,付着, 変形,付着, 変形,付着, 耐久性 寸法変化無 寸法変化無 寸法変化無 寸法変化無 寸法変化無 合格 合格 合格 合格 合格
MLT試験 合格 合格 合格 合格 合格 機械特性
ヤング率 6.5GPa 7.0GPa 7.8GPa 7.1GPa 6.5GPa 過電流耐量 合格 合格 合格 合格 合格 電気特性
AC- 4 72A 合格 合格 合格 合格 合格 グロ一ワイヤ 960°C 850°C 850°C 850°C 850°C 難燃性 合格 合格 合格 合格 合格
UL試験 V-0 V-2 V-1 V- 1 HB 表 5
Figure imgf000026_0001
表 2〜 5の結果より、 実施例 1〜 7、 1 0〜 1 5の樹脂成形品においては、 成形性、 外観、 耐熱性、 耐久性、 機械特性、 電気特性、 難燃性のいずれも優れる。
なお、 難燃剤の含有量が本発明の好ましい範囲を超える実施例 8、 難燃剤としてリン 系の難燃剤を用いた実施例 9においては、 難燃剤のブリードが起こっており、 過電流耐 量、 金属汚染試験の評価等が低下していることがわかる。
一方、 放射線の架橋を行なっていない比較例 1、 吸着工程を行なわずに無機充填剤と 架橋剤と熱可塑性ポリマーとを混練した比較例 2、 比較例 2において放射線の照射量が 本発明の好ましい範囲を超える比較例 3、 加熱によって架橋する架橋剤を用いた比較例 4、 架橋剤としてシランカップリング剤を用いた比較例 5、 架橋剤を添加しない比較例 6においては、 成形性、 外観、 耐熱性、 耐久性、 機械特性、 電気特性、 難燃性のいずれ かの項目が実施例 1〜7、 1 0〜1 5より劣っていることがわかる。
試験例 2
実施例 1、 比較例 1の樹脂成形品について、 はんだ耐熱試験後の外観を比較した状態 を図 1に示す。
図 1から、 放射線で架橋した実施例 1は変形等が見られないのに対し、 放射線未照射 で架橋していない比較例 1では著し!/、熱変形が生じていることがわかる。
試験例 3
実施例 1、 2、 5、 6、 1 3及び比較例 1、 2、 4、 6の樹脂成形品について、 はん だ浴の温度による寸法変化率 (1 0秒浸漬) の変化を測定した。 結果を図 2に示す。 図 2のはんだ耐熱試験の結果から、 実施例においては、 寸法変化率がいずれのはんだ 浴温度においても 5 %以内と少ないのに対し、 比較例においては、 大きく低下している ことがわかる。 産業上の利用可能性
以上説明したように、 本発明によれば、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性に優れる電気部品用の樹脂成形品を提供することができる。 したが つて、 この樹脂成形品は、 特に電磁開閉器等の接点支持用部材ゃハウジング等として好 適に用いることができる。

Claims

1. 熱可塑性ポリマーと、 主骨格の末端に不飽和基を有する多官能性のモノマー又 はオリゴマーからなる架橋剤と、 無機充填剤と、 強化繊維とを含有する樹脂組成物を成 形固化した後、 加熱又は放射線で前記熱可塑性ポリマーを架橋してなることを特徴とす る電気部品用榭脂成形品。
2. 前記架橋剤として、 少なくとも 3官能性の前記架橋剤を含有する請求項 1記載 請
の電気部品用樹脂成形品。
3. 前記架橋剤として、 2種類以上の多官能性の前記架橋剤を併用する請求項 1又 の
は 2記載の電気部品用樹脂成形品。
4. 前記熱可塑性ポリマーがポリアミド系樹脂であって、 前記架橋剤の主骨格が、 囲
N元素を含む環状化合物である請求項 1〜 3のいずれか 1つに記載の電気部品用樹脂成 形口 Bo
5. 前記架橋剤が、 下記の一般式 (I) で示される化合物である請求項 1〜4のい ずれか 1つに記載の電気部品用樹脂成形品。
Figure imgf000028_0001
(式 (I) 中、 尺1〜!^3は、 一 O— R4— CR5 = CH2、 _R4— OOC— CR5 = C
H2、 一 R4— CR5 = CH2、 一 HNOC— CRb = CH2、 一 HN— CH2— C R & = C H2より選ばれる基を表す。 R4は炭素数 1〜5のアルキレン基、 R5は水素又はメチル 基を表す。 1〜!^3は同一又は異なっていてもよい。 )
6. 前記熱可塑性ポリマー 100質量部に対して、 前記架橋剤を 0. 5〜10質量 部含有する請求項 1〜 5のいずれか 1つに記載の電気部品用樹脂成形品。
7. 前記強化繊維を、 前記樹脂組成物全体に対して 5〜 40質量%含有し、 前記強 化繊維が、 樹脂で表面処理されたガラス繊維である請求項 1〜 6のいずれか 1つに記載 の電気部品用樹脂成形品。
8 . 前記無機充填剤を、 前記樹脂組成物全体に対して 1〜 1 5質量%含有する請求 項 1〜 7のいずれか 1つに記載の電気部品用樹脂成形品。
9 . 前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、 前 記層状のクレーを前記榭脂組成物全体に対して 1〜 1 0質量%含有する請求項 8に記載 の電気部品用樹脂成形品。
1 0 . 前記樹脂組成物が難燃剤を含有し、 該難燃剤を、 前記樹脂組成物全体に対して 2〜 3 5質量%含有する請求項 1〜 9のいずれか 1つに記載の電気部品用樹脂成形品。
1 1 . 前記難燃剤として、 末端に 1つの不飽和基を有する単官能性の有機リン化合物 を含有する請求項 1 0に記載の電気部品用樹脂成形品。
1 2 . 前記電気部品が電磁開閉器に用いられるものである請求項 1〜1 1のいずれか 一つに記載の電気部品用樹脂成形品。
1 3 . 主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる 架橋剤を無機充填剤に吸着させる吸着工程と、 該吸着後の無機充填剤と、 熱可塑性ポリ マーと、 強化繊維とを含有する樹脂組成物を混練する混練工程と、 前記混練された樹脂 組成物を射出成形する工程と、 前記射出工程後の樹脂組成物を金型から取り出して、 加 熱又は放射線照射する架橋工程とを含むことを特徴とする電気部品用樹脂成形品の製造 方法。
1 4 . 前記架橋工程における前記放射線照射として、 線量が 1 0 k G y以上の電子線 又は γ線を照射する請求項 1 3記載の電気部品用樹脂成形品の製造方法。
1 5 . 前記架橋工程における前記加熱として、 前記射出成形の温度より 5 °C以上高い 温度で加熱する請求項 1 3記載の電気部品用樹脂成形品の製造方法。
1 6 . 前記架橋剤として、 少なくとも 3官能性の前記架橋剤を含有させる請求項 1 3 〜 1 5のいずれか 1つに記載の電気部品用樹脂成形品の製造方法。
1 7 . 前記架橋剤として、 2種類以上の多官能性の前記架橋剤を併用する請求項 1 3 〜 1 6のいずれか 1つに記載の電気部品用樹脂成形品の製造方法。
1 8 . 前記熱可塑性ポリマーとしてポリアミド系樹脂を用い、 前記架橋剤として、 前 記主骨格に N元素を含む環状化合物を用いる請求項 1 3〜1 7のいずれか 1つに記載の 電気部品用樹脂成形品の製造方法。
1 9 . 前記架橋剤が、 下記の一般式 (I ) で示される化合物である請求項 1 3〜1 8 のいずれか 1つに記載の電気部品用樹脂成形品の製造方法。
Figure imgf000030_0001
(式 (I) 中、 1〜!^3は、 一 O— R4— CR5 = CH2、 一 R4— OOC— CR5 = C H2、 一 R4— CR5 = CH2、 一 HNOC— CR5 = CH2、 一 HN— C H 2— C R 5 = C H2より選ばれる基を表す。 R 4は炭素数 1〜 5のアルキレン基、 R 5は水素又はメチル 基を表す。 尺1〜!^3は同一又は異なっていてもよい。 )
20. 前記熱可塑性ポリマー 100質量部に対して、 前記架橋剤を 0. 5〜 10質量 部含有させる請求項 13〜1 9のいずれか 1つに記載の電気部品用樹脂成形品の製造方 法。
21. 前記強化繊維を、 前記樹脂組成物全体に対して 5〜40質量%含有させ、 前記 強化繊維として、 樹脂で表面処理されたガラス繊維を用いる請求項 13〜20のいずれ か 1つに記載の電気部品用樹脂成形品の製造方法。
22. 前記無機充填剤を、 前記樹脂組成物全体に対して 1〜1 5質量%含有させる請 求項 13〜 21のいずれか 1つに記載の電気部品用樹脂成形品の製造方法。
23. 前記無機充填剤としてシリケ一ト層が積層してなる層状のクレーを含有させ、 前記層状のクレーを前記樹脂組成物全体に対して 1〜 10質量%含有させる請求項 22 に記載の電気部品用樹脂成形品の製造方法。
24. 前記樹脂組成物に難燃剤を含有させ、 該難燃剤を前記樹脂組成物全体に対して 2〜35質量%含有させる請求項13〜23のいずれか 1つに記載の電気部品用樹脂成 形品の製造方法。
25. 前記難燃剤として、 末端に 1つの不飽和基を有する単官能性の有機リン化合物 を含有させる請求項 24に記載の電気部品用樹脂成形品の製造方法。
26. 前記電気部品が電磁開閉器に用いられるものである請求項 1 3^25のいずれ か 1つに記載の電気部品用樹脂成形品の製造方法。
PCT/JP2003/013497 2002-10-23 2003-10-22 電気部品用樹脂成形品及びその製造方法 WO2004037904A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60312198T DE60312198T2 (de) 2002-10-23 2003-10-22 Harzformkörper für elektrische teile und herstellungsverfahren dafür
EP03758786A EP1555283B1 (en) 2002-10-23 2003-10-22 Resin molded product for electric parts and manufacturing method thereof
JP2005501574A JP4539558B2 (ja) 2002-10-23 2003-10-22 電気部品用樹脂成形品及びその製造方法
AU2003275594A AU2003275594A1 (en) 2002-10-23 2003-10-22 Molded resin for electrical part and process for producing the same
KR1020057003963A KR101057846B1 (ko) 2002-10-23 2003-10-22 전기 부품용 수지 성형품 및 그 제조 방법
US10/532,577 US20060052537A1 (en) 2002-10-23 2003-10-22 Resin molded article for electric part and production process of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-308111 2002-10-23
JP2002308111 2002-10-23
JP2003-143952 2003-05-21
JP2003143952 2003-05-21

Publications (2)

Publication Number Publication Date
WO2004037904A1 true WO2004037904A1 (ja) 2004-05-06
WO2004037904A8 WO2004037904A8 (ja) 2004-11-11

Family

ID=32179085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013497 WO2004037904A1 (ja) 2002-10-23 2003-10-22 電気部品用樹脂成形品及びその製造方法

Country Status (7)

Country Link
US (1) US20060052537A1 (ja)
EP (1) EP1555283B1 (ja)
JP (1) JP4539558B2 (ja)
KR (1) KR101057846B1 (ja)
AU (1) AU2003275594A1 (ja)
DE (1) DE60312198T2 (ja)
WO (1) WO2004037904A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089534A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品
JP2006137843A (ja) * 2004-11-12 2006-06-01 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品の製造方法
JP2007246561A (ja) * 2006-03-13 2007-09-27 Asahi Kasei Chemicals Corp ポリアミド樹脂成形品
JP2008520772A (ja) * 2004-11-18 2008-06-19 ランクセス・インク. 改質充填剤を含むゴム組成物
JP2009538365A (ja) * 2006-05-23 2009-11-05 ラバー ナノ プロダクツ (プロプライエタリー) リミテッド ゴム組成物
WO2014199870A1 (ja) * 2013-06-10 2014-12-18 富士フイルム株式会社 架橋剤、組成物および化合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200630415A (en) * 2004-12-21 2006-09-01 Clariant Int Ltd Process for the preparation of cross-linked PBT particles
DE102005044540A1 (de) * 2005-09-17 2007-03-22 Abb Patent Gmbh Elektrisches Installationsschaltgerät
JP4817316B2 (ja) * 2006-11-21 2011-11-16 富士電機株式会社 消弧用樹脂加工品、及びそれを用いた回路遮断器
US20080132631A1 (en) * 2006-12-01 2008-06-05 Natarajan Kavilipalayam M Hydrolysis-resistant thermoplastic polymer
DE102010011428A1 (de) 2010-03-15 2011-09-15 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
KR101509048B1 (ko) * 2013-09-12 2015-04-07 한국원자력연구원 유리섬유 강화 폴리아미드 제조방법 및 이에 따라 제조되는 유리섬유 강화 폴리아미드
EP3875516A1 (en) * 2020-03-03 2021-09-08 Electrolux Appliances Aktiebolag Component for electrical household appliances

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108437A (ja) * 1983-11-17 1985-06-13 Sekisui Chem Co Ltd 繊維強化プラスチック成形品の製造方法
JPS61243831A (ja) * 1985-04-19 1986-10-30 Nissin Electric Co Ltd 樹脂成形品の製造方法
JPH02209934A (ja) * 1989-02-09 1990-08-21 Mitsubishi Kasei Corp 難燃性架橋ポリブチレンテレフタレート樹脂成形物の製造法
JPH0333134A (ja) * 1989-06-30 1991-02-13 Mitsubishi Kasei Corp 難燃性ポリアミド樹脂成形物の製造法
JPH0543633A (ja) * 1980-12-03 1993-02-23 Raychem Corp 架橋物品の製法
JPH11315156A (ja) * 1998-05-07 1999-11-16 Shinko Chemical Co Ltd 非晶性ポリアミドの耐熱性に優れた架橋成形品及びその製造方法
JP2002265631A (ja) * 2001-03-15 2002-09-18 Fuji Electric Co Ltd 電気部品用樹脂成形品及びその製造方法
JP2003041128A (ja) * 2001-05-24 2003-02-13 Toray Ind Inc 錠剤型樹脂組成物、その製造方法およびそれから得られる成形品
JP2003327726A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839392A (en) * 1970-04-14 1974-10-01 G Follows Polyamides
US3888645A (en) * 1973-08-02 1975-06-10 Owens Corning Fiberglass Corp Treatment of glass fibers
DE3806548C2 (de) * 1987-03-04 1996-10-02 Toyoda Chuo Kenkyusho Kk Verbundmaterial und Verfahren zu dessen Herstellung
US5202399A (en) * 1988-05-24 1993-04-13 Truste Of The University Of Pennsylvania Poly(b-alkenyl-borazine) ceramic precursors
US5030744A (en) * 1989-03-23 1991-07-09 Tonen Corporation Polyborosilazane and process for producing same
US5128286A (en) * 1989-06-20 1992-07-07 Tonen Corporation Boron-containing, silicon nitride-based ceramic shaped body
EP0405982A1 (en) * 1989-06-28 1991-01-02 Nippon Petrochemicals Company, Limited Filler-incorporated thermoplastic resin composition
JPH06243747A (ja) * 1993-02-12 1994-09-02 Sumitomo Electric Ind Ltd 耐熱絶縁電線およびその製造方法
US6491992B1 (en) * 1998-10-20 2002-12-10 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition, insulating glass using the composition, process for producing the insulating glass
US6433089B1 (en) * 1999-04-13 2002-08-13 Asahi Kasei Kabushiki Kaisha Method for producing rubber composition
JP2001151898A (ja) * 1999-11-24 2001-06-05 Nof Corp 架橋剤組成物及びこれを用いる架橋方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543633A (ja) * 1980-12-03 1993-02-23 Raychem Corp 架橋物品の製法
JPS60108437A (ja) * 1983-11-17 1985-06-13 Sekisui Chem Co Ltd 繊維強化プラスチック成形品の製造方法
JPS61243831A (ja) * 1985-04-19 1986-10-30 Nissin Electric Co Ltd 樹脂成形品の製造方法
JPH02209934A (ja) * 1989-02-09 1990-08-21 Mitsubishi Kasei Corp 難燃性架橋ポリブチレンテレフタレート樹脂成形物の製造法
JPH0333134A (ja) * 1989-06-30 1991-02-13 Mitsubishi Kasei Corp 難燃性ポリアミド樹脂成形物の製造法
JPH11315156A (ja) * 1998-05-07 1999-11-16 Shinko Chemical Co Ltd 非晶性ポリアミドの耐熱性に優れた架橋成形品及びその製造方法
JP2002265631A (ja) * 2001-03-15 2002-09-18 Fuji Electric Co Ltd 電気部品用樹脂成形品及びその製造方法
JP2003041128A (ja) * 2001-05-24 2003-02-13 Toray Ind Inc 錠剤型樹脂組成物、その製造方法およびそれから得られる成形品
JP2003327726A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1555283A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089534A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品
JP2006137843A (ja) * 2004-11-12 2006-06-01 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品の製造方法
JP2008520772A (ja) * 2004-11-18 2008-06-19 ランクセス・インク. 改質充填剤を含むゴム組成物
JP2007246561A (ja) * 2006-03-13 2007-09-27 Asahi Kasei Chemicals Corp ポリアミド樹脂成形品
JP2009538365A (ja) * 2006-05-23 2009-11-05 ラバー ナノ プロダクツ (プロプライエタリー) リミテッド ゴム組成物
WO2014199870A1 (ja) * 2013-06-10 2014-12-18 富士フイルム株式会社 架橋剤、組成物および化合物
JP2014237781A (ja) * 2013-06-10 2014-12-18 富士フイルム株式会社 架橋剤、組成物および化合物

Also Published As

Publication number Publication date
EP1555283B1 (en) 2007-02-28
AU2003275594A1 (en) 2004-05-13
AU2003275594A8 (en) 2004-05-13
KR20060032575A (ko) 2006-04-17
JP4539558B2 (ja) 2010-09-08
KR101057846B1 (ko) 2011-08-19
EP1555283A4 (en) 2005-12-14
US20060052537A1 (en) 2006-03-09
WO2004037904A8 (ja) 2004-11-11
DE60312198D1 (de) 2007-04-12
EP1555283A1 (en) 2005-07-20
JPWO2004037904A1 (ja) 2006-02-23
DE60312198T2 (de) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4297453B2 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP4753624B2 (ja) 難燃性樹脂加工品
JP4757538B2 (ja) 難燃性樹脂加工品
WO2004037904A1 (ja) 電気部品用樹脂成形品及びその製造方法
WO2004085537A1 (ja) 難燃性合成樹脂組成物
JP4762034B2 (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP4339314B2 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP4331722B2 (ja) 難燃性樹脂加工品
EP1669398B1 (en) Flame-retardant processed resin obtained with a reactive flame retardant
JP2007246637A (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP4210143B2 (ja) 電気部品用樹脂成形品
JP2006089534A (ja) 難燃性樹脂加工品
JP4892826B2 (ja) 難燃性樹脂加工品の製造方法
JP2005281634A (ja) 熱硬化性樹脂用難燃剤マスターバッチ、熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料の製造方法
JP2800092B2 (ja) 難燃性熱硬化性樹脂組成物
JP2006225587A (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2005087852A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2000336126A (ja) ビニルエステル及び難燃性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
CFP Corrected version of a pamphlet front page

Free format text: REVISED ABSTRACT IN ENGLISH AND JAPANESE RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

WWE Wipo information: entry into national phase

Ref document number: 2005501574

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057003963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A07050

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003758786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003758786

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006052537

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532577

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10532577

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057003963

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2003758786

Country of ref document: EP