WO2004034911A1 - 超音波探触子 - Google Patents

超音波探触子

Info

Publication number
WO2004034911A1
WO2004034911A1 PCT/JP2003/013225 JP0313225W WO2004034911A1 WO 2004034911 A1 WO2004034911 A1 WO 2004034911A1 JP 0313225 W JP0313225 W JP 0313225W WO 2004034911 A1 WO2004034911 A1 WO 2004034911A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
swing
element unit
ultrasonic element
origin
Prior art date
Application number
PCT/JP2003/013225
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Irioka
Eiichi Ookawa
Jun Koizumi
Shigeyoshi Hasegawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002502384A priority Critical patent/CA2502384A1/en
Priority to US10/530,533 priority patent/US7431697B2/en
Priority to EP03756632A priority patent/EP1554981B1/en
Priority to DE60335398T priority patent/DE60335398D1/de
Publication of WO2004034911A1 publication Critical patent/WO2004034911A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
    • G10K11/355Arcuate movement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/28Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding
    • H03M1/30Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental
    • H03M1/308Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental with additional pattern means for determining the absolute position, e.g. reference marks

Definitions

  • the present invention relates to an ultrasonic probe, and more particularly, to an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject while mechanically swinging an ultrasonic element to change a scanning plane.
  • ultrasonic diagnostic apparatuses are widely used.
  • ultrasonic information is transmitted to and received from an object using an ultrasonic probe, thereby obtaining information on each part of the object according to the acoustic characteristics of the part.
  • an arrayed transducer is used as an ultrasonic element for transmitting and receiving ultrasonic waves, and the arrayed transducer is mechanically oscillated to change its ultrasonic scanning plane. It is possible to obtain three-dimensional information of the subject.
  • a probe used in such an ultrasonic diagnostic apparatus generally includes an ultrasonic element and a rocking mechanism for rocking the ultrasonic element.
  • the swing mechanism has a structure in which, for example, a support shaft is connected to an output shaft of a motor via a gear, and a holder holding the ultrasonic element is connected to the support shaft.
  • a motor when a motor is driven, its rotational force is transmitted to a support shaft via a gear, and the support shaft is rotated. Rotates with. Then, by rotating the rotation direction of the motor at predetermined time intervals and by reversing the rotation direction of the ultrasonic element, the oscillation of the ultrasonic element is realized.
  • FIG. 7 is a perspective view showing a structure of an angle detector included in a conventional ultrasonic probe.
  • the angle detector 70 rotates in conjunction with the support shaft 71, and sandwiches the slit plate 72 provided with a plurality of lits in a circle around the rotation axis, and the slit plate 72. And an optical counter 73 arranged at the center.
  • the optical counter 73 emits light on one side from the slit plate 72 and receives light passing through the slit on the other side, and the rotation angle of the slit plate 72, that is, Detect the rotation angle of axis 7 1.
  • the rotation angle (oscillation angle) of the ultrasonic element that rotates in conjunction with the support shaft can be detected.
  • the detector detects only the light receiving power and the number of counters, so when the swing origin is detected or power is turned on to the ultrasonic probe.
  • the position of the ultrasonic element could not be accurately detected.
  • the home position return control of the ultrasonic element when the power is turned on becomes complicated, and there is a problem in that the time required for the home position return becomes slow.
  • An object of the present invention is to provide an ultrasonic probe which can easily and quickly perform origin return control of an ultrasonic element.
  • an ultrasonic probe includes: an ultrasonic element unit for transmitting and receiving ultrasonic waves; a swing mechanism for rocking the ultrasonic element unit; A detector for detecting the oscillating motion of the ultrasonic element unit, wherein the detector comprises: an oscillating angle of the ultrasonic element unit.
  • the swing range of the ultrasonic element unit is divided into a positive region and a negative region with the swing origin as a boundary, the ultrasonic element unit has the positive region and the negative region.
  • a detection unit for detecting which of the regions is present, and based on a detection result of the detector, an origin return control for returning the ultrasonic element unit to the swing origin is performed. Ultrasonic probe.
  • FIG. 1 is a cross-sectional view showing an example of the ultrasonic probe according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of a detector included in the ultrasonic probe.
  • FIG. 3 is a timing chart showing an example of an angle signal and an origin return signal obtained by the detector.
  • FIG. 4 is a block diagram showing a circuit configuration of an ultrasonic tomography diagnostic apparatus using the above ultrasonic probe.
  • FIG. 5 is a cross-sectional view illustrating an example of an ultrasonic probe according to the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an example of a detector constituting the above-described ultrasonic probe.
  • FIG. 7 is a schematic diagram showing a detector constituting a conventional ultrasonic probe. [Best Mode for Carrying Out the Invention]
  • An ultrasonic probe includes a detector that detects a swing angle and a swing origin of an ultrasonic element unit. Further, this detector divides the swing range of the ultrasonic element unit into a positive region and a negative region with the swing origin as a boundary. Then, it detects whether the ultrasonic element unit exists in the positive region or the negative region.
  • origin return control for returning the ultrasonic element unit to the swing origin is performed based on the detection result of the detector. That is, for example, at the time of home return control when the power is turned on, information on the position of the ultrasonic element unit and the swing origin is given to the control mechanism of the ultrasonic diagnostic apparatus main body, and based on this information, the home return is performed. Can be controlled. Therefore, the return operation can be easily and promptly performed.
  • the detector outputs at least one-phase rotary encoder pulse signal as an angle signal, detects the swing angle based on the angle signal, and the ultrasonic element unit An origin return signal indicating a different logic level is output depending on whether the signal is present in the positive region or the negative region, and a change point (that is, a rising edge or Based on the falling edge), the swing origin can be detected.
  • the detector swings in conjunction with the ultrasonic element unit, and forms an arc around the swing axis from a position corresponding to the swing origin.
  • a slit plate formed with a first slit having an opening up to a position corresponding to at least an end of the positive region or the negative region; a light source for irradiating the slit plate with light; and a light source. It can be configured to include a first light receiving element that detects light transmitted through the first slit, converts the light into an electric signal, and outputs the origin return signal.
  • the detector swings in conjunction with the ultrasonic element unit, and a plurality of the detectors are arranged at a predetermined pitch in a circle or an arc around the swing axis.
  • a slit plate having a second slit of A light source that irradiates the slit plate with light, and a second light receiving element that detects light transmitted from the light source through the second slit, converts the light into an electric signal, and outputs the angle signal. can do.
  • the first slit and the second slit are formed on the same slit plate.
  • the detector swings in conjunction with the ultrasonic element unit and is arranged at a predetermined pitch in a circle or an arc around the swing axis. It is configured to include a magnetic magnet drum having a plurality of magnetized patterns, and a magnetoresistive element that detects a magnetized pattern of the magnetic magnet drum, converts the magnetized pattern into an electric signal, and outputs the angle signal. You may.
  • the magnetic magnet drum is provided on a swing shaft directly fixed to the ultrasonic element unit.
  • FIG. 1 is a cross-sectional view illustrating an example of a structure of an ultrasonic probe according to a first embodiment of the present invention.
  • a window 11 and a frame 15 are joined to form a medium chamber, and the medium chamber is filled with a degassed acoustic coupling medium 12.
  • an ultrasonic element unit 13 in which a plurality of transducers are arranged is accommodated in the medium chamber.
  • the ultrasonic element unit 13 is fixed to the oscillation shaft 14 by the oscillation shaft stopper 10.
  • the swing shaft 14 is rotatably supported by a bearing 9 provided on the frame 15.
  • the oscillation radius can be reduced, and the oscillation scan of the ultrasonic element unit 13 can be performed.
  • the size of the window 11 can be reduced with respect to the angle, and the moment of inertia with respect to the swing shaft 14 can be reduced, so that the torque of the motor can be reduced.
  • the ultrasound probe has a built-in swing mechanism for swinging the ultrasound element unit 13.
  • This oscillating mechanism is composed of a motor 2 as a drive source and an oscillating transmission mechanism for transmitting the rotational driving force of the motor 2 to the ultrasonic element unit.
  • the swing transmission mechanism includes a drive pulley 5 attached to the output shaft 3 of the motor, a driven pulley 7 attached to the swing shaft, and a transmission belt 8 stretched between these pulleys. ing.
  • the motor 2 is fixed to the frame 15 via an oil seal 4, and the oil seal 4 prevents the acoustic coupling medium 12 from entering the inside of the motor.
  • the output shaft 3 of the motor is supported by a bearing 6 provided on the frame 15.
  • the motor 2 is covered by a housing 16 joined to a frame 15.
  • the drive pulley 5 on which the output shaft is mounted rotates.
  • the rotation of the driving pulley 5 is transmitted to the driven pulley 7 via the transmission belt 8, and the driven pulley 7 rotates.
  • the swing shaft 1.4 rotates in conjunction with the rotation of the driven pulley 7, and the ultrasonic element unit 13 rotates in conjunction with the rotation of the swing shaft 14. Then, by inverting the rotation direction of the motor at predetermined time intervals and inverting the rotation direction of the ultrasonic element unit, the oscillation of the ultrasonic element can be realized.
  • the ultrasonic probe has a built-in detector 1 for detecting the swinging motion of the ultrasonic element unit 13.
  • the detector 1 is configured to be able to detect the swing angle and the swing origin of the ultrasonic element unit 13. Further, the detector 1 is located at the position of the ultrasonic element unit 13, in other words, For example, when the swing range is bisected with the swing origin as a boundary (hereinafter, the bisected areas are referred to as “positive area” and “negative area”, respectively), the ultrasonic element unit
  • the detector can be configured to be able to directly detect the oscillating motion of the ultrasonic element unit by being attached to the oscillating shaft.
  • the oscillation motion of the ultrasonic element unit is indirectly detected. It may be configured to be able to do so.
  • the detector 1 is attached to the motor 2 and is configured to detect the rotational motion of the motor.
  • the oscillating motion of the ultrasonic element unit is linked to the rotational motion of the motor, so that the rotational motion of the ultrasonic element unit can be obtained by detecting the rotational motion of the motor. .
  • FIG. 2 is a schematic diagram showing an example of the structure of the detector 1.
  • the detector 1 is configured as an optical incremental rotary encoder.
  • a slit plate 23 is attached to the output shaft 3 of the motor so as to rotate in conjunction with the output shaft.
  • the slit plate 23 has a first slit 24 used to detect the position of the ultrasonic element unit and the origin of oscillation, and a second slit 20 used to detect the oscillation angle.
  • the light from the light source 21 is applied to the position of the second slit 20, and the light L 2 having passed through the second slit 20 is detected by the second light receiving element 22. Is done.
  • the optical signal detected by the second light receiving element 22 is converted into an electric signal and output as an angle signal.
  • the light from the light source 21 is also applied to the position of the first slit 24, The light amount of the light L 1 having passed through the slit 24 is detected by the first light receiving element 25. Then, the optical signal detected by the second light receiving element 22 is converted into an electric signal and output as an origin return signal.
  • indicates a position corresponding to the oscillation origin of the ultrasonic element unit, that is, a position overlapping with the light receiving element when the ultrasonic element unit is located at the oscillation origin.
  • R is an area corresponding to the swing range of the ultrasonic element unit, that is, an area that can pass in front of the light receiving element while the ultrasonic element unit swings.
  • the first slit 24 is a slit for inspecting the position of the ultrasonic element unit and the source of oscillation, and is provided in an arc shape about the rotation axis of the slit plate 23. As shown in FIG. 2, the first slit 24 has one end aligned with a position (O) corresponding to the swing origin, and the other end positioned in a region (R) corresponding to the swing range of the ultrasonic element unit. ) Is aligned with one end or opened beyond it. That is, when the region (R) corresponding to the swing range of the ultrasonic element unit is divided into two regions with the position (0) corresponding to the swing origin as a boundary, the slit is divided into two regions. The opening is formed over the whole, but is formed in such a shape that no opening is formed in the other region.
  • the second slits 20 are slits for detecting angles, and a plurality of the slits are provided at a predetermined pitch on an outer peripheral portion of the slit plate 23.
  • the second slit 20 is not particularly limited, but the larger the number (the shorter the pitch), the higher the resolution for detecting the swing angle, which is preferable.
  • a plurality of slits concentrically arranged at the same pitch (P) as the second slit and with a phase difference of PZ4 are provided. (Hereinafter referred to as “third slit”) Say
  • FIG. 3 is a timing chart showing an example of a detection signal obtained by the detector.
  • detection signals S1 and S3 are signals obtained for the second and third slits and are used as angle signals.
  • the detection signal S 2 is a signal obtained for the first slit 24 and is used as a signal for returning to the origin.
  • the position detection of the ultrasonic element unit is performed by detecting light transmitted through the first slit 24.
  • the first slit 24 divides the region (R) corresponding to the oscillation range of the ultrasonic element unit into two regions with the position (O) corresponding to the oscillation origin as a boundary.
  • the shape is such that an opening is formed in one region as a whole but no opening is formed in the other region. Therefore, when the ultrasonic element unit 13 exists in one area (for example, the positive area) when the swing range is divided by the swing origin, the distance between the light source and the first light receiving element is changed. Since the first slit 24 is present in the first slit, the transmitted light from the first slit 24 is detected.
  • the ultrasonic element unit 13 when the ultrasonic element unit 13-exists in the other area (for example, the negative area), the first slit 24 does not exist between the light source and the first light receiving element, so that the transmitted light is not transmitted. Is not detected. In this way, whether the ultrasonic element unit is located in the left or right region with respect to the swing origin (that is, in the positive region or the negative region) is determined by the light transmitted through the first slit 24. The determination can be made by detecting the presence or absence.
  • the swing origin is detected from a signal obtained by detecting the light transmitted through the first slit 24 (that is, the origin return signal).
  • the detection of the swing origin will be described with reference to FIG.
  • the first The origin return signal obtained from the slit 24 is a binary signal, for example, as shown in S2 in FIG.
  • Each logic level of the signal for returning to the origin corresponds to the light transmitted through the first slit.
  • a logic high level is output, and when the transmitted light is not substantially detected. Outputs a logic low level.
  • the change point of the home return signal from the logic high level to the logic low level exists only in one place in the region (R) corresponding to the swing range, and the change point (0) is changed. This corresponds to the moving origin. That is, by detecting a transition point from a logic high level to a logic low level, it becomes possible to detect the swing origin.
  • the detection of the swing angle of the ultrasonic element unit is performed by detecting the light transmitted through the second slit 24.
  • the signal (angle signal) obtained from the second slit 24 becomes a binary pulse signal, for example, as shown in S1 of FIG.
  • Each logical level of this angle signal corresponds to the presence or absence of light transmitted through the second slit.
  • the number of pulses corresponds to the number of second slits that have passed before the second light receiving element within a predetermined period. Therefore, the swing angle can be obtained by counting the number of pulses.
  • the signal (angle signal) obtained from the third slit is, for example, as shown in S2 of FIG.
  • This is a binary pulse signal having a phase difference of T / 4 with respect to the period (T) of the signal S1 obtained from the slit 20.
  • the angle signal is a one-phase pulse
  • the resolution of angle detection is 0.36 degrees
  • the angle signal is a two-phase pulse, , 0.18 degrees.
  • stop control can be performed with a high accuracy of TZ 2 for the cycle T of this pulse, and if it is a two-phase pulse, TZ 4 for the cycle T.
  • the slit is provided in the opaque plate
  • the transparent plate such as a glass plate may be provided with a black lattice
  • a transmission type optical rotary encoder is illustrated as the detector 1, but a reflection type can also perform the same function.
  • FIG. 4 is a block diagram showing an example of a circuit configuration of an ultrasonic diagnostic apparatus using the ultrasonic probe.
  • 31 indicates the configuration inside the ultrasonic probe
  • 33 indicates the configuration inside the ultrasonic diagnostic apparatus main body.
  • the angle signals Sl and S3 and the origin return signal S2 are generated, and these signals are sent to the detection signal processing circuit 35 of the diagnostic device main body 33.
  • the detection signal processing circuit 35 is a control signal for performing oscillation control and home return control of the ultrasonic element unit based on the angle signals S 1 and S 3 and the home return signal S 2 from the detector 32.
  • the swing drive control circuit 39 generates a drive signal S5, sends it to the motor 2 of the ultrasonic probe, and controls the drive.
  • the rotational driving force of the motor is transmitted to the ultrasonic element unit 13 by the oscillation transmission mechanism 37, and the oscillation operation of the ultrasonic element unit 13 and the origin return control are performed.
  • the angle detection signal processing circuit 35 sends the control signal S 6 to the transmission / reception circuit 38, and the transmission / reception circuit 38 transmits the drive signal S 7 for the ultrasonic element unit 13.
  • This signal is converted into an ultrasonic wave in the ultrasonic element unit and transmitted to the subject.
  • This ultrasonic wave is reflected by the subject, A part of the reflected wave is received by the ultrasonic element unit, converted into an electric signal (received signal) S8, and transmitted to the transmitting / receiving circuit.
  • the signal S8 is converted into an image signal S9 by the image processing circuit 50, and a tomographic image of the subject corresponding to the image signal S9 is displayed on the monitor 51.
  • the detector detects the position of the ultrasonic element unit in addition to the swing angle and the swing origin of the ultrasonic element unit. Can be. Therefore, for example, at the time of home return control at the time of turning on the power, information regarding the position of the ultrasonic element unit and the swing home is given as the home return signal S2 to the control mechanism of the ultrasonic diagnostic apparatus main body, Since control for returning to the origin is performed based on this information, the returning operation can be easily and promptly performed.
  • FIG. 5 is a cross-sectional view showing an example of the structure of the ultrasonic probe according to the second embodiment of the present invention.
  • the detector is constituted by a swing angle detector and a swing origin detector which are separated from each other.
  • the same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the origin detector 43 detects the position of the ultrasonic element unit and the swing origin. This is configured as an optical oral encoder and is mounted on the output shaft of the motor 2. It should be noted that the origin detector 43 can have a configuration in which the second slit 20 and the second light receiving element 22 are removed from the configuration of the detector shown in FIG. The detection operation is the same as that described in the description of the second slit in the first embodiment. Is substantially the same.
  • the swing angle detector 40 detects the swing angle of the ultrasonic element unit, and can be configured as a magnetic rotary encoder.
  • FIG. 6 is a detailed configuration diagram of the swing angle detector 40.
  • the swing angle detector 40 includes a magnetic magnet drum 41 attached to a swing shaft 14 and a magnetoresistive element 42 attached to a frame 15.
  • a magnetized pattern 44 is formed at a predetermined pitch on the surface 43 of the magnetic magnet drum 41, and the magnetized pattern 44 is detected by the magnetoresistive element 42, and a detection signal obtained is obtained. The swing angle is detected.
  • the swing angle is detected by the swing angle detector 40, and the position of the ultrasonic element unit and the swing origin are detected by the origin detector 43. Therefore, at the time of the origin return control, since the information on the position of the ultrasonic element unit and the swing origin is given as the origin return signal to the control mechanism of the ultrasonic diagnostic apparatus main body, the return operation is easy and easy. It can be implemented promptly.
  • the swing angle detector 40 since the swing angle detector 40 is configured using a magnetic rotary encoder, the swing angle can be detected even in the acoustic coupling medium 12. Therefore, the arrangement of the angle detector installed in the ultrasonic probe can be set in a wide range.
  • the angle detector 40 is provided on the swing shaft 14 directly fixed to the ultrasonic element unit 13,
  • the swing angle of the ultrasonic element unit 13 can be directly detected without passing through the dynamic transmission mechanism.
  • transmission errors such as backlash caused by the swing transmission mechanism, and detect the swing angle of the ultrasonic element unit 13 with high accuracy.
  • the ultrasonic probe of the present invention can detect the position and the origin of the ultrasonic element unit when the power is turned on, for example, it is easy to perform the origin return control of the ultrasonic element unit. It is possible to quickly perform home return.
  • Such an ultrasonic probe is particularly useful for an ultrasonic diagnostic apparatus that obtains information in a living body by transmitting and receiving ultrasonic waves to and from the living body.

Abstract

本発明の超音波探触子は、超音波を送受波するための超音波素子ユニットと、前記超音波素子ユニットを揺動させるための揺動機構と、前記超音波素子ユニットの揺動運動を検出するための検出器とを含む。前記検出器は、前記超音波素子ユニットの揺動角度および揺動原点を検出するとともに、前記超音波素子ユニットの揺動範囲を前記揺動原点を境界として正領域および負領域に二分したとき、前記超音波素子ユニットが、前記正領域および前記負領域のいずれに存在するかを検出するものである。この超音波探触子の使用時においては、検出器の検出結果に基づいて、前記超音波素子ユニットを前記揺動原点に復帰させるための原点復帰制御がなされる。

Description

明 細 書 超音波探触子
[技術分野]
本発明は超音波探触子に関し、 更に詳しくは、 超音波素子を機械的に 揺動させて走査面を変化させながら、 被検体に対して超音波を送受信す る超音波探触子に関する。
[背景技術]
医療分野においては、超音波診断装置が広く使用されている。これは、 超音波探触子を用いて、被検体に対して超音波を送受信することにより、 被検体の各部位の音響特性に応じて、この部位の情報を得るものである。 このような超音波装置においては、 超音波を送受信する超音波素子とし て配列振動子を用い、 この配列振動子を機械的に揺動させて、 その超音 波走査面を変化させることにより、 被検体の三次元情報を得ることが可 能である。
このような超音波診断装置に用いられる探触子は、 一般に、 超音波素 子と、 これを揺動させるための揺動機構とを備えている。 揺動機構は、 例えば、 モータの出力軸にギアを介して支持軸が接続され、 この支持軸 に超音波素子を保持したホルダーを接続した構造とされる。 このような 揺動機構においては、 モータを駆動させると、 その回転力がギアを介し て支持軸に伝えられ、 支持軸が回転し、 この支持軸の運動に連動して、 超音波素子がホルダーとともに回転する。 そして、 モー夕の回転方向を 所定の時間間隔で反転させて、 超音波素子の回転方向を反転させること により、 超音波素子の揺動を実現している。 更に、 揺動機構に、 超音波素子の揺動角度を検出するため角度検出器 を設けたものが提案されている (例えば、 特開平 3— 1 8 4 5 3 2号公 報)。 図 7は、従来の超音波探触子を構成する角度検出器の構造を示す斜 視図である。この角度検出器 7 0は、上記支持軸 7 1と連動して回転し、 その回転軸を中心とした円状に複数のリットが設けられたスリット板 7 2と、 スリット板 7 2を挟むように配置された光学式カウンタ 7 3とで 構成されている。 光学式カウン夕 7 3は、 スリツト板 7 2を境として一 方側で発光を行い、 他方側でスリットを通過した光を受光し、 この受光 カウント数によりスリット板 7 2の回転角度、 すなわち支持軸 7 1の回 転角度を検出する。このように支持軸の回転角度を検出することにより、 この支持軸と連動して回転する超音波素子の回転角度 (揺動角度) を検 出することができる。
しかしながら、 上記従来の超音波探触子において、 検出器は、 受光力 ゥンタ数のみを検出するものであるため、 揺動原点の検出や、 超音波探 触子に対して電源投入を行った際の超音波素子の位置検出を正確に行う ことができなかった。 このため、 電源投入時における超音波素子の原点 復帰制御が複雑となり、 原点復帰のための時間が遅くなるという問題が あった。 [発明の開示]
本発明は、 超音波素子の原点復帰制御を容易且つ高速に行うことがで きる超音波探触子を提供することを目的とする。
前記目的を達成するため、 本発明の超音波探触子は、 超音波を送受波 するための超音波素子ュニットと、 前記超音波素子ュニットを揺動させ るための揺動機構と、 前記超音波素子ユニットの揺動運動を検出するた めの検出器とを含み、 前記検出器は、 前記超音波素子ユニットの揺動角 度および揺動原点を検出するとともに、 前記超音波素子ュニットの揺動 範囲を前記揺動原点を境に正領域および負領域に分割したとき、 前記超 音波素子ュニットが、 前記正領域および前記負領域のいずれに存在する かを検出するものであり、 前記検出器の検出結果に基づいて、 前記超音 波素子ュニットを前記揺動原点に復帰させるための原点復帰制御がなさ れることを特徴とする超音波探触子。
[図面の簡単な説明] '
図 1は、 本発明の第 1の実施形態に係る超音波探触子の一例を示す断 面図である。
図 2は、 上記超音波探触子を構成する検出器の一例を示す模式図であ る。
図 3は、 上記検出器により得られる角度信号および原点復帰用信号の 一例を示すタイミングチヤ一トである。
図 4は、 上記超音波探触子を用いた超音波断層診断装置の回路構成を 示すブロック図である。
図 5は、 本発明の第 2の実施形態に係る超音波探触子の一例を示す断 面図である。
図 6は、 上記超音波探触子を構成する検出器の一例を示す模式図であ る。
図 7は、 従来の超音波探触子を構成する検出器を示す模式図である。 [発明を実施するための最良の形態]
本発明の超音波探触子は、 超音波素子ュニットの揺動角度および揺動 原点を検出する検出器を備えている。 更に、 この検出器は、 超音波素子 ュニットの揺動範囲を揺動原点を境界として正領域および負領域に二分 したとき、 超音波素子ユニットが、 前記正領域および前記負領域のいず れに存在するかを検出するものである。 この超音波探触子の使用時にお いては、 検出器の検出結果に基づいて、 前記超音波素子ユニットを前記 揺動原点に復帰させるための原点復帰制御がなされる。 すなわち、 例え ば電源投入時の原点復帰制御の際、 超音波診断装置本体の制御機構に対 し、超音波素子ュニットの位置および揺動原点に関する情報が与えられ、 この情報に基づいて原点復帰のための制御を行うことができる。 そのた め、 復帰動作を容易且つ速やかに実施することが可能となる。
上記超音波探触子においては、 前記検出器を、 少なくとも 1相のロー タリーエンコーダパルス信号を角度信号として出力し、 この角度信号に 基づいて前記揺動角度を検出し、 前記超音波素子ュニットが前記正領域 に存在する場合と、 前記負領域に存在する場合とで、 異なる論理レベル を示す原点復帰用信号を出力し、 この原点復帰用信号の論理レベルの変 化点 (すなわち、 立ち上りエッジまたは立ち下りエッジ) に基づいて、 前記揺動原点を検出するものとして構成することができる。
また、 前記超音波探触子において、 前記検出器は、 前記超音波素子ュ ニットと連動して揺動し、 その揺動軸を中心とする円弧状に、 前記揺動 原点に対応する位置から、 少なくとも前記正領域または前記負領域の端 部に対応する位置までを開口部とする第 1のスリットが形成されたスリ ット板と、 前記スリット板に光を照射する光源と、 前記光源から前記第 1のスリットを透過した光を検出し、 電気信号に変換して前記原点復帰 用信号を出力する第 1の受光素子とを含むものとして構成することがで さる。
また、 前記超音波探触子において、 前記検出器は、 前記超音波素子ュ ニットと連動して揺動し、 その揺動軸を中心とする円または円弧状に所 定ピッチで配列された複数の第 2のスリットを有するスリット板と、 前 記スリツト板に光を照射する光源と、 前記光源から前記第 2のスリツト を透過した光を検出し、 電気信号に変換して前記角度信号を出力する第 2の受光素子とを含むものとして構成することができる。
この場合、 前記第 1のスリットおよび前記第 2のスリットは、 同一の スリツト板に形成されていることが好ましい。
また、 上記超音波探触子において、 前記検出器は、 前記超音波素子ュ ニッ卜と連動して揺動し、 その揺動軸を中心とする円または円弧状に所 定ピッチで配列された複数の着磁パターンを有する磁気マグネットドラ ムと、 前記磁気マグネットドラムの着磁パタ一ンを検出し、 電気信号に 変換して前記角度信号を出力する磁気抵抗素子とを含むものとして構成 されていてもよい。
この場合、 前記磁気マグネットドラムは、 前記超音波素子ユニットに 直接固定された揺動軸上に設けられていることが好ましい。
以下、 本発明の好適な実施形態について、 図面を参照しながら説明す る。
(第 1の実施形態) - 図 1は、 本発明の第 1の実施形態に係る超音波探触子の構造の一例を 示す断面図である。 この超音波探触子においては、 ウィンドウ 1 1とフ レーム 1 5とが接合されることにより媒体室が構成されており、 この媒 体室内には、 脱気した音響結合媒体 1 2が充填されている。 また、 媒体 室内には、 複数の振動子が配列されてなる超音波素子ュニット 1 3が収 納されている。 超音波素子ュニット 1 3は、 揺動軸止め 1 0によって揺 動軸 1 4に固定されている。 この揺動軸 1 4は、 フレーム 1 5に設けら れた軸受け 9によって、 回転自在に支持されている。
このように、 揺動軸 1 4を超音波素子ユニット 1 3に直接固定するこ とにより、 揺動半径を小さくでき、 超音波素子ユニット 1 3の揺動走査 角に対してウィンドウ 1 1の大きさを小さく構成できるとともに、 揺動 軸 1 4に対する慣性モーメントを小さくすることができ、 モータの低ト ルク化を図ることができる。
更に、 この超音波探触子には、 超音波素子ユニット 1 3を揺動させる ための揺動機構が内蔵されている。 この揺動機構は、 駆動源であるモー 夕 2と、 モータ 2の回転駆動力を超音波素子ュニットに伝達するための 揺動伝達機構とで構成される。 揺動伝達機構は、 モータの出力軸 3に取 り付けられた駆動プーリ 5と、 前記揺動軸に取り付けられた従動プーリ 7と、 これらのプーリ間に掛け渡された伝達ベルト 8とを備えている。 モータ 2は、 オイルシール 4を介してフレーム 1 5に固定されており、 このオイルシール 4によって音響結合媒体 1 2がモータ内部に侵入する ことを防止している。 また、 モータの出力軸 3は、 フレーム 1 5に設け られた軸受け 6によって支持されている。 また、 モータ 2は、 フレーム 1 5と接合された筐体 1 6により、 カバーされている。
このような揺動機構によれば、 モータ 5を駆動させると、 その出力軸 の取り付けられた駆動プーリ 5が回転する。 この駆動プーリ 5の回転運 動が、 伝達ベルト 8を介して従動プーリ 7に伝達され、 従動プーリ 7が 回転する。この従動プーリ 7の回転運動に連動して揺動軸 1. 4が回転し、 この揺動軸 1 4の回転に連動して、超音波素子ュニット 1 3が回転する。 そして、 モータの回転方向を所定の時間間隔で反転させて、 超音波素子 ュニットの回転方向を反転させることにより、 超音波素子の揺動を実現 することができる。
更に、 本超音波探触子には、 超音波素子ュニット 1 3の揺動運動を検 出するための検出器 1が内蔵されている。 この検出器 1は、 超音波素子 ュニット 1 3の揺動角度および揺動原点を検出することが可能な構成と される。 更に、 検出器 1は、 超音波素子ユニット 1 3の位置、 換言すれ ば、 揺動原点を境界として揺動範囲を二分したとき (以下、 二分された 領域を各々 「正領域」 および 「負領域」 とする。)、 超音波素子ユニット
1 3が正領域および負領域のいずれに存在するかを検出することが可能 な構成とされる。
なお、 検出器は、 揺動軸に取り付けることにより、 超音波素子ュニッ トの揺動運動を直接検出できるように構成することができる。 また、 超 音波素子ユニットと連動して揺動 (回転) する部材 (例えば、 モータの 出力軸など) の運動を検出することによって、 間接的に超音波素子ュニ ットの揺動運動を検出できるよう構成されていてもよい。
例えば、 図 1に示す超音波探触子において、 検出器 1は、 モー夕 2に 取り付けられており、 モータの回転運動を検出するように構成されてい る。 前述したように、 超音波素子ユニットの揺動運動は、 モータの回転 運動と連動しているため、 モータの回転運動を検出することによって、 超音波素子ュニットの回転運動を求めることが可能である。
図 2は、検出器 1の構造の一例を示す模式図である。この検出器 1は、 光学式のィンクリメンタル型ロータリーエンコーダとして構成されてい る。 この検出器 1においては、 モータの出力軸 3に、 これと連動して回 転するようにスリット板 2 3が取り付けられている。 スリット板 2 3に は、 超音波素子ュニットの位置および揺動原点を検出するために用いら れる第 1のスリット 2 4と、 揺動角度を検出するために用いられる第 2 のスリット 2 0とが、 スリット板の回転軸を中心とする同心円上に設け られている。 光源 2 1からの光は、 第 2のスリット 2 0の位置に当てら れ、 第 2のスリット 2 0を通過した光 L 2は、 第 2の受光素子 2 2によ つて、 その光量が検出される。 そして、 第 2の受光素子 2 2で検出され た光信号が、電気信号に変換されて、角度信号として出力される。また、 光源 2 1からの光は、 第 1のスリット 2 4の位置にも当てられ、 第 1の スリット 2 4を通過した光 L 1は、 第 1の受光素子 2 5によって、 その 光量が検出される。そして、第 2の受光素子 2 2で検出された光信号が、 電気信号に変換されて、 原点復帰用信号として出力される。
次に、 図 2を用いて、 スリット板 2 3に設けられた各スリットについ て、 詳細に説明する。 なお、 図 2において、 〇は、 超音波素子ユニット の揺動原点に相当する位置、 すなわち、 超音波素子ユニットが揺動原点 に位置する時に受光素子と重なり合う位置である。 また、 Rは、 超音波 素子ユニットの揺動範囲に相当する領域、 すなわち、 超音波素子ュニッ トが揺動する間に受光素子の前を通過し得る領域である。
第 1のスリット 2 4は、 超音波素子ュニッ 卜の位置および揺動原点検 出のためのスリットであり、 スリット板 2 3の回転軸を中心とする円弧 状に設けられている。 この第 1のスリット 2 4は、 図 2に示すように、 一端を揺動原点に相当する位置 (O ) に整合させ、 他端を、 超音波素子 ュニットの揺動範囲に相当する領域(R )の一方の端部と整合させるか、 またはそれを超えて開口させた形状を有している。 すなわち、 このスリ ットは、 超音波素子ユニッ トの揺動範囲に相当する領域 (R ) を、 揺動 原点に相当する位置 (0 ) を境界として二領域に分割した場合、 一方の 領域においては全体に渡って開口が形成されているが、 他方の領域には 開口が形成されないような形状とされる。
第 2のスリット 2 0は、 角度検出のためのスリットであって、 スリツ ト板 2 3の外周部に所定ピッチで複数設けられている。 なお、 第 2のス リット 2 0は、 特に限定するものではないが、 その数が多いほど (ピッ チが短いほど)、 揺動角度の検出分解能が高くなるため好ましい。 また、 図示を省略するが、角度検出のための追加スリットとして、同心円状に、 第 2のスリットと同一ピッチ (P ) で、 且つ、 P Z 4の位相差を設けて 配列された複数のスリットを設けてもよい (以下、 「第 3のスリット」 と いう丄
次に、 上記検出器 1による揺動運動の検出動作について、 図 3を用い て説明する。 図 3は、 上記検出器により得られる検出信号の一例を示す タイミングチヤ一トである。図 3において、検出信号 S 1および S 3は、 第 2および第 3のスリットに対して得られる信号であり、 角度信号とし て用いられる。 また、 検出信号 S 2は、 第 1のスリット 2 4に対して得 られる信号であり、 原点復帰用信号として用いられる。
超音波素子ュニットの位置検出は、 第 1のスリット 2 4を透過する光 を検出することにより実施される。 前述したように、 第 1のスリット 2 4は、 超音波素子ユニットの揺動範囲に相当する領域 (R ) を、 揺動原 点に相当する位置 (O ) を境界として二領域に分割したときに、 一方の 領域においては全体に渡って開口が形成されているが、 他方の領域には 開口が形成されないような形状とされている。 そのため、 超音波素子ュ ニット 1 3が、揺動範囲を揺動原点を境に分割したときの一方の領域(例 えば、 正領域) に存在するときには、 光源と第 1の受光素子との間に第 1のスリット 2 4が存在するため、 第 1のスリット 2 4からの透過光が 検出される。 一方、 超音波素子ュニット 1 3-が他方の領域 (例えば、 負 領域) に存在する場合は、 光源と第 1の受光素子との間に第 1のスリツ ト 2 4が存在しないため、 透過光は検出されない。 このように、 超音波 素子ユニットが、 揺動原点に対して左右どちらに領域に (すなわち、 正 領域および負領域のいずれに) 位置しているかを、 第 1のスリット 2 4 を透過する光の有無を検出することで判断することが可能となる。
また、 上記第 1のスリット 2 4に対する透過光を検出することにより 得られる信号 (すなわち、 原点復帰用信号) から、 揺動原点が検出され る。 この揺動原点の検出について、 図 3を用いて説明する。 モータの出 力軸が回転し、 これに連動してスリット板 2 3が回転すると、 上記第 1 のスリット 2 4より得られる原点復帰用信号は、 例えば、 図 3の S 2に 示すように、 2値の信号となる。この原点復帰用信号の各論理レベルは、 第 1のスリッ卜に対する透過光に対応しており、 透過光が検出される場 合に論理ハイレベルが出力され、 透過光が実質的に検出されない場合は 論理ローレベルを出力される。 そして、 この原点復帰用信号の論理ハイ レベルから論理ローレベルへの変化点は、揺動範囲に相当する領域(R ) においては、 一箇所にしか存在せず、 この変化点 (0 ) が揺動原点に相 当する。 すなわち、 論理ハイレベルから論理ローレベルへの変化点を検 出することにより、 揺動原点を検出することが可能となる。
超音波素子ユニットの揺動角度の検出は、 第 2のスリット 2 4を透過 する光を検出することにより実施される。スリット板 2 3が回転すると、 上記第 2のスリット 2 4より得られる信号 (角度信号) は、 例えば、 図 3の S 1に示すように、 2値のパルス信号となる。 この角度信号の各論 理レベルは、 それぞれ、 第 2のスリットに対する透過光の有無に対応し ている。 また、 パルス数は、 所定期間内に第 2の受光素子の前を通過し た第 2のスリットの数に相当している。 よって、 このパルス数をカウン トすることにより、 揺動角度を求めることができる。
また、 第 3のスリットが存在する場合は、 スリット板 2 3が回転する と、 第 3のスリットより得られる信号 (角度信号) は、 例えば、 図 3の S 2に示すように、 第 2のスリット 2 0から得られる信号 S 1の周期 ( T ) に対して T / 4の位相差を有する 2値のパルス信号となる。 この ように、 第 3のスリットを設けることにより、 角度信号として 2相パル スを得ることができ、 角度検出分解能を更に高めることができる。
例えば、 5 0 0パルスのエンコーダ (すなわち、 スリット数 5 0 0 ) の場合、 角度信号が 1相パルスであると、 角度検出の分解能は 0 . 3 6 度となるが、 2相パルスであると、 0 . 1 8度となる。 また、 角度信号 が 1相パルスの場合、 このパルスの周期 Tに対して T Z 2、 2相パルス の場合は、 周期 Tに対して T Z 4という高い精度で停止制御ができる。 なお、 上記説明においては、 不透明板にスリットを設けた場合を例示 したが、 本発明はこれに限定されるものではなく、 ガラス板などの透明 板に黒色の格子を設けて構成することでも、 同様の機能を果すことは言 うまでもない。 また、 本実施形態では、 検出器 1として、 透過型の光学 式ロータリーエンコーダを例示したが、 反射型でも同様の機能を果すこ とができる。
次に、 上記超音波探触子を用いた超音波診断について説明する。 図 4 は、 上記超音波探触子を用いた超音波診断装置の回路構成の一例を示す ブロック図である。 なお、 図 4において、 3 1は、 超音波探触子内の構 成を示し、 3 3は、 超音波診断装置本体内の構成を示す。
検出器 3 2において、 角度信号 S l、 S 3および原点復帰用信号 S 2 が生成され、 これらの信号は、 診断装置本体 3 3の検出信号処理回路 3 5へ送られる。 検出信号処理回路 3 5は、 検出器 3 2からの角度信号 S 1、 S 3および原点復帰用信号 S 2に基いて、 超音波素子ユニットの揺 動制御および原点復帰制御を行うための制御信号 S 4を生成し、 揺動駆 動制御回路 3 9に送る。 揺動駆動制御回路 3 9は、 駆動信号 S 5を生成 し、 これを超音波探触子のモータ 2に送り、 これを駆動制御する。 モー 夕の回転駆動力は、 揺動伝達機構 3 7により超音波素子ユニット 1 3に 伝えられ、 超音波素子ュニッ卜 1 3の揺動動作および原点復帰制御が行 われる。
また、 角度検出信号処理回路 3 5は、 制御信号 S 6を送受信回路 3 8 に送り、 送受信回路 3 8からは超音波素子ュニット 1 3に対する駆動信 号 S 7が送信される。 この信号は、 超音波素子ユニットにおいて超音波 に変換されて、 被検体に送波される。 この超音波は被検体で反射され、 その反射波の一部が超音波素子ユニットで受波され、 電気信号 (受信信 号) S 8に変換されて、 送受信回路に送信される。 この信号 S 8は、 画 像処理回路 5 0によって画像信号 S 9に変換され、 画像信号 S 9に応じ た被検体の断層画像がモニタ 5 1に表示される。
以上説明したように、 本実施形態に係る超音波探触子によれば、 検出 器によって、 超音波素子ュニットの揺動角度および揺動原点に加えて、 超音波素子ユニットの位置を検出することができる。 そのため、 例えば 電源投入時の原点復帰制御の際には、 超音波診断装置本体の制御機構に 対し、 原点復帰用信号 S 2として、 超音波素子ユニットの位置および揺 動原点に関する情報が与えられ、 この情報に基づいて原点復帰のための 制御がなされるため、 復帰動作を容易且つ速やかに実施することが可能 となる。
また、 本実施形態によれば、 1つの検出器で超音波素子ユニットの揺 動角度と揺動原点を容易に検出することができるという利点がある。
(第 2の実施形態)
図 5は、 本発明の第 2の実施形態に係る超音波探触子の構造の一例を 示す断面図である。 本実施形態では、 検出器を、 それぞれ分離した揺動 角度検出器および揺動原点検出器とで構成した場合について説明する。 なお、 図 5において、 図 1と同じ要素については、 同一の符号を付し、 その説明を省略する。
原点検出器 4 3は、 超音波素子ュニットの位置および揺動原点を検出 するものである。これは、光学式口一タリーエンコーダとして構成され、 モータ 2の出力軸上に取り付けられる。 なお、 原点検出器 4 3は、 図 2 に示す検出器の構成から、 第 2のスリット 2 0と第 2の受光素子 2 2を 除いた構成とすることができる。 また、 その検出動作については、 第 1 の実施形態において、 第 2のスリツトに関する説明において述べた動作 と実質的に同様である。
揺動角度検出器 4 0は、 超音波素子ュニットの揺動角度を検出するも のであり、 磁気式ロータリーエンコーダとして構成することができる。 図 6は、 揺動角度検出器 4 0の詳細構成図である。 この揺動角度検出器 4 0は、 揺動軸 1 4に取り付けられた磁気マグネットドラム 4 1と、 フ レーム 1 5に取り付けられた磁気抵抗素子 4 2とを備えている。 磁気マ グネットドラム 4 1の表面 4 3には、 所定のピッチで着磁パターン 4 4 が形成され、 この着磁パ夕一ン 4 4を磁気抵抗素子 4 2で検出し、 得ら れる検出信号により揺動角度検出が行われる。
本実施形態によれば、 揺動角度検出器 4 0により揺動角度を検出する とともに、 原点検出器 4 3により超音波素子ュニットの位置および揺動 原点が検出される。 そのため、 原点復帰制御の際には、 超音波診断装置 本体の制御機構に対し、 原点復帰用信号として、 超音波素子ユニットの 位置および揺動原点に関する情報が与えられるため、 復帰動作を容易且 つ速やかに実施することが可能となる。
また、 本実施形態においては、 揺動角度検出器 4 0を、 磁気式ロータ リーエンコーダを用いて構成しているため、 音響結合媒体 1 2中でも揺 動角度の検出が可能になる。 そのため、 超音波探触子内に設置される角 度検出器の配置を広範囲に設定することができる。
また、 本実施形態によれば、 第 1の実施形態とは異なり、 角度検出器 4 0が、 超音波素子ュニット 1 3に直接固定された揺動軸 1 4に設けら れているので、 揺動伝達機構を介さず、 直接、 超音波素子ユニット 1 3 の揺動角度を検出することが可能となる。 これによつて、 揺動伝達機構 によるバックラッシュ等の伝達誤差の影響を回避し、 超音波素子ュニッ ト 1 3の揺動角度を高精度に検出することができる。 [産業上の利用可能性]
以上説明したように、 本発明の超音波探触子は、 例えば電源投入時の 超音波素子ュニットの位置検出および原点検出が可能であるため、 超音 波素子ュニットの原点復帰制御が容易であり、 原点復帰を速やかに実施 することが可能である。 このような超音波探触子は、 生体に対して超音 波の送受信を行なうことにより生体内の情報を得る、 超音波診断装置に 特に有用である。

Claims

請 求 の 範 囲
1 . 超音波を送受波するための超音波素子ユニットと、 前記超音波素 子ュニットを揺動させるための揺動機構と、 前記超音波素子ュニットの 揺動運動を検出するための検出器とを含み、
前記検出器は、 前記超音波素子ュニットの揺動角度および揺動原点を 検出するとともに、 前記超音波素子ュニットの揺動範囲を前記揺動原点 を境界として正領域および負領域に二分したとき、 前記超音波素子ュニ ットが、 前記正領域および前記負領域のいずれに存在するかを検出する ものであり、
前記検出器の検出結果に基づいて、 前記超音波素子ュニットを前記揺 動原点に復帰させるための原点復帰制御がなされることを特徴とする超 音波探触子。
2 . 前記検出器は、
少なくとも 1相のロータリーエンコーダパルス信号を角度信号として 出力し、 この角度信号に基づいて前記揺動角度を検出し、
前記超音波素子ュニットが前記正領域に存在する場合と、 前記負領域 に存在する場合とで、異なる論理レベルを示す原点復帰用信号を出力し、 この原点復帰用信号の論理レベルの変化点に基づいて、 前記揺動原点を 検出するものである請求項 1記載の超音波探触子。
3 . 前記検出器は、
前記超音波素子ュニットと連動して揺動し、 その揺動軸を中心とする 円弧状に、 前記揺動原点に対応する位置から、 少なくとも前記正領域ま たは前記負領域の端部に対応する位置までを開口部とする第 1のスリッ 卜が形成されたスリット板と、
前記スリット板に光を照射する光源と、
前記光源から前記第 1のスリットを透過した光を検出し、 電気信号に 変換して前記原点復帰用信号を出力する第 1の受光素子とを含む請求項 2記載の超音波探触子。
4 . 前記検出器は、
前記超音波素子ュニットと連動して揺動し、 その揺動軸を中心とする 円または円弧状に所定ピッチで配列された複数の第 2のスリットを有す るスリット板と、
前記スリット板に光を照射する光源と、
前記光源から前記第 2のスリットを透過した光を検出し、 電気信号に 変換して前記角度信号を出力する第 2の受光素子とを含む請求項 3記載 の超音波探触子
5 . 前記第 1のスリットおよび前記第 2のスリットは、 同一のスリツ ト板に形成されている請求項 4記載の超音波採触子。
6 . 前記検出器は、
前記超音波素子ユニットと連動して揺動し、 その揺動軸を中心とする 円または円弧状に所定ピッチで配列された複数の着磁パターンを有する 磁気マグネットドラムと、
前記磁気マグネッ卜ドラムの着磁パターンを検出し、 電気信号に変換 して前記角度信号を出力する磁気抵抗素子とを含む請求項 3記載の超音 波探触子。
7 . 前記磁気マグネットドラムは、 前記超音波素子ユニットに直接固 定された揺動軸上に設けられている請求項 6記載の超音波探触子。
PCT/JP2003/013225 2002-10-18 2003-10-16 超音波探触子 WO2004034911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002502384A CA2502384A1 (en) 2002-10-18 2003-10-16 Ultrasonic probe
US10/530,533 US7431697B2 (en) 2002-10-18 2003-10-16 Ultrasonic probe
EP03756632A EP1554981B1 (en) 2002-10-18 2003-10-16 Ultrasonic probe
DE60335398T DE60335398D1 (de) 2002-10-18 2003-10-16 Ultraschallsonde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304912A JP3821435B2 (ja) 2002-10-18 2002-10-18 超音波探触子
JP2002-304912 2002-10-18

Publications (1)

Publication Number Publication Date
WO2004034911A1 true WO2004034911A1 (ja) 2004-04-29

Family

ID=32105145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013225 WO2004034911A1 (ja) 2002-10-18 2003-10-16 超音波探触子

Country Status (8)

Country Link
US (1) US7431697B2 (ja)
EP (2) EP1554981B1 (ja)
JP (1) JP3821435B2 (ja)
KR (1) KR100707237B1 (ja)
CN (1) CN100379387C (ja)
CA (1) CA2502384A1 (ja)
DE (1) DE60335398D1 (ja)
WO (1) WO2004034911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880921B (zh) * 2005-06-15 2010-05-12 日本电波工业株式会社 超声探头

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652752B2 (ja) * 2004-09-06 2011-03-16 パナソニック株式会社 超音波探触子
JP4740647B2 (ja) * 2005-05-18 2011-08-03 パナソニック株式会社 超音波探触子
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
JP5452500B2 (ja) 2007-11-26 2014-03-26 シー・アール・バード・インコーポレーテッド カテーテルの血管内留置のための統合システム
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
CN102238914B (zh) * 2008-12-02 2014-02-05 松下电器产业株式会社 超声波探头
JP5401541B2 (ja) * 2009-05-14 2014-01-29 パナソニック株式会社 超音波探触子とこれを用いた超音波診断装置
JP5795576B2 (ja) 2009-06-12 2015-10-14 バード・アクセス・システムズ,インコーポレーテッド 心電図(ecg)信号を使用して心臓内またはその近くに血管内デバイスを位置決めするコンピュータベースの医療機器の作動方法
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
WO2011044421A1 (en) * 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
CA2800813C (en) 2010-05-28 2019-10-29 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
AU2011289513B2 (en) 2010-08-09 2014-05-29 C.R. Bard, Inc. Support and cover structures for an ultrasound probe head
WO2012024577A2 (en) 2010-08-20 2012-02-23 C.R. Bard, Inc. Reconfirmation of ecg-assisted catheter tip placement
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US9308050B2 (en) 2011-04-01 2016-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system and method for spinal and other surgeries
CN105662402B (zh) 2011-07-06 2019-06-18 C·R·巴德股份有限公司 用于插入引导系统的针长度确定和校准
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
CN104837413B (zh) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11974822B2 (en) 2012-06-21 2024-05-07 Globus Medical Inc. Method for a surveillance marker in robotic-assisted surgery
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
JP6114663B2 (ja) * 2013-08-27 2017-04-12 富士フイルム株式会社 超音波診断装置および超音波画像生成方法
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
ES2811323T3 (es) 2014-02-06 2021-03-11 Bard Inc C R Sistemas para el guiado y la colocación de un dispositivo intravascular
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
US10004562B2 (en) 2014-04-24 2018-06-26 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
WO2016008880A1 (en) 2014-07-14 2016-01-21 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10687905B2 (en) 2015-08-31 2020-06-23 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
CN105891890B (zh) 2016-03-31 2017-09-05 山东大学 一种盾构搭载的非接触式频域电法实时超前探测系统与方法
EP3241518A3 (en) 2016-04-11 2018-01-24 Globus Medical, Inc Surgical tool systems and methods
EP3360502A3 (en) 2017-01-18 2018-10-31 KB Medical SA Robotic navigation of robotic surgical systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
CN107037134B (zh) * 2017-04-25 2024-02-13 中国科学院声学研究所 一种潜水式超声探头对位结构及调整方法
US11135015B2 (en) 2017-07-21 2021-10-05 Globus Medical, Inc. Robot surgical platform
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
EP3852622A1 (en) 2018-10-16 2021-07-28 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
WO2021095591A1 (ja) * 2019-11-13 2021-05-20 株式会社デンソー 測距装置
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
CN111657826A (zh) * 2020-07-10 2020-09-15 上海安翰医疗技术有限公司 一种磁控装置及磁控胶囊内窥镜系统
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914847A (ja) * 1982-06-29 1984-01-25 セ・ジエ・エ−ル・ユルトラソニツグ 超音波プロ−ブ及び該プロ−ブを使用するエコ−グラフ装置
JPS5951346A (ja) * 1982-08-20 1984-03-24 Fujitsu Ltd 超音波断層撮像装置の符号変換回路
JPS6427538A (en) * 1987-07-23 1989-01-30 Toshiba Corp Ultrasonic scanner
JPH02116748A (ja) * 1988-10-27 1990-05-01 Toshiba Corp メカニカルセクタスキャナ
JPH02144047A (ja) * 1988-11-28 1990-06-01 Matsushita Electric Ind Co Ltd 超音波変換器の首振装置
JPH0898838A (ja) * 1994-09-30 1996-04-16 Toshiba Corp エンコーダ装置、超音波プローブおよび超音波検査装置
JPH0938087A (ja) * 1995-08-04 1997-02-10 Toshiba Corp 超音波プローブ及び超音波診断装置
US5759155A (en) 1994-09-30 1998-06-02 Kabushiki Kaisha Toshiba Optical rotary encoder device and an apparatus using the same
JP2001170053A (ja) * 1999-12-16 2001-06-26 Toshiba Corp 超音波プローブとその操作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141347A (en) * 1976-09-21 1979-02-27 Sri International Real-time ultrasonic B-scan imaging and Doppler profile display system and method
US4399703A (en) * 1980-10-16 1983-08-23 Dymax Corporation Ultrasonic transducer and integral drive circuit therefor
US4690150A (en) * 1985-08-20 1987-09-01 North American Philips Corporation Producing pseudocolor images for diagnostic ultrasound imaging
JPS63270032A (ja) * 1987-04-30 1988-11-08 Olympus Optical Co Ltd 超音波内視鏡
JPS63281015A (ja) 1987-05-13 1988-11-17 Matsushita Electric Ind Co Ltd 位置検出器の基準信号発生装置
JPS6427538U (ja) 1987-08-10 1989-02-16
EP0390311B1 (en) * 1989-03-27 1994-12-28 Kabushiki Kaisha Toshiba Mechanical ultrasonic scanner
US5070879A (en) * 1989-11-30 1991-12-10 Acoustic Imaging Technologies Corp. Ultrasound imaging method and apparatus
DE69027284T2 (de) 1989-12-14 1996-12-05 Aloka Co Ltd Dreidimensionaler Ultraschallabtaster
JPH0738851B2 (ja) 1989-12-14 1995-05-01 アロカ株式会社 三次元データ取り込み用超音波探触子
US5336884A (en) 1992-07-01 1994-08-09 Rockwell International Corporation High resolution optical hybrid absolute incremental position encoder
US5427107A (en) 1993-12-07 1995-06-27 Devices For Vascular Intervention, Inc. Optical encoder for catheter device
JP2000275066A (ja) * 1999-03-23 2000-10-06 Ono Sokki Co Ltd ロータリーエンコーダ
DE50014404D1 (de) * 1999-11-05 2007-07-26 Micronas Gmbh Programmierbare Gebereinrichtung
JP2001149372A (ja) * 1999-11-26 2001-06-05 Matsushita Electric Ind Co Ltd 超音波探触子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914847A (ja) * 1982-06-29 1984-01-25 セ・ジエ・エ−ル・ユルトラソニツグ 超音波プロ−ブ及び該プロ−ブを使用するエコ−グラフ装置
JPS5951346A (ja) * 1982-08-20 1984-03-24 Fujitsu Ltd 超音波断層撮像装置の符号変換回路
JPS6427538A (en) * 1987-07-23 1989-01-30 Toshiba Corp Ultrasonic scanner
JPH02116748A (ja) * 1988-10-27 1990-05-01 Toshiba Corp メカニカルセクタスキャナ
JPH02144047A (ja) * 1988-11-28 1990-06-01 Matsushita Electric Ind Co Ltd 超音波変換器の首振装置
JPH0898838A (ja) * 1994-09-30 1996-04-16 Toshiba Corp エンコーダ装置、超音波プローブおよび超音波検査装置
US5759155A (en) 1994-09-30 1998-06-02 Kabushiki Kaisha Toshiba Optical rotary encoder device and an apparatus using the same
JPH0938087A (ja) * 1995-08-04 1997-02-10 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2001170053A (ja) * 1999-12-16 2001-06-26 Toshiba Corp 超音波プローブとその操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1554981A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880921B (zh) * 2005-06-15 2010-05-12 日本电波工业株式会社 超声探头

Also Published As

Publication number Publication date
CN1705459A (zh) 2005-12-07
US20060173329A1 (en) 2006-08-03
KR100707237B1 (ko) 2007-04-13
EP2314220B1 (en) 2014-01-22
EP1554981A4 (en) 2006-04-05
KR20050049546A (ko) 2005-05-25
CA2502384A1 (en) 2004-04-29
CN100379387C (zh) 2008-04-09
JP2004135966A (ja) 2004-05-13
DE60335398D1 (de) 2011-01-27
EP2314220A1 (en) 2011-04-27
JP3821435B2 (ja) 2006-09-13
EP1554981B1 (en) 2010-12-15
EP1554981A1 (en) 2005-07-20
US7431697B2 (en) 2008-10-07

Similar Documents

Publication Publication Date Title
WO2004034911A1 (ja) 超音波探触子
US6551245B1 (en) Ultrasonic probe
JP2720710B2 (ja) 機械走査式超音波探触子
KR100961855B1 (ko) 복수의 탐촉 영역을 갖는 초음파 프로브
JP3578685B2 (ja) 超音波診断装置
JPH11123193A (ja) 超音波内視鏡用回転駆動装置
JP3648133B2 (ja) 機械走査式超音波探触子
JP2697384B2 (ja) 機械走査式超音波探触子
JP3028967B2 (ja) プローブ
JP2876510B2 (ja) 機械走査式超音波探触子
JP2997101B2 (ja) 機械走査式超音波探触子
CN219397331U (zh) 位置检测装置、超声探头和超声成像系统
JPS60114240A (ja) 機械走査式超音波診断装置
JP3031217B2 (ja) 超音波探触子
JPH02116748A (ja) メカニカルセクタスキャナ
JP2017023589A (ja) 超音波探触子の原点位置ずれ検出システム
JP2016020877A (ja) メカニカル3d超音波探触子
JP2003275206A (ja) 位置検出機能を有する超音波検査装置
JPS62231637A (ja) 超音波探触子
JPS61115546A (ja) 超音波探触子
JPS62233150A (ja) 超音波探触子
JP2624491B2 (ja) 超音波内視鏡
JP2007159926A (ja) 超音波診断装置
JPH0433458B2 (ja)
JPH05146434A (ja) 機械走査式超音波探触子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006173329

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2502384

Country of ref document: CA

Ref document number: 2003756632

Country of ref document: EP

Ref document number: 1020057006433

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A16149

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057006433

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003756632

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10530533

Country of ref document: US