WO2004031196A1 - 有機化合物の製造方法 - Google Patents

有機化合物の製造方法 Download PDF

Info

Publication number
WO2004031196A1
WO2004031196A1 PCT/JP2003/012662 JP0312662W WO2004031196A1 WO 2004031196 A1 WO2004031196 A1 WO 2004031196A1 JP 0312662 W JP0312662 W JP 0312662W WO 2004031196 A1 WO2004031196 A1 WO 2004031196A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
solution
organic solvent
solvent
Prior art date
Application number
PCT/JP2003/012662
Other languages
English (en)
French (fr)
Inventor
Mitsuru Takase
Takahiro Sagae
Hiroyuki Yazaki
Shigeo Mori
Daisuke Asanuma
Original Assignee
Nippon Soda Co., Ltd.
Daiichi Suntory Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co., Ltd., Daiichi Suntory Pharma Co., Ltd. filed Critical Nippon Soda Co., Ltd.
Priority to CA002500330A priority Critical patent/CA2500330C/en
Priority to US10/529,392 priority patent/US7358356B2/en
Priority to AU2003268738A priority patent/AU2003268738A1/en
Priority to EP03748679A priority patent/EP1548017A4/en
Priority to JP2004541275A priority patent/JP4326471B2/ja
Publication of WO2004031196A1 publication Critical patent/WO2004031196A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/04Preparation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/88Compounds with a double bond between positions 2 and 3 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
    • C07D499/893Compounds with a double bond between positions 2 and 3 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 with a hetero ring or a condensed hetero ring system, directly attached in position 3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/88Compounds with a double bond between positions 2 and 3 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2

Definitions

  • the present invention relates to a method for dehydrating a polar organic solvent solution containing an unstable organic compound and water.
  • a compound having a —lactam ring in the molecule (hereinafter referred to as “/ 3-lactam compound”) is useful as an antibacterial agent having excellent antibacterial activity.
  • / 3-lactam compound A compound having a —lactam ring in the molecule
  • various 3-lactam compounds have been developed as antibacterial agents, and various tractam compounds have been manufactured on an industrial scale.
  • This 3-lactam compound is characterized in that it has a] 3-lactam ring in the molecule, and this / 3-lactam ring has different types of substituents, different types of condensed rings, and environmental conditions of the solution. Decomposition may occur due to heat, the presence of water, or the properties of acids or alkalis. Therefore, when producing a 3-lactam compound, the mildest production conditions are selected in order to prevent the decomposition of compounds and the progress of side reactions in the production process.
  • a] -lactam compound (4) useful as an antibacterial agent can be produced by the following reaction.
  • the present invention has been made under such circumstances, and it is an object of the present invention to provide a method for producing an organic compound such as a lactam compound, which can efficiently isolate a target product with a high isolation yield.
  • the present inventors have examined in detail the step of isolating the target 3-lactam compound (4) from the reaction solution obtained by the above reaction.
  • the decrease in the isolation yield of the lactam compound (4) is caused by the removal in the dehydration step of removing water together with THF from the reaction mixture containing the 3-lactam compound (4). It was considered that the decrease in the liquid level caused the high-concentration liquid remaining on the wall of the reactor to decompose due to heating on the wall.
  • a method for producing an organic compound having a dehydration step of reducing the concentration of water to a predetermined value or less by distilling water from a polar organic solvent solution containing the organic compound and water.
  • a method for producing an organic compound which is a step of performing an operation of distilling a plurality of times.
  • a polar organic solvent is distilled off from the solution while adding a poor solvent for the organic compound to the obtained solution.
  • a crystallization step for crystallization it is preferable to use an alcohol solvent as the poor solvent.
  • the organic compound is preferably an i3-lactam compound
  • A represents a condensed heterocyclic group having a / 9-lactam ring structure
  • B is an alkyl group having 1 to 20 carbon atoms which may have a substituent, May have an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the polar organic solvent solution may be represented by the following formula (2)
  • A represents a fused heterocyclic group having a 3-lactam ring structure
  • M represents a hydrogen atom or a metal atom.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group having from to 6 carbon atoms, or an optionally substituted phenyl group
  • R 1 and R 2 may combine to form a ring having 3 to 8 carbon atoms which may have a substituent
  • X represents a halogen atom.
  • It is preferably a reaction solution obtained by reacting a 4,18-opening genometyl dioxolenone compound represented by the following formula, or a solution obtained by post-processing the reaction solution.
  • the production method of the present invention has a dehydration step of distilling water together with a polar organic solvent from a polar organic solvent solution containing an organic compound and water.
  • the organic compound to be subjected to the method of the present invention is not particularly limited, but an organic compound partially decomposed by prolonged heat abuse in an organic solvent containing water, particularly water contained in the organic solvent An organic compound whose decomposition is more accelerated under conditions of liquidity, specifically, acidity or alkalinity.
  • the method of the present invention can be suitably used for such an organic compound.
  • the term "decomposition” refers to a change into a compound having a structure different from that of the original compound.When a substituent is eliminated, when it is converted to another skeleton, or when the skeleton completely collapses. Shall be included.
  • the rate of decomposition is not particularly limited, and includes a case where a part or all of the original compound is decomposed. In particular, industrially If the above method is applied, only a slight decrease in yield will affect the purity of the final product and the yield of the product. Therefore, it is preferable to use the method of the present invention when 0.1 to several percent of organic compounds decompose.
  • Examples of the organic compound include a 3-lactam compound having a J3-lactam ring in the molecule; a tetrahydrofuryloxy group, a tetrahydropyranyloxy group, a t-butoxy group, a 1-ethoxyethoxy group, an acetoxy group, a trimethylsilyl group.
  • Lactam compounds are known as active ingredients of lactam antibacterial agents.
  • the / 3-lactam compound is not particularly limited as long as it has an i3-lactam ring in the molecule, such as a monocyclic compound or a condensed ring compound. Further, there is no limitation on the type or number of the substituents bonded to the 3-lactam ring. Among them, a compound having a condensed heterocyclic group having a / 3-lactam ring in the molecule is preferable, and a compound represented by the above formula (1) is particularly preferable.
  • A represents a fused heterocyclic group having a / 3-lactam ring.
  • Examples of the fused heterocyclic group having a ⁇ -lactam ring structure include the following.
  • r 1 and r represent alkyl group or an optionally substituted Benzoiruamino group G 1 of which may carbon atoms also be 1-6 substituted by G 1.
  • rr 3, r 5, r 1 "7 and 1 '8 are each independently hydrogen atom, an alkyl group of substitution are carbon atoms, which may have 1 to 6 in G 1, optionally is substituted by G 1 which may carbon number 2-6 alkenyl group, alkynyl group, an aromatic optionally is substituted by G 1 hydrocarbon group which carbon atoms, which may have 2-6 substitution by G 1; or substituted with G 1 Represents a heterocyclic group which may be substituted.
  • alkyl group having 1 to 6 carbon atoms alkyl group having 1 to 6 carbon atoms, e.g., methyl group, Echiru group, n- flop port propyl group, isopropyl Group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group and the like.
  • the alkenyl group having 2 to 6 carbon atoms in the alkenyl group having 2 to 6 carbon atoms which may be substituted by G 1 includes, for example, vinyl group, n-propenyl group, isopropenyl group, butenyl group, pentenyl group And hexenyl groups.
  • Examples of the C 2-6 alkynyl group in the C 2-6 alkynyl group which may be substituted with G 1 include, for example, ethynyl group, n-propynyl group, isopropylinyl group, petinyl group, pentynyl group And a hexynyl group.
  • Examples of the aromatic hydrocarbon group in the aromatic hydrocarbon group which may be substituted with G include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • the heterocyclic group of the heterocyclic group may be substituted by G 1, 1 to 4 or containing hetero atoms oxygen atom in the ring, at least one of the selected from a nitrogen atom and a sulfur atom And a 5- or 6-membered saturated or unsaturated heterocyclic group, or a condensed heterocyclic group.
  • Quinolinyl group isoquinoline-11-yl, isoquinoline-13-yl, isoquinolin-4-yl, isoquinoline-5-yl, isoquinoline-16-yl, isoquinoline-7-yl, isoquinoline-18- Isoquinolinyl groups such as
  • G 1 examples include a hydroxyl group; a nitro group; a cyano group; a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom; a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and t.
  • Alkoxy groups having 1 to 6 carbon atoms such as butoxy group; trialkylsilyloxy groups such as trimethylsilyloxy group, triethylsilyloxy group, t-butyldimethylsilyloxy group; methylthio group, ethylthio group, C1-C6 alkylthio group such as n-propylthio group, isopropylpropylthio group; C1-C6 alkylsulfinyl group such as methylsulfinyl group, ethylsulfinyl group, n-propylsulfiel group; methylsulfonyl group, ethyl Sulfonyl group, n-propylsulfonyl group, isopropylsulfonyl group, n-butyl An alkylsulfonyl group having 1 to 6 carbon atoms such as a rufonyl group; an amino
  • B is an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, Represents an alkynyl group having 2 to 20 carbon atoms, an aryl group optionally having a substituent or a heterocyclic group optionally having a substituent.
  • alkyl group having 1 to 20 carbon atoms which may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec- Butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, etc.
  • a substituent having an oxygen atom such as a methoxymethyl group, an ethoxymethyl group, a 2-methoxyethyl group, a 3-methoxypropyl group, or a 4-methoxybutyl group.
  • a substituent having atom such as methylthiomethyl group, ethylthiomethyl group, 2-methylthioethyl group, 3-methylthiopropyl group, and 4-methylthiobutyl group.
  • a C1-C20 alkyl group substituted with a substituent having a nitrogen atom such as a dimethylaminomethyl group, a cetylaminomethyl group, a 2-dimethylaminoethyl group; a fluoromethyl group, a chloromethyl group, Bromomethyl group, difluoromethyl group, dichloromethyl group, difluoromethyl group, trifluoromethyl group, trichloromethyl group, 2,2,2-trifluoroethyl group, pennofluorethyl group, hepnofluoropropyl group, perfluoro
  • Examples of the substituent of the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and the substituent of the alkynyl group having 2 to 20 carbon atoms which may have a substituent include, for example, oxygen Examples include a substituent having an atom, a substituent having a nitrogen atom, a substituent having a sulfur atom, and a halogen atom.
  • a heterocyclic group containing 1 to 4 nitrogen atoms, oxygen atoms or sulfur atoms in the ring may be a monocyclic hetero ring. Based on May also be a fused heterocyclic group. Of these, a 5-membered, 6-membered, or fused heterocyclic group containing 1 to 4 nitrogen atoms, oxygen atoms, or sulfur atoms is preferred. Specific examples include the same groups as the heterocyclic groups exemplified as the aforementioned heterocyclic groups of r 2 , r 3 , r 5 , r 6 , r 7 and r 8 .
  • Examples of the substituent of the heterocyclic group represented by B include a nitro group; a cyano group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; a methoxy group, an ethoxy group, an n-propoxy group, and an iso group.
  • C1-C6 alkoxy groups such as propoxy group, n-butoxy group, t-butoxy group; methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, t-butylthio group, etc.
  • alkylthio group having 1 to 6 carbon atoms an alkylthio group having 1 to 6 carbon atoms such as a methylsulfiel group, an ethylsulfinyl group, an n-propylsulfenyl group, an isopropylsulfinyl group, an n-butylsulfinyl group, and a t-butylsulfinyl group; Alkylsulfinyl group; methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, isopropyl pyrsulfonyl group An alkylsulfonyl group having 1 to 6 carbon atoms such as n-butylsulfonyl group and t-butylsulfonyl group; and one alkyl group having 1 to 6 carbon atoms such as methylamino group, ethy
  • Amino group Amino group in which two alkyl groups having 1 to 6 carbon atoms such as dimethylamino group, acetylamino group, dipropylamino group, ethylmethylano group, and methylpropylamino group are substituted; carbon number of acetyl group, propionyl group, and the like
  • An alkylcarboyl group of 1 to 6 a carbon number of 1 to 6 such as a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, an n_butoxycarbonyl group, or a t-butoxycarbonyl group;
  • An alkoxyl sulfonic group a phenylsulfiel group which may have a substituent; A phenylsulfonyl group; or a phenylthio group which may have a substituent.
  • substituents may be the same or different and may be substituted at any position of the heterocycle.
  • substituents for the phenylsulfinyl group, phenylsulfonyl group and phenylthio group include a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; and a carbon atom having 1 to 6 carbon atoms such as a methyl group and an ethyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a penfluorofluoroethyl group, or the like;
  • a haloalkoxy group having 1 to 6 carbon atoms such as a trifluoromethoxy group, a 2,2,2-trifluoroethoxy group, a penfluorofluoroethoxy group, and the like.
  • the polar organic solvent used in the present invention is not particularly limited as long as it is an organic solvent composed of a molecule having a dipole moment.
  • ether solvents such as getyl ether, tetrahydrofuran, 1,2 dimethoxetane and 1,4-dioxane
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • Halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane
  • nitrile solvents such as acetonitrile and benzonitrile
  • Amide solvents such as amide, N-methylpyrrolidone, and hexamethylphosphoric phosphoramide
  • urea solvents such as 1,3-dimethyl-2-imidazolidinone
  • ester solvents such as methyl acetate, ethyl acetate, and n-propyl acetate
  • a polar organic solvent which dissolves both the organic compound and water and can easily be distilled off together with water is preferable.
  • a polar organic solvent include an ether-based solvent and a ketone-based solvent.
  • the method of the present invention can be preferably applied.
  • the use of ether solvents is more preferable, and the use of tetrahydrofuran is particularly preferable.
  • the amount (concentration) of water contained in the polar organic solvent solution used in the present invention is not particularly limited, and the present invention can be applied to a case where a large amount of water such as 50% by weight or more is contained. Large amount When water is contained, it is preferable to use another method such as liquid separation to reduce the amount of water before using the method of the present invention.
  • the method of the present invention is preferably used when the polar organic solvent solution contains an organic compound, water, and a compound that generates a substance that accelerates the decomposition of the organic compound by contact with water or an alcohol-based solvent.
  • the polar organic solvent solution contains an organic compound, water, and a compound that generates a substance that accelerates the decomposition of the organic compound by contact with water or an alcohol-based solvent.
  • Halogen compounds are representative of substances that promote the decomposition of organic compounds.
  • halogen compounds include simple halogens such as chlorine, bromine and iodine; metal halides such as metal chlorides, metal bromides and metal iodides; organic halogen compounds such as organic chlorides, organic bromides and organic iodides; Can be exemplified.
  • the method of the present invention is particularly effective when, among these halogen compounds, iodine or an alkali metal iodine compound is contained in the system.
  • alkali metal iodine compound examples include lithium iodide, sodium iodide, potassium iodide, magnesium triiodide, calcium iodide, ferric iodide, zinc iodide, cupric iodide and the like.
  • the polar organic solvent solution is not particularly limited as long as it is a polar organic solvent solution containing an organic compound and water.
  • the compound represented by the formula (2) and the compound represented by the formula (3) are used.
  • the solution is prepared.
  • the latter solution is preferred from the viewpoint that it can be suitably used when isolating the target organic compound with higher yield.
  • M is a hydrogen atom; an alkali metal such as lithium, sodium, and potassium; an alkaline earth metal such as magnesium and calcium; or copper (I), copper (II), cobalt (II), cobalt (III), Transition metals such as iron (II), iron (III), zinc (II) and manganese (II);
  • M is an atom other than hydrogen
  • the compound represented by the formula (2) may be an anhydride or a hydrate.
  • R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent or a phenyl which may have a substituent. Represents a group.
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n- Hexyl group and the like.
  • Examples of the substituent of the alkyl group and phenyl group having 1 to 6 carbon atoms include a nitro group; a cyano group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group and an n-propoxy group.
  • An alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group, an n-butoxy group, a t-butoxy group; a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, a t-butylthio group
  • 1 ⁇ and R 2 may combine with each other to form a ring having 3 to 8 carbon atoms which may have a substituent.
  • the ring having 3 to 8 carbon atoms include a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; a carbon number such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group and a t-butoxy group.
  • a halogen atom such as a fluorine atom and a chlorine atom; an alkylthio group having 1 to 6 carbon atoms such as a methylthio group and an ethylthio group; a substituted amino group such as a dimethylamino group and an acetylamino group; a nitro group; Groups; and the like.
  • these substituents may be the same or different and may be substituted in plural at any position.
  • 1 ⁇ and 1 ⁇ 2 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and particularly preferably a hydrogen atom or a methyl group.
  • Preferred specific examples of the 4-halogenomethyldioxolenone compound represented by the above formula (3) include the following.
  • the 4-halogenomethyldioxolenone compound represented by the formula (3) can be produced and obtained, for example, by the method described in US Pat. No. 4,448,732.
  • a phase transfer catalyst examples include quaternary ammonium salts, such as tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride (TBAC), and the like.
  • Tetraalkylammonium bromide Tetraalkylammonium bromide; tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, etc .; tetraalkylammonium bromide; benzyltrimethylammonium chloride Benzyltrimethylammonium bromide, benzyl-tri-n-butylammonium chloride (BTBAC), benzyltrialkylammonium octylide such as benzyl-tri-n-butylammonium bromide, etc.) Re .
  • BTBAC benzyltrialkylammonium octylide
  • M in the formula (2) is a hydrogen atom (that is, when the compound of the formula (2) is a carboxylic acid)
  • a base to be added.
  • the base to be used include: alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; alkali metal hydroxides such as sodium carbonate and carbonated lime.
  • Alkali metal bicarbonates such as metal carbonate, sodium bicarbonate and bicarbonate
  • Alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate
  • Metal hydrides such as sodium methoxide, sodium ethoxide, potassium lucoxide; trieduramine, pyridine and the like.
  • the present invention provides a method for obtaining a solution of an organic compound having a water concentration of not more than a predetermined value by distilling water together with the polar organic solvent from the polar organic solvent solution, wherein (a) adding the polar organic solvent to the solution. (B) adding a predetermined amount of the polar organic solvent to the solution while continuously adding the polar organic solvent to the solution, and distilling water together with the polar organic solvent from the solution. It is characterized by repeating a plurality of times. By adopting the operation method (a) or (b), fluctuation of the liquid level in the tank is suppressed. It was found that the concentrated solution was prevented from adhering to the tank wall. As a result, it is possible to prevent the concentrated solution having a high concentration from being heated and decomposed on the tank wall.
  • the polar solvent added in the dehydration step may be the same as or different from the polar solvent contained in the solution. Specific examples thereof include those similar to those listed as the polar solvent contained in the solution.
  • any of the above-mentioned operation methods (b) and (b) can be adopted. Is heated to easily generate a compound that accelerates the decomposition of the organic compound, and as a result, the decomposition of the organic compound is easily accelerated. Therefore, the heated part of the tank is almost the same as the current liquid interface position, and preferably lower.
  • the amount of the polar organic solvent added should be small in order to minimize the change in the liquid interface part due to the evaporation of the solution.
  • the volume is preferably substantially the same as the amount (volume) of the polar organic solvent and water to be distilled.
  • the dehydration step can be performed in a tank containing the solution.
  • the solution is a reaction solution
  • the dehydration step can be continuously performed in the used reaction tank. Further, the reaction solution can be transferred to another tank to perform a dehydration step.
  • the tank may be heated to a predetermined temperature.
  • the heating temperature of the bath also depends on the type of polar organic solvent. The higher the tank heating temperature, the higher the efficiency of the dehydration process, but if the heating temperature is too high, the decomposition of organic compounds may be accelerated. Therefore, in order to efficiently remove the polar organic solvent and water while suppressing the decomposition of the organic compound, it is preferable to heat under reduced pressure and remove the polar organic solvent and water at a temperature as low as possible. .
  • the heating temperature of the solution and the degree of reduced pressure in the tank in the dehydration step can be determined depending on the boiling point of the polar organic solvent used, the thermal stability of the organic compound, and the like, but it is usually 0 to 80 ° C, preferably 10 ° C. ⁇ 70 ° C, more preferably 20 ⁇ 50 ° C.
  • the pressure inside the tank when heating is from 1 to 100 kPa, preferably from 10 to 50 kPa.
  • the dehydration step is preferably performed by attaching a known distillation device to the tank.
  • Any distillation device that can collect the distilling polar organic solvent and water can be used.
  • a distillation apparatus having a pipe, a cooling pipe, and a collector can be used.
  • the water in the solution after the dehydration step has only to be removed to such an extent that the desired organic compound can be obtained with a high isolation yield. It is usually at most 4% by weight, preferably at most 3.5% by weight, based on the whole solution.
  • the water content of the solution after the dehydration step can be measured by a known moisture measuring device (for example, Carl Fischer moisture meter).
  • Examples of a method for isolating an organic compound include (i) a method in which a polar organic solvent is distilled off from a solution obtained in a dehydration step, and a crystallization solvent is added to a residue to perform crystallization; A method of crystallizing an organic compound by distilling a polar organic solvent from the solution while adding a crystallization solvent to the solution obtained in the dehydration step, and (iii) adding a recrystallization solvent to the residue. And (iv) a method of purifying the residue by column chromatography.
  • the crystallization solvent means an organic solvent having low solubility in organic compounds and preferably high solubility in impurities.
  • the solvent used for recrystallization recrystallization solvent
  • the organic compound to be crystallized Solvents having a very low solubility in water (generally referred to as poor solvents) can be exemplified.
  • poor solvents Solvents having a very low solubility in water
  • the distinction between poor solvents and recrystallization solvents is not strict, and they may be used depending on the case.
  • the method (i) or (ii) is preferably employed, and the method (ii) is particularly preferred. Further, according to the methods (i) and (ii), the amount of the crystallization solvent used can be reduced as compared with other methods.
  • the method of adding the crystallization solvent includes a method of adding a predetermined amount of the crystallization solvent in a plurality of times and a method of continuously adding a fixed amount of the crystallization solvent. .
  • any of the methods can be adopted.However, if the amount of the solution is reduced in the crystallization step, the solution is more likely to be locally concentrated at the liquid interface, so that the position of the solution at the liquid interface is determined. In order to keep the crystallization solvent constant, it is preferable that the amount of the crystallization solvent be approximately the same as the amount (volume) of the polar organic solvent to be distilled.
  • the crystallization solvent to be used is not particularly limited as long as it has a low solubility of the organic compound and the organic compound is stably present without being decomposed, but the use of an alcohol solvent is preferred.
  • the alcohol-based solvent examples include alcohols having 1 to 6 carbon atoms such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, and t-butyl alcohol. Among them, use of an alcohol having 1 to 3 carbon atoms is preferable, and use of ethanol is particularly preferable.
  • the crystallization step can be performed continuously in the tank in which the dehydration step has been performed, or the solution obtained in the dehydration step can be transferred to another tank and performed in another tank.
  • the crystallization step can be performed by heating the tank to evaporate and remove the polar organic solvent.
  • the heating temperature of the tank depends on the type of the polar organic solvent, but the higher the heating temperature, the higher the efficiency of the solvent replacement step, but if heated to an excessively high temperature, the decomposition reaction of the organic compound tends to proceed. . Therefore, in order to efficiently remove the polar organic solvent at a temperature as low as possible, it is preferable to heat under reduced pressure.
  • the temperature of the solution in the crystallization step is usually from 0 ° C to 80 ° C (: preferably from 10 ° C to 70 ° C, more preferably from 20 ° C to 50 ° C.
  • the pressure inside the tank at that time is 1 to: L0 kPa, preferably 5 to 50 kPa.
  • the concentration of the polar organic solvent in the solution after the crystallization step is usually 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less.
  • the obtained solution is cooled to 10 or less, preferably 0 to iot :, whereby the target organic compound can be crystallized.
  • the cooling time for crystallization is usually from tens of minutes to several hours.
  • the precipitated organic compound can be isolated by a method such as filtration by a filtration method or a method of removing a crystallization solvent by a centrifuge. Further, the obtained organic compound may be washed with a recrystallization or crystallization solvent, if desired.
  • the desired organic compound can be efficiently isolated.
  • the structure of the obtained organic compound is IR spectrum, mass spectrum, — NMR It can be confirmed by spectrum measurement, gas chromatography, high performance liquid chromatography, etc.
  • the pressure of the solution A obtained above was reduced to 17.3 to 19.3 kPa, the temperature was adjusted to 20 to 32 ° C (bath temperature 40 ° C), and THF was distilled off. Every 90 ml of THF was distilled off, 90 ml of fresh THF was added to solution A. This operation was repeated three times. Thus, a THF solution of the compound (5) was obtained. The resulting solution was a 0.9 liter / mole solution of compound (5). The water content of solution A was 0.47% by weight.
  • the solution A was heated to 75 t: to distill off THF to form a concentrated THF solution of the compound (5) (about 0.25 l / mol THF solution), and 95 ml of ethanol was added.
  • the resulting solution was stirred to make a homogeneous solution, the pressure was reduced to 16 to 20 kPa, and THF and ethanol were distilled off at 23 to 40 ° C (bath temperature: 23 to 40 ° C).
  • ethanol was added dropwise at a constant rate so that the volume of the solution did not change, and a solution B was obtained.
  • the amount of ethanol dropped was 105 ml in total.
  • Solution B was a 1.2 liter / mole solution of compound (5).
  • the solution B was cooled to 15 ° C. for 30 minutes to crystallize the compound (5).
  • the precipitated crystals were collected by filtration and washed twice with 12 ml of cold ethanol.
  • the obtained crystals were dried to obtain 35.65 g of crude crystals of compound (5). Its purity was 98.9% and yield was 88.7%.
  • the crude crystals of compound (5) were suspended in 18 Oml of ethanol and heated at 60 ° C for 10 minutes to completely dissolve the crystals.
  • the filtrate obtained by filtering this solution under pressure was kept at around 30 for 30 minutes, and then 80 ml of ethanol was distilled off at 30 to 35 under a reduced pressure of 10.6-13.3 kPa.
  • the obtained solution was cooled at 15 ° C. for 30 minutes to crystallize compound (5).
  • the crystallized crystals are collected by filtration, and cold ethanol After washing twice with 13 ml, compound (5) crystals were obtained. Its purity was 99.5% and yield was 85.1%.
  • Example 1 the process of distilling off THF from solution A under reduced pressure was performed in the same manner as in Example 1 except that the operation of distilling off THF under a reduced pressure was performed through a nozzle that reached the vicinity of solution A while dropping THF. Was done. Almost the same results as in Example 1 were obtained.
  • Example 2 in the step of distilling THF from the solution A, THF was added at once without continuously adding THF, and then THF was distilled. The water content in the solution after distilling off THF was 2% by weight. Thereafter, the same operation as in Example 1 was performed to isolate compound (5). A compound having a purity equivalent to that of the compound (5) obtained in Example 1 was obtained, but the yield was reduced to 80%.
  • Comparative Example 1 after the step of distilling off THF, the same operation as in Comparative Example 1 was performed except that ethanol was added at once without continuous addition of ethanol and then THF was distilled off. The compound (5) was isolated. A compound having a purity similar to that of the compound (5) obtained in Example 1 was obtained, but the yield was reduced to 70%. In this case, it was found that the mother liquor contained compound (5) in an amount corresponding to the reduced yield. Examination of the solvent composition of the mother liquor revealed that a large amount of THF remained, and that compound (5) was dissolved in THF, leading to a decrease in yield. When the amount of ethanol to be added all at once was increased by three times and the same operation was performed, the same results as in Comparative Example 1 were obtained in both purity and yield, but the amount of solvent used was increased. Industrial potential
  • the present invention since water can be removed from a polar organic solvent solution in a shorter time, it is possible to prevent the organic compound from being heated and decomposed in a polar organic solvent containing much water for a long time. Organic compounds can be efficiently isolated with a high isolation yield. Further, by distilling off the polar organic solvent while adding the crystallization solvent, the total amount of the crystallization solvent used can be reduced, which is advantageous from the viewpoint of production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、有機化合物及び水を含む極性有機溶媒溶液から水を留去することにより、水の濃度を所定値以下にする脱水工程を有する有機化合物の製造方法であって、極性有機溶媒を溶液に添加しながら、極性有機溶媒とともに水を留去する工程、又は、溶液に極性有機溶媒を添加して、極性有機溶媒とともに水を留去する操作を複数回行なう脱水工程を有することを特徴とする有機化合物の製造方法を提供する。さらに本発明は、有機化合物及び水、場合によって水等と接触して有機化合物の分解を促進する物質を生成する化合物を含む極性有機溶媒溶液から、高い単離収率で目的物を効率よく単離することができる有機化合物の製造も提供する。

Description

明 細 書
有機化合物の製造方法 技術分野
本発明は、 不安定な有機化合物及び水を含む極性有機溶媒溶液の脱水方法に関 する。
背景技術
分子内に —ラクタム環を有する化合物 (以下、 「/3—ラクタム化合物」 と いう。 ) は、 優れた抗菌活性を有する抗菌剤として有用である。 これまでに、 種々の 3—ラクタム化合物が抗菌剤として開発されており、 さまざまなトラ クタム化合物が工業的規模で製造されている。
この 3—ラクタム化合物は、 分子内に ]3—ラクタム環を有することが特徴で あるが、 この /3—ラクタム環は、 その置換基の種類、 縮合環の種類、 溶液の環 境条件、 例えば、 熱、 水の存在、 酸又はアルカリ等の液性により分解する場合が ある。 そのため、 3—ラクタム化合物を製造する場合には、 製造工程における化 合物の分解や副反応の進行を防止するために、 極力温和な製造条件が選択される。 例えば、 抗菌剤として有用な ]3—ラクタム化合物 (4 ) は、 下記に示す反応 によって製造することができる。
Figure imgf000002_0001
しかしながら、 上記反応によって j3—ラクタム化合物を工業的規模で製造す る場合には、 得られる反応液から目的とする 3—ラクタム化合物 (4) を単離 する工程において、 単離収率が著しく低下する場合があり問題となっていた。 発明の開示
本発明は、 かかる実情の下になされたものであって、 高い単離収率で目的物を 効率よく単離することができる —ラクタム化合物等の有機化合物を製造する 方法を提供することを課題とする。
本発明者らは、 上記反応によって得られた反応液から目的とする 3—ラクタ ム化合物 (4) を単離する工程について、 詳細に検討を加えた。 その結果、 - ラクタム化合物 (4) の単離収率が低下するのは、 3—ラクタム化合物 (4) を 含む反応混合物から TH Fとともに水を留去する脱水工程において、 留去によつ て液レベルが低下することで、 反応槽の壁面に残留した高濃度の濃縮液が槽壁面 での加熱により分解することが原因であると考えられた。
そこで、 )3—ラクタム化合物 (4) を含む反応液から TH Fとともに水を留去 する脱水工程において、 反応液のレベルを一定にするために TH Fを添加しなが ら TH F及び水を留去すると、 3—ラクタム化合物 (4 ) が分解して単離収率が 低下することを防止できることを見出した。 また、 TH Fから晶析溶媒であるェ 夕ノ一ルへの溶媒置換を行なう際にも、 エタノールを添加することにより反応液 レベルを一定にして TH Fを留去することで、 高い単離収率で目的物を単離する ことができることを見出した。 そして、 この方法を一般化することにより、 本発 明を完成するに到った。
かくして本発明によれば、 有機化合物及び水を含む極性有機溶媒溶液から水を 留去することにより、 水の濃度を所定値以下にする脱水工程を有する有機化合物 の製造方法であって、 該脱水工程が、 極性有機溶媒を前記極性有機溶媒溶液に添 加しながら、 極性有機溶媒とともに水を留去する工程、 又は極性有機溶媒を前記 極性有機溶媒溶液に添加して、 極性有機溶媒とともに水を留去する操作を複数回 行なう工程であることを特徴とする有機化合物の製造方法が提供される。 本発明の製造方法は、 好適には、 前記脱水工程を行った後に、 得られた溶液に 有機化合物に対する貧溶媒を添加しながら、 前記溶液から極性有機溶媒を留去す ることにより有機化合物を晶析させる晶析工程を有する。 この場合、 前記貧溶媒 として、 アルコール系溶媒を用いるのが好ましい。
本発明の製造方法においては、 前記有機化合物が、 i3—ラクタム化合物である のが好ましく、 式 (1 )
A、 ノ O B
(1)
0 (式中、 Aは /9ーラクタム環構造を有する縮合へテロ環基を表し、 Bは、 置換 基を有していてもよい炭素数 1〜2 0のアルキル基、 置換基を有していてもよい 炭素数 2〜 2 0のアルケニル基、 置換基を有していてもよい炭素数 2〜 2 0のァ ルキニル基、 置換基を有していてもよいァリール基又は置換基を有していてもよ いへテロ環基を表す。 ) で表される /3—ラクタム化合物であるのがより好まし い。
また、 本発明の製造方法においては、 前記極性有機溶媒溶液が、 式 (2 )
—— M
(2)
0
(式中、 Aは ]3—ラクタム環構造を有する縮合へテロ環基を表し、 Mは、 水素 原子又は金属原子を表す。 ) で表される化合物に、 極性有機溶媒中、 式 (3 )
Figure imgf000005_0001
(式中、 R 1及び R 2はそれぞれ独立して、 水素原子、 置換基を有していてもよ い炭素数:!〜 6のアルキル基又は置換基を有していてもよいフエ二ル基を表す。 また、 R 1と; 2とが結合して、 置換基を有していてもよい炭素数 3〜8の環を 形成してもよい。 また、 Xはハロゲン原子を表す。 ) で表される 4一八口ゲノメ チルジォキソレノン化合物とを反応させて得られる反応液、 又は該反応液を後処 理して得られる溶液であるのが好ましい。 本発明を実施するための形態
以下、 本発明の製造方法を詳細に説明する。
1 ) 極性有機溶媒溶液
本発明の製造方法は、 有機化合物及び水を含む極性有機溶媒溶液から、 極性有 機溶媒とともに水を留去する脱水工程を有する。
(ァ) 有機化合物
本発明の方法の対象となる有機化合物は特に制限されないが、 水を含む有機溶 媒中の長時間の熱虐待に対してその一部が分解する有機化合物、 特に、 有機溶媒 に含まれる水の液性、 具体的には、 酸性又はアルカリ性等の条件下で、 分解がよ り促進されるような有機化合物である。 このような有機化合物に本発明の方法を 好適に用いることができる。
本発明において、 分解とは、 もとの化合物と異なる構造を有する化合物に変化 することをいい、 置換基が脱離する場合、 別の骨格に変換される場合、 完全に骨 格が崩壊する場合等を含むものとする。 また、 分解する割合は特に制限されず、 もとの化合物の一部あるいは全部が分解する場合等を含む。 特に、 工業的に本発 明の方法を適用する場合には、 収率のほんの僅かな低下が最終製品の純度、 製品 の歩留まりに影響する。 従って、 0 . 1〜数%の有機化合物が分解する場合に本 発明の方法を用いるのが好ましい。
有機化合物としては、 例えば、 分子内に J3—ラクタム環を有する 3—ラクタ ム化合物;テトラヒドロフリルォキシ基、 テトラヒドロピラニルォキシ基、 t— ブトキシ基、 1一エトキシエトキシ基、 ァセトキシ基、 トリメチルシリルォキシ 基、 トリフエニルメトキシ基、 2 , 2 , 2—トリクロ口エトキシ基等の加水分解 性保護基で保護された水酸基を有する化合物;ァセタール化合物;へミアセタ一 ル化合物;分子内に C = N結合を有する化合物;エノ一ル性水酸基がァシル基で 保護された基を有する化合物;等が挙げられる。
これらの中でも、 ]3—ラクタム化合物の製造工程の一部として、 本発明の方法 を用いるのが好ましい。
—ラクタム化合物は、 —ラクタム系抗菌剤の活性成分として知られている。 /3—ラクタム化合物は、 分子内に i3—ラクタム環を有する化合物であれば、 単 環化合物、 縮合環化合物など特に制限されない。 また、 )3—ラクタム環に結合す る置換基の種類や数にも制限されない。 中でも、 分子内に /3—ラクタム環を有 する縮合へテロ環基をもつ化合物が好ましく、 前記式 (1 ) で表される化合物が 特に好ましい。
前記式 (1 ) 中、 Aは /3—ラクタム環を有する縮合へテロ環基を表す。 β— ラクタム環構造を有する縮合へテロ環基としては、 例えば、 次のものが挙げられ る。
Figure imgf000007_0001
上記式中、 r1及び r ま、 G1で置換されていてもよい炭素数 1〜 6のアルキ ル基又は G1で置換されていてもよいベンゾィルアミノ基を表す。 r r 3、 r 5、 r 1" 7及び1" 8は、 それぞれ独立して、 水素原子、 G1で置 換されていてもよい炭素数 1〜 6のアルキル基、 G1で置換されていてもよい炭 素数 2〜 6のアルケニル基、 G1で置換されていてもよい炭素数 2〜 6のアルキ ニル基、 G1で置換されていてもよい芳香族炭化水素基;又は G 1で置換されて いてもよいへテロ環基を表す。
前記 r 1〜! · 8の G1で置換されていてもよい炭素数 1〜6のアルキル基にお ける炭素数 1〜6のアルキル基としては、 例えば、 メチル基、 ェチル基、 n—プ 口ピル基、 イソプロピル基、 n—プチル基、 s e c—プチル基、 t一ブチル基、 n—ペンチル基、 n—へキシル基等が挙げられる。
G1で置換されていてもよい炭素数 2〜 6のアルケニル基における炭素数 2〜 6のアルケニル基としては、 例えば、 ビニル基、 n—プロぺニル基、 イソプロべ ニル基、 ブテニル基、 ペンテニル基、 へキセニル基等が挙げられる。
G1で置換されていてもよい炭素数 2〜 6のアルキニル基における炭素数 2〜 6のアルキニル基としては、 例えば、 ェチニル基、 n—プロピニル基、 イソプロ ピニル基、 プチ二ル基、 ペンチニル基、 へキシニル基等が挙げられる。
G〖で置換されていてもよい芳香族炭化水素基における芳香族炭化水素基とし ては, 例えば、 フエニル基、 1一ナフチル基、 2—ナフチル基等が挙げられる。 また、 G 1で置換されていてもよいへテロ環基のへテロ環基としては、 環内に 酸素原子、 窒素原子及び硫黄原子から選ばれる少なくとも 1種のへテロ原子を 1 〜4個含有する、 5員又は 6員の飽和若しくは不飽和のヘテロ環の基、 又は縮合 ヘテロ環の基が挙げられる。
その具体例としては、 下記に示す (i ) 5員飽和へテロ環基、 ( i i) 5員不飽 和へテロ環基、 (i i i) 6員飽和へテロ環基、 (iv) 6員不飽和へテロ環基、 ( V ) 縮合へテロ環基等が挙げられる。 (i) 5員飽和へテロ環基
,N、
Ν
Figure imgf000009_0001
N- 一 -N
,N、
Figure imgf000009_0002
一 八
N N
J
(ii) 5員不飽和へテロ環基
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
(iii) 6員飽和へテロ環基
Figure imgf000011_0001
(iv) 6員不飽和へテロ環基
Figure imgf000011_0002
、Ν'
Figure imgf000011_0003
( v ) 縮合へテロ環基
キノリン _ 2—ィル、 キノリン一 3—ィル、 キノリン一 4一ィル、 キノリン一 5—ィル、 キノリン一 6—ィル、 キノリン一 7—ィル、 キノリン一 8—ィル等の キノリニル基;イソキノリン一 1一ィル、 イソキノリン一 3—ィル、 イソキノリ ンー 4—ィル、 イソキノリン一 5—ィル、 イソキノリン一 6—ィル、 イソキノリ ンー 7—ィル、 イソキノリン一 8—ィル等のイソキノリニル基;等。
前記 G 1としては、 例えば、 水酸基;ニトロ基;シァノ基;フッ素原子、 塩素 原子、 臭素原子などのハロゲン原子;メトキシ基、 エトキシ基、 n—プロポキシ 基、 イソプロポキシ基、 n—ブトキシ基、 t—ブトキシ基などの炭素数 1〜6の アルコキシ基; トリメチルシリルォキシ基、 トリェチルシリルォキシ基、 t—ブ チルジメチルシリルォキシ基などのトリアルキルシリルォキシ基;メチルチオ基、 ェチルチオ基、 n—プロピルチオ基、 ィソプロピルチオ基などの炭素数 1〜 6の アルキルチオ基;メチルスルフィニル基、 ェチルスルフィニル基、 n—プロピル スルフィエル基などの炭素数 1〜 6のアルキルスルフィニル基;メチルスルホニ ル基、 ェチルスルホニル基、 n—プロピルスルホニル基、 イソプロピルスルホ二 ル基, n -プチルスルホニル基などの炭素数 1〜 6のアルキルスルホニル基;メ チルァミノ基、 ェチルァミノ基、 n—プロピルアミノ基、 イソプロピルアミノ基 などの炭素数 1〜6のアルキル基が置換したアミノ基;ジメチルァミノ基、 ジェ チルアミノ基、 メチルェチルアミノ基などの炭素数 1〜 6のアルキル基が 2個置 換したアミノ基;ァセチル基、 プロピオニル基、 プロピルカルボニル基などの炭 素数 1〜 6のアルキル力ルポニル基;メトキシカルポニル基、 Xトキシカルポ二 ル基、 n -プロピルカルボニル基、 t―プチルカルポニル基などの炭素数 1〜 6 のアルコキシカルポニル基;等が挙げられる。 置換基 G 1は、 任意の位置に結合 していてもよく、 また、 同一又は相異なる複数個が結合していてもよい。
前記式 (1 ) 中、 Bは、 置換基を有していてもよい炭素数 1〜2 0のアルキル 基、 置換基を有していてもよい炭素数 2〜2 0のアルケニル基、 置換基を有して いてもよい炭素数 2〜 2 0のアルキニル基、 置換基を有していてもよいァリール 基又は置換基を有していてもよいへテロ環基を表す。 前記置換基を有していてもよい炭素数 1〜2 0のアルキル基の具体例としては、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 イソブ チル基、 s e c—ブチル基、 t一ブチル基、 n—ペンチル基、 ネオペンチル基、 n—へキシル基、 イソへキシル基、 n—へプチル基、 n—ォクチル基、 n—ノニ ル基、 n—デシル基等の炭素数 1〜 2 0のアルキル基;メトキシメチル基、 ェト キシメチル基、 2—メトキシェチル基、 3—メトキシプロピル基、 4—メトキシ プチル基等の酸素原子を有する置換基で置換された炭素数 1〜 2 0のアルキル 基;メチルチオメチル基、 ェチルチオメチル基、 2—メチルチオェチル基、 3— メチルチオプロピル基、 4—メチルチオプチル基等の硫黄原子を有する置換基で 置換された炭素数 1〜2 0のアルキル基;
ジメチルァミノメチル基、 ジェチルァミノメチル基、 2—ジメチルアミノエチ ル基等の窒素原子を有する置換基で置換された炭素数 1〜 2 0のアルキル基;フ ルォロメチル基、 クロロメチル基、 ブロモメチル基、 ジフルォロメチル基、 ジク ロロメチル基、 ジフルォロメチル基、 トリフルォロメチル基、 トリクロロメチル 基、 2, 2 , 2—トリフルォロェチル基、 ペン夕フルォロェチル基、 ヘプ夕フル ォロプロピル基、 パーフルォロブチル基、 パ一フルォロペンチル基等のハロゲン 原子で置換された炭素数 1〜 2 0のアルキル基;等が挙げられる。
置換基を有していてもよい炭素数 2〜2 0のアルケニル基の置換基、 及び置換 基を有していてもよい炭素数 2〜2 0のアルキニル基の置換基としては、 例えば、 酸素原子を有する置換基、 窒素原子を有する置換基、 硫黄原子を有する置換基、 ハロゲン原子等が挙げられる。 また、 炭素数 2〜 2 0のアルケニル基、 又はアル キニル基としては、 G 1で例示した同様の基を例示することができる。
前記置換基を有していてもよいァリール基としては、 例えば、 フエニル基、 4 —メチルフエニル基、 2—クロ口フエ二ル基、 4一クロ口フエ二ル基、 3—メト キシフエニル基、 2 , 4ージメチルフエニル基、 1一ナフチル基、 2—ナフチリレ 基、 4一クロ口 _ 1—ナフチル基、 6—メチル—2—ナフチル基などが挙げられ る。
前記置換基を有していてもよいへテロ環基としては、 環内に窒素原子、 酸素原 子又は硫黄原子を 1〜4個含有するへテロ環の基であれば、 単環へテロ環の基で も、 縮合へテロ環の基であってもよい。 中でも、 窒素原子、 酸素原子又は硫黄原 子を 1〜 4個含有する 5員へテロ環、 6員へテロ環又は縮合へテロ環の基が好ま しい。 具体的には、 前記 r 2、 r 3、 r 5、 r 6、 r 7及び r 8のへテロ環基として 例示したヘテロ環基と同様の基が挙げられる。
前記 Bのへテロ環基の置換基としては、 例えば、 ニトロ基;シァノ基;フッ素 原子、 塩素原子、 臭素原子、 ヨウ素原子等のハロゲン原子;メトキシ基、 ェトキ シ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 t一ブトキシ基 等の炭素数 1〜6のアルコキシ基;メチルチオ基、 ェチルチオ基、 n—プロピル チォ基、 イソプロピルチオ基、 n—プチルチオ基、 t一プチルチオ基等の炭素数 1〜 6のアルキルチオ基;メチルスルフィエル基、 ェチルスルフィニル基、 n— プロピルスルフィエル基、 イソプロピルスルフィニル基、 n—ブチルスルフィ二 ル基、 t一プチルスルフィニル基等の炭素数 1〜 6のアルキルスルフィニル基; メチルスルホニル基、 ェチルスルホニル基、 n—プロピルスルホニル基、 イソプ 口ピルスルホニル基、 n一プチルスルホニル基、 t -プチルスルホニル基等の炭 素数 1〜6のアルキルスルホニル基;メチルァミノ基、 ェチルァミノ基、 n—プ 口ピルアミノ基等の炭素数 1〜 6のアルキル基が 1個置換したアミノ基;ジメチ ルァミノ基、 ジェチルァミノ基、 ジプロピルアミノ基、 ェチルメチルァ ノ基、 メチルプロピルアミノ基等の炭素数 1〜 6のアルキル基が 2個置換したァミノ 基;ァセチル基、 プロピオニル基等の炭素数 1〜 6のアルキルカルボエル基;メ 卜キシカルポニル基、 エトキシカルポニル基、 n—プロポキシカルポニル基、 ィ ソプロポキシカルポニル基、 n _ブトキシカルボニル基、 t一ブトキシカルポ二 ル基等の炭素数 1〜 6のアルコキシ力ルポニル基;置換基を有していてもよいフ ェニルスルフィエル基;置換基を有していてもよいフエニルスルホニル基;又は 置換基を有していてもよいフエ二ルチオ基等が挙げられる。 これらの置換基は、 ヘテロ環の任意の位置に同一又は相異なって 2種類以上が置換していてもよい。 前記フエニルスルフィニル基、 フエニルスルホニル基及びフエ二ルチオ基の置 換基としては、 例えば、 フッ素原子、 塩素原子、 臭素原子等のハロゲン原子;メ チル基、 ェチル基等の炭素数 1〜6のアルキル基; トリフルォロメチル基、 2 , 2 , 2—トリフルォロェチル基、 ペン夕フルォロェチル基等の炭素数 1〜6のハ 口アルキル基;又は、 トリフルォロメトキシ基、 2, 2, 2—トリフルォロエト キシ基、 ペン夕フルォロエトキシ基等の炭素数 1〜6のハロアルコキシ基;等が 挙げられる。
(ィ) 極性有機溶媒
本発明に用いる極性有機溶媒は、 双極子モーメントをもつ分子からなる有機溶 媒であれば特に制限されない。 例えば、 ェ一テル系溶媒、 ケトン系溶媒、 ハロゲ ン化炭化水素系溶媒、 二トリル系溶媒、 アミド系溶媒、 ウレァ系溶媒、 エステル 系溶媒、 含硫黄系溶媒、 ハロゲン化芳香族炭化水素系溶媒等が挙げられる。
その具体例としては、 ジェチルエーテル、 テ卜ラヒドロフラン、 1 , 2ージメ トキシェタン、 1 , 4一ジォキサン等のエーテル系溶媒;アセトン、 メチルェチ ルケトン、 メチルイソプチルケトン、 シクロへキサノン等のケトン系溶媒;ジク ロロメタン、 クロ口ホルム、 四塩化炭素、 1 , 2—ジクロロェタン等のハロゲン 化炭化水素系溶媒;ァセトニトリル、 ベンゾニトリル等の二トリル系溶媒; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリ ドン、 へキサメチルリン酸ホスホロアミド等のアミド系溶媒; 1 , 3—ジメチル —2—イミダゾリジノン等のウレァ系溶媒;酢酸メチル、 酢酸ェチル、 酢酸 n— プロピル等のエステル系溶媒;ジメチルスルホキシド、 スルホラン等の含硫黄系 溶媒;クロ口ベンゼン、 クロ口トルエン、 ジクロロトルエン、 クロロキシレン等 の八ロゲン化芳香族炭化水素系溶媒;等が挙げられる。 前記極性有機溶媒溶液は、 これら極性有機溶媒の 2種以上を含有していてもよい。
これらの中でも、 有機化合物及び水をともに溶解し、 水とともに容易に蒸発留 去できる極性有機溶媒が好ましい。 このような極性有機溶媒としては、 例えば、 エーテル系溶媒又はケトン系溶媒が挙げられる。 これらの溶媒を使用した場合に、 好ましく本発明の方法を適用でき、 中でもエーテル系溶媒の使用がより好ましく、 テトラヒドロフランの使用が特に好ましい。
(ゥ) 水
本発明に用いる極性有機溶媒溶液中に含まれる水の量 (濃度) は特に制限され ず、 5 0重量%以上等の多量の水分を含む場合にも適用することができる。 多量 の水を含む場合には、 分液等の他の操作を用いて水分量を減少させてから、 本発 明の方法を用いるのが好ましい。
(X) ハロゲン化合物
本発明の方法は、 前記極性有機溶媒溶液に、 有機化合物、 水及び水又はアルコ —ル系溶媒と接触して有機化合物の分解を促進する物質を生成する化合物が存在 する場合に好適に用いることができる。 有機化合物の分解を促進する物質として は、 ハロゲン化合物が代表的である。
上記ハロゲン化合物としては、 塩素、 臭素、 ヨウ素等のハロゲン単体;金属塩 化物、 金属臭化物、 金属ヨウ化物等の金属ハロゲン化合物;有機塩素化物、 有機 臭素化物、 有機ヨウ化物等の有機ハロゲン化合物;等を例示することができる。 本発明の方法は、 これらのハロゲン化合物の中で、 ヨウ素またはアルカリ金属ョ ゥ素化合物が系内に含まれている場合に、 特に有効である。 アルカリ金属ヨウ素 化合物の例としては、 ヨウ化リチウム、 ヨウ化ナトリウム、 ヨウ化カリウム、 3 ゥ化マグネシウム、 ヨウ化カルシウム、 ヨウ化第二鉄、 ヨウ化亜鉛、 ヨウ化第二 銅等が挙げられる。
前記極性有機溶媒溶液は、 有機化合物、 及び水を含む極性有機溶媒溶液であれ ば特に制約されないが、 極性有機溶媒中、 前記式 (2 ) で表される化合物と前記 式 ( 3 ) で表される 4ーハロゲノメチルジォキソレノン化合物とを反応させて得 られる反応液、 又は該反応液を後処理 (該反応液を水等で洗浄し、 有機層を分取 する等) を行って得られた溶液であるのが好ましい。 本発明においては、 より収 率よく目的とする有機化合物を単離する場合に好適に用いることができる観点か ら、 後者の溶液であるのが好ましい。
前記式 (2 ) 中、 Aは前記と同じ意味を表す。
Mは、 水素原子; リチウム、 ナトリウム、 カリウム等のアルカリ金属;マグネ シゥム、 カルシウム等のアルカリ土類金属;又は、 銅 (I) 、 銅 (I I) 、 コバル ト (I I) 、 コバルト (I I I) 、 鉄 (I I) 、 鉄 (I I I) 、 亜鉛 (I I) 、 マンガン (I I) 等の遷移金属;等を表す。 また、 Mが水素以外の原子である場合、 式 ( 2 ) で表される化合物は、 無水物であっても、 水和物であってもよい。 前記式 (3 ) 中、 及び R 2は、 それぞれ独立して、 水素原子、 置換基を有 していてもよい炭素数 1〜 6のアルキル基又は置換基を有していてもよいフエ二 ル基を表す。
炭素数 1〜6のアルキル基としては、 例えば、 メチル基、 ェチル基、 n—プロ ピル基、 イソプロピル基、 n—ブチル基、 s e c—ブチル基、 t一ブチル基、 n 一ペンチル基、 n—へキシル基等が挙げられる。
前記炭素数 1〜 6のアルキル基及びフエニル基の置換基としては、 ニトロ基; シァノ基;フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子等のハロゲン原子;メ トキシ基、 エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 t—ブトキシ基等の炭素数 1〜6のアルコキシ基;メチルチオ基、 ェチルチオ基、 n—プロピルチオ基、 イソプロピルチオ基、 n—プチルチオ基、 t一プチルチオ 基等炭素数 1〜 6のアルキルチオ基;メチルスルフィニル基、 ェチルスルフィ二 ル基等の炭素数 1〜 6のアルキルスルフィニル基;メチルスルホニル基、 ェチル スルホニル基、 n—プロピルスルホニル基、 ィソプロピルスルホニル基、 n—ブ チルスルホニル基、 t一プチルスルホニル基等の炭素数 1〜 6のアルキルスルホ ニル基;メチルァミノ基、 ェチルァミノ基、 n—プロピルアミノ基等の炭素数 1 〜6のアルキル基が 1個置換したアミノ基;ジメチルァミノ基、 ジェチルァミノ 基等の炭素数 1〜6のアルキル基が 2個置換したアミノ基;ァセチル基、 プロピ ォニル基等の炭素数 1〜 6のアルキルカルボニル基;メ卜キシカルボニル基、 ェ トキシカルボニル基等の炭素数 1〜6のアルコキシ力ルポニル基; G 2で置換さ れていてもよいフエニルスルフィニル基、 G 2で置換されていてもよいフエニル スルホニル基、 G 2で置換されていてもよいフエ二ルチオ基等が挙げられる。 前記 G 2としては、 例えば、 フッ素原子、 塩素原子、 臭素原子等のハロゲン原 子;メチル基、 ェチル基等の炭素数 1〜 6のアルキル基; トリフルォロメチル基 等の炭素数 1〜6のハロアルキル基; トリフルォロメトキシ基等の炭素数 1〜6 のハロアルコキシ基;等が挙げられる。
また、 1^と R 2は互いに結合して、 置換基を有していてもよい炭素数 3〜 8 の環を形成してもよい。 炭素数 3〜8の環としては、 シクロペンテン環、 シクロ へキセン環、 シクロヘプテン環、 シクロォクテン環等が挙げられる。 前記環の置 換基としては、 メチル基、 ェチル基等の炭素数 1〜 6のアルキル基;メトキシ基、 エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 t一ブト キシ基等の炭素数 1〜6のアルコキシ基;フッ素原子、 塩素原子等のハロゲン原 子;メチルチオ基、 ェチルチオ基等の炭素数 1〜 6のアルキルチオ基;ジメチル アミノ基、 ァセチルァミノ基等の置換アミノ基;ニトロ基;シァノ基;等が挙げ られる。 また、 これらの置換基は、 任意の位置で、 同一若しくは相異なって複数 個が置換していてもよい。
これらのうち、 1^及び1^ 2としては、 水素原子又は炭素数 1〜6のアルキル 基が好ましく、 水素原子又はメチル基であるのが特に好ましい。
前記式 (3 ) で表される 4ーハロゲノメチルジォキソレノン化合物の好ましい 具体例としては、 次のものが挙げられる。
Figure imgf000019_0001
Figure imgf000019_0002
前記式 (3) で表される 4—ハロゲノメチルジォキソレノン化合物は、 例えば、 USP. 4, 448, 732号公報に記載の方法等により製造し、 入手すること ができる。 前記式 (2 ) で表される化合物と前記式 (3 ) で表される 4一八ロゲノメチル ジォキソレノン化合物との反応においては、 反応を円滑に進行させ得るために相 間移動触媒を添加してもよい。 当該相間移動触媒の例には、 4級アンモニゥム塩、 (例えば、 テトラメチルアンモニゥムクロリド、 テトラェチルアンモニゥムクロ リド、 テトラプロピルアンモニゥムクロリド、 テトラプチルアンモニゥムクロリ ド (T B A C) 等のテトラアルキルアンモニゥムクロリド;テトラメチルアンモ 二ゥムブ口ミド、 テトラェチルアンモニゥムブロミド、 テトラプロピルアンモニ ゥムブロミド、 テトラプチルアンモニゥムブロミド等のテ卜ラアルキルアンモニ ゥムブロミド;ベンジルトリメチルアンモニゥムクロリド、 ベンジルトリメチル アンモニゥムプロミド、 ベンジル—トリ— n—プチルアンモニゥムクロリド (B T B A C) 、 ベンジル—トリ— n—プチルアンモニゥムブロミド等のベンジルト リアルキルアンモニゥム八ライドなど) などが含まれる。
前記反応において、 前記式 (2 ) 中、 Mが水素原子である場合 (すなわち、 式 ( 2 ) の化合物がカルボン酸である場合) には、 反応系に塩基を添加するのが好 ましい。 用いる塩基の例には、 水酸化ナトリウム、 水酸化カリウム等のアルカリ 金属水酸化物;水酸化マグネシウム、 水酸化カルシウム等のアルカリ土類金属水 酸化物;炭酸ナトリゥム、 炭酸力リゥム等のアル力リ金属炭酸塩、 炭酸水素ナト リゥム、 炭酸水素力リゥム等のアル力リ金属炭酸水素塩;炭酸マグネシウム、 炭 酸カルシウム等のアル力リ土類金属炭酸塩;水素化ナトリゥム、 水素化カルシゥ ム等の金属水素化物;ナトリウムメトキシド、 ナトリゥムエトキシド、 力リゥム ルコキシド; トリエヂルァミン、 ピリジン等の有機塩基が含まれる。
2 ) 脱水工程
本発明は、 前記極性有機溶媒溶液から極性有機溶媒とともに水を留去すること により、 水の濃度が所定値以下である有機化合物の溶液を得るに際し、 (a ) 極 性有機溶媒を前記溶液に連続的に添加しながら、 極性有機溶媒とともに水を留去 する、 又は (b ) 極性有機溶媒の所定量を前記溶液に添加して、 前記溶液から極 性有機溶媒とともに水を留去する操作を複数回繰り返すことを特徴とする。 前記 ( a ) 又は (b ) の操作方法を採用することにより、 槽内の液レベルの変動が抑 制され、 高濃度の濃縮液が槽壁面に付着することが防止されることを見出した。 その結果、 高濃度の濃縮液が槽壁面で加熱されて分解するのを防止することがで きる。
脱水工程において添加する極性溶媒は、 前記溶液に含まれる極性溶媒と同一で あっても相異なるものであってもよい。 その具体例としては、 前記溶液に含まれ る極性溶媒として列記したものと同様なものが挙げられる。
本発明においては、 前記 ) 及び (b) のいずれの操作方法も採用できるが、 脱水工程において溶液の液界面部分の位置 (水平面) が変化すると、 界面の下が つた局部において必要以上に液残渣が加熱されて有機化合物の分解を促進する化 合物が生成しやすくなり、 その結果、 有機化合物の分解が促進されやすくなる。 従って、 槽の加熱部分は、 現状の液界面の位置とほぼ同一、 また下位が好ましく、 溶液の留去に伴う液界面部分の変化をなるベく少なくするために、 極性有機溶媒 の添加量は、 留出する極性有機溶媒及び水の量 (体積) とほぼ同体積とするのが 好ましい。
脱水工程は、 前記溶液を収容した槽中で行なうことができる。 前記溶液が反応 液の場合には、 反応終了後、 使用した反応槽中で連続的に脱水工程を行なうこと ができる。 また、 反応液を別の槽へ移送して脱水工程を行なうこともできる。 前記溶液から極性有機溶媒とともに水を留去するには、 槽を所定温度に加熱す ればよい。 槽の加熱温度は、 極性有機溶媒の種類にも依存する。 槽の加熱温度が 高いほど脱水工程の作業効率は向上するが、 加熱温度があまりに高いと有機化合 物の分解が促進されるおそれがある。 従って、 有機化合物の分解を抑制しつつ、 効率よく極性有機溶媒及び水の留去を行なうには、 減圧下に加熱して極力低い温 度で極性有機溶媒及び水の留去を行なうのが好ましい。
脱水工程における溶液の加熱温度、 槽内の減圧度は、 用いる極性有機溶媒の沸 点、 有機化合物の熱安定性等により定めることができるが、 通常、 0〜8 0 °C、 好ましくは 1 0〜7 0 °C、 より好ましくは 2 0〜5 0 °Cである。 加熱するときの 槽内部の圧力は、 l〜1 0 0 k P a、 好ましくは 1 0〜5 0 k P aである。
また脱水工程は、 槽に公知の蒸留装置を取り付けて行うのが好ましい。 蒸留装 置としては、 留出する極性有機溶媒及び水を捕集することができるものであれば 特に制約されず、 例えば、 配管、 冷却管及び捕集器を有する蒸留装置を用いるこ とができる。
脱水工程後の溶液中の水は、 目的とする有機化合物を高い単離収率で得ること ができる程度にまで除去されていればよいが、 脱水工程後の溶液の水含有量は、 脱水工程後の溶液全体に対して、 通常 4重量%以下、 好ましくは 3 . 5重量%以 下である。 脱水工程後の溶液の水含有量は、 公知の水分測定装置 (例えば、 カー ルフイツシャ一水分計など) により測定することができる。
3 ) 晶析工程
次に、 水の含有量が所定値以下となった溶液から、 有機化合物を単離する。 有機化合物を単離する方法としては、 例えば、 ( i ) 脱水工程で得られた溶液 から極性有機溶媒を留去して、 残留物に晶析溶媒を添加して晶析する方法、 (i i) 前記脱水工程で得られた溶液に晶析溶媒を添加しながら、 前記溶液から極性有機 溶媒を留去することにより、 有機化合物を晶析させる方法、 (i i i)該残留物に再 結晶溶媒を添加して再結晶する方法、 (iv)該残留物をカラムクロマトグラフィー の手法により精製する方法等が挙げられる。 尚、 晶析溶媒とは、 有機化合物に対 する溶解度が低く、 好ましくは不純物に対する溶解度が大きい有機溶媒を表し、 具体的には、 再結晶に用いる溶媒 (再結晶溶媒) 、 晶析させる有機化合物に対す る溶解度がかなり低い溶媒 (一般的に、 貧溶媒と称される) 等を例示することが できる。 また、 貧溶媒、 再結晶溶媒の区別は厳密なものではなく、 場合によって 使い分けるものとする。
これらの方法の中でも、 (i)又は(i i)の方法を採用するのが好ましく、 (i i)の 方法が特に好ましい。 また、 (i)や(i i)の方法によれば、 他の方法に比して晶析 溶媒の使用量を削減することができる。
上記(i i)方法において、 晶析溶媒を添加する方法としては、 晶析溶媒の所定量 を複数回に分けて添加する方法や、 晶析溶媒の一定量を連続的に添加する方法が 挙げられる。 本発明においては、 いずれの方法も採用することができるが、 晶析 工程において溶液量が減ると、 液界面部分において溶液が局部的に濃縮されやす くなるため、 溶液の液界面部分の位置を一定にすべく、 晶析溶媒の添加量は、 留 出する極性有機溶媒量 (体積) と略同体積とするのが好ましい。 用いる晶析溶媒としては、 有機化合物の溶解度が低く、 有機化合物が分解する ことなく安定に存在する溶媒であれば特に制約されないが、 アルコール系溶媒の 使用が好ましい。
アルコール系溶媒としては, 例えば、 メタノ一ル、 エタノール、 n—プロピル アルコール、 イソプロピルアルコール、 n—ブチルアルコール、 s e c—ブチル アルコール、 t一ブチルアルコール等の炭素数 1〜 6のアルコールが挙げられる。 中でも、 炭素数 1〜3のアルコールの使用が好ましく、 エタノールの使用が特に 好ましい。
晶析工程は、 前記脱水工程を行なった槽中で連続的に行なうこともできるが、 脱水工程で得られた溶液を別の槽に移送して、 別の槽中で行なうこともできる。 晶析工程は、 槽を加熱することにより極性有機溶媒を蒸発除去することにより 行なうことができる。 槽の加熱温度は、 極性有機溶媒の種類にもよるが、 加熱温 度が高いほど溶媒置換工程の作業効率は向上するものの、 あまりに高い温度に加 熱すると有機化合物の分解反応が進行しやすくなる。 従って、 極力低い温度で極 性有機溶媒の留去を効率よく行なうためには、 減圧下に加熱するのが好ましい。 晶析工程における溶液の温度は、 通常、 0 °C〜8 0 ° (:、 好ましくは 1 0 °C〜7 0 °C, より好ましくは 2 0 °C〜5 0 °Cである。 加熱するときの槽内部の圧力は、 1〜: L 0 0 k P a、 好ましくは 5〜5 0 k P aである。
晶析工程後の溶液中の極性有機溶媒の濃度は、 通常 5重量%以下、 好ましくは 3重量%以下、 より好ましくは 1重量%以下である。
極性有機溶媒の除去が終了した後、 得られた溶液を 1 0 以下、 好ましくは 0 〜i o t:に冷却することにより、 目的とする有機化合物を晶析することができる。 晶析のための冷却時間は、 通常、 数十分から数時間である。
析出した有機化合物は濾過法により濾取する方法や、 遠心分離機により晶析溶 媒を除去する方法等により単離することができる。 また、 得られた有機化合物を、 所望により再結晶又は晶析溶媒で洗浄してもよい。
以上のようにして、 目的とする有機ィ匕合物を効率よく単離することができる。 得られた有機化合物の構造は、 I Rスペクトル、 マススペクトル、 — NMR スペクトルの測定、 ガスクロマトグラフィー、 高速液体クロマトグラフィーなど により確認することができる。 実施例
次に、 実施例により本発明を更に詳細に説明する。 本発明は下記実施例に限定 されるものではない。
なお、 以下の実施例及び比較例において、 出発原料として用いた (5R, 6 S) - 6- (1— (R) —ヒドロキシェチル) —7—ォキソ一 3— (2— (R) —テトラヒドロフリル) ー4一チア _ 1ーァザビシクロ [3. 2. 0]ヘプトー 2 一ェンー 2—カルボン酸のナトリウム塩 2. 5水和物は、 特開昭 63— 1 626 94号公報記載の方法に従って製造した。
(実施例 1 )
Figure imgf000024_0001
(5 R, 6 S) -6- (1— (R) —ヒドロキシェチル) — 7—ォキゾ一 3— (2— (R) ーテトラヒドロフリル) 一 4—チア一 1—ァザビシクロ [3. 2. 0]ヘプト— 2—ェンー 2—力ルボン酸のナトリウム塩 2. 5水和物 1 1 1. 0 g (純度: 98. 4%) 、 ヨウ化カリウム 5. 1 5 g、 炭酸水素ナトリウム 2. 60 g及び BTBAC 3. 87 gを THF46 5m 1に混合し、 そこへ、 4— クロロメチルー 5 _メチル一2—ォキソ一 1, 3—ジォキソレン 50. 48 g (純度: 9 7. 2 %) を添加し、 30でで 2時間、 次いで、 5 5°Cで 4時間攪拌 した。 反応終了後、 反応液を水 1 5 5m lで 1回、 炭酸水素カリウムで pH==8 に調整した 20%食塩水 155mlで 2回洗浄した後、 有機層を分取した。 以上 のようにして、 式 (5) で表される j8—ラクタム化合物 (以下、 「化合物 (5) 」 という。 ) 、 ヨウ素化合物、 水及び THFを含む i3—ラクタム化合物 の溶液 (以下、 「溶液 A」 という。 ) 534. 7 gを得た。 高速液体カラムクロ マトグラフィ一による定量分析の結果、 目的とする化合物 (5) が 22. 44重 量%含まれていた(収率: 97. 4%)。 また、 溶液 A中の水含有量は約 4重量% であった。
上記で得た溶液 Aを 17. 3〜: 19. 3 kP aに減圧し、 温度を 20〜 32 °C (バス温 40°C) として、 THFを留出させた。 THFが約 90ml留出した 毎に新しい THF 90m 1を溶液 Aに追加した。 この操作を 3回繰り返した。 こ のようにして化合物 (5) の THF溶液を得た。 得られた溶液は、 化合物 (5) の 0. 9リットル/モル溶液であり、 溶液 Aに含まれる水含有量を測定したとこ ろ、 0. 47重量%であった。
次に、 溶液 Aを 75t:まで加温して THFを留出させ、 化合物 (5) の濃縮 T HF溶液 (約 0. 25リットル/モル THF溶液) とした後、 エタノール 95m 1を加えた。 得られた溶液を撹拌して均一な溶液とし、 16〜20 kPaに減圧 して、 23〜40°C (バス温: 23〜40°C) で THFとエタノールを留去させ た。 このとき、 溶液の体積が変わらないようにエタノールを一定速度で滴下し、 溶液 Bを得た。 滴下したエタノール量は合計で 105mlであった。 また、 溶液 Bは化合物 ( 5 ) の 1. 2リットル /モル溶液であつた。
次に、 溶液 Bを 15°Cに 30分間冷却して、 化合物(5)を晶析させた。 析出し た結晶を濾取し、 冷エタノール 12mlで 2回洗浄した。 得られた結晶を乾燥し て化合物 (5) の粗結晶 35. 65 gを得た。 このものの純度は 98. 9%、 収 率は 88. 7%であった。
化合物 (5) の粗結晶をエタノール 18 Omlに懸濁させ、 60°Cで 10分間 加熱して、 結晶を完全に溶解させた。 この溶液を加圧濾過して得られた濾液を 3 O 付近で 30分間保持した後、 10. 6〜13. 3 kP aの減圧下、 30〜3 5 でエタノール 80m 1を留去させた。 次いで、 得られた溶液を 15°Cで 30 分間冷却して化合物 (5) を晶析させた。 晶析した結晶を濾取し、 冷エタノール 13mlで 2回洗浄して、 化合物 (5) の結晶を得た。 このものの純度は 99. 5%、 収率は 85. 1%であった。
(実施例 2 )
実施例 1において、 溶液 Aより減圧下 THFを留去する操作を、 溶液 A付近ま で届くノズルを通して、 THFを滴下しながら減圧留去する操作を行う以外、 実 施例 1と同様に処理等を行った。 実施例 1とほぼ同等の結果が得られた。
(比較例 1 )
実施例 2において、 溶液 Aから THFを留去する工程において、 THFを連続 添加することなく一度に添加した後、 THFの留去を行った。 THFを留去した 後の溶液中の水分含有量は 2重量%であった。 その後、 実施例 1と同様の操作を 行い、 化合物 (5) を単離した。 実施例 1で得た化合物 (5) と同等の純度のも のが得られたが、 収率が 80 %と低下した。
(比較例 2)
比較例 1において、 THFを留去する工程後、 エタノールを連続添加すること なく一度に添加した後、 ェ夕ノ一ル— THFの留去を行う以外は、 比較例 1と同 様の操作を行ない、 化合物 (5) を単離した。 実施例 1で得た化合物 (5) と同 等の純度のものが得られたが、 収率が 70%と低下した。 この場合に、 母液中に 収率が低下した分の化合物 (5) が含まれていることがわかった。 母液の溶媒組 成を調べたところ、 THFが多く残存しており、 化合物 (5) が THFに溶解す ることから収率の低下につながつたものと考えられた。 一括して添加するェタノ 一ル量を 3倍に増やし、 同様の操作を行ったところ、 純度、 収率とも比較例 1と 同等の結果が得られたが、 使用する溶媒量は増加した。 産業上の利用の可能性
本発明によれば、 より短時間で極性有機溶媒溶液から水を除去することができ るので、 水を多く含んだ極性有機溶媒中で有機化合物が長時間加熱されて分解す るのを防止でき、 高い単離収率で有機化合物を効率よく単離することができる。 また、 晶析溶媒を添加しながら極性有機溶媒を留去させることにより、 合計の晶 析溶媒の使用量を少なくすることができ、 製造コストの面からも有利である。

Claims

請求の範囲
1 . 有機化合物及び水を含む極性有機溶媒溶液から水を留去することにより、 水の濃度を所定値以下にする脱水工程を有する有機化合物の製造方法であって、 該脱水工程が、 極性有機溶媒を前記極性有機溶媒溶液に添加しながら、 極性有機 溶媒とともに水を留去する工程、 又は極性有機溶媒を前記極性有機溶媒溶液に添 加して、 極性有機溶媒とともに水を留去する操作を複数回行う工程であることを 特徴とする有機化合物の製造方法。
2 . 前記極性有機溶媒溶液が、 水又はアルコール系溶媒と接触して酸性物質を 生成するハロゲン化合物を含むものであることを特徴とする請求項 1に記載の有 機化合物の製造方法。
3 . 前記ハロゲン化合物が、 ヨウ素化合物であることを特徴とする請求項 2に 記載の有機化合物の製造方法。
4 . 前記ヨウ素化合物が、 ヨウ素又は金属ヨウ化物であることを特徴とする請 求項 3に記載の有機化合物の製造方法。
5 . 前記極性有機溶媒溶液が、 エーテル系溶媒又はケトン系溶媒の溶液である ことを特徴とする請求項 1〜 4のいずれかに記載の有機化合物の製造方法。
6 . 請求項 1〜5のいずれかに記載の脱水工程を行った後に、 得られた溶液に 有機化合物に対する貧溶媒を添加しながら、 前記溶液から極性有機溶媒を留去す ることにより、 有機化合物を晶析する晶析工程を有することを特徴とする有機化 合物の製造方法。
7 . 前記貧溶媒として、 アルコール系溶媒を用いることを特徴とする請求項 6 に記載の有機化合物の製造方法。
8 . 前記有機化合物が、 i3—ラクタム化合物であることを特徴とする請求項 1 〜 7のいずれかに記載の有機化合物の製造方法。
9 . 前記有機化合物が、 式 (1 )
Figure imgf000028_0001
(式中、 Aは /3—ラクタム環構造を有する縮合へテロ環基を表し、 Bは、 置換 基を有していてもよい炭素数 1〜2 0のアルキル基、 置換基を有していてもよい 炭素数 2〜2 0のアルケニル基、 置換基を有していてもよい炭素数 2〜2 0のァ ルキニル基、 置換基を有していてもよいァリール基又は置換基を有していてもよ いへテロ環基を表す。 ) で表される /3—ラクタム化合物であることを特徴とす る請求項 1〜 8のいずれかに記載の有機化合物の製造方法。
1 0 . 前記極性有機溶媒溶液が、 式 (2 )
A 0一 M
(2)
0
(式中、 Aは、 /3—ラクタム環構造を有する縮合へテロ環基を表し、 Mは、 水素 原子又は金属原子を表す。 ) で表される化合物に、 極性有機溶媒中、 式 (3 )
Figure imgf000029_0001
(式中、 R 1及び R 2はそれぞれ独立して、 水素原子、 置換基を有していてもよ い炭素数 1〜 6のアルキル基又は置換基を有していてもよいフエ二ル基を表す。 また、 R 1と R 2とが結合して、 置換基を有していてもよい炭素数 3〜 8の環を 形成してもよい。 また、 Xはハロゲン原子を表す。 ) で表される 4—ハロゲノメ チルジォキソレノン化合物とを反応させて得られる反応液、 又は該反応液を後処 理して得られる溶液であることを特徴とする請求項 1〜 9のいずれかに記載の有 機化合物の製造方法。
PCT/JP2003/012662 2002-10-02 2003-10-02 有機化合物の製造方法 WO2004031196A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002500330A CA2500330C (en) 2002-10-02 2003-10-02 Processes for preparation of organic compounds
US10/529,392 US7358356B2 (en) 2002-10-02 2003-10-02 Processes for preparation of organic compounds
AU2003268738A AU2003268738A1 (en) 2002-10-02 2003-10-02 Processes for preparation of organic compounds
EP03748679A EP1548017A4 (en) 2002-10-02 2003-10-02 PROCESS FOR PRODUCING ORGANIC COMPOUNDS
JP2004541275A JP4326471B2 (ja) 2002-10-02 2003-10-02 有機化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002290156 2002-10-02
JP2002-290156 2002-10-02

Publications (1)

Publication Number Publication Date
WO2004031196A1 true WO2004031196A1 (ja) 2004-04-15

Family

ID=32063760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012662 WO2004031196A1 (ja) 2002-10-02 2003-10-02 有機化合物の製造方法

Country Status (8)

Country Link
US (1) US7358356B2 (ja)
EP (1) EP1548017A4 (ja)
JP (1) JP4326471B2 (ja)
KR (1) KR100725440B1 (ja)
CN (1) CN100519563C (ja)
AU (1) AU2003268738A1 (ja)
CA (1) CA2500330C (ja)
WO (1) WO2004031196A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977475B2 (en) * 2005-10-05 2011-07-12 Ranbaxy Laboratories Limited Process for the preparation of faropenem
CN102838620B (zh) * 2012-09-05 2014-07-30 河北科技大学 一种阿莫西林钠结晶的制备工艺
KR20150076223A (ko) * 2012-10-29 2015-07-06 시오노기세야쿠 가부시키가이샤 2-알킬 세펨 화합물을 위한 중간체의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003444A1 (en) * 1990-08-20 1992-03-05 Suntory Limited Penem compounds
JPH05301882A (ja) * 1992-04-22 1993-11-16 Nippon Oil & Fats Co Ltd 水溶性リン脂質の粉末化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0178956B1 (ko) * 1990-08-20 1999-03-20 도리이 신이치로 항균성 페넴 에스테르 유도체
US7041820B2 (en) * 2001-03-30 2006-05-09 Nippon Soda Co., Ltd. Process for producing (dioxolenon-4-yl)methyl ester derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003444A1 (en) * 1990-08-20 1992-03-05 Suntory Limited Penem compounds
JPH05301882A (ja) * 1992-04-22 1993-11-16 Nippon Oil & Fats Co Ltd 水溶性リン脂質の粉末化方法

Also Published As

Publication number Publication date
EP1548017A4 (en) 2010-06-02
JPWO2004031196A1 (ja) 2006-02-02
CA2500330A1 (en) 2004-04-15
CA2500330C (en) 2008-08-12
CN100519563C (zh) 2009-07-29
AU2003268738A8 (en) 2004-04-23
KR100725440B1 (ko) 2007-06-07
JP4326471B2 (ja) 2009-09-09
US20060058521A1 (en) 2006-03-16
CN1705673A (zh) 2005-12-07
AU2003268738A1 (en) 2004-04-23
US7358356B2 (en) 2008-04-15
KR20050046804A (ko) 2005-05-18
EP1548017A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
WO2004099149A1 (ja) 2-クロロ-5-フルオロ-3-置換ピリジンまたはその塩の製造方法
TWI732808B (zh) 1,3-苯并二氧雜環戊烯雜環化合物之製備方法
JP2005526049A (ja) ベンゾイソキサゾールメタンスルホニルクロリドの調製及びゾニスアミドを形成するためのそのアミド化の方法
JP5008404B2 (ja) メチレンジスルホネート化合物の製造方法
WO2004031196A1 (ja) 有機化合物の製造方法
JP2000504000A (ja) ジケトン化合物を製造する方法
US7041820B2 (en) Process for producing (dioxolenon-4-yl)methyl ester derivative
JP7138628B2 (ja) 3-アリールプロピオンアミド化合物及び3-アリールプロピオン酸エステル化合物の製造方法
JP5605104B2 (ja) ピラゾール化合物の製造方法
JP6763401B2 (ja) ベンズオキサゾール化合物の製造方法
JP2005502651A (ja) 高純度セフロキシムアキセチルの製造方法
JPH10298130A (ja) トリクロロイソシアヌル酸を用いた置換アルケンの塩素化
JP6996067B2 (ja) 3-メチル-2-チオフェンカルボン酸の製造方法
JP2002527417A (ja) 化学的方法
JPS6233137A (ja) 3,3’−ジニトロベンゾフエノンの精製方法
EP2174940A1 (en) Process for production of optically active mirtazapine
EP0994099A1 (en) Chemical processes
JP4356917B2 (ja) ビスアミノメチル−1,4−ジチアン類の製造方法及びその中間体
JP2011105672A (ja) 2−ヒドロキシ−6−ビニルナフタレンの製造方法
JPH1149737A (ja) 光学活性な1−アリールエトキシアミン誘導体およびその製造方法
JPS63250363A (ja) シクロゲラニルフエニルスルホンの製造方法
CN106795164A (zh) 一种用于制备3‑苯基/杂芳基‑6‑苯氧基‑8‑烷基氨基‑咪唑并[1,2‑b]哒嗪衍生物的方法
WO2014024752A1 (ja) 5-トリフルオロメチル-4-トリフルオロメチルスルホニル-2-イソキサゾリン誘導体およびその製造方法
JP2002205981A (ja) フッ素置換ベンズアミドキシムo−アルキルエーテル類の精製方法
JPH11322702A (ja) 光学活性なヒドロキサム酸誘導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004541275

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057004911

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2500330

Country of ref document: CA

Ref document number: 485/CHENP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006058521

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529392

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003748679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A17298

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004911

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003748679

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529392

Country of ref document: US