WO2004029304A1 - 表面性状に優れたCu含有鋼材およびその製造方法 - Google Patents

表面性状に優れたCu含有鋼材およびその製造方法 Download PDF

Info

Publication number
WO2004029304A1
WO2004029304A1 PCT/JP2003/011589 JP0311589W WO2004029304A1 WO 2004029304 A1 WO2004029304 A1 WO 2004029304A1 JP 0311589 W JP0311589 W JP 0311589W WO 2004029304 A1 WO2004029304 A1 WO 2004029304A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
oxide scale
steel
containing steel
heating
Prior art date
Application number
PCT/JP2003/011589
Other languages
English (en)
French (fr)
Inventor
Yasumitsu Kondo
Kaoru Kawasaki
Hiroshi Harada
Wataru Ohashi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to AU2003262062A priority Critical patent/AU2003262062A1/en
Priority to KR1020057005373A priority patent/KR100652945B1/ko
Priority to CN03825411.5A priority patent/CN1703525B/zh
Publication of WO2004029304A1 publication Critical patent/WO2004029304A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a Cu-containing steel material produced by hot rolling and having excellent surface properties, and a method for producing the same. More specifically, the steel has excellent surface properties that can suppress the enrichment of Cu on the surface of the steel material during the heat treatment of the steel material prior to hot rolling, thereby preventing the occurrence of red-hot brittleness of the steel material.
  • the present invention relates to a Cu-containing steel material and a method for producing the same. Background art
  • the steel is It is charged into a standing heating furnace, heated for about 1 to 4 hours by the combustion gas, extracted from the heating furnace at a temperature of about 110 to 130 ° C., and then oxidized with high-pressure water. Is removed (descaling) and then hot-rolled.
  • the combustion gas supplied into the heating furnace contains oxidizing gases such as oxygen, water vapor and carbon dioxide, so that an oxide scale layer is formed on the surface of the steel material heated to a high temperature in the heating furnace.
  • the oxide scale layer is mainly an oxide of iron, in general, Matthew to the surface layer preparative (F e 2 O 3), Magunetai bets (F e 3 O 4), Usutai three layers of bets (F e O) Consists of .
  • iron When iron is oxidized by the oxidizing gas in the combustion gas at high temperatures, if iron contains metals noble such as Cu and Ni, these metals are oxidized. It concentrates at the interface between the oxide scale layer and the iron base. In the case of Cu, the solubility in y-iron is only about several percent, and when the amount of Cu enrichment exceeds that, Cu appears as a metal phase. The melting point of Cu is 1800 ° C. Since the steel material is usually heated at a higher temperature before hot rolling, the liquid phase of molten Cu changes to the oxide scale Z This penetrates into the grain boundaries of the base iron and becomes incapable of withstanding the shear stress and tensile stress during hot rolling, causing surface cracks, or red hot embrittlement.
  • Ni in an amount approximately equal to or greater than the Cu concentration is effective in preventing red hot embrittlement caused by Cu. This is because the addition of Ni increases the solid solubility limit of Cu in ⁇ -iron and raises the melting point of the Cu-enriched phase. This is because the appearance can be suppressed (for example, see Japanese Patent Application Laid-Open No. Hei 7-242938).
  • Japanese Patent Application Laid-Open No. Hei 6-297706 describes that the addition of Si also has an effect of preventing red-hot embrittlement.
  • oxide scale / Generates firelite near the ferrous metal interface and reacts with wustite in the oxide scale at 117 ° C or higher to form liquid phase oxide. Since the liquid phase of Cu is taken into this liquid phase, intrusion of the liquid phase Cu into the grain boundary of the ground iron of Cu is suppressed.
  • the method of adding Ni to prevent red-hot brittleness due to Cu has a problem that the use of expensive metal Ni increases costs. Also, since Ni promotes grain boundary oxidation during heating, even though red hot embrittlement due to Cu could be prevented, there was a problem in that oxide scale flaws were generated by inhibiting the exfoliation of oxide scale. May be.
  • the steel to which Si is added has poor peeling of the oxide scale, and the oxide scale remains even after descaling with high-pressure water before rolling. There is a problem that the surface properties are impaired, such as the surface of the steel material becoming red. Furthermore, if there is a subsequent pickling step, the oxide scale is difficult to dissolve in the pickling step, so that the cost of the pickling step increases and the productivity also decreases. Disclosure of the invention
  • the present invention is to reduce the occurrence of red hot embrittlement of steel caused by Cu during hot rolling of a Cu-containing steel, preferably by changing the steel composition such as addition of Ni or Si. More specifically, the concentration of Cu on the steel surface during heating of a steel material containing 0.05 to 3% by mass of ⁇ 11 can be advantageously suppressed to reduce red hot brittleness. It is an object of the present invention to provide a Cu-containing steel material which avoids generation and has excellent surface properties and a method for producing the same.
  • the present invention provides the following (1) to (9) to solve the above problems. It is a summary.
  • the Cu concentration C Cu (mass%) of the base material is 0.05% or more and 3% or less, and the cross section of the steel material perpendicular to the rolling direction is cut.
  • C u concentrated amount E C u per unit surface area you concentrated in the vicinity of the interface between the oxide scale and base iron has a relationship represented by the following formula (1):
  • the Cu concentration C Cu (mass%) of the base metal is 0.05% or more and 3% or less, and the cross section of the steel material perpendicular to the rolling direction is cut.
  • the effective thickness of the steel material which is obtained by dividing the area s by its perimeter 1, is defined as d (mm), and is more noble than iron for oxidation and has a melting point in the temperature range from 100 ° C to 130 ° C.
  • the Cu-containing steel material has a mass of 0 /. , Ti: 0.01 to 0.15%, Nb 0.1 to 0.15%, V: 0.01 to 0.15%, either 1 or 2 Species or more, P: 0.010 to 0.10%, S: 0.010 to 0.050%, REM: 0.02 to 0.1
  • the Cu-containing steel material having excellent surface properties according to any one of the above (1) to (3), characterized by containing 50% or more of one or more kinds.
  • At least one or more of Ti, Nb, and V are carbides, nitrides, or carbonitrides having a particle size of 10 or more. 1 mu m or less of the number density or more nm 1 0 5 / mm 2 or more - C u containing steel having excellent surface properties like according to (5), characterized in that it contains the precipitates.
  • the Cu content CCu (mass%) of the steel material is set to 0.0. 5% or more and 3% or less, and in the entire or partial area of the heating furnace where the surface temperature of the steel material becomes 180 ° C. or higher during heating in the heating furnace,
  • the atmosphere low oxygen concentration atmosphere condition
  • the oxygen concentration p 02 volume%
  • the Cu content CCu (mass%) of the steel is set to 0.1%. 0% or more and 3% or less, and after the extraction of the steel material from the heating furnace and before the start of the hot rolling, a treatment for removing the oxide scale generated on the surface of the steel material is performed twice or more.
  • the effective steel thickness which is obtained by dividing the cross-sectional area s of the steel cross-section perpendicular to the rolling direction after hot rolling by its perimeter 1, is d.
  • the Cu enrichment per unit surface area E Cu (g ⁇ cm ” 2 ) enriched near the interface between the oxide scale of the Cu- containing steel material and the base iron is 18.6 C
  • FIG. 1 shows the occurrence of surface cracks in steel due to red hot embrittlement during hot rolling, and the units concentrated near the oxide scale / base iron interface of the steel after hot rolling.
  • FIG. 4 is a diagram showing the relationship between the Cu amount per surface area (Cu enrichment amount) and the effective steel thickness.
  • Figure 2 shows the distribution of Cu in the depth direction from the surface of a steel material with an oxide scale on the surface, and shows the amount of Cu per unit surface area concentrated near the oxide scale Z interface of the steel (Cu enrichment).
  • Fig. 7 is a diagram for explaining a method of determining the amount from the GDS analysis result.
  • FIG. 3 is a diagram showing the relationship between the number density of precipitates having a particle size of 10 nm or more and 1 ⁇ m or less and the surface crack depth.
  • FIG. 4 schematically shows an embodiment of equipment from a heating furnace to a hot rolling mill for carrying out the first production method of the present invention, and also shows an oxide scale layer of a steel material surface layer in this embodiment. It is a figure which shows the generation
  • Fig. 5 shows an example of facilities from a heating furnace to a hot rolling mill, and examples of heat treatment conditions for implementing the second production method of the present invention, and the formation of an oxide scale layer on the steel surface during the treatment. It is a figure which shows a situation typically.
  • the present inventors In order to avoid red hot embrittlement by reducing the amount of Cu concentrated at the oxide scale / base iron interface, the present inventors have determined the amount of volatile Cu and the amount of Cu dissolved in the magnetite layer. The inventors have conceived that it is useful to increase the amount, and have further studied and made the present invention. That is, in order to volatilize Cu from the oxide scale surface, as described above, it is necessary to generate an oxide scale composed of wustite. In the present invention, the conditions will be described in detail later.
  • the Cu content of the steel material targeted by the present invention is 0.05% or more and 3% or less in mass%. If the content is less than 0.05% by mass, red heating embrittlement due to Cu does not occur even when heating is performed in a normal heating furnace. If the Cu concentration exceeds 3% by mass, the effect of the solid solution of Cu in the magnetite layer in the oxide scale and the volatilization of Cu from the surface, which are new findings mentioned above, can be expected. This causes red hot brittleness during rolling.
  • the present inventors have proposed that, for steel materials having various Cu contents, under various conditions of various as-formed steel thicknesses (50 mm to 250 mm) and various as-rolled steel effective thicknesses (1 mm to 10 Omm),
  • the steel was forged, heated and hot rolled.
  • the heating at that time was performed by LNG combustion heating, the heating temperature was 110 ° C to 130 ° C, and the oxygen concentration in the heating atmosphere was 0% to 5% by volume.
  • the oxygen concentration in the heating atmosphere for example, by setting the atmosphere to a low oxygen concentration atmosphere, an oxide scale consisting of a wustite layer is generated and concentrated at the oxide scale Z base iron interface
  • Various amounts of Cu enrichment were changed, such as reducing the amount of Cu (amount of Cu enrichment).
  • the effective thickness d of the steel used here is the value obtained by dividing the cross-sectional area s of the steel in the cross section perpendicular to the rolling direction during hot rolling by the perimeter of the steel, and is defined by the following formula (6).
  • the inner circumference and the outer circumference are summed to be the circumference.
  • the effective steel thickness defined in this way the conditions for avoiding red-hot embrittlement expressed by equation (1) are equally evaluated even for wires, rods, pipes, rails, and sections other than plates. Can be valued.
  • the effective thickness of steel corresponds to the approximate thickness of a sheet, the radius of a wire, and the wall thickness of a pipe.
  • the coefficient of equation (1) is preferably 9.3 or less in order to suppress the occurrence of slight red-hot brittleness, which has no appearance problem. In order to completely suppress red-hot embrittlement that can be observed only in such a microscopic field, the coefficient of equation (1) is more preferably 4.5 or less.
  • the invention described in claim 1 uses the above formula (1) as a main configuration of the invention.
  • FIG. 2 shows an example in which the amount of Cu enrichment was determined from the results of GDS analysis.
  • Cu copper
  • O The concentration distribution of oxygen
  • Fe iron
  • the surface is not flat and GDS analysis is difficult, such as a wire with a small diameter, perform a vertical analysis of the oxide scale and the vertical cross section of the base iron using an X-ray microanalysis (Electron Probe X-ray Microanalyser; EPMA).
  • EPMA Electro Probe X-ray Microanalysis
  • a method may be used.
  • Cu appears as metal Cu with a size of about 100 nm to 1 ⁇ m, it is at least 100 ⁇ m or more in the width direction, which is the direction in equilibrium with the steel surface. Analysis field of view is required. From the results, the Cu concentration was averaged in the width direction to obtain the average Cu concentration distribution in the depth direction, which is the direction perpendicular to the steel surface, and the Cu concentration was calculated as in the GDS analysis. You can ask for it.
  • This analysis method is also described in detail, for example, in the Japan Institute of Metals, revised, 6th edition Handbook, pages 462 to 465.
  • Red heat embrittlement is mainly caused by Cu, but there are elements that promote it. In other words, like Cu, it is more noble than iron for oxidation in a temperature range of 100 ° C. or more and 130 ° C. or less and has a melting point of 130 ° C. or less. It is an element with properties.
  • these elements including Cu are defined as red hot embrittlement inducing elements. These red heat embrittlement-inducing elements appear as a liquid phase at the oxide scale / iron interface when oxide scale is formed. And the redness embrittlement inducing element is
  • the total concentration of red heat embrittlement-inducing element which is the sum of the oxide scale of the red heat embrittlement-inducing element, which is more noble and has a melting point of 1300 ° C or less, and the amount of enrichment per unit surface area near the interface of the base iron (EJ), and instead of the Cu concentration (C Cu ) of the base material, it is more noble than iron for oxidation in a temperature range of 100 ° C. or more and 130 ° C. or less. It is preferable to use the total base metal concentration (CJ) of the redness embrittlement-inducing element, which is the sum of the base metal concentrations of the elements having melting points of 1300 ° C or lower.
  • the red heat embrittlement inducing element in addition to Cu is the invention according to claim 3.
  • the red hot embrittlement-inducing element is defined as Cu, Sn, Sn, As, and the total concentration of the red hot embrittlement-inducing element (EJ, the total base material concentration (CJ) of the red hot embrittlement-inducing element can be obtained.
  • Ni has the effect of suppressing red hot embrittlement caused by Cu by increasing the solubility of Cu in ⁇ -Fe.
  • Ni was added in an amount of approximately the same amount as 1/2 of the Cu content of the base material by mass%.
  • the enriched Cu at the oxide scale / iron interface according to the present invention is reduced.
  • the addition of Ni can further reduce the degree of red embrittlement, and is a preferred embodiment.
  • the Ni addition amount (base metal Ni concentration) when Ni is added in this manner is defined in relation to the base material Cu concentration. .
  • the Ni concentration of the base material exceeds 1.5%, flaws are easily generated on the surface of the steel material and the appearance is impaired, so it is desirable that the Ni concentration is 1.5% or less.
  • Ti, Nb, and V are added as elements added to prevent cracks caused by Cu.
  • heat treatment is performed on a steel material containing an appropriate amount of these elements, a large number of fine precipitates of carbides, nitrides or carbonitrides of Ti, Nb, V can be precipitated in the steel.
  • grain growth can be inhibited, and the austenite grain size can be kept fine. Therefore, a large number of grain boundaries are formed per unit area of the oxide scale / base iron interface, so that the intrusion of liquid phase Cu into the austenite grain boundaries can be dispersed, and red hot embrittlement caused by Cu can be advantageously prevented. It becomes possible.
  • these oxides To form oxides and low-melting oxides (melting point of oxide containing Nb: 119, melting point of oxide containing V: 635 ° C) It is possible to promote the incorporation of liquid phase Cu and reduce the amount of Cu enrichment existing at the oxide scale Z ferrous metal interface, thereby preventing red hot embrittlement due to Cu .
  • P and REM are listed as elements added to prevent red hot embrittlement caused by Cu. Both of these elements segregate at the grain boundaries, and the segregation at the grain boundaries lowers the grain boundary energy. This makes it possible to suppress the infiltration of the Cu-enriched phase into the austenite grain boundaries, so that red-hot embrittlement due to Cu can be advantageously prevented.
  • P and REM also have the effect of reducing the austenite particle size.
  • P segregates in dendrite and can hinder grain growth, and REM can precipitate a large number of carbides, nitrides or fine precipitates of carbonitrides in steel.
  • red heat embrittlement caused by Cu can be advantageously prevented through the ability to inhibit austenite grain growth.
  • this oxide forms a low-melting oxide together with iron oxide (melting point of oxide containing P: 960 ° C), so that it enters the oxide scale.
  • iron oxide melting point of oxide containing P: 960 ° C
  • T i, N b, and V they can be used alone or arbitrarily at the same time if they are used in combination of 0.15% by mass or more. Since the effect saturates, the upper limit is set to 0, 15% by mass.
  • Cu forms a low-melting sulfide (CuS melting point: 1067 ° C), which has the effect of promoting the incorporation of liquid-phase Cu into the oxide scale. It is possible to prevent the resulting crack.
  • the S concentration is 0.010% by mass or more.
  • S concentration when the S concentration is increased, S concentrated at the interface forms Fe and sulfide, and its melting point is as low as 940 ° C. The melting point causes grain boundary embrittlement. If the S concentration exceeds 0.05% by mass, embrittlement due to FeS becomes remarkable. Therefore, the S concentration is set to 0.050% by mass at 0.010% by mass or more.
  • the Mn concentration be contained so as to satisfy MnZ S ⁇ 7 in terms of mass ratio because embrittlement due to S can be reduced. That is, when Mn is contained in steel, S is fixed as MnS, so that embrittlement due to S can be mitigated.
  • the Mn concentration in the steel may be Mn / S ⁇ 7 by mass ratio.
  • the upper limit of the Mn concentration is not particularly specified, and may be appropriately set according to the purpose and use. However, the upper limit is usually 2.5% by mass or less from the viewpoint of the material.
  • S precipitates as MnS in steel, thereby suppressing the growth of austenite grains and also has the action of reducing the grain size.
  • MnS is deposited with the nitrides previously deposited as nuclei, so that the austenite grain size can be further reduced. As a result, red hot embrittlement due to Cu can be advantageously prevented.
  • a steel material adjusted to the composition of the fifth aspect of the invention wherein at least one or more of carbides, nitrides, or nitrides of T i, N b, V a carbonitride, in which the number density of grain size 1 0 nm or more 1 mu m or less of precipitates include 1 0 5 / mm 2 or more precipitates.
  • the number density of fine precipitates of 10 nm or more and 1 ⁇ or less was investigated.
  • the investigation method used here is a high-magnification multi-field observation using a transmission electron microscope (for example, 100,000-fold, 100-field observation, etc.).
  • the number density of 1 0 nm or more 1 mu m or less fine precipitates becomes large as 1 0 5 Z min 2 or more, Ki out to inhibit grain growth, the austenite grain size It was found that it can be maintained in a fine state.
  • the particle size of the precipitate means a circle equivalent diameter.
  • the relationship between the number density of precipitates contained in steel and cracking was investigated for various samples by the method described above.
  • the number density of 1 0 nm or more 1 mu m or less of precipitates has a 1 0 5 Z mm 2 or more, it was found that cracking is suppressed. That is, if the number density of precipitates of 1 0 less than 5 2, since the cracks can not suppression, it is important to the number density of 1 0 5 Z mm 2 or more, the grain of the precipitate at that time
  • a desired number density can be achieved by setting the diameter to 10 nm or more and 1 ⁇ m or less.
  • the particle size is that the number density of 1 mu Ie less fine precipitates or 1 O nm is 1 0 5 Z mm 2 or more, the red-hot brittleness Properties can be advantageously suppressed.
  • composition of these precipitates was determined by analyzing the EDS (Energy Dispersive Spectrometry) and electron diffraction pattern using a transmission electron microscope and was found to be Ti, Nb, V carbides, nitrides, or carbonitrides. This was also confirmed.
  • the present inventors have found that in a low-oxygen-concentration atmosphere condition in which a steel material containing Cu is heated to form an oxide scale made of low-temperature steel, Cu is concentrated at the oxide scale / base iron interface. In addition to oxidation, Cu has been found to volatilize from the surface of the oxide scale.
  • the first manufacturing method utilizes this phenomenon to suppress red hot embrittlement caused by Cu.
  • Oxidation grows according to such a parabolic law when the diffusion of iron ions in the oxide scale is rate-determining and the oxide scale is growing, and there is sufficient oxygen in the atmosphere gas for the reaction. It is assumed that This case is referred to as a high oxygen concentration atmosphere condition. However, in a case where sufficient oxygen gas to maintain the above parabolic law cannot be supplied from the gas phase to the oxide scale surface, the supply of the oxygen gas from the gas phase is rate-limiting. In that case, the oxidation rate is proportional to the oxygen concentration, and is a linear rule expressed by the following equation. At this time, there is no hematite layer and no magnetite layer, and an oxide scale consisting of a wustit layer is generated. This case is called a low oxygen concentration atmosphere condition.
  • the equations (4) and (14) can be determined by the oxygen concentration at the boundary between the high oxygen concentration atmosphere condition and the low oxygen concentration atmosphere condition. is there.
  • the parabolic rate constant depending on temperature and the oxide scale thickness X or the oxidation weight increase w are included in the equations.
  • the resulting oxygen concentration is not determined solely by the oxygen concentration, but the boundary oxygen concentration changes depending on the thickness and temperature of the oxide scale at that time.
  • Wustite and liquid phase Cu have extremely high wettability. Fine pores are present at the triple point of the grain boundary of the oxide scale. The holes are distributed in a network pattern. Because of this high wettability and the presence of interconnected pores in the oxide scale, the liquid phase Cu can easily move through the oxide scale by capillary action. In other words, Cu in the liquid phase that appeared below the oxide scale of the wustite can easily move to the surface layer of the oxide scale. Low oxygen concentration atmosphere When oxidized scale consisting of wustite is generated under gaseous conditions, it is volatilized from the surface of the oxidized scale as Cu or CuO having a relatively high vapor pressure.
  • Cu can exist as an oxide at the top of magnetite within the oxide scale on iron. Therefore, Cu can not only concentrate at the oxide scale / base iron interface, but also exist as a solid solution on top of the magnetite layer formed near the surface of the oxide scale.
  • the liquid phase Cu that appears and concentrates at the oxide scale / base iron interface is reduced by the oxide scale.
  • the pores at the grain boundaries penetrate by capillary action and move to the upper layer of the oxide scale, but if the magnetite layer exists near the surface, Cu will be dissolved in the magnetite layer.
  • the first manufacturing method for preventing red hot embrittlement of Cu involves heating the steel material before hot rolling under low oxygen concentration atmosphere conditions to volatilize Cu in the atmosphere.
  • the oxygen deposition rate under low oxygen concentration atmosphere conditions is proportional to the oxygen concentration, so reducing the oxygen concentration can reduce the amount of oxide scale generated, and the oxide scale appears concentrated at the iron-metal interface. It also has the effect of reducing the amount itself.
  • the present invention if it is Rukoto subtracting the amount of Cu to be concentrated in the oxide scale / base steel interface Te, per unit surface area concentrated in the vicinity of the interface between the oxide scale and base iron C u concentrated amount E C u ( ⁇ g ⁇ Cm 2 ) can be less than 18.6 C Cu X d, and as described above, red hot embrittlement can be avoided.
  • An oxide scale consisting of wustite is generated under low oxygen concentration atmosphere conditions, and an oxide scale consisting of three layers of hematite, magnetite and wustite is generated under high oxygen concentration atmosphere conditions. If the low oxygen concentration atmosphere condition is changed to the high oxygen concentration atmosphere condition while the oxide scale is generated, or vice versa, the oxide scale structure also changes according to the atmosphere condition. . For example, even if there is an oxide scale initially formed under a high oxygen concentration atmosphere condition, the oxide scale structure changes to a wustite oxide scale under a low oxygen concentration atmosphere condition in the middle.
  • the Cu dissolved in the magnetite layer under the first high oxygen concentration atmosphere condition can be dissolved in the wustite when the oxide scale is formed by the wustite layer by shifting to the low carbon concentration atmosphere condition. Scratches are volatilized from the oxide scale surface layer and are released into the atmospheric gas. Therefore, it is not necessary to have low oxygen concentration atmosphere conditions in the entire heating furnace where the surface of the steel material is at a temperature of 1080 ° C or higher. Since the volatilization phenomenon of Cu appears in the region, it is possible to suppress red hot embrittlement.
  • the atmosphere under the high oxygen concentration atmosphere condition and the atmosphere under the low oxygen concentration atmosphere condition can be obtained by controlling the air ratio during combustion. Can be. Increasing the air ratio increases the oxygen concentration in the combustion gas atmosphere, and decreasing the air ratio decreases the oxygen concentration in the combustion gas atmosphere.
  • the oxygen concentration in the heating furnace can be measured with an oxygen concentration meter.
  • the low oxygen concentration atmosphere condition can be obtained by mixing the combustion gas with an inert gas such as nitrogen gas, argon gas, or hydrogen gas, or by increasing the temperature of the steel material.
  • an inert gas such as nitrogen gas, argon gas, or hydrogen gas
  • the method can also be performed when using a heating furnace that does not use combustion gas, such as an induction heating furnace or a high-frequency heating furnace.
  • a non-oxidizing gas such as a nitrogen gas, an argon gas, or a helium gas can be used as the atmospheric gas.
  • a heating method using a regenerative combustion burner is used as a heating method when a part of the heating furnace is set to a low oxygen concentration atmosphere condition and another part is set to a high oxygen concentration atmosphere condition. May be used.
  • the combustion gas released from the pallet enters the heat storage chamber of the pit that is facing the outside, so the amount of combustion gas flowing out to other areas is small, and it is easy to change the atmospheric conditions in some areas. Because it is.
  • Equation (4) needs to consider the oxide scale thickness. However, it is impossible to measure the thickness of the oxide scale during the actual production of steel sheets in real time. Therefore, the oxidation rate obtained by equation (11) is integrated. Then, by converting to oxide scale thickness by equation (13), the oxide scale thickness during formation can be obtained by calculation.
  • the temperature of the steel surface required at this time can be easily measured with a radiation thermometer.
  • the temperature distribution of the steel material can be obtained from the temperature distribution of the atmosphere by heat conduction calculation.
  • the low oxygen concentration atmosphere condition in which Cu is volatilized from the oxide scale surface is represented by the oxygen concentration expressed by the formula (4) or (14) or lower, and varies depending on the thickness and temperature of the oxide scale. Cannot be described below the specified oxygen concentration.
  • the thickness of the oxide scale that generates in the heating furnace is 5 0 0 ⁇ ⁇ 3 0 0 0 ⁇ about, this is at a heating temperature condition of about 1250 ° C from 1080 ° C to a thickness condition (4)
  • the oxygen concentration is less than 0.5% by volume, low oxygen concentration atmosphere conditions are established, and Cu can be evaporated into the atmosphere to suppress red hot embrittlement.
  • FIG. 4 shows the first manufacturing method of the present invention. 1 schematically shows an example of a preferred embodiment of a heating furnace for carrying out the invention, and schematically shows a state of generation of an oxide scale corresponding to oxygen concentration conditions.
  • a steel material (slab) 1 containing 0.05 to 3% by mass of Cu is inserted into the heating furnace 2 at room temperature, and is heated at a temperature of 110 to 130 ° C. in an atmosphere. After heating and extracting at a temperature of 110 to 130 ° C., when the heating furnace oxidation scale is removed by a descaling device (high-pressure water) 3 and hot rolling is performed by a hot rolling mill 4
  • a descaling device high-pressure water
  • hot rolling hot rolling mill 4
  • a partition wall 5 is provided in the heating furnace to separate the region under the low oxygen concentration atmosphere condition from the region under the high oxygen atmosphere condition.
  • the generated oxide scale is made of wustite.
  • Oxidation scale When the steel material is heated to 110-130 ° C, where the melting point of Cu is 180 ° C or higher, as shown in Fig. 4, the oxide scale / iron interface Cu concentrates and appears as a liquid phase. The liquid phase Cu penetrates the grain boundaries of the oxide scale to reach the surface of the oxide scale, where it is vaporized or scattered as Cu vapor or oxidized and CuO vapor. Since the evaporation and scattering of Cu continue to proceed during the low oxygen concentration atmosphere condition, the amount of Cu enrichment at the oxide scale / iron interface on the steel surface can be reduced.
  • the amount of enrichment of Cu at the oxide scale iron-iron interface can be significantly suppressed, and red hot embrittlement due to Cu during hot rolling can be advantageously prevented.
  • the reduced Cu enriched layer is indicated by a broken line.
  • the present invention utilizes all of the following three phenomena newly discovered by the present inventors.
  • Cu in the liquid phase moves within the oxide scale (grain boundaries) from the oxide scale / iron interface. Reaches the surface of the oxide scale and evaporates and scatters as Cu or CuO vapor.
  • the enrichment of Cu at the oxide scale / iron interface of the oxide scale formed during the heating stage becomes a problem of red-hot embrittlement. If the amount of Cu concentrated by heating can be reduced before the start of hot rolling, red hot embrittlement can be suppressed.
  • one oxidation scale removal treatment is performed before the start of hot rolling. In the present invention, this oxide scale removal treatment is performed twice or more times. Normally, steel is rolled in the atmosphere, so oxide scale is formed on the surface during each oxide scale removal process. The oxide scale generated during this oxide scale removal treatment has the effect of absorbing liquid phase Cu into the oxide scale as described above. Therefore, the more the oxide scale removal treatment is performed more than once, the smaller the amount of concentrated Cu at the oxide scale / base iron interface, and the more the red hot embrittlement can be suppressed.
  • the scale at the time of re-oxidation may be an oxide scale consisting of wustite or an oxide scale consisting of three layers of hematite, magnetite, and wustite. Since it has the effect of absorbing phase Cu, it has the effect of reducing Cu concentrated at the oxide scale / iron interface.
  • the atmosphere to which the steel material is exposed during the two or more oxidation scale removing treatments may be either a low oxygen concentration atmosphere condition or a high oxygen concentration atmosphere condition.
  • the temperature of the steel surface must be at least 1080 ° C, the melting point of Cu. The temperature of the steel surface can be easily measured by a radiation thermometer. In the case of steel that has been heated under a high oxygen concentration atmosphere consisting of three layers of normal hematite, magnetite and wustite, subjected to one scale removal treatment, and then subjected to hot rolling, hot rolling is completed.
  • the effective thickness of the steel material obtained by dividing the cross-sectional area s of the steel material cross section perpendicular to the rolling direction by the perimeter 1 is d (band)
  • the enrichment near the interface between the oxide scale of the Cu-containing steel material and the ground iron C u concentrated amount E Cu ( ⁇ g ⁇ cm- 2 ) per unit surface area is found to be approximately 1 8. 6 C C u X d .
  • the amount of Cu concentrated per unit surface area concentrated near the interface between the oxide scale and the base iron E Cu ( ⁇ g ⁇ cm "" 2 ) can be less than 18.6 C Cu X d, thereby avoiding red hot embrittlement as described above.
  • Heat treatment for re-oxidation may be performed for re-oxidation of the steel material between two or more oxidation scale removal treatments.
  • Heating and / or heat retention means in the re-oxidation treatment are excellent in energy efficiency, responsiveness, control, etc., such as radiant heating, heat retention, or induction heating and electric heating in an electric furnace. It is preferable to use means of heating or heat retention by electric energy, and if the steel material temperature is high and the steel material surface can be maintained at 180 ° C. or more during the reoxidation treatment, it is preferable to use a heat insulating material. It is also a preferred embodiment to use a heat retaining means for retaining the steel material in consideration of energy efficiency.
  • the object of the present invention can be achieved if the surface of the steel material is at least 180 ° C. and in an oxidizing atmosphere. Therefore, a method with good energy efficiency may be appropriately selected.
  • the oxidizing atmosphere it is preferable to use an easily available atmosphere.
  • Conventionally known methods of removing oxide scale include spraying high-pressure water onto the steel surface, rolling the steel surface to be the product surface, and laterally moving the steel surface to be the product surface in the width direction. How to reduce Yes, can be selected as appropriate and can be combined.
  • FIG. 5 schematically shows a preferred facility for carrying out the second production method of the present invention, and schematically shows the state of generation of oxide scale in this facility.
  • the steel material 1 is heated in a combustion gas atmosphere (high oxygen concentration atmosphere condition) in the heating furnace 2.
  • oxide scale is formed on the surface of the steel material, and accompanying this, liquid phase Cu appears at the oxide scale / base iron interface.
  • a part of the molten (liquid phase) Cu moves along the grain boundary of the oxide scale, reaches the magnetite layer, and forms a solid solution in the magnetite layer.
  • the steel material heated to a predetermined temperature for a predetermined time is extracted from the heating furnace, and the oxidation scale of the heating furnace is removed by a descaling device (high-pressure water) 3.
  • a descaling device high-pressure water
  • the invention described in claim 9 uses the first manufacturing method and the second manufacturing method to suppress red hot brittleness at the same time.
  • the first method is to heat the steel
  • the second is to remove the oxide scale from the steel after heating and before the first rolling. These can be performed at the same time, and by performing them simultaneously, the effect of suppressing red hot embrittlement can be further enhanced.
  • the effective thickness of the obtained steel material the amount of Cu per unit surface area that concentrates near the interface between the oxide scale and the iron (Cu enrichment), the concentration near the interface between the oxide scale and the iron
  • the amount of Sn per unit surface area (Sn enrichment), the amount of Sb per unit surface area enriched near the interface between the oxide scale and the iron (Sb enrichment), the oxide scale and the iron Table 1 shows the As content per unit surface area (As content) and the occurrence of cracks due to red-hot embrittlement on the surface.
  • the Cu enrichment and Sn enrichment were determined by GDS analysis.
  • the degree of occurrence of cracks due to red heat embrittlement on the surface of the obtained steel sheet was as follows: :: No cracks occurred, ⁇ : Fine cracks occurred, but no problem in quality or appearance, X
  • the effective thickness of the obtained steel material (radius of the wire), the amount of Cu per unit surface area concentrated near the interface between the oxide scale and the ground iron (the amount of Cu enrichment), the oxide scale and the ground iron Table 2 shows the amount of Sn per unit surface area (Sn concentration) concentrated near the interface and the occurrence of cracks due to red hot embrittlement on the surface.
  • the Cu enrichment and Sn enrichment were determined from the results of surface analysis of the oxide scale cross-section by EPMA.
  • the degree of occurrence of cracks due to red heat embrittlement on the surface of the obtained steel material is as follows: :: No cracking, ⁇ : Fine cracking but no problem in quality or appearance, X: Cracking in quality or appearance Is the index of occurrence.
  • the effective thickness of the obtained steel material, the amount of Cu per unit surface area (Cu enrichment amount) concentrated near the interface between the oxide scale and the base metal, the concentration near the interface between the oxide scale and the base steel Table 3 also shows the amount of Sn per unit surface area (Sn concentration) and the occurrence of cracks due to red hot embrittlement on the surface.
  • the Cu enrichment and Sn enrichment were obtained by GDS analysis of three points, one surface of the eb and the inner surface and the outer surface of the flange, and the average values are shown.
  • the degree of occurrence of cracks due to red heat embrittlement on the surface of the obtained steel material is as follows: :: No cracks occur, :: Fine cracks occur, but there is no problem in quality and appearance, X: Cracks occur that are problems in quality and appearance , The index. Oxidation scale / ground iron Cu and Sn, which are the elements that induce red hot embrittlement at the interface, have a small amount of enrichment, and satisfy formulas (1) and (2) (Nos. 25 to 32). No cracking is observed due to the formula (1) or
  • Cu amount (Cu enrichment amount), Sn amount per unit surface area (Sn enrichment amount) enriched near the interface between the oxide scale and the base iron, and the occurrence of cracks due to red hot embrittlement on the surface are shown in Table 4.
  • the amounts of Cu enrichment and Sn enrichment are calculated from the results of surface analysis of the oxide scale cross-sections on the outer and inner surfaces of the steel pipe by means of EPMA, and the average values are shown.
  • the degree of cracking due to red heat embrittlement on the surface of the obtained steel material is as follows: ⁇ : No cracking, ⁇ : Fine cracking, but no problem in quality or appearance, X: Cracking in quality or appearance Is the index of occurrence.
  • the concentration of Cu and Sn, which are the elements that induce redness and brittleness at the oxide scale / base iron interface, is small and satisfies the formulas (1) and (2) ( ⁇ .36 to ⁇ 41). Cracking due to red heat embrittlement, which is the above problem, is not observed, and cracks due to red heat embrittlement, which is a problem in quality and appearance, are not obtained in the case of (1) or (2) that do not satisfy formula (2). Occurred. In the case of adding Ni (No. 41) which satisfies the formula (3), no red hot brittleness occurred and excellent surface quality could be obtained. From this, it can be seen that, in the example according to the present invention, even if the steel material contains Cu and Sn, which induce red hot embrittlement, red hot embrittlement does not occur during hot rolling.
  • the effective thickness of the obtained steel material, the amount of Cu concentrated per unit surface area near the interface between the oxide scale and the base iron (Cu enrichment amount), the vicinity of the interface between the oxide scale and the base iron Sn amount per unit surface area to be concentrated (Sn concentration amount) Sb amount per unit surface area (Sb concentration amount) to be concentrated near the interface between oxide scale and base iron, oxide scale and base iron Table 5 also shows the As content per unit surface area (As content) concentrated near the interface with the surface and the occurrence of cracks due to red hot embrittlement on the surface.
  • the Cu enrichment, Sn enrichment, Sb enrichment, and AS enrichment were determined from the GDS analysis results.
  • the degree of occurrence of cracks due to red heat embrittlement on the obtained steel sheet surface is as follows:
  • heating under a conventional high oxygen concentration atmosphere condition in which a heating zone with a low oxygen concentration atmosphere condition is not arranged in the heating zone, that is, the oxide scale thickness before entering the heating furnace is 500 / im Heating was performed up to 120 ° C for 80 minutes under high oxygen concentration atmosphere conditions (oxygen concentration 5% by volume), and the heating conditions were maintained for 80 minutes in the same atmosphere and temperature.
  • high oxygen concentration atmosphere conditions oxygen concentration 5% by volume
  • the oxide scale thickness before entering the heating furnace is 500 ⁇
  • the oxide scale thickness before entering the heating furnace is 500 ⁇
  • the oxide scale thickness before entering the heating furnace is 500 ⁇
  • steel material extracted by heating to 120 ° C for 80 minutes under elemental concentration atmosphere conditions (oxygen concentration 5 vol./.) And holding for 50 minutes in the same atmosphere When hot rolling was carried out after descaling with high-pressure water, cracks occurred on the steel surface due to red hot embrittlement on the steel surface after hot rolling.
  • a steel material containing 0.2% was heated to 130 ° C. in a heating furnace using coke oven gas as a fuel, and kept at that temperature for 90 minutes. At this time, the oxygen concentration in the atmosphere was set to 3% by volume, which is a high oxygen concentration atmosphere condition. The steel extracted from the heating furnace was reduced by 3% in the width direction to remove oxide scale on the surface of the steel.
  • the steel was placed in a heat-sparing par covered with heat insulating material, and kept for 5 minutes with the minimum temperature of the steel surface at 110 ° C or higher.
  • the atmosphere during heat retention was the atmosphere.
  • the oxide scale was removed again with high-pressure water and hot rolling was performed.
  • a hot-rolled steel was prepared by removing the oxide scale of the heating furnace with high-pressure water immediately after heating. As a result, no crack was generated on the surface of the steel material held in the heat retention power par of the present invention, and cracks were generated on the surface of the non-heat-retained steel of the comparative example.
  • the occurrence of red-hot brittleness of steel due to Cu during hot rolling of steel containing 0.05 to 3% by mass of 11 is performed by changing steel composition such as addition of Ni or Si. It is possible to provide a Cu-containing steel material having excellent surface properties and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、鋼材を熱間圧延する際のCuに起因する鋼材の赤熱脆性の発生を抑制できる表面性状の優れたCu含有鋼材およびその製造方法であり、表面に酸化スケールを有するCu含有鋼材であって、母材のCu濃度CCuが0.05~3質量%であり、圧延方向に垂直な鋼材断面の断面積sをその周長lで割った鋼材有効厚をd(mm)とするとき、酸化スケールと地鉄との界面近傍に濃化する単位表面積あたりのCu濃化量ECu(μg・cm-2)が18.6CCu×d未満であることを特徴とする。また、その製造方法は、加熱炉での加熱を低酸素濃度雰囲気条件で行ってウスタイト層のみからなるスケール層とすることでスケール/地鉄界面の溶融Cuを蒸発・飛散させるか、または、鋼材を加熱し加熱炉から抽出した後、最初の熱間圧延の間に2回以上のスケール除去処理を施すことを特徴とする。

Description

明 細 書 表面性状に優れた C u含有鋼材およびその製造方法 技術分野
本発明は、 熱間圧延を施して製造される表面性状に優れた C u含 有鋼材およびその製造方法に関する。 よ り具体的には、 熱間圧延す るに先立ち施される鋼材の加熱処理時の鋼材表面への C uの濃化を 抑制して鋼材の赤熱脆性の発生を防止できる表面性状の優れた C u 含有鋼材およびその製造方法に関するものである。 背景技術
鉄鋼材料の鉄源として、 多くの鋼材スクラップがリサイクル利用 されている。 この鋼材スクラップのリ サイクルでは、 鋼材スクラッ プ中に C uが含まれる場合、 C uは精鍊による除去が困難であるた め、 そのまま C uが鋼材に混入することになり、 熱間圧延等で問題 となる場合がある。 すなわち、 C uは、 熱間圧延に先立つ鋼材の加 熱時に、 酸化スケールと地鉄の界面に濃化するが、 この C u濃化量 が多いと鋼材表面に割れを生じる赤熱脆性の問題が起きることにな る。 この問題を回避するために、 C uを含有する鋼材スクラップの 使用量が制限されているのが実状である。
しかしながら、 鉄鉱石から鋼材を製造する際のエネルギー消費量 や、 蓄積された鋼材スクラップ量の増加を考えると、 今後、 鉄源と してよ り多くの鋼材スクラップを使用することが望まれており、 C uを含有していても赤熱脆性が発生しない鋼材の製造方法の開発が 強く望まれている。
一般に、 熱間圧延による鋼材の製造では、 鋼材は、 熱間圧延に先 立ち加熱炉に装入され、 燃焼ガスによ り 1〜 4時間程度加熱されて およそ 1 1 0 0〜 1 3 0 0 °Cの温度で加熱炉よ り抽出され、 その後 、 高圧水で酸化スケールが除去 (デスケーリ ング) されてから熱間 圧延される。 通常、 加熱炉内に供給される燃焼ガスは、 酸素、 水蒸 気、 二酸化炭素などの酸化性ガスを含むため、 加熱炉で高温に加熱 された鋼材表面には酸化スケール層が生成する。 この酸化スケール 層は、 主に鉄の酸化物からなり、 一般に、 表層からへマタイ ト (F e 2 O3) 、 マグネタイ ト (F e 3O4) 、 ウスタイ ト (F e O) の 3 層からなる。 .
そして、 鉄が高温下で燃焼ガス中の酸化性ガスによつて酸化する 際に、 C u、 N i などの鉄より貴な金属を含有している場合は、 こ れらの金属は酸化されず酸化スケール層と地鉄の界面に濃化する。 C uの場合には、 y鉄中に数%程度の溶解度しかなく、 C u濃化量 がそれ以上となる場合には C uが金属相と して出現する。 C uの融 点は 1 0 8 0 °Cであり、 通常熱間圧延前の鋼材の加熱はそれ以上の 温度で行われるために、 溶融状態の C uの液相が酸化スケール Z地 鉄界面に生成し、 これが地鉄の粒界に侵入して熱間圧延時のせん断 応力や引張応力に耐えられなくなり、 表面割れすなわち赤熱脆性が 発生する。
この C u起因の赤熱脆性の防止には、 C u濃度とほぼ等量程度以 上の N i の添加が有効であることが知られている。 これは、 N i を 添加することで γ鉄中の C uの固溶限が増大し、 また、 C u濃化相 の融点が高くなるために、 酸化スケール Z地鉄界面での C uの出現 を抑制できることによる (例えば、 特開平 7 - 2 4 2 9 3 8号公報 参照) 。
また、 特開平 6— 2 9 7 0 2 6号公報では、 S i の添加も赤熱脆 性の防止効果があると している。 S i を添加すると、 酸化スケール /地鉄界面付近でファイアライ トを生成し、 1 1 7 0 °C以上で酸化 スケール中のウスタイ トと反応して液相の酸化物を生成させる。 こ の液相中に C uの液相が取り込まれるために、 C uの地鉄粒界への 液相 C uの侵入が抑制される。
しかしながら、 N i を添加して C u起因の赤熱脆性を防止する方 法では、 高価な金属である N i を使用するためにコス ト増につなが るという問題がある。 また、 N i は加熱時の粒界酸化を助長するた め、 C u起因の赤熱脆性は防止できたと しても酸化スケールの剥離 性を阻害することで酸化スケール疵を発生させることが問題となる 場合がある。
また、 S i を添加して C u起因の赤熱脆性を防止する方法では、 S i を添加した鋼材は酸化スケールの剥離性が悪く、 圧延前の高圧 水によるデスケーリ ングによってもなお酸化スケールが残留し鋼材 表面が赤くなるなど表面性状が損なわれるという問題がある。 さら に、 その後、 酸洗工程がある場合には、 酸洗で酸化スケールが溶解 し難いため、 酸洗工程のコス トが増大すると ともに、 生産性も低下 するという問題もある。 発明の開示
そこで、 本宪明は、 C u含有鋼材を熱間圧延する際の C uに起因 する鋼材の赤熱脆性の発生を、 好ましく は N iや S i の添加のよう な鋼成分の変更を行う ことなく抑制するこ とのできる、 よ り具体的 には、 〇 11を 0 . 0 5〜 3質量%含有する鋼材の加熱時に鋼材表面 での C uの濃化を有利に抑制して赤熱脆性の発生を回避し、 表面性 状に優れた C u含有鋼材およびその製造方法を提供することを目的 とするものである。
本発明は、 上記課題を解決するために、 以下の ( 1 ) 〜 ( 9 ) を 要旨とするものである。
( 1 ) 表面に酸化スケールを有する C u含有鋼材において、 母材 の C u濃度 CC u (質量%) が 0 . 0 5 %以上 3 %以下であり、 圧延 方向に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚 を d (mm) とするとき、 酸化スケールと地鉄との界面近傍に濃化す る単位表面積あたりの C u濃化量 E C u ( μ g · c m 2 ) が下記 ( 1 ) 式の関係にあることを特徴とする表面性状に優れた C u含有鋼材
E "く 1 8 . 6 C C u X d · · · (1)
( 2 ) 表面に酸化スケールを有する C u含有鋼材において、 母材 の C u濃度 CC u (質量%) が 0 . 0 5 %以上 3 %以下であり、 圧延 方向に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚 を d (mm) とし、 さらに 1 0 0 0 °C以上 1 3 0 0 °C以下の温度域で 酸化に対して鉄より貴でありかつ融点が 1 3 0 0 °C以下である赤熱 脆性誘起元素の母材濃度の合計である赤熱脆性誘起元素総母材濃度 を とするとき、 赤熱脆性誘起元素の酸化スケールと地鉄との界面 近傍に濃化する単位表面積あたりの濃化量の合計である赤熱脆性誘 起元素総濃化量 E i ( μ g · c m"2) が下記 ( 2 ) 式の関係にある ことを特徴とする表面性状に優れた C u含有鋼材。
E iぐ 1 8 . 6 C i X d · · · (2)
( 3 ) 前記赤熱脆性誘起元素の 1種は C uであり、 その他は、 S n、 S b、 A sのいずれか 1種または 2種以上であることを特徴と する上記 ( 2 ) に記載の表面性状に優れた C u含有鋼材。
( 4 ) 母材 N i濃度 CN i (質量%) と母材 C u濃度 C C u (質量% ) の関係が下記 ( 3 ) 式の関係にあることを特徴とする上記 ( 1 ) ないし ( 3 ) のいずれか 1項に記載の表面性状に優れた C u含有鋼 材0 0. 0 6 1 CCu 2 + 0. 3 2 CCu + 0. 0 0 3 5≤ CN i≤ l . 5
• · · ( 3 )
( 5 ) 前記 C u含有鋼材が、 質量0/。で、 T i : 0. 0 1〜 0. 1 5 %、 N b ·· 0. 0 1〜 0. 1 5 %、 V : 0. 0 1〜 0. 1 5 %の いずれか 1種または 2種以上を含有し、 さらに、 P : 0. 0 1 0〜 0. 1 0 0 %、 S : 0. 0 1 0〜 0. 0 5 0 %、 R EM : 0. 0 0 2〜 0. 1 5 0 %のいずれか 1種または 2種以上を含有することを 特徴とする上記 ( 1 ) ないし ( 3 ) のいずれか 1項に記載の表面性 状に優れた C u含有鋼材。
( 6 ) 前記 C u含有鋼材中に、 少なく とも T i 、 N b、 Vのいず れか 1種または 2種以上の炭化物、 窒化物、 または炭窒化物であつ て、 粒径が 1 0 nm以上 1 μ m以下の個数密度が 1 05個/ mm2以上の— 析出物が含まれていることを特徴とする上記 ( 5 ) に記載の表面性 状に優れた C u含有鋼材。
( 7 ) C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始す る C u含有鋼材の製造方法において、 該鋼材の C u含有量 CCu (質 量%) を 0. 0 5 %以上 3 %以下とすると ともに、 前記加熱炉での 加熱の際に、 鋼材表面温度が 1 0 8 0 °C以上の状態となる加熱炉内 の全領域または部分的な領域にて、 下記 ( 4 ) 式で示す酸素濃度 p 02 (容量%) 以下となる雰囲気 (低酸素濃度雰囲気条件) にするこ とによ り、 ウスタイ トからなる酸化スケールを生成させることで、 熱間圧延終了後の圧延方向に垂直な鋼材断面の断面積 s をその周長
1 で割った鋼材有効厚を d (mm) とするとき、 C u含有鋼材の酸化 スケールと地鉄との界面近傍に濃化する単位表面積あたりの C u濃 化量 ECu ( β g · c m-2) を 1 8. 6 CC u X d未満にすることを特 徴とする表面性状に優れた C u含有鋼材の製造方法。
P 0 2 = kD ( 2 w k j) · . · ( 4) ここで、 kpは放物線則速度定数 ( g2 · c m— 4 · s— であ り、 具 体的には
kp = k p 0 X e x p (- E /R T) · · ' ( 5 ) である ( kp。= 0. 6 0 g2 · c m"2 - s—1) 。 なお、 Eは活性化 エネルギー (E = 1 4 0 k J · m o 1 _ 1 · K"1) 、 Rは気体定数、 Tは温度 (Κ) である。 また、 wは酸化増量 ( g · c m— 2) 、 k J は直線則速度定数 ( 1^ = 9. 6 X 1 0— 6 g ' c rrT 2 - Ύο' 1 - s一 1 ) である。
( 8 ) C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始す る C u含有鋼 ¼の製造方法において、 該鋼材の C u含有量 CCu (質 量%) を 0. 0 5 %以上 3 %以下と し、 該鋼材の前記加熱炉からの 抽出後でかつ前記熱間圧延開始前に、 鋼材表面に生成した酸化スケ ールの除去処理を 2回以上施すことで、 熱間圧延終了後の圧延方向 に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚を d
(mm) とするとき、 C u含有鋼材の酸化スケールと地鉄との界面近 傍に濃化する単位表面積あたりの C u濃化量 ECu ( g · c m"2) を 1 8. 6 CC u X d未満にすることを特徴とする表面性状に優れた C u含有鋼材の製造方法。
( 9 ) C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始す る C u含有鋼材の製造方法において、 該鋼材の前記加熱炉からの抽 出後でかつ前記熱間圧延開始前に鋼材表面に、 生成した酸化スケー ルの除去処理を 2回以上施すことを特徴とする上記 ( 7 ) に記載の 表面性状に優れた Cu含有鋼材の製造方法。 図面の簡単な説明
図 1 は、 熱間圧延時の赤熱脆性による鋼材表面割れの発生状況と 、 熱間圧延後の鋼材の酸化スケール/地鉄界面近傍に濃化した単位 表面積あたりの C u量 (C u濃化量) と鋼材有効厚の関係を示す図 である。
図 2は、 表面に酸化スケールを有する鋼材表面からの深さ方向の C uの濃度分布から、 鋼材の酸化スケール Z地鉄界面近傍に濃化し た単位表面積あたりの C u量 (C u濃化量) を G D S分析結果によ り求める方法を説明する図である。
図 3は、 粒径が 1 0 nm以上 1 μ m以下の析出物の個数密度と表面 割れ深さの関係を示す図である。
図 4は、 本発明の第一の製造方法を実施するための好ましい加熱 炉から熱間圧延機までの設備の実施例を模式的に示すとともに、 こ の実施例での鋼材表層の酸化スケール層の生成状況を模式的に示す 図である。
図 5は、 本発明の第二の製造方法を実施するための好ましい加熱 炉から熱間圧延機までの設備例とそれによる加熱処理条件例、 およ びその処理時の鋼材表面の酸化スケール層生成状況を模式的に示す 図である。 発明を実施するための最良の形態
従来、 赤熱脆性を引き起こす C uは、 熱間圧延に先立つ加熱時に 鋼材表面に生成する酸化スケールと地鉄の界面に濃化するとだけ考 えられてきた。 しかしながら、 本発明者らは、 数多くの実験検証の 結果、 この酸化スケール/地鉄界面における C uの濃化以外にも、 C uは、 次のような挙動をすることを新たに発見した。
( a ) 酸化スケール/地鉄界面で液相と して出現した C uは、 酸化 スケールの粒界を容易に移動する。
( b ) マグネタイ トが生成しない酸化スケールの場合、 すなわちゥ スタイ ト層からなる酸化スケールの場合、 酸化スケール/地鉄界面 から液相の C uが、 酸化スケール内 (粒界) を移動して酸化スケー ルの表面に達し、 Cuまたは C u Oの蒸気として蒸発 · 飛散する。
( c ) へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる酸化 スケールが生成する場合には、 酸化スケール/地鉄界面から液相の C uが、 酸化スケール内 (粒界) を移動して、 マグネタイ ト層に C uが固溶する。
このよ うな新知見に基づき、 C uを含有する鋼材が加熱されて酸 化スケールが生成する際の現象を考察すると、 まず、 酸化スケール /地鉄界面では、 鉄が酸化される一方で、 鉄より貴な C uは酸化さ れずに濃化する。 この濃化した C uは、 ある量はこれまで考えられ ていたよ うに酸化スケール Z地鉄界面に留ま り、 残りの量は新たに 発見した上記の挙動のいずれか一つまたは二つ以上の挙動をとるこ とになる。 この場合、 酸化により消費された鋼の内部に含有されて いた C u量は、 酸化スケール Z地鉄界面に濃化する C u量と、 酸化 スケールの粒界を移動して酸化スケール表面から揮発する C u量と 、 マグネタイ ト層に固溶する C u量との合計と等しくなる。
そこで、 本発明者らは、 酸化スケール/地鉄界面に濃化する C u 量を減じさせて赤熱脆性を回避するために、 揮発する C u量、 マグ ネタイ ト層中に固溶する C u量を増加させることが有用であること を着想し、 さ らに検討を重ねて本発明を成したものである。 すなわ ち、 酸化スケール表面から C uを揮発させるためには、 上記のとお り、 ウスタイ トからなる酸化スケールが生成することが必要である が、 本発明では、 その条件を、 後に詳細に説明するように、 低酸素 濃度雰囲気条件で加熱することで得るものである ς また、 酸化スケ ールのマグネタイ ト層に C uを固溶させるためには、 上記のとおり 、 へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる酸化スケ ールが生成することが必要であるが、 この条件は、 後に詳細に説明 するように、 高酸素濃度雰囲気条件で加熱することで得ることがで きる。
なお、 本発明が対象とする鋼材の C u含有量は、 質量%で、 0. 0 5 %以上 3 %以下とする。 0. 0 5質量%未満では、 通常の加熱 炉で加熱を行っても C u起因の赤熱脆性は発生しないためである。 また、 C u濃度が 3質量%を超える場合、 上記の新知見である酸化 スケール内のマグネタイ ト層内への C uの固溶や表面からの Cuの揮 発の効果が十分には期待できなくなり、 圧延時の赤熱脆性が発生す るようになるからである。
本発明が効果を発揮する鋼の成分について述べる。 これまで述べ てきたように本発明では、 酸化スケールが生成する場合の Cuの動き を利用することで、 酸化スケール/地鉄界面への濃化 Cu量を低減さ せた鋼材およびその製造方法であり、 鋼の上に生成する酸化スケー ルの組成と構造が変わることのない範囲で有効である。 具体的には 質量%で、 C : 1 %以下、 Si : 3 %以下、 Mn: 1 0 %以下、 P : 0. 1 %以下、 S : 0. 1 %以下、 Cr: 5 %以下、 A1: 3 %以下、 Ni : 1. 5 %以下の範囲で有効である。
まず、 請求項 1記載の発明について説明する。
本発明者らは、 種々の C u含有量の鋼材について、 種々の铸造後 鋼材厚み ( 5 0mm〜 2 5 0mm) 、 種々の圧延後鋼材有効厚み ( 1 mm 〜 1 0 Omm) の条件で、 鋼材を铸造、 加熱、 熱間圧延を施した。 そ のときの加熱は L N Gの燃焼加熱によって行い、 加熱温度は 1 1 0 0 °C〜 1 3 0 0 °C、 加熱雰囲気の酸素濃度を 0〜 5容量%と した。 加熱雰囲気の酸素濃度を変化させることによ り、 例えば、 低酸素濃 度雰囲気条件にすることによ り、 ウスタイ ト層からなる酸化スケー ルを生成させ、 酸化スケール Z地鉄界面に濃化する C uの量 ( C u 濃化量) を減じさせる等、 種々 C u濃化量を変化させた。 各条件の 評価のため、 熱間圧延後の赤熱脆性による鋼材表面割れの発生有無 を調べた。 さらに熱間圧延後の鋼材の酸化スケール/地鉄界面近傍 に濃化した単位表面積あたりの C u量 (C u濃化量) も調べた。 その結果を図 1に示す。 この図では製品上問題となる外観を損な う赤熱脆性が発生したものを十で、 軽微な赤熱脆性があるが外観を 損なう ものではないものを△、 肉眼での観察からは赤熱脆性の発生 は認められないが顕微鏡によるミクロ観察ではごく軽微な赤熱脆性 が認められたものを♦、 顕微鏡による観察でも赤熱脆性の発生が認 められなかったものを〇で示してある。 この図から、 まず、 C u濃 化量は、 母材の C u濃度と鋼材有効厚みとの積と、 よい相関関係が あることが分かる。 さらに、 ( 1 ) 式に示す範囲の C u濃化量で、 外観上問題となる赤熱脆性が発生していないことも分かる。
ECu < 1 8. 6 CC u X d · · · ( 1 ) ここで、
ECu : 酸化スケールと地鉄との界面近傍に濃化する単位表面積 あたりの C u量
( μ g - c m"2)
CCu : 母材の C u濃度 (質量%)
d : 鋼材有効厚 (mm)
ここで用いる鋼材有効厚 d とは、 熱間圧延時の圧延方向に垂直な 鋼材断面の、 鋼材断面積 s をその周長 1 で割ったもので下記 ( 6 ) 式のように定義する。
d = s / 1 . . · ( 6 ) パイプ材のように内周と外周といった複数の周長がある場合には 内周と外周を合計して周長とする。 また、 このよ うに定義した鋼材 有効厚を用いるこ とで、 板材以外の、 線材、 棒材、 パイプ材、 軌条 材、 形鋼の場合でも ( 1 ) 式で示す赤熱脆性の回避条件を等しく評 価することができる。 この鋼材有効厚は、 板材の場合はおおよその 板厚に、 線材の場合は半径に、 パイプの場合には肉厚に相当するも のである。
赤熱脆性が酸化スケール Z地鉄界面の濃化した Cuで引き起こされ ることから、 濃化 Cu量が少ないほど赤熱脆性防止の観点から好まし く、 ( 1 ) 式の定数は低い値であればあるほど好ましい。 図 1の結 果からわかるように、 外観上の問題はない軽微な赤熱脆性の発生を 抑制するためには ( 1 ) 式の係数は 9. 3以下であることが好まし く、 顕微鏡観察のようなミクロな視野でのみ観察できるような赤熱 脆性をも完全に抑制するには ( 1 ) 式の係数は 4. 5以下であるこ とがさらに好ましい。
請求項 1 に記載の発明は、 上記 ( 1 ) 式を発明の主要な構成とす るものである。
ここで、 酸化スケール/地鉄界面の C u濃化量の測定に好適な測 定方法について述べる。 C u濃化量の測定のためには、 表面積と し て 0. 0 1 mm2以上の面積の平均的な濃度を測定しなければならな い。 これは、 酸化スケール/地鉄界面に濃化した C uは 1 0 0 nm〜
1 μ ΐη程度のサイズの金属 C uと して現出しており、 十分な面積が なければ正確な濃化量を求めることができないためである。 簡便な 手法と しては、 グロ一放電発光分光分析法 (Glow discharge optic al emission spectrometry; G D S ) にて、 鋼材の深さ方向の濃度 分布を求める方法がある。 この方法であれは、 数 mm2程度の面積の 平均的な C u濃度を鋼材表面から深さ方向に測定することができる 。 この分析方法は、 例えば、 日本金属学会編改訂 6版金属便覧第 4
7 1頁に詳しく説明されている。
図 2に、 G D S分析結果から C uの濃化量を求めた例を示す。 同 図には鋼材表面からの深さ方向の距離に対して、 C u (銅) 、 O ( 酸素) 、 F e (鉄) の濃度分布を示してある。 鋼材表面近くでは O の濃度が高く、 酸化スケールが表面に存在することがわかる。 鋼材 表面からの距離が 3 μ πιから にかけて Oの濃度が低くなつて おり、 この近傍が酸化スケール Z地鉄界面である。 この酸化スケー ル /地鉄界面近傍に C uのピークがある。 母材の C u濃度が 0. 1 9 5 %であり (パックグラウンド C u濃度) 、 これより高い部位の C u濃度を深さ方向に積分する (図 2の斜線部の面積を求める) こ とで、 単位面積あたりの C uの濃化量を求めることができる。 ここ で、 体積を質量に換算するための密度を乗じる必要があるが、 この 密度には鉄の密度の 7 . 8 6 g · c m— 3を用いる。
径の細い線材のように表面が平らでなく G D S分析が困難な場合 は、 酸化スケールおよび地鉄の垂直断面を X線マイクロアナリ シス (Electron Probe X-ray Microanalyser; E P M A ) にて面分析を 行う方法を用いてもよい。 この場合、 C uは 1 0 0 nm〜 1 μ m程度 のサイズの金属 C uと して現出しているため、 鋼材表面と平衡な方 向である幅方向に少なく とも 1 0 0 μ m以上の分析視野が必要であ る。 その結果から C u濃度を幅方向に平均して、 鋼材表面に垂直な 方向である深さ方向の平均的な C u濃度分布を求め、 G D S分析の 場合と同様に C uの濃化量を求めるこ とができる。 この分析方法も 、 例えば、 日本金属学会編改訂 6版金属便覧第 4 6 2頁〜第 4 6 5 頁に詳しく説明されている。
次に、 請求項 2に記載の発明について説明する。
赤熱脆性は、 主に C uによって引き起こされるが、 それを助長す る元素がある。 すなわち、 C u と同様に、 1 0 0 0 °C以上 1 3 0 0 °C以下の温度域で酸化に対して鉄よ り貴であり、 かつ融点が 1 3 0 0 °C以下であるという性質を持つ元素である。 本発明では、 C uを 含めたこれらの元素を赤熱脆性誘起元素と定義する。 これらの赤熱脆性誘起元素は、 酸化スケール生成時に酸化スケー ル /地鉄界面に液相として出現する。 そして、 赤熱脆性誘起元素は
、 C u単独の場合と同様に、 ( a ) 酸化スケールの中を粒界を通つ て移動する、 ( b ) ウスタイ トからなる酸化スケールの場合には酸 化スケール表面から揮発する、 ( c ) へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層構造の酸化スケールの場合にはマグネタイ トに固 溶する、 といった挙動をとる。 従って、 よ り厳密には ( 1 ) 式で示 した C u濃化量 (ECu) に代えて、 1 0 0 0 °C以上 1 3 0 0 °C以下 の温度域で酸化に対して鉄よ り貴でありかつ融点が 1 3 0 0 °C以下 である赤熱脆性誘起元素の酸化スケールと地鉄の界面近傍に濃化す る単位表面積あたりの濃化量を合計した赤熱脆性誘起元素総濃化量 (EJ を用い、 さらに前記母材の C u濃度 (CCu) に代えて、 1 0 0 0 °C以上 1 3 0 0 °C以下の温度域で酸化に対して鉄より貴であ りかつ融点が 1 3 0 0 °C以下である元素の母材濃度を合計した赤熱 脆性誘起元素総母材濃度 (CJ を用いることが望ましい。
前記の赤熱脆性誘起元素と して、 C u以外に S n、 S b、 A s も 規定した本発明が、 請求項 3に記載の発明である。 この場合、 前記 赤熱脆性誘起元素を C u、 S n、 S n、 A s として、 前記赤熱脆性 誘起元素総濃化量 (EJ 、 赤熱脆性誘起元素総母材濃度 (CJ を 求めることができる。
次に、 請求項 4に記載の本発明について説明する。
従来から知られているように N i は、 γ— F e中の C uの溶解度 を上げるこ とで、 C u起因の赤熱脆性を抑制する作用がある。 この 作用を期待して、 従来は、 C u起因の赤熱脆性を抑制するために、 質量%で母材の C u含有量の 1 / 2からほぼ同量の N i を添加して いた。
一方、 本発明による酸化スケール/地鉄界面の濃化 C u量を減ら した鋼材では、 上述した従来より少ない N i添加量でも、 さ らには N i無添加でも、 赤熱脆性を十分に抑制することが可能である。 そ して、 本発明においても、 N i を添加することは、 赤熱脆性の発生 程度をさ らに低減することができ、 好ましい実施の形態である。 請 求項 4に記載の本発明は、 このよ う に N i を添加する場合の N i 添 加量 (母材 N i濃度) を母材 C u濃度との関係で規定したものであ る。 すなわち、 従来よ り も少ない母材 N i 濃度でも、 ( 3 ) 式の条 件範囲の N i を含有させることで、 赤熱脆性をよ り有利に抑制する ことができるものである。 また、 母材の N i濃度は、 1. 5 %を超 えると、 鋼材表面に疵が発生しやすくなり外観を損なうため、 1. 5 %以下であることが望ましい。
0. 0 6 1 C , ―„ 2 + 0. 3 2 C Γ .„„ + 0 0 0 3 5≤ CN i≤ l . 5
• · · ( 3 ) ここで、
CN i : 母材の N i 濃度 (質量%)
CCu : 母材の C u濃度 (質量0 /0)
次に、 請求項 5に記載の発明について説明する。
まず、 C u起因の割れ疵を防止するために添加する元素と して、 T i 、 N b、 Vが挙げられる。 これらの元素を適量含有する鋼材に ついて加熱処理を行う と、 T i 、 N b、 Vの炭化物、 窒化物あるい は炭窒化物の微細な析出物を鋼中に数多く析出させることができる 。 これによ り、 粒成長を阻害することができ、 オーステナイ ト粒径 を微細な状態に保持できる。 従って、 酸化スケール/地鉄界面の単 位面積あたり多数の粒界を形成するため、 オーステナイ ト粒界への 液相 Cuの侵入を分散させることができ、 C u起因の赤熱脆性を有利 に防止可能となる。
N b、 Vについては上記の作用以外にも、 これらの酸化物が鉄の 酸化物と低融点の酸化物を形成するため (N bを含有する酸化物の 融点 : 1 1 9 0で、 Vを含有する酸化物の融点 : 6 3 5 °C ) 、 酸化 スケール中への液相 Cuの取込みを促進させることができ、 酸化スケ ール Z地鉄界面に存在する C u濃化量を低減するこ とで、 C u起因 の赤熱脆性を防止することができる。
さらに、 C u起因の赤熱脆性を防止するために添加する元素と し て、 P、 R E Mが挙げられる。 これらの元素はどちらも粒界に偏析 する元素であり、 粒界への偏析によ り粒界エネルギーは低下する。 これによ り、 オーステナイ ト粒界への C u濃化相の浸潤を抑制する ことが可能となるため、 C u起因の赤熱脆性を有利に防止すること ができる。
P、 R E Mについては、 オーステナイ ト粒径を微細にする作用も 有する。 その機構と しては、 Pはデンドライ トに偏析するため粒成 長を阻害することができ、 また R E Mは炭化物、 窒化物あるいは炭 窒化物の微細な析出物を鋼中に数多く析出させることができるため 、 オーステナイ トの粒成長を阻害することができることを通じて、 いずれも C u起因の赤熱脆性を有利に防止することができる。
Pについては、 上記の作用以外にも、 この酸化物が鉄の酸化物と 低融点の酸化物を形成するため (Pを含有する酸化物の融点 : 9 6 0 °C ) 、 酸化スケール中への液相 Cuの取込みを促進させることがで き、 酸化スケール/地鉄界面に存在する C u濃化量を低減すること で C u起因の赤熱脆性を有利に防止することができる。
T i 、 N b、 Vについては単独で用いても、 任意に複数種同時に 用いても、 0 . 0 1質量%以上であればその効果を発揮するが、 0 . 1 5質量%超でその効果は飽和するため、 0 , 1 5質量%を上限 値とする。
また、 これと同時に、 P、 S、 R E Mのいずれか 1種または 2種 以上を用いることも必要である。 Pについては 0. 0 1 0質量%以 上で上記効果を発現するが、 P濃度が 0. 1 0 0質量%超となると 加工性や延性が劣化するため、 上限値は 0. 1 0 0質量%とする。 また、 R EMについては、 0. 0 0 2質量%以上で上記効果を発現 するが、 0. 1 5 0質量%超でその効果が飽和するため、 0. 1 5 0質量%を上限値とする。
一方、 Sは、 鉄より も貴であるため高温加熱時に酸化スケール Z 地鉄界面に濃化する。 さらに、 C u と低融点の硫化物 (C u Sの融 点 1 0 6 7 °C) を形成するため、 酸化スケール中への液相 Cuの取り 込みを促進する効果があるため、 C u起因の割れ疵を防止可能とな る。
S濃度は 0. 0 1 0質量%以上でその効果を発揮するが、 S濃度 が高くなると界面に濃化した Sが F e と硫化物を形成し、 その融点 が 9 4 0 °Cと低融点であるため、 粒界脆化を引き起こす。 S濃度が 0. 0 5 0質量%を越えると、 F e Sによる脆化が著しくなるため 、 S濃度は 0. 0 1 0質量%以上で 0. 0 5 0質量%とする。 なお 、 このよ う に Sが含有される場合は、 Mn濃度を、 質量比で MnZ S≥ 7 を満たすように含有させることで、 Sによる脆化を緩和でき 好ましい。 すなわち、 Mnを鋼中に含有する場合、 Sを Mn S とし て固定するため、 Sによる脆化を緩和できるためである。 ここで、 鋼中の Mn濃度と しては、 質量比で M n / S≥ 7であればよい。 な お、 Mn濃度の上限値は特に規定するものではなく、 目的や用途等 に応じて適宜設定すれば良いが、 通常は材質上から 2. 5質量%以 下であることが多い。
Sは、 上記の作用以外にも、 M n S と して鋼中に析出することで 、 オーステナイ ト粒成長を抑制して、 粒径を微細にする作用も有す る。 加えて、 T i N等の窒化物が析出する場合には、 先に析出した窒 化物を核にして M n Sが析出するため、 オーステナイ ト粒径のさら なる微細化が可能となる。 その結果、 C u起因の赤熱脆性を有利に 防止することができる。
次に、 請求項 6に記載の発明について説明する。
請求項 6に記載の発明は、 請求項 5に記載の発明の成分に調整し た鋼材について、 少なく とも T i 、 N b、 Vのいずれか 1種または 2種以上の炭化物、 窒化物、 または炭窒化物であって、 粒径が 1 0 nm以上 1 μ m以下の析出物の個数密度が 1 0 5個/ mm2以上の析出物 が含まれるものである。
本発明の鋼について、 1 0 nm以上 1 μ πι以下の微細な析出物の個 数密度を調査した。 ここで行った調査方法は、 透過電子顕微鏡によ る高倍率多視野観察 (例えば、 1 0万倍で 1 0 0視野観察等) であ る。 その結果、 1 0 nm以上 1 μ m以下の微細な析出物の個数密度が 1 0 5個 Z min2以上と多く なっていると、 粒成長を阻害することがで き、 オーステナイ ト粒径を微細な状態に保持できることを知見した 。 ここで、 析出物の粒径は、 円相当径を意味している。
さらに、 各種サンプルについて、 先に述べた方法で鋼中に含まれ る析出物の個数密度と割れの関係について調査した。 その結果、 図 3に示す様に、 1 0 nm以上 1 μ m以下の析出物の個数密度が 1 0 5 個 Z mm2以上となっていると、 割れが抑制されることがわかった。 すなわち、 析出物の個数密度が 1 0 52未満の場合、 割れが抑 制できないため、 個数密度を 1 0 5個 Z mm2以上とすることが重要で あり、 その際の析出物の粒径は、 1 0 nm以上 1 μ m以下とすること で所望の個数密度が達成できる。
以上の様に、 本発明鋼について、 粒径が 1 O nm以上 1 μ ΐη以下の 微細な析出物の個数密度が 1 0 5個 Z mm2以上とすることで、 赤熱脆 性が有利に抑制できる。
これらの析出物の組成は、 透過電子顕微鏡による E D S (Energy Dispersive Spectrometry) および電子線回折パターンの解析を行 い調査したところ、 T i 、 N b、 Vの炭化物、 窒化物あるいは炭窒 化物であることを併せて確認できた。
次に、 赤熱脆性を回避して表面性状に優れた鋼材を製造する第一 の製造方法に関する請求項 7に記載の発明について説明する。
前述したように本発明者らは、 C uを含有する鋼材を加熱してゥ スタイ トからなる酸化スケールが生成する低酸素濃度雰囲気条件の 場合に、 C uが酸化スケール/地鉄界面に濃化する以外に、 Cuが酸 化スケールの表層から揮発する現象を発見している。 この第一の製 造方法はこの現象を利用して C u起因の赤熱脆性を抑制するもので める。
まず、 鉄が酸化する場合にウスタイ トからなる酸化スケールが生 成する低酸素濃度雰囲気条件と、 へマタイ ト、 マグネタイ ト、 ウス タイ トの 3層からなる酸化スケールが生成する高酸素濃度雰囲気条 件について説明する。
一般に、 鉄が高温で酸化されると、 表層からへマタイ ト、 マグネ タイ ト、 ウスタイ トの 3層からなる酸化スケールが生成することが 知られている。 この場合は酸化量が時間の平方根に比例して進行す る放物線則で進行する。 この時の酸化速度は次式のよ うに表される w = f ( k p t ) ( 7 ) d w/ d t = k p / 2 Λ ( k p t ) = k D/ 2 w ( 8 ) k p = k p 0 X e x p (- E /R T) ( 5 ) で、
w : 酸化増量 ( g · c m— 2) t : 時間 ( s )
kp : 放物線則速度定数 ( kp。 = 0. 6 0 g2 · c m— 2 ' s—1) E : 活性化エネルギ一 ( E = 1 4 0 k J · m o 1— 1 · K— 1 )
R : 気体定数
T : 温度 (Κ)
このよ うな放物線則で酸化が成長するのは、 酸化スケール中の鉄 ィオンの拡散が律速となつて酸化スケールが成長している場合であ り、 雰囲気ガス中には反応に十分な酸素があることが前提となって いる。 この場合を高酸素濃度雰囲気条件とよぶこ と とする。 しかし 、 上記の放物線則を維持するのに十分な酸素ガスが気相から酸化ス ケール表面に供給できない場合では、 気相からの酸素ガスの供給が 律速となる。 その場合、 酸化速度は酸素濃度に比例し、 次のよ うな 式で表される直線則となる。 この時は、 へマタイ ト層とマグネタイ ト層がなく、 ウスタイ ト層からなる酸化スケールが生成する。 この 場合を低酸素濃度雰囲気条件とよぶこ と とする。
W = k J ρ 02 t ( 9 ) d w / d t = k J p 02 ( 1 0 ) ここで、
k 6 X 1 0— 6 g * c m ― 2
J : 直線則速度定数 ( 9. %
Ρ θ 2 : 酸素濃度 . 実際に鋼材が燃焼ガスによつて加熱される場合には、 上記の放物 線則と直線則での酸化速度の遅いほうが酸化を律速する。 従って、 鉄の酸化速度は式 ( 1 1 ) 式のよ う に表される。
d w / d t = m i n ( k p / 2 w , 1∑ ^。2) · · · 、 1 1 ) 以上よ り、 へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からな る酸化スケールが生成し放物線則で酸化が進行する高酸素濃度雰囲 気条件と、 ウスタイ トのみからなる酸化スケールが生成し直線則で 生成する低酸素濃度雰囲気条件の境界は両条件での酸化速度が等し く なる ( 1 2 ) 式から求まる。 また、 酸化増量と酸化スケール厚と の関係は ( 1 3 ) 式で求まるため、 ( 4 ) 式および ( 1 4 ) 式が高 酸素濃度雰囲気条件と低酸素濃度雰囲気条件の境界となる酸素濃度 である。 ( 4 ) 式および ( 1 4 ) 式には温度に依存する放物線速度 定数 と酸化スケール厚 Xまたは酸化増量 wが式に含まれているこ とからも明らかなよ う に、 両条件の境界となる酸素濃度は酸素濃度 のみで決まるものではなく 、 そのときの酸化スケール厚と温度によ つて境界となる酸素濃度は変化する。
k p / 2 w = k i p。 2 · · · ( 1 2 ) w = x / 7 5 1 9 · · · ( 1 3 ) ここで、
X : 酸化スケール厚 ( μ m)
P。2 = kノ 2 w k i · · · ( 4 ) p o 2 = 7 5 1 9 kp/ 2 x k 1 · · · ( 1 4 ) 次に、 Cuを含有する鋼が酸化する場合の Cuの挙動について述べる 。 Cuを含有した鋼が酸化する場合に、 鉄よ り貴な元素である Cuは酸 化スケール Z地鉄界面に濃化し、 液相の Cuが出現する。 温度が Cuの 融点である 1080°C以上であれば液相と して出現する。
ウスタイ ト と液相 Cuには極めて高い塗れ性がある。 また酸化スケ ールの粒界の 3重点には細い孔が存在している。 この孔は網の目状 につながって分布している。 この高い塗れ性があるこ と と酸化スケ ール内につながつた孔が存在していることから、 毛細管現象によ り 液相の Cuは容易に酸化スケール内を移動するこ とができる。 すなわ ちウスタイ トの酸化スケール下部に出現した液相の Cuは酸化スケー ルの表層に容易に移動するこ とができるのである。 低酸素濃度雰囲 気条件にてウスタイ トからなる酸化スケールが生成する場合、 酸化 スケール表層からは蒸気圧が比較的高い Cuまたは CuOと して揮発す るこ とになる。
Cuが揮発するにはウスタイ トからなる酸化スケールが生成する低 酸素濃度雰囲気条件が必須である。 へマタイ ト、 マグネタイ ト、 ゥ スタイ トの 3層からなる酸化スケールが生成する高酸素濃度雰囲気 条件では、 Cuはマグネタイ ト層に固溶するためである。
高酸素濃度雰囲気にてへマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる酸化スケールが生成する場合、 マグネタイ ト層に が 固溶する現象は次のよ うに説明するこ とができる。 酸化スケール生 成時の鋼中微量金属の挙動を考える上で、 その微量金属の酸化スケ ール中への溶解度を考慮するこ とが重要である。 C uは、 ウスタイ ト中にはほとんど固溶できないが、 ス ピネル構造をとるマグネタイ ト中には多く 固溶できる。 これは、 マグネタイ トである F e 2 F e O 4から F e 2 C u O 4までス ピネル構造を維持したまま組成を変え ることができるためである。
さ らに、 C u と C uの酸化物の平衡酸素ポテンシャルを考慮する と、 鉄上の酸化スケール内でマグネタイ トの上部には C uは酸化物 と して存在し得るこ とがわかる。 従って、 C uは、 酸化スケール/ 地鉄界面に濃化するだけではなく、 酸化スケールの表層近く に生成 するマグネタイ ト層の上部に固溶して存在することができる。
すなわち、 へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からな る酸化スケールが生成する高酸素濃度雰囲気条件では酸化スケ一ル /地鉄界面に濃化して出現した液相の Cuは酸化スケールの粒界にあ る孔を毛細管現象によ り浸透して酸化スケール上層に移動するが、 マグネタイ ト層が表層近く に存在する場合には Cuはマグネタイ ト層 に固溶するこ とになる。 Cuの赤熱脆性を防止する第一の製造方法は、 鋼材を熱間圧延前に 加熱する際に、 低酸素濃度雰囲気条件で加熱し、 Cuを雰囲気中に揮 発させるものである。 それによ り酸化スケール/地鉄界面に濃化す る Cu量が低減できるために赤熱脆性を抑制することができる。 また 、 低酸素濃度雰囲気条件での酸 ίヒ速度は酸素濃度に比例するため、 酸素濃度を低減することで酸化スケールの生成量も減じることがで き、 酸化スケール 地鉄界面に濃化して出現する 量自体を減じる 作用もある。
通常のへマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる髙 酸素濃度雰囲気条件での酸化の場合、 酸化によって鉄から排除され た Cuの一部はマグネタイ ト層に固溶するものの、 一定割合の Cu量は 酸化スケール/地鉄界面に濃化する。 この場合、 熱間圧延終了後の 圧延方向に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有 効厚を d (mm) とするとき、 C u含有鋼材の酸化スケールと地鉄と の界面近傍に濃化する単位表面積あたりの C u濃化量 E C u ( μ g · c m はおおよそ 1 8 . 6 CC u X d となることがわかっている。 従って、 本発明にて酸化スケール/地鉄界面に濃化する Cu量を減じ ることができるならば、 酸化スケールと地鉄との界面近傍に濃化す る単位表面積あたりの C u濃化量 E C u ( μ g · c m 2) を 1 8 . 6 C C u X d未満とすることができ、 前述したように赤熱脆性を回避す ることができる。
この Cuが揮発する現象は、 酸化スケールがウスタイ ト層からなる 構造を保っている限り持続する。 従って、 酸化スケール/地鉄界面 に濃化した C u量を減じることができる。 この場合、 C uが液相と してウスタイ トの酸化スケール内を移動する必要があることから、 本発明では液相の C uが生成する C uの融点である 1 0 8 0 °C以上 であることが前提となる。 また、 加熱時の雰囲気は ( 4 ) 式または ( 1 4) 式で表される酸素濃度以下となる低酸素濃度雰囲気条件で ある必要がある。
低酸素濃度雰囲気条件でウスタイ トからなる酸化スケールが生成 し、 高酸素濃度雰囲気条件ではへマタイ ト、 マグネタイ ト、 ウスタ ィ トの 3層からなる酸化スケールが生成する。 酸化スケールが生成 している状態で低酸素濃度雰囲気条件を高酸素濃度雰囲気条件に、 またはその逆に雰囲気条件を変化させた場合には、 雰囲気条件に応 じて酸化スケ一ル構造も変化する。 例えば初めに高酸素濃度雰囲気 条件で生成した酸化スケールが存在していても、 途中から低酸素濃 度雰囲気条件とすることでウスタイ トからなる酸化スケール構造に 変化する。 その時、 最初の高酸素濃度雰囲気条件でマグネタイ ト層 に固溶していた Cuは、 低炭素濃度雰囲気条件に移行してウスタイ ト 層からなる酸化スケールになるとウスタイ ト内に固溶することがで きず、 酸化スケール表層から揮発して雰囲気ガス中に放散される。 従って、 鋼材表面が 1080°C以上の温度となる加熱炉の全領域で低酸 素濃度雰囲気条件である必要はなく、 その一部の加熱炉内領域を低 酸素濃度雰囲気条件と してもその領域にて Cuの揮発現象が現れるた めに、 赤熱脆性を抑制することが可能である。
低酸素濃度雰囲気条件では Cuは酸化スケール 地鉄界面から酸化 スケールの粒界を移動して酸化スケール表面から揮発する。 本発明 者らは鋭意検討した結果、 酸化スケール生成時に酸化スケールが生 成し、 その中に C uがスケール内を移動して揮発を開始する時間 ( s ) は、 温度 T (K) との関係で ( 1 5 ) 式のよ うに表されること を見出した。 そこで、 鋼材表面温度に対応して次式で表される時間 t秒以上、 低酸素濃度雰囲気条件での酸化を行う ことが好ましい。
l o g 10 ( tノ 6 0 ) =— 0. 0 0 3 0 1 XT + 4. 8 3
• · · ( 1 5 ) 通常、 コークス炉ガスや L N Gなどを燃料とする燃焼ガスを用い る場合には、 高酸素濃度雰囲気条件の雰囲気と低酸素濃度雰囲気条 件の雰囲気は燃焼時の空気比を制御することで得ることができる。 空気比を増加させると燃焼ガス雰囲気内の酸素濃度が増加し、 空気 比を減じると燃焼ガス雰囲気内の酸素濃度が減少する。 加熱炉内の 酸素濃度は酸素濃度計にて測走するこ とができる。
低酸素濃度雰囲気条件は、 燃焼ガスに窒素ガス、 アルゴンガス、 へリ ゥムガスなどの不活性ガスを混合することにより、 あるいは鋼 材の温度を上げることによっても得られる。
なお、 例えば誘導加熱炉ゃ高周波加熱炉など燃焼ガスを用いない 加熱炉を用いる場合にも本方法の実施は可能である。 この場合、 窒 素ガス、 アルゴンガス、 ヘリ ウムガスなどの非酸化性ガスを雰囲気 ガスと して用いるこ とができる。
加熱炉内の一部の領域を低酸素濃度雰囲気条件とし、 他の領域を 高酸素濃度雰囲気条件とする場合、 領域間の境界となる位置に仕切 り壁を設けることが好ましい。 仕切り壁を設けることで明確に低酸 素濃度雰囲気条件と高酸素雰囲気条件とを区切るこ とができる。
また加熱炉の一部の領域を低酸素濃度雰囲気条件と し、 他の領域 を高酸素濃度雰囲気条件とする場合の加熱方法と して、 蓄熱式燃焼 パーナ一 (リ ジヱネバーナー) を用いる燃焼方式を用いてもよい。 この燃焼方式ではパーナ一から放出された燃焼ガスは向かい合った パーナ一の蓄熱室に入るために、 他の領域に流出する燃焼ガス量が 少なく、 一部の領域の雰囲気条件を変更することが容易であるから である。
数式 ( 4 ) 式には、 酸化スケール厚を考慮する必要がある。 しか し、 実際の鋼板製造時の酸化スケール厚をリアルタイムで測定する ことは不可能である。 従って、 ( 1 1 ) 式で求まる酸化速度を積分 し、 ( 1 3 ) 式にて酸化スケール厚に変換することによ り、 生成中 の酸化スケール厚を計算により求めるこ とができる。
この時に必要な鋼材表面の温度は、 放射温度計によつて容易に測 定することができる。 また、 雰囲気の温度分布から鋼材の温度分布 を熱伝導計算で求めることもできる。
Cuが酸化スケール表面から揮発する低酸素濃度雰囲気条件は ( 4 ) 式または ( 1 4) 式で表される酸素濃度以下で表され、 酸化スケ ールの厚みと温度によって変わるものであり、 正確には特定の酸素 濃度以下と記述することはできない。 しかしながら、 加熱炉内で生 成する酸化スケールの厚みは 5 0 0 μιη〜 3 0 0 0 μιη程度であり、 この厚み条件で 1080°Cから 1250°C程度の加熱温度条件では ( 4 ) 式 から 0. 5容量%以下の酸素濃度であれば低酸素濃度雰囲気条件と なり、 Cuを雰囲気中に蒸発させ、 赤熱脆性を抑制することができる 図 4は、 本発明の第一の製造方法を実施するための好ましい加熱 炉の概略の態様例と、 酸素濃度条件に対応した酸化スケールの生成 状況を模式的に示したものである。
この態様例では、 C uを 0. 0 5〜 3質量%含有する鋼材 (スラ ブ) 1 を、 常温で加熱炉 2に挿入し、 1 1 0 0〜 1 3 0 0 °Cの温度 雰囲気で加熱して 1 1 0 0〜 1 3 0 0 °Cの温度で抽出後、 デスケー リ ング装置 (高圧水) 3で加熱炉酸化スケールを除去して熱間圧延 機 4で熱間圧延する場合において本発明を適用した場合のものであ り、 加熱炉の一部の領域を低酸素濃度雰囲気条件で施している点に 特徴がある。 また低酸素濃度雰囲気条件の領域と高酸素雰囲気条件 の領域を仕切るために加熱炉内に仕切り壁 5 設けている。
この態様例では、 鋼材を低酸素濃度雰囲気条件で加熱するために 、 生成される酸化スケールはウスタイ トで構成される。 酸化スケー ルが生成し、 鋼材が C uの融点 1 0 8 0 °C以上である 1 1 0 0〜 1 3 0 0 °Cまで加熱されると、 図 4に示すように、 酸化スケール/地 鉄界面に C uが濃化し液相として出現する。 その液相 C uは、 酸化 スケールの粒界を浸透して酸化スケールの表面に達し、 そこで C u 蒸気または酸化されて C u O蒸気として蒸発 · 飛散する。 この C u の蒸発 · 飛散が低酸素濃度雰囲気条件である間進行しつづけるため 、 鋼材表面の酸化スケール/地鉄界面での C u濃化量を減少させる ことができる。 このよ うに、 本発明では、 酸化スケールノ地鉄界面 の C uの濃化量を大幅に抑制することができ、 熱間圧延時の C u起 因による赤熱脆性を有利に防止することができる。 同図では、 減量 した C u濃化層を破線で示している。
次に赤熱脆性を抑制する第二の製造方法に関する請求項 8に記載 の発明について説明する。 本発明では、 本発明者らが新たに発見し た下記の 3つの現象全てを利用するものである。 ( a ) 酸化スケー ル /地鉄界面で液相と して出現した C uは、 酸化スケールの粒界を 容易に移動する。 ( b ) マグネタイ トが生成しない酸化スケールの 場合、 すなわちウスタイ ト層からなる酸化スケールの場合、 酸化ス ケール /地鉄界面から液相の C uが、 酸化スケール内 (粒界) を移 動して酸化スケールの表面に達し、 Cuまたは C u Oの蒸気として蒸 発 · 飛散する。 ( c ) へマタイ ト、 マグネタイ ト、 ウスタイ トの 3 層からなる酸化スケールが生成する場合には、 酸化スケール 地鉄 界面から液相の C uが、 酸化スケール内 (粒界) を移動して、 マグ ネタイ ト層に C uが固溶する。 これらの性質は酸化スケール Z地鉄 界面に濃化した液相 Cuは毛細营現象によつて酸化スケールの粒界を 通って吸い上げられ、 界面から離れた場所に Cuを移動させる性質が ある、 すなわち酸化スケールは液相 Cuを吸収するスポンジのような 性質を持っている。 鋼は加熱され、 鋼材表面に生成した酸化スケールを除去した後に 熱間圧延される。 加熱の段階で生成した酸化スケールの酸化スケー ル /地鉄界面の Cuの濃化が赤熱脆性の問題となる。 熱間圧延開始前 に、 加熱で濃化した Cu量を減少させることができれば赤熱脆性を抑 制することができる。 通常は熱間圧延開始前に 1回の酸化スケール 除去処理が施される。 本発明は、 この酸化スケール除去処理を 2回 またはそれ以上の回数行う。 通常鋼材が圧延されるのは大気雰囲気 であるためにそれぞれの酸化スケール除去処理の間には表面に酸化 スケールが生成する。 この酸化スケール除去処理間に生成する酸化 スケールが前述したように液相の Cuを酸化スケール内に吸収する作 用を及ぼす。 従って、 酸化スケール除去処理を通常の 1回よ り も多 く実施するほど、 酸化スケール/地鉄界面の濃化 Cu量は減少し、 赤 熱脆性を抑制することができる。
上記作用からも明らかなように、 2回以上の酸化スケール除去処 理は鋼材の加熱後、 最初の熱間圧延前に施されるべきである。 また 、 酸化スケールが生成する再酸化が必要であり、 酸化雰囲気である 必要があり、 通常圧延が行われる大気雰囲気が簡便に利用できる。 再酸化時のスケールは、 ウスタイ トからなる酸化スケールであって も、 へマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる酸化ス ケールが生成した場合でも、 いずれの場合にも酸化スケールは液相 Cuを吸収する作用があるために酸化スケール/地鉄界面に濃化した Cuを減じる作用がある。 従って、 この 2回以上の酸化スケール除去 処理の間に鋼材がさらされる雰囲気は低酸素濃度雰囲気条件であつ ても高酸素濃度雰囲気条件のいずれでもよい。 また液相 Cuが酸化ス ケ一ルに吸収される現象を利用するために、 鋼材表面の温度は Cuの 融点である 1080°C以上である必要がある。 なお、 鋼材表面の温度は 、 放射温度計によって容易に測定することができる。 通常のへマタイ ト、 マグネタイ ト、 ウスタイ トの 3層からなる高 酸素濃度雰囲気条件で鋼材を加熱し 1回のスケール除去処理を施し た後に熱間圧延を施した鋼材の場合、 熱間圧延終了後の圧延方向に 垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚を d ( 匪) とするとき、 C u含有鋼材の酸化スケールと地鉄との界面近傍 に濃化する単位表面積あたりの C u濃化量 ECu ( μ g · c m—2) は おおよそ 1 8. 6 CC u X d となることがわかっている。 従って、 本 発明にて酸化スケール Z地鉄界面に濃化する Cu量を減じることがで きるならば、 酸化スケールと地鉄との界面近傍に濃化する単位表面 積あたりの C u濃化量 ECu ( μ g ♦ c m""2) を 1 8. 6 CCu X d未 満とすることができ、 前述したよ うに赤熱脆性を回避することがで さる。
2回以上の酸化スケール除去処理の間での鋼材の再酸化のために 、 再酸化のための熱処理を施してもよい。 再酸化処理での加熱およ び/または保熱の手段には、 電気炉での輻射加熱や保熱あるいは誘 導加熱ゃ通電加熱のよ うな、 エネルギー効率や応答性、 制御等に優 れた電気エネルギーによる加熱や保熱の手段を用いるのが好ましく 、 また、 鋼材温度が高く再酸化処理中に鋼材表面を 1 0 8 0 °C以上 に保持できるのであれば、 断熱材で覆われた中に鋼材を保持する保 熱手段を用いることもエネルギー効率のう えで好ましい実施の形態 である。 いずれの方法でも、 鋼材表面を 1 0 8 0 °C以上で、 酸化雰 囲気であれば本発明の目的を達成できるので、 エネルギー効率の良 い方法を適宜選択すれば良い。 この酸化雰囲気としては容易に利用 できる大気を利用することが好ましい。
酸化スケールの除去処理方法には、 従来から公知の、 高圧水を鋼 材表面に噴射する方法、 製品表面となる鋼材の面を圧延する方法、 さらには製品表面となる鋼材の側面を幅方向に圧下する方法などが あり、 適宜選択し、 また、 組み合わせることができる。
図 5は、 本発明の第二の製造方法を実施するための好ましい設備 の概略と、 この設備における酸化スケールの生成状況を模式的に示 したものである。 ここでは、 加熱炉 2内の燃焼ガス雰囲気 (高酸素 濃度雰囲気条件) で、 鋼材 1が加熱される。 この加熱の際に、 鋼材 表面に酸化スケールが生成し、 これに伴い酸化スケール/地鉄界面 に液相の C uが出現する。 その溶融 (液相) C uの一部は、 酸化ス ケ一ルの粒界を移動してマグネタイ ト層に至りマグネタイ ト層内に 固溶する。 所定の時間、 所定の温度に加熱された鋼材は、 加熱炉か ら抽出され、 デスケーリ ング装置 (高圧水) 3にて加熱炉酸化スケ ールが除去される。 これによ り、 マグネタイ ト層内に固溶していた C uは、 酸化スケールとともに除去される。 その後、 大気雰囲気で 鋼材が移動する際に、 大気中の酸素によ り鋼材表面に再酸化スケー ルが生成される。 この領域が再酸化処理帯 6である。 これにより、 加熱炉で出現してデスケーリ ング後も地鉄表面に残留していた液相 の C uの一部は、 再酸化スケールのスケールに吸収され、 マグネタ ィ ト層に移動して固溶するあるいは雰囲気中に揮発され、 酸化スケ ール/地鉄界面の濃化 C u量が減少することになる。 減量した C u 濃化層を図中では破線で示してある。 その後、 熱間圧延前にデスケ 一リ ング装置 (高圧水) 3でデスケーリ ングされ、 熱間圧延機 4に て圧延されるが、 酸化スケール/地鉄界面の濃化 C u量が少なくな つているため、 熱間圧延時の赤熱脆性 (表面割れ) を有利に防止す ることができる。
最後に請求項 9記載の発明について説明する。 これは赤熱脆性を 抑制する第一の製造方法と第二の製造方法を同時に用いるものであ る。 第一の製造方法は鋼材を加熱する方法であり、 第二の方法は加 熱後かつ最初の圧延までの間での鋼材の酸化スケール除去処理方法 であり、 これらは同時に行う ことが可能であり、 同時に行う ことで 赤熱脆性の抑制効果をさらに高めることができる。 実施例
(実施例 1 )
C uおよび S nを含有した鋼材を铸造し、 熱間圧延にて鋼板を製 造する実験を行った。 熱間圧延に先立つ加熱は、 燃焼加熱にて燃焼 時の空気比を種々変えて行い、 1 1 0 0 ~ 1 2 5 0 °Cの温度に加熱 し、 その後、 熱間圧延を施して、 種々の鋼材厚み (鋼材有効厚) の 鋼板を製造した。 母材の C u濃度、 母材の S n濃度、 母材の N i濃 度を表 1 に示す。 また、 得られた鋼材の有効厚、 酸化スケールと地 鉄との界面近傍に濃化する単位表面積あたりの C u量 ( C u濃化量 ) 、 酸化スケールと地鉄との界面近傍に濃化する単位表面積あたり の S n量 ( S n濃化量) 、 酸化スケールと地鉄との界面近傍に濃化 する単位表面積あたりの S b量 ( S b濃化量) 、 酸化スケールと地 鉄との界面近傍に濃化する単位表面積あたりの A s量 (A s濃化量 ) 、 および表面の赤熱脆性による割れの発生状況を表 1にあわせて 示す。 C u濃化量および S n濃化量は、 GD S分析によって求めた 。 得られた鋼板表面の赤熱脆性による割れの発生程度は、 ◎ : 割れ 発生なし、 〇 : 微細な割れ発生あるが品質や外観上の問題なし、 X
: 品質や外観上問題となる割れが発生、 という指標と した。 酸化ス ケール /地鉄界面での赤熱脆性誘起元素の Cu, Sn, Sb, Asの濃化量 が少なく、 ( 1 ) 式および ( 2 ) 式を満たすもの (No.:!〜 9) には 品質や外観上の問題となる赤熱脆性による割れの発生がみられず、
( 1 ) 式または ( 2 ) 式を満たしていないもの (No.10〜: 13) では 品質や外観上問題となる赤熱脆性による割れが発生した。 ( 3 ) 式 を満たす Niを添加したもの (No.8,9) でも赤熱脆性の発生はなく優 れた表面品質を得ることができた。 これより本発明に従う実施例で は、 C uおよび S nの赤熱脆性誘起元素を含有する鋼材であっても 、 熱間圧延時に赤熱脆性が発生しないことがわかる。
母材濃度 (質 J 1%) 鋼 材 スケール/地鉄界面での濃化量 赤熱脆性
No. Cu Sn Sb As Ni 有効厚 g cm ) の評価 備 考
(mm) Cu Sn Sb As
1 0.10 0.03 0.010 0.003 0.03 10 7.2 6.6 2.0 0.1 ◎ 本発明
2 1.20 0.50 0.010 0.003 0.03 40 341.8 407.7 7.9 0.3 〇 本発明
3 0.10 0.03 0.010 0.060 0.03 1 0.9 0.4 0.2 0.2 ◎ 本発明
4 0.10 0.03 0.010 0.060 0.03 2 0.6 0.6 0.2 0.1 ◎ 本発明
5 0.10 0.03 0.004 0.003 0.03 40 35.0 21.6 3.7 0.3 ◎ 本発明
6 1.20 0.50 0.004 0.003 0.03 1 8.4 9.3 0.1 0.0 〇 本発明
7 1.20 0.50 0.004 0.003 0.03 2 44.2 26.5 0.2 0.0 〇 本発明
CO 8 1.20 0.50 0.004 0.060 0.65 10 68.3 100.8 0.8 1.6
t ◎ 本発明
9 1.20 0.50 0.004 0.060 1.00 40 631.2 423.4 4.1 5.6 © 本発明
10 0.10 0.03 0.010 0.003 0.03 1 2.6 0.6 0.3 0.0 X 比較例
11 0.10 0.03 0.010 0.060 0.03 10 30.4 1.6 5.0 3.4 X 比較例
12 1.20 0.50 0.004 0.060 0.03 2 55.3 12.4 0.2 0.2 X 比齩例
13 1.20 0.50 0.004 0.003 0.55 40 1045.7 353.5 4.0 0.3 X 比較例
(実施例 2 )
C uおよび S nを含有した鋼材を铸造し、 熱間圧延にて線材を製 造する実験を行った。 熱間圧延に先立つ加熱は、 燃焼加熱にて燃焼 時の空気比を種々変えて行い、 1 1 0 0〜 1 2 5 0 °Cの温度に加熱 し、 その後、 熱間圧延を施して、 種々の径 (鋼材厚み) の線材を製 造した。 母材の C u濃度、 母材の S n濃度、 母材の N i 濃度を表 2 に示す。 また、 得られた鋼材の有効厚 (線材の半径) 、 酸化スケー ルと地鉄との界面近傍に濃化する単位表面積あたりの C u量 ( C u 濃化量) 、 酸化スケールと地鉄との界面近傍に濃化する単位表面積 あたりの S n量 ( S n濃化量) 、 および表面の赤熱脆性による割れ の発生状況を表 2にあ せて示す。 C u濃化量および S n濃化量は 、 酸化スケール断面を E PMAで面分析した結果から求めた。 得ら れた鋼材表面の赤熱脆性による割れの発生程度は、 ◎ : 割れ発生な し、 〇 : 微細な割れ発生あるが品質や外観上の問題なし、 X : 品質 や外観上の問題となる割れが発生、 という指標と した。 酸化スケー ル 地鉄界面での赤熱脆性誘起元素である Cu, Snの濃化量が少なく 、 ( 1 ) 式および ( 2 ) 式を満たすもの (Νο.14〜21) には品質や 外観上の問題となる赤熱脆性による割れの発生がみられず、 ( 1 ) 式または ( 2 ) 式を満たしていないもの (Νο·22〜24) では品質や 外観上問題となる赤熱脆性による割れが発生した。 ( 3 ) 式を満た す Niを添加したもの (No.21) も赤熱脆性の発生はなく優れた表面 品質を得ることができた。 これより本発明に従う実施例では、 C u および S nの赤熱脆性誘起元素を含有する鋼材であつても、 熱間圧 延時に赤熱脆性が発生しないことがわかる。 【表 2】
Figure imgf000036_0001
(実施例 3 )
C uおよび S ηを含有した鋼材を铸造し、 熱間圧延にて Η形鋼を 製造する実験を行った。 熱間圧延に先立つ加熱は、 燃焼加熱にて燃 焼時の空気比を種々変えて行い、 1 1 5 0 〜 1 3 0 0 °Cの温度に加 熱し、 その後、 熱間圧延を施して、 種々の肉厚 (鋼材有効厚み) の H形鋼を製造した。 母材の C u濃度、 母材の S n濃度、 母材の N i 濃度を表 3に示す。 また、 得られた鋼材の有効厚、 酸化スケールと 地鉄との界面近傍に濃化する単位表面積あたりの C u量 (C u濃化 量) 、 酸化スケールと地鉄との界面近傍に濃化する単位表面積あた りの S n量 ( S n濃化量) 、 および表面の赤熱脆性による割れの発 生状況を表 3にあわせて示す。 C u濃化量および S n濃化量は、 ゥ エブ部の 1面およびフランジ部の内面および外面の 3点について G D S分析行って求め、 それらの平均値を示している。 得られた鋼材 表面の赤熱脆性による割れの発生程度は、 ◎ : 割れ発生なし、 〇 : 微細な割れ発生あるが品質や外観上の問題なし、 X : 品質や外観上 の問題となる割れが発生、 という指標と した。 酸化スケール/地鉄 界面での赤熱脆性誘起元素である Cu, Snの濃化量が少なく、 ( 1 ) 式および ( 2 ) 式を満たすもの (No.25〜32) には品質や外観上の 問題となる赤熱脆性による割れの発生がみられず、 ( 1 ) 式または
( 2 ) 式を満たしていないもの (No.33〜35) では品質や外観上問 題となる赤熱脆性による割れが発生した。 ( 3 ) 式を満たす Niを添 加したもの (No.30,31) でも赤熱脆性の発生はなく優れた表面品質 を得ることができた。 これよ り本発明に従う実施例では、 C uおよ び S nの赤熱脆性誘起元素を含有する鋼材であっても、 熱間圧延時 に赤熱脆性が発生しないことがわかる。
【表 3】
Figure imgf000037_0001
(実施例 4 ) .
C uおよび S nを含有した鋼材を铸造し、 熱間圧延にて継ぎ目な し鋼管を製造する実験を行った。 熱間圧延に先立つ加熱は、 燃焼加 熱にて燃焼時の空気比を種々変えて行い、 1 1 0 0 ~ 1 2 5 0 °Cの 温度に加熱し、 その後、 熱間圧延を施して、 種々の肉厚 (鋼材有効 厚み) の継ぎ目なし鋼管を製造した。 母材の C u濃度、 母材の S n 濃度、'母材の N i 濃度を表 4に示す。 また、 得られた鋼材の有効厚 、 酸化スケールと地鉄との界面近傍に濃化する単位表面積あたりの
C u量 (C u濃化量) 、 酸化スケールと地鉄との界面近傍に濃化す る単位表面積あたりの S n量 ( S n濃化量) 、 および表面の赤熱脆 性による割れの発生状況を表 4にあわせて示す。 C u濃化量および S n濃化量は、 鋼管の外面および内面の酸化スケール断面を E P M Aで面分析した結果から求めて、 その平均値を示している。 得られ た鋼材の表面の赤熱脆性による割れの発生程度は、 ◎ : 割れ発生な し、 〇 : 微細な割れ発生あるが品質や外観上の問題なし、 X : 品質 や外観上の問題となる割れが発生、 という指標と した。 酸化スケー ル /地鉄界面での赤熱脆性誘起元素である Cu, Snの濃化量が少なく 、 ( 1 ) 式および ( 2 ) 式を満たすもの (Νο.36〜·41) には品質や 外観上の問題となる赤熱脆性による割れの発生がみられず、 ( 1 ) 式または ( 2 ) 式を満たしていないもの (Νο.42~44) では品質や 外観上問題となる赤熱脆性による割れが発生した。 ( 3 ) 式を満た す Niを添加したもの (No.41) では赤熱脆性の発生はなく優れた表 面品質を得ることができた。 これよ り本発明に従う実施例では、 C u と S nの赤熱脆性誘起元素を含有する鋼材であっても、 熱間圧延 時に赤熱脆性が発生しないことがわかる。
【表 4】
母材濃度 (質 %) 鋼 材 界面濃化量 赤熱脆性
No. Cu Sn ί 有効厚 の評価 備 考 (mm; Cu Sn
36 0.40 0.11 0.05 10 64.8 23.9 〇 本発明
37 0.08 0.03 0.04 20 3.6 4.4 ◎ 本発
38 0.08 0.03 0.02 10 11.1 5.5 〇 本発明
39 0.40 0.11 0.05 20 65.9 24.6 ◎ 本発日
40 0.08 0.03 0.07 20 21.3 11.5 〇 本発日
41 0.40 0.11 0.18 10 65.4 22.1 ◎ 本発明
42 0.08 0.03 0.02 10 15.6 5.4 X 比較例
43 0.08 0.03 0.02 20 32.5 10.2 X 比較例
44 0.40 0.11 0.05 20 151.9 39.9 X 比較例 (実施例 5 )
C u S n、 S b A s を含有した成分の鋼材に、 T i V、 N b S P R EMの中の 1種または 2種以上を添加して成分を調 整した鋼材を铸造し、 熱間圧延にて鋼板を製造する実験を行った。 熱間圧延に先立つ加熱は、 燃焼加熱にて燃焼時の空気比を種々変え て行い、 1 1 0 0 1 2 5 0 °Cの温度に加熱し、 その後、 熱間圧延 を施して、 3. 2 厚の鋼板を製造した。 母材の成分を表 5に示す 。 また、 得られた鋼材の有効厚、 酸化スケールと地鉄との界面近傍 に濃化する単位表面積あたりの C u量 (C u濃化量) 、 酸化スケ一 ルと地鉄との界面近傍に濃化する単位表面積あたりの S n量 ( S n 濃化量) 酸化スケールと地鉄との界面近傍に濃化する単位表面積 あたりの S b量 ( S b濃化量) 、 酸化スケールと地鉄との界面近傍 に濃化する単位表面積あたりの A s量 (A s濃化量) 、 および表面 の赤熱脆性による割れの発生状況を表 5にあわせて示す。 C u濃化 量、 S n濃化量、 S b濃化量、 A S濃化量は、 G D S分析結果から 求めた。 得られた鋼板表面の赤熱脆性による割れの発生程度は、 ◎
: 割れ発生なし、 〇 : 微細な割れ発生あるが品質や外観上の問題な し、 X : 品質や外観上の問題となる割れが発生、 という指標と した Ti V, Nb, REMが本発明の範囲で添加され、 かつ酸化スケール 地鉄界面での赤熱脆性誘起元素である Cu Snの濃化量が少なく、 ( 1 ) 式および ( 2 ) 式を満たすもの (No.45 53) には品質や外観 上の問題となる赤熱脆性による割れの発生がみられず、 Ti Y, Nb,
REMを全く添加せずかつ ( 1 ) 式または ( 2 ) 式を満たしていない もの (No.54 56) には品質や外観上の問題となる赤熱脆性による 割れが発生している。 これよ り本発明に従う実施例では、 C u S n S b A sなどの赤熱脆性誘起元素を含有する鋼材であって も、 熱間圧延時に赤熱脆性が発生しないことがわかる。 ' 母材濃度(質量%) 鋼 材 界面での濃化量 赤熱脆性
No. C
Figure imgf000040_0001
Mn P S Cu Sn Sb As Ni Ti V Nb REM 有効厚 Vu cm 2) の評価 備 考
vmm) n u
40 n am 1 n ς7 n nn4 n n n n u. nuo n run n nm n nn r> no 32 2.6 0.0 0.4 o.o 〇 本発明
4b n ηπΔ n i 1nn n on υ.υ n run n nn 1 3.2 5.8 1.4 0.4 0.0 ◎ 本発明
4 / 0.14 0.20 1.42 0.004 0.050 0.20 D.1G 0 010 0.060 1 £- n ό.Ι 11.0 4.8 0.4 1.4 ® 発明
0.002 0.01 0.57 0.010 0.005 0.20 0.10 0.010 0.060 0.20 0.13 3.6 1.8 0.2 0.6 小 56明
49 0.05 0.02 0.85 0.080 0.005 0.50 0.10 0.004 0.003 0.00 0.15 3.2 26.0 0.0 0.2 0.0 ◎ 本発明
50 0.14 0.20 1.42 0.004 0.005 0.50 0.18 0.004 0.003 0.00 0.11 0.050 3.2 25.0 10.4 0.2 0.0 © 本発明
51 0.002 0.01 0.57 0.005 0.006 0.50 0.30 0.004 0.060 0.00 0.1 0.150 3.2 27.8 15.8 0.2 1.6 ◎ 本発明
52 0.05 0.02 0.85 0.008 0.030 2.20 0.20 0.004 0.060 1.50 0.05 0.002 3.2 127.0 1 1.8 0.4 1.8 ◎ 本発明
53 0.14 0.20 1.42 0.050 0.008 2.20 0.80 0.010 0.003 0.00 0.05 0.080 3.2 123.6 45.6 0.4. 0.0 〇 本発明
54 0.002 0.01 0.57 0.004 0.005 0.10 0.03 0.010 0.060 0.00 3.2 6.2 3.4 1.0 4.4 X 比較例
55 0.05 0.02 0.85 0.004 0.005 1.20 0.50 0.004 0.060 0.00 3.2 74.4 30.0 0.4 3.6 X 比較例
56 0.14 0.20 1.42 0.010 0.015 1.20 0.50 0.004 0.003 0.00 3.2 81.8 33.6 0.4 1.2 X 比較例
≠ 5 (実施例 6 )
化学成分として、 質量%で、 C : 0. 0 5 %、 S i : 0. 0 1 % 、 M n : 0. 2 5 %、 P : 0. 0 1 2 %、 S : 0. 0 0 6 %、 C u : 1 . 6 4 %、 N i : 0. 0 1 %、 C r : 0. 0 2 %を含有する鋼 材を、 L NGを燃料とする燃焼ガスを用いて加熱炉で加熱した。 初 期の酸化スケール厚が 3 0 0 μ mの鋼材の鋼材を、 加熱炉内全体 ( 加熱帯および均熱帯) の酸素濃度を 0. 5容量%と して、 1 2 3 0 °Cまでを 9 0分で加熱し、 その後 4 0分間 1 2 3 0 °Cで保持した。 この場合の酸素濃度条件は加熱炉全体で低酸素濃度雰囲気条件であ つた。 その後、 鋼材を加熱炉から抽出し、 高圧水によるデスケーリ ングを施してから熱間圧延したところ、 熱間圧延後の鋼材表面には 赤熱脆性の発生は認められなかった。
一方、 加熱炉全体を酸素濃度 5容量%の高酸素濃度雰囲気条件で 加熱した場合には、 赤熱脆性による鋼材表面での割れが発生した。
(実施例 7 )
化学成分と して、 質量%で、 C : 0. 0 4 %、 S i : 0. 0 1 % 、 M n : 0. 3 3 %、 P : 0. 0 1 0 %、 S : 0. 0 1 1 %、 C u : 0. 7 4 %、 N i : 0. 0 4 %、 C r : 0. 0 7 %を含有する鋼 材を、 コークス炉ガスを燃料とする燃焼ガスを用いて加熱炉で加熱 した。 加熱炉に入れる前の酸化スケール厚は 5 0 0 μ mであった。 この加熱炉加熱では、 まず、 高酸素濃度雰囲気条件 (酸素濃度 5容 量%) で 1 2 0 0 °Cまでを 8 0分で加熱し、 そのままの雰囲気にて 1 2 0 0 °C X 2 0分保持してから、 前後を仕切壁で仕切られた低酸 素濃度雰囲気条件 (酸素濃度 0. 4容量%) で 1 2 0 0 3 0分 保持し、 再度、 高酸素濃度雰囲気条件 (酸素濃度 5容量%) で 1 2 0 0 °CX 3 0分保持し、 その後、 加熱炉から抽出した。 その後、 鋼 材表面の加熱炉酸化スケールを高圧水で除去後、 熱間圧延に供した 。 熱間圧延後の鋼材表面には赤熱脆性による鋼材表面の表面割れの 発生は認められなかった。
一方、 加熱帯に低酸素濃度雰囲気条件となる加熱ゾーンを配置し ない従来の高酸素濃度雰囲気条件での加熱、 すなわち、 加熱炉に入 れる前の酸化スケール厚が 5 0 0 /i mであり、 全て高酸素濃度雰囲 気条件 (酸素濃度 5容量%) にて 1 2 0 0 °Cまでを 8 0分で加熱し 、 そのままの雰囲気、 温度にて 8 0分間保持して抽出した加熱条件 の鋼材の場合には、 高圧水によるデスケーリ ングを施してから熱間 圧延したところ、 熱間圧延後の鋼材表面に赤熱脆性による鋼材表面 の割れが発生した。
(実施例 8 )
化学成分と して、 質量%で、 C : 0 . 0 5 %、 S i : 0 . 0 1 % 、 M n : 0 . 2 5 %、 P : 0 . 0 1 1 %、 S : 0 . 0 0 6 %、 C u : 1 . 6 0 %、 N i : 0 . 0 1 %、 C r : 0 . 0 2 %を含有する鋼 材を、 L N Gを燃料とする燃焼ガスを用いて加熱炉で加熱した。 加 熱炉に入れる前の酸化スケール厚は 5 0 0 μ πιであった。 この加熱 では、 加熱炉内を全て酸素濃度 5容量%と した。 まず、 鋼材を 1 2 0 0 °Cまでを 8 0分で加熱し、 そのままの雰囲気にて 1 2 0 0 °C X 2 0分保持した。 この間の加熱は、 高酸素濃度雰囲気条件に相当す る。 その後、 1 3 0 0 °Cまで加熱して 3 0分保持した。 1 3 0 0 °C まで加熱後 1 0分間は低酸素濃度雰囲気条件に相当し、 その後酸化 スケールが厚くなるに従って高酸素濃度雰囲気条件に移行した。 そ の後、 鋼材表面の酸化スケールを高圧水で除去して、 熱間圧延に供 した。 熱間圧延後の鋼材表面には、 赤熱脆性による鋼材表面の割れ の発生は認められなかった。
一方、 加熱帯途中で鋼材温度を上げずに加熱した場合、 すなわち 加熱炉に入れる前の酸化スケール厚が 5 0 0 μ πιであり、 全て高酸 素濃度雰囲気条件 (酸素濃度 5容量。/。) にて 1 2 0 0 °Cまでを 8 0 分で加熱し、 そのままの雰囲気にて 5 0分間保持して抽出した鋼材 の.場合には、 高圧水によるデスケーリ ングを施してから熱間圧延し たところ、 熱間圧延後の鋼材表面に赤熱脆性による鋼材表面の割れ が発生した。
(実施例 9 )
化学成分として、 質量%で、 C : 0. 0 0 2 %、 S i : 0. 0 2 %、 M n : 0. 1 2 %、 P : 0. 0 1 0 %、 S : 0. 0 0 7 %、 C u : 1. 0 2 %、 N i : 0. 0 2 %、 C r : 0. 0 3 %を含有する 鋼材を、 コークス炉ガスを燃料とする加熱にて、 酸素濃度を 1 0 8 0 °C以上で低酸素濃度雰囲気条件となる 0. 5容量%と高酸素濃度 雰囲気条件となる 2容量%と変えて 1 1 5 0 °Cまで加熱し、 その温 度で 1時間保持した。 鋼材を加熱炉から抽出した直後に、 酸化スケ ールを高圧水で除去した。 その後大気中を鋼材が移動し、 最初の熱 間圧延の直前に再度高圧水にて酸化スケールを除去した。 本方法で 熱間圧延した 2. 5 mm厚さの鋼板には赤熱脆性による割れは発生し ていなかった。
一方、 同様の加熱条件で加熱し、 加熱炉からの抽出直後の高圧水 によるスケール除去 (デスケーリ ング) を行わず、 最初の熱間圧延 開始前だけで高圧水によるスケール除去を施して圧延した同じ 2. 5 mm厚さの鋼板表面は、 加熱を低酸素濃度雰囲気条件の 0. 5容 量%の酸素濃度で加熱したもの (本発明) では赤熱脆性による割れ は発生しなかったものの、 加熱を高酸素濃度雰囲気条件となる 2容 量%の酸素濃度の雰囲気で加熱したもの (比較例) には赤熱脆性に よる割れが発生していた。
(実施例 1 0 )
化学成分と して、 質量%で、 C : 0. 0 5 %、 S i : 0. 0 1 % 、 M n : 0 . 2 5 %、 P : 0 . 0 1 2 %、 S : 0 . 0 0 6 %、 C u : 1 . 6 1 %、 N i : 0 . 0 1 %、 C r : 0 . 0 2 %を含有する鋼 材を、 コークス炉ガスを燃料とする加熱炉にて 1 2 3 0 °Cまで加熱 し、 その温度で 9 0分保持した。 この時の雰囲気の酸素濃度は高酸 素濃度雰囲気条件となる 3容量%と した。 加熱炉から抽出した鋼材 を幅方向に 3 %の圧下を加え、 鋼材表面の酸化スケールを除去した 。 その後、 断熱材で覆った保熱力パー内に鋼材を置き、 鋼材表面の 最低温度が 1 1 0 0 °C以上の状態で 5分間保持した。 保熱時の雰囲 気は大気と した。 保熱後、 再度高圧水で酸化スケールを除去して熱 間圧延を行った。 また、 比較例と して、 加熱後、 高圧水にて加熱炉 酸化スケールを除去後すぐに熱間圧延を施したものも準備した。 そ の結果、 本発明例である保熱力パー内で保持した鋼材表面には割れ の発生はなく、 比較例である保熱を行わなかった鋼材表面には割れ が発生していた。 産業上の利用可能性
以上説明したよ うに、 本発明によれば、 。 11を 0 . 0 5〜 3質量 %含有する鋼材を熱間圧延する際の C uに起因する鋼材の赤熱脆性 の発生を、 N i や S i の添加のような鋼成分の変更を行うことなく 有利に抑制することができることによ り、 表面性状に優れた C u含 有鋼材およびその製造方法を提供することができる。

Claims

請 求 の 範 囲
1 . 表面に酸化スケールを有する C u含有鋼材において、 母材の C u濃度 CCu (質量%) が 0. 0 5 %以上 3 %以下であり、 圧延方 向に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚を d (mm) とするとき、 酸化スケールと地鉄との界面近傍に濃化する 単位表面積あたりの C u濃化量 ECu ( μ g · c m—2) が下記 ( 1 ) 式の関係にあることを特徼とする表面性状に優れた C u含有鋼材。
E Cu < 1 8. 6 CCu X d · · · (1)
2. 表面に酸化スケールを有する C u含有鋼材において、 母材の C u濃度 C c u (質量% ) が 0. 0 5 %以上 3 %以下であり、 圧延方 向に垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚を d (mm) と し、 さらに 1 0 0 0 °C以上 1 ·3 0 0 °C以下の温度域で酸 化に対して鉄より貴でありかつ融点が 1 3 0 0 °C以下である赤熱脆 性誘起元素の母材濃度の合計である赤熱脆性誘起元素総母材濃度を とするとき、 赤熱脆性誘起元素の酸化スケールと地鉄との界面近 傍に濃化する単位表面積あたりの濃化量の合計である赤熱脆性誘起 元素総濃化量 Ei ( β g · c m—2) が下記 ( 2 ) 式の関係にあるこ とを特徴とする表面性状に優れた C u含有鋼材。 ·
Figure imgf000045_0001
3 . 前記赤熱脆性誘起元素の 1種は C uであり、 その他は、 S n 、 S b、 A sのいずれか 1種または 2種以上であることを特徴とす る請求項 2に記載の表面性状に優れた C u含有鋼材。
4. 母材 N i 濃度 CN i (質量%) と母材 C u濃度 CCu (質量%) の関係が下記 ( 3 ) 式の関係にあるこ とを特徴とする請求項 1 ~ 3 のいずれか 1項に記載の表面性状に優れた C u含有鋼材。
0. 0 6 1 CCu 2 + 0. 3 2 CCu + 0. 0 0 3 5 ≤ CN 1≤ 1 . 5 • · · ( 3 )
5. 前記 C u含有鋼材が、 質量。/。で、 T i : 0. 0 1〜 0. 1 5 %、 N b : 0. 0 1〜 0. 1 5 %、 V : 0. 0 1〜 0. 1 5 %のい ずれか 1種または 2種以上を含有し、 さらに、 P : 0. 0 1 0〜 0 . 1 0 0 %、 S : 0. 0 1 0〜 0. 0 5 0 %、 R EM : 0. 0 0 2 〜 0. 1 5 0 %のいずれか 1種または 2種以上を含有する'ことを特 徴とする請求項 1〜 3のいずれか 1項に記載の表面性状に優れた C u含有鋼材。
6. 前記 C u含有鋼材中に、 少なく とも T i 、 N b、 Vのいずれ か 1種または 2種以上の炭化物、 窒化物、 または炭窒化物であって 、 粒径が 1 Onm以上 1 / m以下の個数密度が 1 05個 Zmm2以上の析 出物が含まれていることを特徴とする請求項 5に記載の表面性状に 優れた C u含有鋼材。
7. C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始する C u含有鋼材の製造方法において、 該鋼材の C u含有量 Ceu (質量 %) を 0. 0 5 %以上 3 %以下とすると ともに、 前記加熱炉での加 熱の際に、 鋼材表面温度が 1 0 8 0 °C以上の状態となる加熱炉内の 全領域または部分的な領域にて、 下記 ( 4) 式で示す酸素濃度 p02 (容量%) 以下となる雰囲気 (低酸素濃度雰囲気条件) にするこ と によ り、 ウスタイ 卜からなる酸化スケールを生成させることで、 熱 間圧延終了後の圧延方向に垂直な鋼材断面の断面積 s を'その周長 1 で割った鋼材有効厚を d (mm) とするとき、 C u含有鋼材の酸化ス ケールと地鉄との界面近傍に濃化する単位表面積あたりの C u濃化 iEcu C/i g ' c nT2) を 1 8. 6 CCu X d未満にすることを特徴 とする表面性状に優れた C u含有鋼材の製造方法。
P 0 2 = k p/ ( 2 w k , ) · · · ( 4 ) ここで、 kpは放物線則速度定数 ( g2 ' c m— 4 , s—1) であり、 具 体的には
k p = k p 0 X e x p (- E/R T) · . · ( 5 ) である ( kp0= 0. 6 0 g 2 · c nT2 ' s ' 。 なお、 Eは活性化 エネルギー (E = 1 4 0 k J • m o l ' K-1) 、 Rは気体定数、 Tは温度 (K) である。 また、 wは酸化増量 ( g · c m— 2) 、 k! は直線則速度定数 (k】 = 9. 6 X 1 CT 6 g · c π 2 · %— 1 ' s一 1 ) である。
8. C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始する C u含有鋼材の製造方法において、 該鋼材の C u含有量 CCu (質量 %) を 0. 0 5 %以上 3 %以下とし、 該鋼材の前記加熱炉からの抽 出後でかつ前記熱間圧延開始前に、 鋼材表面に生成した酸化スケー ルの除去処理を 2回以上施すことで、 熱間圧延終了後の圧延方向に 垂直な鋼材断面の断面積 s をその周長 1 で割った鋼材有効厚を d ( mm) とするとき、 C u含有鋼材の酸化スケールと地鉄との界面近傍 に濃化する単位表面積あたり の C u濃化量 ECu ( μ g · c m—2) を 1 8. 6 CC u X d未満にすることを特徴とする表面性状に優れた C u含有鋼材の製造方法。
9. C u含有鋼材を加熱炉にて加熱した後、 熱間圧延を開始する C u含有鋼材の製造方法において、 該鋼材の前記加熱炉からの抽出 後でかつ前記熱間圧延開始前に鋼材表面に、 生成した酸化スケール の除去処理を 2回以上施すことを特徴とする請求項 7に記載の表面 性状に優れた Cu含有鋼材の製造方法。
PCT/JP2003/011589 2002-09-27 2003-09-10 表面性状に優れたCu含有鋼材およびその製造方法 WO2004029304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003262062A AU2003262062A1 (en) 2002-09-27 2003-09-10 Cu-CONTAINING STEEL PRODUCT OF EXCELLENT SURFACE PROPERTY AND PROCESS FOR PRODUCING THE SAME
KR1020057005373A KR100652945B1 (ko) 2002-09-27 2003-09-10 표면 성상이 우수한 Cu 함유 강재 및 그 제조 방법
CN03825411.5A CN1703525B (zh) 2002-09-27 2003-09-10 表面性状优良的含Cu钢材及其制造方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-282355 2002-09-27
JP2002282355 2002-09-27
JP2003011079 2003-01-20
JP2003-11079 2003-01-20
JP2003-40703 2003-02-19
JP2003040703 2003-02-19
JP2003173577 2003-06-18
JP2003-173577 2003-06-18
JP2003313445A JP4171379B2 (ja) 2002-09-27 2003-09-05 表面性状に優れたCu含有鋼材およびその製造方法
JP2003-313445 2003-09-05

Publications (1)

Publication Number Publication Date
WO2004029304A1 true WO2004029304A1 (ja) 2004-04-08

Family

ID=32046110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011589 WO2004029304A1 (ja) 2002-09-27 2003-09-10 表面性状に優れたCu含有鋼材およびその製造方法

Country Status (6)

Country Link
JP (1) JP4171379B2 (ja)
KR (1) KR100652945B1 (ja)
CN (2) CN101818305B (ja)
AU (1) AU2003262062A1 (ja)
TW (1) TWI234586B (ja)
WO (1) WO2004029304A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898543B2 (ja) * 2007-05-02 2012-03-14 株式会社神戸製鋼所 耐ピット性に優れた鋼板およびその製造方法
JP5299169B2 (ja) * 2009-08-24 2013-09-25 新日鐵住金株式会社 耐食性厚板用低合金鋼の連続鋳造方法及び連続鋳造鋳片
JP5857694B2 (ja) * 2011-12-06 2016-02-10 新日鐵住金株式会社 塗装耐食性と曲げ疲労特性に優れた高強度熱延鋼板およびその製造方法
CN103952659B (zh) * 2014-04-28 2016-08-24 辽宁科技大学 一种选择性氧化致钢表面自生铜覆层的制备方法
JP6331881B2 (ja) * 2014-08-27 2018-05-30 新日鐵住金株式会社 Cu−Sn共存鋼材およびその製造方法
CN104694713B (zh) * 2015-04-08 2017-03-01 首钢京唐钢铁联合有限责任公司 一种含铜低合金钢的加热方法
CN107287514A (zh) * 2017-06-07 2017-10-24 江苏科技大学 一种改善残余元素诱导钢表面热脆的方法
CN111893424B (zh) * 2020-06-29 2022-07-01 武汉钢铁有限公司 一种基于热送热装工艺的板坯表面氧化铁皮加热控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617448B2 (ja) * 1980-02-21 1986-03-06 Kawasaki Steel Co
JP2002249824A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 熱間圧延鋼材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038049C (zh) * 1993-02-26 1998-04-15 新日本制铁株式会社 含有大量铜与锡的普通碳钢的薄铸钢带和薄钢板及其制造方法
TW415967B (en) * 1996-02-29 2000-12-21 Kawasaki Steel Co Steel, steel sheet having excellent workability and method of the same by electric furnace-vacuum degassing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617448B2 (ja) * 1980-02-21 1986-03-06 Kawasaki Steel Co
JP2002249824A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 熱間圧延鋼材の製造方法

Also Published As

Publication number Publication date
JP2005029883A (ja) 2005-02-03
CN1703525B (zh) 2011-04-06
CN1703525A (zh) 2005-11-30
KR100652945B1 (ko) 2006-12-04
KR20050054971A (ko) 2005-06-10
TWI234586B (en) 2005-06-21
AU2003262062A1 (en) 2004-04-19
CN101818305A (zh) 2010-09-01
CN101818305B (zh) 2012-01-25
JP4171379B2 (ja) 2008-10-22
TW200404900A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
CN107532257B (zh) 热轧钢板及其制造方法
JP5223360B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US9932659B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
JP5793971B2 (ja) 材質安定性、加工性およびめっき外観に優れた高強度溶融亜鉛めっき鋼板の製造方法
US9873934B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
JP6196453B2 (ja) 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
KR102544884B1 (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
WO2008156195A1 (ja) 耐硫酸腐食性に優れたフェライト系ステンレス鋼板およびその製造方法
WO2020170542A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6037882B2 (ja) 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5811841B2 (ja) Si含有高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4254551B2 (ja) 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
WO2004029304A1 (ja) 表面性状に優れたCu含有鋼材およびその製造方法
JP5492065B2 (ja) 表面性状に優れた冷延鋼板の製造方法および製造装置
JP2001355043A (ja) 穴広げ性および延性が優れた高強度合金化溶融亜鉛めっき鋼板および高強度鋼板と、それらの製造方法
JP6118684B2 (ja) 表面性状に優れた冷延鋼板の製造方法
JP2009275268A (ja) フェライト系ステンレス冷延鋼板およびその製造方法
JP2000045027A (ja) 表面性状に優れた鋼板の製造方法
JP5128366B2 (ja) 表面性状に優れたSi含有熱延鋼板の製造方法
JP7444338B1 (ja) 熱延厚物耐硫酸鋼板およびその製造方法
WO2024053663A1 (ja) めっき鋼板
JP3622497B2 (ja) 表面性状に優れた鋼板の製造方法
JP2004223523A (ja) 熱間圧延時のCu含有鋼材の加熱方法
JP2010095742A (ja) 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057005373

Country of ref document: KR

Ref document number: 1199/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038254115

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057005373

Country of ref document: KR

122 Ep: pct application non-entry in european phase