WO2004021415A1 - 処理装置及び処理方法 - Google Patents

処理装置及び処理方法 Download PDF

Info

Publication number
WO2004021415A1
WO2004021415A1 PCT/JP2003/010377 JP0310377W WO2004021415A1 WO 2004021415 A1 WO2004021415 A1 WO 2004021415A1 JP 0310377 W JP0310377 W JP 0310377W WO 2004021415 A1 WO2004021415 A1 WO 2004021415A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
gas
pressure
inert gas
flow rate
Prior art date
Application number
PCT/JP2003/010377
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kannan
Tadahiro Ishizaka
Yasuhiko Kojima
Yasuhiro Oshima
Takashi Shigeoka
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/526,019 priority Critical patent/US20060154383A1/en
Priority to AU2003254942A priority patent/AU2003254942A1/en
Publication of WO2004021415A1 publication Critical patent/WO2004021415A1/ja
Priority to US12/421,271 priority patent/US20090214758A1/en

Links

Classifications

    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure

Definitions

  • the present invention relates to a processing apparatus, and more particularly to a processing apparatus and a processing method for performing processing on a substrate in a processing container while supplying gas to the processing container.
  • ALD Atomic Layer Deposition
  • ALD atomic layer deposition
  • a plurality of types of source gases are alternately supplied to a substrate at a pressure of about 200 Pa and reacted on a substrate heated to 400 ° C to 500 ° C to produce a reaction product.
  • a reaction product Form a very thin film.
  • the ultimate pressure in the reactor is P
  • the initial pressure is P 0
  • the volume of the reactor is V
  • the pumping speed is S
  • the time is t
  • the ultimate pressure P in the reactor is obtained by the following equation. .
  • the pressure inside the processing vessel during processing is about 200 Pa, and at this pressure, the gas is in a viscous flow area.Therefore, use a dry pump to exhaust the processing gas inside the processing vessel. Is efficient. However, in the exhaust at the time of switching of the source gas, it is necessary to substantially completely exhaust the material gas, the pressure in the processing container rather lower than 1 P a, for example, 1 0 one half to one 0 one 3 P a Need to be At such a high vacuum, the gas flow is in the region of molecular flow, and a force that is inefficient when exhausted by a dry pump, or such a high vacuum cannot be achieved by a dry pump alone. Therefore, it is necessary to use a turbo pump in addition to a dry pump for exhaust when switching the source gas.
  • the opening of the exhaust port connected to the processing vessel must be enlarged in order to maintain the exhaust speed at a certain level.
  • enlarging the opening of the exhaust port substantially increases the volume of the processing container, and there is a problem that the time required for exhaust becomes longer.
  • the processing when the source gas is evacuated to a high vacuum in the processing vessel, after the evacuation is completed, the processing must be waited until the pressure in the processing vessel reaches the processing Sffi force. If the processing pressure is a relatively low vacuum, the waiting time for pressure adjustment has a large effect on the processing time, and the overall processing time becomes longer.
  • the source gas adsorbed on the inner wall of the processing vessel is released, so the exhaust speed is determined by the amount of the released source gas. There is also a problem that the degree is limited.
  • the calorific heat of the substrate is included in the amount of heat transmitted to the substrate via the processing gas in the processing container existing between the substrate and the supporting member supporting the substrate.
  • the pressure in the processing chamber is high, the thermal conductivity of the processing gas is high, and the amount of heating of the substrate increases, and the substrate temperature increases.
  • the pressure in the processing vessel is low, the thermal conductivity of the processing gas is low, and the temperature of the substrate is low.
  • a general object of the present invention is to provide an improved and useful processing apparatus which solves the above-mentioned problems.
  • a more specific object of the present invention is to reduce the time required for exhausting the source gas, thereby shortening the switching time of the source gas, and maintaining the supply and exhaust of the source gas under a constant pressure. It is an object of the present invention to provide a processing apparatus and a processing method capable of maintaining a temperature of a substrate surface during processing by performing the processing.
  • a processing apparatus for performing processing on a substrate while supplying a processing gas containing a source gas and an inert gas, wherein the substrate is housed.
  • a processing vessel to be processed a processing gas supply means for supplying a processing gas into the processing vessel, an exhaust means, a pressure detecting means for detecting a pressure in the processing vessel, and a pressure detecting means based on a detection result of the pressure detecting means.
  • a processing apparatus comprising a control means is provided.
  • the processing gas supply unit includes a source gas supply unit that supplies a source gas, and an inert gas supply unit that supplies an inert gas, and the control unit includes the inert gas supply unit.
  • the source gas supply means may alternately supply a plurality of types of source gases to the processing vessel, and the inert gas supply means may always supply the inert gas to the processing vessel.
  • the control means may control the flow rate of the processing gas such that the pressure in the processing vessel ⁇ becomes substantially constant. Further, it is preferable that the control means controls the flow rate of the processing gas such that the pressure in the processing container is within ⁇ 10% of a predetermined pressure. .
  • the first step is to supply the inert gas to the processing vessel at the same time, and simultaneously supply the inert gas to the processing vessel to maintain the inside of the processing vessel at the predetermined processing SJE force.
  • the first to fourth steps are repeatedly performed to perform processing on the substrate.
  • the serial first material is T i C 1 4
  • second raw material is NH 3
  • the inert gas may be N 2.
  • the first predetermined flow rate is:!
  • the second predetermined flow rate may be 10 to 50 sccm
  • the predetermined processing pressure may be 1 to 400 Pa. Further, it is preferable that the allowable fluctuation range of the predetermined processing SJE force is 10% of soil.
  • the source gas is evacuated by purging the inert gas. Therefore, it is not necessary to provide a large-diameter exhaust port necessary for obtaining a high vacuum in the processing container, and the volume of the processing container 2 is reduced. Can be smaller. Therefore, the amount of raw gas remaining in the processing container can be reduced, and the exhaust can be performed in a short time.
  • the pressure inside the processing vessel is always kept constant, so that the thermal conductivity of the processing gas in the processing vessel is kept constant. Therefore, the heating of the substrate becomes constant, and the surface temperature of the substrate can be kept constant. This makes it possible to control the amount of source gas adsorbed on the substrate surface. And uniform processing can be performed.
  • the pressure in the processing vessel is maintained substantially constant by purging the inert gas and adjusting the flow rate of the inert gas. It is possible to quickly switch between inert gas purge. In other words, there is no need to adjust the pressure in the processing vessel between the supply of the raw material gas and the purge of the inert gas, and the entire processing time can be shortened accordingly.
  • the pressure inside the processing vessel during the processing is a relatively low degree of vacuum, the raw material gas adsorbed on the inner wall of the processing vessel does not separate during the evacuation and affect the evacuation speed.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of a processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a timing chart of the supply operation of the source gas and the purge gas in the processing apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of a processing apparatus according to one embodiment of the present invention.
  • Processing apparatus 1 shown in Figure 1 was supplied at reduced pressure relative to the target substrate alternately and T i C 1 4 and Nyuita 3 as a source gas under a reduced pressure, the T i N film on the surface of the substrate It is a processing device for forming.
  • the substrate to be processed is heated to promote a reaction of the source gas.
  • the processing apparatus 1 has a processing container 2, and a susceptor 4 is placed in the processing container 2 as a mounting table on which a wafer 3 as a substrate to be processed is mounted.
  • the processing container 2 is formed of, for example, stainless steel, aluminum, or the like, and a processing space is formed therein.
  • the processing container 2 is formed of aluminum, the surface thereof may be subjected to an anodic oxide coating treatment (alumite treatment).
  • the susceptor 4 has a built-in electric heater 5 such as tungsten, and heats the wafer 3 placed on the susceptor 4 by the heat of the electric heater 5.
  • the susceptor 4 is ⁇ I ⁇ A Noremi - formed by ⁇ beam (A1N), alumina (A 1 2 0 3) ceramic material or the like.
  • a pressure gauge 6 such as a diaphragm vacuum gauge is connected to the processing container 2 to detect the pressure in the processing container 2. The result detected by the pressure gauge 6 is sent to the controller 7 as an electric signal.
  • a supply port 2a is provided on a side wall of the processing container 2, and a raw material gas and a purge gas are supplied into the processing container from the supply port 2a.
  • An exhaust port 2b is provided on the opposite side of the supply port 2a, and the source gas and purge gas in the processing container 2 are exhausted from the exhaust port 2b.
  • T i C 1 4 ⁇ Pi NH 3 is used as a raw material gas
  • N 2 is used is an inert gas as a purge gas.
  • the supply port 2 a of the processing chamber, a supply line of T i C 1 4, and the supply line of the supply line and N 2 of the NH 3 is connected.
  • Raw gas and purge gas are sometimes collectively referred to as process gas.
  • T i C 1 4 as a raw material gas has a T i C 1 4 source 11 A of the opening closed 12A, and a mass flow controller (MFC) 13A, T i C 1 4 T i C 1 4 from the supply source 11 a of is supplied into the processing vessel 2 from the flow controlled by supply port 2 a by MFC 13 a.
  • T i C 1 4 by opening the on-off valve 12 A flows into the supply port 2 a through MF C 13 A.
  • the operations of the on-off valve 12 A and the MFC 13 A are controlled by the controller 7.
  • MFC mass flow controller
  • NH sources 11 B forces et al 3 is supplied into the processing vessel 2 from the supply port 2a with the flow rate controlled by the MFC 13B.
  • By opening the on-off valve 12B NH 3 flows into the supply port 2a through the MFC 13B.
  • the operation of the on-off valves 12B and MF CI 3B is controlled by the controller 7.
  • N 2 as a purge gas
  • a source of N 2, 11 C and-off valve 12C has a mass flow controller (MFC) @ 13 C
  • N 2 from the source 1 1 C of N 2
  • MFC13C mass flow controller
  • the flow rate is controlled by MFC13C, and the processing vessel Supplied within 2.
  • N 2 flows into the supply port 2 a through the MFC 13 C.
  • the operation of the on-off valves 12 C and 13 C is controlled by the controller 7.
  • Processing apparatus is configured as described above, by supplying the T i C 1 4 and NH 3 as a source gas alternately and repeatedly into the processing vessel 2 is heated in the processing chamber 2 A TiN film is formed on the wafer 3 thus set.
  • N 2 is also supplied into the processing vessel 2 at the same time as the purge gas.
  • the source gas and purge gas supplied into the processing container 2 are exhausted from the exhaust port 2b.
  • a dry pump 8 is connected to the exhaust port 2b as a vacuum pump for exhaust, and a turbo-molecular pump is not used as in the conventional case.
  • the pressure in the processing chamber 2 is constantly maintained at about 2 OOPa during the processing of the substrate, as described later, so that the evacuation by the dry pump is sufficient.
  • FIG. 2 shows the flow of the container T i C 1 4 to be supplied into the processing vessel 2
  • (b) shows the flow rate of NH 3 to be supplied into the processing vessel 2
  • (c) the process The flow rate of N 2 supplied to the container 2 is shown, and the parentheses indicate the pressure inside the processing container 2.
  • T i C 1 4 ⁇ Pi NH 3 as a raw material gas is supplied into the processing vessel 2 to intermittently and alternately. Between the supply of T i C 1 4 supply and NH 3, only the N 2 is supplied purge of the raw material gas takes place. Further, in the present embodiment, the flow rate of N 2 is controlled so that the pressure in the processing volume 2 is always constant during the processing of the wafer 3. That is, in this embodiment, the period in which T i C 1 4 and NH 3 is Ru is also supplied, the N 2 is supplied to the pressure control.
  • Flow rates of T i C 1 4 is supplied is 3 0 sccm
  • flow rates of the NH 3 is supplied is 1 0 0 sccm.
  • the flow rate of N 2 as shown in FIG. 2 (c)
  • first 3 0 sccm T i C 1 4 supplies only one second to the processing container 2 as a raw material gas.
  • N 2 is supplied into the processing vessel 2 at a certain flow rate to maintain the pressure in the processing vessel 2 at 20 OPa.
  • T i C 1 4 supply stop-sealed in, by supplying only N 2 into the processing vessel 2 for one second, the T i C 1 4 in the processing chamber 2 is purged by N 2. Also at the time of this N 2 purge, the flow rate of N 2 is controlled so that the pressure in the processing container 2 becomes 200 Pa. The flow rate of N 2 is controlled by detecting the pressure in the processing vessel 2 with the pressure gauge 6 and feeding back the detection result to the mass flow controller 13 C of the N 2 supply line.
  • N 2 is supplied into the processing vessel 2 as a raw material gas for only one second.
  • N 2 is supplied into the processing vessel 2 at a certain flow rate to maintain the pressure in the processing vessel 2 at 200 Pa.
  • the supply of NH 3 is stopped, only N 2 is supplied to the processing container 2 for only one second, and the NH 3 in the processing container 2 is purged with N 2 .
  • the N 2 purge is also controlled so that the pressure in the processing vessel 2 becomes 20 OPa.
  • the flow rate of N 2 is controlled by detecting the pressure in the processing vessel 2 with the pressure gauge 6 and feeding back the detection result to the mass flow controller 13 C of the N 2 supply line.
  • a TiN film is formed on the wafer 3 heated to about 400 ° C.
  • the N 2. T i C 1 4 more to compensate for the flow rate of ⁇ Pi NH 3, can be maintained in the processing container 2 is always in the 2 0 0 P a.
  • the allowable range of the pressure fluctuation in the processing container 2 is preferably about ⁇ 10% in consideration of the uniformity of the processing and the fluctuation of the thermal conductivity.
  • the source gas is evacuated by N 2 purging instead of vacuum evacuation, it is not necessary to provide the processing vessel 2 with a large-diameter exhaust port necessary for obtaining a high vacuum. Can be reduced in volume. Thus was Les, the amount of raw material gas remaining in the process chamber 2 (T i C 1 4, NH 3) can be reduced, it can be exhausted in a short time.
  • the Rukoto be supplied purge gas (N 2) even when the supply of the raw material gas (T i C 1 4, NH 3), to maintain the pressure in the processing container 2 is always constant, the susceptor 4 and ⁇ 3 The thermal conductivity of the gas in between is kept constant. Therefore, the calorie of wafer 3 The heat becomes constant, and the surface of the wafer 3 can be kept constant. This makes it possible to control the amount of the source gas (TiCl 4 , NH 3 ) adsorbed on the surface of the wafer 3, and to perform a uniform treatment.
  • the source gas supply and the N 2 purge are performed by using the N 2 purge and adjusting the flow rate of the N 2 to keep the pressure in the processing vessel 2 substantially constant. And can be switched quickly. That is, there is no need to adjust the pressure in the processing vessel 2 between the supply of the raw material gas and the N 2 purge, and the entire processing time can be shortened accordingly.
  • it is particularly effective to reduce the time required for pressure adjustment.
  • the pressure in the processing vessel 2 during processing is a relatively low degree of vacuum of 200 Pa, it is not possible for the raw material gas adsorbed on the inner wall of the processing vessel 2 to be released at the time of evacuation and affect the evacuation speed. Absent.
  • N 2 is used as the purge gas, but another inert gas such as Ar or He may be used.
  • the present invention it is possible to shorten the time required for exhausting the source gas and shorten the switching time of the source gas, and to perform the supply and exhaust of the source gas under a constant pressure.
  • the temperature of the substrate surface during processing can be maintained constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

処理装置において、原料ガス(TiCl4,NH3)と不活性ガス(N2)とを含む処理ガスを処理容器(2)内へ供給する。圧力計(6)により処理容器(2)内の圧力を検出し、検出結果に基づいて処理容器(2)内に供給される処理ガスの流量を制御する。原料ガスのパージを不活性ガスで行う。原料ガスの流量は一定とし、不活性ガスの流量を制御することにより、処理ガス全体としての流量を制御して、処理容器(2)内の圧力を一定に維持する。原料ガスの排気に要する時間が短縮されるため、原料ガスの切り替え時間が短縮される。また、処理中の基板表面の温度を一定に維持することができる。                  

Description

処理装置及び処理方法 技術分野
本発明は処理装置に係り、 特に処理容器にガスを供糸合しながら処理容器内の基 板に対して処理を行う処理装置及び処理方法に関する。 背景技術
半導体装置の基板を処理する方法として、 所定の真空度に維持された処理容器 内に原料ガスやパージガスを供給して基板の処理を行う方法が一般的である。 例 えば加熱した基板に減圧下で処理気体を供給して基板上に高品質な薄膜を形成す る方法として、 AL D (Atomic Layer Deposition) が近年注目されている。
A L Dでは複数種類の原料ガスを 2 0 0 P a程度の圧力において交互に基板に 対して供給し、 4 0 0°C〜5 0 0°Cに加熱した基板上で反応させて反応生成物の 非常に薄い膜を形成する。 この際、 原料ガスが基板上に到達する前に反応してし まわないように、 複数種の原料ガスを切り替えながらー種類毎に供給する必要が ある。 すなわち、 一つの種類のガスだけを基板に供給したら、 そのガスを完全に 排気し、 次に異なる種類の原料ガスを供給する。 この処理を繰り返してある程度 の厚さの薄膜に成長させる。
このような原料ガスを切り替えて供給する処理方法では、 原料ガスの切り替え を高速に行うことがスノレープット向上のために不可欠である。 原料ガスの切り替 えには、 供給した一種類の原料ガスを反応容器から完全に排出してから次の種類 の原料ガスを供給するという工程が行なわれる。 したがって、 原料ガスを反応容 器から排出するには、 原料ガスの供給を停止した際に反応容器内に残留する原料 ガスの量を少なくすることが排出の高速化を達成する上で効果的である。 すなわ ち、 反応容器内で原料ガスが残留できる容積を低減することが、 処理の高速化に とって有効である。
具体的には、 残留した原料ガスを反応容器内から排出するには、 反応容器内の 残留原料ガスを真空ポンプ等により排気して、 反応^^内の圧力を所定の真空度 まで低減することにより達成される。 ここで、 反応容器内の到達圧力を P、 初期 圧力を P 0、 反応容器の容積を V、 排気速度を S、 時間を tとすると、 反応容器 内の到達圧力 Pは以下の式により求められる。
P = P 0 e x p {- (S/V) t }
上式から、 初期圧力と到達圧力が一定であれば、 排気速度 Sを大きくする力、、 容積 Vを小さくすることにより、 時間 tを小さくできることがわかる。 排気速度 sを大きくするには、 高速大容量の真空ポンプが必要となり、 製造コストに大き く影響する。 したがって、 反応容器の容積 Vを低減することが望ましい。
処理時の処理容器内の圧力は 2 0 0 P a程度であり、 この程度の圧力では気体 は粘性流の領域であるため、 ドライポンプを用 ヽて処理容器内の処理ガスの排気 を行うことが効率的である。 ところが、 原料ガスの切り替え時の排気では、 原料 ガスをほぼ完全に排気する必要があるため、 処理容器内の圧力を 1 P aよりも低 く、 例えば 1 0一2〜 1 0一3 P aにする必要がある。 このような高真空度では、気 体の流れは分子流の領域となり、ドライポンプによる排気では非効率的である力、 あるいはドライポンプだけではそのような高真空度を達成できない。したがって、 原料ガスの切り替え時の排気には、 ドライポンプに; ¾えてターボモレキユラボン プを併用する必要がある。
上述のように、 原料ガスの切り替え時の排気用にターボモレキユラポンプを用 いた場合、 排気速度をある程度に維持するためには、 処理容器に接続された排気 口の開口を大きくしなければならない。 しカ し、 排気口の開口を大きくすること は処理容器の容積を実質的に大きくすることとなり、 排気に要する時間が長くな るという問題がある。
また、 処理容器内を高真空にして原料ガスを排気する場合、 排気が終了した後 に、 処理容器内の圧力が処 Sffi力に達するまで処理を待たなければならない。 処 理圧力が比較的低真空であるような場合は、 圧力調整のための待ち時間が処理時 間に大きく影響し、 全体の処理時間が長くなつてしまう。
また、 処理容器内を高真空度となるまで排気する場合、 処理容器の内壁に吸着 していた原料ガスが離脱してくるため、 離脱してくる原料ガスの量により排気速 度が律速してしまうという問題もある。
さらに、 処理中の基板表面は一定の として原料ガスの吸着量を制御する必 要があるが、 原料ガス切り替え時に処理容器内の圧力が変化すると、 基板の表面 温度が変動してしまう。 すなわち、 基板のカロ熱は、 基板を支持する支持部材と基 板との間に存在する処理容器内の処理ガスを介して基板に伝達する熱の量に 存 する。 処理容器内の圧力が高い場合は処理ガスの熱伝導率が大きく、 基板の加熱 量が大きくなって基板温度は高くなる。 一方、 処理容器内の圧力が低く ると処 理ガスの熱伝導率が小さくなり、 基板の温度は低くなる。 したがって、 基板の処 理中に処理容器内の圧力が処 力から排気圧力の間で大きく変化すると、 ¾板 表面の温度が変動し、 基板に吸着される原料ガスの量を精度よく制御できないと レ、う問題がある。 発明の開示
本発明の総括的な目的は、 上述の問題を解決した改良された有用な処理装置を «することである。 '
本発明のより具体的な目的は、 原料ガスの.排気に要する時間を短縮して原料ガ スの切り替え時間を短縮することができ、 且つ原料ガスの供給と排気とを一定の 圧力の下で行うことにより処理中の基板表面の温度を一定に維持することのでき る処理装置及び処理方法を提供することを目的とする。
上記の目的を達成するために、 本発明の一つの面によれば、 原料ガスと不活性 ガスとを含む処理ガスを供給しながら基板に処理を施す処理装置であつて、 該基 板が収容される処理容器と 該処理容器内へ処理ガスを供給する処理ガス供給手 段と、 排気手段と、 処理容器内の圧力を検出する圧力検出手段と、 圧力検出手段 の検出結果に基づレ、て、 処理容器に供給される処理ガスの流量を制御する.制御手 段とよりなる処理装置が提供される。
本発明による処理装置において、 処理ガス供給手段は、 原料ガスを供給する原 料ガス供給手段と、 不活性ガスを供給する不活性ガス供給手段とを含み、 制御手 段は不活性ガス供給手段を制御して不活性ガスの流量を制御することにより、 処 理容器へ供給する処理ガスの流量を制御することとしてもよレ、。 また、 原料ガス供給手段は複数種類の原料ガスを交互に処理容器に供給し、 不 活性ガス供給手段は常に不活性ガスを処理容器に供給することとしてもよい。 さ らに、 制御手段は、 処理容器內の圧力が略一定となるように処理ガスの流量を制 御することとしてもよい。 また、 制御手段は、 処理容器内の圧力が所定の圧力に 対して ± 1 0 %の範囲内となるように処理ガスの流量を制御することが好まし い。 .
また、 本発明の別の面によれば、 原料ガスと不活性ガスとを含む処理ガスを供 給しながら基板に処理を施す処理方法であって、 第 1の原料ガスを第 1の所定 量で処理容器に供給し、 且つ不活性ガスを同時に処理容器に供給して処理容器内 を所定の処 SJE力に維持する第 1の工程と、 第 1の原料ガスの供給を停止し、 不 活性ガスのみを供給しながら処理容器内を該所定の処理] £力に維持する第 2のェ 程と、 第 2の原料ガスを第 2の所定流量で処理容器に供給し、 且つ不活性ガスを 同時に処理容器に供給して処理容器内を該所定の処 力に維持する第 3の工程 と、 第 2の原料ガスの供給を停止し、 不活性ガスのみを供給しながら処理容器内 を所定の処 力に維持する第 4の工程と、 を有し、 第 1乃至第 4の工程を繰り 返し行って基板に処理を施すことを特徴とする処理方法が提供される。
上述の処理方法において、 記第 1の原料は T i C 1 4であり、 第 2の原料は N H3であり、 不活性ガスは N2であることとしてもよい。 また、 第 1の所定流量は :!〜 5 0 s c c mであり、 第 2の所定流量は 1 0〜: L O O O s c c mであり、 所 定の処 ®J£力は 1〜4 0 0 P aであることとしてもよい。 さらに、 所定の処 SJE 力の変動許容範囲は土 1 0 %であることが好ましい。
上述の本発明によれば、不活性ガスのパージにより原料ガスの排気を行うた 、 高真空を得るために必要な大口径の排気口を処理容器に設ける必要はなく、 処理 容器 2の容積を小さくすることができる。 したがって、 処理容器内に残留する原 料ガスの量を低減することができ、 短時間で排気を行うことができる。
また、 原料ガスの供給時に不活性ガスも供給することにより、 処理容器内の圧 力を常に一定に維持するため、 処理容器中の処理ガスの熱伝導率が一定に維持さ れる。 したがって、 基板の加熱が一定となり、 基板の表面温度を一定に維持する ことができる。 これにより、 原料ガスの基板表面への吸着量を制御することがで き、 均一な処理を施すことができる。
また、 原料ガスの切り替えの際の排気工程において、 不活性ガスのパージを用 いて且つ不活性ガスの流量を調整することにより処理容器内の圧力を略一定に維 持するため、 原料ガス供給と不活性ガスパージとを迅速に切り替えることができ る。 すなわち、 原料ガス供給と不活性ガスパージとの間で処理容器内の圧力を調 整する期間が不要となり、 その分処理全体の時間を短縮できる
また、 処理中の処理容器内の圧力は、 比較的低い真空度であるため、 処理容器 の内壁に吸着した原料ガスが排気時に離脱して排気速度に影響を及ぼすことはな レ、。
本発明のその他の目的、 特徴及び利点は、 添付の図面を参照しながら以下の詳 細な説明を読むことにより一層明瞭となるであろう。 図面の簡単な説明
図 1は、本発明の一実施例による処理装置の全 ί極成を示す概略構成図である。 図 2は、 図 1に示す処理装置における原料ガス及びパージガスの供給動作のタ ィムチャートである。 発明を実施するための最良の形態
次に、 本発明の実施の形態について図面と共に説明する。
図 1は本発明の一実施例による処理装置の全体構成を示す概略構成図である。 図 1に示す処理装置 1は、減圧下において原料ガスとして T i C 1 4と ΝΗ3とを 交互に被処理基板に対して減圧下で供給し、被処理基板の表面に T i N膜を形成 するための処理装置である。 被処理基板に原料ガスを供給する際は、 原料ガスの 反応を促進するために被処理基板を加熱する。
処理装置 1は処理容器 2を有し、被処理基板としてのウェハ 3が載置される載 置台としてサセプタ 4が処理容器 2の中に配置される。 処理容器 2は例えばステ ンレススチールやアルミニウム等により形成され、 内部に処理空間が形成される 。 処理容器 2をアルミニウムで形成した場合は、 その表面に陽極酸化被膜処理 ( アルマイト処理) が施されてもよレ、。 サセプタ 4はタングステン等の電気ヒータ 5を内蔵しており、 サセプタ 4上に 载置されたウェハ 3を電気ヒータ 5の熱により加熱する。 サセプタ 4は、 窒ィ匕ァ ノレミ-ゥム (A1N)やアルミナ (A 1203) 等のセラミック材料により形成さ れる。
処理容器 2には、 ダイヤフラム真空計等の圧力計 6が接続され、 処理容器 2内 の圧力を検出する。 圧力計 6が検出した結果は電気信号として制御器 7に送られ る。 ,
処理容器 2の側壁には供給口 2 aが設けられ、 供給口 2 aから原料ガス及ぴパ ージガスが処理容器内に供給される。 また、 供給口 2 aの反対側には排気口 2 b が設けられ、 排気口 2 bから処理容器 2内の原料ガス及びパージガスが排気され る。 本実施例では、 原料ガスとして T i C 14及ぴ NH3が用いられ、 パージガス として不活性ガスである N2が用いられる。 処理容器の供給口 2 aには、 T i C 14の供給ラインと、 NH3の供給ラインと N2の供給ラインとが接続される。 原 料ガスとパージガスとを総称して処理ガスということもある。
原料ガスとしての T i C 14の供給ラインは、 T i C 14の供給源 11 Aと、 開 閉弁 12Aと、 マスフローコントローラ (MFC) 13Aとを有しており、 T i C 14の供給源 11 Aからの T i C 14は、 MFC 13 Aにより流量制御されて供 給口 2 aから処理容器 2内に供給される。 開閉弁 12 Aを開くことにより T i C 14は MF C 13 Aを通じて供給口 2 aに流入する。 開閉弁 12 A及び MF C 1 3 Aの動作は、 制御器 7により制御される。
原料ガスとしての NH3の供給ラインは、 NH3の供給源 11Bと、 開閉弁 12 Bと、 マスフローコントローラ (MFC) 13Bとを有しており、 NH3の.供給 源 11 B力 らの NH3は、 MFC13 Bにより流量制御されて供給口 2 aから処 理容器 2内に供給される。 開閉弁 12Bを開くことにより NH3は MFC13B を通じて供給口 2 aに流入する。 開閉弁 12 B及ぴ MF CI 3Bの動作は、 制御 器 7により制御される。
パージガスとしての N2の供給ラインは、 N2の供給源、 11 Cと、 開閉弁 12C と、 マスフローコントローラ (MFC) 13Cとを有しており、 N2の供給源 1 1 Cからの N2は、 MFC13 Cにより流量制御されて供給口 2 aから処理容器 2内に供給される。 開閉弁 1 2 Cを開くことにより N2は MF C 1 3 Cを通じて 供給口 2 aに流入する。 開閉弁 1 2 C及ひ C 1 3 Cの動作は、 制御器 7によ り制御される。
本実施例による処理装置 1は以上のような構成であり、 原料ガスである T i C 1 4と NH 3とを交互に繰り返して処理容器 2に供給することにより、処理容器 2 内の加熱されたウェハ 3上に T i N膜を形成する。 原料ガスを供給する際には、 パージガスとして N2も同時に処理容器 2内に供給される。 '
処理容器 2内に供給された原料ガス及びパージガスは、 排気口 2 bから排気さ れる。 ここで、本実施例では、 原料ガスの供給を T i C 1 4と NH3との間で切り 替える際、 処理容器 2からの原料ガスの排気を N2パージにより行う。 したがつ て、 排気口 2 bには、 排気用の真空ポンプとしてドライポンプ 8が接続されてお り、 従来のようにターボモレキユラポンプは使用しない。 本実施例では、 基板の 処理中は処理容器 2内の圧力後述のように常に 2 O O P a程度に維持されるた め、 ドライポンプによる排気で十分である。
ここで、 処理装置 1における原料ガス及ぴパージガスの供給動作について、 図 2を参照しながら説明する。 図 2において、 (a ) は処理容器 2に供給される容 器 T i C 1 4の流量を示し、 (b ) は処理容器 2に供給される NH 3の流量を示し 、 (c ) は処理容器 2に供給される N2の流量を示し、 ) は処理容器 2内の圧 力を示す。
図 2— (a ) 及び (b ) に示すように、 原料ガスとしての T i C 1 4及ぴ NH3 は間欠的に且つ交互に処理容器 2内に供給される。 T i C 1 4の供給と NH3の供 給との間には、 N2のみが供給されて原料ガスのパージが行われる。 また、 本実 施例では、 ウェハ 3の処理中に処理容 2内の圧力が常に一定となるように N2 の流量が制御される。 すなわち、 本実施例では、 T i C 1 4及び NH3が供給され る期間も、 圧力制御のために N 2が供給される。
T i C 1 4が供給される際の流量は 3 0 s c c mであり、 NH3が供給される際 の流量は 1 0 0 s c c mである。 ここで、 N 2の流量は、 図 2 ( c ) に示すよう に、 T i C 1 4と NH3の流量を補うように'制御され、 これにより処理容器 2内の 圧力が常に一定に維持される。 より具体的には、 まず原料ガスとして 3 0 s c c mの T i C 1 4が処理容器 2 内に一秒間だけ供給する。 この際、 ある程度の流量で N2を処理容器 2内に供給 して処理容器 2内の圧力を 2 0 O P aに維持する。 次に、 T i C 1 4の供給を停 · 止し、 N2のみを処理容器 2に 1秒間だけ供給して、 処理容器 2内の T i C 1 4を N2によりパージする。 この N2パージのときも処理容器 2内の圧力が 2 0 0 P a となるように N2の流量を制御する。 N2の流量の制御は、 処理容器 2内の圧力を 圧力計 6で検出し、 検出結果を N2供給ラインのマスフローコントローラ 1 3 C にフィードバックすることにより行われる。
その後、 原料ガスとして 1 0 0 s c c mの NH3が処理容器 2内に 1秒間だけ 供給する。 この際、 ある程度の流量で N2を処理容器 2内に供給して処理容器 2 内の圧力を 2 0 0 P aに維持する。 次に、 NH3の供給を停止し、 N2のみを処理 容器 2に 1秒間だけ供給して、処理容器 2内の NH3を N2によりパージする。 こ のときの N2パージも処理容器 2内の圧力が 2 0 O P aとなるように N2の流量 を制御する。 N2の流量の制御は、 処理容器 2内の圧力を圧力計 6で検出し、 検 出結果を N2供給ラインのマスフローコントローラ 1 3 Cにフィードバックする ことにより行われる。
以上のようなサイクルを繰り返すことにより、 4 0 0°C程度に加熱したウェハ 3上に T i N膜を形成する。 N2により. T i C 1 4及ぴ NH3の流量を補うことに より、 処理容器 2内を常に 2 0 0 P aに維持することができる。 ここで、 処理容 器 2内の圧力変動の許容範囲は、 処理の均一性や熱伝導率の変動を考慮すると、 ± 1 0 %程度であることが好ましい。
上述の実施例によれば、 真空排気ではなく N2パージにより原料ガスの排気を 行うため、 高真空を得るために必要な大口径の排気口を処理容器 2に設ける必要 はなく、 処理容器 2の容積を小さくすることができる。 レたがって、 処理容器 2 内に残留する原料ガス (T i C 1 4, NH3) の量を低減することができ、 短時間 で排気を行うことができる。
また、 原料ガス (T i C 1 4, NH3) の供給時にパージガス (N2) も供給す ることにより、 処理容器 2内の圧力を常に一定に維持するため、 サセプタ 4とゥ 3との間の気体の熱伝導率が一定に維持される。 したがって、 ウェハ 3のカロ 熱が一定となり、 ウェハ 3の表面^ を一定に維持することができる。 これによ り、 原料ガス (T i C l4, NH3) のウェハ 3の表面への吸着量を制御すること ができ、 均一な処理を施すことができる。
また、 原料ガスの切り替えの際の排気工程において、 N2パージを用いて且つ N 2の流量を調整することにより処理容器 2内の圧力を略一定に維持するため、 原料ガス供給と N 2パージとを迅速に切り替えることができる。 すなわち、 原料 ガス供給と N2パージとの間で処理容器 2内の圧力を調整する期間が不要となり 、 その分処理全体の時間を短縮できる。 複数の原料ガスを繰り返し交互に供給す る場合には、 圧力調整に要する時間を短縮することは特に効果的である。
また、 処理中の処理容器 2内の圧力は、 200 P aと比較的低い真空度である ため、処理容器 2の内壁に吸着した原料ガスが排気時に離脱して排気速度に影響 を及ぼすことはない。
なお上述の実施例では、 パージガスとして N2を用いているが、 A rあるいは H e等の他の不活"生ガスを用いることもできる。
また、 上述の例では、 T i C 14と NH3による T iN膜を生成している力 他 の例として、 T i F4と NH3による T i N膜の生成、 T i B r 4と NH3による T iN膜の生成、 T i .14と NH3による T i N膜の生成、 T i [Ν (C2H5CH3 )] 4と ΝΗ3による Τ i Ν膜の生成、 T i [N (CH3) 2] 4と NH3による T i N膜の生成、 T i [N (C2H5) 2] 4と NH3による T i N膜の生成、 Ta F5 と NH3による TaN膜の生成、 T a C 15と NH3による T N膜の生成、 Ta B r 5と NH3による TaN膜の生成、 T a I 5と NH3による T a N膜の生成、 T a (NC (CH3) 3) (N (C2H5) 2) 3と NH3による T a N膜の生成、 WF 6 と NH3による WN膜の生成、 A 1 (CH3) 3と H20による A 1203膜の生成、 A 1 (CH3) 3と H202による A 1203膜の生成、 Z r (O— t (C4H4)) 4 と H2〇による Z r 02膜の生成、 Z r (〇一 t (C4H4)) 4と H202による Z r〇2膜の生成、 Ta (OC2H5) 5と H2〇による T a 205膜の生成、 T a (O C2H5) 5と H202による Ta25膜の生成、 Ta (OC2H5) 5と 02による T a25膜の生成、等本実施例による処理装置 1を用いることにより、効率的に成 膜処理を行うことができる。 また、 上述の実施例における処理方法は、 成膜処理の他に、 基板の熱酸化処理
、 ァニール、 ドライエッチングやプラズマ CVD等のプラズマ処理、 熱 C VD、 光 C VD等に適用することができる。
上述の如く本発明によれば、 原料ガスの排気に要する時間を短縮して原料ガス の切り替え時間を短縮することができ、 且つ原料ガスの供給と排気とを一定の圧 力の下で行うことにより処理中の基板表面の温度を一定に維持することができ る。
本発明は上述の具体的に開示された実施例に限られず、 本発明の範囲から逸脱 することなく様々な変形例及び改良例がなされるであろう。

Claims

請求の範囲
1 . 原料ガスと不活性ガスとを含む処理ガスを供給しながら基板に処理を施 す処理装置であって、
該基板が収容される処理容器と
該処理容器内へ処理ガスを供給する処理ガス供給手段と、
排気手段と、
前記処理容器内の圧力を検出する圧力検出手段と、
該圧力検出手段の検出結果に基づいて、前記処理容器に供給される処理ガスの 流量を制御する制御手段と
よりなることを特徴とする処理装置。
2. 請求の範囲第 1項記載の処理装置であって、
前記処理ガス供給手段は、 原料ガスを供給する原料ガス供給手段と、 不活性ガ スを供給する不活性ガス供給手段とを含み、前記制御手段は不活性ガス供給手段 を制御して不活性ガスの流量を制御することにより、前記処理容器へ供給する処 理ガスの流量を制御することを特徴とする処理装置。
3. 請求の範囲第 2項記載の処理装置であって、
前記原料ガス供給手段は複数種類の原料ガスを交互に処理容器に供給し、前記 不活性ガス供給手段は常に不活性ガスを処理容器に供給することを特徴とする
4. 請求の範囲第 1項記載の処理装置であって、
嫌己制御手段は、前記処理容器内の圧力が略一定となるように前記処理ガスの 流量を制御することを特徴とする処理装置。
5. 請求の範囲第 4項記載の処理装置であって、
前記制御手段は、前記処理容器内の圧力が所定の圧力に対して ± 1 0 %の範囲 内となるように処理ガスの流量を制御することを特徴とする処理装置。
6 . 原料ガスと不活性ガスとを含む処理ガスを供給しながら基板に処理を施 す処理方法であって、
第 1の原料ガスを第 1の所定流量で処理容器に ί共給し、且つ不活性ガスを同時 に処理容器に供給して前記処理容器内を所定の処理圧力に維持する第 1の工程 と、
第 1の原料ガスの供給を停止し、不活性ガスのみを供給しながら前記処理容器 内を前記所定の処理圧力に維持する第 2の工程と、
第 2の原料ガスを第 2の所定流量で前記処理容器に供給し、且つ不活性ガスを 同時に前記処理容器に供給して前記処理容器内を前記所定の処理圧力に維持す る第 3の工程と、
第 2の原料ガスの供給を停止し、不活性ガスのみを供給しながら前記処理容器 内を前記所定の処理圧力に維持する第4の工程と、
を有し、前記第 1乃至第 4の工程を繰り返し行つて前記基板に処理を施すこと を特徴とする処理方法。 ·
7. 請求の範囲第 6項記載の処理方法であって、
前記第 1の原料は T i C 1 4であり、前記第 2の原料は NH 3であり、前記不活 性ガスは N 2であることを特徴とする処理方法。
8 . 請求の範囲第 7項記載の処理方法であって、
前記第 1の所定流量は 1〜 5 0 s c c mであり、前記第 2の所定流量は 1 0〜 1 0 0 0 s c c mであり、前記所定の処理圧力は 1〜4 0 0 P aであることを特 徴とする処理方法。
9. 請求の範囲第 8項記載の処理方法であって、
前記所定の処理圧力の変動許容範囲は土 1 0 %であることを特徴とする処理 方法。
PCT/JP2003/010377 2002-08-30 2003-08-15 処理装置及び処理方法 WO2004021415A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,019 US20060154383A1 (en) 2002-08-30 2003-08-15 Processing apparatus and processing method
AU2003254942A AU2003254942A1 (en) 2002-08-30 2003-08-15 Treating apparatus and method of treating
US12/421,271 US20090214758A1 (en) 2002-08-30 2009-04-09 A processing method for processing a substrate placed on a placement stage in a process chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002253674A JP2004091850A (ja) 2002-08-30 2002-08-30 処理装置及び処理方法
JP2002-253674 2002-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/421,271 Division US20090214758A1 (en) 2002-08-30 2009-04-09 A processing method for processing a substrate placed on a placement stage in a process chamber

Publications (1)

Publication Number Publication Date
WO2004021415A1 true WO2004021415A1 (ja) 2004-03-11

Family

ID=31972803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010377 WO2004021415A1 (ja) 2002-08-30 2003-08-15 処理装置及び処理方法

Country Status (7)

Country Link
US (2) US20060154383A1 (ja)
JP (1) JP2004091850A (ja)
KR (1) KR20040020820A (ja)
CN (1) CN100364046C (ja)
AU (1) AU2003254942A1 (ja)
TW (1) TW200406832A (ja)
WO (1) WO2004021415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930434B1 (ko) 2005-08-10 2009-12-08 도쿄엘렉트론가부시키가이샤 W계 막의 성막 방법, 게이트 전극의 형성 방법, 및 반도체장치의 제조 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091850A (ja) * 2002-08-30 2004-03-25 Tokyo Electron Ltd 処理装置及び処理方法
KR20070048177A (ko) * 2004-06-28 2007-05-08 캠브리지 나노테크 인크. 증착 시스템 및 방법
US7217578B1 (en) * 2004-08-02 2007-05-15 Advanced Micro Devices, Inc. Advanced process control of thermal oxidation processes, and systems for accomplishing same
JP2007036197A (ja) * 2005-06-23 2007-02-08 Tokyo Electron Ltd 半導体製造装置の構成部材及び半導体製造装置
FI121750B (fi) * 2005-11-17 2011-03-31 Beneq Oy ALD-reaktori
JP2007211326A (ja) * 2006-02-13 2007-08-23 Nec Electronics Corp 成膜装置および成膜方法
KR101126536B1 (ko) * 2007-10-31 2012-03-22 고쿠리츠다이가쿠호진 도호쿠다이가쿠 플라즈마 처리 시스템 및 플라즈마 처리 방법
JP6105967B2 (ja) * 2012-03-21 2017-03-29 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
CN104233229A (zh) * 2013-06-24 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 进气装置及等离子体加工设备
US9885567B2 (en) * 2013-08-27 2018-02-06 Applied Materials, Inc. Substrate placement detection in semiconductor equipment using thermal response characteristics
JP6135475B2 (ja) * 2013-11-20 2017-05-31 東京エレクトロン株式会社 ガス供給装置、成膜装置、ガス供給方法及び記憶媒体
JP5950892B2 (ja) * 2013-11-29 2016-07-13 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP6147693B2 (ja) 2014-03-31 2017-06-14 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム
JP5947435B1 (ja) 2015-08-27 2016-07-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP6678489B2 (ja) * 2016-03-28 2020-04-08 東京エレクトロン株式会社 基板処理装置
WO2019188128A1 (ja) * 2018-03-30 2019-10-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP7330060B2 (ja) * 2019-10-18 2023-08-21 東京エレクトロン株式会社 成膜装置、制御装置及び圧力計の調整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244110A (ja) * 1992-07-10 1994-09-02 Nec Corp 気相成長装置
JPH08130187A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 半導体気相成長装置および半導体気相成長方法
JP2001189275A (ja) * 1999-12-27 2001-07-10 Sony Corp 半導体膜形成方法及び薄膜半導体装置の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747367A (en) * 1986-06-12 1988-05-31 Crystal Specialties, Inc. Method and apparatus for producing a constant flow, constant pressure chemical vapor deposition
US5381756A (en) * 1992-03-04 1995-01-17 Fujitsu Limited Magnesium doping in III-V compound semiconductor
US5776615A (en) * 1992-11-09 1998-07-07 Northwestern University Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride
JPH06295862A (ja) * 1992-11-20 1994-10-21 Mitsubishi Electric Corp 化合物半導体製造装置及び有機金属材料容器
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
US6122429A (en) * 1995-03-02 2000-09-19 Northwestern University Rare earth doped barium titanate thin film optical working medium for optical devices
US5702532A (en) * 1995-05-31 1997-12-30 Hughes Aircraft Company MOCVD reactor system for indium antimonide epitaxial material
KR100505310B1 (ko) * 1998-05-13 2005-08-04 동경 엘렉트론 주식회사 성막 장치 및 방법
US6217659B1 (en) * 1998-10-16 2001-04-17 Air Products And Chemical, Inc. Dynamic blending gas delivery system and method
US6454860B2 (en) * 1998-10-27 2002-09-24 Applied Materials, Inc. Deposition reactor having vaporizing, mixing and cleaning capabilities
US6503330B1 (en) * 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
WO2001066832A2 (en) * 2000-03-07 2001-09-13 Asm America, Inc. Graded thin films
US20020073924A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Gas introduction system for a reactor
JP2002285333A (ja) * 2001-03-26 2002-10-03 Hitachi Ltd 半導体装置の製造方法
US6701066B2 (en) * 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
US7192486B2 (en) * 2002-08-15 2007-03-20 Applied Materials, Inc. Clog-resistant gas delivery system
JP2004091850A (ja) * 2002-08-30 2004-03-25 Tokyo Electron Ltd 処理装置及び処理方法
WO2004083485A2 (en) * 2003-03-14 2004-09-30 Genus, Inc. Methods and apparatus for atomic layer deposition
US7335396B2 (en) * 2003-04-24 2008-02-26 Micron Technology, Inc. Methods for controlling mass flow rates and pressures in passageways coupled to reaction chambers and systems for depositing material onto microfeature workpieces in reaction chambers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244110A (ja) * 1992-07-10 1994-09-02 Nec Corp 気相成長装置
JPH08130187A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 半導体気相成長装置および半導体気相成長方法
JP2001189275A (ja) * 1999-12-27 2001-07-10 Sony Corp 半導体膜形成方法及び薄膜半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930434B1 (ko) 2005-08-10 2009-12-08 도쿄엘렉트론가부시키가이샤 W계 막의 성막 방법, 게이트 전극의 형성 방법, 및 반도체장치의 제조 방법

Also Published As

Publication number Publication date
CN100364046C (zh) 2008-01-23
KR20040020820A (ko) 2004-03-09
TW200406832A (en) 2004-05-01
AU2003254942A1 (en) 2004-03-19
CN1703769A (zh) 2005-11-30
JP2004091850A (ja) 2004-03-25
US20090214758A1 (en) 2009-08-27
US20060154383A1 (en) 2006-07-13
TWI299185B (ja) 2008-07-21

Similar Documents

Publication Publication Date Title
WO2004021415A1 (ja) 処理装置及び処理方法
TWI408747B (zh) 半導體裝置的製造方法及基板處理裝置
TWI334450B (en) Wafer treatment device and the manufacturing method of semiconductor device
KR100606398B1 (ko) 반도체 처리용의 성막 방법
JP6413293B2 (ja) 成膜方法及び記憶媒体
WO2007063841A1 (ja) 熱処理方法及び熱処理装置
TWI243403B (en) Substrate processing apparatus and method for producing the semiconductor device
JP5238688B2 (ja) Cvd成膜装置
JP2018024927A (ja) 成膜装置、およびそれに用いるガス吐出部材
KR20160031413A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP5344663B2 (ja) 基板処理装置、半導体装置の製造方法および基板処理方法
JP7246184B2 (ja) RuSi膜の形成方法
JP2013076113A (ja) ガス供給装置及び成膜装置
CN113227450A (zh) 半导体器件的制造方法、衬底处理装置及程序
JP2007165479A (ja) 成膜装置のプリコート方法、成膜装置及び記憶媒体
JP2003257873A (ja) 半導体製造方法および半導体製造装置
JP4361747B2 (ja) 薄膜の形成方法
JP2019153711A (ja) 成膜方法および成膜装置
CN111663116A (zh) 基板处理装置、半导体器件的制造方法和存储介质
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP2008121054A (ja) 真空処理装置のクリーニング方法及び真空処理装置
JP4221489B2 (ja) 発熱体cvd装置及びこれを用いた発熱体cvd方法
JPH08260152A (ja) プラズマcvd法および装置
JP5356569B2 (ja) 半導体装置の製造方法及び基板処理方法並びに基板処理装置
WO2020213506A1 (ja) 基板処理装置、基板処理システム及び基板処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038206625

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006154383

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526019

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10526019

Country of ref document: US