WO2019188128A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2019188128A1
WO2019188128A1 PCT/JP2019/009380 JP2019009380W WO2019188128A1 WO 2019188128 A1 WO2019188128 A1 WO 2019188128A1 JP 2019009380 W JP2019009380 W JP 2019009380W WO 2019188128 A1 WO2019188128 A1 WO 2019188128A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inert gas
flow rate
substrate
supplied
Prior art date
Application number
PCT/JP2019/009380
Other languages
English (en)
French (fr)
Inventor
怜亮 吉田
加我 友紀直
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2020509796A priority Critical patent/JP7065178B2/ja
Priority to KR1020207026032A priority patent/KR102536220B1/ko
Priority to CN201980020201.9A priority patent/CN111868300A/zh
Publication of WO2019188128A1 publication Critical patent/WO2019188128A1/ja
Priority to US17/015,637 priority patent/US20200411330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • a process of forming a film on a substrate housed in a processing chamber may be performed.
  • the film to be formed include a thin film such as a titanium nitride film (TiN film) (see, for example, Patent Document 1).
  • the in-plane film thickness distribution of the thin film may be required to control the in-plane film thickness distribution of the thin film in accordance with the surface area and electrical characteristics of the substrate.
  • An object of the present disclosure is to provide a technique for controlling the in-plane film thickness distribution of a thin film in accordance with the surface area and electrical characteristics of the substrate when a thin film is formed on the substrate.
  • a first step of supplying a source gas and an inert gas to a substrate in a processing chamber A second step of removing the source gas remaining in the processing chamber by supplying an inert gas to the substrate while the supply of the source gas is stopped; A third step of supplying a reactive gas and an inert gas to the substrate; A fourth step of supplying an inert gas to the substrate in a state where the supply of the reaction gas is stopped to remove the reaction gas remaining in the processing chamber;
  • a technique is provided that has a timing at which the flow rate of the inert gas is less than the flow rate of the inert gas supplied in the third step.
  • the present disclosure it is possible to provide a technique for controlling the in-plane film thickness distribution of a thin film in accordance with the surface area and electrical characteristics of the substrate when a thin film is formed on the substrate.
  • FIG. 1 is a schematic diagram illustrating the concept of the present disclosure.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present disclosure, and is a diagram illustrating a processing furnace part in a vertical cross-sectional view.
  • FIG. 3 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present disclosure, and is a diagram illustrating a processing furnace part in a cross-sectional view taken along line XX of FIG.
  • FIG. 4 is a schematic configuration diagram of a controller of the substrate processing apparatus preferably used in an embodiment of the present disclosure, and is a diagram illustrating a control system of the controller in a block diagram.
  • FIG. 5 is a diagram illustrating gas supply timings according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an experimental result in an embodiment of the present disclosure.
  • a source gas is supplied to a processing chamber containing the substrate and adsorbed on the substrate to form an adsorption layer of the source gas; ) Thereafter, an inert gas is supplied to replace (remove) the source gas remaining in the processing chamber.
  • a reactive gas that causes a chemical reaction with the source gas adsorption layer is supplied to form a thin film layer.
  • an inert gas is supplied to replace the reactive gas remaining in the processing chamber, and (a) to (d) are repeated to form a thin film on the substrate.
  • the inventors conducted intensive research and found that when replacing the reactive gas in (d), the supply flow rate of the inert gas was adjusted and optimized, so that the film was formed at the central portion and the outer peripheral portion of the substrate. It has been found that the thickness distribution can be changed. For example, in FIG. 1, when a plurality of substrates (Wafer) are arranged and processed, if a reactive gas and an inert gas are supplied to a substrate on which a thin film is deposited, the reactive gas and the inert gas are generated between the substrates. Mixed.
  • the reaction gas When the supply flow rate of the inert gas is increased in the replacement step after the supply of the reaction gas, the reaction gas is easily exhausted, and a film having a good in-plane uniformity with a flat (flat) thickness is obtained.
  • the inert gas supply flow rate is reduced in the replacement step after the supply of the reactive gas, the reactive gas can be replaced because the inert gas is present at the outer peripheral portion of the substrate, but the inert gas is inert at the central portion of the substrate. Since the amount of gas is reduced, the proportion of the reaction gas that can be replaced is reduced, and the reaction gas tends to stay.
  • the reactive gas can be efficiently removed at the outer peripheral portion of the substrate, but the inert gas is small at the central portion of the substrate and the reactive gas on the substrate cannot be removed.
  • Temporarily a concentration gradient of the reaction gas is generated in the surface of the substrate, and the concentration of the reaction gas is high in the central portion of the substrate and the concentration of the reaction gas is low in the outer peripheral portion of the substrate.
  • the source gas adsorbed on the substrate surface is likely to react at the central portion of the substrate and hardly react at the outer peripheral portion of the substrate.
  • the processing furnace 202 has a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
  • the reaction tube 203 is made of a heat-resistant material (for example, quartz (SiO 2 ) or silicon carbide (SiC)), and has a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold (inlet flange) 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened.
  • the upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically.
  • a processing vessel (reaction vessel) is mainly constituted by the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container.
  • the processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are aligned in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
  • nozzles 410 and 420 are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 310 and 320 as gas supply lines are connected to the nozzles 410 and 420, respectively.
  • the gas supply pipes 310 and 320 are provided with mass flow controllers (MFC) 512 and 522 as flow rate controllers (flow rate control units) and valves 314 and 324 as opening / closing valves in order from the upstream side.
  • MFC mass flow controllers
  • Gas supply pipes 510 and 520 for supplying an inert gas are connected to the downstream sides of the valves 314 and 324 of the gas supply pipes 310 and 320.
  • the gas supply pipes 510 and 520 are provided with MFCs 512 and 522 as flow rate controllers (flow rate control units) and valves 514 and 524 as opening / closing valves in order from the upstream side.
  • the nozzles 410 and 420 are configured as L-shaped long nozzles, and the horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209.
  • the vertical portions of the nozzles 410 and 420 are in an annular space formed between the inner wall of the reaction tube 203 and the wafer 200, and move upward along the inner wall of the reaction tube 203 (upward in the arrangement direction of the wafers 200). It is provided to rise (that is, to rise from one end side to the other end side of the wafer arrangement region). That is, the nozzles 410 and 420 are provided on the side of the wafer arrangement area where the wafers 200 are arranged, in an area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
  • Gas supply holes 410 a and 420 a for supplying gas are provided on the side surfaces of the nozzles 410 and 420 so as to correspond to the substrate arrangement region in which the wafers 200 are arranged along the arrangement direction of the wafers 200.
  • the gas supply holes 410 a and 420 a are opened to face the center of the reaction tube 203.
  • a plurality of the gas supply holes 410a and 420a are provided from the lower part to the upper part of the reaction tube 203, have the same opening area, and are provided at the same opening pitch.
  • the gas supply holes 410a and 420a are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part to the upper part of the reaction tube 203. Thereby, the flow rate of the gas supplied from the gas supply holes 410a and 420a can be made uniform.
  • a raw material gas is supplied as a processing gas into the processing chamber 201 through the MFC 312, the valve 314, and the nozzle 410.
  • the source gas for example, titanium tetrachloride (TiCl 4 ) as a titanium-containing source (Ti-containing source gas, Ti-containing gas) that is a metal-containing source (metal-containing gas) containing titanium (Ti) that is a metal element. Gas is used.
  • a processing gas is supplied into the processing chamber 201 through a nozzle 420 and a nitriding gas (nitriding agent, nitriding raw material) as a reactive gas that is an N-containing gas containing nitrogen (N).
  • a nitriding gas nitriding agent, nitriding raw material
  • N an N-containing gas containing nitrogen
  • the N-containing gas for example, ammonia (NH 3 gas) can be used.
  • an inert gas for example, nitrogen (N 2 ) gas is supplied into the processing chamber 201 through the MFCs 512 and 522, the valves 514 and 524, and the nozzles 410 and 420, respectively.
  • nitrogen (N 2 ) gas is supplied into the processing chamber 201 through the MFCs 512 and 522, the valves 514 and 524, and the nozzles 410 and 420, respectively.
  • the liquid TiCl 4 is vaporized by a vaporization system such as a vaporizer or a bubbler, and the TiCl 4 gas is contained in the processing chamber 201. Will be supplied.
  • the processing gas supply system is mainly configured by the gas supply pipes 310 and 320, the MFCs 312 and 322, and the valves 314 and 324.
  • the nozzles 410 and 420 may be included in the processing gas supply system.
  • the processing gas supply system may be simply referred to as a gas supply system.
  • a source gas supply system is mainly configured by the gas supply pipe 310, the MFC 312 and the valve 314.
  • the nozzle 410 may be included in the source gas supply system.
  • the source gas supply system can also be referred to as a metal-containing gas supply system.
  • the metal-containing gas supply system can also be referred to as a TiCl 4 gas supply system.
  • a reaction gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324.
  • the nozzle 420 may be included in the reaction gas supply system.
  • the reaction gas supply system can also be referred to as an N-containing gas supply system or a nitriding gas supply system.
  • NH 3 gas supply system When flowing the NH 3 gas from the gas supply pipe 320, it may also be referred to as NH 3 gas supply system the N-containing gas supply system.
  • the inert gas supply system is mainly configured by the gas supply pipes 510 and 520, the MFCs 512 and 522, and the valves 514 and 524.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 includes, in order from the upstream side, a pressure sensor 245 serving as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201, an APC (Auto Pressure Controller) valve 243, and a vacuum pump serving as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can be evacuated and stopped in the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is operated. Further, the APC valve 243 can be operated while the vacuum pump 246 is operated.
  • the valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the opening.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • a top plate 215 is provided at the top of the boat 217.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the energization amount to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape like the nozzles 410 and 420, and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via an internal bus.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a recipe, a purge recipe in which a procedure, conditions, and the like of a purge process to be described later are stored are readable.
  • the process recipe is a combination of instructions so that the controller 121 can execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the cleaning recipe is a combination of procedures so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in the cleaning process described later, and functions as a program.
  • the purge recipe is a combination of procedures that allow the controller 121 to execute each procedure in the purge process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, cleaning recipe, purge recipe, control program, and the like are collectively referred to simply as a program.
  • the term program includes only a process recipe alone, only a cleaning recipe alone, only a purge recipe alone, only a control program alone, or a process recipe, Any combination of cleaning recipe, purge recipe and control program may be included.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFC 312, 322, 512, 522, valve 314, 324, 514, 524, APC valve 243, pressure sensor 245, vacuum pump 246, heater 207, temperature sensor 263, rotating mechanism 267, boat It is connected to the elevator 115 and the like.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe, a cleaning recipe, a purge recipe, and the like from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Yes.
  • these recipes are collectively referred to as “recipe”.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 512, and 522, the opening and closing operations of the valves 314, 324, 514, and 524, the opening and closing operations of the APC valve 243, and the APC valve 243 in accordance with the contents of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • TiCl 4 gas as a source gas and NH 3 gas as a reaction gas are supplied to a wafer 200 as a substrate housed in a processing chamber 201, and the wafer A titanium nitride film (TiN film) is formed on 200.
  • wafer When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
  • substrate is also synonymous with the term “wafer”.
  • a plurality of wafers 200 are loaded into the boat 217 (wafer charge). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 is in a state where the lower end of the manifold 209 is closed via the O-ring 220.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 exists is evacuated by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed.
  • the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • the valve 314 is opened and a TiCl 4 gas that is a raw material gas is caused to flow into the gas supply pipe 310.
  • the flow rate of the TiCl 4 gas flowing in the gas supply pipe 310 is adjusted by the MFC 312, supplied into the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231.
  • TiCl 4 gas is supplied to the wafer 200.
  • the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, supplied into the processing chamber 201 together with the TiCl 4 gas, and exhausted from the exhaust pipe 231.
  • the valve 524 is opened, and N 2 gas (back flow preventing N 2 gas) is caused to flow into the gas supply pipe 520.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 520 and the nozzle 420 and is exhausted from the exhaust pipe 231.
  • Pressure in processing chamber 201 1 to 1330 Pa, preferably 40 to 1100 Pa
  • TiCl 4 gas supply flow rate 0.01 to 1.0 slm, preferably 0.1 to 0.5 slm N 2 gas supplied from nozzles 410 and 420
  • Total supply flow rate 0.5 to 5.0 slm, preferably 2.0 to 3.0 slm
  • Gas supply time 1 to 60 seconds, preferably 1 to 10 seconds
  • Processing temperature 200 to 700 ° C., preferably 300 to 600 C. is exemplified.
  • 1 to 1330 Pa means 1 Pa to 1330 Pa. That is, 1 Pa and 1330 Pa are included in the numerical range. The same applies not only to pressure but also to all numerical values described in this specification, such as flow rate, time, temperature, and the like.
  • TiCl 4 adsorbed layer is adsorbed layer of TiCl 4 gas is formed. It can be said that the TiCl 4 adsorption layer is a Ti-containing layer containing Ti.
  • the valve 314 is closed and the supply of TiCl 4 gas is stopped.
  • the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and TiCl after remaining in the processing chamber 201 or contributing to formation of the TiCl 4 adsorption layer Four gases are removed from the processing chamber 201.
  • the valves 514 and 524 are controlled to adjust the total supply flow rate of N 2 gas supplied into the processing chamber 201 to be larger than the total supply flow rate of N 2 gas in the raw material gas supply step.
  • the N 2 gas acts as a replacement gas (purge gas), and it is possible to enhance the effect of removing the unreacted residual TiCl 4 gas remaining in the processing chamber 201 or the TiCl 4 gas after contributing to the formation of the TiCl 4 adsorption layer from the processing chamber 201. . Further, the effect of removing (blowing away) the TiCl 4 gas physically adsorbed on the wafer 200 from the inside of the processing chamber 201 can be enhanced.
  • Total supply flow rate of N 2 gas supplied from the nozzles 410 and 420 0.1 to 15.0 slm, preferably 7.0 to 13.0 slm
  • Each gas supply time is 2 to 30 seconds, preferably 4 to 10 seconds.
  • the total supply flow rate of the N 2 gas supplied from the nozzles 410 and 420 is less than 0.1 slm, the unreacted or residual TiCl 4 gas that has contributed to the formation of the TiCl 4 adsorption layer in the processing chamber 201 or on the wafer 200 In some cases, the TiCl 4 gas physically adsorbed on the substrate cannot be sufficiently removed from the processing chamber 201 and remains. If the total supply flow rate of N 2 gas supplied from the nozzles 410 and 420 is more than 15.0 slm, the pressure in the processing chamber 201 becomes too high, and the time for reducing the pressure before performing the next reactive gas supply step is performed. May reduce throughput.
  • N 2 replacement (purge) by supplying N 2 gas and evacuation may be alternately repeated.
  • the physisorbed TiCl 4 gas onto the wafer 200 more efficient processing chamber It becomes possible to exclude from 201.
  • the effect of suppressing turbulent flow of TiCl 4 gas and NH 3 gas by performing N 2 replacement (purge) Can be increased.
  • the total feed flow rate of N 2 gas supplied from the nozzle 410 and 420 immediately after stopping the supply of the TiCl 4 gas by the same flow rate as during the supply of the TiCl 4 gas, increase the effect of suppressing the turbulence be able to.
  • N 2 replacement (purge) by supplying N 2 gas may be continuously performed even during evacuation.
  • the process conditions of N 2 replacement (purge) by supplying N 2 gas are as described above.
  • the valve 324 is opened, and NH 3 gas that is a reaction gas is caused to flow into the gas supply pipe 320.
  • the NH 3 gas flowing in the gas supply pipe 320 is adjusted in flow rate by the MFC 322 and supplied into the processing chamber 201 from the gas supply hole 420 a of the nozzle 420.
  • the NH 3 gas supplied into the processing chamber 201 is exhausted from the exhaust pipe 231.
  • NH 3 gas is supplied to the wafer 200.
  • the valve 524 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing in the gas supply pipe 520 is adjusted by the MFC 522, supplied together with the NH 3 gas into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the valve 514 is opened, and N 2 gas (backflow preventing N 2 gas) is caused to flow into the gas supply pipe 510.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 510 and the nozzle 410 and is exhausted from the exhaust pipe 231.
  • Pressure in the processing chamber 201 1 to 1330 Pa, preferably 50 to 1110 Pa
  • Total supply flow rate of N 2 gas supplied from the nozzles 410 and 420 0.5 to 5.0 slm, preferably 1.0 to 3.0 slm
  • Each gas supply time 1 to 120 seconds, preferably 5 to 60 seconds Is exemplified.
  • Other processing conditions such as the processing temperature are the same as the processing conditions in the source gas supply step.
  • the gases flowing into the processing chamber 201 are only NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the TiCl 4 adsorption layer formed on the wafer 200 in the source gas supply step.
  • Ti contained in the TiCl 4 adsorption layer and N contained in the NH 3 gas are combined to form a TiN layer containing Ti and N on the wafer 200.
  • the valves 514 and 524 are controlled to adjust the total supply flow rate of the N 2 gas supplied into the processing chamber 201 to be smaller than the total supply flow rate in the reaction gas supply step. That is, in the residual gas removal step, a total supply flow rate of N 2 gas supplied into the processing chamber 201 is adjusted to have less composed timing than the total supply flow rate of N 2 gas in the reactive gas supply step.
  • N 2 gas acts as a replacement gas (purge gas), and NH 3 gas and by-products (for example, HCl, etc.) remaining in the processing chamber 201 and contributing to formation of the TiN layer are removed from the processing chamber 201. The effect to eliminate can be heightened.
  • the outer peripheral portion of the wafer 200 by adjusting the total supply flow rate of N 2 gas supplied into the process chamber 201 to be less than the total supply flow rate of N 2 gas in the reaction gas supply step, the outer peripheral portion of the wafer 200, more NH 3 gas The effect which eliminates can be heightened. Further, more NH 3 gas physically adsorbed on the wafer 200 can be removed (blowed off) from the outer peripheral portion of the wafer 200, and the effect of removing it from the processing chamber 201 can be enhanced. At the same time, NH 3 gas that has not reacted or contributed to the formation of the TiN layer is retained in the central portion of the wafer 200 and further reacted with the TiCl 4 adsorption layer or TiN layer in the central portion, thereby having a convex distribution. A TiN layer can be formed.
  • Total supply flow rate of N 2 gas supplied from the nozzles 410 and 420 0.1 to 5.0 slm, preferably 0.6 to 3.0 slm
  • Each gas supply time is 2 to 30 seconds, preferably 4 to 10 seconds.
  • the NH 3 gas and by-products remaining in the processing chamber 201 or contributed to TiN layer formation are processed.
  • the chamber 201 may not be sufficiently removed and may remain. If the total supply flow rate of N 2 gas supplied from the nozzles 410 and 420 is more than 10.0 slm, a difference in film thickness distribution cannot be created between the outer peripheral portion and the central portion of the wafer 200, and the desired in-plane uniformity. You may not be able to get sex.
  • N 2 replacement (purge) by supplying N 2 gas and evacuation may be alternately repeated.
  • the processing chamber NH 3 gas and by-products or after contributing to unreacted or TiN layer formed remaining in the 201 the NH 3 gas physically adsorbed on the wafer 200, more efficiently It can be excluded from the processing chamber 201.
  • the total supply flow rate of N 2 gas supplied into the processing chamber 201 is adjusted to be smaller than the total supply flow rate in the reaction gas supply step. Thereafter, at the timing immediately before starting the supply of TiCl 4 gas, the effect of suppressing turbulence can be enhanced by adjusting the flow rate to be the same as the total supply flow rate in the raw material gas supply step. Further, N 2 replacement (purge) by supplying N 2 gas may be continuously performed even during evacuation. When performing continuously, the process conditions of N 2 replacement (purge) by supplying N 2 gas are as described above.
  • the total supply flow rate of the N 2 gas supplied into the processing chamber 201 may be adjusted so as to be continuously supplied at a flow rate smaller than the total supply flow rate in the reaction gas supply step.
  • the total supply flow rate of the N 2 gas supplied into the processing chamber 201 is set to the same flow rate as the total supply flow rate in the reaction gas supply step at the timing immediately after the supply of the NH 3 gas is stopped, and the TiCl 4 gas in the next cycle
  • the flow rate may be adjusted to be the same flow rate as the total supply flow rate in the raw material gas supply step at the timing immediately before starting the supply, and the flow rate may be lower than the total supply flow rate in the reaction gas supply step at other timings.
  • a TiN film having a predetermined thickness is formed on the wafer 200 by performing a predetermined number of cycles (n times, where n is an integer of 1 or more) in which the above steps are performed in a time-sharing manner.
  • the value of n is appropriately selected according to the film thickness required for the finally formed TiN film. That is, the number of times each of the above-described processes is performed is determined according to the target film thickness.
  • the above cycle is preferably repeated multiple times.
  • the thickness of the TiN film is, for example, 0.1 to 300 nm, preferably 0.8 to 200 nm.
  • N 2 gas is supplied into the processing chamber 201 from the gas supply pipes 510 and 520, and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and the gas and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the desired film thickness distribution can be obtained by changing the film thickness distribution.
  • the electrical characteristics can be improved by changing the film thickness distribution between the central portion and the outer peripheral portion of the substrate to obtain a desired film thickness distribution.
  • C By changing the film thickness distribution between the central part and the outer peripheral part of the substrate to obtain a desired film thickness distribution, it becomes prominent when the film is formed on the patterned substrate having a large surface area. It is possible to take measures against the loading effect.
  • FIG. 6 shows the results obtained by varying the supply flow rate of the inert gas supplied in the residual gas removal step after the reaction gas supply, as the experimental results of this embodiment. Thickness ratio of the wafer 200 to the center of the wafer 200 with respect to the distance from the center of the wafer 200 (Distance from Wafer center), and the film thickness ratio to the center of the wafer 200 is the center of the wafer 200 Is a correction value converted to 100%.
  • FIG. 6 shows that the in-plane film thickness distribution changes to a convex shape as the supply flow rate of the inert gas decreases.
  • N 2 gas is exemplified as the inert gas.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, and Xe gas is used in addition to the N 2 gas. Can be used.
  • the TiO film using Ti element is exemplified as the film formed on the substrate.
  • tantalum (Ta), tungsten (W) as elements other than Ti.
  • Oxide films and nitride films containing elements such as cobalt (Co), yttrium (Y), ruthenium (Ru), aluminum (Al), hafnium (Hf), zirconium (Zr), molybdenum (Mo), and silicon (Si)
  • the present invention can also be suitably applied when forming a carbonized film or a composite film thereof.
  • examples of the source gas include, besides TiCl 4 , tetrakisdimethylaminotitanium (Ti [N (CH 3 ) 2 ] 4 ), tantalum pentachloride (TaCl 5 ), penta Ethoxy tantalum (Ta (OC 2 H 5 ) 5 ), tungsten hexafluoride (WF 6 ), bis (tertiary butyl imino) bis (tertiary butyl amino) tungsten ((C 4 H 9 NH) 2 W (C 4 H 9 N) 2 ), cobalt dichloride (CoCl 2 ), bis (ethylcyclopentadienyl) cobalt (C 14 H 18 Co), yttrium trichloride (YCl 3 ), tris (butylcyclopentadienyl) yttrium (Y (C 5 H 4 CH 2 (CH 2) 2 CH 3) 3),
  • reaction gas examples include ammonia (NH 3 ), nitrogen oxide (N 2 O), ozone (O 3 ), oxygen (O 2 ), water vapor (H 2 O), and hydrogen peroxide (H 2 O). 2 ), a mixed gas of O 2 + H 2 , water vapor (H 2 O gas), propylene (C 3 H 6 ), etc., or those obtained by plasma excitation of these can also be used.
  • the reaction tube may have a double-pipe structure having an internal reaction tube (inner tube) and an external reaction tube (outer tube) provided outside the reaction tube.
  • Process recipes used for film formation of these various thin films include film formation processing and cleaning processing. It is preferable to prepare individually (multiple preparations) according to the contents of the purge process (formation or film type of thin film to be removed, composition ratio, film quality, film thickness, etc.). And when starting various processes, it is preferable to select an appropriate recipe suitably from a some recipe according to the content of a process.
  • a plurality of recipes individually prepared according to processing contents are stored in a storage device 121c included in the substrate processing apparatus via an electric communication line or a recording medium (external storage device 123) on which the recipe is recorded. It is preferable to store (install) in advance.
  • the CPU 121a included in the substrate processing apparatus When starting the film forming process, the cleaning process, and the purge process, the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. It is preferable to select.
  • thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed and removed for general use with good reproducibility using a single substrate processing apparatus.
  • it is possible to reduce an operator's operation burden such as an input burden of a processing procedure and a processing condition
  • the above-described process recipe, cleaning recipe, and purge recipe are not limited to newly created, and may be prepared by, for example, changing an existing recipe that has already been installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • processing conditions at this time can be the same processing conditions as in the above-described embodiment, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基板上に薄膜を形成する際、基板の表面積や電気特性に合わせて薄膜の面内膜厚分布を制御する技術を提供する。 処理室内の基板に対して、原料ガスと不活性ガスを供給する第1の工程と、原料ガスの供給を止めた状態で、基板に対して不活性ガスを供給して、処理室内に残留する原料ガスを除去する第2の工程と、基板に対して、反応ガスと不活性ガスを供給する第3の工程と、反応ガスの供給を止めた状態で、基板に対して不活性ガスを供給して、処理室内に残留する反応ガスを除去する第4の工程と、を有し、第4の工程では、不活性ガスの流量が、第3の工程で供給する不活性ガスの流量より少なくなるタイミングを有する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 半導体装置(デバイス)の製造工程の一工程として、処理室内に収容された基板上に膜を形成する処理が行われることがある。形成される膜としては、例えば、チタン窒化膜(TiN膜)等の薄膜が挙げられる(たとえば、特許文献1参照)。
特開2011-6783号公報
 基板上に薄膜を形成する際、基板の表面積や電気特性に合わせて薄膜の面内膜厚分布を制御することが要求される場合がある。
 本開示一目的は、基板上に薄膜を形成する際、基板の表面積や電気特性に合わせて薄膜の面内膜厚分布を制御する技術を提供することである。
 本開示の一態様によれば、処理室内の基板に対して、原料ガスと不活性ガスを供給する第1の工程と、
 原料ガスの供給を止めた状態で、基板に対して不活性ガスを供給して、処理室内に残留する原料ガスを除去する第2の工程と、
 基板に対して、反応ガスと不活性ガスを供給する第3の工程と、
 反応ガスの供給を止めた状態で、基板に対して不活性ガスを供給して、処理室内に残留する反応ガスを除去する第4の工程と、
 を有し、
 第4の工程では、不活性ガスの流量が、第3の工程で供給する不活性ガスの流量より少なくなるタイミングを有する技術が提供される。
 本開示によれば、基板上に薄膜を形成する際、基板の表面積や電気特性に合わせて薄膜の面内膜厚分布を制御する技術を提供することができる。
図1は、本開示のコンセプトを表す概略図である。 図2は、本開示の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 図3は、本開示の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図2のX-X線断面図で示す図である。 図4は、本開示の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 図5は、本開示の一実施形態におけるガス供給のタイミングを示す図である。 図6は、本開示の一実施形態における実験結果を示す図である。
 近年の微細化等に伴い、基板上に薄膜を形成する場合、基板面内の中央部と外周部とにおける薄膜の面内膜厚分布を制御したいという要望がある。例えば、デバイスの微細化が進行し、導体膜、半導体膜、及び絶縁膜等の膜厚が電気的特性に大きく影響を及ぼすため、面内均一性の改善が求められている。また、基板の表面積や電気特性に合わせて、所望の面内均一性となるよう調整したいという要求もある。
 基板上に薄膜を形成(堆積)する成膜方法としては、基板を収容した処理室に、(a)原料ガスを供給して基板上に吸着させて原料ガスの吸着層を形成し、(b)その後、不活性ガスを供給して処理室に残留する原料ガスを置換(除去)し、(c)次に、原料ガスの吸着層と化学反応を起こす反応ガスを供給して薄膜層を形成し、(d)その後、不活性ガスを供給して処理室に残留する反応ガスを置換し、(a)~(d)を繰り返し行って、基板上に薄膜を形成する方法がある。(d)で、大量の不活性ガスを処理室に供給すると、気相中の反応ガスが、不活性ガスによって基板面内に全体的かつ均一に置換され、面内全体に同じような膜厚の薄膜を形成することができる場合がある。しかし、微細化の進行に伴う基板表面積の増加によって、原料ガスや反応ガスが中央部まで供給されずに外周部の膜厚が厚く、基板中央部の膜厚が薄くなり面内均一性が悪くなってしまったり(ローディングエフェクト)、所望する面内均一性を得られなかったりする場合がある。
 そこで、発明者らは鋭意研究を行ったところ、(d)で反応ガスを置換する際、不活性ガスの供給流量を調整して最適化することにより、基板の中央部と外周部とで膜厚分布を変化させることができることを見出した。例えば、図1で、複数の基板(Wafer)を配列して処理する際、薄膜を堆積中の基板に反応ガスと不活性ガスを供給すると、基板と基板の間に反応ガスと不活性ガスが混在する。反応ガス供給後の置換ステップで、不活性ガスの供給流量を多くすると反応ガスは排気されやすく、膜厚(Thickness)は面内で平坦(flat)な面内均一性が良好な膜が得られる。一方、反応ガス供給後の置換ステップで、不活性ガスの供給流量を少なくすると、基板の外周部では不活性ガスが存在するため反応ガスを置換することができるが、基板の中央部では不活性ガスが少なくなるため反応ガスを置換できる割合が少なくなり反応ガスが滞留しやすくなる。基板の外周部では反応ガスを効率よく除去できるが、基板の中央部では不活性ガスが少なく基板上の反応ガスを除去できない。一時的に、基板面内に反応ガスの濃度勾配が発生し、基板の中央部は反応ガスの濃度が高く、基板の外周部は反応ガスの濃度が低い状態となる。その間、基板表面に吸着している原料ガスは基板の中央部では反応しやすく、基板の外周部では反応しにくくなる。この場合、外周部が薄く(膜厚が低く)中央部が厚い(膜厚が高い)凸形状(convex)な膜厚分布を有する薄膜を得ることができる。この効果は、特に、表面積の大きいパターン付基板上に成膜する際に特に顕著となる。以下に、詳細を説明する。
<第1の実施形態> 
 以下、実施形態の例について、主に、図2~図4を用いて説明する。
(1)処理炉の構成 
 処理炉202は加熱手段(加熱機構、加熱系)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は耐熱性材料(例えば石英(SiO)または炭化シリコン(SiC)等)からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420がマニホールド209の側壁を貫通するように設けられている。ノズル410,420には、ガス供給ラインとしてのガス供給管310,320が、それぞれ接続されている。
 ガス供給管310,320には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)512,522および開閉弁であるバルブ314,324が設けられている。ガス供給管310,320のバルブ314,324の下流側には、不活性ガスを供給するガス供給管510,520が接続されている。ガス供給管510,520には、上流側から順に、流量制御器(流量制御部)であるMFC512,522および開閉弁であるバルブ514,524が設けられている。
 ノズル410,420は、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられている。ノズル410,420の垂直部は、反応管203の内壁とウエハ200との間に形成される円環状の空間に、反応管203の内壁に沿って上方(ウエハ200の配列方向上方)に向かって立ち上がるように(つまりウエハ配列領域の一端側から他端側に向かって立ち上がるように)設けられている。すなわち、ノズル410,420は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。
 ノズル410,420の側面には、ガスを供給するガス供給孔410a,420aがウエハ200の配列方向に沿って、ウエハ200が配列された基板配列領域に対応するように設けられている。ガス供給孔410a,420aは反応管203の中心を向くように開口している。このガス供給孔410a,420aは、反応管203の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同じ開口ピッチで設けられている。ただし、ガス供給孔410a,420aは上述の形態に限定されない。例えば、反応管203の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420aから供給されるガスの流量を均一化することが可能となる。
 ガス供給管310からは、処理ガスとして原料ガスが、MFC312,バルブ314,ノズル410を介して処理室201内に供給される。原料ガスとしては、例えば、金属元素であるチタン(Ti)を含む金属含有原料(金属含有ガス)であるチタン含有原料(Ti含有原料ガス、Ti含有ガス)としての四塩化チタン(TiCl)のガスが用いられる。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、その両方を意味する場合がある。
 ガス供給管320からは、処理ガスとして、窒素(N)を含むN含有ガスである反応ガスとしての窒化ガス(窒化剤、窒化原料)、ノズル420を介して処理室201内に供給される。N含有ガスとしては、例えば、アンモニア(NHガス)を用いることができる。
 ガス供給管510,520からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512,522、バルブ514,524、ノズル410,420を介して処理室201内に供給される。
 処理ガスとしてTiClのように常温常圧下で液体状態である化合物を用いる場合は、液体状態のTiClを気化器やバブラ等の気化システムにより気化して、TiClガスとして処理室201内に供給することとなる。
 主に、ガス供給管310,320、MFC312,322、バルブ314,324により処理ガス供給系が構成される。ノズル410,420を処理ガス供給系に含めて考えてもよい。処理ガス供給系を、単に、ガス供給系と称することもできる。
 主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成される。ノズル410を原料ガス供給系に含めて考えてもよい。ガス供給管310から金属含有ガスを流す場合、原料ガス供給系を金属含有ガス供給系と称することもできる。ガス供給管310からTiClガスを流す場合、金属含有ガス供給系をTiClガス供給系と称することもできる。
 主に、ガス供給管320、MFC322、バルブ324により反応ガス供給系が構成される。ノズル420を反応ガス供給系に含めて考えてもよい。ガス供給管320からN含有ガスである窒化ガスを流す場合、反応ガス供給系をN含有ガス供給系や窒化ガス供給系と称することもできる。ガス供給管320からNHガスを流す場合、N含有ガス供給系をNHガス供給系と称することもできる。
 主に、ガス供給管510,520、MFC512,522、バルブ514,524により不活性ガス供給系が構成される。
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行なうことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231,APCバルブ243,圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217の天頂部には、天板215が設けられている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成される断熱板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。
 反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420と同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピや、後述するクリーニング処理の手順や条件等が記載されたクリーニングレシピや、後述するパージ処理の手順や条件等が記載されたパージレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。また、クリーニングレシピは、後述するクリーニング処理における各手順を、コントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。また、パージレシピは、後述するパージ処理における各手順を、コントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピやクリーニングレシピやパージレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、クリーニングレシピ単体のみを含む場合、パージレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ、クリーニングレシピ、パージレシピおよび制御プログラムのうち任意の組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,322,512,522、バルブ314,324,514,524、APCバルブ243、圧力センサ245、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピやクリーニングレシピやパージレシピ等を読み出すように構成されている。以下、便宜上、これらのレシピを総称して単に「レシピ」とも称することとする。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,512,522による各種ガスの流量調整動作、バルブ314,324,514,524の開閉動作、APCバルブ243の開閉動作およびAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)成膜処理 
 上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図5を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図5に示す成膜シーケンスでは、処理室201内に収容された基板としてのウエハ200に対して、原料ガスとしてのTiClガスと、反応ガスとしてのNHガスと、を供給して、ウエハ200上にチタン窒化膜(TiN膜)を形成する。
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード) 
 複数枚のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介してマニホールド209の下端を閉塞した状態となる。
(圧力調整および温度調整) 
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(TiN膜形成ステップ) 
 その後、以下のステップを順次実施する。
(原料ガス供給ステップ) 
 バルブ314を開き、ガス供給管310内に原料ガスであるTiClガスを流す。ガス供給管310内を流れるTiClガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiClガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にNガス等の不活性ガスを流す。ガス供給管510内を流れるNガスは、MFC512により流量調整され、TiClガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420内へのTiClガスの侵入を防止するために、バルブ524を開き、ガス供給管520内にNガス(逆流防止Nガス)を流す。Nガスは、ガス供給管520、ノズル420を介して処理室201内に供給され、排気管231から排気される。
 本ステップにおける処理条件としては、
 処理室201内の圧力:1~1330Pa、好ましくは40~1100Pa  TiClガス供給流量:0.01~1.0slm、好ましくは0.1~0.5slm  ノズル410,420から供給するNガスの総供給流量:0.5~5.0slm、好ましくは2.0~3.0slm  各ガス供給時間:1~60秒、好ましくは1~10秒  処理温度:200~700℃、好ましくは300~600℃  が例示される。本明細書では、数値の範囲として、例えば1~1330Paと記載した場合は、1Pa以上1330Pa以下を意味する。すなわち、数値の範囲内には1Paおよび1330Paが含まれる。圧力のみならず、流量、時間、温度等、本明細書に記載される全ての数値について同様である。
 上述の条件下でウエハ200に対してTiClガスを供給することにより、ウエハ200の最表面に、TiClガスの吸着層であるTiCl吸着層が形成される。TiCl吸着層はTiを含むTi含有層ともいえる。
(残留ガス除去ステップ) 
 TiCl吸着層が形成された後、バルブ314を閉じ、TiClガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応又はTiCl吸着層形成に寄与した後のTiClガスを処理室201内から排除する。このとき、バルブ514,524を制御して、処理室201内へ供給するNガスの総供給流量を原料ガス供給ステップにおけるNガスの総供給流量より多くなるよう調整する。Nガスは置換ガス(パージガス)として作用し、処理室201内に残留する未反応又はTiCl吸着層形成に寄与した後のTiClガスを処理室201内から排除する効果を高めることができる。また、ウエハ200上に物理吸着したTiClガスをウエハ200上から除去し(吹き飛ばし)、処理室201内から排除する効果を高めることができる。
 本ステップにおける処理条件としては、
 ノズル410,420から供給するNガスの総供給流量:0.1~15.0slm、好ましくは7.0~13.0slm 
 各ガス供給時間:2~30秒、好ましくは4~10秒が例示される。
ノズル410,420から供給するNガスの総供給流量が0.1slmより少ないと、処理室201内に残留する未反応又はTiCl吸着層形成に寄与した後のTiClガスや、ウエハ200上に物理吸着したTiClガスを、処理室201から十分に排除できず、残留してしまう場合がある。ノズル410,420から供給するNガスの総供給流量が15.0slmより多いと、処理室201内の圧力が高くなり過ぎ、次に行う反応ガス供給ステップを行う前に圧力を下げるための時間を要するためスループットが低下する場合がある。
 本ステップでは、図5に示すように、Nガスの供給によるN置換(パージ)と、真空排気を交互に繰り返し行ってもよい。交互に繰り返し行うことにより、処理室201内に残留する未反応又はTiCl吸着層形成に寄与した後のTiClガスや、ウエハ200上に物理吸着したTiClガスを、より効率的に処理室201から排除することが可能となる。その際、TiClガスの供給を停止した直後および後述するNHガスの供給を開始する直前は、N置換(パージ)を行うと、TiClガスとNHガスの乱流を抑制する効果を高めることができる。また、ノズル410,420から供給するNガスの総供給流量は、TiClガスの供給を停止した直後はTiClガスの供給時と同じ流量とすることにより、乱流を抑制する効果を高めることができる。NHガスの供給を開始する直前は、NHガスの供給時と同じ流量とすることにより、乱流を抑制する効果を高めることができる。また、真空排気時にもNガスの供給によるN置換(パージ)は連続して行っていてもよい。連続して行う場合、Nガスの供給によるN置換(パージ)のプロセス条件は上述の通りである。
(反応ガス供給ステップ) 
 処理室201内の残留ガスを除去した後、バルブ324を開き、ガス供給管320内に反応ガスであるNHガスを流す。ガス供給管320内を流れるNHガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給される。処理室201内に供給されたNHガスは、排気管231から排気される。このときウエハ200に対して、NHガスが供給されることとなる。このとき同時にバルブ524を開き、ガス供給管520内にNガス等の不活性ガスを流す。ガス供給管520内を流れるNガスは、MFC522により流量調整され、NHガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410内へのNHガスの侵入を防止するために、バルブ514を開き、ガス供給管510内にNガス(逆流防止Nガス)を流す。Nガスは、ガス供給管510、ノズル410を介して処理室201内に供給され、排気管231から排気される。
 本ステップにおける処理条件としては、
 処理室201内の圧力:1~1330Pa、好ましくは50~1110Pa 
  ノズル410,420から供給するNガスの総供給流量:0.5~5.0slm、好ましくは1.0~3.0slm 
 各ガス供給時間:1~120秒、好ましくは5~60秒 
 が例示される。処理温度等の他の処理条件は、原料ガス供給ステップにおける処理条件と同様とする。
 このとき処理室201内に流しているガスは、NHガスとNガスのみである。NHガスは、原料ガス供給ステップでウエハ200上に形成されたTiCl吸着層の少なくとも一部と置換反応する。置換反応の際には、TiCl吸着層に含まれるTiとNHガスに含まれるNとが結合して、ウエハ200上にTiとNとを含むTiN層が形成される。
(残留ガス除去ステップ) 
 TiN層を形成した後、バルブ324を閉じて、NHガスの供給を停止する。そして、原料ガス供給ステップの後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する。
 このとき、バルブ514,524を制御して、処理室201内へ供給するNガスの総供給流量を反応ガス供給ステップにおける総供給流量より少なくなるよう調整する。すなわち、本残留ガス除去ステップにおいて、処理室201内へ供給するNガスの総供給流量が、反応ガス供給ステップにおけるNガスの総供給流量より少なくなるタイミングを有するよう調整する。Nガスは置換ガス(パージガス)として作用し、処理室201内に残留する未反応又はTiN層形成に寄与した後のNHガスや副生成物(例えば、HCl等)を処理室201内から排除する効果を高めることができる。特に、処理室201内へ供給するNガスの総供給流量を反応ガス供給ステップにおけるNガスの総供給流量より少なくなるように調整することにより、ウエハ200の外周部において、よりNHガスを排除する効果を高めることができる。また、ウエハ200上に物理吸着したNHガスをウエハ200の外周部からより多く除去し(吹き飛ばし)、処理室201内から排除する効果を高めることができる。同時に、ウエハ200の中央部において、未反応又はTiN層形成に寄与した後のNHガスを滞留させ、さらに中央部のTiCl吸着層やTiN層と反応させることにより、凸形状の分布を有するTiN層を形成することができる。
 本ステップにおける処理条件としては、
 ノズル410,420から供給するNガスの総供給流量:0.1~5.0slm、好ましくは0.6~3.0slm 
 各ガス供給時間:2~30秒、好ましくは4~10秒が例示される。
 ノズル410,420から供給するNガスの総供給流量が0.1slmより少ないと、処理室201内に残留する未反応又はTiN層形成に寄与した後のNHガスや副生成物を、処理室201から十分に排除できず、残留してしまう場合がある。ノズル410,420から供給するNガスの総供給流量が10.0slmより多いと、ウエハ200の外周部と中央部とで、膜厚分布の差を作ることができず、所望の面内均一性を得ることができなくなる場合がある。
 本ステップでは、図5に示すように、Nガスの供給によるN置換(パージ)と、真空排気を交互に繰り返し行ってもよい。交互に繰り返し行うことにより、処理室201内に残留する未反応又はTiN層形成に寄与した後のNHガスや副生成物や、ウエハ200上に物理吸着したNHガスを、より効率的に処理室201から排除することが可能となる。その際、NHガスの供給を停止した直後(すなわち最初のN置換、最初の不活性ガス供給時)および次のサイクルのTiClガスの供給を開始する直前(すなわち最後のN置換、最後の不活性ガス供給時)のタイミングでは、N置換(パージ)を行うと、TiClガスとNHガスの乱流を抑制する効果を高めることができる。また、ノズル410,420から供給するNガスの総供給流量は、NHガスの供給を停止した直後のタイミングでは反応ガス供給ステップにおける総供給流量と同じ流量となるよう調整することにより、乱流を抑制する効果を高めることができる。所定回数のN置換を行った後、処理室201内へ供給するNガスの総供給流量が、反応ガス供給ステップにおける総供給流量より少なくなるよう調整する。その後、TiClガスの供給を開始する直前のタイミングでは、原料ガス供給ステップにおける総供給流量と同じ流量となるよう調整することにより、乱流を抑制する効果を高めることができる。また、真空排気時にもNガスの供給によるN置換(パージ)は連続して行っていてもよい。連続して行う場合、Nガスの供給によるN置換(パージ)のプロセス条件は上述の通りである。その際、処理室201内へ供給するNガスの総供給流量を、反応ガス供給ステップにおける総供給流量より少ない流量で連続して供給するよう調整してもよい。あるいは、処理室201内へ供給するNガスの総供給流量を、NHガスの供給を停止した直後のタイミングでは反応ガス供給ステップにおける総供給流量と同じ流量とし、次のサイクルのTiClガスの供給を開始する直前のタイミングでは原料ガス供給ステップにおける総供給流量と同じ流量とし、それ以外のタイミングでは反応ガス供給ステップにおける総供給流量より少ない流量となるよう調整して供給しても良い。
(所定回数実施) 
 上記した各ステップを順に時分割して行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、所定の厚さのTiN膜を形成する。nの値は、最終的に形成されるTiN膜において必要とされる膜厚に応じて適宜選択される。すなわち、上述の各処理を行う回数は、目標とする膜厚に応じて決定される。上述のサイクルは、複数回繰り返すのが好ましい。TiN膜の厚さは、例えば0.1~300nm、好ましくは0.8~200nmとする。
(パージおよび大気圧復帰) 
 バルブ514,524を開き、ガス供給管510,520のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ) 
 その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果 
 本実施形態によれば、以下に示す一つ又は複数の効果が得られる。
 (a)原料ガスと反応ガスとを用いて薄膜を形成するとき、反応ガスを置換する際に、不活性ガスの供給流量を調整して最適化することにより、基板の中央部と外周部とで膜厚分布を変化させて、所望の膜厚分布を得ることが可能となる。
 (b)基板の中央部と外周部とで膜厚分布を変化させて、所望の膜厚分布を得ることにより、電気特性の改善を行うことが可能となる。
 (c)基板の中央部と外周部とで膜厚分布を変化させて、所望の膜厚分布を得ることにより、表面積の大きなパターン付基板上に成膜する際に顕著になる基板面内のローディングエフェクトに対する対策を行うことが可能となる。
 (d)反応ガス供給後の置換ステップで、不活性ガスの供給流量を少なくすることにより、基板の外周部が薄く中央部が厚い凸形状の膜厚分布を有する薄膜を得ることができる。
 (e)反応ガスの供給を停止した直後および次のサイクルの原料ガスの供給を開始する直前に、不活性ガスによる置換(パージ)を行うと、乱流を抑制する効果を高めることができる。
 (f)反応ガスの供給を停止した直後に供給する不活性ガスの流量を反応ガスの供給時と同じ流量とすることにより、乱流を抑制する効果を高めることができる。
 (g)原料ガスの供給を開始する直前に供給する不活性ガスの流量を、原料ガスの供給時と同じ流量とすることにより、乱流を抑制する効果を高めることができる。
 図6に、本実施形態の実験結果として、反応ガス供給後の残留ガス除去ステップにおいて供給する不活性ガスの供給流量を変動して得られた結果を示す。ウエハ200の中央部からの距離(Distance from Wafer center)に対するウエハ200の中央部との膜厚比(Thickness Ratio)であって、ウエハ200の中央部との膜厚比は、ウエハ200の中央部の値を100%として換算した補正値である。図6より、不活性ガスの供給流量が少なくなるほど、面内膜厚分布は凸形状へと変動することがわかる。
<他の実施形態> 
 以上、実施形態の例を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 なお、上述の実施形態では、不活性ガスとしてNガスを例示したが、不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
 また例えば、上述の実施形態では、基板上に形成する膜としてTi元素を用いたTiO膜を例示したが、TiO膜の他、例えば、Ti以外の元素として、タンタル(Ta)、タングステン(W)、コバルト(Co)、イットリウム(Y)、ルテニウム(Ru)、アルミニウム(Al)、ハフニウム(Hf)、ジルコニウム(Zr)、モリブデン(Mo)、シリコン(Si)等の元素を含む酸化膜、窒化膜、炭化膜や、それらの複合膜を形成する場合にも好適に適用可能である。
 上述の元素を含む膜を形成する場合、原料ガスとしては、例えば、TiClの他に、テトラキスジメチルアミノチタン(Ti[N(CH)、五塩化タンタル(TaCl)、ペンタエトキシタンタル(Ta(OC)、六フッ化タングステン(WF)、ビス(ターシャリブチルイミノ)ビス(ターシャリブチルアミノ)タングステン((CNH)W(CN)、)、二塩化コバルト(CoCl)、ビス(エチルシクロペンタジエニル)コバルト(C1418Co)、三塩化イットリウム(YCl)、トリス(ブチルシクロペンタジエニル)イットリウム(Y(CCH(CHCH)、三塩化ルテニウム(RuCl)、ビス(エチルシクロペンタジエニル)ルテニウム(C1418Ru)、三塩化アルミニウム(AlCl)、トリメチルアルミニウム((CHAl)、四塩化ハフニウム(HfCl)、テトラキスエチルメチルアミノハフニウム(Hf[N(CH)CHCH)、四塩化ジルコニウム(ZrCl)、テトラキスエチルメチルアミノジルコニウム(Zr[N(CH)CHCH)、モノシラン(SiH)、ジクロロシラン(SiHCl)、トリスジメチルアミノシラン(SiH[N(CH等のハロゲン化物、有機化合物を含む原料ガスを用いることも可能である。
 反応ガスとしては、例えば、アンモニア(NH)の他に、酸化窒素(NO)、オゾン(O)、酸素(O)、水蒸気(HO)、過酸化水素(H)、O+Hの混合ガス、水蒸気(HOガス)、プロピレン(C)等やこれらをプラズマ励起したもの等を用いることも可能である。
 上述の実施形態では、反応管が1重管構造を有する例について説明した。しかしながら、反応管は、内部反応管(インナーチューブ)と、その外側に設けられた外部反応管(アウターチューブ)とを有する2重管構造を有していてもよい。
 これらの各種薄膜の成膜処理に用いられるプロセスレシピ(成膜処理の処理手順や処理条件等が記載されたプログラム)や、これらの各種薄膜を含む堆積物の除去に用いられるクリーニングレシピ(クリーニング処理の処理手順や処理条件等が記載されたプログラム)や、残留ハロゲン元素の除去に用いられるパージレシピ(パージ処理の処理手順や処理条件等が記載されたプログラム)は、成膜処理やクリーニング処理やパージ処理の内容(形成、或いは、除去する薄膜の膜種、組成比、膜質、膜厚等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、各種処理を開始する際、処理内容に応じて、複数のレシピの中から、適正なレシピを適宜選択することが好ましい。具体的には、処理内容に応じて個別に用意された複数のレシピを、電気通信回線や当該レシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、成膜処理やクリーニング処理やパージ処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて、適正なレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成したり除去したりできるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
 上述のプロセスレシピやクリーニングレシピやパージレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
10 基板処理装置121 コントローラ200 ウエハ201 処理室202 処理炉

Claims (11)

  1.  処理室内の基板に対して、原料ガスと不活性ガスを供給する第1の工程と、
     前記原料ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記原料ガスを除去する第2の工程と、
     前記基板に対して、反応ガスと前記不活性ガスを供給する第3の工程と、
     前記反応ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記反応ガスを除去する第4の工程と、
     を有し、
     前記第4の工程では、前記不活性ガスの流量が、前記第3の工程で供給する前記不活性ガスの流量より少なくなるタイミングを有する半導体装置の製造方法。
  2.  前記第4の工程では、
     少なくとも最初の前記不活性ガスの供給時には、前記不活性ガスを前記第3の工程で供給する前記不活性ガスの流量よりも少ない流量で供給し、少なくとも最後の前記不活性ガスの供給時には、前記不活性ガスを前記第1の工程で供給する前記不活性ガスの流量と同じ流量で供給する請求項1に記載の半導体装置の製造方法。
  3.  前記第1の工程から前記第4の工程を順に複数回行う請求項1又は2に記載の半導体装置の製造方法。
  4.  前記第4の工程では、前記不活性ガスの流量が、前記第1の工程で供給する前記不活性ガスの流量と同じ流量になるタイミングを有する請求項2乃至3のいずれか一項に記載の半導体装置の製造方法。
  5.  前記第4の工程では、前記不活性ガスの供給と真空排気を交互に複数回行う請求項1に記載の半導体装置の製造方法。
  6.  前記第4の工程では、前記不活性ガスの供給と真空排気を交互に複数回行う際、少なくとも最初の前記不活性ガスの供給時には、前記不活性ガスを、前記第3の工程で供給する前記不活性ガスの流量より少ない流量で供給し、少なくとも最後の前記不活性ガスの供給時には、前記不活性ガスを、前記第1の工程で供給する前記不活性ガスの流量と同じ流量で供給する請求項5に記載の半導体装置の製造方法。
  7.  前記第4の工程では、前記不活性ガスを、前記第3の工程で供給する前記不活性ガスの流量より少ない流量で連続して供給する請求項1に記載の半導体装置の製造方法。
  8.  前記第2の工程では、前記不活性ガスの流量が、前記第1の工程で供給する前記不活性ガスの流量より多くなるタイミングを有する請求項1に記載の半導体装置の製造方法。
  9.  前記第2の工程では、前記不活性ガスの供給と真空排気を交互に複数回行う請求項1に記載の半導体装置の製造方法。
  10.  基板を収容する処理室と、
     前記処理室に、原料ガス、反応ガス、不活性ガスを供給するガス供給系と、
     前記処理室に収容された基板に対して、前記原料ガスと前記不活性ガスを供給する第1の処理と、前記原料ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記原料ガスを除去する第2の処理と、前記基板に対して、前記反応ガスと前記不活性ガスを供給する第3の処理と、前記反応ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記反応ガスを除去する第4の処理と、を行わせ、前記第4の処理において、前記不活性ガスの流量が、前記第3の工程で供給する前記不活性ガスの流量より少なくなるタイミングを有するように、前記ガス供給系を制御するよう構成される制御部と、
     を有する基板処理装置。
  11.  基板処理装置の処理室内の基板に対して、原料ガスと不活性ガスを供給する第1の手順と、
     前記原料ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記原料ガスを除去する第2の手順と、
     前記基板に対して、反応ガスと前記不活性ガスを供給する第3の手順と、
     前記反応ガスの供給を止めた状態で、前記基板に対して前記不活性ガスを供給して、前記処理室内に残留する前記反応ガスを除去する第4の手順と、
     前記第4の手順において、前記不活性ガスの流量が、前記第3の手順で供給する前記不活性ガスの流量より少なくなるタイミングを有するようにならしめる手順と、をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2019/009380 2018-03-30 2019-03-08 半導体装置の製造方法、基板処理装置およびプログラム WO2019188128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020509796A JP7065178B2 (ja) 2018-03-30 2019-03-08 半導体装置の製造方法、基板処理装置およびプログラム
KR1020207026032A KR102536220B1 (ko) 2018-03-30 2019-03-08 반도체 장치의 제조 방법, 기판 처리 장치 및 기록매체
CN201980020201.9A CN111868300A (zh) 2018-03-30 2019-03-08 半导体装置的制造方法、基板处理装置和程序
US17/015,637 US20200411330A1 (en) 2018-03-30 2020-09-09 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067696 2018-03-30
JP2018-067696 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/015,637 Continuation US20200411330A1 (en) 2018-03-30 2020-09-09 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2019188128A1 true WO2019188128A1 (ja) 2019-10-03

Family

ID=68059910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009380 WO2019188128A1 (ja) 2018-03-30 2019-03-08 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (5)

Country Link
US (1) US20200411330A1 (ja)
JP (1) JP7065178B2 (ja)
KR (1) KR102536220B1 (ja)
CN (1) CN111868300A (ja)
WO (1) WO2019188128A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770264B (zh) * 2023-08-21 2023-11-14 合肥晶合集成电路股份有限公司 半导体器件的加工方法、装置、处理器和半导体加工设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101622A1 (en) * 2002-11-20 2004-05-27 Park Young Hoon Method of depositing thin film using aluminum oxide
JP2007046134A (ja) * 2005-08-11 2007-02-22 Tokyo Electron Ltd 金属系膜形成方法及びプログラムを記録した記録媒体
JP2016072587A (ja) * 2014-10-02 2016-05-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2017152672A (ja) * 2016-02-25 2017-08-31 東京エレクトロン株式会社 成膜方法及び成膜システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091850A (ja) * 2002-08-30 2004-03-25 Tokyo Electron Ltd 処理装置及び処理方法
JP5774822B2 (ja) 2009-05-25 2015-09-09 株式会社日立国際電気 半導体デバイスの製造方法及び基板処理装置
US9396930B2 (en) * 2013-12-27 2016-07-19 Hitachi Kokusai Electric Inc. Substrate processing apparatus
CN107112235B (zh) * 2015-01-07 2020-11-20 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
JP6905634B2 (ja) * 2018-02-23 2021-07-21 株式会社Kokusai Electric クリーニング方法、半導体装置の製造方法、基板処理装置、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101622A1 (en) * 2002-11-20 2004-05-27 Park Young Hoon Method of depositing thin film using aluminum oxide
JP2007046134A (ja) * 2005-08-11 2007-02-22 Tokyo Electron Ltd 金属系膜形成方法及びプログラムを記録した記録媒体
JP2016072587A (ja) * 2014-10-02 2016-05-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2017152672A (ja) * 2016-02-25 2017-08-31 東京エレクトロン株式会社 成膜方法及び成膜システム

Also Published As

Publication number Publication date
JPWO2019188128A1 (ja) 2021-03-11
KR102536220B1 (ko) 2023-05-26
KR20200117027A (ko) 2020-10-13
US20200411330A1 (en) 2020-12-31
JP7065178B2 (ja) 2022-05-11
CN111868300A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
JP6023854B1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6568508B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US10388512B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11591694B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
JP2016058676A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US11201054B2 (en) Method of manufacturing semiconductor device having higher exhaust pipe temperature and non-transitory computer-readable recording medium
JP7064577B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
CN107924829B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2022124047A (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび基板処理方法
JP7324740B2 (ja) 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
JP7175375B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム。
JP7273168B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
US20230037898A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, recording medium, and method of processing substrate
JP2020077890A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR20240034774A (ko) 코팅 방법, 처리 장치, 프로그램, 기판 처리 방법 및 반도체 장치의 제조 방법
JP2022127250A (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび基板処理方法
JP2019195106A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509796

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20207026032

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774463

Country of ref document: EP

Kind code of ref document: A1