CN111663116A - 基板处理装置、半导体器件的制造方法和存储介质 - Google Patents

基板处理装置、半导体器件的制造方法和存储介质 Download PDF

Info

Publication number
CN111663116A
CN111663116A CN202010081220.7A CN202010081220A CN111663116A CN 111663116 A CN111663116 A CN 111663116A CN 202010081220 A CN202010081220 A CN 202010081220A CN 111663116 A CN111663116 A CN 111663116A
Authority
CN
China
Prior art keywords
film thickness
processing chamber
substrate
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010081220.7A
Other languages
English (en)
Inventor
加我友纪直
西浦进
杉下雅士
西田政哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Publication of CN111663116A publication Critical patent/CN111663116A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput

Abstract

本发明提供能够使形成在基板上的膜厚在批处理之间均等的技术。基板处理装置构成为具备:处理室,其容纳基板;加热部,其对处理室内进行加热;控制部,其进行控制以使得能够根据所设定的工艺参数而在基板上形成膜;计算部,其计算附着在处理室内的膜厚;存储部,其存储由计算部计算出的膜厚的累计值作为累计膜厚,控制部能够根据存储在存储部中的累计膜厚来决定工艺参数的温度以外的设定值。

Description

基板处理装置、半导体器件的制造方法和存储介质
技术领域
本发明涉及基板处理装置、半导体器件的制造方法和存储介质。
背景技术
通过加热装置对反应炉内进行加热控制而在基板上形成膜(例如参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2003-109906号公报
发明要解决的问题
在上述那样的反应炉内,随着进行基板处理的批处理次数增加,在反应炉内的内壁面、设置在反应炉内的温度检测器等上也附着膜并累积。由于该附着并累积在反应炉内的膜,即使按照相同的设定值进行批处理,形成的膜的膜厚也有时在批处理之间不同。
发明内容
本发明的目的在于:提供能够使形成在基板上的膜厚在批处理之间均等的技术。
解决方案
根据本发明的一个实施例,提供以下的技术,其构成为具备:
处理室,其容纳基板;
加热部,其对处理室内进行加热;
控制部,其进行控制以使得能够根据所设定的工艺参数而在基板上形成膜;
计算部,其计算附着在处理室内的膜厚;
存储部,其存储由计算部计算出的膜厚的累计值作为累计膜厚,
控制部能够根据存储在存储部中的累计膜厚来决定工艺参数的温度以外的设定值。
发明效果
根据本发明,能够使形成在基板上的膜厚在批处理之间均等。
附图说明
图1是表示本发明的一个实施方式的基板处理装置的纵式处理炉的概要的纵向剖视图。
图2是图1的A-A线的概要横向剖视图。
图3是本发明的一个实施方式的基板处理装置的控制器的概要结构图,且是用框图表示控制器的控制系统的图。
图4是本发明的一实施方式的基板处理装置的动作的流程图。
图5是表示比较例的处理室内累计膜厚与每个批处理的形成在基板上的膜的膜厚之间的关系的图。
图6是表示存储在存储装置中的数据的一个例子的图。
图7是表示存储在存储装置中的数据的一个例子的图。
图8是与比较例比较地表示本发明的一个实施方式的处理室内累计膜厚与每个批处理的形成在基板上的膜的膜厚之间的关系的图。
图9是表示第二实施方式的基板处理装置的动作的流程图。
附图标记说明:
10:基板处理装置;121:控制器;200:晶圆(基板);201:处理室。
具体实施方式
<本发明的一个实施方式>
以下,说明本发明的一个实施方式。作为在半导体器件的制造工序中使用的装置的一个例子,而构成基板处理装置10。
(1)基板处理装置的结构
基板处理装置10具备设置有作为加热部(加热单元、加热机构、加热系统)的加热器207的处理炉202。加热器207是圆筒形状,通过被作为保持板的加热器基座(未图示)支承而被垂直地安装。
在加热器207的内侧,配设有成为与加热器207同心圆状地构成反应器(处理容器)的反应管即外管203。外管203例如由石英(SiO2)、碳化硅(SiC)等耐热性材料构成,形成为上端闭塞而下端开口的圆筒形状。在外管203的下方,成为与外管203同心圆状地配置有歧管(入口法兰)209。歧管209例如由不锈钢(SUS)等金属构成,形成为上端和下端开口的圆筒形状。在歧管209的上端部和外管203之间,设置有作为密封构件的O型圈220a。歧管209被加热器基座支承,由此外管203成为被垂直安装的状态。
在外管203的内侧,配设有构成反应容器的内管204。内管204例如由石英(SiO2)、碳化硅(SiC)等耐热性材料构成,形成为上端闭塞而下端开口的圆筒形状。主要由外管203、内管204、歧管209构成处理容器(反应容器)。在处理容器的筒中空部(内管204的内侧)形成有处理室201。
处理室201构成为能够通过后述的舟皿217在水平姿势下在铅垂方向上多段地排列的状态下容纳作为基板的晶圆200。另外,通过加热器207对处理室201内进行加热。
在处理室201内,喷嘴410、420以贯穿歧管209的侧壁和内管204的方式设置。喷嘴410、420分别连接有作为气体供给线的气体供给管310、320。这样,构成为在基板处理装置10中设置有2个喷嘴410、420、2个气体供给管310、320,以便能够向处理室201内供给多种气体。但是,本实施方式的处理炉202并不限于上述形式。
在气体供给管310、320,分别从上游侧起依次设置有作为流量控制器(流量控制部)的质量流控制器(MFC)312、322。另外,在气体供给管310、320分别设置有作为开闭阀的阀314、324。在气体供给管310、320的阀314、324的下游侧,分别连接有供给惰性气体的气体供给管510、520。在气体供给管510、520,分别从上游侧起依次设置有作为流量控制器(流量控制部)的MFC512、522、以及作为开闭阀的阀514、524。
在气体供给管310、320的前端部,分别联结连接有喷嘴410、420。喷嘴410、420构成为L字形的喷嘴,其水平部被设置成贯穿歧管209的侧壁和内管204。喷嘴410、420的垂直部朝向内管204的径向外侧地突出,并且被设置在形成为在铅垂方向上延伸的沟槽形状(沟形状)的预备室201a的内部,在预备室201a内沿着内管204的内壁向上方(晶圆200的排列方向上方)设置。
喷嘴410、420被设置成从处理室201的下部区域延伸到处理室201的上部区域,在与晶圆200相对的位置分别设置有多个气体供给孔410a、420a。由此,从喷嘴410、420的气体供给孔410a、420a分别向晶圆200供给处理气体。该气体供给孔410a、420a从内管204的下部到上部地设置有多个,分别具有相同的开口面积,进而以相同的开口间距设置。但是,气体供给孔410a、420a并不限于上述形式。例如,也可以是从内管204的下部到上部逐渐增大开口面积。由此,能够使从气体供给孔410a、420a供给的气体的流量更均等。
喷嘴410、420的气体供给孔410a、420a在后述的舟皿217的从下部到上部的高度位置上设置有多个。因此,从喷嘴410、420的气体供给孔410a、420a供给到处理室201内的处理气体被供给到从舟皿217的下部到上部所容纳的晶圆200即容纳在舟皿217中的晶圆200的全部区域。将喷嘴410、420设置成从处理室201的下部区域延伸到上部区域即可,但理想的是设置成延伸到舟皿217的顶部附近。
作为处理气体,从气体供给管310经由MFC312、阀314、喷嘴410向处理室201内供给包含金属元素的原料气体(含有金属气体、原料气体)。作为原料,例如包含作为金属元素的钛(Ti),使用作为卤素系材料(卤化物,也被称为卤素系钛原料)的四氯化钛(TiCl4)。
作为处理气体,从气体供给管320经由MFC322、阀324、喷嘴420向处理室201内供给反应气体。作为反应气体,例如能够使用作为包含氮(N)的含有N气体的例如氨(NH3)气。NH3作为氮化/还原剂(氮化/还原气体)而发挥作用。
作为惰性气体,从气体供给管510、520分别经由MFC512、522、阀514、524、喷嘴410、420向处理室201内供给例如氮(N2)气。此外,以下说明使用N2气体作为惰性气体的例子,但作为惰性气体,除了N2气体以外,也可以使用氩(Ar)气、氦(He)气、氖(Ne)气、氙(Xe)等稀有气体。
主要由气体供给管310、320、MFC312、322、阀314、324、喷嘴410、420构成处理气体供给系统,但也可以只将喷嘴410、420考虑为处理气体供给系统。也可以将处理气体供给系统简单地称为气体供给系统。在从气体供给管310流过原料气体的情况下,主要由气体供给管310、MFC312、阀314构成原料气体供给系统,但也可以考虑在原料气体供给系统中包含喷嘴410。另外,也可以将原料气体供给系统称为原料供给系统。在使用含有金属气体作为原料气体的情况下,也可以将原料气体供给系统称为含有金属原料气体供给系统。在从气体供给管320流通反应气体的情况下,主要由气体供给管320、MFC322、阀324构成反应气体供给系统,但也可以考虑在反应气体供给系统中包含喷嘴420。在从气体供给管320供给含氮气体作为反应气体的情况下,也可以将反应气体供给系统称为含氮气体供给系统。另外,主要由气体供给管510、520、MFC512、522、阀514、524构成惰性气体供给系统。也可以将惰性气体供给系统称为吹扫气体供给系统、稀释气体供给系统、或载体气体供给系统。
本实施方式的气体供给的方法经由在由内管204的内壁和多个晶圆200的端部定义的圆环状的纵长的空间内、即圆筒状的空间内的预备室201a内配置的喷嘴410、420而输送气体。另外,从在喷嘴410、420的与晶圆相对的位置设置的多个气体供给孔410a、420a向内管204内喷出气体。更详细地说,通过喷嘴410的气体供给孔410a和喷嘴420的气体供给孔420a,朝向与晶圆200的表面平行的方向即水平方向喷出原料气体等。
排气孔(排气口)204a是在内管204的侧壁上且与喷嘴410、420相对的位置即与预备室201a相反180度的一侧的位置形成的贯通孔,例如是在铅垂方向上开设得细长的狭缝状的贯通孔。因此,从喷嘴410、420的气体供给孔410a、420a供给到处理室201内并在晶圆200的表面上流过了的气体即残留的气体(残留气体),经由排气孔204a而流到由形成在内管204与外管203之间的间隙构成的排气路206内。然后,流到排气路206内的气体流过排气管231内,并排出到处理炉202外。
排气孔204a被设置在与多个晶圆200相对的位置(理想的是与舟皿217的从上部到下部相对的位置),从气体供给孔410a、420a供给到处理室201内的晶圆200的近旁的气体在朝向水平方向即与晶圆200的表面平行的方向流动后,经由排气孔204a流到排气路206内。即,残留在处理室201中的气体经由排气孔204a而与晶圆200的主面平行地被排气。此外,排气孔204a不限于构成为狭缝状的贯通孔的情况,也可以由多个孔构成。
在歧管209设置有对处理室201内的环境气进行排气的排气管231。在排气管231上,从上游侧起依次连接有检测处理室201内的压力的作为压力检测器(压力检测部)的压力传感器245、APC(自动压力控制器)阀243、作为真空排气装置的真空泵246。APC阀243在使真空泵246工作的状态下开闭阀,由此能够进行处理室201内的真空排气和真空排气停止,进而在使真空泵246工作的状态下调节阀开度,由此能够调整处理室201内的压力。主要由排气孔204a、排气路206、排气管231、APC阀243、以及压力传感器245构成排气系统即排气线。此外,也可以考虑在排气系统中包含真空泵246。
在歧管209的下方,设置有能够气密地闭塞歧管209的下端开口的作为炉口盖体的密封盖219。密封盖219构成为从铅垂方向的下侧与歧管209的下端对接。密封盖219例如由SUS等金属构成,形成为圆盘状。在密封盖219的上面,设置有作为与歧管209的下端对接的密封构件的O型圈220b。在密封盖219的与处理室201相反的一侧,设置有使容纳晶圆200的舟皿217旋转的旋转机构267。旋转机构267的旋转轴255贯穿密封盖219地与舟皿217连接。旋转机构267构成为通过使舟皿217旋转而使晶圆200旋转。密封盖219构成为通过垂直地设置在外管203的外部的作为升降机构的舟皿升降机115在铅垂方向上升降。舟皿升降机115构成为能够通过使密封盖219升降而向处理室201内外运入和运出舟皿217。舟皿升降机115构成为向处理室201内外运送舟皿217和容纳在舟皿217中的晶圆200的运送装置(运送机构)。
作为基板支承件的舟皿217构成为隔开间隔地排列,以使得多个例如25~200个晶圆200在水平姿势下且在相互对其中心的状态下在铅垂方向上排列,从而多段地支承该多个晶圆200。舟皿217例如由石英、SiC等耐热性材料构成。在舟皿217的下部,例如由石英、SiC等耐热性材料构成的隔热板218在水平姿势下被多段(未图示)地支承。通过该结构,来自加热器207的热量难以传导到密封盖219侧。但是,本实施方式并不限于上述形式。例如,也可以在舟皿217的下部不设置隔热板218,而设置由石英、SiC等耐热性材料构成的筒状构件的隔热筒。
如图2所示,构成为在内管204内设置有作为温度检测器的温度传感器263,根据通过温度传感器263检测出的温度信息来调整向加热器207的通电量,由此使处理室201内的温度成为希望的温度分布。温度传感器263与喷嘴410、420同样地构成为L字形,并沿着内管204的内壁设置。
如图3所示,作为控制部(控制单元)的控制器121构成为具备作为运算部(计算部)的CPU(中央处理单元)121a、RAM(随机存取存储器)121b、作为存储部的存储装置121c、以及I/O端口121d的计算机。RAM121b、存储装置121c、I/O端口121d构成为能够经由内部总线与CPU121a进行数据交换。控制器121例如连接有构成为触摸屏等的输入输出装置122。
存储装置121c例如由快闪存储器、HDD(硬盘驱动器)等构成。在存储装置121c内,可读出地存储有控制基板处理装置的动作的控制程序、记载了后述的半导体器件的制造方法的步骤、条件等的工艺制法等。工艺制法被组合得能够使控制器121执行后述的半导体器件的制造方法的各工序(各步骤)而得到预定的结果,其作为程序而发挥功能。以下,也将工艺制法、控制程序等简单地统称为程序。在本说明书中使用程序这样的词语的情况有只包含工艺制法单体的情况、只包含控制程序单体的情况、或包含工艺制法和控制程序的组合的情况。RAM121b构成为临时地保存由CPU121a读出的程序、数据等的存储区域(工作区)。
I/O端口121d与上述的MFC312、322、512、522、阀314、324、514、524、压力传感器245、APC阀243、真空泵246、加热器207、温度传感器263、旋转机构267、舟皿升降机115等连接。
CPU121a构成为从存储装置121c读出控制程序并执行,并且与从输入输出装置122的操作指令的输入等对应地,从存储装置121c读出制法等。CPU121a构成为按照读出的制法的内容,控制MFC312、322、512、522对各种气体的流量调整动作、阀314、324、514、524的开闭动作、APC阀243的开闭动作和APC阀243基于压力传感器245进行的压力调整动作、真空泵246的启动和停止、旋转机构267对舟皿217的旋转和转速调节动作、舟皿升降机115对舟皿217的升降动作、晶圆200向舟皿217的容纳动作等。另外,构成为能够进行后述的膜厚、膜厚的累计值(累计膜厚)的计算、用于决定与处理室内累计膜厚对应的工艺参数的计算公式的运算。
可以通过将存储在外部存储装置(例如磁带、软盘、硬盘等磁盘、CD、DVD等光盘、MO等光磁盘、USB存储器、存储卡等半导体存储器)123中的上述程序安装到计算机中,由此来构成控制器121。存储装置121c、外部存储装置123构成为计算机可读的记录介质。以下,将它们简单地统称为记录介质。在本说明书中,记录介质有只包含存储装置121c单体的情况、只包含外部存储装置123单体的情况、或包含其双方的情况。此外,也可以不使用外部存储装置123,而使用因特网、专用线路等通信手段,向计算机提供程序。
(2)基板处理工序(成膜工序)
使用图4说明作为半导体器件(device)的制造工序的一个工序而在晶圆200上形成例如构成栅电极的金属膜的工序的一个例子。使用上述的基板处理装置10的处理炉202,执行形成金属膜的工序。在以下的说明中,通过控制器121控制构成基板处理装置10的各部分的动作。另外,图4所示的一系列的处理是一个批处理。
在本说明书中使用“晶圆”这样的词语的情况有表示“晶圆自身”的情况、表示“晶圆与形成在其表面的预定的层、膜等的层叠体(集合体)”的情况(即包含形成在表面的预定的层、膜等地称为晶圆的情况)。另外,在本说明书中使用“晶圆的表面”这样的词语的情况有表示“晶圆自身的表面(露出面)”的情况、表示“形成在晶圆上的预定的层、膜等的表面、即作为层叠体的晶圆的最表面”的情况。此外,在本说明书中使用“基板”这样的词语的情况也与使用“晶圆”这样的词语的情况同义。
(晶圆运入)
当将多个晶圆200装填(wafer charge)到舟皿217时,如图1所示,支承有多个晶圆200的舟皿217被舟皿升降机115抬升而被运入处理室201内(舟皿装载)。在该状态下,密封盖219成为借助O型圈220而闭塞外管203的下端开口的状态。
(压力调整和温度调整)
通过真空泵246进行真空排气,使得处理室201内成为希望的压力(真空度)。这时,通过压力传感器245测定处理室201内的压力,根据该测定出的压力信息,对APC阀243进行反馈控制(压力调整)。真空泵246在至少到对晶圆200的处理完成为止的期间,维持始终工作的状态。另外,通过加热器207进行加热,使得处理室201内成为希望的温度。这时,根据温度传感器263检测出的温度信息,对向加热器207的通电量进行反馈控制(温度调整),使得处理室201内成为希望的温度分布。在至少到对晶圆200的处理完成为止的期间,持续进行加热器207对处理室201内的加热。
[TiN膜形成工序]
接着,执行作为金属膜而形成例如作为金属氮化膜的TiN膜的步骤。
(TiCl4气体供给步骤S10)
打开阀314,使作为原料气体的TiCl4气体流到气体供给管310内。通过MFC312对TiCl4气体进行流量调整,TiCl4气体从喷嘴410的气体供给孔410a向处理室201内供给,并从排气管231排气。这时,向晶圆200供给了TiCl4气体。这时,同时打开阀514,使N2气体等惰性气体流到气体供给管510内。通过MFC512对在气体供给管510内流通的N2气体进行流量调整,在气体供给管510内流通的N2气体与TiCl4气体一起供给到处理室201内,并从排气管231排气。此外,这时为了防止TiCl4气体向喷嘴420内侵入,打开阀524,使N2气体流到气体供给管520内。N2气体经由气体供给管320、喷嘴420供给到处理室201内,从排气管231排气。
这时,调整APC阀243,将处理室201内的压力例如设为0.1~6650Pa的范围内的压力。通过MFC312控制的TiCl4气体的供给流量例如为0.1~2slm的范围内的流量。通过MFC512、522控制的N2气体的供给流量分别例如为0.1~30slm的范围内的流量。向晶圆200供给TiCl4气体的时间例如为0.01~20秒的范围内的时间。这时,将加热器207的温度设定为晶圆200的温度例如成为250~550℃的范围内的温度那样的温度。
流到处理室201内的气体只是TiCl4气体和N2气体,通过供给TiCl4气体气体,在晶圆200(表面的基底膜)上形成例如不满1原子层到数原子层左右的厚度的含Ti层。含Ti层既可以是包含Cl的Ti层,也可以是TiCl4的吸附层,还可以包含它们的双方。在此,不满1原子层的厚度的层是指不连续地形成的原子层,1原子层的厚度的层是指连续地形成的原子层。该点对于后述的例子也同样。
(残留气体去除步骤S11)
在形成含Ti层后,关闭阀314,停止TiCl4气体的供给。这时,排气管231的APC阀243保持打开,通过真空泵246对处理室201内进行真空排气,从处理室201内排除残留在处理室201内的未反应或对含Ti层的形成起作用后的TiCl4气体。这时,阀514、524保持打开,维持N2气体向处理室201内的供给。N2气体作为吹扫气体起作用,能够提高从处理室201内排除残留在处理室201内的未反应或对含Ti层的形成起作用后的TiCl4气体的效果。
(NH3气体供给步骤S12)
在去除处理室201内的残留气体后,打开阀324,使作为含氮气体的NH3气体作为反应气体流到气体供给管320内。通过MFC322对NH3气体进行流量调整,NH3气体从喷嘴420的气体供给孔420a供给到处理室201内,并从排气管231排气。这时,向晶圆200供给了NH3气体。这时,同时打开阀524,使N2气体流到气体供给管520内。通过MFC522对流到气体供给管520内的N2气体进行流量调整。N2气体与NH3气体一起供给到处理室201内,并从排气管231排气。这时,为了防止NH3气体向喷嘴410内侵入,打开阀514,使N2气体流到气体供给管510内。N2气体经由气体供给管310、喷嘴410供给到处理室201内,并从排气管231排气。
在使NH3气体流过时,调整APC阀243,将处理室201内的压力例如设为0.1~6650Pa的范围内的压力。通过MFC322控制的NH3气体的供给流量例如为0.1~20slm的范围内的流量。通过MFC512、522控制的N2气体的供给流量分别例如为0.1~30slm的范围内的流量。向晶圆200供给NH3气体的时间例如为0.01~30秒的范围内的时间。将这时的加热器207的温度设定为与TiCl4气体供给步骤同样的温度。
这时,流到处理室201内的气体只是NH3气体和N2气体。NH3气体与在TiCl4气体供给步骤中形成在晶圆200上的含Ti层的至少一部分进行置换反应。在置换反应时,含Ti层包含的Ti与NH3气体包含的N结合,在晶圆200上形成含有Ti和N的TiN层。
(残留气体去除步骤S13)
在形成TiN层后,关闭阀324,停止NH3气体的供给。然后,通过与步骤S11同样的处理步骤,从处理室201内排除残留在处理室201内的未反应或对TiN层的形成起作用后的NH3气体。
(实施预定次数)
将顺序地进行上述步骤S10~步骤S13的周期进行一次以上(预定次数(n次)),由此在晶圆200上形成预定厚度(例如0.1~2nm)的TiN膜。理想的是多次例如200次左右地重复进行上述周期。在此,将如上述周期那样重复进行了一个周期的次数作为周期数。
(后吹扫和大气压复原)
从气体供给管510、520分别向处理室201内供给N2气体,并从排气管231排气。N2气体作为吹扫气体起作用,由此,通过惰性气体吹扫处理室201内,从处理室201内去除残留在处理室201内的气体、副生成物(后吹扫)。然后,将处理室201内的环境气置换为惰性气体(惰性气体置换),使处理室201内的压力复原为常压(大气压复原)。
(晶圆运出)
然后,通过舟皿升降机115使密封盖219下降,外管203的下端开口。另外,在被舟皿217支承的状态下将处理后的晶圆200从外管203的下端运出到外管203的外部(舟皿卸载)。然后,从舟皿217取出处理后的晶圆200(waferdischarge)。
(3)控制器121的参数控制
接着,说明本实施方式的控制器121的参数控制。
图5是作为比较例表示将成膜温度、周期数等工艺参数设为恒定而进行多次批处理的情况下的附着累积在处理室201内的累计膜厚(以下记载为处理室内累计膜厚)与在每一个批处理中形成在晶圆200上的TiN膜的膜厚之间的关系的图。在此,处理室内累计膜厚是每次批处理的形成在晶圆200上的膜的膜厚的累计值。
具体地说,如图5所示,如果在处理室201内,使用预先形成了10nm的涂层膜的反应容器,将一个批处理的周期数设为200周期,进行形成5nm的TiN膜那样的周期,则在第一次~第六次的批处理的处理室内累计膜厚为35nm以下的处理室内累计膜厚薄的时期中,在每次批处理次数增加时(每次处理室内累计膜厚增大时),形成在晶圆200上的TiN膜的膜厚增大(膜厚上升期)。这是因为:TiN膜向作为处理室201内的内管204的内壁面、温度传感器263等附着,由于附着的TiN膜的累计膜厚的增大,从加热器207的辐射热的透过率减少,由此向处理室201内的温度传感器263的能量传导变慢,其结果是温度超调量变化,会使下一次批处理开始时的温度增加。
对于产生的温度超调,在将温度稳定时间设定得充分长的制法中能够允许其影响,但在重视生产性而将温度稳定时间设定得短的制法中,会引起批处理之间的膜厚变化。
另外,如图5所示,如果第七次以后的批处理的处理室内累计膜厚变得比40nm厚,达到某恒定的膜厚,则形成在晶圆200上的TiN膜的膜厚在每次批处理增加时不增大而稳定(膜厚稳定期)。这是因为:处理室内累计膜厚达到某恒定的膜厚,由此从加热器207的辐射热的透过率不依存于处理室内累计膜厚而成为恒定,温度超调量不变化而成为恒定。即,处理室内累计膜厚达到某恒定的膜厚,由此形成在晶圆上的膜的膜厚也稳定。
在此,也可以在干洗等维护后,在开始批处理之前,在处理室201内形成充分膜厚的涂层膜,但在如TiN膜那样成膜速度慢的处理中,形成充分膜厚的涂层膜需要时间,因此装置的停机时间为长时间。另外,在形成了充分膜厚的涂层膜的情况下,到干洗等维护极限膜厚为止的期间变短,生产有效时间变短。即,显著地损害了生产性,因此是不现实的。
因此,在本实施方式中,在某批处理开始时(运行开始时),与该批处理开始时刻的处理室内累计膜厚对应地决定周期数等工艺参数,使用所决定的工艺参数执行该批处理。
具体地说,顺序地将每次批处理时的形成在晶圆上的膜的膜厚相加而计算出处理室内累计膜厚。然后,将相加计算出的膜厚的累计值作为处理室内累计膜厚存储到存储装置121c中。
具体地说,如果在处理室201内,使用预先形成了10nm的涂层膜的反应容器,将一个批处理的周期数设为200周期,进行形成5nm的TiN膜那样的周期,则如第一次批处理的处理室内累计膜厚为10nm、第二次批处理的处理室内累计膜厚为15nm、第三次批处理的处理室内累计膜厚为20nm等那样,CPU121a计算出在每次批处理时形成的膜厚的累计值,将计算出的累计值作为处理室内累计膜厚存储到存储装置121c中。
另外,在存储装置121c中预先存储有例如图6所示那样的每个工艺制法的周期数的修正表。即,对每个工艺制法,将作为与处理室内累计膜厚对应地决定的工艺参数的一个例子的周期数存储在存储装置121c中。
如本实施方式那样,在形成处理室内累计膜厚越增大则形成在晶圆200上的膜的膜厚越增大的膜种的情况下,使用图6所示那样的处理室内累计膜厚越增大则越是减少周期数那样的修正表。另外,也可以代替修正表,而对每个工艺制法,将用于决定与处理室内累计膜厚对应的工艺参数的计算公式存储在存储装置121c中。即,与工艺制法的形成在晶圆200上的设定膜厚对应地决定周期数,与处理室内累计膜厚对应地变更周期数。此外,也可以与气体供给时间对应地决定周期数。
另外,在存储装置121c中预先存储有例如图7所示那样的每个工艺制法的成膜速率的修正表。即,对每个工艺制法,将与处理温度对应的成膜速率存储在存储装置121c中。即,与工艺制法对应地,决定与处理温度对应的成膜速率,决定每一个周期的膜厚。
具体地说,如果例如将处理温度不满380℃的TiN膜的成膜速率设为0.025nm/周期,则通过重复进行200周期的一个批处理,而形成5nm的TiN膜。另外,如果将处理温度为380℃以上不满480℃的成膜速率设为0.035nm/周期,则通过重复进行200周期的一个批处理,而形成7nm的TiN膜。另外,如果将480℃以上且不满580℃的成膜速率设为0.045nm/周期,则通过重复进行200周期的一个批处理,而形成9nm的TiN膜。
即,通过将图7所示那样的与处理温度对应的成膜速率存储在存储装置121c中,能够计算处理室内累计膜厚,还能够根据处理室内累计膜厚来变更工艺参数。此外,也有时根据干扰等装置环境而变化±0.05nm、±50℃。
即,控制器121在批处理开始时,使用图6、图7所示那样的预先准备的修正表或计算公式,决定周期数等工艺参数的设定值。
即,控制器121针对每个批处理,根据处理室内累计膜厚来决定工艺参数的设定值。然后,进行控制使得使用根据处理室内累计膜厚而被决定的周期数等工艺参数,在晶圆200上形成TiN膜。
具体地说,在图5所示那样的处理室内累计膜厚薄的区域(膜厚上升期),将周期数设定得多,由此对形成在晶圆上的TiN膜的膜厚进行修正使其在膜厚上升期中也成为与膜厚稳定期相同的膜厚。
即,如图8所示那样,在干洗等维护后的处理室内累计膜厚薄的区域中,将周期数设定得多,并与处理室内累计膜厚的增大对应地减少周期数,由此能够对形成在晶圆上的TiN膜的膜厚进行修正使其形成与膜厚稳定期相同的膜厚。
即,控制器121在批处理开始时,根据该批处理开始时刻的处理室内累计膜厚来决定周期数等工艺参数,使用所决定的工艺参数执行批处理,由此能够使形成在晶圆200上的膜在批处理之间均等。
(4)本实施方式的效果
根据本实施方式,能够得到以下所示的1或多个效果。(a)能够使形成在基板上的膜厚在批处理之间均等。(b)自动地将处理室内累计膜厚相加,对每个累计膜厚自动地切换工艺参数,由此能够缩短处理时间,减少因人为错误造成的不合格生产的风险。
<第二实施方式>
接着,使用图9说明第二实施方式。在第二实施方式中,在上述实施方式的形成在晶圆200上的TiN膜上,作为金属膜例如形成钨(W)膜。在第二实施方式中,设置向上述基板处理装置10的处理室201内供给六氟化钨(WF6)气体的WF6气体供给系统、向处理室201内供给氢(H2)气的H2气体供给系统。另外,如图9所示,在同一处理炉202内,在将顺序地进行上述TiN膜形成工序即步骤S10~步骤S13的周期进行一次以上(预定次数(n次))后,将依次进行W膜形成工序即WF6气体供给(步骤S20)、残留气体去除(步骤S21)、H2气体供给(步骤S22)、残留气体去除(步骤S23)的周期进行一次以上(预定次数(m次)),并将依次进行步骤S10~步骤S13和步骤S20~步骤S23的周期进行一次以上(预定次数(p次))。在本实施方式中,图9所示的一系列处理是一次批处理,在一个批处理中包含TiN膜形成工序、W膜形成工序这2个周期。
在上述第二实施方式中,将TiN膜形成工序和W膜形成工序各自的周期的修正表存储在存储装置121c中。然后,在开始各个周期时,根据处理室内累计膜厚来决定周期数等工艺参数。即,使用TiN膜形成工序的与处理室内累计膜厚对应的周期数等工艺参数、W膜形成工序的与处理室内累计膜厚对应的周期数等工艺参数,执行一个批处理。在本实施方式中,也能够得到与上述实施方式同样的效果。
即,在执行具有多个周期的工艺制法的情况下,与上述实施方式同样地,针对每个周期,分别决定与累计膜厚对应的周期数等工艺参数而执行批处理,由此能够得到与上述实施方式同样的效果。即,在每个周期中进行上述控制器121的参数控制,由此能够得到与上述实施方式同样的效果。
<其他实施方式>
此外,在上述实施方式中,使用根据处理室内累计膜厚来决定每个批处理的工艺参数的例子进行了说明,但并不限于此,本发明也能够应用于使用处理室内累计膜厚以外的其他条件决定每个批处理的工艺参数的情况。具体地说,也能够应用于以下的情况,即将根据每个批处理的晶圆200的个数、晶圆200的表面积来设定周期数的修正表存储在存储装置121c中,使用这些条件,决定每个批处理的工艺参数。
另外,在上述实施方式中,使用处理室内累计膜厚越增大则形成在晶圆200上的膜的膜厚越增大的例子进行了说明,但并不限于此,本发明也能够应用于形成处理室内累计膜厚越增大则形成在晶圆200上的膜的膜厚越减小那样的膜种的情况、形成没有膜厚稳定期那样的膜种的情况、形成在膜厚稳定期后膜厚变化那样的膜种的情况等。具体地说,例如在形成处理室内累计膜厚越增大则形成在晶圆200上的膜的膜厚越减小那样的膜种的情况下,使用与处理室内累计膜厚的增大对应地例如增加周期数那样的修正表决定工艺参数。
另外,在上述实施方式中,使用根据处理室内累计膜厚来变更周期数作为工艺参数的情况进行了说明,但并不限于此,本发明也能够应用于使用根据处理室内累计膜厚来决定气体供给时间、气体供给量、处理室内压力、步骤时间等那样的修正表决定工艺参数的情况。另外,也能够应用于使用根据气体供给时间等来决定周期数那样的修正表决定工艺参数的情况。另外,还能够应用于使用多个修正表对每个批处理决定多个工艺参数的情况。
另外,在上述实施方式中,说明了根据处理室内累计膜厚来决定每个批处理的周期数的例子,但并不限于此,本发明既能够应用于针对TiN膜形成工序、W膜形成工序等的每个预定周期来决定每个批处理的周期数的情况。也能够应用于针对每个膜厚决定的情况。
另外,在上述实施方式中,使用形成TiN膜作为金属膜的情况进行了说明,但并不限于此,本发明也能够应用于形成包含钛(Ti)、钨(W)、铜(Cu)、钌(Ru)等金属元素的金属膜、硅(Si)、锗(Ge)、碳(C)等第14族元素系膜、钛硅(TiSi)、硅锗(SiGe)等金属元素与第14族元素的组合等的膜的情况。
以上,说明了本发明的各种典型实施方式,但本发明并不限于这些实施方式,也能够适当地组合使用。

Claims (18)

1.一种基板处理装置,其特征在于,
上述基板处理装置具备:
处理室,其容纳基板;
加热部,其对上述处理室内进行加热;
控制部,其进行控制以使得能够根据所设定的工艺参数而在上述基板上形成膜;
计算部,其计算附着在上述处理室内的膜厚;以及
存储部,其存储由上述计算部计算出的膜厚的累计值作为累计膜厚,
上述控制部能够根据存储于上述存储部的累计膜厚来决定上述工艺参数的温度以外的设定值。
2.根据权利要求1所述的基板处理装置,其特征在于,
上述控制部能够使用预先准备的表或计算公式,决定与存储于上述存储部的累计膜厚对应的、上述工艺参数的温度以外的设定值。
3.根据权利要求1所述的基板处理装置,其特征在于,
上述控制部能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
4.根据权利要求2所述的基板处理装置,其特征在于,
上述控制部构成为能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
5.根据权利要求1所述的基板处理装置,其特征在于,
上述控制部构成为,上述工艺参数对包含周期数、压力、气体流量、步骤时间中的至少任意一个的数据进行运算。
6.根据权利要求1所述的基板处理装置,其特征在于,
上述工艺参数包含周期数的数据,
上述控制部构成为,进行运算以使得根据在上述基板上成膜的设定膜厚来决定上述周期数。
7.一种半导体器件的制造方法,其特征在于,
上述半导体器件的制造方法包括:
(a)在处理室内容纳基板的工序;
(b)对上述处理室内进行加热的工序;
(c)根据所设定的工艺参数而在上述基板上形成膜的工序;
(d)计算附着在上述处理室内的膜厚的工序;
(e)存储计算出的膜厚的累计值作为累计膜厚的工序;以及
(f)根据所存储的累计膜厚来决定上述工艺参数的温度以外的设定值的工序。
8.根据权利要求7所述的半导体器件的制造方法,其特征在于,
在上述(f)工序中,使用预先准备的表或计算公式,决定与存储于上述存储部的累计膜厚对应的、上述工艺参数的温度以外的设定值。
9.根据权利要求7所述的半导体器件的制造方法,其特征在于,
在上述(f)工序中,能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
10.根据权利要求8所述的半导体器件的制造方法,其特征在于,
在上述(f)工序中,能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
11.根据权利要求7所述的半导体器件的制造方法,其特征在于,
上述工艺参数包含周期数、压力、气体流量、步骤时间中的至少任意一个。
12.根据权利要求7所述的半导体器件的制造方法,其特征在于,
上述工艺参数包含周期数的数据,
在上述(f)工序中,进行运算以使得根据在上述基板上成膜的设定膜厚来决定上述周期数。
13.一种记录介质,其特征在于,
上述记录介质记录有通过计算机使基板处理装置执行以下步骤的程序:
(a)在基板处理装置的处理室内容纳基板的步骤;
(b)对上述处理室内进行加热的步骤;
(c)根据所设定的工艺参数而在上述基板上形成膜的步骤;
(d)计算附着在上述处理室内的膜厚的步骤;
(e)存储计算出的膜厚的累计值作为累计膜厚的步骤;以及
(f)根据所存储的累计膜厚来决定上述工艺参数的温度以外的设定值的步骤。
14.根据权利要求13所述的记录介质,其特征在于,
在上述(f)步骤中,使用预先准备的表或计算公式,决定与存储于上述存储部的累计膜厚对应的、上述工艺参数的温度以外的设定值。
15.根据权利要求13所述的记录介质,其特征在于,
在上述(f)步骤中,能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
16.根据权利要求13所述的记录介质,其特征在于,
在上述(f)步骤中,能够还使用累计膜厚以外的其他条件,决定上述工艺参数的温度以外的设定值。
17.根据权利要求13所述的记录介质,其特征在于,
上述工艺参数包含周期数、压力、气体流量、步骤时间中的至少任意一个。
18.根据权利要求13所述的记录介质,其特征在于,
上述工艺参数包含周期数的数据,
在上述(f)步骤中,进行运算以使得根据在上述基板上成膜的设定膜厚来决定上述周期数。
CN202010081220.7A 2019-03-06 2020-02-06 基板处理装置、半导体器件的制造方法和存储介质 Pending CN111663116A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040422A JP2020143333A (ja) 2019-03-06 2019-03-06 基板処理装置、半導体装置の製造方法及びプログラム
JP2019-040422 2019-03-06

Publications (1)

Publication Number Publication Date
CN111663116A true CN111663116A (zh) 2020-09-15

Family

ID=72353346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010081220.7A Pending CN111663116A (zh) 2019-03-06 2020-02-06 基板处理装置、半导体器件的制造方法和存储介质

Country Status (3)

Country Link
JP (1) JP2020143333A (zh)
KR (1) KR20200107762A (zh)
CN (1) CN111663116A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046723A (zh) * 2021-03-12 2021-06-29 四川大学 中温化学气相沉积氮化钛涂层的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339242A (ja) * 2005-05-31 2006-12-14 Toshiba Corp 半導体装置の製造方法
US20090232967A1 (en) * 2008-03-17 2009-09-17 Tokyo Electron Limited Thermal processing apparatus, method for regulating temperature of thermal processing apparatus, and program
CN101826446A (zh) * 2009-03-04 2010-09-08 东京毅力科创株式会社 成膜装置和成膜方法
JP2014099437A (ja) * 2012-11-13 2014-05-29 Renesas Electronics Corp 半導体装置の製造方法
CN108885969A (zh) * 2016-03-14 2018-11-23 株式会社国际电气 基板处理装置、控制器以及记录介质
US20180350638A1 (en) * 2016-03-31 2018-12-06 Kokusai Electric Corporation Method of Manufacturing Semiconductor Device, Method of Loading Substrate and Non-Transitory Computer-readable Recording Medium
CN109314074A (zh) * 2016-09-29 2019-02-05 株式会社国际电气 基板处理装置、振动检测系统以及程序

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884621B2 (ja) 2001-09-28 2012-02-29 株式会社日立国際電気 半導体製造装置、半導体製造方法、半導体製造装置のメンテナンス方法
JP6584352B2 (ja) * 2016-03-24 2019-10-02 東京エレクトロン株式会社 制御装置、基板処理システム、基板処理方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339242A (ja) * 2005-05-31 2006-12-14 Toshiba Corp 半導体装置の製造方法
US20090232967A1 (en) * 2008-03-17 2009-09-17 Tokyo Electron Limited Thermal processing apparatus, method for regulating temperature of thermal processing apparatus, and program
CN101826446A (zh) * 2009-03-04 2010-09-08 东京毅力科创株式会社 成膜装置和成膜方法
JP2014099437A (ja) * 2012-11-13 2014-05-29 Renesas Electronics Corp 半導体装置の製造方法
CN108885969A (zh) * 2016-03-14 2018-11-23 株式会社国际电气 基板处理装置、控制器以及记录介质
US20180350638A1 (en) * 2016-03-31 2018-12-06 Kokusai Electric Corporation Method of Manufacturing Semiconductor Device, Method of Loading Substrate and Non-Transitory Computer-readable Recording Medium
CN109314074A (zh) * 2016-09-29 2019-02-05 株式会社国际电气 基板处理装置、振动检测系统以及程序

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046723A (zh) * 2021-03-12 2021-06-29 四川大学 中温化学气相沉积氮化钛涂层的装置及方法

Also Published As

Publication number Publication date
JP2020143333A (ja) 2020-09-10
KR20200107762A (ko) 2020-09-16

Similar Documents

Publication Publication Date Title
KR102376835B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
CN109585265B (zh) 半导体器件的制造方法、衬底处理装置、记录介质
CN113206000A (zh) 半导体器件的制造方法、记录介质及衬底处理装置
CN113227450A (zh) 半导体器件的制造方法、衬底处理装置及程序
JP7064577B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
CN111663116A (zh) 基板处理装置、半导体器件的制造方法和存储介质
WO2022064550A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2017212728A1 (ja) 処理方法、半導体装置の製造方法及び基板処理装置
JP7101204B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
JP7065178B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7204889B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2022124047A (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび基板処理方法
JP7387685B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
US20230037898A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, recording medium, and method of processing substrate
JP7273168B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2023042386A1 (ja) 半導体装置の製造方法、基板処理装置、プログラム及びコーティング方法
JP7324740B2 (ja) 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2020188654A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2024047289A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置およびプログラム
KR20230136556A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
JPWO2020188632A1 (ja) 半導体装置の製造方法、基板処理方法、プログラムおよび基板処理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200915

RJ01 Rejection of invention patent application after publication