WO2022059170A1 - 半導体装置の製造方法、記録媒体及び基板処理装置 - Google Patents

半導体装置の製造方法、記録媒体及び基板処理装置 Download PDF

Info

Publication number
WO2022059170A1
WO2022059170A1 PCT/JP2020/035478 JP2020035478W WO2022059170A1 WO 2022059170 A1 WO2022059170 A1 WO 2022059170A1 JP 2020035478 W JP2020035478 W JP 2020035478W WO 2022059170 A1 WO2022059170 A1 WO 2022059170A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reducing gas
substrate
semiconductor device
supply
Prior art date
Application number
PCT/JP2020/035478
Other languages
English (en)
French (fr)
Inventor
有人 小川
幸永 栗林
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN202080104617.1A priority Critical patent/CN116134173A/zh
Priority to KR1020237008560A priority patent/KR20230044317A/ko
Priority to JP2022550292A priority patent/JPWO2022059170A1/ja
Priority to PCT/JP2020/035478 priority patent/WO2022059170A1/ja
Priority to TW110131783A priority patent/TW202217964A/zh
Publication of WO2022059170A1 publication Critical patent/WO2022059170A1/ja
Priority to US18/184,390 priority patent/US20230268181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device, a recording medium, and a substrate processing device.
  • a low resistance tungsten (W) film is used as a word line of a NAND flash memory or DRAM having a three-dimensional structure.
  • a titanium nitride (TiN) film may be used as a barrier film between the W film and the insulating film (see, for example, Patent Document 1 and Patent Document 2).
  • the present disclosure aims to provide a technique capable of improving at least one of the electrical characteristics and the throughput of a metal-containing film.
  • A The process of accommodating the substrate in the processing container and (B) A step of supplying the metal-containing gas to the substrate and (C) A step of supplying the first reducing gas to the substrate and (D) A step of supplying a second reducing gas different from the first reducing gas to the substrate.
  • At least one of the electrical characteristics and the throughput of the metal-containing film can be improved.
  • FIG. 1 is a schematic cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this disclosure, and is the figure which shows the control system of the controller by the block diagram.
  • It is a figure which shows the substrate processing process in one Embodiment of this disclosure.
  • It is a figure which shows the modification of the substrate processing process in one Embodiment of this disclosure.
  • FIGS. 7 (A) and 7 (B) are diagrams showing a modified example of the substrate processing step in one embodiment of the present disclosure. It is a figure which shows the modification of the substrate processing process in one Embodiment of this disclosure.
  • 9 (A) and 9 (B) are vertical cross-sectional views showing an outline of a processing furnace of a substrate processing apparatus according to another embodiment of the present disclosure.
  • FIGS. 1 to 4. the drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not always match the actual ones. Further, even between the plurality of drawings, the relationship between the dimensions of each element, the ratio of each element, and the like do not always match.
  • the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 constituting a reaction tube (reaction vessel, processing vessel) concentrically with the heater 207 is arranged.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • the inner tube 204 constituting the reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz or SiC, and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a processing container (reaction container) is mainly composed of an outer tube 203, an inner tube 204, and a manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 as a support.
  • Nozzles 410, 420, 430 are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, 330 are connected to the nozzles 410, 420, 430, respectively.
  • the processing furnace 202 of the present embodiment is not limited to the above-mentioned embodiment.
  • the gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 322, and 332, which are flow control units (flow control units), in order from the upstream side. Further, the gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, which are on-off valves, respectively. Gas supply pipes 510, 520, 530 for supplying the inert gas are connected to the downstream side of the valves 314, 324, 334 of the gas supply pipes 310, 320, 330, respectively.
  • MFCs mass flow controllers
  • valves 314, 324, and 334 which are on-off valves, respectively.
  • Gas supply pipes 510, 520, 530 for supplying the inert gas are connected to the downstream side of the valves 314, 324, 334 of the gas supply pipes 310, 320, 330, respectively.
  • the gas supply pipes 510, 520, and 530 are provided with MFC 512, 522, 532, which is a flow rate controller (flow control unit), and valves 514, 524, 534, which are on-off valves, in this order from the upstream side.
  • MFC 512, 522, 532 which is a flow rate controller (flow control unit)
  • valves 514, 524, 534 which are on-off valves, in this order from the upstream side.
  • Nozzles 410, 420, 430 are connected to the tips of the gas supply pipes 310, 320, 330, respectively.
  • the nozzles 410, 420, 430 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portion of the nozzles 410, 420, 430 is provided inside the channel-shaped (groove-shaped) spare chamber 201a formed so as to project radially outwardly and extend vertically of the inner tube 204. It is provided in the spare chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
  • the nozzles 410, 420, 430 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a, 420a, 430a are provided at positions facing the wafer 200, respectively. Is provided.
  • the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively.
  • a plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided at the same opening pitch.
  • the gas supply holes 410a, 420a, 430a are not limited to the above-mentioned form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
  • the nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
  • a raw material gas (metal-containing gas) containing a metal element is supplied into the processing chamber 201 as a processing gas via the MFC 312, a valve 314, and a nozzle 410.
  • the first reducing gas as the processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
  • a second reducing gas different from the first reducing gas is supplied into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430.
  • nitrogen (N 2 ) gas as an inert gas is introduced into the processing chamber via MFC512,522,532, valves 514,524,534, and nozzles 410,420,430, respectively. It is supplied in 201.
  • N 2 gas used as the inert gas
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenone, in addition to N 2 gas, will be described.
  • a rare gas such as (Xe) gas may be used.
  • the raw material gas supply system When the raw material gas is mainly flowed from the gas supply pipe 310, the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314, but even if the nozzle 410 is included in the raw material gas supply system, it may be considered. good.
  • the raw material gas supply system can also be referred to as a metal-containing gas supply system.
  • the first reducing gas when the first reducing gas is flowed from the gas supply pipe 320, the first reducing gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 is used as the first reducing gas supply system. You may consider including it.
  • the second reducing gas supply system is mainly composed of the gas supply pipe 330, the MFC 332, and the valve 334, but the nozzle 430 is used as the second reducing gas supply system. You may consider including it.
  • the metal-containing gas supply system, the first reduction gas supply system, and the second reduction gas supply system can also be referred to as a processing gas supply system.
  • the nozzles 410, 420, 430 may be included in the processing gas supply system.
  • the inert gas supply system is mainly composed of gas supply pipes 510, 520, 530, MFC 512, 522, 532, and valves 514, 524, 534.
  • the method of gas supply in the present embodiment is the nozzles 410, 420, arranged in the spare chamber 201a in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is transported via 430. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions facing the wafers of the nozzles 410, 420, 430.
  • the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430 eject the raw material gas or the like in the direction parallel to the surface of the wafer 200.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, 430 on the side wall of the inner tube 204, and is, for example, a slit-shaped through hole formed elongated in the vertical direction. Is.
  • the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 and flowing on the surface of the wafer 200 passes through the exhaust holes 204a into the inner tube 204 and the outer tube 203. It flows through the gap (inside the exhaust passage 206) formed between them. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a to the vicinity of the wafer 200 in the processing chamber 201 flows in the horizontal direction. After that, it flows into the exhaust passage 206 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (AutoPressure Controller) valve 243 is connected in order from the upstream side.
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 231 and the APC valve 243 and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to abut on the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (transport mechanism, transport system) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
  • the boat 217 is configured to arrange a plurality of wafers, for example, 25 to 200 wafers 200, in a horizontal posture and with their centers aligned with each other at intervals in the vertical direction.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a dummy substrate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages in a horizontal posture. With this configuration, the heat from the heater 207 is less likely to be transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned embodiment.
  • a heat insulating cylinder configured as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410, 420, 430, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method of manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • this process recipe, control program, etc. are collectively referred to simply as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d has the above-mentioned MFC 312,322,332,512,522,532, valve 314,324,334,514,524,534, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature. It is connected to a sensor 263, a rotation mechanism 267, a boat elevator 115, and the like.
  • the CPU 121a is configured to read a control program from the storage device 121c and execute it, and to read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a has an operation of adjusting the flow rate of various gases by MFC 312,322,332,512,522,532, an opening / closing operation of valves 314,324,334,514,524,534, and an APC valve so as to follow the contents of the read recipe.
  • the controller 121 is stored in an external storage device (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as MO, a semiconductor memory such as a USB memory or a memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step As one step of the manufacturing process of the semiconductor device (device), an example of a step of forming a Mo-containing film containing molybdenum (Mo) used as a control gate electrode of, for example, 3D NAND on a wafer 200. , FIG. 4 will be described.
  • the step of forming the Mo-containing film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing device 10 is controlled by the controller 121.
  • wafer When the word “wafer” is used in the present specification, it may mean “wafer itself” or “a laminate of a wafer and a predetermined layer, film, etc. formed on the surface thereof". be.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean “the surface of the wafer itself” or “the surface of a predetermined layer, film, etc. formed on the wafer”. be.
  • the use of the term “wafer” in the present specification is also synonymous with the use of the term “wafer”.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 is present, is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 246 is always kept in operation until at least the processing for the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the valve 314 is opened to allow a metal-containing gas, which is a raw material gas, to flow into the gas supply pipe 310.
  • the flow rate of the metal-containing gas is adjusted by the MFC 312, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the metal-containing gas is supplied to the wafer 200.
  • the valve 514 is opened to allow an inert gas such as N 2 gas to flow into the gas supply pipe 510.
  • the flow rate of the inert gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the metal-containing gas, and is exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened to allow the inert gas to flow into the gas supply pipes 520 and 530.
  • the inert gas is supplied into the processing chamber 201 via the gas supply pipes 320, 330 and the nozzles 420, 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 to 3990 Pa, for example, 1000 Pa.
  • the supply flow rate of the metal-containing gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.1 to 1.0 slm, preferably 0.3 to 0.9 slm.
  • the supply flow rate of the inert gas controlled by the MFC 512,522,532 is, for example, a flow rate within the range of 0.1 to 20 slm.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 300 to 650 ° C.
  • the gas flowing in the processing chamber 201 is only the metal-containing gas and the inert gas.
  • the metal-containing gas for example, a molybdenum (Mo) -containing gas containing molybdenum (Mo) as a metal element can be used.
  • Mo-containing gas for example, molybdenum dichloride (MoO 2 Cl 2 ) gas containing Mo, oxygen (O) and chlorine (Cl), and molybdenum tetrachloride (MoOCl 4 ) gas can be used.
  • Mo-containing gas for example, molybdenum dichloride (MoO 2 Cl 2 ) gas containing Mo, oxygen (O) and chlorine (Cl), and molybdenum tetrachloride (MoOCl 4 ) gas can be used.
  • Mo-containing gas By supplying the Mo-containing gas, a Mo-containing layer is formed on the wafer 200 (the base film on the surface).
  • the Mo-containing layer may be a Mo layer containing Cl
  • the valve 314 of the gas supply pipe 310 is closed to stop the supply of the metal-containing gas. That is, the time for supplying the metal-containing gas to the wafer 200 is, for example, a time in the range of 1 to 60 seconds.
  • the APC valve 243 of the exhaust pipe 231 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or metal-containing layer remaining in the processing chamber 201 is contributed to the formation of the metal-containing gas. Is excluded from the processing chamber 201.
  • the inside of the processing chamber 201 is purged.
  • the valves 514, 524, 534 are left open to maintain the supply of the inert gas into the processing chamber 201.
  • the inert gas acts as a purge gas, and can enhance the effect of removing the unreacted metal-containing gas remaining in the treatment chamber 201 or the metal-containing gas after contributing to the formation of the metal-containing layer from the treatment chamber 201.
  • the first reducing gas and the second reducing gas are simultaneously supplied to the wafer 200.
  • the valves 514, 524, 534 are kept open to maintain the supply of the inert gas into the gas supply pipes 510, 520, 530.
  • the flow rate of the inert gas flowing in the gas supply pipes 510, 520, and 530 is adjusted by the MFC 512, 522, 532, respectively.
  • the inert gas flowing in the gas supply pipe 520 is supplied to the processing chamber 201 together with the first reducing gas through the gas supply pipe 320 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the inert gas flowing in the gas supply pipe 530 is supplied to the processing chamber 201 together with the second reducing gas through the gas supply pipe 330 and the nozzle 430, and is exhausted from the exhaust pipe 231. Further, the inert gas flowing in the gas supply pipe 510 is supplied into the processing chamber 201 via the gas supply pipe 310 and the nozzle 410, exhausted from the exhaust pipe 231 and the first reducing gas and the first reducing gas into the nozzle 410. 2 Prevent the intrusion of reducing gas.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 to 13300 Pa, for example, 10000 Pa.
  • the supply flow rate of the first reducing gas controlled by the MFC 322 is, for example, a flow rate within the range of 1 to 50 slm, preferably 15 to 30 slm.
  • the supply flow rate of the second reducing gas controlled by the MFC 332 is, for example, a flow rate in the range of 0.1 to 1.0 slm, preferably 0.1 to 0.5 slm.
  • the supply flow rate of the inert gas controlled by the MFC 512,522,532 is, for example, a flow rate within the range of 0.1 to 30 slm.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 300 to 650 ° C.
  • the gases flowing in the processing chamber 201 are the first reducing gas, the second reducing gas, and the inert gas. That is, the first reducing gas and the second reducing gas are simultaneously supplied to the wafer 200. In other words, the first reducing gas and the second reducing gas have timings to be supplied at the same time.
  • the first reducing gas for example, hydrogen (H 2 ) gas or deuterium (D 2 ), which is a gas composed of hydrogen (H), can be used.
  • the second reducing gas for example, phosphine (PH 3 ) gas, which is a gas containing hydrogen (H) and other elements, can be used.
  • PH 3 phosphine
  • the second reducing gas a gas having a higher reducing action than the first reducing gas is used.
  • the second reducing gas is a gas of a compound having a larger negative value of the standard generated Gibbs energy than the first reducing gas.
  • a chemical reaction is likely to occur between the MoO 2 Cl 2 gas and the PH 3 gas. That is, the larger the negative value of the standard generated Gibbs energy, the easier it is for the reaction to occur, and the easier it is to generate a gas such as POCl 4 .
  • POCl 4 has the property of being easily desorbed and not easily adsorbed on the membrane. That is, by supplying PH 3 gas, POCl 4 that is easily desorbed from the membrane and is not easily adsorbed on the membrane can be produced as a reaction by-product.
  • the flow rate of the inert gas flowing in the gas supply pipes 510, 520, and 530 is adjusted by the MFC 512, 522, 532, respectively.
  • the inert gas flowing in the gas supply pipe 520 is supplied to the processing chamber 201 together with the first reducing gas through the gas supply pipe 320 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the inert gas flowing through the gas supply pipes 510 and 530 is supplied into the processing chamber 201 via the gas supply pipes 310 and 330 and the nozzles 410 and 430, respectively, and is exhausted from the exhaust pipe 231 to the nozzles 410 and 430. Prevents the intrusion of the first reducing gas into the inside.
  • the gases flowing in the processing chamber 201 are the first reducing gas and the inert gas. That is, the first reducing gas and the inert gas are supplied to the wafer 200.
  • the supply of the first reducing gas and the supply of the second reducing gas are started at the same time, the supply of the second reducing gas is stopped, and then the supply of the first reducing gas is stopped.
  • the supply of the first reducing gas and the supply of the second reducing gas are partially performed in parallel, and the supply time of the second reducing gas to the wafer 200 is made shorter than the supply time of the first reducing gas.
  • the supply time of the first reducing gas is longer than the supply time of the second reducing gas.
  • the supply time of PH 3 gas is set longer than the supply time of PH 3 gas.
  • POCl 4 which is a reaction by-product can be removed, the residue of POCl 4 can be suppressed, and the phosphorus (P) content in the Mo-containing layer can be reduced.
  • a metal-containing film having a predetermined thickness is formed on the wafer 200 by performing the cycle of sequentially performing the first step to the fifth step described above at least once (predetermined number of times (n times)).
  • the above cycle is preferably repeated multiple times.
  • the metal-containing gas is a Mo-containing gas
  • a Mo-containing film as the metal-containing film is formed.
  • the Mo-containing film is a film containing molybdenum as a main component.
  • Inert gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and is exhausted from the exhaust pipe 231.
  • the inert gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and reaction by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the processing chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the outer tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the outer tube 203 to the outside of the outer tube 203 in a state of being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
  • Modification 1 In this modification, as shown in FIG. 5, after the metal-containing gas supply which is the first step described above and the residual gas removal which is the second step described above, the supply of the second reducing gas is performed as the third step. Is started, and after a predetermined time has elapsed from the start of the supply of the second reducing gas, for example, 1 to 20 seconds later, the supply of the first reducing gas is started as the fourth step. Then, after a predetermined time has elapsed from the simultaneous supply of the first reducing gas and the second reducing gas, for example, 1 to 20 seconds later, the supply of the second reducing gas is stopped, and the second reducing gas is used as the fifth step.
  • the supply of the first reducing gas is stopped after a lapse of a predetermined time, for example, 1 to 120 seconds after the supply of the first reducing gas is stopped. Then, as the sixth step, the residual gas is removed, and the cycle in which the first step to the sixth step are sequentially performed is performed at least once (predetermined number of times (n times)), whereby a predetermined number is determined on the wafer 200. Form a metal-containing film of the same thickness. Also in this modification, the supply time of the second reducing gas to the wafer 200 is shorter than the supply time of the first reducing gas.
  • the supply of the second reducing gas is started, the supply of the first reducing gas is started, the supply of the first reducing gas and the supply of the second reducing gas are partially performed in parallel, and the supply of the second reducing gas is performed. After stopping, the supply of the first reducing gas is stopped. In this way, by supplying the second reducing gas before the first reducing gas, the adsorbed layer of the metal-containing gas molecule and the metal-containing layer containing an element other than the metal contained in the metal-containing gas can be changed to other than the metal. The element can be removed to form a film in a state where it can be easily reduced with the first reducing gas.
  • the contact probability between the adsorption layer of the metal-containing gas molecule and the second reducing gas molecule can be improved, and the first reducing gas can be improved. It is possible to form a film in a state where it can be easily reduced. Further, by stopping the supply of the first reducing gas after stopping the supply of the second reducing gas, the residual reaction by-products can be suppressed. Even in this case, the same effect as the sequence shown in FIG. 4 described above can be obtained.
  • the metal-containing gas is MoO 2 Cl 2 gas
  • O and Cl are removed from the MoO 2 Cl 2 adsorption layer and the Mo-containing layer containing Cl and O, and the reduction is easy with the first reducing gas.
  • the film can be formed.
  • Modification 2 In this modification, as shown in FIG. 6, after the metal-containing gas supply which is the first step described above and the residual gas removal which is the second step described above, the supply of the first reducing gas is performed as the third step. Is started, and after a predetermined time has elapsed from the start of the supply of the first reducing gas, for example, 1 to 60 seconds later, the supply of the second reducing gas is started as the fourth step. Then, after a predetermined time has elapsed from the simultaneous supply of the first reducing gas and the second reducing gas, for example, 1 to 60 seconds later, the supply of the second reducing gas is stopped, and the second reducing gas is used as the fifth step.
  • the supply of the first reducing gas is stopped after a lapse of a predetermined time, for example, 1 to 60 seconds after the supply of the first reducing gas is stopped. That is, the supply of the second reducing gas is started during the supply of the first reducing gas, and the supply of the second reducing gas is stopped. That is, the second reducing gas is supplied while the first reducing gas is being supplied. In other words, the supply of the second reducing gas is started after the supply of the first reducing gas is started, the supply of the second reducing gas is stopped, and then the supply of the first reducing gas is stopped.
  • a predetermined time for example, 1 to 60 seconds after the supply of the first reducing gas is stopped. That is, the supply of the second reducing gas is started during the supply of the first reducing gas, and the supply of the second reducing gas is stopped. That is, the second reducing gas is supplied while the first reducing gas is being supplied.
  • the supply of the second reducing gas is started after the supply of the first reducing gas is started, the supply of
  • the sixth step the residual gas is removed, and the cycle in which the first step to the sixth step are sequentially performed is performed at least once (predetermined number of times (n times)), whereby a predetermined number is determined on the wafer 200.
  • n times predetermined number of times
  • the supply time of the second reducing gas to the wafer 200 is shorter than the supply time of the first reducing gas.
  • the supply of the first reducing gas is started, the supply of the second reducing gas is started, the supply of the first reducing gas and the supply of the second reducing gas are partially performed in parallel, and the supply of the second reducing gas is performed. After stopping, the supply of the first reducing gas is stopped.
  • the residual reaction by-products can be suppressed. Even in this case, the same effect as the sequence shown in FIG. 4 described above can be obtained.
  • Modification 3 In this modification, as shown in FIGS. 7 (A) and 7 (B), the metal-containing gas supply which is the first step, the residual gas removal which is the second step described above, and the third step. After supplying the second reducing gas, the first reducing gas is supplied as the fourth step, and the residual gas is removed as the fifth step. Then, a metal-containing film having a predetermined thickness is formed on the wafer 200 by performing at least one cycle (predetermined number of times (n times)) in which the first step to the fifth step are sequentially performed. That is, the supply of the second reducing gas and the supply of the first reducing gas are not performed in parallel but separately. As shown in FIG.
  • the supply of the second reducing gas and the supply of the first reducing gas may be performed continuously, and as shown in FIG. 7B, the second reduction gas may be supplied.
  • the inside of the processing chamber 201 may be purged by removing the residual gas between the supply of the reducing gas and the supply of the first reducing gas. Also in this modification, the supply time of the second reducing gas to the wafer 200 is shorter than the supply time of the first reducing gas.
  • the supply of the second reducing gas is started before the supply of the first reducing gas, the second reducing gas is supplied, and then the first reducing gas is supplied.
  • H 2 gas is used as the first reducing gas
  • PH 3 gas is used as the second reducing gas.
  • Modification example 4 In this modification, as shown in FIG. 8, after performing the metal-containing gas supply which is the first step and the residual gas removal which is the second step described above, the second reducing gas is used as the third step.
  • the step of supplying and the step of removing the residual gas as the fourth step are performed, and the cycle of sequentially performing the above-mentioned first step to the fourth step is performed at least once (predetermined number of times (n times)).
  • a metal-containing film having a predetermined thickness is formed on the wafer 200. That is, the above-mentioned first reducing gas is not supplied.
  • MoO 2 Cl 2 gas is used as the metal-containing gas (Mo-containing gas)
  • Mo-containing gas Mo-containing gas
  • H 2 gas used as the first reducing gas
  • deuterium (D 2 ) is activated.
  • Other reducing gases such as hydrogen gas containing hydrogen can be used.
  • PH 3 gas used as the second reducing gas
  • the present disclosure is not limited to this, and for example, monosilane (SiH 4 ) gas and disilane (Si 2 ).
  • Other reductions such as H 6 ) gas, trisilane (Si 3 H 8 ) gas, silane gas such as tetrasilane (Si 4 H 10 ), and borane gas such as monoborane (BH 3 ) and diborane (B 2 H 6 ). Gas can be used.
  • H 6 monosilane
  • Si 3 H 8 trisilane
  • silane gas such as tetrasilane
  • borane gas such as monoborane (BH 3 ) and diborane (B 2 H 6 ).
  • BH 3 monoborane
  • B 2 H 6 diborane
  • PH 3 gas is preferable as the second reducing gas.
  • the present disclosure can be suitably applied to the case where a film is formed by using a substrate processing apparatus provided with the processing furnace 302 shown in FIG. 9 (A).
  • the processing furnace 302 serves as a support for supporting the processing container 303 forming the processing chamber 301, the shower head 303s for supplying gas into the processing chamber 301 in a shower shape, and one or several wafers 200 in a horizontal posture.
  • the support base 317, a rotating shaft 355 that supports the support base 317 from below, and a heater 307 provided on the support base 317 are provided.
  • the gas supply port 332a for supplying the metal-containing gas, the gas supply port 332b for supplying the first reducing gas, and the second reducing gas described above are supplied to the inlet (gas inlet) of the shower head 303s.
  • Gas supply port 332c is connected.
  • a gas supply system similar to the metal-containing gas supply system of the above-described embodiment is connected to the gas supply port 332a.
  • a gas supply system similar to the first reducing gas supply system of the above-described embodiment is connected to the gas supply port 332b.
  • a gas supply system similar to the above-mentioned second reducing gas supply system is connected to the gas supply port 332c.
  • the outlet (gas discharge port) of the shower head 303s is provided with a gas dispersion plate that supplies gas in a shower shape in the processing chamber 301.
  • the processing container 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
  • the processing furnace 402 includes a processing container 403 forming the processing chamber 401, a support base 417 as a support tool for supporting one or several wafers 200 in a horizontal posture, and a rotary shaft 455 for supporting the support base 417 from below.
  • a lamp heater 407 that irradiates the wafer 200 of the processing container 403 with light, and a quartz window 403w that transmits the light of the lamp heater 407 are provided.
  • the above-mentioned gas supply port 432a for supplying the metal-containing gas, the above-mentioned gas supply port 432b for supplying the first reducing gas, and the above-mentioned gas supply port 432c for supplying the second reducing gas are connected to the processing container 403.
  • a gas supply system similar to the metal-containing gas supply system of the above-described embodiment is connected to the gas supply port 432a.
  • a gas supply system similar to the first reducing gas supply system of the above-described embodiment is connected to the gas supply port 432b.
  • a gas supply system similar to the second reducing gas supply system of the above-described embodiment is connected to the gas supply port 432c.
  • the processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
  • film formation can be performed under the same sequence and processing conditions as those in the above-described embodiment.
  • the process recipe (program that describes the treatment procedure, treatment conditions, etc.) used for forming these various thin films is the content of the substrate treatment (film type, composition ratio, film quality, film thickness, treatment procedure, treatment of the thin film to be formed). It is preferable to prepare each individually (multiple preparations) according to conditions, etc.). Then, when starting the substrate processing, it is preferable to appropriately select an appropriate process recipe from a plurality of process recipes according to the content of the substrate processing.
  • the board processing device includes a plurality of process recipes individually prepared according to the content of the board processing via a telecommunication line or a recording medium (external storage device 123) in which the process recipe is recorded. It is preferable to store (install) it in the storage device 121c in advance.
  • the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate process recipe from the plurality of process recipes stored in the storage device 121c according to the content of the substrate processing. Is preferable. With this configuration, it becomes possible to form thin films of various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing device in a versatile and reproducible manner. In addition, the operator's operation load (input load such as processing procedure and processing conditions) can be reduced, and the board processing can be started quickly while avoiding operation mistakes.
  • the present disclosure can also be realized by, for example, changing the process recipe of the existing substrate processing apparatus.
  • the process recipe according to the present disclosure may be installed on an existing board processing device via a telecommunications line or a recording medium on which the process recipe is recorded, or input / output of the existing board processing device. It is also possible to operate the device and change the process recipe itself to the process recipe according to the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

金属含有膜の電気的特性、スループットの少なくともいずれかを向上させることができる。 (a)基板を処理容器に収容する工程と、(b)基板に対して金属含有ガスを供給する工程と、(c)基板に対して第1還元ガスを供給する工程と、(d)基板に対して第1還元ガスとは異なる第2還元ガスを供給する工程と、を有し、(b)と(c)と(d)とを1回以上行うことにより、基板上に金属含有膜を形成する。

Description

半導体装置の製造方法、記録媒体及び基板処理装置
 本開示は、半導体装置の製造方法、記録媒体及び基板処理装置に関する。
 3次元構造を持つNAND型フラッシュメモリやDRAMのワードラインとして例えば低抵抗なタングステン(W)膜が用いられている。また、このW膜と絶縁膜との間にバリア膜として例えば、窒化チタン(TiN)膜が用いられることがある(例えば特許文献1及び特許文献2参照)。
特開2011-66263号公報 国際公開第2019/058608号パンフレット
 しかしながら、3次元構造のNAND型フラッシュメモリの高層化に伴ってエッチングが困難となっているために、ワード線の薄膜化が課題となっている。
 この課題を解決するために、上述したようなTiN膜とW膜を用いる代わりに、モリブデン(Mo)膜を形成して用いる場合がある。しかし、低抵抗でかつ異物の少ないMo膜を形成するには、大流量のH2ガスを長時間流す必要がある。それ故、スループットの低下が課題となっている。
 本開示は、金属含有膜の電気的特性、スループットの少なくともいずれかを向上させることが可能な技術を提供することを目的とする。
 本開示の一態様によれば、
(a)基板を処理容器に収容する工程と、
(b)前記基板に対して金属含有ガスを供給する工程と、
(c)前記基板に対して第1還元ガスを供給する工程と、
(d)前記基板に対して前記第1還元ガスとは異なる第2還元ガスを供給する工程と、を有し、
 (b)と(c)と(d)とを1回以上行うことにより、前記基板上に金属含有膜を形成する
 技術が提供される。
 本開示によれば、金属含有膜の電気的特性、スループットの少なくともいずれかを向上させることができる。
本開示の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。 図1におけるA-A線概略横断面図である。 本開示の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一実施形態における基板処理工程を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 図7(A)及び図7(B)は、本開示の一実施形態における基板処理工程の変形例を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 図9(A)及び図9(B)は、本開示の他の実施形態における基板処理装置の処理炉の概略を示す縦断面図である。
 以下、図1~4を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応管(反応容器、処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属で構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英、SiCなどの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を、支持具としてのボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給管310,320,330が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532及び開閉弁であるバルブ514,524,534がそれぞれ設けられている。
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。
 ガス供給管320からは、処理ガスとして、第1還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。
 ガス供給管330からは、処理ガスとして、第1還元ガスとは異なる第2還元ガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。
 ガス供給管510,520,530からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310から原料ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成されるが、ノズル410を原料ガス供給系に含めて考えてもよい。原料ガス供給系を金属含有ガス供給系と称することもできる。また、ガス供給管320から第1還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により第1還元ガス供給系が構成されるが、ノズル420を第1還元ガス供給系に含めて考えてもよい。また、ガス供給管330から第2還元ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により第2還元ガス供給系が構成されるが、ノズル430を第2還元ガス供給系に含めて考えてもよい。また、金属含有ガス供給系と第1還元ガス供給系と第2還元ガス供給系を処理ガス供給系と称することもできる。また、ノズル410,420,430を処理ガス供給系に含めて考えてもよい。また、主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給系が構成される。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a、ノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向に向かって原料ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間(排気路206内)に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410a,420a,430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、APC(Auto Pressure Controller)バルブ243、真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a、排気路206、排気管231、APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属で構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構、搬送系)として構成されている。
 ボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成されるダミー基板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部にダミー基板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420,430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,322,332,512,522,532、バルブ314,324,334,514,524,534、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532による各種ガスの流量調整動作、バルブ314,324,334,514,524,534の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えば3DNANDのコントロールゲート電極として用いられるモリブデン(Mo)を含有するMo含有膜を形成する工程の一例について、図4を用いて説明する。Mo含有膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本実施形態による基板処理工程(半導体装置の製造工程)では、
(a)ウエハ200を処理容器内である処理室201に収容する工程と、
(b)ウエハ200に対して金属含有ガスを供給する工程と、
(c)ウエハ200に対して第1還元ガスを供給する工程と、
(d)ウエハ200に対して第2還元ガスを供給する工程と、を有し、
 (b)と(c)と(d)とを1回以上行うことにより、ウエハ200上に金属含有膜としてMo含有膜を形成する。
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体」を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面」を意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて、処理室201内に搬入(ボートロード)され、処理容器に収容される。この状態で、シールキャップ219はOリング220を介してアウタチューブ203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
[第1の工程]
(金属含有ガス供給)
 バルブ314を開き、ガス供給管310内に原料ガスである金属含有ガスを流す。金属含有ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対して金属含有ガスが供給される。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れた不活性ガスは、MFC512により流量調整され、金属含有ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430内への金属含有ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内に不活性ガスを流す。不活性ガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力であって、例えば1000Paとする。MFC312で制御する金属含有ガスの供給流量は、例えば0.1~1.0slm、好ましくは0.3~0.9slmの範囲内の流量とする。MFC512,522,532で制御する不活性ガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~650℃の範囲内の温度となるような温度に設定する。なお、本開示における「1~3990Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1~3990Pa」とは「1Pa以上3990Pa以下」を意味する。他の数値範囲についても同様である。
 このとき処理室201内に流しているガスは、金属含有ガスと不活性ガスのみである。ここで、金属含有ガスとしては、例えば金属元素としてのモリブデン(Mo)を含むモリブデン(Mo)含有ガスを用いることができる。Mo含有ガスとしては、Moと酸素(O)と塩素(Cl)を含む例えば二酸化二塩化モリブデン(MoO2Cl2)ガス、四塩化酸化モリブデン(MoOCl4)ガスを用いることができる。Mo含有ガスの供給により、ウエハ200(表面の下地膜)上にMo含有層が形成される。Mo含有層は、ClやOを含むMo層であってもよいし、MoO2Cl2(又はMoOCl4)の吸着層であってもよいし、それらの両方を含んでいてもよい。
[第2の工程]
(残留ガス除去)
 金属含有ガスの供給を開始してから所定時間経過後であって例えば1~60秒後に、ガス供給管310のバルブ314を閉じて、金属含有ガスの供給を停止する。つまり、金属含有ガスをウエハ200に対して供給する時間は、例えば1~60秒の範囲内の時間とする。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは金属含有層形成に寄与した後の金属含有ガスを処理室201内から排除する。すなわち、処理室201内をパージする。このときバルブ514,524,534は開いたままとして、不活性ガスの処理室201内への供給を維持する。不活性ガスはパージガスとして作用し、処理室201内に残留する未反応もしくは金属含有層形成に寄与した後の金属含有ガスを処理室201内から排除する効果を高めることができる。
[第3の工程]
(第1還元ガスと第2還元ガスの同時供給)
 処理室201内の残留ガスを除去した後、バルブ324,334を同時に開き、ガス供給管320,330内に、それぞれ第1還元ガスと第2還元ガスを流す。第1還元ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。第2還元ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、第1還元ガスと第2還元ガスが同時に供給される。このときバルブ514,524,534は開いたままとしてガス供給管510,520,530内への不活性ガスの供給を維持する。ガス供給管510,520,530内を流れた不活性ガスは、MFC512,522,532によりそれぞれ流量調整される。ガス供給管520内は流れた不活性ガスは第1還元ガスと一緒にガス供給管320、ノズル420を介して処理室201内に供給され、排気管231から排気される。またガス供給管530内を流れた不活性ガスは第2還元ガスと一緒にガス供給管330、ノズル430を介して処理室201内に供給され、排気管231から排気される。またガス供給管510内を流れた不活性ガスは、ガス供給管310、ノズル410を介して処理室201内に供給され、排気管231から排気され、ノズル410内への第1還元ガス、第2還元ガスの侵入を防止する。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~13300Paの範囲内の圧力であって、例えば10000Paとする。MFC322で制御する第1還元ガスの供給流量は、例えば1~50slm、好ましくは15~30slmの範囲内の流量とする。MFC332で制御する第2還元ガスの供給流量は、例えば0.1~1.0slm、好ましくは0.1~0.5slmの範囲内の流量とする。MFC512,522,532で制御する不活性ガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~650℃の範囲内の温度となるような温度に設定する。
 このとき処理室201内に流しているガスは、第1還元ガスと第2還元ガスと不活性ガスである。すなわちウエハ200に対して第1還元ガスと第2還元ガスが同時に供給されることとなる。言い換えれば、第1還元ガスと第2還元ガスとは同時に供給されるタイミングを有する。
 ここで、第1還元ガスとしては、例えば水素(H)で構成されるガスである水素(H2)ガス、重水素(D2)を用いることができる。また、第2還元ガスとしては、例えば水素(H)と他の元素を含むガスであるホスフィン(PH3)ガスを用いることができる。第2還元ガスとして、第1還元ガスよりもより還元作用の高いガスを用いる。また、第2還元ガスは、第1還元ガスよりも標準生成ギブスエネルギーの負の値が大きい化合物のガスである。以下では、第1還元ガスとしてH2ガス、第2還元ガスとしてPH3ガスを用いた場合を例として説明する。ウエハ200に対して、H2ガスとPH3ガスの、2種類の異なる還元ガスを同時供給することにより、ウエハ200上の金属含有層としてのMo含有層に含まれる酸素(O)や塩素(Cl)やMoO2Cl2の吸着層が、H2やPH3と反応し、Mo含有層やMoO2Cl2の吸着層からOやClが還元され、OやClが除去されて、水蒸気(H2O)や塩化水素(HCl)や塩素(Cl2)や四塩化ポロニウム(POCl4)等の反応副生成物として処理室201内から排出される。
 ここで、MoO2Cl2ガスとPH3ガスとは化学反応が起こり易い。つまり、標準生成ギブスエネルギーの負の値が大きいほど反応が起こりやすく、POCl4のようなガスを生成し易い。POCl4は脱離しやすく、膜に吸着しにくい性質がある。すなわち、PH3ガスを供給することにより、反応副生成物として、膜から脱離し易く、膜に吸着しにくいPOCl4を生成することができる。
 すなわち、Mo含有層やMoO2Cl2の吸着層のOやClを、H2やPH3と反応させ、ウエハ200上にMoCl終端を形成し、H2OやHClやPOCl4等の反応副生成物として処理室201内から排出させる。そして、ウエハ200上にMoを含みClとOを実質的に含まないMo含有層が形成される。
[第4の工程]
(第1還元ガス供給)
 第1還元ガスと第2還元ガスの同時供給を開始してから所定時間経過後であって例えば1~1200秒後に、ガス供給管330のバルブ334を閉じて、第2還元ガスの供給を停止する。つまり、第1還元ガスと第2還元ガスを同時にウエハ200に対して供給する時間は、例えば1~1200秒の範囲内の時間とする。このときバルブ514,524,534は開いたままとしてガス供給管510,520,530内への不活性ガスの供給を維持する。ガス供給管510,520,530内を流れた不活性ガスは、MFC512,522,532によりそれぞれ流量調整される。ガス供給管520内は流れた不活性ガスは第1還元ガスと一緒にガス供給管320、ノズル420を介して処理室201内に供給され、排気管231から排気される。またガス供給管510,530内を流れた不活性ガスは、ガス供給管310,330、ノズル410,430を介して処理室201内にそれぞれ供給され、排気管231から排気され、ノズル410,430内への第1還元ガスの侵入を防止する。
 このとき処理室201内に流しているガスは、第1還元ガスと不活性ガスである。すなわちウエハ200に対して第1還元ガスと不活性ガスが供給されることとなる。
[第5の工程]
(残留ガス除去)
 第1還元ガスの供給を開始してから所定時間経過後であって例えば1~1200秒後に、ガス供給管320のバルブ324を閉じて、第1還元ガスの供給を停止する。そして、上述した第2の工程と同様の処理手順により、処理室201内に残留する未反応もしくは金属含有層の形成に寄与した後の第1還元ガスや反応副生成物を処理室201内から排除する。すなわち、処理室201内をパージする。
 すなわち、第1還元ガスの供給と第2還元ガスの供給を同時に開始し、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止する。
 つまり、第1還元ガスの供給と第2還元ガスの供給を一部並行して行い、ウエハ200に対する第2還元ガスの供給時間を第1還元ガスの供給時間よりも短くする。言い換えると、第2還元ガスの供給時間よりも第1還元ガスの供給時間を長くする。
 ここで、第2還元ガスとして、PH3ガスを用いる場合、PH3ガスの供給時間を長くすると、反応副生成物であるPOCl4の生成量が多くなり、Mo含有層中のP含有量が増加してしまう。したがって、H2ガスの供給時間をPH3ガスの供給時間よりも長く設定する。これにより、反応副生成物であるPOCl4を除去して、POCl4の残留を抑制し、Mo含有層中のリン(P)含有量を低減させることができる。
(所定回数実施)
 上記した第1の工程~第5の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜を形成する。上述のサイクルは、複数回繰り返すのが好ましい。ここで、金属含有ガスがMo含有ガスの場合、金属含有膜としてのMo含有膜を形成することとなる。なお、Mo含有膜は、モリブデンを主成分とする膜である。
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530のそれぞれから不活性ガスを処理室201内へ供給し、排気管231から排気する。不活性ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、アウタチューブ203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態でアウタチューブ203の下端からアウタチューブ203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)Mo含有膜の電気的特性を向上させることができる。
(b)異物(副生成物等)が低減された、低抵抗なMo含有膜を形成することができる。
(c)生産性(スループット)を向上させることができる。
(4)他の実施形態
 次に、上述した実施形態における基板処理工程の変形例について詳述する。以下の変形例では、上述した実施形態と第1還元ガスと第2還元ガスの供給タイミングが異なる。以下の変形例では、上述した実施形態と異なる点のみ詳述する。
(変形例1)
 本変形例では、図5に示すように、上述した第1の工程である金属含有ガス供給と、上述した第2の工程である残留ガス除去後に、第3の工程として第2還元ガスの供給を開始し、第2還元ガスの供給を開始してから所定時間経過後であって例えば1~20秒後に、第4の工程として第1還元ガスの供給を開始する。そして、第1還元ガスと第2還元ガスが同時供給されてから所定時間経過後であって例えば1~20秒後に、第2還元ガスの供給を停止し、第5の工程として第2還元ガスの供給を停止してから所定時間経過後であって例えば1~120秒後に、第1還元ガスの供給を停止する。そして、第6の工程として残留ガスの除去を行い、第1の工程~第6の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜を形成する。なお、本変形例においてもウエハ200に対する第2還元ガスの供給時間を第1還元ガスの供給時間よりも短くする。
 すなわち、第2還元ガスの供給を開始した後に第1還元ガスの供給を開始し、第1還元ガスの供給と第2還元ガスの供給を一部並行して行い、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止する。このように、第2還元ガスを第1還元ガスよりも先に供給することにより、金属含有ガス分子の吸着層や、金属含有ガスに含まれる金属以外の元素を含む金属含有層から金属以外の元素を除去して、第1還元ガスで還元し易い状態の膜を形成しておくことができる。言い換えると、第1還元ガスで希釈されていない第2還元ガスが供給されるため、金属含有ガス分子の吸着層と第2還元ガス分子との接触確率を向上させることができ、第1還元ガスで還元し易い状態の膜を形成しておくことができる。また、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止することにより、反応副生成物の残留を抑制することができる。この場合であっても、上述した図4に示すシーケンスと同様の効果が得られる。ここで、金属含有ガスがMoO2Cl2ガスの場合、MoO2Cl2の吸着層や、ClやOを含むMo含有層からOとClを除去して、第1還元ガスで還元し易い状態の膜を形成しておくことができる。
(変形例2)
 本変形例では、図6に示すように、上述した第1の工程である金属含有ガス供給と、上述した第2の工程である残留ガス除去後に、第3の工程として第1還元ガスの供給を開始し、第1還元ガスの供給を開始してから所定時間経過後であって例えば1~60秒後に、第4の工程として第2還元ガスの供給を開始する。そして、第1還元ガスと第2還元ガスが同時供給されてから所定時間経過後であって例えば1~60秒後に、第2還元ガスの供給を停止し、第5の工程として第2還元ガスの供給を停止してから所定時間経過後であって例えば1~60秒後に、第1還元ガスの供給を停止する。つまり、第1還元ガスの供給中に第2還元ガスの供給を開始し、第2還元ガスの供給を停止する。つまり、第1還元ガスの供給を行っている間に第2還元ガスの供給を行う。言い換えれば、第1還元ガスの供給を開始した後に第2還元ガスの供給を開始し、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止する。そして、第6の工程として残留ガスの除去を行い、第1の工程~第6の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜を形成する。なお、本変形例においてもウエハ200に対する第2還元ガスの供給時間は第1還元ガスの供給時間よりも短いこととなる。
 すなわち、第1還元ガスの供給を開始した後に第2還元ガスの供給を開始し、第1還元ガスの供給と第2還元ガスの供給を一部並行して行い、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止する。このように、第2還元ガスの供給を停止した後に、第1還元ガスの供給を停止することにより、反応副生成物の残留を抑制することができる。この場合であっても、上述した図4に示すシーケンスと同様の効果が得られる。
(変形例3)
 本変形例では、図7(A)及び図7(B)に示すように、第1の工程である金属含有ガス供給と、上述した第2の工程である残留ガス除去と、第3の工程として第2還元ガスの供給を行った後に、第4の工程として第1還元ガスの供給と、第5の工程として残留ガスの除去を行う。そして、第1の工程~第5の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜を形成する。すなわち、第2還元ガスの供給と第1還元ガスの供給とを並行して行わずに別々に行う。なお、図7(A)に示すように、第2還元ガスの供給と第1還元ガスの供給とは、連続して行うようにしてもよく、図7(B)に示すように、第2還元ガスの供給と第1還元ガスの供給の間に残留ガスの除去を行って処理室201内をパージしてもよい。なお、本変形例においてもウエハ200に対する第2還元ガスの供給時間を第1還元ガスの供給時間よりも短くする。
 すなわち、第2還元ガスの供給を第1還元ガスの供給よりも先に開始し、第2還元ガスの供給を行った後に、第1還元ガスの供給を行う。ここで、第1還元ガスとしてH2ガス、第2還元ガスとしてPH3ガスを用いる場合について説明する。このように、PH3ガス供給を行った後にH2ガス供給を行うことにより、MoO2Cl2の吸着層や、ClやOを含むMo含有層からOとClを除去して、H2ガスで還元し易い状態の膜を形成しておくことができる。また、PH3ガスが、H2ガスにより希釈され上述の反応が抑制されてしまうことを抑制することができる。また、PH3ガスの供給を停止した後に、H2ガスの供給を停止することにより、反応副生成物であるPOCl4の残留を抑制することができる。また、図7(B)の様に、第2還元ガスの供給と第1還元ガスの供給の間で、いずれのガスも供給しないタイミング(排気工程)を設けることにより、処理室中に存在する副生成物や、余分な第2還元ガスを除去することが可能となり、Mo含有層とH2分子との反応確率を高めることが可能となる。この場合であっても、上述した図4に示すシーケンスと同様の効果が得られる。
(変形例4)
 本変形例では、図8に示すように、第1の工程である金属含有ガス供給と、上述した第2の工程である残留ガス除去を行った後、第3の工程として第2還元ガスを供給する工程と、第4の工程として残留ガスを除去する工程とを行い、上記した第1の工程~第4の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜を形成する。すなわち、上述した第1還元ガスの供給を行わない。金属含有ガスとしてMoO2Cl2を用い、第2還元ガスとしてPH3を用いる場合、PH3ガスを供給することにより、MoO2Cl2の吸着層や、ClやOを含むMo含有層からOとClを除去し、上述した図4に示すシーケンスと同様の効果が得られる。
 なお、上記実施形態では、金属含有ガス(Mo含有ガス)としてMoO2Cl2ガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではない。
 また、上記実施形態では、第1還元ガスとしてH2ガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではなく、例えば、重水素(D2)、活性化した水素を含む水素ガス等の他の還元ガスを用いることができる。
 また、上記実施形態では、第2還元ガスとしてPH3ガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではなく、例えばモノシラン(SiH4)ガス、ジシラン(Si26)ガス、トリシラン(Si38)ガス、テトラシラン(Si410)等のシラン系ガス、モノボラン(BH3)、ジボラン(B26)等のボラン系ガス等の他の還元ガスを用いることができる。これらのガスを用いることによっても、Mo含有ガスの還元力を向上させることが可能となる。一方で、PH3ガスを用いた場合に生成されるPOCl4の様な脱離し易い副生成物を得ることができず、Mo膜の特性が悪化する恐れがある。それ故、第2還元ガスとしては、PH3ガスが好ましい。
 また、上記実施形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本開示はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。
 例えば、図9(A)に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内にガスをシャワー状に供給するシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持具としての支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレット(ガス導入口)には、上述の金属含有ガスを供給するガス供給ポート332aと、上述の第1還元ガスを供給するガス供給ポート332bと、上述の第2還元ガスを供給するガス供給ポート332cが接続されている。ガス供給ポート332aには、上述の実施形態の金属含有ガス供給系と同様のガス供給系が接続されている。ガス供給ポート332bには、上述の実施形態の第1還元ガス供給系と同様のガス供給系が接続されている。ガス供給ポート332cには、上述の第2還元ガス供給系と同様のガス供給系が接続されている。シャワーヘッド303sのアウトレット(ガス排出口)には、処理室301内にガスをシャワー状に供給するガス分散板が設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。
 また例えば、図9(B)に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持具としての支持台417と、支持台417を下方から支持する回転軸455と、処理容器403のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、上述の金属含有ガスを供給するガス供給ポート432aと、上述の第1還元ガスを供給するガス供給ポート432bと、上述の第2還元ガスを供給するガス供給ポート432cが接続されている。ガス供給ポート432aには、上述の実施形態の金属含有ガス供給系と同様のガス供給系が接続されている。ガス供給ポート432bには、上述の実施形態の第1還元ガス供給系と同様のガス供給系が接続されている。ガス供給ポート432cには、上述の実施形態の第2還元ガス供給系と同様のガス供給系が接続されている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。
 これらの基板処理装置を用いる場合においても、上述の実施形態と同様なシーケンス、処理条件にて成膜を行うことができる。
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
 また、本開示は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本開示に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本開示に係るプロセスレシピに変更したりすることも可能である。
 以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室

Claims (19)

  1. (a)基板を処理容器に収容する工程と、
    (b)前記基板に対して金属含有ガスを供給する工程と、
    (c)前記基板に対して第1還元ガスを供給する工程と、
    (d)前記基板に対して前記第1還元ガスとは異なる第2還元ガスを供給する工程と、を有し、
     (b)と(c)と(d)とを1回以上行うことにより、前記基板上に金属含有膜を形成する半導体装置の製造方法。
  2.  (c)と(d)を、一部並行して行う請求項1記載の半導体装置の製造方法。
  3.  (c)と(d)を、同時に開始する請求項1又は2記載の半導体装置の製造方法。
  4.  (d)を終了した後に、(c)を終了する請求項3記載の半導体装置の製造方法。
  5.  (d)を開始した後に、(c)を開始する請求項1又は2記載の半導体装置の製造方法。
  6.  (d)を終了した後に、(c)を終了する請求項5記載の半導体装置の製造方法。
  7.  (c)を開始した後に、(d)を開始する請求項1又は2記載の半導体装置の製造方法。
  8.  (d)を終了した後に、(c)を終了する請求項7記載の半導体装置の製造方法。
  9.  (d)は、(c)を行っている間に行う請求項1又は2記載の半導体装置の製造方法。
  10.  (d)を行った後に、(c)を行う請求項1記載の半導体装置の製造方法。
  11.  (c)の時間は、(d)の時間よりも長い請求項1から7のいずれか記載の半導体装置の製造方法。
  12.  前記金属含有ガスは、モリブデンと酸素と塩素を含むガスであり、
     前記第1還元ガスは、水素で構成されるガスであり、
     前記第2還元ガスは、水素と他の元素を含むガスである
     請求項1から7のいずれか記載の半導体装置の製造方法。
  13.  前記金属含有ガスは、二塩化二酸化モリブデンガスである請求項12記載の半導体装置の製造方法。
  14.  前記第1還元ガスは、水素ガスである請求項12又は13に記載の半導体装置の製造方法。
  15.  前記第2還元ガスは、ホスフィンガスである請求項12記載の半導体装置の製造方法。
  16.  前記第2還元ガスは、ホスフィンガスである請求項13記載の半導体装置の製造方法。
  17.  前記第2還元ガスは、ホスフィンガスである請求項14記載の半導体装置の製造方法。
  18. (a)基板処理装置の処理容器に基板を収容する手順と、
    (b)前記基板に対して金属含有ガスを供給する手順と、
    (c)前記基板に対して第1還元ガスを供給する手順と、
    (d)前記基板に対して前記第1還元ガスとは異なる第2還元ガスを供給する手順と、を有し、
     (b)と(c)と(d)とを1回以上行うことにより、前記基板上に金属含有膜を形成する処理をコンピュータにより前記基板処理装置に実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒体。
  19.  処理容器と、
     前記処理容器内に基板を収容する搬送系と、
     前記処理容器内に金属含有ガスを供給する金属含有ガス供給系と、
     前記処理容器内に第1還元ガスを供給する第1還元ガス供給系と、
     前記処理容器内に前記第1還元ガスとは異なる第2還元ガスを供給する第2還元ガス供給系と、
     前記処理容器内を排気する排気系と、
    (a)前記基板を前記処理容器に収容する処理と、
    (b)前記基板に対して前記金属含有ガスを供給する処理と、
    (c)前記基板に対して前記第1還元ガスを供給する処理と、
    (d)前記基板に対して前記第2還元ガスを供給する処理と、を有し、
     (b)と(c)と(d)とを1回以上行うことにより、前記基板上に金属含有膜を形成する処理を行わせるように、前記搬送系、前記金属含有ガス供給系、前記第1還元ガス供給系、前記第2還元ガス供給系及び前記排気系を制御することが可能なように構成される制御部と、
     を有する基板処理装置。
PCT/JP2020/035478 2020-09-18 2020-09-18 半導体装置の製造方法、記録媒体及び基板処理装置 WO2022059170A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080104617.1A CN116134173A (zh) 2020-09-18 2020-09-18 半导体装置的制造方法、记录介质及基板处理装置
KR1020237008560A KR20230044317A (ko) 2020-09-18 2020-09-18 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
JP2022550292A JPWO2022059170A1 (ja) 2020-09-18 2020-09-18
PCT/JP2020/035478 WO2022059170A1 (ja) 2020-09-18 2020-09-18 半導体装置の製造方法、記録媒体及び基板処理装置
TW110131783A TW202217964A (zh) 2020-09-18 2021-08-27 半導體裝置之製造方法、記錄媒體及基板處理裝置
US18/184,390 US20230268181A1 (en) 2020-09-18 2023-03-15 Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035478 WO2022059170A1 (ja) 2020-09-18 2020-09-18 半導体装置の製造方法、記録媒体及び基板処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/184,390 Continuation US20230268181A1 (en) 2020-09-18 2023-03-15 Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2022059170A1 true WO2022059170A1 (ja) 2022-03-24

Family

ID=80776060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035478 WO2022059170A1 (ja) 2020-09-18 2020-09-18 半導体装置の製造方法、記録媒体及び基板処理装置

Country Status (6)

Country Link
US (1) US20230268181A1 (ja)
JP (1) JPWO2022059170A1 (ja)
KR (1) KR20230044317A (ja)
CN (1) CN116134173A (ja)
TW (1) TW202217964A (ja)
WO (1) WO2022059170A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029618A (ja) * 2018-08-20 2020-02-27 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ 周期的堆積プロセスによって基材の誘電体表面上にモリブデン金属膜を堆積させる方法および関連する半導体デバイス構造
JP2020513065A (ja) * 2017-04-10 2020-04-30 ラム リサーチ コーポレーションLam Research Corporation モリブデンを含有する低抵抗膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066263A (ja) 2009-09-18 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
CN207116483U (zh) 2017-09-06 2018-03-16 京东方科技集团股份有限公司 一种阵列基板及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513065A (ja) * 2017-04-10 2020-04-30 ラム リサーチ コーポレーションLam Research Corporation モリブデンを含有する低抵抗膜
JP2020029618A (ja) * 2018-08-20 2020-02-27 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ 周期的堆積プロセスによって基材の誘電体表面上にモリブデン金属膜を堆積させる方法および関連する半導体デバイス構造

Also Published As

Publication number Publication date
CN116134173A (zh) 2023-05-16
TW202217964A (zh) 2022-05-01
KR20230044317A (ko) 2023-04-03
JPWO2022059170A1 (ja) 2022-03-24
US20230268181A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
US20210242026A1 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
KR20210120073A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
WO2022064549A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2022064550A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP7273079B2 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび基板処理方法
JP7101204B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2022130559A1 (ja) 半導体装置の製造方法、プログラム及び基板処理装置
JP2022052053A (ja) 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
WO2021053778A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP2022050996A (ja) 半導体装置の製造方法、プログラム及び基板処理装置
WO2023037452A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
JP7387685B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
WO2024069767A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
EP4357481A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
US20240133026A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
WO2024034172A1 (ja) 基板処理装置、基板支持具、基板処理方法、半導体装置の製造方法及びプログラム
WO2020189373A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
EP4261324A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
WO2023188014A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2022059325A1 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
JP2022083561A (ja) 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008560

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954155

Country of ref document: EP

Kind code of ref document: A1