WO2021053778A1 - 半導体装置の製造方法、記録媒体及び基板処理装置 - Google Patents

半導体装置の製造方法、記録媒体及び基板処理装置 Download PDF

Info

Publication number
WO2021053778A1
WO2021053778A1 PCT/JP2019/036675 JP2019036675W WO2021053778A1 WO 2021053778 A1 WO2021053778 A1 WO 2021053778A1 JP 2019036675 W JP2019036675 W JP 2019036675W WO 2021053778 A1 WO2021053778 A1 WO 2021053778A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal
film
halogen
substrate
Prior art date
Application number
PCT/JP2019/036675
Other languages
English (en)
French (fr)
Inventor
小川 有人
水野 謙和
篤彦 足谷
篤郎 清野
康太 ▲高▼和
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2019/036675 priority Critical patent/WO2021053778A1/ja
Priority to JP2021546127A priority patent/JP7372336B2/ja
Priority to CN201980099722.8A priority patent/CN114342046A/zh
Priority to TW109128710A priority patent/TWI790469B/zh
Publication of WO2021053778A1 publication Critical patent/WO2021053778A1/ja
Priority to US17/698,593 priority patent/US20220208557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device, a recording medium, and a substrate processing device.
  • a tungsten (W) film is used for the control gate of the NAND flash memory having a three-dimensional structure, and a tungsten hexafluoride (WF 6 ) gas containing W is used for forming the W film.
  • W tungsten
  • WF 6 tungsten hexafluoride
  • a titanium nitride (TiN) film may be provided as a barrier film between the W film and the insulating film (see, for example, Patent Document 1).
  • This TiN film plays a role of enhancing the adhesion between the W film and the insulating film and also plays a role of preventing the fluorine (F) contained in the W film from diffusing into the insulating film, and is a thin film from the viewpoint of wiring resistance. Is desirable.
  • the TiN film will be formed in an island shape, and the adhesion with the W film will deteriorate. Further, F contained in the W film is diffused into the insulating film through the portion where the TiN film is not formed.
  • the object of the present disclosure is to provide a technique capable of forming a film having film continuity.
  • a step of preparing a substrate having a metal-containing film formed on its surface and a step of slimming the metal-containing film by pulse-supplying a halogen-containing gas to the substrate is provided.
  • a film having film continuity can be formed.
  • FIG. 1 It is a vertical cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this disclosure. It is a schematic cross-sectional view of the line AA in FIG. It is the schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this disclosure, and is the figure which shows the control system of the controller by the block diagram. It is a figure which shows the film formation sequence in one Embodiment of this disclosure.
  • (A) is a schematic diagram showing the case where a 15 ⁇ TiN film is formed on a substrate by the film forming step of the above-mentioned film forming sequence
  • (B) and (C) are the film forming of the above-mentioned film forming sequence.
  • FIG. 1 It is a schematic diagram which shows the case where the TiN film of 15 ⁇ was formed on the substrate by a process and a slimming process. It is a figure which shows the modification of the film forming process in the film forming sequence of one Embodiment of this disclosure. It is a figure which shows the modification of the slimming process in the film formation sequence of one Embodiment of this disclosure. It is a figure which shows the modification of the slimming process in the film formation sequence of one Embodiment of this disclosure. (A) and (B) are vertical cross-sectional views showing an outline of a processing furnace of a substrate processing apparatus according to another embodiment of the present disclosure.
  • the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction vessel is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • an inner tube 204 constituting a reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a processing container (reaction container) is mainly composed of an outer tube 203, an inner tube 204, and a manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
  • Nozzles 410, 420, 430, 440, 450 are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, 330, 340, and 350 are connected to the nozzles 410, 420, 430, 440, and 450, respectively.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310, 320, 330, 340, and 350 are provided with mass flow controllers (MFCs) 312, 322, 332, 342, 352, which are flow rate controllers (flow rate control units), in order from the upstream side. Further, the gas supply pipes 310, 320, 330, 340, 350 are provided with valves 314, 324, 334, 344, 354, which are on-off valves, respectively. Gas supply pipes 510, 520, 530, 540, 550 for supplying inert gas are connected to the downstream side of valves 314, 324, 334, 344, 354 of the gas supply pipes 310, 320, 330, 340, 350, respectively. Has been done.
  • MFCs mass flow controllers
  • the flow controller flow control unit MFC 512, 522, 532, 542,552 and the on-off valve valves 514, 524, 534 , 544, 554, respectively.
  • Nozzles 410, 420, 430, 440, 450 are connected to the tips of the gas supply pipes 310, 320, 330, 340, 350, respectively.
  • the nozzles 410, 420, 430, 440, 450 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portion of the nozzles 410, 420, 430, 440, 450 is a channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction. It is provided inside, and is provided in the spare chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
  • the nozzles 410, 420, 430, 440, 450 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a are provided at positions facing the wafer 200. , 420a, 430a, 440a, 450a are provided. As a result, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a, 440a, 450a of the nozzles 410, 420, 430, 440, 450, respectively.
  • a plurality of the gas supply holes 410a, 420a, 430a, 440a, 450a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply holes 410a, 420a, 430a, 440a, 450a are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a, 440a, 450a more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a, 440a, 450a of the nozzles 410, 420, 430, 440, 450 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a, 440a, 450a of the nozzles 410, 420, 430, 440, 450 is a wafer accommodated from the lower part to the upper part of the boat 217. It is supplied to the entire area of 200.
  • the nozzles 410, 420, 430, 440, 450 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are provided so as to extend to the vicinity of the ceiling of the boat 217. Is preferable.
  • a raw material gas (metal-containing gas) containing a metal element is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410.
  • the raw material for example, titanium (TiCl 4 ) containing titanium (Ti) as a metal element and titanium tetrachloride (TiCl 4) as a halogen-based raw material (halide, halogen-based titanium raw material) is used.
  • a reducing gas as a processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
  • a silane-based gas for example, SiH 4
  • SiH 4 acts as a reducing agent.
  • the reaction gas as the processing gas is supplied into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430.
  • the reaction gas for example, ammonia (NH 3 ) gas as an N-containing gas containing nitrogen (N) can be used.
  • an oxygen-containing gas as a processing gas is supplied into the processing chamber 201 via the MFC 342, the valve 344, and the nozzle 440.
  • oxygen-containing gas for example, oxygen (O 2 ) gas, ozone (O 3 ) gas, water vapor (H 2 O) and the like can be used.
  • a halogen-containing gas containing a metal element is supplied into the processing chamber 201 as a processing gas via the MFC 352, the valve 354, and the nozzle 450.
  • the metal element is, for example, tungsten fluoride (WF)
  • the halogen-containing gas is, for example, tungsten hexafluoride (WF 6 ) gas, nitrogen trifluoride (NF 3 ) gas, chlorine trifluoride (ClF 3 ).
  • Gas, fluorine (F 2 ) gas, hydrogen fluoride (HF) gas and the like can be used.
  • nitrogen (N 2 ) gas is used as an inert gas, such as MFC 512, 522, 532, 542,552, and valves 514, 524, 534, 544, 554, respectively.
  • N 2 gas is used as the inert gas.
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenone are described in addition to the N 2 gas.
  • a rare gas such as (Xe) gas may be used.
  • the treated gas supply system may be simply referred to as a gas supply system.
  • the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314, but the nozzle 410 may be included in the raw material gas supply system.
  • the reducing gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system. ..
  • the reaction gas supply system is mainly composed of the gas supply pipe 330, the MFC 332, and the valve 334, but the nozzle 430 may be included in the reaction gas supply system. ..
  • the reaction gas supply system can also be referred to as a nitrogen-containing gas supply system.
  • the oxygen-containing gas supply system is mainly composed of the gas supply pipe 340, the MFC 342, and the valve 344. Considering that the nozzle 440 is included in the oxygen-containing gas supply system. You may. Further, when the halogen-containing gas flows from the gas supply pipe 350, the halogen-containing gas supply system is mainly composed of the gas supply pipe 350, the MFC 352, and the valve 354. Considering that the nozzle 450 is included in the halogen-containing gas supply system. You may.
  • the inert gas supply system is mainly composed of gas supply pipes 510, 520, 530, 540, 550, MFC 512, 522, 532, 542,552, and valves 514, 524, 534, 544, 554.
  • the method of gas supply in the present embodiment is the nozzles 410, 420, arranged in the spare chamber 201a in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is conveyed via 430, 440 and 450. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a, 440a, 450a provided at positions facing the wafers of the nozzles 410, 420, 430, 440, 450.
  • the surface of the wafer 200 is provided by the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, the gas supply hole 430a of the nozzle 430, the gas supply hole 440a of the nozzle 440, and the gas supply hole 450a of the nozzle 450.
  • the raw material gas or the like is ejected in the direction parallel to the above.
  • the exhaust hole (exhaust port) 204a is a side wall of the inner tube 204 and is a through hole formed at a position facing the nozzles 410, 420, 430, 440, 450.
  • a slit formed elongated in the vertical direction. It is a through hole.
  • the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a, 440a, 450a of the nozzles 410, 420, 430, 440, 450 and flowing on the surface of the wafer 200 is inner through the exhaust holes 204a. It flows into the exhaust passage 206 formed by the gap formed between the tube 204 and the outer tube 203. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a, 440a, 450a to the vicinity of the wafer 200 in the processing chamber 201 is in the horizontal direction. After flowing toward, it flows into the exhaust passage 206 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of an exhaust hole 204a, an exhaust passage 206, an exhaust pipe 2311, an APC valve 243, and a pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (transport mechanism) that transports the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to arrange a plurality of wafers, for example 25 to 200 wafers, 200 in a horizontal posture and at intervals in the vertical direction in a state of being centered on each other. ..
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
  • this embodiment is not limited to the above-described embodiment.
  • a heat insulating cylinder formed as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410, 420, 430, 440, 450, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method of manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. are collectively referred to as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d has the above-mentioned MFC 312,322,332,342,352,512,522,532,542,552, valves 314,324,334,344,354,514,524,534,544,554, It is connected to a pressure sensor 245, an APC valve 243, a vacuum pump 246, a heater 207, a temperature sensor 263, a rotation mechanism 267, a boat elevator 115, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 312, 322, 332, 342, 352, 521, 522, 532, 542,552, and valves 314, 324, 334, 344,354 so as to conform to the contents of the read recipe.
  • APC valve 243 opening / closing operation and pressure adjustment operation based on pressure sensor 245 by APC valve 243, temperature adjustment operation of heater 207 based on temperature sensor 263, vacuum pump 246 It is configured to control start and stop, rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, raising and lowering operation of the boat 217 by the boat elevator 115, accommodation operation of the wafer 200 in the boat 217, and the like.
  • the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the TiN film is prepared by preparing a wafer 200 having a TiN film formed of a metal-containing film on the surface and supplying a pulse of WF 6 gas, which is a halogen-containing gas, to the wafer 200 having the TiN film formed. It has a slimming step of slimming.
  • slimming means etching a metal-containing film to make it thinner.
  • the O 2 gas which is an oxygen-containing gas is supplied, and the O 2 gas and the WF 6 gas are alternately supplied.
  • pulse supply means to supply gas intermittently.
  • wafer When the word “wafer” is used in the present specification, it may mean “wafer itself” or “a laminate of a wafer and a predetermined layer, film, etc. formed on the surface thereof". is there.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean “the surface of the wafer itself” or “the surface of a predetermined layer, film, etc. formed on the wafer”. is there.
  • board in the present specification is also synonymous with the use of the term "wafer”.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • TiCl 4 gas supply 1st step
  • the valve 314 is opened to allow the TiCl 4 gas, which is a raw material gas, to flow into the gas supply pipe 310.
  • the flow rate of the TiCl 4 gas is adjusted by the MFC 312, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • SiCl 4 gas is supplied to the wafer 200.
  • the valve 514 is opened at the same time, and an inert gas such as N 2 gas is allowed to flow in the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512 , is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524, 534, 544, 554 are opened, and N 2 is formed in the gas supply pipes 520, 530, 540, 550. Let the gas flow.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320, 330, 340, 350 and the nozzles 420, 430, 440, 450, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply flow rate of the SiCl 4 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.1 to 2.0 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532, 542,552 shall be, for example, a flow rate within the range of 0.1 to 20 slm, respectively.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 300 to 500 ° C.
  • the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas.
  • a Ti-containing layer is formed on the wafer 200 (base film on the surface).
  • the Ti-containing layer may be a Ti layer containing Cl, an adsorption layer of TiCl 4 , or both of them.
  • the valve 314 is closed to stop the supply of the SiCl 4 gas.
  • the APC valve 243 of the exhaust pipe 231 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or TiCl 4 gas remaining in the processing chamber 201 contributes to the formation of the Ti-containing layer. Is excluded from the processing chamber 201.
  • the valves 514, 524, 534, 544, 554 are left open to maintain the supply of N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted or TiCl 4 gas remaining in the treatment chamber 201 after contributing to the formation of the Ti-containing layer from the treatment chamber 201.
  • NH 3 gas supply, 3rd step After removing the residual gas in the processing chamber 201, the valve 334 is opened and NH 3 gas is flowed as a reaction gas into the gas supply pipe 330.
  • the flow rate of the NH 3 gas is adjusted by the MFC 332, is supplied into the processing chamber 201 from the gas supply hole 430a of the nozzle 430, and is exhausted from the exhaust pipe 231.
  • NH 3 gas is supplied to the wafer 200.
  • the valve 534 is opened at the same time to allow N 2 gas to flow into the gas supply pipe 530.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 530 is adjusted by the MFC 532.
  • the N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514, 524, 544, 554 are opened, and N 2 is opened in the gas supply pipes 510, 520, 540, 550. Let the gas flow.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310, 320, 340, 350 and the nozzles 410, 420, 440, 450, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply flow rate of NH 3 gas controlled by the MFC 332 is, for example, a flow rate in the range of 0.1 to 30 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532, 542,552 shall be, for example, a flow rate within the range of 0.1 to 30 slm, respectively.
  • the time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds.
  • the temperature of the heater 207 at this time is set to the same temperature as that of the SiCl 4 gas supply step.
  • the only gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the first step.
  • Ti contained in the Ti-containing layer and N contained in the NH 3 gas are combined to form a TiN layer on the wafer 200.
  • a TiN film having a film continuity of a predetermined thickness (for example, a film thickness thicker than 40 ⁇ ) is formed on the wafer 200.
  • the valve 344 is opened to allow O 2 gas, which is an oxygen-containing gas, to flow into the gas supply pipe 340.
  • the flow rate of the O 2 gas is adjusted by the MFC 342, is supplied into the processing chamber 201 from the gas supply hole 440a of the nozzle 440, and is exhausted from the exhaust pipe 231.
  • O 2 gas is supplied to the wafer 200.
  • the valve 544 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 540.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 540 is adjusted by the MFC 542 , is supplied into the processing chamber 201 together with the O 2 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514, 524, 534, 554 are closed, and the supply of N 2 gas from the nozzles 410, 420, 430, 450 is stopped.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 0.1 to 3990 Pa.
  • the supply flow rate of the O 2 gas controlled by the MFC 342 is, for example, a flow rate in the range of 0.1 to 10 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 542 is, for example, a flow rate in the range of 0.1 to 20 slm.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is kept constant within the range of, for example, 300 to 500 ° C., which is the same as the film forming temperature which is the temperature at the time of the film forming process.
  • the temperature in this step may be set to be different from the film formation temperature.
  • the gas flowing in the processing chamber 201 is O 2 gas.
  • the TiN film on the wafer 200 surface base film
  • TiNO titanium oxynitride
  • the valve 344 is closed to stop the supply of the O 2 gas.
  • the APC valve 243 of the exhaust pipe 231 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or O 2 gas remaining in the processing chamber 201 after contributing to the formation of the TiNO layer is discharged. Exclude from the processing chamber 201.
  • the valve 544 is left open, the valves 514, 524, 534, 554 are opened , and the supply of N 2 gas into the processing chamber 201 is started.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted O 2 gas remaining in the treatment chamber 201 or after contributing to the formation of the TiNO layer from the treatment chamber 201.
  • WF 6 gas supply, 7th step After removing the residual gas in the processing chamber 201, the valve 354 is opened and WF 6 gas is flowed into the gas supply pipe 350 as a halogen-containing gas. The flow rate of the WF 6 gas is adjusted by the MFC 352, the gas is supplied into the processing chamber 201 through the gas supply hole 450a of the nozzle 450, and is exhausted from the exhaust pipe 231. At this time, WF 6 gas is supplied to the wafer 200. At this time, the valve 554 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 550.
  • an inert gas such as N 2 gas
  • the flow rate of the N 2 gas flowing through the gas supply pipe 550 is adjusted by the MFC 552 , is supplied into the processing chamber 201 together with the WF 6 gas, and is exhausted from the exhaust pipe 231. At this time, the valves 514, 524, 534, 544 are closed, and the supply of N 2 gas from the nozzles 410, 420, 430, 440 is stopped.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 0.1 to 6650 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 352 is, for example, a flow rate in the range of 0.01 to 10 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 552 is, for example, a flow rate in the range of 0.1 to 30 slm.
  • the time for supplying the WF 6 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds.
  • the gas flowing in the processing chamber 201 at this time is WF 6 gas.
  • the supply of WF 6 gas etches the TiNO layer formed on the wafer 200 in the fifth step.
  • the TiNO layer on the wafer 200 is etched and has a predetermined thickness (for example, less than 5 to 40 ⁇ ) by performing the cycle of performing the above-mentioned fifth to eighth steps in order one or more times (predetermined number of times (m times)). TiN film is formed.
  • the above cycle is preferably repeated a plurality of times.
  • the removal efficiency of TiWFxOy which is a by-product of the reaction between the WF 6 gas and the TiN layer, can be improved. Further, by supplying a pulse, the slimming amount (etching amount) can be controlled.
  • the wafer 200 is subjected to the cycle.
  • a TiN film having a film continuity of a predetermined thickness is formed.
  • the film forming step may be performed a plurality of times to form a TiN film in a batch, and then the slimming step may be performed.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510 to 550, and is exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
  • Example FIG. 5 (A) is a schematic view showing a case where a 15 ⁇ TiN film is formed on a wafer 200 by the film forming process of FIG. 4 described above using the substrate processing apparatus 10 described above.
  • 5 (B) and 5 (C) show a case where a 15 ⁇ TiN film is formed on the wafer 200 by the film forming step and the slimming step of FIG. 4 described above using the substrate processing apparatus 10 described above. It is a figure.
  • FIG. 5 (A) if an attempt is made to form a 15 ⁇ TiN film on the wafer 200 only by the film forming process, the TiN film will be discontinuously formed on the wafer 200 in an island shape.
  • the surface coverage of the TiN film in this case is 27.8%.
  • FIG. 5 (B) a 50 ⁇ TiN film is formed on the wafer 200 by the film forming step (surface coverage is 100%), and then the slimming step is performed as shown in FIG. 5 (C). By doing so, the TiN film is continuously formed by forming a 15 ⁇ TiN film. The surface coverage in this case is maintained at 100%.
  • a thin film of about 15 ⁇ having film continuity is formed by forming a TiN film having a thick film thickness of about 50 ⁇ on the wafer 200 and then performing etching.
  • a thick TiN film can be formed.
  • etching is performed to a predetermined thickness (thin film thickness with film continuity). ..
  • F fluorine
  • a TiN film having film continuity can be formed.
  • B) The adhesion between the W film and the insulating film can be improved.
  • C) Fluorine (F) contained in the W film can be prevented from diffusing into the insulating film.
  • D) The resistivity can be lowered.
  • Modification example 1 The modification 1 is different from the above-described embodiment in the film forming process. Specifically, performing the SiH 4 gas supplied into the TiCl 4 gas supply in a first step in the process of forming the embodiments described above.
  • FIG. 6 is a diagram showing the timing of gas supply in the film forming process of the first modification applied to the present embodiment. In the following modification, only the differences from the above-described embodiment will be described in detail.
  • TiCl 4 gas supply (TiCl 4 gas supply, 1st step)
  • TiCl 4 gas supply supplies TiCl 4 gas into the process chamber 201.
  • the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas, and the supply of the TiCl 4 gas forms a Ti-containing layer on the wafer 200 (undercoat film on the surface).
  • SiH 4 gas supply A valve 324 is opened after a lapse of a predetermined time from the start of supply of TiCl 4 gas, for example, 0.01 to 5 seconds later, and SiH 4 gas, which is a reducing gas, is flowed into the gas supply pipe 320.
  • the flow rate of SiH 4 gas is adjusted by MFC322, is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the valve 524 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522 , is supplied into the processing chamber 201 together with the SiH 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 534, 544, 554 are opened, and the N 2 gas is introduced into the gas supply pipes 530, 540, 550. Shed.
  • the SiCl 4 gas, the SiH 4 gas, and the N 2 gas are simultaneously supplied to the wafer 200. That is, at least the SiCl 4 gas and the SiH 4 gas have a timing to be supplied at the same time.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 130 to 3990 Pa.
  • the pressure in the processing chamber 201 is lower than 130 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film increases to form a TiSiN film. There is a possibility that it will end up.
  • the pressure in the processing chamber 201 is higher than 3990 Pa, Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the TiN film formed becomes high, and TiSiN becomes high. It may become a film.
  • the supply flow rate of the SiH 4 gas controlled by the MFC 322 is, for example, a flow rate in the range of 0.1 to 5 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532, 542,552 shall be, for example, a flow rate in the range of 0.01 to 20 slm, respectively.
  • the temperature of the heater 207 is set to the same temperature as that of the SiCl 4 gas supply step.
  • the valve 314 of the gas supply pipe 310 is closed to stop the supply of the SiCl 4 gas.
  • N 2 gas is flowed into the gas supply pipes 510, 530, 540 and 550 with the valve 514 kept open.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310, 330, 340, 350 and the nozzles 410, 430, 440, 450, and is exhausted from the exhaust pipe 231.
  • SiH 4 gas and N 2 gas are supplied to the wafer 200.
  • the valve 324 is closed to stop the supply of SiH 4 gas.
  • the APC valve 243 of the exhaust pipe 231 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the unreacted or TiCl 4 gas remaining in the processing chamber 201 contributes to the formation of the Ti-containing layer.
  • SiH 4 gas are removed from the processing chamber 201.
  • the valves 514, 524, 534, 544, 554 are left open to maintain the supply of N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted or TiCl 4 gas and SiH 4 gas remaining in the treatment chamber 201 from the inside of the treatment chamber 201 after contributing to the formation of the Ti-containing layer.
  • a growth inhibitory factor HCl reacts with SiH 4, and is discharged from the process chamber 201 of silicon tetrachloride and (SiCl 4) as H 2.
  • NH 3 gas supply, 3rd step After removing the residual gas in the treatment chamber 201, NH 3 gas is supplied into the treatment chamber 201 by the same treatment procedure as in the third step in the film forming step of the above-described embodiment.
  • a TiN film having a film continuity of a predetermined thickness (for example, a film thickness thicker than 40 ⁇ ) is formed on the wafer 200.
  • Modification 2 The second modification is different from the above-described embodiment in the slimming step. Specifically, the O 2 gas supply in the fifth step and the residual gas removal in the sixth step in the slimming step of the above-described embodiment are not performed.
  • FIG. 7 is a diagram showing the timing of gas supply in the slimming step of the second modification applied to the present embodiment.
  • WF 6 gas supply, 7th step After removing the residual gas in the processing chamber 201, the valve 354 is opened and WF 6 gas is flowed into the gas supply pipe 350 as a halogen-containing gas. The flow rate of the WF 6 gas is adjusted by the MFC 352, the gas is supplied into the processing chamber 201 through the gas supply hole 450a of the nozzle 450, and is exhausted from the exhaust pipe 231. At this time, WF 6 gas is supplied to the wafer 200. At this time, the valve 554 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 550.
  • an inert gas such as N 2 gas
  • the flow rate of the N 2 gas flowing through the gas supply pipe 550 is adjusted by the MFC 552 , is supplied into the processing chamber 201 together with the WF 6 gas, and is exhausted from the exhaust pipe 231. At this time, the valves 514, 524, 534, 544 are closed, and the supply of N 2 gas from the nozzles 410, 420, 430, 440 is stopped.
  • the gas flowing in the processing chamber 201 at this time is WF 6 gas.
  • WF 6 gas By supplying the WF 6 gas, the TiN film formed on the wafer 200 in the film forming process is etched.
  • the TiN layer on the wafer 200 is etched and has a predetermined thickness (for example, less than 5 to 40 ⁇ ). TiN film is formed.
  • the above cycle is preferably repeated a plurality of times.
  • the WF 6 gas in a pulsed manner, it is possible to improve the removal efficiency of TiWFx, which is a by-product of the reaction between the WF 6 gas and the TiN layer. Further, by supplying a pulse, the slimming amount (etching amount) can be controlled, and the same effect as the film forming sequence shown in FIG. 4 can be obtained.
  • Modification example 3 The modification 3 is different from the above-described embodiment in the slimming step. Specifically, the supply of the O 2 gas in the fifth step and the supply of the WF 6 gas in the seventh step in the slimming step of the film formation sequence shown in FIG. 4 described above are performed so as to overlap each other.
  • FIG. 8 is a diagram showing the timing of gas supply in the slimming step of the modification 3 applied to the present embodiment.
  • the same effect as the film formation sequence shown in FIG. 4 can be obtained by the timing of gas supply in this modification, and the TiNO layer on the wafer 200 is etched to have a predetermined thickness (for example, less than 5 to 40 ⁇ ). A TiN film is formed.
  • the O 2 gas and the WF 6 gas may be supplied at the same time.
  • the removal efficiency of TiWFxOy which is a by-product of the reaction between the WF 6 gas and the TiN layer, is achieved. Can be improved. Further, by supplying a pulse, the slimming amount (etching amount) can be controlled.
  • the WF 6 gas is used as the gas containing the halogen element and the metal element as the halogen-containing gas used in the slimming step has been described, but the present disclosure is not limited to this. It is also applicable when a halogen-containing gas containing no metal element is used.
  • the halogen-containing gas containing no metal element include NF 3 gas, ClF 3 gas, F 2 gas, and HF gas.
  • the halogen element is Cl, F, Br or the like
  • the metal element is W, Ti, Ta, Mo, Zr, Hf, Al, Si, Ge, Ga or the like. It is applicable to gases containing these elements.
  • the halogen-containing gas may be a gas further containing an oxygen (O) element. For example, there are MoO 2 Cl 2 , MoO Cl 4, and the like.
  • the step of slimming the TiN film has been described as an example, but it can also be applied to a metal film other than the TiN film.
  • the metal element there are W, Ta, Mo, Zr, Hf, Al, Si, Ge, Ga and the like, elements of the same family as these elements, and transition metals. It can also be applied to films of these elements alone, compound films of these metals and nitrogen (nitride films), compound films of these metals and oxygen (oxide films), and the like.
  • the seventh step, the fifth step, and the seventh step of the above-described embodiment may be performed on these films.
  • the gas supplied in the 7th step and the 5th step is appropriately selected according to the target membrane.
  • an example of forming a film using a substrate processing apparatus which is a batch type vertical apparatus for processing a plurality of substrates at one time has been described, but the present disclosure is not limited to this. It can also be suitably applied to the case of forming a film using a single-wafer type substrate processing apparatus that processes one or several substrates at a time. Further, in the above-described embodiment, an example of forming a thin film by using a substrate processing apparatus having a hot wall type processing furnace has been described, but the present disclosure is not limited to this, and the present disclosure is not limited to this, and has a cold wall type processing furnace. It can also be suitably applied to the case of forming a thin film using a substrate processing apparatus. Even in these cases, the processing conditions can be, for example, the same processing conditions as those in the above-described embodiment.
  • the processing furnace 302 includes a processing container 303 forming the processing chamber 301, a shower head 303s that supplies gas into the processing chamber 301 in a shower shape, and a support base 317 that supports one or several wafers 200 in a horizontal posture.
  • a rotating shaft 355 that supports the support base 317 from below, and a heater 307 provided on the support base 317 are provided.
  • the inlet (gas introduction port) of the shower head 303s has a gas supply port 332a for supplying the above-mentioned raw material gas, a gas supply port 332b for supplying the above-mentioned reaction gas, and a gas supply port for supplying the above-mentioned halogen-containing gas. 332c is connected.
  • a raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 332a.
  • a reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 332b.
  • a gas supply system similar to the halogen-containing gas supply system described above is connected to the gas supply port 332c.
  • the outlet (gas discharge port) of the shower head 303s is provided with a gas dispersion plate that supplies gas in a shower shape in the processing chamber 301.
  • the processing container 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
  • the processing furnace 402 includes a processing container 403 forming the processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container.
  • a lamp heater 407 that irradiates the wafer 200 of the 403 with light, and a quartz window 403w that transmits the light of the lamp heater 407 are provided.
  • the processing container 403 is connected to the gas supply port 432a for supplying the raw material gas, the gas supply port 432b for supplying the reaction gas, and the gas supply port 432c for supplying the halogen-containing gas.
  • a raw material gas supply system similar to the raw material gas supply system of the above-described embodiment is connected to the gas supply port 432a.
  • a reaction gas supply system similar to the reaction gas supply system of the above-described embodiment is connected to the gas supply port 432b.
  • a gas supply system similar to the halogen-containing gas supply system of the above-described embodiment is connected to the gas supply port 432c.
  • the processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
  • a CVD (Chemical Vapor Deposition) apparatus which is an example of a substrate processing apparatus, may be used.
  • film formation can be performed under the same sequence and processing conditions as those in the above-described embodiment.
  • the process recipe (program that describes the treatment procedure, treatment conditions, etc.) used for forming these various thin films is the content of the substrate treatment (film type, composition ratio, film quality, film thickness, treatment procedure, treatment of the thin film to be formed). It is preferable to prepare each individually (multiple preparations are made) according to the conditions, etc.). Then, when starting the substrate processing, it is preferable to appropriately select an appropriate process recipe from a plurality of process recipes according to the content of the substrate processing.
  • the board processing device includes a plurality of process recipes individually prepared according to the content of the board processing via a telecommunication line or a recording medium (external storage device 123) on which the process recipe is recorded. It is preferable to store (install) in the storage device 121c in advance.
  • the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate process recipe from the plurality of process recipes stored in the storage device 121c according to the content of the substrate processing. Is preferable. With this configuration, it becomes possible to form thin films of various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing device in a versatile and reproducible manner. Further, the operation load of the operator (input load of processing procedure, processing condition, etc.) can be reduced, and the board processing can be started quickly while avoiding operation mistakes.
  • the present disclosure can also be realized by, for example, changing the process recipe of the existing substrate processing apparatus.
  • the process recipe according to the present disclosure may be installed on an existing board processing device via a telecommunications line or a recording medium on which the process recipe is recorded, or input / output of the existing board processing device may be input / output. It is also possible to operate the device and change the process recipe itself to the process recipe according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

膜連続性を有する膜を形成することができる。 表面に金属含有膜が形成された基板を準備する工程と、前記基板に対して、ハロゲン含有ガスをパルス供給することにより、前記金属含有膜をスリミングする工程と、を有する。

Description

半導体装置の製造方法、記録媒体及び基板処理装置
 本開示は、半導体装置の製造方法、記録媒体及び基板処理装置に関する。
 3次元構造を持つNAND型フラッシュメモリのコントロールゲートには例えばタングステン(W)膜が用いられており、このW膜の成膜にはWを含む六フッ化タングステン(WF6)ガスが用いられている。また、このW膜と絶縁膜との間にバリア膜として例えば、窒化チタン(TiN)膜を設けることがある(例えば特許文献1参照)。このTiN膜は、W膜と絶縁膜の密着性を高める役割をすると共に、W膜中に含まれるフッ素(F)が絶縁膜へ拡散することを防止する役割を担い、配線抵抗という観点では薄膜とすることが望ましい。
特開2011-66263号公報
 しかし、絶縁膜上に30Å以下の薄膜を形成しようとすると、TiN膜が島状に成膜されてしまい、W膜との密着性が悪くなる。また、TiN膜が形成されていない部分を介してW膜中に含まれるFが絶縁膜中へ拡散してしまう。
 本開示は、膜連続性を有する膜を形成することが可能な技術を提供することを目的とする。
 本開示の一態様によれば、表面に金属含有膜が形成された基板を準備する工程と、前記基板に対して、ハロゲン含有ガスをパルス供給することにより、前記金属含有膜をスリミングする工程と、を有する技術が提供される。
 本開示によれば、膜連続性を有する膜を形成することができる。
本開示の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。 図1におけるA-A線概略横断面図である。 本開示の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一実施形態における成膜シーケンスを示す図である。 (A)は、上述した成膜シーケンスの成膜工程により基板上に15ÅのTiN膜を形成した場合を示す模式図であり、(B)及び(C)は、上述した成膜シーケンスの成膜工程とスリミング工程により基板上に15ÅのTiN膜を形成した場合を示す模式図である。 本開示の一実施形態の成膜シーケンスにおける成膜工程の変形例を示す図である。 本開示の一実施形態の成膜シーケンスにおけるスリミング工程の変形例を示す図である。 本開示の一実施形態の成膜シーケンスにおけるスリミング工程の変形例を示す図である。 (A)及び(B)は、本開示の他の実施形態における基板処理装置の処理炉の概略を示す縦断面図である。
 以下、図1~4を参照しながら説明する。
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属で構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420,430,440,450がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430,440,450には、ガス供給管310,320,330,340,350が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 ガス供給管310,320,330,340,350には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332,342,352がそれぞれ設けられている。また、ガス供給管310,320,330,340,350には、開閉弁であるバルブ314,324,334,344,354がそれぞれ設けられている。ガス供給管310,320,330,340,350のバルブ314,324,334,344,354の下流側には、不活性ガスを供給するガス供給管510,520,530,540,550がそれぞれ接続されている。ガス供給管510,520,530,540,550には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532,542,552及び開閉弁であるバルブ514,524,534,544,554がそれぞれ設けられている。
 ガス供給管310,320,330,340,350の先端部にはノズル410,420,430,440,450がそれぞれ連結接続されている。ノズル410,420,430,440,450は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430,440,450の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420,430,440,450は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430a,440a,450aが設けられている。これにより、ノズル410,420,430,440,450のガス供給孔410a,420a,430a,440a,450aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430a,440a,450aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430a,440a,450aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430a,440a,450aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420,430,440,450のガス供給孔410a,420a,430a,440a,450aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430,440,450のガス供給孔410a,420a,430a,440a,450aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410,420,430,440,450は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。原料としては、例えば金属元素としてのチタン(Ti)を含み、ハロゲン系原料(ハロゲン化物、ハロゲン系チタン原料)としての四塩化チタン(TiCl4)が用いられる。
 ガス供給管320からは、処理ガスとして、還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。還元ガスとしては、例えばシリコン(Si)及び水素(H)を含み、ハロゲンを含まない還元ガスとしての例えばシラン系ガス(例えば、SiH4)ガスを用いることができる。SiH4は還元剤として作用する。
 ガス供給管330からは、処理ガスとして、反応ガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。反応ガスとしては、例えば窒素(N)を含むN含有ガスとしての例えばアンモニア(NH3)ガスを用いることができる。
 ガス供給管340からは、処理ガスとして、酸素含有ガスが、MFC342、バルブ344、ノズル440を介して処理室201内に供給される。酸素含有ガスとしては、例えば酸素(O2)ガス、オゾン(O3)ガス、水蒸気(H2O)等を用いることができる。
 ガス供給管350からは、処理ガスとして、金属元素を含むハロゲン含有ガスが、MFC352、バルブ354、ノズル450を介して処理室201内に供給される。金属元素は、例えばフッ化タングステン(WF)であって、ハロゲン含有ガスとしては、例えば六フッ化タングステン(WF6)ガス、三フッ化窒素(NF3)ガス、三フッ化塩素(ClF3)ガス、フッ素(F2)ガス、フッ化水素(HF)ガス等を用いることができる。
 ガス供給管510,520,530,540,550からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC512,522,532,542,552、バルブ514,524,534,544,554、ノズル410,420,430,440,450を介して処理室201内に供給される。以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310,320,330,340,350、MFC312,322,332,342,352、バルブ314,324,334,344,354、ノズル410,420,430,440,450により処理ガス供給系が構成されるが、ノズル410,420,430,440,450のみを処理ガス供給系と考えてもよい。処理ガス供給系は単にガス供給系と称してもよい。ガス供給管310から原料ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成されるが、ノズル410を原料ガス供給系に含めて考えてもよい。また、ガス供給管320から還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により還元ガス供給系が構成されるが、ノズル420を還元ガス供給系に含めて考えてもよい。また、ガス供給管330から反応ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により反応ガス供給系が構成されるが、ノズル430を反応ガス供給系に含めて考えてもよい。ガス供給管330から反応ガスとして窒素含有ガスを供給する場合、反応ガス供給系を窒素含有ガス供給系と称することもできる。また、ガス供給管340から酸素含有ガスを流す場合、主に、ガス供給管340、MFC342、バルブ344により酸素含有ガス供給系が構成されるが、ノズル440を酸素含有ガス供給系に含めて考えてもよい。また、ガス供給管350からハロゲン含有ガスを流す場合、主に、ガス供給管350、MFC352、バルブ354によりハロゲン含有ガス供給系が構成されるが、ノズル450をハロゲン含有ガス供給系に含めて考えてもよい。また、主に、ガス供給管510,520,530,540,550、MFC512,522,532,542,552、バルブ514,524,534,544,554により不活性ガス供給系が構成される。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室201a内に配置したノズル410,420,430,440,450を経由してガスを搬送している。そして、ノズル410,420,430,440,450のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430a,440a,450aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a、ノズル430のガス供給孔430a、ノズル440のガス供給孔440a、ノズル450のガス供給孔450aにより、ウエハ200の表面と平行方向に向かって原料ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430,440,450に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410,420,430,440,450のガス供給孔410a,420a,430a,440a,450aから処理室201内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410a,420a,430a,440a,450aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属で構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420,430,440,450と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,322,332,342,352,512,522,532,542,552、バルブ314,324,334,344,354,514,524,534,544,554、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,342,352,512,522,532,542,552による各種ガスの流量調整動作、バルブ314,324,334,344,354,514,524,534,544,554の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えばゲート電極を構成する金属膜を形成する工程の一例について、図4を用いて説明する。金属膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本実施形態による基板処理工程(半導体装置の製造工程)では、
 表面に金属含有膜であるTiN膜が形成されたウエハ200を準備する工程と、TiN膜が形成されたウエハ200に対して、ハロゲン含有ガスであるWF6ガスをパルス供給することにより、TiN膜をスリミングするスリミング工程と、を有する。ここで、スリミングとは、金属含有膜をエッチングして薄くすることを意味する。
 また、スリミング工程では、WF6ガスをパルス供給する前に、酸素含有ガスであるO2ガスを供給し、O2ガスとWF6ガスとを交互供給する。
 ここで、パルス供給とは、間欠的にガスを供給することを意味する。
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体」を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面」を意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
[成膜工程]
(TiCl4ガス供給、第1ステップ)
 バルブ314を開き、ガス供給管310内に原料ガスであるTiCl4ガスを流す。TiCl4ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiCl4ガスが供給される。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、TiCl4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430,440,450内へのTiCl4ガスの侵入を防止するために、バルブ524,534,544,554を開き、ガス供給管520,530,540,550内にN2ガスを流す。N2ガスは、ガス供給管320,330,340,350、ノズル420,430,440,450を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC312で制御するTiCl4ガスの供給流量は、例えば0.1~2.0slmの範囲内の流量とする。MFC512,522,532,542,552で制御するN2ガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~500℃の範囲内の温度となるような温度に設定する。
 このとき処理室201内に流しているガスはTiCl4ガスとN2ガスのみである。TiCl4ガスの供給により、ウエハ200(表面の下地膜)上にTi含有層が形成される。Ti含有層は、Clを含むTi層であってもよいし、TiCl4の吸着層であってもよいし、それらの両方を含んでいてもよい。
(残留ガス除去、第2ステップ)
 TiCl4ガスの供給を開始してから所定時間経過後であって例えば0.01~10秒後に、バルブ314を閉じて、TiCl4ガスの供給を停止する。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスを処理室201内から排除する。このときバルブ514,524,534,544,554は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスを処理室201内から排除する効果を高めることができる。
(NH3ガス供給、第3ステップ)
 処理室201内の残留ガスを除去した後、バルブ334を開き、ガス供給管330内に、反応ガスとしてNH3ガスを流す。NH3ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、NH3ガスが供給される。このとき同時にバルブ534を開き、ガス供給管530内にN2ガスを流す。ガス供給管530内を流れたN2ガスは、MFC532により流量調整される。N2ガスはNH3ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410,420,440,450内へのNH3ガスの侵入を防止するために、バルブ514,524,544,554を開き、ガス供給管510,520,540,550内にN2ガスを流す。N2ガスは、ガス供給管310,320,340,350、ノズル410,420,440,450を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC332で制御するNH3ガスの供給流量は、例えば0.1~30slmの範囲内の流量とする。MFC512,522,532,542,552で制御するN2ガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。NH3ガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。このときのヒータ207の温度は、TiCl4ガス供給ステップと同様の温度に設定する。
 このとき処理室201内に流しているガスは、NH3ガスとN2ガスのみである。NH3ガスは、第1ステップでウエハ200上に形成されたTi含有層の少なくとも一部と置換反応する。置換反応の際には、Ti含有層に含まれるTiとNH3ガスに含まれるNとが結合して、ウエハ200上にTiN層が形成される。
(残留ガス除去、第4ステップ)
 TiN層を形成した後、バルブ334を閉じて、NH3ガスの供給を停止する。そして、上述した残留ガス除去と同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。
(所定回数実施)
 上記した第1ステップ~第4ステップを順に行うサイクルを所定回数(n回)行うことにより、ウエハ200上に、所定の厚さ(例えば40Åより厚い膜厚)の膜連続性を有するTiN膜を形成する。
[スリミング工程]
(O2ガス供給、第5ステップ)
 バルブ344を開き、ガス供給管340内に酸素含有ガスであるO2ガスを流す。O2ガスは、MFC342により流量調整され、ノズル440のガス供給孔440aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してO2ガスが供給される。このとき同時にバルブ544を開き、ガス供給管540内にN2ガス等の不活性ガスを流す。ガス供給管540内を流れたN2ガスは、MFC542により流量調整され、O2ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、バルブ514,524,534,554を閉じ、ノズル410,420,430,450からのN2ガスの供給を停止する。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~3990Paの範囲内の圧力とする。MFC342で制御するO2ガスの供給流量は、例えば0.1~10slmの範囲内の流量とする。MFC542で制御するN2ガスの供給流量は、例えば0.1~20slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、成膜工程時の温度である成膜温度と同じ例えば300~500℃の範囲内の温度を一定に保つように設定する。なお、本工程における温度を成膜温度と異なるように設定してもよい。
 このとき処理室201内に流しているガスはO2ガスである。O2ガスの供給により、ウエハ200(表面の下地膜)上のTiN膜が酸化され、TiN膜の表面に酸窒化チタン(TiNO)膜が形成される。
(残留ガス除去、第6ステップ)
 O2ガスの供給を開始してから所定時間経過後にバルブ344を閉じて、O2ガスの供給を停止する。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTiNO層形成に寄与した後のO2ガスを処理室201内から排除する。このときバルブ544は開いたままとして、バルブ514,524,534,554を開いて、N2ガスの処理室201内への供給を開始する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTiNO層形成に寄与した後のO2ガスを処理室201内から排除する効果を高めることができる。
(WF6ガス供給、第7ステップ)
 処理室201内の残留ガスを除去した後、バルブ354を開き、ガス供給管350内に、ハロゲン含有ガスとしてWF6ガスを流す。WF6ガスは、MFC352により流量調整され、ノズル450のガス供給孔450aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、WF6ガスが供給される。このとき同時にバルブ554を開き、ガス供給管550内にN2ガス等の不活性ガスを流す。ガス供給管550内を流れたN2ガスは、MFC552により流量調整され、WF6ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、バルブ514,524,534,544を閉じ、ノズル410,420,430,440からのN2ガスの供給を停止する。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC352で制御するWF6ガスの供給流量は、例えば0.01~10slmの範囲内の流量とする。MFC552で制御するN2ガスの供給流量は、例えば0.1~30slmの範囲内の流量とする。WF6ガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。
 このとき処理室201内に流しているガスは、WF6ガスである。WF6ガスの供給により、第5ステップでウエハ200上に形成されたTiNO層がエッチングされる。
(残留ガス除去、第8ステップ)
 WF6ガスの供給を開始してから所定時間経過後にバルブ354を閉じて、WF6ガスの供給を停止する。
 そして、上述した残留ガス除去と同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のWF6ガスや反応副生成物であるTiWFxOy等を処理室201内から排出する。
(所定回数実施)
 上記した第5ステップ~第8ステップを順に行うサイクルを1回以上(所定回数(m回))行うことにより、ウエハ200上のTiNO層がエッチングされ、所定の厚さ(例えば5~40Å未満)のTiN膜が形成される。上述のサイクルは、複数回繰り返すのが好ましい。
 すなわち、O2ガスとWF6ガスとを交互にパルス供給することにより、WF6ガスとTiN層とが反応した副生成物であるTiWFxOyの除去効率を向上させることができる。また、パルス供給することにより、スリミング量(エッチング量)を制御することができる。
[所定回数実施]
 上記した成膜工程(第1ステップ~第4ステップ)とスリミング工程(第5ステップ~第8ステップ)を順に行うサイクルを1回以上(所定回数(l回))行うことにより、ウエハ200上に所定の厚さの膜連続性を有するTiN膜が形成される。なお、成膜工程を複数回行ってTiN膜を一括して成膜してからスリミング工程を行ってもよい。
(アフターパージおよび大気圧復帰)
 ガス供給管510~550のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)実施例
 図5(A)は、上述した基板処理装置10を用いて、上述した図4の成膜工程によりウエハ200上に15ÅのTiN膜を形成した場合を示す模式図であり、図5(B)及び図5(C)は、上述した基板処理装置10を用いて、上述した図4の成膜工程とスリミング工程によりウエハ200上に15ÅのTiN膜を形成した場合を示す模式図である。
 図5(A)に示すように、成膜工程のみによりウエハ200上に15ÅのTiN膜を形成しようとすると、TiN膜はウエハ200上に島状に不連続に形成されてしまう。この場合のTiN膜の表面被覆率は27.8%である。一方、図5(B)に示すように、成膜工程によりウエハ200上に50ÅのTiN膜を形成(表面被覆率100%)してから、図5(C)に示すように、スリミング工程を行って、15ÅのTiN膜を形成することにより、TiN膜は連続的に形成される。そして、この場合の表面被覆率は100%に保持される。
 つまり、ウエハ200上に15Å程度の薄膜を形成する場合に、ウエハ200上に50Å程度の厚い膜厚のTiN膜を形成してからエッチングを行なうことにより、膜連続性を有する15Å程度の薄い膜厚のTiN膜を形成することができる。
 すなわち、本実施形態によれば、ウエハ200上に所定厚さ(膜連続性のある厚い膜厚)のTiN膜を形成した後に、所定厚さ(膜連続性のある薄い膜厚)までエッチングする。これにより、TiN膜の抵抗率を下げつつ、W膜と絶縁膜の密着性を高めることができ、W膜中に含まれるフッ素(F)が絶縁膜へ拡散することを防止することができる。
(4)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)膜連続性を有するTiN膜を形成することができる。
(b)W膜と絶縁膜の密着性を高めることができる。
(c)W膜中に含まれるフッ素(F)が絶縁膜へ拡散することを防止することができる。
(d)抵抗率を下げることができる。
(5)変形例
(変形例1)
 変形例1は、上述した実施形態と成膜工程が異なる。具体的には、上述した実施形態の成膜工程における第1ステップにおいてTiCl4ガス供給中にSiH4ガス供給を行う。図6は、本実施形態に適用される変形例1の成膜工程におけるガス供給のタイミングを示す図である。以下の変形例では、上述の実施形態と異なる点のみ詳述する。
[成膜工程]
(TiCl4ガス供給、第1ステップ)
 上述した実施形態の成膜工程の第1ステップにおけるTiCl4ガス供給と同様の処理手順により、TiCl4ガスを処理室201内に供給する。このとき処理室201内に流しているガスはTiCl4ガスとN2ガスのみであり、TiCl4ガスの供給により、ウエハ200(表面の下地膜)上にTi含有層が形成される。
(SiH4ガス供給)
 TiCl4ガスの供給開始から所定時間経過後であって例えば0.01~5秒後に、バルブ324を開き、ガス供給管320内に還元ガスであるSiH4ガスを流す。SiH4ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、SiH4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル430,440,450内へのTiCl4ガスとSiH4ガスの侵入を防止するために、バルブ534,544,554を開き、ガス供給管530,540,550内にN2ガスを流す。このとき、ウエハ200に対してTiCl4ガスとSiH4ガスとN2ガスが同時に供給されることとなる。すなわち少なくともTiCl4ガスとSiH4ガスとは同時に供給されるタイミングを有する。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば130~3990Paの範囲内の圧力とする。処理室201内の圧力が130Paより低いと、SiH4ガスに含まれるSiがTi含有層に進入し、成膜されるTiN膜に含まれる膜中のSi含有率が高くなってTiSiN膜となってしまう可能性がある。処理室201内の圧力が3990Paより高い場合も同様に、SiH4ガスに含まれるSiがTi含有層に進入し、成膜されるTiN膜に含まれる膜中のSi含有率が高くなってTiSiN膜となってしまう可能性がある。このように、処理室201内の圧力は低すぎても高すぎても、成膜される膜の元素組成が変化してしまう。MFC322で制御するSiH4ガスの供給流量は、例えば0.1~5slmの範囲内の流量とする。MFC512,522,532,542,552で制御するN2ガスの供給流量は、それぞれ例えば0.01~20slmの範囲内の流量とする。このときヒータ207の温度は、TiCl4ガス供給ステップと同様の温度に設定する。
 TiCl4ガスの供給を開始してから所定時間経過後であって例えば0.01~10秒後に、ガス供給管310のバルブ314を閉じて、TiCl4ガスの供給を停止する。このとき、ノズル410内へのSiH4ガスの侵入を防止するために、バルブ514を開いたままとして、ガス供給管510,530,540,550内にN2ガスを流す。N2ガスは、ガス供給管310,330,340,350、ノズル410,430,440,450を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してSiH4ガスとN2ガスが供給されることとなる。
(残留ガス除去、第2ステップ)
 SiH4ガスの供給を開始してから所定時間経過後であって例えば0.01~60秒後にバルブ324を閉じて、SiH4ガスの供給を停止する。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスとSiH4ガスを処理室201内から排除する。このときバルブ514,524,534,544,554は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiCl4ガスとSiH4ガスを処理室201内から排除する効果を高めることができる。ここで、成長阻害要因であるHClがSiH4と反応し、四塩化ケイ素(SiCl4)とH2として処理室201内から排出される。
(NH3ガス供給、第3ステップ)
 処理室201内の残留ガスを除去した後、上述した実施形態の成膜工程における第3ステップと同様の処理手順でNH3ガスを処理室201内に供給する。
(残留ガス除去、第4ステップ)
 NH3ガスの供給を開始してから所定時間経過後にバルブ334を閉じて、NH3ガスの供給を停止する。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、上述した実施形態の成膜工程における第4ステップと同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。
(所定回数実施)
 上記した第1ステップ~第4ステップを順に行うサイクルを所定回数(n回)行うことにより、ウエハ200上に、所定の厚さ(例えば40Åより厚い膜厚)の膜連続性を有するTiN膜を形成する。
 そして、本変形例においても、上述した実施形態と同様にスリミング工程を行うことにより、図4に示す成膜シーケンスと同様の効果が得られる。
(変形例2)
 変形例2は、上述した実施形態とスリミング工程が異なる。具体的には、上述した実施形態のスリミング工程における第5ステップのO2ガス供給と、第6ステップの残留ガス除去を行わない。図7は、本実施形態に適用される変形例2のスリミング工程におけるガス供給のタイミングを示す図である。
(WF6ガス供給、第7ステップ)
 処理室201内の残留ガスを除去した後、バルブ354を開き、ガス供給管350内に、ハロゲン含有ガスとしてWF6ガスを流す。WF6ガスは、MFC352により流量調整され、ノズル450のガス供給孔450aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、WF6ガスが供給される。このとき同時にバルブ554を開き、ガス供給管550内にN2ガス等の不活性ガスを流す。ガス供給管550内を流れたN2ガスは、MFC552により流量調整され、WF6ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、バルブ514,524,534,544を閉じ、ノズル410,420,430,440からのN2ガスの供給を停止する。
 このとき処理室201内に流しているガスは、WF6ガスである。WF6ガスの供給により、成膜工程でウエハ200上に形成されたTiN膜がエッチングされる。
(残留ガス除去、第8ステップ)
 WF6ガスの供給を開始してから所定時間経過後にバルブ354を閉じて、WF6ガスの供給を停止する。
 そして、上述したスリミング工程における第8ステップと同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のWF6ガスや反応副生成物であるTiWFx等を処理室201内から排出する。
(所定回数実施)
 上記した第7ステップ及び第8ステップを順に行うサイクルを1回以上(所定回数(m回))行うことにより、ウエハ200上のTiN層がエッチングされ、所定の厚さ(例えば5~40Å未満)のTiN膜が形成される。上述のサイクルは、複数回繰り返すのが好ましい。
 すなわち、WF6ガスをパルス供給することにより、WF6ガスとTiN層とが反応した副生成物であるTiWFxの除去効率を向上させることができる。また、パルス供給することにより、スリミング量(エッチング量)を制御することができ、図4に示す成膜シーケンスと同様の効果が得られる。
(変形例3)
 変形例3は、上述した実施形態とスリミング工程が異なる。具体的には、上述した図4に示す成膜シーケンスのスリミング工程における第5ステップのO2ガスの供給と第7ステップのWF6ガスの供給を重なるように行う。図8は、本実施形態に適用される変形例3のスリミング工程におけるガス供給のタイミングを示す図である。
 すなわち、本変形例におけるガス供給のタイミングによっても、図4に示す成膜シーケンスと同様の効果が得られ、ウエハ200上のTiNO層がエッチングされ、所定の厚さ(例えば5~40Å未満)のTiN膜が形成される。なお、O2ガスの供給とWF6ガスの供給を同時に行ってもよい。
 すなわち、O2ガスの供給とWF6ガスの供給とが重なるように供給し、WF6ガスをパルス供給することにより、WF6ガスとTiN層とが反応した副生成物であるTiWFxOyの除去効率を向上させることができる。また、パルス供給することにより、スリミング量(エッチング量)を制御することができる。
 なお、上記実施形態では、スリミング工程で用いるハロゲン含有ガスとしてのハロゲン元素と金属元素を含むガスとしてWF6ガスを用いる場合を用いて説明したが、本開示はこれに限定されるものではなく、金属元素を含まないハロゲン含有ガスを用いる場合にも適用可能である。金属元素を含まないハロゲン含有ガスとしては、例えば、NF3ガス、ClF3ガス、F2ガス、HFガス等がある。なお、ハロゲン元素は、Cl、F、Br等であり、金属元素は、W、Ti、Ta、Mo、Zr、Hf、Al、Si、Ge、Ga等がある。これらの元素を含むガスに適用可能である。なお、ハロゲン含有ガスは、更に酸素(O)元素を含むガスであっても良い。例えば、MoO2Cl2、MoOCl4等がある。
 また、上記実施形態では、スリミング工程で用いる酸素含有ガスとしてO2ガスを用いる場合を用いて説明したが、本開示はこれに限定されるものではなく、O3ガス、H2Oガス等の酸素含有ガスを用いる場合に適用可能である。
 また、上記実施形態では、TiN膜をスリミングする工程を例に説明したが、TiN膜以外の金属膜にも適用することができる。例えば、金属元素としては、W、Ta、Mo、Zr、Hf、Al、Si、Ge、Ga等又は、これら元素と同族の元素や遷移金属がある。これら元素単体の膜や、これら金属と窒素との化合物膜(窒化膜)、これら金属と酸素との化合物膜(酸化膜)等にも適用することが可能である。これら膜に上記実施形態の第7ステップと、第5ステップと第7ステップとを行なえばよい。第7ステップと、第5ステップで供給するガスは、対象の膜に合わせて適宜選択する。
 また、上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本開示はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する例について説明したが、本開示はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。これらの場合においても、処理条件は、例えば上述の実施形態と同様な処
理条件とすることができる。
 例えば、図9(A)に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内にガスをシャワー状に供給するシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレット(ガス導入口)には、上述の原料ガスを供給するガス供給ポート332aと、上述の反応ガスを供給するガス供給ポート332bと、上述のハロゲン含有ガスを供給するガス供給ポート332cが接続されている。ガス供給ポート332aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート332bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。ガス供給ポート332cには、上述のハロゲン含有ガス供給系と同様のガス供給系が接続されている。シャワーヘッド303sのアウトレット(ガス排出口)には、処理室301内にガスをシャワー状に供給するガス分散板が設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。
 また例えば、図9(B)に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本開示は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持台417と、支持台417を下方から支持する回転軸455と、処理容器403のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、上述の原料ガスを供給するガス供給ポート432aと、上述の反応ガスを供給するガス供給ポート432bと、上述のハロゲン含有ガスを供給するガス供給ポート432cが接続されている。ガス供給ポート432aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート432bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。ガス供給ポート432cには、上述の実施形態のハロゲン含有ガス供給系と同様のガス供給系が接続されている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。
 また、TiN膜の成膜は、基板処理装置の一例であるCVD(Chemical Vapor Deposition)装置を用いてもよい。
 これらの基板処理装置を用いる場合においても、上述の実施形態と同様なシーケンス、処理条件にて成膜を行うことができる。
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
 また、本開示は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本開示に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本開示に係るプロセスレシピに変更したりすることも可能である。
 以上、本開示の種々の典型的な実施形態を説明してきたが、本開示はそれらの実施形態に限定されず、適宜組み合わせて用いることもできる。
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室

Claims (18)

  1.  表面に金属含有膜が形成された基板を準備する工程と、
     前記基板に対して、ハロゲン含有ガスをパルス供給することにより、前記金属含有膜をスリミングする工程と、
    を有する半導体装置の製造方法。
  2.  前記ハロゲン含有ガスは、六フッ化タングステン、三フッ化窒素、三フッ化塩素、フッ素、フッ化水素のいずれかである請求項1に記載の半導体装置の製造方法。
  3.  前記ハロゲン含有ガスは、金属を含む請求項1又は2に記載の半導体装置の製造方法。
  4.  前記金属は、タングステンであり、前記ハロゲンは、フッ素である請求項3記載の半導体装置の製造方法。
  5.  前記金属含有膜をスリミングする工程では、前記ハロゲン含有ガスをパルス供給する前に、前記基板に対して、酸素含有ガスを供給する請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。
  6.  前記酸素含有ガスは、酸素、オゾン、水蒸気のいずれかを含む請求項5に記載の半導体装置の製造方法。
  7.  前記金属含有膜をスリミングする工程では、前記基板に対して、前記酸素含有ガスと前記ハロゲン含有ガスとを交互に供給する請求項5又は6に記載の半導体装置の製造方法。
  8.  前記金属含有膜をスリミングする工程前に、金属とハロゲンを含むガスの供給と窒素含有ガスの供給とを所定回数行う、若しくは、金属とハロゲンを含むガス供給とシラン系ガスの供給と窒素含有ガスの供給とを所定回数行うことにより前記基板上に前記金属含有膜として金属窒化膜を形成する工程を有する請求項1乃至7のいずれか一項に記載の半導体装置の製造方法。
  9.  前記金属含有膜をスリミングする工程では、前記基板に対して、酸素含有ガスの供給とハロゲン含有ガスの供給とが重なるように供給する請求項1乃至8のいずれか一項に記載の半導体装置の製造方法。
  10.  前記金属含有膜は、金属窒化膜を含む請求項1乃至9のいずれか一項に記載の半導体装置の製造方法。
  11.  前記金属含有膜は、金属酸化膜を含む請求項1乃至9のいずれか一項に記載の半導体装置の製造方法。
  12.  前記金属含有膜は、金属単体膜を含む請求項1乃至9のいずれか一項に記載の半導体装置の製造方法。
  13.  基板処理装置の処理室内に表面に金属含有膜が形成された基板を準備させる手順と、
     前記基板に対して、ハロゲン含有ガスをパルス供給することにより、前記金属含有膜をスリミングする手順と、
     をコンピュータにより前記基板処理装置に実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒体。
  14.  前記金属含有膜をスリミングする手順では、前記ハロゲン含有ガスをパルス供給する前に、酸素含有ガスを供給する請求項13に記載の記録媒体。
  15.  前記金属含有膜をスリミングする手順では、前記基板に対して、前記酸素含有ガスと前記ハロゲン含有ガスとを交互に供給する請求項13に記載の記録媒体。
  16.  基板を収容する処理室と、
     前記処理室内にガスを供給するガス供給系と、
     前記処理室内を排気する排気系と、
     前記ガス供給系、前記排気系を制御して、前記処理室内に収容された金属含有膜を有する基板に対して、ハロゲン含有ガスをパルス供給することにより、前記金属含有膜をスリミングするよう制御することが可能なように構成される制御部と、
     を有する基板処理装置。
  17.  前記制御部は、前記ハロゲン含有ガスをパルス供給する前に、酸素含有ガスを供給するよう制御することが可能なように構成される請求項16に記載の基板処理装置。
  18.  前記制御部は、前記金属含有膜をスリミングする際に、前記基板に対して、前記酸素含有ガスと前記ハロゲン含有ガスとを交互に供給するよう制御することが可能なように構成される請求項16に記載の基板処理装置。
PCT/JP2019/036675 2019-09-19 2019-09-19 半導体装置の製造方法、記録媒体及び基板処理装置 WO2021053778A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/036675 WO2021053778A1 (ja) 2019-09-19 2019-09-19 半導体装置の製造方法、記録媒体及び基板処理装置
JP2021546127A JP7372336B2 (ja) 2019-09-19 2019-09-19 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
CN201980099722.8A CN114342046A (zh) 2019-09-19 2019-09-19 半导体装置的制造方法、记录介质和基板处理装置
TW109128710A TWI790469B (zh) 2019-09-19 2020-08-24 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置
US17/698,593 US20220208557A1 (en) 2019-09-19 2022-03-18 Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036675 WO2021053778A1 (ja) 2019-09-19 2019-09-19 半導体装置の製造方法、記録媒体及び基板処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,593 Continuation US20220208557A1 (en) 2019-09-19 2022-03-18 Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2021053778A1 true WO2021053778A1 (ja) 2021-03-25

Family

ID=74884423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036675 WO2021053778A1 (ja) 2019-09-19 2019-09-19 半導体装置の製造方法、記録媒体及び基板処理装置

Country Status (5)

Country Link
US (1) US20220208557A1 (ja)
JP (1) JP7372336B2 (ja)
CN (1) CN114342046A (ja)
TW (1) TWI790469B (ja)
WO (1) WO2021053778A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774884B (zh) * 2022-04-28 2024-02-27 北京北方华创微电子装备有限公司 半导体工艺炉的炉门及半导体工艺炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270509A (ja) * 2007-04-20 2008-11-06 Nec Electronics Corp 半導体装置の製造方法
JP2009043973A (ja) * 2007-08-09 2009-02-26 Tokyo Electron Ltd 半導体装置の製造方法、半導体基板の処理装置及び記憶媒体
JP2016058478A (ja) * 2014-09-08 2016-04-21 マイクロン テクノロジー, インク. 半導体記憶装置の製造方法
JP2017063186A (ja) * 2015-08-19 2017-03-30 ラム リサーチ コーポレーションLam Research Corporation タングステンおよび他の金属の原子層エッチング
JP2018041886A (ja) * 2016-09-09 2018-03-15 株式会社日立ハイテクノロジーズ エッチング方法およびエッチング装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348496B2 (ja) * 1993-12-28 2002-11-20 ソニー株式会社 配線構造の形成方法
US8980726B2 (en) * 2013-01-25 2015-03-17 Applied Materials, Inc. Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers
WO2017099718A1 (en) * 2015-12-08 2017-06-15 Intel Corporation Atomic layer etching of transition metals by halogen surface oxidation
TWI733850B (zh) * 2016-07-27 2021-07-21 美商應用材料股份有限公司 使用沉積/蝕刻技術之無接縫溝道填充
US10566211B2 (en) * 2016-08-30 2020-02-18 Lam Research Corporation Continuous and pulsed RF plasma for etching metals
JP7149788B2 (ja) * 2018-09-21 2022-10-07 東京エレクトロン株式会社 成膜方法及び成膜装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270509A (ja) * 2007-04-20 2008-11-06 Nec Electronics Corp 半導体装置の製造方法
JP2009043973A (ja) * 2007-08-09 2009-02-26 Tokyo Electron Ltd 半導体装置の製造方法、半導体基板の処理装置及び記憶媒体
JP2016058478A (ja) * 2014-09-08 2016-04-21 マイクロン テクノロジー, インク. 半導体記憶装置の製造方法
JP2017063186A (ja) * 2015-08-19 2017-03-30 ラム リサーチ コーポレーションLam Research Corporation タングステンおよび他の金属の原子層エッチング
JP2018041886A (ja) * 2016-09-09 2018-03-15 株式会社日立ハイテクノロジーズ エッチング方法およびエッチング装置

Also Published As

Publication number Publication date
CN114342046A (zh) 2022-04-12
JPWO2021053778A1 (ja) 2021-03-25
US20220208557A1 (en) 2022-06-30
TWI790469B (zh) 2023-01-21
TW202125621A (zh) 2021-07-01
JP7372336B2 (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6980106B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
KR102376835B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US20230238244A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
US20210388487A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220208557A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JPWO2019186636A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2022064549A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP7101204B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
WO2021053761A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP7324740B2 (ja) 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2018061109A1 (ja) 半導体装置の製造方法
JP7110468B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法。
JP7179962B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2020188632A1 (ja) 半導体装置の製造方法、記録媒体および基板処理装置
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
CN117716062A (zh) 半导体装置的制造方法、基板处理装置、程序以及涂布方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946117

Country of ref document: EP

Kind code of ref document: A1