WO2004009830A1 - Cmp-n-アセチルノイラミン酸の製造法 - Google Patents

Cmp-n-アセチルノイラミン酸の製造法 Download PDF

Info

Publication number
WO2004009830A1
WO2004009830A1 PCT/JP2003/000258 JP0300258W WO2004009830A1 WO 2004009830 A1 WO2004009830 A1 WO 2004009830A1 JP 0300258 W JP0300258 W JP 0300258W WO 2004009830 A1 WO2004009830 A1 WO 2004009830A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmp
neuac
synthase
epimerase
acid
Prior art date
Application number
PCT/JP2003/000258
Other languages
English (en)
French (fr)
Inventor
Toshitada Noguchi
Tomoki Hamamoto
Original Assignee
Yamasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002208987A external-priority patent/JP3833584B2/ja
Application filed by Yamasa Corporation filed Critical Yamasa Corporation
Priority to US10/521,576 priority Critical patent/US7955825B2/en
Priority to AU2003201882A priority patent/AU2003201882A1/en
Priority to EP03700563A priority patent/EP1541693A4/en
Priority to CA002492838A priority patent/CA2492838A1/en
Priority to JP2004522712A priority patent/JPWO2004009830A1/ja
Publication of WO2004009830A1 publication Critical patent/WO2004009830A1/ja
Priority to US13/049,381 priority patent/US20110207179A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/305Pyrimidine nucleotides

Definitions

  • the present invention relates to a modified method for producing C C- ⁇ -acetylneuraminic acid (CMP—NeuAc), which is an essential raw material for sugar chain synthesis.
  • CMP—NeuAc C C- ⁇ -acetylneuraminic acid
  • the sialic acid ⁇ 'sugar chain which contains N acetyl neuraminic acid (NeAc) at the end, is a sugar chain that performs important functions such as serving as a receptor in cell contact and virus infection. .
  • Sialic acid-containing sugar chains are generally synthesized by the catalysis of sialyltransferase.
  • Sialyltransferase is an enzyme that transfers sialic acid to a receptor, such as a sugar chain, using C ⁇ ⁇ -acetylneuraminic acid (C ⁇ N Neu ⁇ c) as a sugar donor.
  • CMP NeuAc which is available as a sugar donor, can be supplied at a very low level, in terms of quantity, and even at a reagent level.
  • CMP-NeuAc As a method for producing CMP-NeuAc, a method is described in which cytidine 5'-triphosphate (CTP) and Neu ⁇ c are used as substrates and are catalyzed by CMP-Neu ⁇ c synthase (Appl. Microbiol. Riotochnol., 4, 59 ⁇ 67 (1995)). However, since CTP and Ne U Ac as the raw materials are ' ⁇ , they are used as a raw material (CMP-N synthesized as a raw material). cu ⁇ c must also be a valuable reagent.
  • GlcNAc to ManNAc A method for producing from GlcNAc by using N acetyl darcosamine (G 1 c ⁇ c) 2 -epimerase and Ne 11 Ac lyase or Ne iiAc synthase which catalyze the conversion to 5/26399, JP-A-3-180190-, and JP-A-200-13698 '2- are reported.
  • the method of []) is expensive in terms of Man N ⁇ c
  • the method of (2) is a method in which inexpensive G 1 c ⁇ c is used as a material, but G 1 c ⁇ It is complicated to produce Ma ⁇ ⁇ ⁇ c from the compound of c and Ma ⁇ ⁇ c. was there.
  • the G1c ⁇ c2-epimerase which is obtained by the method of (3) needs TPTP, so it is necessary to add expensive ⁇ p It is necessary to produce ATP from adenine, which is a precursor of D-P, by flowing microbes; this is not a satisfactory method.
  • the present inventors examined the synthesis of NeuAc by the in vivo enzyme of Escherichia coli using G1cNAc as a substrate.NeuAc was hardly formed, but G1cNAc was Since it was converted to 1c ⁇ c6-phosphate (G1cNAc-6P), an attempt was made to construct an NcuAc synthesis system from G1cNAc by the pathway shown below.
  • the present invention relates to a reaction system containing N-acetylglucosamine (G 1 cNAc), pyruvate and cytidine 5′-monophosphate (CMP), a yeast orchid, N-acetyldarcosamine-6-phosphate 2- Epimerase (G1c ⁇ c—6P2-epimerase), N-acetylneuraminic acid lyase (NeuAc lyase), and CMP—N-acetylneuraminic acid synthase ( The present invention relates to a method for producing CMP-N-acetylneuraminic acid (CMP-NeuAc), characterized by adding and reacting CMP-Neu ⁇ c synth.
  • CMP-NeuAc CMP—N-acetylneuraminic acid
  • the present invention provides a method for reacting N--acetylacetylchocosamine (G 1 cNAc) and cytidine 5′-monophosphate (CMP), comprising: (G1c ⁇ C6 ⁇ 2-epimera ... ze), acetylneuraminic acid synthase (NeuAc synthetase-ze) and CMPN-acetylneuraminic acid synthase (CMP-Neu ⁇ c synth), and reacts.
  • G 1 cNAc N--acetylacetylchocosamine
  • CMP cytidine 5′-monophosphate
  • the r-reaction pathway of CMP—NcuAc is as follows: ( ⁇ ) a method using Ncu ⁇ c lyase and (B) a method using Neu ⁇ c synthase. Method.
  • PDP phosphoenol pyruvate
  • PI ' P
  • N-Acetyldarcosamine-6-phosphate 2-epimerase (G1cNAc-6P2-epimerase) to be added to the reaction system of the above (A) and (B) is defined as G in the above 1.
  • l cNAc 6-me ans an activity that catalyzes the conversion reaction of phosphoric acid to ManN ⁇ c 6 -phosphate, and N-acetyl-neuraminic acid is added to the reaction system of (A) above.
  • Ne ec synthase refers to a substance which has the activity of catalyzing the reaction of synthesizing N [, uAc using the above-mentioned ManN-c and pyruvic acid as a substance:
  • the N-acetyl neuraminic acid synthase (Ne ec synthase) to be added to the reaction system of the above (B) is the above-mentioned MaNAc and phosphoeno- 'rubirubic acid Adds to the reaction system of ( ⁇ ) and ( ⁇ ) the taste that catalyzes the reaction that forms N cu ⁇ c based on (PK).
  • CMP-N-AcN-Synthase is a catalyst that catalyzes the reaction of forming CMP-Ne11Ac using NcuAc and CTP as substrates in the above (3). It means something that shows sex.
  • Examples of those having the enzyme activity include cells having the activity (including the transformant) or a processed product thereof. From the viewpoint of simplicity of preparation, etc., those from microorganisms such as microorganisms are used. Is a good capital.
  • G1cNAc-6P2epimerase, N-acetylneuraminic acid lyase, N-acetylneuraminic acid synthase and CMP-NeuAc synthase Ize is a known enzyme and can be prepared by a conventional method.
  • the enzyme gene group J. Bacteriol., 181, 47-54, 1999, J. Bactcriol., 181, 4526 4532, 1999, Nucleic Acids. Res., 13 , 8843 8852, 1985, Agric. Biol. Chem., 50, 2155-2158, 1986, FEMS Microbiol. Lett., 75, 161-166, 1992, J. Biol. Chem., 271, 15373—15380, 1996, J. Biol. Chem., 264, 14769-14774, 1989, J. Bacteriol., 177, 312 319, 1995, Mol. Microbiol., 35, 1120-1134, 2000). It is preferable to use a so-called recombinant I) NII method using a microorganism expressing a large amount of E. coli.
  • cells obtained by co-expressing two or more genes or processed products thereof can be used.
  • GlcNAc-6P2-epimerase and N-alpha are used.
  • the use of the enhanced form K transformant is preferred, but not limited to this.
  • Cloning of fc-cloth, cloned 1) Preparation of a vector obtained by flowing a fragment, preparation of a drunk protein with U-like properties using expression vectors
  • the technology in the field of molecular biology is a well-known technology.For example, physically, for example, ⁇ Molecular Cloningj (Maniat is et al., Ed., Old Spring Harbor Laboratories, Cold Spring Harbor , Now York (1982)).
  • a probe is synthesized based on the reported nucleotide sequence and contains a gene encoding an enzymatic protein that has a drunking activity that is more desirable than the DNA of the microorganism. It is only necessary to clean the DNA fragment.
  • Escherichia coli it is preferable to use Escherichia coli for operability and simplicity.
  • various plasmid vectors, phage vectors and the like can be used, but are capable of replication in Escherichia coli, have appropriate drug-resistant markers and specific restriction enzyme cleavage sites, It is desirable to use a plasmid vector with a high copy number in the cells.
  • Specific examples include pBR322 (Gene, 2, 95 (1975)), pUC18, pUC19 (Gene, 33, 103 (1985)) and the like.
  • the intestinal orchid is transformed into K using the prepared recombinant vector.
  • Major colonic orchids include, for example, recombinant I) K12 strain, C600 orchid, JM105 orchid, JM] 09 orchid (Gene, 33) used in NA experiments. , 103 119 (1985)).
  • Large intestine orchid introduced with lipogenic alterations related to pyruvate metabolism to reduce pyruvate metabolism other than NeuAc synthesis (for example, W1851ip2 (ATCC256445))
  • Many methods for transforming Escherichia coli have already been reported, and a method in which plasmid is introduced into the body by treatment with calcium chloride at low temperature (J. Ml. Biol., 53, 159 (1970)) For example, E. coli can be transformed into H-form.
  • the obtained transformant is grown in a medium capable of growing the microorganism, and furthermore, expression of the cloned protein having the desired enzymatic activity is induced, and the enzyme is introduced into the plant.
  • the culture is carried out until the protein is accumulated in large amounts.
  • the culture of the transformant is performed using a medium containing nutrients necessary for the growth of the cow, such as the 3 ⁇ 4 ⁇ source and the nitrogen source.
  • a medium containing nutrients necessary for the growth of the cow such as the 3 ⁇ 4 ⁇ source and the nitrogen source.
  • a medium containing nutrients necessary for the growth of the cow such as the 3 ⁇ 4 ⁇ source and the nitrogen source.
  • broth medium LB medium (1% tryptone, 0.5% yeast extract, 1% salt) or 2XYT medium
  • the culture can be performed with aeration and agitation, and if a plasmid is used as the vector, appropriate antibiotics (depending on the drug resistance marker of the plasmid) can be used to prevent the plasmid from dropping off during the culture. , Ampicillin, kanamycin, etc.) in an appropriate amount to the culture medium.
  • Cells having the desired enzyme activity can be obtained by centrifuging the culture obtained by the above method.
  • Min ⁇ away it can be exemplified recovered by solid-liquid separation means such as membrane separation.
  • the collected cells are subjected to mechanical destruction (using a single ring blender, French press, homogenizer, mortar, etc.), freeze-thaw, autolysis, drying (freeze drying, air drying, etc.), enzyme treatment (lysozyme) ), Ultrasonic treatment, chemical treatment (by acid, alkali treatment, etc.), etc.
  • Crude yeast obtained by subjecting the W component having an enzymatic activity to ordinary enzyme purification means salt-out treatment, iso-point precipitation, organic solvent precipitation, dialysis, mouth chromatography, etc.
  • Rice or refined yeast can also be used as orchid rest.
  • the drunk used for the conversion from c c ⁇ to c ⁇ ⁇ is a commercially available n Or, it may be wine yeast, which is extremely advantageous in that the process of body production can be omitted. Either yeast cells or dried yeast cells can be used. However, it is preferable to use dried yeast cells from the viewpoint of reaction yield and ease of handling.
  • G 1 c NAc, pyruvic acid and CMP used in the CMP-Ne uAc synthesis reaction are commercially available, and these commercially available products can be used.
  • the concentration to be used can be appropriately set, for example, from the range of 1 to 5000 mM, preferably 10 to 1000 mM.
  • the synthesis reaction of CMP—Ne uAc is performed by adding GlcNAc—6P2-epimerase, NeuAc lyase, and CMP—Neu to a reaction system containing GlcNAc, CMP, and pyruvate.
  • Ac synthase is added in an amount of 0.2 mg or more, preferably 2 to 10 mL, per 1 mL of the reaction solution; 10 Omg, and 1 to 20% (w / v) of dry yeast is added.
  • the reaction can be carried out at a temperature of up to 40 ° C for about 1 to 150 hours with stirring as necessary.
  • GlcNAc-6P2-epimerase and NeuAc lyase are added to a reaction system containing G1cNAc and pyruvic acid, and the reaction is carried out at 50 ° C. or lower, preferably 15 Neutral synthesis by reacting at 5-40 for 1-50 hours, then adding CMP, yeast cells and CMP-NeuAc synthetase, reacting for 5-50 hours, and reacting with CMP-NeuAc
  • CMP may be added to the reaction system in advance during the synthesis of Nc and uAc.
  • CM 1 The synthesis reaction of NcuAc involves GlcNAc and CMP.) In addition, GlcNAc-6 62-epimerase, NeuAc synthase, and Add 1 mL of CMP NeuSynthase to the reaction solution-0.2 mg or less each, preferably 2 to 00 mg, and add 1 to 20% (wZv) of dry yeast, 50 ° C or less , Preferably at 15-40 ° C :! ⁇ ] It can be applied by reacting for about 50 hours with stirring if necessary.
  • the inorganic phosphoric acid potassium phosphate or the like can be used as it is, but it is preferable to use it in the form of a phosphate buffer.
  • concentration used can be appropriately set, for example, from 1 to 1000 mM, preferably from 10 to 400 mM.
  • the pH of the buffer may be appropriately set within the range of 5 to 10.
  • magnesium salts of inorganic acids such as magnesium sulfate, magnesium nitrate, and magnesium chloride
  • magnesium salts of organic acids such as magnesium citrate
  • It can be set as appropriate from OmM's Norioka.
  • sugars such as glucose, fructoses, and sucrose
  • organic acids such as acetic acid and citric acid
  • concentration of the used is 1 to 500 OmM, preferably 0 to 500 OmM. It can be set appropriately from the 1000 mM threshold.
  • the CMP-Neu ⁇ c thus obtained is isolated by means of sugar nucleotide separation and purification (eg, ion-exchange chromatography, adsorption chromatography, salting-out, 7-f ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ety chromatography). It can be purified.
  • sugar nucleotide separation and purification eg, ion-exchange chromatography, adsorption chromatography, salting-out, 7-f ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ety chromatography.
  • DNA preparation cutting by restriction 1) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ ⁇ ( ⁇ ⁇ (((((((M M (M M ((( Harbor, New York (1989)). Restriction factor, Amp1i Taq DNA polymerase, and T4 DNA ligase were obtained from BIO Corporation.
  • the amount of CMP Neuc in the reaction solution was determined by the IIPLC method. -Specifically, ODS--IIS 302 column manufactured by YMC was used for separation, and 1 mM tetrabutylammonium sulfate and 50 mM magnesium acetate solution were used as eluent. In addition, determination of sugars such as NeuAc was performed by HPLC using the IIP AE-II) method. Specifically, CarboPac PA 1 column (EI) 40 manufactured by Dionex was used for separation and detection, and solution A (0.) NN aOH) and solution B (0. IN NaOH, 0 .5M sodium acetate) using a gradient of solution A-solution B.
  • IIPLC IIP AE-II
  • na ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ PCR by PCR is 100 ⁇ Potassium,] OmM Tris-HCl (i:) H8.3), 1.5 mM magnesium chloride, 0.001% gelatin, temperate I) NAO.
  • 1 u Primer DNA (A) (B) 2 / M, Am1i Taq DNA polymerase-2.5 units) was converted to a Pcrkin-plate using the Easy Thermal Cycler manufactured by lnier Cctus Instrumei, heat denaturation (94 ° C, 1 minute), annealing (55 minutes). , 1.5 minutes) and a polymerisation step (72 ° C, 3 minutes) was performed by repeating 25 steps.
  • the reaction solution was treated with a mixture of phenol Z-cloth form (1: 1), and twice the volume of ethanol was added to the water-soluble fraction to precipitate DNA.
  • the collected DNA was separated by agarose gel fl! Electrophoresis according to the method of the literature (Molecular Cloning, supra), and a DNA fragment equivalent to 1.2 kb was purified.
  • the DNA was cleaved with restriction enzymes NcoI and EcoRI, and plasmid pTrc99A (obtained from Pharmacia Biotech.) And T4 DNA ligase digested with the restriction enzymes NcoI and EcoRI were also used. And ligated. Escherichia coli J M109 strain using ligation reaction solution
  • pTrcnanA a DNA fragment containing the structural gene of the nanA gene of inf1uenzae is inserted into the NcoI--EcoRI cleavage site downstream of the trc promoter of pTrc99A. It is a thing.
  • Amplification of the na ⁇ ⁇ ': gene by PCR was performed using a reaction mixture of 100 / Bubble (50 mM potassium chloride, 1 OmM Tris-HCl (pII 8.3),] .5 mM magnesium chloride, 0.000]% Gelatin, temperate DNA O.lg, primer 1) ⁇
  • the DNA collected was separated by agarose gel electrophoresis according to the method described in the literature (Molecular Cloning, supra), and the DNA fragment corresponding to 720 b was purified.
  • the DNA was digested with restriction enzymes XbaI and Sa1I, and ligated with plasmid pTrc99A, which was also digested with restriction enzymes XbaI and Sa1I, using T4 DNA ligase.
  • Escherichia coli JM] 09 strain was transformed using the ligation reaction solution, and the plasmid pTrc-nanE was separated from the resulting ampicillin-resistant transformant by i and fi.
  • p T rc-nan E copies the structural gene of the nan K gene of 11. inf 1 uenzae at the X ba I — S a 1 I cleavage site at the downstream of the 1 rc 1-98 rc promoter. It contains the inserted DNA fragment.
  • the pT rcnan A plasmid obtained in the above ()) is digested with restriction enzymes NcoI and KcoRI, and the Nc [) I-1 ': coRI fragment containing the nan gene is cut.
  • the cells were ligated.
  • the colony orchid J ⁇ 109 strain was transformed with the bacterial reaction solution by W, and the plasmid pT 1-c ⁇ E was transfected from the obtained ampicillin-resistant transformant.
  • pTrc ⁇ E is located at the trc promoter of pTrc99 ⁇ at the NcoI-Sail cleavage site downstream of Y ⁇ ichi ⁇ .
  • nan A and nan ⁇ ' ⁇ den-- of f. inf 1 uenzae I
  • the plasmid pT rc ⁇ ′ constructed in the above (3) was retained in E. coli W 148 51 ip 2 (ATCC 2 645), and this was added to 2 XYT medium 50 1 containing 100 g / mL ampicillin. OmL was inoculated and cultured with shaking at 37 ° C. When the number of cells reached 1 ⁇ 10 8 ZmL, isopropyl 5-D-thiogalactopyranoside (IPTG) was added to the culture to a final concentration of 0.2 mM. Shaking culture was continued at 7 ° C for 26 hours.
  • IPTG isopropyl 5-D-thiogalactopyranoside
  • Amplification of neuA gene by PCR was performed in 100 mL of the reaction solution (50 mM potassium chloride, 1 OmM Tris-HCl (pII 8.3), 1.5 mM magnesium chloride, 0.001% gelatin, Template DNAO.lwg, primer DNA (E) (F) 0.2 M each, Am1i Taq DNA polymerase 2.5 units) were purified using Perkin-Elmer Cctus Instrument DNA Thermal Cycler. The steps of heat denaturation (94 ° C, 1 minute), annealing (55 ° C, 1.5 minutes), and volumetric lysis (72 ° C, 3 minutes) were repeated 25 times.
  • the reaction solution was treated with a mixture of phenol Z-cloth form (]:]), and two times the volume of ethanol was added to the water-soluble fraction to precipitate DNA.
  • Precipitation ["
  • the DNA was subjected to restriction enzymes NcoI and PstI.
  • the plasmid pTrc99 ⁇ also digested with the restriction enzymes Ncoll and PstI, was ligated with T4I) N ⁇ ligase using the reaction mixture to transform E. coli JM109 strain.
  • the plasmid pT 1-csia BNP was isolated from the resulting transformant of ampicillin-resistant K.
  • the pT rcsia BNP was cleaved by NcoI-PstI downstream of the trc promoter of pTrc99 ⁇ .
  • a fragment of the H. inf 1 uenzac 11 eu A gene, which has the structure of the ⁇ gene, is inserted.
  • Colony orchid JM109 orchid carrying plasmid pTrcsia BNP is placed in 100 mL of 2 XYT medium containing 100 Itg / mL ampicillin and shaken at 37 ° C. Cultured. When the volume reached 4 ⁇ 10 8 ZmL, IPTG was added to the culture solution to a final concentration of 0.25 mM, and the culture was continued at 37 ° C. for 6 hours. After completion of the culture, the orchid body was collected by centrifugation (9,000 X g, ⁇ 0 min), [5], and 5 mL of buffer (100 mM Tris-HCl (p 117.8), 10 mM was suspended in M g C 1 2). crushing orchid body performing super ⁇ wave treatment, further centrifugation
  • the thus obtained supernatant bisect the enzyme solution, CM ⁇ in the enzyme solution 3 - N eu Ac synthetase activity control bacteria The results of measurement of the (p T rc 9 9 E. coli K one that holds the A 1 The results are shown in Table 1 below together with the two strains JM109).
  • the unit (unit) of the CMP-NeuAc synthase activity in the present invention is expressed by the following method using the synthesis activity of CMP-NeuAc from 5'-CMP and N-acetylneuraminic acid. Is measured and calculated.
  • the reaction was stopped by adding 2 ft of 70% ethanol to the reaction solution, diluted, and analyzed by 11 PLC.
  • a 11S-302 column manufactured by YMC was used, and a mixed solution of 5 OmM magnesium acetate and] mM tetrabutylammonium aqueous solution was used as an eluent.
  • the Si of the CMP-N eu ⁇ c of the liquid liquor is extracted, and then the 1 nmo 1-c CMV-N eu ⁇ c is formed by subdivision with 3 7
  • the CMP-NcuAc synth was set to 1 /: (unit).
  • E. coli ⁇ Chromosomal DNA of M109 strain was prepared using the method of Saito and Miura (Biochim. Biopys. Acta., 72, 619 (1963)). N ⁇ was synthesized according to a conventional method, and the CMP force rice (cmk) gene of the colon t3 ⁇ 4i was amplified by PCR.
  • Amplification of the cmk gene by PCR was performed in 100 ⁇ L of the reaction solution (50 mM chloride, 1 OmM Tris-HCl (pII8.3), 1.5 mM magnesium chloride, 0.001% gelatin, template DNA 1 g, primer DNA (G) (H), 0.2 M each, 2.5 ⁇ l of Amp1i Taq DNA polymerase (2.5 units)), and heat denatured using DNA Thermal Cycler manufactured by Perkin-Elmer Cctus Inst rumei. (94 ° C, 1 minute), annealing (55 ° C, 1.5 minutes), and polymerisation (72 ° C, 3 minutes) were repeated 25 °.
  • the reaction solution was treated with phenol Z-cloth form (1: 1) fY solution, and 2 times the volume of ethanol was added to both the water-soluble portions to precipitate ⁇ ) ⁇ .
  • the precipitate was collected and separated by agarose gel electrophoresis according to the method described in the literature (Molecular Cloning, supra). DNA fragment was purified.
  • the DNA was cleaved with restriction enzymes I ': coRI and SacI, and the plasmid pT1-c99 ⁇ digested with MRI restriction enzymes I': coRI and SacI and T4 DNA ligase.
  • the pTrcsiaBNP plasmid obtained in Example 1 was digested with restriction enzymes Ncol and EcoRI, and the NcoI-KcoRI fragment that ate the neuA gene was recovered using agarose gel electrophoresis. This was ligated with the pTrcCMKAB plasmid of Comparative Example (1), which had been digested with NcoI and EcoRI in the same manner, using T4 ligase. Escherichia coli JMl09 strain was transformed using this ligation reaction solution, and the plasmid pTrcSBCK was -isolated from the resulting ampicillin-resistant transformant.
  • p T rc SB CK contains the structural gene of the neu A gene of H.
  • Amplification of the neuB1 gene by PCR is performed in a reaction mixture] of 00 L (50 mM potassium chloride, 1 OmM Tris-HCl (pH 8.3), 1.5 mM magnesium chloride, 0.001% gelatin, tempe Rate DNAO. L / g, Primer DNA (A) (B) 0.2 / M each, Amp1i Taq DNA polymerase 2.5 units) using Perkin-Elmer Cctus Instrument DNA Thermal Cycler Repeat the steps of heat denaturation (94 ° C, 1 minute), annealing (55 ° (;, 1.5 minutes), and polymerisation (72 ° (:, 3 minutes)) for 30 [ ⁇
  • the reaction solution was treated with a phenol-chloroform (1: 1) mixed solution, and twice the volume of ethanol was added to the water-soluble component to precipitate (1).
  • Precipitation The obtained DNA was separated by agarose gel electrophoresis according to the method of the literature (Molecular Cloning, supra), and the 2.2 kb phase I DNA fragment was purified.
  • the following two primers I) ⁇ were synthesized according to a conventional method, and the neuB1 gene of C. jejuni was amplified again by PCR.
  • the amplification of the neuBL gene by PCR was performed in a reaction solution of 100 / L (50 mM potassium chloride, 10 mM Tris-HCl (pH 8.3), 1.5 mM magnesium chloride, 0.001% Gelatin, Temperate DNA 0.1 / 2 g, Primer DNA (A) (B) 0.2 ⁇ M each, Amp 1 i Taq DNA polymerase 2.5 units) were transferred to Perkin Elmer Cetus Instrument's DNA Thermal Using a Cycler, repeat the steps of heat denaturation (94 ° C,] minutes), annealing (55 ° [:, 1.5 minutes), and polymerisation (72 ° C, 3 minutes) 25 times. I got it.
  • the reaction solution was treated with a mixture of phenol Z-cloth form (1: 1), and twice the volume of ethanol was added to the water-soluble fraction to precipitate DNA.
  • the DNA collected from the precipitate M was separated by agarose gel electrophoresis, and a DN ⁇ fragment corresponding to] .2 kb was purified.
  • the DNA was cleaved with restriction enzymes BamIl and PstI, and plasmid pTrc99 ⁇ (Pharmaciacia Biotec, Inc.) also digested with restriction enzymes BamIII and Ps1I. And T4 DNA ligase.
  • p T rcneu ⁇ 1 is the structure of the C. jc, j 11 ni n [, uB1 construct at the BamII-PstI cleavage site, which is located at the downstream of the trc promoter of p rc99 ⁇ .
  • Make fc f ⁇ ' I) Insertion of the NA fragment F I ': RM ⁇ 8-8248: Established 14 years National Institute of Advanced Industrial Science and Technology (AIST) [Bazhigashi] D 1 I 1 Chuo No. 6 (Zip code 3 0 5 8566)).
  • the pTrcneu n] plasmid obtained in (1) above was cut with restriction enzyme BamilI, and the cut surface was smoothed using T4 DNA polymerase. This was digested with the restriction enzyme PstI, and the PstI fragment containing the neuB1 gene (BamllI) was collected using agarose gel electrophoresis [nl. Subsequently, the pT rcna ⁇ ⁇ plasmid obtained in Example 1 (2) was cut with the restriction enzyme Sail, the cut surface was smoothed with T4 DNA polymerase, and further cut with the restriction enzyme PstI. Cut.
  • the plasmid pTrcNENB prepared in (2) above was retained in Escherichia coli MC1061 strain (ATCC 53338), and 50 mg of the cultured cells were treated with 50 mM CMP, lO OmM GlcNAc, 3 OmM magnesium chloride, 200 mM darcos, lO OmM sodium pyruvate, 0.5% (vZv) xylene, 4% (wZv) dried baker's yeast (manufactured by Oriental Yeast), and CMP prepared in (6) of Example 1 Add the NeuAc synthase (]. 7 unit sZmL reaction solution). Add 5 mL of 75 m potassium phosphate buffer (p118.0), The mixture was stirred at 2 ° C at 72 o'clock. In addition, reaction I 'beginning 14, 24,
  • the method using the NeuAc lyase of the present invention does not require expensive ATP, and enables, for the first time, efficient production of CMP-NeuAc from inexpensive G1cNAc, CMP and pyruvic acid. This is an extremely significant method for mass production of CMP-Ne uAc.
  • the method using NeuAc synthase of the present invention does not require expensive ATP, and phosphoenolpyruvate (PKP), which is essential for the reaction system, is converted from glucose by the biological (metabolism) reaction of yeast and Escherichia coli. Since synthesis and supply do not require the addition of phosphoenolpyruvate (PEP) to the reaction system, it is possible for the first time to efficiently produce CMP-NeuAc from inexpensive G1cNAc and CMP. Therefore, it is a very significant method for mass production of CMP-Ne uAc.
  • PDP phosphoenolpyruvate
  • the method using the NeuAc synthase of the present invention is a simpler and superior method in that the two- step reaction used in the method using the NeuAc lyase of the present invention is not required.

Description

m 細 I
C M N - ァセチルノイラミン酸の製造法 技術分野
本発明は、 糖鎖合成の: 要な原料である C Μ Ρ - Ν - ァセチルノィラミン酸 (CMP— N e u A c ) の改 ½された製造法に関するものである。
^景技術
近^、 糖鎖に関する構造及び機能に閱する研究が急速に進み、 沽性を す るオリゴ糖、 糖脂質、 糖蛋 質などの 藥¾または機能性素材としての川途 flH究 が注 を集めている。 屮でも、 末端に N ァセチルノイ ラ ミ ン酸 (Ne uAc) を^むシアル酸 ΐ' 糖鎖は、 細胞接 やウィルスの感染の際の受 容体となる等の重要な機能を する糖鎖である。
シアル酸含有糖鎖は、 - -般にシアル酸転移酵素の触媒作用により合成される。 シアル酸転移酵素は C Μ Ρ Ν—ァセチルノイラミン酸 ( C Μ Ρ N e u Λ c ) を糖供 ^体として、 糖鎖などの受容体にシアル酸を 移する酵素である。
しかしながら、 糖供 体として川いる CMP Ne uAcは、 非 に, 価で、 かつ量的にも試薬レベルの僅かな でしか供給され得ないのが現状である。
CM P- Ne u Acの製造法としては、 シチジン 5' - トリリン酸 (CTP) と N e u Λ cを基質として C M P - N e u Λ cシンセ夕一ゼの触媒により 成す る方法 (Appl. Microbiol. Riotochnol. , 4, 59^ 67 (1995)) が知られているが、 その原料となる CTP及び Ne U Acは '俩であるため、 それらを【 接 K (料とし て合成された CMP— N c u Λ cも 価な試薬とならざるを ίない。
近、 小泉らにより、 れ 'チン酸からゥリジン ' - トリリン酸 ( U Τ Ρ ) への変換を ί'Γう Rrcv ibactcri uni a画 ion i agcn s [ -休、 UT Pから C T Pへの変換 反応を触媒する C T P 成醉尜を U':':する組換え大腸 -および C M P― N (、 u Λ c合成 を 1 ·:産する組換え大腸 Mを組み わせて、 ォ I Iチン Ρί¾と Ν〔、 u Λ cを原料として CM Γ - N e υ Λ cを 成する方法が 1究された (Appl. Microbiol. Biotechnol., 53, 57^261, (2000)) 。 該 -法は、 ^価な CTP を使川しない方法ではあるが、 複数種の蘭体を調製しなければならないなど:に禾: が煩雑であるとともに、 それを实施するための大型の設備を準備しなければなら ず、 また依然として高価な N e u Acを原料としていることからも实川的な方法 とは言い難かった。
- -方、 N e u Λ cの製造法に関しては、 シアル酸の多 M体であるコ ミン酸を 微 物から回収し、 これを化学分解し M収する方法が知られている力 近にな つて酵素を利用した方法が開発されている。
酵素を利用した方法としては、 ( 1 ) N e u A cリァ一ゼまたは N e u Λ cシ ンセ夕—ゼを用いて、 N—ァセチルマンノサミン (Ma nNAc) から製造する 方法 (J. Am. Chem. Soc. , 110, 6481 (1988) , J. Am. Chem. So , 110, 7159 (1988)、 特開 :10-4961号) 、 ( 2 ) アルカリ条件下で、 Ν—ァセチルダルコサミン
(G l cNAc) を N—ァセチルマンノサミン (Ma nNAc) に変換させ、 こ れに Ne u Acリア一ゼまたは Ne u A cシンセ夕一ゼを作用させて N c ιιΛ c を製造する方法 (特開平 5-211884、 Biotechnology And Bioenginecring, Vol.66, No.2 (1999)、 Enzyme Mi crob. Techno 1. , Vo 1. 0 (1997) ) 、 ( 3) G l c NAcか ら Ma nNAcへの変換を触媒する N ァセチルダルコサミン (G 1 c ΝΛ c ) 2 - ェピメラ一ゼと Ne 11 Acリア一ゼまたは Ne iiAcシンセ夕一ゼを jい て、 G l cNAcから製造する方法 ( 5/26399、 特開平3 180190 -、 特 200 卜 13698 '2 -う が報告されている。
しかしながら、 ( ] ) の方法は^料である M a n N Λ cが 価であり、 ( 2 ) の方法は、 安価な G 1 c ΝΛ cを Κί料とする方法ではあるが、 G 1 c ΝΛ cと M a η ΝΛ cの ¾合物から M a η Ν Λ cをお ί製する丁 が煩雑であるという 1¾1 があった。 また、 ド記に小-すように、 (3) の方法で川いる G 1 c ΝΛ c 2 - ェ ピメラ一ゼは Λ T Pが必要であるため、 価な Λ丁 Pを添加するか、 あるいは微 生物を川いて Λ丁 Pの前駆体であるアデ二ンから A T Pを生成させる必¾;:があ り、 この方法も満足いく方法とはいい難かった。
< (3) の方法 >
A T Pまたはその前駆体 ピルビン酸またはホスホエノ一ルピルビン酸
I 1
G 1 c N A c → M a n N Λ c - N c υ A c
(a) (b)
(a) : G 1 c NA c 2 --ェピメラ一ゼ
(b) : N e u A cリアーゼまたは Ne υΛ cシンセ夕一ゼ 発明の開示
本発明者らは、 G 1 c N A cを基質とした大腸菌の生体内酵素による N e uAc合成を検討したところ、 Ne u A cはほとんど ^成されなかったが、 G 1 c NA cが G 1 c ΝΛ c 6—リン酸 (G 1 c N A c— 6 P) に変換された ことから、 下に示す経路による G 1 c NAcからの Nc uAc合成系の構築を試 みた。
その結果、 G l c NAc— 6 P 2—ェピメラ一ゼ (EC5.1.3.9) および N e u Λ c リア一ゼまたは N e u A cシンセ夕一ゼ沽性を塯強させると N c u A cを高収率で :成できること、 また該 ft成系には高価な AT Pを必要と しないことを見出した。
(c) ①
G 1 c N Λ c— G 1 c N Λ c 6 - リン酸 ― M a n N Λ c 6 リン酸
(c) ②または③
→ M a n N A c → N e u Λ c (d)ピルビン酸またはホスホェノールピルビン酸
(c) : ^体反応
①: G 1 c N A c— 6 P 2 --ェピメラーゼ
②: Ne uAcリアーゼ
(3): N e u A cシンセターゼ
次に、 CMP— Ne u Ac合成反応を行うための CTPi成系について、 安価 な CM Pを原料としての微生物による C T Pへの変換系を上記 N e uAc合成系 と組み合わせるべく、 種々の微 .物を用いて検討を行った。 すると、 大腸 i等の 酵母以外の微生物を用いたときには CM N e u Acがわずかしか合成されな かったのに対して、 酵母菌体を用いると高収率で CMP— Ne u Acを合成でき ることを見出した。 特に、 Ne uAcシンセ夕ーゼ反応に必要なホスホエノ一ル ピルビン酸 (PEP) は、 酵母菌体内のものを利用することができ、 反応系に新 たに添加する必要がないという新たなメリットも確認し、 本発明を完成させた。 すなわち、 本発明は、 N ァセチルグルコサミン (G 1 cNAc) 、 ピルビン 酸およびシチジン 5' —モノリン酸 (CMP) を含有する反応系に、 酵母蘭体、 N ァセチルダルコサミンー 6リン酸 2 -ェピメラ一ゼ (G 1 c ΝΛ c— 6 P 2—ェピメラ一ゼ) 、 N ァセチルノイラミン酸リア一ゼ (Ne uAcリア一 ゼ) 、 および CMP— N ァセチルノイラミン酸シンセ夕一ゼ (CMP— Ne u Λ cシンセ夕一ゼ) を添加し、 反応させることを特徴とする、 C M P— N --ァセ チルノイラミン酸 (CMP—Ne uAc) の製造法に関するものである。
また、 本発明は、 N- -ァセチルダルコサミン (G 1 cNAc) およびシチジン 5 ' -モノリン酸 (CMP) を ί' する反応系に、 醉母蘭休、 Ν ァセチルグル コサミン- 6リン酸 2 ェピメラ一ゼ ( G 1 c Ν Λ c 6 Ρ 2—ェピメラ… ゼ) 、 Ν ァセチルノイラミン酸シンセ夕一ゼ (N e uA cシンセタ -ゼ) およ び C M P N―ァセチルノィラミン酸シンセ夕一ゼ ( C M P - N e u Λ cシンセ 夕一ゼ) を添加し、 反応させることを特徴とする、 CMP- N- ァセチルノイラ
-1 ン酸 (CM P— N c u Λ c ) の製造法に関するものである。 発明を ¾施するための¾良の形態
本発明の C M P— N c u A cの r成反応経路を模式的に すと、 以下の (Λ) N c u Λ cリアーゼを用いた方法と (B) N e u Λ cシンセ夕一ゼを用いた方法 である。 なお、 (B) の反応系に必須のホスホェノールピルビン酸 (PKP) は、 培地中のグルコースから酵母並びに大腸菡の生体 (代謝) 反応により台成、 供給されるので、 反応系にホスホエノ一ルピルビン酸 (PI':P) を添加する必要: はない。
(A) N e u A cリア一ゼを用いた方法
GlcNAc CMP
† (£. coli) (Dry Yeast)
GlcNAc-6リン酸
+① CDP
ManNAc<6リン酸
ManNAc-Φ ► NeuAc. CTP ③
ピルビン酸
C P-NeuAc
(B) N e υ Λ cシンセターゼを川いた方法
Figure imgf000008_0001
CMP-NeuAc
上記模式図 (A) 及び (B) における記号は以下のことを意味する。
①: G l cNAc— 6 P 2—ェピメラ一ゼ
②: N e u A cリァ一ゼ
③: CMP— N e u A cシンセ夕一ゼ
④: N e u A cシンセ夕一ゼ
(1) 酵素等の調製
上記 (A) 及び (B) の反応系に添加する N—ァセチルダルコサミン- - 6リン 酸 2—ェピメラ一ゼ (G 1 cNAc— 6 P 2—ェピメラ一ゼ) とは、 上記①の G l cNAc 6 --リン酸から M a n N Λ c 6—リン酸への変換反応を触 ½する 活性を^するものを意味し、 上記 (A) の反応系に添加する N ァセチルノイラ ミン酸リア一ゼ (N e u Λ cリァ一ゼ) とは、 上記②の M a n N Λ cとピルビン 酸を¾質として N〔、 u A cを合成する反応を触媒する活性を^するものを: 味 し、 上記 (B) の反応系に添加する N- ァセチルノイラミン酸シンセ夕一ゼ (N e υ Λ cシンセ夕一ゼ) とは、 上記④の MaNAcとホスホエノ- 'ルビルビン酸 (P K ) を基 ¾として N c u Λ cを ίΥ成する反応を触媒する沾性を -す'るもの を :¾;味し、 十.記 (Λ) 及び (Β) の反応系に添加する CMP- Ν—ァセチルノィ ラミン酸シンセ夕- ゼ (CMP— Nc uAcシンセ夕一ゼ) とは、 上記③の N c u Acと CTPを基質として CMP- N e 11 Acを r成する反応を触媒する沽性 を ίίίするものを意味する。
これらの酵素活性を するものとしては、 該活性を有する細胞 (形 '転換体 を f む) またはその処理物を例 ¾でき、 調製の簡便性などの点から、 微生物山来 のものを使用するのが好都台である。 微^物 Ell来の G 1 c N A c - 6 P 2 ェ ピメラ一ゼ、 N—ァセチルノイラミン酸リアーゼ、 N—ァセチルノイラミン酸シ ンセ夕一ゼ及び C M P— N e u A cシンセ夕一ゼは公知の酵尜であり、 常法によ り調製することができる。
また、 当該酵素活性を増強させるための手段として、 該酵素遺伝子群 (J. Bacteriol. , 181,47-54, 1999、 J. Bactcriol. , 181, 4526 4532, 1999、 Nucleic Acids. Res., 13, 8843 8852, 1985、 Agric. Biol. Chem. , 50, 2155-2158, 1986、 FEMS Microbiol. Lett., 75, 161 - 166, 1992、 J. Biol. Chem., 271, 15373— 15380, 1996、 J. Biol. Chem. , 264, 14769-14774, 1989、 J. Bacteriol. , 177, 312 319, 1995、 Mol. Microbiol. ,35, 1120-1134,2000) をクロ一ン化し、 菌体内でこれを大量発現させ た微生物を用いる、 いわゆる組換え I) N Λ手法を用いるのが好適である。
また、 本発明においては、 2つ以上の遺伝子を共発現させて得られる菌体また はその処理物を用いることもでき、 特に、 G l c NA c— 6 P 2—ェピメラ一 ゼと N—ァセチルノィラミン酸リァ一ゼのそれぞれの酵素活性を堦強させた形 転換体、 または G l c NAc— 6 P 2—ェピメラ一ゼと N ァセチルノイラミ ン酸シンセ夕一ゼのそれぞれの酵素沽性を^強させた形 K転換体の使川が好適で あるが、 これに限定されない。
造 fc-了-のクロ一ニング、 クローン化した 1)ΝΛ断片を川いた ベクターの調 、 発現べク夕ーを用いた U的とする醉尜 ¾性を^する醉尜タンパク ΪΪの調製な どは、 分子生物学の分野に^する技術^にとつては l知の技術であり、 体的に は、 例えは 「Molecular Cloningj (Maniat isら編、 し' old Spring Harbor Laboratories, Cold Spring Harbor, Now York (1982) ) に記載の方法に従って 行うことができる。
たとえば、 報告されている塩¾配列をもとにプローブを合成し、 微生.物の染 ft 体 DN Aより 的とする醉尜活性を する酵尜タンパク質をコ一ドする遗 子を 含 する D N A断片をク Π―二ングすればよい。 クロ一ン化に用いる :は特に 限定されないが、 操作性及び簡便性から大腸菌とするのが望ましい。
クロ一ン化した遺伝子の高発現系を構築するためには、 たとえばマキザムーギ ルバ一トの方法 (Methods in Enzymology, 65, 499 (1980)) もしくはダイデォキ シチェイン夕一ミネ一夕一法 (Methods in Enzymology, 101, 20 (1983) ) など を応用してクロ一ン化した I)N A断片の塩基配列を解析して該遺伝子のコ一ディ ング領域を特定し、 宿主微 物に応じて該遺伝子が菌体中で発現可能となるよう に発現制御シグナル (転写開始及び翻訳開始シグナル) をその上流に連結した組 換え発現べクタ一を作製する。
ベクターとしては、 種々のプラスミドベクタ一、 ファージベクタ一などが使用 nj能であるが、 大腸菌菌体内で複製可能であり、 適当な薬剤耐性マ一カーと特定' の制限酵素切断部位を有し、 菌体内のコピー数の高いプラスミドベクタ一を使用 するのが望ましい。 具体的には、 p B R 3 2 2 (Gene, 2, 95 ( 1975) ) 、 p U C 1 8 , pUC 1 9 (Gene, 33, 103 (1985)) などが举げられる。
作製した組換えベクタ -を用いて大腸蘭を形 K転換する。 衔主となる大腸蘭と しては、 例えば組換え I)N A实験に使川される K 1 2株、 C 6 0 0蘭、 J M 1 0 5蘭、 J M ] 0 9蘭(Gene, 33, 103 119 (1985))などが使用可能である。 ピ ルビン酸の N e uAc合成以外での代謝を減らすため、 ピルビン酸代謝に関する lip造伝子変 ·などが導入された大腸蘭 (例えば W 1 8 5 1 i p 2 (ATCC 2 5 64 5) ) を :ト:として使用することもできる。 大腸菌を形質転換する方法はすでに多くの方法が報告されており、 低温下、 塩 化カルシウム処理して闕体内にプラスミドを導入する方法 (J. M l. Biol. , 53, 159 (1970) ) などにより大腸菌を形 H転換することができる。
得られた形質転換体は、 ^該微生物が増殖 "J能な培地中で塯殖させ、 さらにク ローン化した 的とする酵素活性を^するタンパク質の発現を誘導して蘭休内に 当該酵素夕ンパク質が大^に蓄積するまで培養を行う。 形質転換体の培養は、 ¾ 尜源、 窒素源などの当該微牛:物の増殖に必要な栄養源を含おする培地を用いて^ 法に従って行えばよい。 例えば、 培地としてブイヨン培地、 LB培地 (1 %トリ プトン、 0. 5 %イーストエキストラク卜、 1 %食塩) または 2 XYT培地
(1. 6%トリプトン、 ] %イーストエキストラクト、 0. 5%食塩) などの大 腸菌の培養に常用されている培地を用い、 30〜 50 °(:の培養温度で 1 0〜 50 時間程度必要により通気攪拌しながら培養することができる。 また、 ベクターと してプラスミドを用いた場合には、 培養中におけるプラスミドの脱落を防ぐため に適当な抗生物質 (プラスミドの薬剤耐性マーカ一に応じ、 アンピシリン、 カナ マイシンなど) の薬剤を適当量培養液に加えて培養する。
目的の酵素活性を有する菌体としては、 上記の方法で得られる培養液から遠心
;分Λ離、 膜分離などの固液分離手段で回収したものを例示することができる。 ま た、 回収した菌体を、 機械的破壊 (ヮ一リングプレンダ一、 フレンチプレス、 ホ モジナイザ一、 乳鉢などによる) 、 凍結融解、 自己消化、 乾燥 (凍結乾燥、 風乾 などによる) 、 酵素処理 (リゾチームなどによる) 、 超 ΐί-波処理、 化学処理 (酸、 アルカリ処理などによる) などの- -般的な処理法に従って処理して ί られ る処理物、 もしくは該菌体処理物から〖 I的の酵素活性を -する W分を通常の酵尜 の精製手段 (塩析処理、 等 ¾点沈澱処理、 お機溶媒沈澱処瑰、 透析処理、 ク 口マトグラフィ一処理など) を施して得られる粗酵尜または精製酵尜も蘭休処 物として利用することができる。
次に c Μ ρから c τ ρへの変換に使川する醉 ί としては、 市販のパ n, あ るいはワイン酵母でよく、 [ 体製造 ·の過程が 略できる点で極めて '利である。 また、 酵母^菌体、 酵母乾燥蘭体いずれの形態も利用可能であるが、 反応収率、 取扱いの容易性などの点からは、 乾燥酵母蘭体を用いるのが好ましい。
(2) CMP— Ne uAcの r成
CMP - Ne uAc合成反応に使用する G 1 c NAc、 ピルビン酸および CMPは市販されており、 この市販品を使用することができる。 使用濃度として は、 例えばそれぞれ 1〜 5000 mM、 好ましくは 10〜 1000 mMの範 [井|か ら適 :設定することができる。
(N e u A cリァ一ゼを用いた方法)
CMP— Ne u Acの合成反応は、 G l cNAc、 CMPおよびピルビン酸を 含 ¾ "する反応系に、 G l cNAc— 6 P 2—ェピメラ一ゼ、 Ne uAcリア一 ゼ、 および CMP— N e u A cシンセ夕一ゼを反応液 1 mL当たりそれぞれ 0. 2mg以上、 好ましくは 2〜; 10 Omg、 乾燥酵母を 1〜20% (w/v) 添加し、 50 °C以下、 好ましくは 1 5〜 40 °Cで 1〜 1 50時間程度、 必要によ り投拌しながら反応させることにより実施できる。
また、 上記反応においては、 G 1 c NAcおよびピルビン酸を含有する反応系 に、 G l cNAc— 6 P 2 --ェピメラーゼおよび N e u Acリア一ゼを添加し て、 50 °C以下、 好ましくは 1 5〜 40 で 1〜 50時間程度反応させて NeuAcを合成し、 次いで CMP、 酵母菌体および CM P— N e u A cシンセ ターゼを添加し、 5〜50時間程度反応させて CMP— Ne uAcを合成する 2 段階の反応を行うことで C M P— N e u Λ cの台成収率を向上させることができ る。 なお、 CMPはあらかじめ Nc、 uA c合成時に反応系に添加しておいてもか まわない。
(Ne uAcシンセタ一ゼを Hいた方法)
C M 1) N c u A cの合成反応は、 G l cNAc及び C M Pを ίΓ ίする)乂応系 に、 G l cNAc— 6 Ρ 2—ェピメラ一ゼ、 Ne uAcシンセ夕一ゼ、 および CMP Ne uAcシンセ夕一ゼを反応液 1 mL -'Ίたりそれぞれ 0. 2 m g以 十.、 好ましくは 2〜 00 m g、 乾燥酵母を 1〜 20 % (wZ v ) 添加し、 50 °C以下、 好ましくは 1 5〜 40 °Cで:!〜] 50時間程度、 必要により投拌し ながら反応させることにより ¾施できる。
上記のいずれの CMP— N e uAc fY成系においても、 必要に応じて無機リン 酸、 マグネシウムおよびエネルギー源を添加するのが好ましい。
無機リン酸としては、 リン酸カリウムなどをそのまま使用することもできる が、 好ましくはリン酸緩衝液の形態で使用するのが好ましい。 使用濃度は、 たと えば 1〜 1000 mM、 好ましくは 1 0〜 400 mMの範 [ |から適 ¾設¾するこ とができる。 また、 リン酸緩衝液の形式で使用する場合、 緩衝液の pHは 5〜 1 0の範囲から適宜設定すればよい。
マグネシウムとしては、 硫酸マグネシウム、 硝酸マグネシウム、 塩化マグネシ ゥム等の無機酸のマグネシゥム塩、 クェン酸マグネシゥム等の有機酸のマグネシ ゥム塩を使用することができ、 その使用濃度としては 1〜] O O OmMの範岡か ら適宜設定することができる。
エネルギー源としては、 グルコース、 フラク卜一ス、 ショ糖などの糖類、 酢 酸、 クェン酸などの有機酸を使用することができ、 その使用濃度としては、 1〜 500 OmM、 好ましくは〗 0〜1 000 mMの範閥から適宜設定することがで さる。
このようにして得られた C M P— N e u Λ cは、 糖ヌクレオチドの通^の: 離 精製手段 (イオン交換クロマトグラフィー、 吸着クロマトグラフィー、 塩析、 7 フイエティクロマトグラフィーなど) を用いて単離精製することができる。 实施例
以下、 ¾施例を κし、 本発明を 体的に説明するが、 本発明は何らこれに限 されない。 なお、 ¾施例における DNAの調製、 制限醉尜による切断、 D N Λリガ一ゼによる 1) Ν Λ迚結、 並びに大腸 の形 K 換法は全て 「M()lecular Cloning, A Laboratory Manual, Second I':dition」 (Sambrookら 、 Cold spring Harbor Laboratory, Cold Spring Harbor, New York (1989)) に従って行った。 また、 制限醉素、 Amp 1 i Ta qDNAポリメラーゼ、 T4 DNAリガ一ゼは¾バイオ (株) より入手した。
さらに、 反応液中の CMP N e u Λ cの '量は II P L C法により行った。 - 体的には、 分離には YMC社製の ODS- - IIS 302カラムを用い、 溶出液とし て 1 mM テトラプチルァンモニゥム硫酸塩、 50 mM 酢酸マグネシウム溶液 を用いた。 また、 N e u A c等の糖の定 'Mには IIP AE— ΡΛΙ)法による HP L Cにより行った。 具体的には、 分離、 検出にはダイォネクス社製の C a r b oP a c P A 1カラム、 E I) 40を用い、 溶出液として A液 ( 0. ] N N aOH) と B液 (0. I N NaOH、 0. 5M 酢酸ナトリウム) を用 い、 A液— B液のグラジェントにより行った。
実施例 1
(1 ) N ァセチルノイラミン酸リア一ゼをコードする n a n A遺伝子のクロ一 ニング
Haemophilus inf lucnzac (H . i n f l u e n z a e) Rd株の染色体 DN A (ATC C 5 1 9 0 7 D) をテンペレートとして、 以下に示す 2 種類のプライマ一 D N Aを常法に従って合成し、 P C R法により Π . i n f 1 u e n z a eの N—ァセチルノイラミン酸りァーゼ (n a n A) 遗 -了- を増幅した。
プライマ一 (A) : 5, - CACCATGGCGAAGATATTGCCGCTCAAACTA 3'
(配列番 1 )
プライマ一 (B) : 5' - CCGAATTCATTTATGACAAAAATTTCGCTTTCAAG - 3 '
(配列番- - 2 )
P C Rによる n a η Λ遗 ^了-の^幅は、 反応液 1 00 / 屮 ( 50 mM 塩化 カリウム、 ] OmM 卜リス塩酸 (i:)H8. 3) 、 1. 5mM 塩化マグネシゥ ム、 0. 00 1 % ゼラチン、 テンペレー卜 I)NAO. 1 u プライマー DNA (A) (B) ^々 0. 2 / M、 Am 1 i T a q DNAポリメラー -ゼ 2. 5ュニッ卜) を Pcrkin-ト: lnier Cctus Instrumei 社製 飄 Thermal Cyclerを 用いて、 熱変性 (94°C、 1分) 、 アニーリング (55て:、 1. 5分) 、 ポリメ ライゼ一シヨン (72 °C、 3分) のステツプを 25【口 I繰り返すことにより行つ た。
遺伝子増幅後、 反応液をフエノール Zクロ口ホルム (1 : 1) 混合液で処理 し、 水溶性画分に 2倍容のエタノールを添加し DNAを沈殿させた。 沈殿 収し た DNAを文献 (Molecular Cloning, 前述) の方法に従ってァガロースゲル fl! 気泳動により分離し、 1. 2 k b相当の DNA断片を精製した。 該 DNAを制限 酵素 N c o I及び E c oR Iで切断し、 同じく制限酵素 N c o I及び E c oR I で消化したプラスミド pTr c 99A (Pharmacia Biotech.社より入手) と T4 DNAリガ一ゼを用いて連結した。 連結反応液を用いて大腸菌 J M 1 09株
(ATCC 53323) を形質転換し、 得られたアンピシリン耐性形質転換体よ りプラスミド p T r c n a n Aを単離した。 p T r c n a n Aは、 p T r c 99 Aの t r cプロモー夕一下流の N c o I - - E c o R I切断部位に II. i n f 1 u e n z a eの n a n A遺伝子の構造遺伝子を含有する DNA断片が揷 入されたものである。
(2) G l cNAc- - 6P 2—ェピメラーゼをコードする n a n E遺伝子のク ローニング
H. i n f l u e n z a e R d株の染色体 DNAをテンペレートとして、 以 下に示す 2種類のプライマ一 DNAを' 法に従って合成し、 P C R法により 11. i n f 1 u e n z a eの G 1 c NAc - 6 P 2—ェピメラーゼ (n a n :) 遗 伝子を増幅した。
プライマ一 (C) : 5, GGTCTAGATTTAAATGAGGGGTGTTATATGT 3' (配列赉 - 3 )
プライマー (D) : 5, - TCGTCGACTTATCTTGCAGATTTCACTGAATTAGCAAACCA ―
3'
(配列番 4)
P C Rによる n a η Ι':遺伝子の増幅は、 反応液 1 00 /Π 屮 (50 mM 塩化 カリウム、 1 OmM トリス塩酸 (p II 8. 3) 、 ] . 5 mM 塩化マグネシゥ ム、 0. 00 ] %ゼラチン、 テンペレート DNA O. l g、 プライマ一 1)ΝΛ
(C) (D) 各々 0. 2 /iM、 Am 1 i Ύ a q Ι)ΝΛポリメラーゼ 2. 5 ユニット) を Perkin- Elmer Cctus Ins t runicnt社製 DXA Thermal Cyclerを Wい て、 熱変性 (94°C、 1分) 、 アニーリング (5 5°C、 1. 5分) 、 ポリメラィ ゼ一シヨン ( 7 2 °C、 3分) のステツプを 2 5回繰り返すことにより行った。 遺伝子塯幅後、 反応液をフエノール Zクロ口ホルム (1 : 1 ) 混合液で処理 し、 水溶性画分に 2倍容のエタノールを添加し DNAを沈殿させた。 沈殿【π|収し た DNAを文献の方法 (Molecular Cloning, 前述) に従ってァガロースゲル電 気泳動により分離し、 7 20 b相当の DNA断片を精製した。 該 DN Aを制限酵 素 Xb a I及び S a 1 Iで切断し、 同じく制限酵素 Xb a I及び S a 1 Iで消化 したプラスミド pT r c 9 9 Aと T4DNAリガ一ゼを用いて連結した。 連結反 応液を用いて大腸菌 J M ] 0 9株を形質転換し、 得られたアンピシリン耐性形 転換体よりプラスミド p T r c— n a n Eを i、fi離した。 p T r c - n a n Eは、 丁 1" じ 9 9八の 1 r cプロモ一夕一下流の X b a I — S a 1 I切断部位に 11. i n f 1 u e n z a eの n a n K遺伝子の構造遗伝子を含 する DNA断片が挿 入されたものである。
(3) n a η Λ、 n a n E遗伝子共発現プラスミドの構築
上記 ( ] ) で得られた p T r c n a n Aプラスミ ドを制限酵尜 N c o I 、 K c ο R Iで切断し、 n a n Λ遗伝子を含む N c〔) I -- 1': c o R I断片をァガ [i —スゲル fお気泳動を用いて 収した。 これを [wjじく N c o I 、 I': c o R Iで消化 した上記 ( 2 ) で られた p T r c - n a η Ι':プラスミドと Τ 4 I) Ν Λライゲ一 スを用いて迚結した。 この迚:結反応液を Wいて大腸蘭 J Μ 1 0 9株を形 ¾1 換 し、 得られたアンピシリン耐性形質 fe換体よりプラスミド p T 1- c Λ Eを雜し た。 p T r c Λ Eは、 p T r c 9 9 Λの t r cプロモー-夕一下流の N c o I - S a i l切断部位に Π. i n f 1 u e n z a eの n a n A、 n a n Ι':遗伝-— fの構 造遺伝子を含有する I) N A断片が揷入されたものである。
(4) N e u A cの 成
大腸菌 W 1 4 8 5 1 i p 2 (ATCC 2 5645) に上記 (3) で構築したプ ラスミド pT r c Αί':を保持させ、 これを 1 00 g/mLのアンピシリンを^ 有する 2 XYT培地 5 0 OmLに植菌し、 3 7°Cで振とう培養した。 菌体数が 1 X 1 08個 ZmLに達した時点で、 培養液に最終濃度 0. 2 mMになるように イソプロピル 5— D—チォガラクトピラノシド ( I PTG) を添加し、 さらに 3 7°Cで 2 6時間振とう培養を続けた。 培養終了後、 遠心分離 (9, 0 0 0 X g、 1 0分) により 2 5mL培養液分の菌体 5 Omgを回収し、 これに 1 0 0 mM G l c NA c、 2 OmM 塩化マグネシウム、 5 0mM グルコース、 3 0 OmM ピルビン酸ナトリウム、 0. 5 % (v/v) キシレンを する 2 00 mM リン酸カリゥム緩衝液 ( p 118. 0 ) 5 m Lを添加し、 2 8 °Cで攪 拌しながら反応を行った。 1 4、 24時間後に 1 1 0m gのピルビン酸ナ卜リゥ ムを添加し、 48時間で反応液を 1 00 °C:、 5分間の熱処理をすることで反応を 停止させた。 得られた反応液を糖分析用 HP LC (ΠΡΑΚ— ΡΛΙ)、 ダイォネ クス社) で分析したところ、 4 3. 7 m Μの N e u A cの生成が確認された。 なお、 対照菌 (pT r c 9 9 Aプラスミドを保持する大腸菌 W1 8 5 1 i p 2 ) を川いて同様の反応を行ったが、 N e u Λ cの^成を検出することは出来な かった (0. 5 mM以下の牛.成) 。
(5) CM P— N e u Λ cシンセ夕一ゼをコ一ドする n e u Λ造伝了-のク「卜 -二 ング II. i n f l u e n z a e K〔1株の染色体 DNAをテンペレートとして、 以 下に示す 2種類のプライマ一 1) N Λを^法に従って合成し、 P C R法により H . i n f 1 u e n z a eの CM P— N c u Λ cシンセ夕一ゼ (n c u A) 造 子を 增幅した。
プライマ一 (E) : 5' 一 TGCCATGGTGAAAATAATAATGACAAGAA -3'
(配列番号 5 )
プライマ一 (F) : 5' - AACTGCAGTGCAGATCAAAAGTGCGGCC - 3,
(配列番号 6)
P C Rによる n e u A遗伝子の増幅は、 反応液 1 00〃 L中 (50 mM 塩化 カリウム、 1 OmM トリス塩酸 (p II 8. 3) 、 1. 5 mM 塩化マグネシゥ ム、 0. 001 %ゼラチン、 テンペレート DNAO. l w g、 プライマー DNA (E) (F) 各々 0. 2 M、 Am 1 i Ta q DNAポリメラ一ゼ 2. 5 ュニッ卜) を Perkin- Elmer Cctus Instrument社製 DNA Thermal Cyclerを用い て、 熱変性 (94°C、 1分) 、 アニーリング (55°C、 1. 5分) 、 ボリメラィ ゼ一シヨン (72°C、 3分) のステップを 25回繰り返すことにより行った。 遺伝子増幅後、 反応液をフエノール Zクロ口ホルム (] : ] ) 混合液で処 ! し、 水溶性画分に 2倍容のエタノールを添加し DN Aを沈殿させた。 沈殿 ["|収し た DNAを文献の方法 (Molecular Clonings 前述) に従ってァガロースゲル ¾ 気泳動により分離し、 720 b相 Iの DNA断片を精製した。 該 DNAを制限酵 素 N c o I及び P s t Iで切断し、 同じく制限酵素 N c o l l及び P s t Iで消 化したプラスミド p T r c 99 Λと T 4 I) N Λリガーゼを川いて連結した。 迚鈷 反応液を用いて大腸菌 JM1 09株を形質転換し、 得られたアンピシリン耐性形 K転換体よりプラスミ ド p T 1- c s i a B N Pを単離した。 p T r c s i a B N Pは、 p T r c 99 Λの t r cプロモーター下流の N c o I - P s t I切断 部位に H. i n f 1 u e n z a cの 11 e u A遗^子の構造遗伝子を ^する Ι)ΝΛ断片が挿入されたものである。 (6) CMP N e uAcシンセ夕一ゼの調製
プラスミド p T r c s i a B N Pを保持する大腸蘭 J M 1 0 9蘭を、 1 0 0 It g /m Lのアンピシリンを含おする 2 X Y T培地 1 0 0 m Lに桢 し、 3 7°Cで振とう培養した。 4 X 1 08個 ZmLに達した時点で、 培養液に 終濃 度 0. 2 5 mMになるように I P T Gを添加し、 さらに 3 7 °Cで 6時間扳とう培 養を続けた。 培養終了後、 遠心分離 (9, 0 0 0 X g, 〗 0分) により蘭体を ["1収し、 5 m Lの緩衝液 (1 00 mM トリス塩酸 ( p 117. 8 ) 、 1 0 mM M g C 12 ) に懸濁した。 超^波処理を行って蘭体を破砕し、 さらに遠心分離
(2 0, 0 0 0 X g、 1 0分) により菌体残さを除去した。
このように得られた上清両分を酵素液とし、 この酵素液における C M ί 3— N e u Acシンセターゼ活性を測定した結果を対照菌 (p T r c 9 9 Aを保持す る大腸菌 K一 1 2株 J M 1 09) と共に下記表 1に示す。 なお、 本発明におけ る CMP-Ne uAcシンセ夕一ゼ活性の単位 (ュニッ卜) は、 以下に示す方法 で 5 ' —CMPと N—ァセチルノイラミン酸からの CMP— Ne uAcの合成活 性を測定、 算出したものである。
(CMP - Ne uAcシンセターゼ活性の測定と単位の算出法)
50 mM トリス塩酸緩衝液 ( p H 8. 0 ) 、 2 OmM 塩化マグネシゥム、 5 mM C T Pおよび 1 O mM N—ァセチルノイラミン酸に、 CMP - N e u Acシンセ夕一ゼを添加して 3 7°Cで 5分反応させる。 また、 CMP— Ne uAcシンセタ一ゼの代わりに p T r c 9 9 Aを保持する大腸蘭 J M 1 0 9 株の菌体破砕液を用い同様の反応を行い、 これをコントロールとした。
反応液に 2倍 ftの 7 0 %エタノールを添加して反応を停止し、 これを希釈した 後 11 P L Cによる分析を行つた。 分離には Y M C社製 11 S— 3 0 2カラムを川 い、 溶出液として 5 OmM酢酸マグネシウムと ] mMテトラプチルアンモニゥム 水溶液の ¾1合液を用いた。 IIPLC分析結 ¾から乂応液屮の C M P一 N e u Λ c の を Si出し, 3 7て:で 分問に 1 n m o 1 cの C M V一 N e u Λ cを 成する 沽性を 1 /: (ュニット) として CMP- N c uA cシンセ夕ーゼ沽性を 出し た。
¾1
Figure imgf000020_0001
(7) CMP— Ne uAcの^成
大腸菌 K一 1 2株 Μ ί': 841 7 (F Ε R Μ Β Ρ 6847 :平成 ] 】 - 8月 1 8 H 独立行政法人 ¾業技術総 研究所 特許生物寄託センター (【1本 1 茨城県つくば市束 1丁 E 1番地 1 中央第 6 (郵便番 305— 8566) ) に 上記 ( 3 ) で構築したプラスミ ド ρ T r c A Eを保持させ、 これを、 ] 00 g ZmLのアンピシリンを含おする 2 X YT培地 50 OmLに植菌し、 37°Cで 振とう培養した。 菌体数が 4 X I 08個 ZmLに達した時点で、 培養液に 終濃 度 0. 2 mMになるように I P T Gを添加し、 さらに 37 °Cで 8. 5時間振とう 培養を続けた。 培養終了後、 遠心分離 (9、 000 Xg、 1 0分) により 25 m L培養液分の菌体 50 m gを [π|収し、 これに 50 m M CMP, 100 m M G l cNAc、 2 OmM 塩化マグネシウム、 50mM グルコース、 250 mM ピルビン酸ナトリウム、 0. 5% (vZv) キシレンを含有する 200 mM リン酸カリウム緩衝液 (p II 8. 0) 5mLを添加し、 28 °Cで揿抻しな がら反応を行った。
反応開始 24時間後に乾燥パン酵母 (オリエン夕ル酵母社製) 250 m g、 — h 記 (6) で調製した CMP— Ne uAcシンセ夕一ゼ (3. 4 u n i t s/mL 反応液) 及び 1 M 塩化マグネシウム溶液 1 00 Lを添加し、 合計 62 ^ 反応させた。 なお、 反応^始 1 4時間後に 1 1 0m gのピルビン酸ナトリゥム を、 24、 38時問後に 1 1 0 m gピルビン酸ナトリウム、 1 80 m gグルコ - - スを、 48 問後に 55mgピルビン酸ナトリウム、 1 80mgグルコースをそ れぞれ添加した。
反応液上清を II P L Cにより分析したところ、 2 1. 4 mMの C M P - N e u A cが生成することが認められた。
比較例 1
( 1 ) CMP力イネ一スをコードする cmk遺伝子のクロ一ニング
大腸菌: Γ M 109株の染色体 DNAを斉藤と三浦の方法 (Biochim. Biopys. Acta., 72, 619 (1963)) で調製した染色体 D N Aをテンペレートとして、 以下 に示す 2種類のプライマ一 I) N Λを常法に従つて合成し、 PCR法により大腸 t¾i の CMP力イネ一ス (cmk) 造伝子を増幅した。
プライマ一 (G) : 5' 一 TTGAATTCTAAGGAGATAAAGATGACGGCAATT -3'
(配列番号 7 )
プライマ一 (H) : 5' 一 TTGAGCTCTGCAAATTCGGTCGCTTATGCG - 3'
(配列番号 8 )
P C Rによる c m k遺伝子の増幅は、 反応液 1 00〃 L中 (50 mM 塩化力 リウム、 1 OmM トリス塩酸 (pII8. 3) 、 1. 5mM 塩化マグネシゥ ム、 0. 001 %ゼラチン、 テンペレ一ト DNA0. 1 g、 プライマ一 DNA (G) (H) 各々 0. 2 M、 Amp 1 i Ta q DNAポリメラ一ゼ 2. 5 ユニット) を Perkin- Elmer Cctus Inst rumei 社製 DNA Thermal Cyclerを用い て、 熱変性 (94°C、 1分) 、 アニーリング (55°C、 1. 5分) 、 ポリメラィ ゼ一シヨン (72°C、 3分) のステップを 25问繰り返すことにより行った。 遺伝子 ii幅後、 反応液をフエノール Zクロ口ホルム (1 : 1) fY液で処理 し、 水溶性両分に 2倍容のェ夕ノールを添加し Ι)ΝΛを沈殿させた。 沈殿 Μ収し た Ι)ΝΛを文献の方法 (Molecular Cloning, 前述) に従ってァガロースゲル' 泳動により分離し、 720 b '!の DNA断片を精製した。 該 DNAを制限醉 素 I': c o R I及び S a c Iで切断し、 Mじく制限酵尜 I': c o R I及び S a c Iで 消化したプラスミド p T 1- c 99 Λと T 4 DNAリガーゼを用いて迚結した。 迚 結反応液を川いて大腸菌 J M ] 09株を形 Kfc;換し、 得られたアンピシリン耐性 形質転換体よりプラスミド PT r c CMKABを— ψ.離した。 pT r c CMKAB は、 p T r c 99 Aの t r cプロモ一夕一下流の I': c〔) R I— S a c I切断部位 に大腸菌の c m k遺伝子の構造遺伝了 'を^ する D N Λ断片が挿入されたもので ある。
(2) cmk、 n e u A遺伝子共発現プラスミドの構築
实施例 1で得られた p T r c s i a B N Pプラスミドを制限酵素 N c o l , E c o R Iで切断し、 n e u A遺伝子を食む N c o I— K c o R I断片をァガロ —スゲル電気泳動を用いて回収した。 これを同じく N c o I、 E c o R Iで消化 した上記比較例 (1) の pT r c CMKABプラスミドと T4ライゲ一スを用い て連結した。 この連結反応液を用いて大腸菌 J Ml 09株を形質転換し、 得られ たアンピシリン耐性形質転換体よりプラスミド pT r c SBCKを -離した。 p T r c S B CKは、 p T r c 99 Aの t r cプロモ一夕一下流の N c o l— S a c I切断部位に H. i n f 1 u e n z a eの n e u A遺伝子及び大腸菌の cmk遺伝子の構造遺伝子を含おする I) N A断片が挿入されたものである。
(3) CMP— Ne u Acの合成
実施例 1で調製した大腸菌 M E 841 7 Z p T r c A Eの 25 m L培養分の粜 菌体 50mgに、 l O OmM G l c NAc、 2 OmM 塩化マグネシウム、 50 mM グルコース、 25 OmM ピルビン酸ナトリウム、 0. 5 % (v/ V) キシレンを含有する 2 0 OmM リン酸カリウム緩衝液 (pII8. 0) 2. 5 ml.を添加し、 28 °Cで攒袢しながら 24時間反応を行った。
上記 ( 2 ) で構築したプラスミ ド p T r c S B C Kを保持する大腸 ¾M E 841 7株の 25 m L培養分の ¾ί ί体 50 m gと 1 00 mM C M P、 20 mM 塩化マグネシウム、 250 m ピルビン酸ナトリゥムを含^する 200 mM リン酸カリウム緩衝液 (pll 8. 0) 2. 5mLを添加後、 超 ΐΐ波処现を行つ た。
2ΰ 反応開始 24時間後、 上記の超- ίί·波処理液 2. 5mLを添加し、 史に 28て:で 攪拌しながら反応を行った。 なお、 反応開始 1 4、 24時問後に 55m 38 時間後に 1 1 0 m のピルビン酸ナトリゥムを添加した。
合計 48時間反応後、 反応液上淸を II P L Cにより分析したところ、 CM P - Ne uAcの生成量は 6. 28 mMであった。
実施例 2
( 1 ) N—ァセチルノイラミン酸シンセターゼをコ一ドする n e u i 遗 了-の クロ一ニング
Cam y l oba c t e r j e j un i 1 652株の染色体 Ι)ΝΛをテ ンペレ一卜として、 以下に示す 2種類のプライマ一 DNAを常法に従って ft成 し、 PCR法により N—ァセチルノイラミン酸シンセ夕一ゼ (n e uB l) 遗伝 子を増幅した。
プライマ一 (I) : 5, - TACGATTATTTTCCTGATGCTC 3'
(配列番号 9)
プライマ一 (J) : TCTCCAAGCTGCATTAAACGCC 3'
(配列番号 1 0 )
P C Rによる n e u B 1遺伝子の増幅は、 反応液 ] 00 L中 (50 mM 塩 化カリウム、 1 OmM トリス塩酸 (pH 8. 3) 、 1. 5mM 塩化マグネシ ゥム、 0. 00 1 %ゼラチン、 テンペレート DNAO. l / g、 プライマ一 DNA (A) (B) 各々 0. 2 / M、 Amp 1 i T a q DNAポリメラ一ゼ 2. 5ユニット) を Perkin- Elmer Cctus Instrument社製 DNA Thermal Cyclerを 用いて、 熱変性 (94°C、 1分) 、 アニーリング (55° (;、 1. 5分) 、 ポリメ ライゼ一シヨン (72 °(:、 3分) のステツプを 30 [π|繰り返すことにより ί Γつ た。
遺伝子^幅後、 反応液をフエノール Ζクロ口ホルム (1 : 1 ) 合液で処理 し、 水溶性闽分に 2倍容のエタノールを添加し Ι)ΝΛを沈殿させた。 沈殿 Μ収し た DNAを文献 (Molecular Cloning, 前述) の方法に従ってァガロースゲル ¾ 気泳動により分離し、 2. 2 k b相 Iの DNA断片を精製した。 該 Ι)ΝΛ断片を テンプレートとして、 以下に示す 2種類のプライマ一 I ) Ν Αを常法に従って合成 し、 再度 P C R法により C. j e j u n iの n e u B 1遺伝子を増幅した。
(K) : 5' -AAGGATCCTCTAGTGAGGCTTATGGAA-3'
(配列番号 1 1 )
- (L) : 5' -GTCTGCAGATTTAATCTTAGAATAATCAGCCC-3'
(配列赉号 1 2 )
PCRによる n euB l遺伝子の増幅は、 反応液 100 / L中 (50 mM 塩 化カリウム、 1 0 mM トリス塩酸 ( p H 8. 3 ) 、 1. 5 mM 塩化マグネシ ゥム、 0. 00 1 %ゼラチン、 テンペレート DNA0. 1 /2 g , プライマ一 DNA (A) (B) 各々 0. 2〃M、 Amp 1 i T a q DNAポリメラ一ゼ 2. 5ユニット) を Perkin Elmer Cetus Instrument社製 DNA Thermal Cyclerを 用いて、 熱変性 (94°C、 ]分) 、 アニーリング (55°〔:、 1. 5分) 、 ポリメ ライゼ一シヨン (72°C、 3分) のステップを 25回繰り返すことにより行つ た。
遺伝子増幅後、 反応液をフエノール Zクロ口ホルム (1 : 1 ) 混合液で処顼 し、 水溶性画分に 2倍容のエタノールを添加し DNAを沈殿させた。 沈殿 M収し た DNAをァガロースゲル電気泳動により分離し、 ] . 2 kb相当のDNΛ断片 を精製した。 該 DNAを制限酵素 B a mil I及び P s t Iで切断し、 同じく制限 酵素 B a m II I及び P s 1 I で消化したプラスミ ド p T r c 9 9 Λ (Ph a rma c i a B i o t e c h. 社より入手) と T 4 DNAリガーゼを 用いて連結した。 連結反応液を用いて大腸菌 J M 1 09株を形質転換し、 徘られ たアンピシリン耐性形質 換体よりプラスミド pT r c n c u B 1を— ψ·離した。 p T r c n e u Β 1は、 p丁 r c 99 Λの t r cプロモ一夕一下流の B a ml I I ― P s t I切断部位に C. j c、 j 11 n iの n〔、 u B 1造^子の構造造 fc fを^ ' する I) N A断片が挿入されたものである (F I': RM Β Ρ -- 8248 : ψ成 1 4 年 独立行政法人? ½業技術総合研究所 特許生物 ¾託センター (Η本 茨城県つく ば巿東 ] 丁 I 1 番地 1 中央第 6 (郵便番 3 0 5 8566) ) 。
(2) n a n E、 n e u B 1遗伝子共発現プラスミドの構築
上記 ( 1 ) で得られた pT r c n e u Β ]プラスミドを制限醉素 B a mil Iで 切断後、 T 4 DNAポリメラ一ゼを用いて切断面を平滑化した。 これを制限酵素 P s t Iで切断し、 n e u B 1遺伝子を含む (B amll I ) — P s t I断片をァ ガロースゲル電気泳動を用いて [nl収した。 続いて实施例 1の (2) で得られた p T r c n a η Εプラスミドを制限酵素 S a i lで切断後、 T 4 D N Aポリメラ —ゼを用いて切断面を平滑化し、 更に制限酵素 P s t Iで切断した。 これと上記 で得られた n e u B 1遺伝子を含む ( B a mH I ) — P s t 1断片とを丁 4 DNAライゲ一スを用いて連結した。 この連結反応液を用いて大腸菌 J M 1 09 株を形質転換し、 得られたアンピシリン耐性形質転換体よりプラスミ ド p T r c N E N Bを単離した。 p T r c N E N Bは、 p T r c 99 Aの t r cプ ロモ一夕一下流の X b a I— P s t I切断部位に H. i n f 1 u e n z a eの n a n E遺伝子、 並びに C. j e j u n iの n e u B 1遺伝子の構造遺伝子を f 有する D N A断片が挿入されたものである。
(3) CMP— Ne uAcの合成
大腸菌 MC 1 061株 (ATCC 53338) に上記 (2) で調製したプラス ミド p T r c N E N Bを保持させ、 この培養菌体 50 m gに 50 mM CMP, l O OmM G l cNAc、 3 OmM 塩化マグネシウム、 200mM ダルコ —ス、 l O OmM ピルビン酸ナトリウム、 0. 5% (vZv) キシレン、 4% (wZv) 乾燥パン酵母 (オリエンタル酵母社製) 、 並びに ¾施例 1の (6) で 調製した CMP— Ne u Acシンセ夕ーゼ (] . 7 u n i t sZmL反応液) を ' 'する ] 75 m リン酸カリゥム緩衝液 ( p 118. 0 ) 5mLを添加し、 2 8 °Cで揿拌しながら 7 2時 /乂応を行つた。 なお、 反応 I' 始 1 4、 2 4 ,
3 8、 4 8、 6 2時間後に 1 8 0m gダルコ一スをそれぞれ添加した。
反応液上清を Π P L Cにより分析したところ、 2 5. 6 mMの C M P— N e u A c生成が認められた。
産業上の利用可能性
本発明の N e u A cリァーゼを用いる方法は、 高価な AT Pを必要とせず、 安 価な G 1 c NAc、 CMP及びピルビン酸から効率的に CMP— Ne uAcを製 造することが初めて可能となり、 CMP— Ne uAcの大量合成法として極めて 有意義な方法である。
また、 本発明の Ne u Acシンセ夕一ゼを用いる方法は、 高価な ATPを必要 とせず、 反応系に必須のホスホエノ一ルビルビン酸 (PKP) はグルコースから 酵母並びに大腸菌の生体 (代謝) 反応により合成 ·供給されるので、 反応系にホ スホエノ一ルビルビン酸 (PEP) を添加する必要がなく、 安価な G 1 c NAc 及び C M Pから効率的に C M P— N e u A cを製造することが初めて可能とな り、 CMP— Ne uAcの大量合成法として極めて有意義な方法である。
特に、 本発明の Ne u Acシンセ夕一ゼを用いる方法は、 本発明の Ne uAc リアーゼを用いる方法で用いられる 2段階の反応を必要としない点で、 より簡便 で優れた方法である。

Claims

請求の範
1. N—ァセチルダルコサミン (G l cNAc) 、 ピルビン酸およびシチジン 5 ' 一モノリン酸 (CMP) を ^する反応系に、 酵母菌体、 N—ァセチルグル コサミン一 6リン酸 2 - ェピメラーゼ (G 1 c ΝΛ c— 6 P 2—ェピメラー ゼ) 、 N ァセチルノイラミン酸リアーゼ (Ne uAcリアーゼ) および CM P 一 N—ァセチルノイラミン酸シンセ夕一ゼ (CMP— N e uAcシンセ夕一ゼ) を添加し、 反応させることを特徴とする、 CMP— N—ァセチルノイラミン酸
(CMP Ne uAc) の製造法。
2. N ァセチルダルコサミン (G 1 cNAc) およびピルビン酸を含 する 反応系に、 N ァセチルダルコサミン— 6 リ ン酸 2—ェピメラ一ゼ
(G 1 cNAc - 6 P 2—ェピメラ一ゼ) および N ァセチルノイラミン酸リ ァ一ゼ (NeuAcリア一ゼ) を添加して N ァセチルノイラミン酸 (Ne uA c) を合成し、 続けて、 この反応系にシチジン 5' —モノリン酸 (CMP) 、 母菌体およびシチジン 5' —モノリン酸 N—ァセチルノイラミン酸シンセ夕一ゼ
(CMP— Ne uAcシンセ夕一ゼ) を添加して CMP— N—ァセチルノイラミ ン酸 (CMP— Ne uAc) を合成する、 請求項 1記載の製造法。
3. G l cNAc— 6 P 2—ェピメラ一ゼ、 N e u Λ cリア一ゼ及び C M P Ne u Acシンセターゼとして、 細胞 (形質転換体を含む) またはその処 ¾物 を使用する、 請求項 1記載の製造 '法。
4. G l cNAc—6 P 2—ェピメラーゼと N e u A cリア一ゼのそれぞれ の活性を增強させた形質転換体と C M P— N e u Λ cシンセ夕一ゼ活性を^する 菌体処理物を使用する、 請求 ¾〗記載の製造法。
5. N—ァセチルダルコサミン (G l cNAc) およびシチジン 5' --モノリ ン酸 (CMP) を含¾する反応系に、 酵母菌体、 N- ァセチルダルコサミン- 6 リン酸 2 --ェピメラーゼ (G 1 c ΝΛ c - 6 P 2 - ェピメラーゼ) 、 N- ァセ チルノイラミン酸シンセ夕一ゼ (Nc、 uAcシンセ夕一ゼ) および CMP- N- ァセチルノイラミン酸シンセ夕一ゼ (CMP— N e uAcシンセ夕一ゼ) を添加 し、 反応させることを特徴とする、 CMP N ァセチルノイラミン酸 (CMP N e u A c ) の製造法。
6. G l c NAc— 6 P 2 - ェピメラ一ゼ、 N e u A cシンセ夕一ゼ及び CMP— Ne uAcシンセ夕ーゼとして、 細胞 (形質転換体を含む) またはその 処理物を使用する、 請求項 1記載の製造法。
7. G l cNAc— 6 P 2 ェピメラ一ゼと N e u A cシンセ夕一ゼのそれ
6
ぞれの活性を増強させた形質転換体と CM P - N e u A cシンセ夕一ゼ活性を する菌体処理物を使用する、 請求頃 1記載の製造法。
PCT/JP2003/000258 2002-07-18 2003-01-15 Cmp-n-アセチルノイラミン酸の製造法 WO2004009830A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/521,576 US7955825B2 (en) 2002-07-18 2003-01-15 Process for producing CMP-N-acetylneuraminic acid
AU2003201882A AU2003201882A1 (en) 2002-07-18 2003-01-15 Processes for producing cmp-n-acetylneuraminic acid
EP03700563A EP1541693A4 (en) 2002-07-18 2003-01-15 PROCESSES FOR PRODUCING CMP-N-ACETYLNEURAMINIC ACID
CA002492838A CA2492838A1 (en) 2002-07-18 2003-01-15 Process for producing cmp-n-acetylneuraminic acid
JP2004522712A JPWO2004009830A1 (ja) 2002-07-18 2003-01-15 Cmp−n−アセチルノイラミン酸の製造法
US13/049,381 US20110207179A1 (en) 2002-07-18 2011-03-16 Process for producing cmp-n-acetylneuraminic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002208987A JP3833584B2 (ja) 2001-07-19 2002-07-18 Cmp−n−アセチルノイラミン酸の製造法
JP2002-208987 2002-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/049,381 Continuation US20110207179A1 (en) 2002-07-18 2011-03-16 Process for producing cmp-n-acetylneuraminic acid

Publications (1)

Publication Number Publication Date
WO2004009830A1 true WO2004009830A1 (ja) 2004-01-29

Family

ID=30767673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000258 WO2004009830A1 (ja) 2002-07-18 2003-01-15 Cmp-n-アセチルノイラミン酸の製造法

Country Status (8)

Country Link
US (2) US7955825B2 (ja)
EP (1) EP1541693A4 (ja)
JP (1) JPWO2004009830A1 (ja)
KR (1) KR100922085B1 (ja)
CN (2) CN1301330C (ja)
AU (1) AU2003201882A1 (ja)
CA (1) CA2492838A1 (ja)
WO (1) WO2004009830A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271372A (ja) * 2005-03-01 2006-10-12 Yamasa Shoyu Co Ltd 糖鎖の製造法
JP2008005794A (ja) * 2006-06-30 2008-01-17 Kyowa Hakko Kogyo Co Ltd シチジン‐5´‐一リン酸‐n‐アセチルノイラミン酸およびn‐アセチルノイラミン酸含有糖質の製造法
US8852891B2 (en) 2006-12-15 2014-10-07 Gene Chem, Inc. N-acetylglucosamine-2-epimerase and method for producing CMP-neuraminic acid using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385051B1 (ko) 2006-02-09 2014-04-24 메디카고 인코포레이티드 식물에서 시알산의 합성
CN101603023B (zh) * 2009-07-10 2010-10-27 山东大学 一株温控共表达外源基因的重组大肠杆菌及其应用
US8846373B2 (en) * 2011-07-29 2014-09-30 The University Of Wyoming Methods of using a bacterial GlcNAc-6-P 2′- epimerase to promote sialylation of glycoconjugates
US9816107B2 (en) 2011-07-29 2017-11-14 The University Of Wyoming Transgenic insect cells comprising a bacterial GlcNAc-6-P 2′-epimerase
CN103088090B (zh) * 2013-03-01 2014-06-04 南京工业大学 一种n-乙酰葡萄糖胺异构酶在生产n-乙酰甘露糖胺中的应用
KR101525230B1 (ko) 2013-05-31 2015-06-01 주식회사 진켐 시알산 유도체의 제조방법
EP3892731A1 (en) * 2020-04-08 2021-10-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Enzymatic method for preparation of cmp-neu5ac

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428947A1 (de) * 1989-11-15 1991-05-29 Forschungszentrum Jülich Gmbh Enzymatisches Verfahren zur Herstellung von N-Acetylneuraminsäure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180719A (ja) 1985-02-06 1986-08-13 Mitsui Toatsu Chem Inc ガングリオシドの取得方法
JPH02177891A (ja) 1988-12-28 1990-07-10 Snow Brand Milk Prod Co Ltd 複合酵素反応によるシチジン‐5′‐モノホスフオシアル酸の合成方法
JP3180190B2 (ja) 1990-01-16 2001-06-25 株式会社日立製作所 ディジタル信号処理方法及びその装置
ATE161051T1 (de) 1991-07-17 1997-12-15 Ciba Geigy Ag Verfahren zur herstellung aktivierter sialinsäuren
JP3131655B2 (ja) 1992-02-03 2001-02-05 マルキン忠勇株式会社 N−アセチルノイラミン酸の製造法
JP3418764B2 (ja) 1994-03-25 2003-06-23 マルキンバイオ株式会社 エピメラーゼ
DE4431280A1 (de) * 1994-09-02 1996-03-07 Hoechst Ag Verfahren zur Isolierung und Reinigung von nukleotidaktivierten Zuckern aus biologischen Quellen
US5876980A (en) * 1995-04-11 1999-03-02 Cytel Corporation Enzymatic synthesis of oligosaccharides
ATE222294T1 (de) 1995-04-11 2002-08-15 Neose Technologies Inc Verbesserte verfahren zur enzymatischen synthese von oligosacchariden
JP3944866B2 (ja) 1996-06-18 2007-07-18 マルキンバイオ株式会社 N−アセチルノイラミン酸シンターゼ、及びこれを用いるn−アセチルノイラミン酸の製造方法
FI105522B (fi) * 1996-08-06 2000-08-31 Sample Rate Systems Oy Järjestely kotiteatteri- tai muussa äänentoistolaitteistossa
AU4220397A (en) * 1996-09-17 1998-04-14 Kyowa Hakko Kogyo Co. Ltd. Processes for producing sugar nucleotides and complex carbohydrates
US6846656B1 (en) 1999-08-30 2005-01-25 Kyowa Hakko Kogyo Co., Ltd. Process for producing N-acetylneuraminic acid
JP3833584B2 (ja) 2001-07-19 2006-10-11 ヤマサ醤油株式会社 Cmp−n−アセチルノイラミン酸の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428947A1 (de) * 1989-11-15 1991-05-29 Forschungszentrum Jülich Gmbh Enzymatisches Verfahren zur Herstellung von N-Acetylneuraminsäure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISHIGE K. ET AL.: "Novel method for enzymatic synthesis of CMP-NeuAc", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 8, August 2001 (2001-08-01), pages 1736 - 1740, XP002983840 *
KITTELMANN M. ET AL.: "CMP-N-acetyl neuraminic-acid synthetase from escherichia coli: fermentative production and application for the preparative synthesis of CMP-neuraminic acid", APPL. MICROBIOL. BIOTECHNOL., vol. 44, December 1995 (1995-12-01), pages 59 - 67, XP002983841 *
See also references of EP1541693A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271372A (ja) * 2005-03-01 2006-10-12 Yamasa Shoyu Co Ltd 糖鎖の製造法
JP2008005794A (ja) * 2006-06-30 2008-01-17 Kyowa Hakko Kogyo Co Ltd シチジン‐5´‐一リン酸‐n‐アセチルノイラミン酸およびn‐アセチルノイラミン酸含有糖質の製造法
US8852891B2 (en) 2006-12-15 2014-10-07 Gene Chem, Inc. N-acetylglucosamine-2-epimerase and method for producing CMP-neuraminic acid using the same

Also Published As

Publication number Publication date
CN1668756A (zh) 2005-09-14
KR20060010706A (ko) 2006-02-02
JPWO2004009830A1 (ja) 2005-11-17
CN100413974C (zh) 2008-08-27
US7955825B2 (en) 2011-06-07
EP1541693A4 (en) 2010-12-15
CA2492838A1 (en) 2004-01-29
AU2003201882A1 (en) 2004-02-09
US20110207179A1 (en) 2011-08-25
EP1541693A1 (en) 2005-06-15
CN1301330C (zh) 2007-02-21
KR100922085B1 (ko) 2009-10-16
US20050260718A1 (en) 2005-11-24
CN1920048A (zh) 2007-02-28

Similar Documents

Publication Publication Date Title
TWI682998B (zh) 用於生產塔格糖的組成物及利用其生產塔格糖的方法
CN106164265B (zh) 阿洛酮糖差向异构酶和使用它生产阿洛酮糖的方法
JP4915917B2 (ja) ラクト−n−ビオースi及びガラクト−n−ビオースの製造方法
EP2990483B1 (en) Psicose epimerase mutant and method for preparing psicose by using same
TWI700370B (zh) 用於生產塔格糖的組成物及利用其生產塔格糖的方法
US20110207179A1 (en) Process for producing cmp-n-acetylneuraminic acid
JP2010510774A (ja) コリネバクテリウム属菌株から発現されたアラビノース異性化酵素及びそれを用いたタガトースの製造方法
CA2595873C (en) Dna fragment encoding an enzyme having polyphosphate-driven adp phosphorylation activity
CN113652385B (zh) 一种高产乳酰-n-四糖的微生物的构建方法及应用
KR101123062B1 (ko) 우리딘 5&#39;-디인산-n-아세틸갈락토사민의 제조법
Kasumi et al. Characterization of mannose isomerase from a cellulolytic actinobacteria Thermobifida fusca MBL10003
CN113122594B (zh) 烟酸或其衍生物的单核苷酸及其生物产物的制备方法
TWI719140B (zh) 新型多磷酸鹽依存性葡萄糖激酶與使用其製備葡萄糖-6-磷酸的方法
Yi et al. Cloning of dextransucrase gene from Leuconostoc citreum HJ-P4 and its high-level expression in E. coli by low temperature induction
JP3833584B2 (ja) Cmp−n−アセチルノイラミン酸の製造法
US8137946B2 (en) Recombinant GRAS strains expressing thermophilic arabinose isomerase as an active form and method of preparing food grade tagatose by using the same
WO2018204314A1 (en) High yields of isomelezitose from sucrose by engineered glucansucrases
JP4272377B2 (ja) ウリジン二リン酸グルコース4−エピメラーゼの新用途
CN111549013A (zh) 一种atp依赖的甘露糖激酶及其在岩藻基乳糖合成中的应用
JP5068956B2 (ja) デオキシリボヌクレオシド一リン酸からのデオキシリボヌクレオシド三リン酸の製造方法
JP3830015B2 (ja) ウリジン5’−ジリン酸ガラクトースの製造法
CN117050965A (zh) 糖基转移酶及其在制备莱鲍迪苷m中的应用
JP2023554112A (ja) 熱安定性に優れたアルロースエピマー化酵素変異体、その製造方法およびこれを用いたアルロースの製造方法
WO2001023400A1 (fr) Fucose de guanosine 5&#39;-diphosphate hautement pur et procede de production correspondant
WO1999024600A1 (fr) Procede servant a preparer un nucleotide de sucre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004522712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2492838

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003700563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057000945

Country of ref document: KR

Ref document number: 20038170701

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003700563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10521576

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057000945

Country of ref document: KR