WO2004008050A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2004008050A1
WO2004008050A1 PCT/JP2003/008626 JP0308626W WO2004008050A1 WO 2004008050 A1 WO2004008050 A1 WO 2004008050A1 JP 0308626 W JP0308626 W JP 0308626W WO 2004008050 A1 WO2004008050 A1 WO 2004008050A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
refrigerant
gas
refrigerant circuit
pipe
Prior art date
Application number
PCT/JP2003/008626
Other languages
English (en)
French (fr)
Inventor
Kazuhide Mizutani
Hiromune Matsuoka
Atsushi Yoshimi
Manabu Yoshimi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP03741249A priority Critical patent/EP1521049A4/en
Priority to KR1020047009894A priority patent/KR100598997B1/ko
Priority to AU2003280987A priority patent/AU2003280987B2/en
Priority to US10/494,968 priority patent/US7104086B2/en
Publication of WO2004008050A1 publication Critical patent/WO2004008050A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus having a vapor compression type refrigerant circuit.
  • One of the conventional refrigeration systems having a vapor compression type refrigerant circuit is an air conditioner used for air conditioning of buildings and the like.
  • Such air conditioners mainly include a heat source unit having a compressor and a heat source side heat exchanger, a plurality of use units having a use side heat exchanger, and a refrigerant for connecting these units. It has a gas pipe and a refrigerant liquid pipe.
  • HFC Hydrofluorocarbon
  • HC Hydrocarbon
  • the existing refrigerant gas pipes and refrigerant liquid pipes are filled with a CFC (chlorofluorocarbon) -based refrigerant or HCFC (hydrochloride port).
  • CFC chlorofluorocarbon
  • HCFC hydrochloride port
  • the oil for the refrigerant of the fluorocarbon-based refrigerant remains, it does not become compatible with the updated oil for the HFC-based refrigerant or HC-based refrigerant and behaves as a foreign substance in the refrigerant circuit, forming an expansion valve that constitutes the refrigerant circuit. It may block the machine and cavities and damage the compressor.
  • non-polar oils such as naphthenic mineral oils have been used for the existing CFC-based or HFCC-based refrigerant oils.
  • oils with ester-type or ether-type polarities are used as the new HFC-based refrigerants or oils for the HC-based refrigerants. Therefore, if oil for the CFC-based refrigerant or the HCFC-based refrigerant remains, the solubility of the oil in the refrigerant changes, and the original refrigeration performance of the HFC-based or HC-based refrigerant may not be obtained. From this point, pipe cleaning is necessary.
  • An air conditioner disclosed in Japanese Patent Application Laid-Open No. 2001-41613 is an air conditioner capable of diverting the existing refrigerant gas pipe and refrigerant liquid pipe.
  • This air conditioner includes a main refrigerant circuit including a compressor, a use side heat exchanger, a heat source side heat exchanger, and the like, and an oil recovery device provided in a suction gas pipe of the compressor.
  • the compressor is started and the refrigerant is circulated (pipe washing operation), whereby the piping is washed with the circulating refrigerant and the existing refrigerant is used.
  • the oil remaining in the gas pipe and the refrigerant liquid pipe can be collected in the oil recovery device.
  • the oil recovery device is provided so as to bypass a part of the suction gas pipe. Therefore, in this air conditioner, during normal operation, the circuit can be switched so that the oil recovery device is not used. However, during the pipe washing operation, foreign matters including oil for refrigerant of the existing equipment remain in the inlet and outlet pipes branching from the suction gas pipe to the oil recovery device. It may be returned to the piping and cause problems such as damage to the compressor on the downstream side.
  • a gate valve is provided at the outlet of this oil recovery device to disconnect it from the main refrigerant circuit. However, if the gate valve is closed after the pipe washing operation, if the refrigerant liquid remains in the oil recovery device, the residual refrigerant liquid may evaporate, resulting in overpressure of the container.
  • an operation of flowing the refrigerant in the refrigerant circuit in a wet state may be performed.
  • Refrigerant liquid accumulates in the device, and the amount of refrigerant circulating in the refrigerant circuit is reduced, so that sufficient pipe cleaning may not be performed.
  • the configuration of the conventional oil recovery system has insufficient reliability in performing the pipe cleaning operation. Disclosure of the invention
  • An object of the present invention is to improve the reliability of a device configuration for performing a pipe cleaning operation in a refrigerating device having a vapor compression type refrigerant circuit.
  • the refrigeration apparatus includes a main refrigerant circuit of a vapor compression type, a foreign substance collecting container, an inlet pipe, an outlet pipe, and a main opening / closing device.
  • the vapor compression type refrigerant circuit includes a compressor, a use side heat exchanger, a heat source side heat exchanger, and a gas side refrigerant circuit connecting the use side heat exchanger and the compressor.
  • the foreign matter collecting container can separate the foreign matter in the refrigerant by introducing the refrigerant flowing in the gas side refrigerant circuit.
  • the inlet pipe is branched from the gas-side refrigerant circuit to introduce the refrigerant into the foreign-matter collecting container, and is connected to the inlet of the foreign-matter collecting container so that foreign matter accumulated inside does not return to the gas-side refrigerant circuit. Have been.
  • the outlet pipe is branched from the gas-side refrigerant circuit at a position downstream of the branch of the inlet pipe in order to return the refrigerant from which foreign matter has been separated in the foreign-matter collecting container to the gas-side refrigerant circuit. Connected to the exit.
  • the main opening / closing device can shut off the flow of the refrigerant between the branch part with the inlet pipe and the branch part with the outlet pipe in the gas-side refrigerant circuit.
  • the circuit is configured by operating the main opening / closing device so that the refrigerant passes through the foreign matter collection container, and the compressor is operated to circulate the refrigerant, thereby providing a main circuit.
  • Foreign matter in the refrigerant circuit is introduced into the foreign matter collection container via the inlet pipe together with the refrigerant, and only the foreign matter is separated and collected.
  • the refrigerant from which the foreign matter has been separated The gas is returned from the foreign matter collecting container to the gas-side refrigerant circuit via the outlet pipe.
  • the refrigerant from which the foreign matter has been removed is sucked into the compressor installed on the downstream side of the foreign matter collecting container, and problems such as damage to the compressor are less likely to occur.
  • foreign matter refers to garbage remaining in the refrigerant circuit after the installation work of the refrigeration system, oil content, etc.
  • the refrigeration system using the CFC-based refrigerant / HCFC-based refrigerant is diverted from the existing piping to the HFC-based refrigerant / HC.
  • oil for the CFC-based refrigerant and HCFC-based refrigerant remaining in the existing piping is also included.
  • the circuit configuration is performed by operating the main opening / closing device so that the refrigerant does not pass through the foreign matter collection container, and operation is performed in a normal refrigerant circuit.
  • foreign substances may be accumulated in the inlet pipe during the operation for collecting foreign substances.
  • the inlet pipe is connected to the inlet of the foreign matter collection container so that foreign substances do not return to the gas side refrigerant circuit, the possibility that foreign matters accumulated in the inlet pipe are returned to the gas side refrigerant circuit again is reduced. it can. This makes it possible to prevent foreign substances from being sucked into the compressor installed downstream even after the circuit configuration is switched, and to improve the reliability of the device configuration for performing the pipe cleaning operation. It can be done.
  • the inlet pipe is formed with a return preventing shape for preventing foreign matters accumulated inside from returning to the gas-side refrigerant circuit.
  • the outlet pipe is connected to an outlet of the foreign matter collecting container so that the foreign matter collected inside does not return to the gas-side refrigerant circuit.
  • the outlet pipe is connected to the outlet of the foreign substance collecting container so that foreign substances do not return to the gas-side refrigerant circuit, so that the possibility that foreign matters accumulated in the outlet pipe are returned to the gas-side refrigerant circuit again is reduced. it can.
  • the return pipe is provided with a return prevention shape for preventing foreign matters accumulated in the outlet pipe from returning to the gas-side refrigerant circuit. Have been.
  • the refrigeration apparatus according to claim 5 is the refrigeration apparatus according to claim 2 or 4, wherein the return prevention shape formed in the inlet / outlet pipe is bent near the branch of the inlet / outlet pipe from the gas-side refrigerant circuit. Shape.
  • the return prevention shape formed on the inlet / outlet piping is a bent shape formed near the branch of the gas-side refrigerant circuit of the inlet / outlet piping, and the configuration is simple.
  • an upward slope toward the suction side of the compressor is formed near the branch of the inlet Z outlet pipe of the gas-side refrigerant circuit. Have been.
  • an upward slope toward the suction side of the compressor is formed near the branch of the inlet / outlet pipe of the gas-side refrigerant circuit, so that foreign matter accumulated in the inlet / outlet pipe is further reduced. The danger of being sucked into the compressor can be reduced.
  • the refrigeration apparatus includes a vapor compression type main refrigerant circuit, a foreign matter collection container, an inlet pipe, an outlet pipe, and a main opening / closing device.
  • the vapor compression type refrigerant circuit includes a compressor, a use side heat exchanger, a heat source side heat exchanger, and a gas side refrigerant circuit connecting the use side heat exchanger and the compressor.
  • the foreign matter collecting container can separate the foreign matter in the refrigerant by introducing the refrigerant flowing in the gas side refrigerant circuit.
  • the inlet pipe is branched from the gas-side refrigerant circuit and is connected to an inlet of the foreign matter collecting container in order to introduce the refrigerant into the foreign matter collecting container.
  • the outlet pipe is branched from the gas-side refrigerant circuit at a position downstream of the branch of the inlet pipe in order to return the refrigerant from which foreign matter has been separated in the foreign-matter collecting vessel to the gas-side refrigerant circuit. Connected to the exit.
  • the main switchgear can shut off the flow of the refrigerant between the branch portion with the inlet pipe and the branch portion with the outlet pipe in the gas-side refrigerant circuit.
  • the outlet pipe is provided with a check device that allows only the flow from the foreign substance collecting container to the gas side refrigerant circuit.
  • the circuit is configured by operating the main opening / closing device so that the refrigerant passes through the foreign matter collection container, and the compressor is operated to circulate the refrigerant, thereby providing a main circuit.
  • Foreign matter in the refrigerant circuit is introduced into the foreign matter collection container via the inlet pipe together with the refrigerant, and only the foreign matter is separated and collected.
  • the refrigerant from which the foreign matter has been separated The gas is returned from the foreign matter collecting container to the gas-side refrigerant circuit via the outlet pipe. Thereby, the refrigerant from which the foreign matter has been removed is sucked into the compressor installed on the downstream side of the foreign matter collecting container, and problems such as damage to the compressor are less likely to occur.
  • foreign matter refers to garbage and oil remaining in the refrigerant circuit after the installation work of the refrigeration system.
  • the refrigeration system using the CFC-based refrigerant or the HCFC-based refrigerant is diverted from the existing piping to the HFC-based refrigerant.
  • CFC-based refrigerant remaining in existing piping and oil for HCFC-based refrigerant are also included.
  • the circuit is operated by operating the main opening and closing device so that the refrigerant does not pass through the foreign matter collection container, and normal operation is performed.
  • the refrigerant liquid may be stored in the foreign matter collecting container together with the collected foreign matter.
  • the outlet pipe is provided with the non-return device, the refrigerant gas evaporated in the foreign matter collecting container can be returned to the gas-side refrigerant circuit even during normal operation. Thereby, loss of the refrigerant charged in the main refrigerant circuit can be reduced, and overpressure of the foreign matter collecting container can be prevented. Thereby, the reliability of the device configuration for the pipe cleaning operation can be improved.
  • the refrigeration apparatus includes a vapor compression type main refrigerant circuit, a foreign matter collecting container, an inlet pipe, an outlet pipe, and a main opening / closing device.
  • the vapor compression type refrigerant circuit includes a compressor, a use side heat exchanger, a heat source side heat exchanger, and a gas side refrigerant circuit connecting the use side heat exchanger and the compressor.
  • the foreign matter collecting container can separate the foreign matter in the refrigerant by introducing the refrigerant flowing in the gas side refrigerant circuit.
  • the inlet pipe is branched from the gas-side refrigerant circuit and is connected to an inlet of the foreign matter collecting container in order to introduce the refrigerant into the foreign matter collecting container.
  • the outlet pipe is branched from the gas-side refrigerant circuit at a position downstream of the branch part of the inlet pipe in order to return the refrigerant from which foreign matter has been separated in the foreign-matter collecting vessel to the gas-side refrigerant circuit.
  • the main switchgear can shut off the flow of the refrigerant between the branch portion with the inlet pipe and the branch portion with the outlet pipe in the gas-side refrigerant circuit.
  • the foreign matter collecting container is provided with a heating device for heating the inside.
  • the main opening / closing device is operated to configure the circuit so that the refrigerant passes through the foreign matter collection container, and the compressor is operated to circulate the refrigerant.
  • foreign matter in the main refrigerant circuit is introduced into the foreign matter collecting container via the inlet pipe together with the refrigerant, and only the foreign matter is separated and collected.
  • the refrigerant from which the foreign matter has been separated is returned from the foreign matter collecting container to the gas-side refrigerant circuit via the outlet pipe.
  • the refrigerant from which the foreign matter has been removed is sucked into the compressor installed downstream of the foreign matter collecting container, so that problems such as damage to the compressor are less likely to occur.
  • foreign matter refers to garbage and oil remaining in the refrigerant circuit after the installation work of the refrigeration system, and the refrigeration system using the CFC-based refrigerant / HCFC-based refrigerant is diverted from the existing piping to the HFC-based refrigerant.
  • CFC refrigerant remaining in the existing piping ⁇ HCFC refrigerant oil is also included.
  • the circuit is operated by operating the main opening and closing device so that the refrigerant does not pass through the foreign matter collection container, and normal operation is performed.
  • the refrigerant liquid may be stored in the foreign matter collecting container together with the collected foreign matter.
  • the refrigerant liquid flows in a wet state (gas-liquid two-phase flow)
  • the refrigerant liquid is supplied to the foreign matter collecting container, and the amount of the refrigerant liquid accumulated in the foreign matter collecting container increases.
  • the amount of the refrigerant circulating in the refrigerant circuit is reduced, and the pipe cleaning may be insufficient.
  • the foreign matter collecting container is provided with a heating device, it is necessary to heat and evaporate the refrigerant liquid collected in the foreign matter collecting container and return the refrigerant to the main refrigerant circuit, thereby securing the refrigerant circulation amount. it can. Thus, the reliability of the device configuration for the pipe cleaning operation can be improved.
  • the refrigeration apparatus according to claim 9 is the heat exchanger according to claim 8, wherein the heating device uses a part of the refrigerant gas discharged from the compressor as a heat source.
  • the refrigeration apparatus according to claim 10 is the heat exchanger according to claim 8, wherein the heating device uses a part of the refrigerant liquid flowing through the liquid-side refrigerant circuit as a heat source.
  • the heat of the refrigerant liquid flowing in the liquid refrigerant circuit can be effectively used.
  • the refrigeration apparatus according to claim 11 is the refrigeration apparatus according to claim 8, wherein the heating device is an electric heater.
  • the electric heater since the electric heater is used, it is possible to heat the foreign matter collecting container regardless of the operation state of the refrigerant circuit.
  • a refrigeration apparatus is the refrigeration apparatus according to claim 8, wherein the heating device is a heat exchanger using an external heat source.
  • the refrigeration apparatus according to claim 13 is the refrigeration apparatus according to any one of claims 1 to 12, wherein the main switching device further has a function of blocking a flow of the refrigerant from the gas-side refrigerant circuit to the inlet pipe.
  • the main switching device has a function of shutting off the flow of the refrigerant between the branch part of the gas-side refrigerant circuit and the outlet pipe of the gas-side refrigerant circuit. Since it is possible to switch between the function of shutting off the flow of the refrigerant to the inlet pipe and the function of switching the circuit, the number of components for switching the circuit can be reduced.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of claims 1 to 13, wherein the foreign matter collecting container is provided with a refrigerant inlet and an outlet at an upper portion of the container.
  • the inlet and outlet of the foreign matter collecting container are provided at the upper part of the container, so that foreign matter in the refrigerant introduced via the inlet pipe is collected at the lower part of the container. ing. This can reduce the possibility that the collected foreign matter returns to the gas-side refrigerant circuit from the outlet, thereby improving the reliability of the device configuration for the pipe cleaning operation.
  • the refrigeration apparatus according to claim 15 is the refrigeration apparatus according to claim 14, wherein the foreign matter collecting container is provided with a guide pipe extending from the upper part of the container to the lower part of the container for guiding the refrigerant flowing from the inlet of the container to the lower part of the container. .
  • the refrigerant containing foreign matter flowing from the inlet of the foreign matter collecting container is guided to the lower part of the container by the guide pipe provided in the foreign matter collecting container, so that the refrigerant flows from the inlet to the outlet. Short circuit can be prevented. Thereby, the possibility that the collected foreign matter returns to the gas-side refrigerant circuit from the outlet can be reduced, so that the reliability of the device configuration for the pipe cleaning operation can be improved.
  • the refrigeration apparatus according to claim 16 is the refrigeration apparatus according to claim 14, wherein the foreign matter collecting container is a container.
  • a partition plate is provided for separating the space near the inlet from the space near the outlet of the container. It is possible to prevent the flow of the contained refrigerant from being short-circuited from the inlet to the outlet. This can reduce the possibility that the collected foreign matter returns to the gas-side refrigerant circuit from the outlet, thereby improving the reliability of the device configuration for the pipe cleaning operation.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of claims 14 to 17, wherein a filter is provided at an outlet of the foreign matter collecting container.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the fourteenth to seventeenth aspects, wherein a take-out device for taking out the foreign matter to the outside is provided below the foreign matter collecting container. In this refrigerating apparatus, the collected foreign matter can be taken out of the foreign matter collecting container.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of claims 14 to 18, wherein a pressure relief device is provided at an upper portion of the foreign matter collecting container to prevent overpressure of the foreign matter collecting container. ing.
  • a pressure relief device is provided in the foreign matter collecting container, so after collecting foreign matter, the refrigerant liquid remaining in the foreign matter collecting container evaporates and the foreign matter collecting container prevents overpressure. can do.
  • the refrigeration apparatus according to claim 20 is the refrigeration apparatus according to any one of claims 1 to 19, wherein an oil detection device for detecting oil in the foreign matter is provided at an inlet or an inlet pipe of the foreign matter collecting container. .
  • the oil content in the foreign matter flowing into the foreign matter collection container can be detected during the pipe washing operation by the oil detection device provided at the entrance of the foreign matter collection container or at the inlet pipe.
  • the pipe cleaning operation can be completed when it is no longer possible.
  • the refrigeration apparatus according to claim 21 is the method according to any one of claims 1 to 20, wherein
  • the interior of the collection container is made of a corrosion-resistant material or is provided with a corrosion-resistant coating to prevent corrosion due to corrosive components contained in foreign substances.
  • the foreign substance collecting container is formed of a corrosion resistant material or is provided with a corrosion resistant coating, the foreign substance collecting container is prevented from being corroded by a corrosive component contained in the foreign substance, so that the foreign substance collecting container is prevented.
  • the collection container can be protected.
  • a refrigeration apparatus according to claim 22 is the refrigeration apparatus according to any one of claims 1 to 21, wherein the foreign matter collecting container is detachably connected to the gas-side refrigerant circuit.
  • the foreign matter collecting container can be separated from the gas-side refrigerant circuit, so that the collected foreign matter can be taken out together with the container.
  • FIG. 1 is a schematic diagram of a refrigerant circuit of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of the vicinity of the foreign matter collecting device of the first embodiment (a cross section of the foreign matter collecting container is shown).
  • FIG. 3 is a flowchart showing a pipe cleaning operation (gas cleaning) of the first embodiment
  • FIG. 4 is a flowchart showing a pipe cleaning operation (liquid cleaning) of the first embodiment.
  • FIG. 5 is an enlarged view of the vicinity of the foreign substance collecting device of Modification 1 of the first embodiment (a cross section of the foreign substance collecting container is shown).
  • FIG. 6 is an enlarged view of the vicinity of a foreign substance collecting device of Modification 2 of the first embodiment (a cross section of the foreign substance collecting container is shown).
  • FIG. 7 is an enlarged view of the vicinity of a foreign matter collecting device according to a third modification of the first embodiment (a cross section of the foreign matter collecting container is shown).
  • FIG. 8 is an enlarged view of the vicinity of a foreign matter collecting device of Modification 4 of the first embodiment (a cross section of the foreign matter collecting container is shown).
  • FIG. 9 is an enlarged view of the vicinity of a foreign matter collecting device according to Modification 5 of the first embodiment (a cross section of the foreign matter collecting container is shown).
  • FIG. 10 is an enlarged view of the vicinity of a foreign matter collecting device of Modification 6 of the first embodiment (foreign matter The cross section of the collection container is shown).
  • FIG. 11 is a schematic diagram of a refrigerant circuit of an air conditioner according to a second embodiment of the present invention.
  • FIG. 12 is an enlarged view of the vicinity of a foreign matter collecting device of the second embodiment (a foreign matter collecting container). The cross section is shown).
  • FIG. 13 is a flowchart showing a pipe cleaning operation (heating after liquid cleaning) of the second embodiment.
  • FIG. 14 is a flowchart showing a pipe cleaning operation (heating during liquid cleaning) of the second embodiment.
  • FIG. 15 is a schematic diagram of a refrigerant circuit of an air conditioner of Modification Example 1 of Embodiment 2 of the present invention.
  • FIG. 16 is a schematic diagram of a refrigerant circuit of an air conditioner according to Modification 2 of the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a refrigerant circuit of an air conditioner 1 of a first embodiment as an example of a refrigeration device of the present invention.
  • the air conditioner 1 includes one heat source unit 2, a plurality of (two in the present embodiment) use units 5 connected in parallel with the heat source unit 2, a heat source unit 2 and a use unit 5.
  • a refrigerant liquid pipe 6 and a refrigerant gas pipe 7 are provided for connecting the air conditioner, and are capable of performing a cooling operation and a heating operation used for air conditioning of a building or the like, for example.
  • the air conditioner 1 uses an HFC-based refrigerant / HC-based refrigerant.
  • the air conditioner 1 is configured by replacing the heat source unit and the use unit of the existing air conditioner using the CFC-based refrigerant / HCFC-based refrigerant with the heat source unit 2 and the use unit 5. It is. That is, the refrigerant liquid pipe 6 and the refrigerant gas pipe 7 use the existing refrigerant liquid pipe and refrigerant gas pipe.
  • the use unit 5 mainly has a use side expansion valve 51 and a use side heat exchanger 52.
  • the use-side expansion valve 51 is provided with an electric expansion valve connected to the liquid side of the use-side heat exchanger 52 in order to adjust the refrigerant pressure and the refrigerant flow.
  • the use side heat exchanger 52 is a cross fin type heat exchanger for exchanging heat with indoor air.
  • the use unit 5 includes a fan (not shown) for taking in and sending out the indoor air into the unit, and the indoor unit and the refrigerant flowing through the use side heat exchanger 52 are provided with a fan. Can be subjected to heat exchange.
  • the heat source unit 2 mainly includes a compressor 21, an oil separator 22, a four-way switching valve 23, a heat source side heat exchanger 24, and a heat source side expansion valve 25.
  • the compressor 21 is a scroll compressor driven by an electric motor, and compresses the sucked refrigerant gas.
  • the compressor 21 uses an ester-based or ether-based oil suitable for HFC-based refrigerant / HC-based refrigerant for lubrication in the compressor.
  • the oil separator 22 is a container provided on the discharge side of the compressor 21 for gas-liquid separation of the oil contained in the compressed and discharged refrigerant gas. The oil separated in the oil separator 22 is returned to the suction side of the compressor 21 via an oil return pipe 26.
  • the four-way switching valve 23 is a valve for switching the flow direction of the refrigerant when switching between the cooling operation and the heating operation, and the outlet of the oil separator 22 and the heat source side heat exchanger during the cooling operation.
  • the heat source side heat exchanger 24 is a cross-fin type heat exchanger for exchanging heat with the refrigerant using air as a heat source.
  • the heat source unit 2 includes a fan (not shown) for taking in and sending out outdoor air into the unit, and heats the outdoor air and the refrigerant flowing through the heat source side heat exchanger 24. It is possible to exchange.
  • the heat-source-side expansion valve 25 is a valve whose opening degree can be adjusted by a motor-operated expansion valve connected to the liquid side of the heat-source-side heat exchanger 24 in order to adjust the refrigerant pressure and adjust the refrigerant flow rate. is there.
  • the refrigerant liquid pipe 6 is connected between the liquid side of the use side heat exchanger 52 of the use unit 5 and the heat source unit.
  • the heat source side heat exchanger 2 is connected to the liquid side 24.
  • the refrigerant gas pipe 7 connects between the gas side of the use side heat exchanger 52 of the use unit 5 and the four-way switching valve 23 of the heat source unit 2.
  • the refrigerant circuit ranging from the use side heat exchanger 52 to the use side expansion valve 51, the refrigerant liquid pipe 6, and the heat source side heat exchanger 24 including the heat source side expansion valve 25 is referred to as a liquid side refrigerant circuit 1. Set to 1.
  • the refrigerant circuit extends from the use side heat exchanger 52 to the heat source side heat exchanger 24 including the refrigerant gas pipe 7, the compressor 21, the oil separator 22 and the four-way switching valve 23.
  • a gas-side refrigerant circuit 12 That is, the main refrigerant circuit of the air conditioner 1 is composed of the liquid refrigerant circuit 11 and the gas refrigerant circuit 12.
  • the air conditioner 1 of the present embodiment further includes a foreign matter collection device 27 provided in the gas-side refrigerant circuit 12.
  • the foreign matter collection device 27 is provided with the dust and oil remaining in the main refrigerant circuit after the installation work of the utilization unit 5 and the heat source unit 2, and the existing refrigerant liquid piping 6 and refrigerant gas piping 7 that are diverted. This is to collect oil for CFC-based refrigerant or HCFC-based refrigerant used in the air conditioner.
  • the foreign matter collecting device 27 is incorporated in the heat source unit 2 and is provided on the suction side of the compressor 21 of the gas-side refrigerant circuit 12.
  • FIG. 2 is an enlarged view of the vicinity of the foreign substance collecting device 27 of the air conditioner 1 of the present embodiment (a cross section of the foreign substance collecting container is shown).
  • the foreign matter collecting device 27 includes a foreign matter collecting container 31, an inlet pipe 32, an outlet pipe 33, and a main opening / closing device 34.
  • the foreign matter collecting container 31 is capable of introducing the refrigerant flowing through the gas-side refrigerant circuit 12 and separating foreign matter in the refrigerant. Specifically, the foreign matter collection container 31 is connected to the suction gas pipe 35 connecting the four-way switching valve 23 and the suction side of the compressor 21 via the inlet pipe 32 and the outlet pipe 33. Have been. Here, since the suction gas pipe 35 constitutes the gas-side refrigerant circuit 12, the foreign matter collecting container 31 is connected to the gas-side refrigerant circuit 12.
  • the inlet pipe 32 is a pipe for introducing a refrigerant into the foreign substance collecting container 31, is branched from the suction gas pipe 35, and is connected to an inlet of the foreign substance collecting vessel 31.
  • the branch position of the inlet pipe 32 is used to guide the oil from the oil separator 22 to the foreign matter collecting vessel 31. It is located upstream of the oil return pipe 26 so that it does not enter.
  • the inlet pipe 32 is provided with an inlet opening / closing device 32 a for flowing / blocking the refrigerant to / from the inlet of the foreign matter collecting container 31.
  • the inlet opening / closing device 32a is a solenoid valve.
  • the inlet pipe 32 is formed with a return preventing shape 32b for preventing foreign matters accumulated in the inlet pipe 32 from returning to the suction gas pipe 35.
  • the anti-return shape 32b has a bent shape formed near the branch of the inlet pipe 32 and the suction gas pipe 35.
  • the bent shape of the return-preventing shape 32b has a shape such that it temporarily extends upward from the height of the branch portion of the suction gas pipe 35, and then extends downward.
  • the outlet pipe 3 3 is a pipe for returning the refrigerant from which the foreign matter has been separated in the foreign substance collecting vessel 3 1 to the gas side refrigerant circuit 12, and is located downstream of the inlet pipe 3 2 from the suction gas pipe 3 5. It is branched and connected to the outlet of the foreign substance collection container 31.
  • the branch position of the outlet pipe 3 3, as with the inlet pipe 3 2 is set at the upstream side of the oil return pipe 26 so that oil from the oil separator 22 does not flow into the outlet pipe 3 3.
  • the outlet pipe 33 is provided with a check device 33 a that allows only the flow from the foreign substance collecting container 31 to the suction gas pipe 35.
  • the check device 33a is a check valve.
  • the outlet pipe 33 has a return preventing shape 33b for preventing foreign matters accumulated in the outlet pipe 33 from returning to the suction gas pipe 35.
  • the bent shape of the anti-return shape 33b like the anti-return shape 32b, extends once above the height of the branch portion of the suction gas pipe 35, and then extends downward. Shape.
  • the main opening / closing device 34 is provided so as to be able to shut off the flow of the refrigerant between the branch of the inlet pipe 32 of the suction gas pipe 35 and the branch of the outlet pipe 33 of the suction gas pipe 35.
  • the main switching device 34 is a solenoid valve. In the vicinity of the branch of the inlet gas pipe 35 from the inlet pipe 32 and the outlet pipe 33, an upward slope toward the compressor 21 is formed.
  • the foreign matter collecting container 31 is, for example, a vertical cylindrical container, and an inlet and an outlet are provided at an upper portion of the container.
  • a guide pipe 31 a for guiding the refrigerant flowing from the inlet pipe 32 to the lower part of the container is provided at the entrance of the foreign substance collecting container 31.
  • the foreign matter collecting container 31 is formed of a corrosion-resistant material such as stainless steel, copper, or a copper alloy in order to prevent corrosion due to a corrosive component contained in the foreign matter.
  • FIG. 3 is a flowchart showing the operation of the pipe cleaning operation (gas cleaning).
  • FIG. 4 is a flowchart showing the operation of the pipe cleaning operation (liquid cleaning).
  • the cooling operation will be described.
  • the four-way switching valve 23 is in the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the heat source side heat exchanger 24, and the compressor 2
  • the suction side of 1 is connected to the gas side of the use side heat exchanger 52.
  • the heat source side expansion valve 25 is fully opened, and the use side expansion valve 51 is adjusted in opening so as to reduce the pressure of the refrigerant.
  • the main opening / closing device 34 is opened, and the entrance opening / closing device 32 a is closed, so that the foreign matter collecting device 27 is not used.
  • the refrigerant liquid sent to the use unit 5 is decompressed by the use-side expansion valve 51, and then evaporates by exchanging heat with room air in the use-side heat exchanger 52.
  • the evaporated refrigerant gas is sucked into the compressor 21 again via the refrigerant gas pipe 7, the four-way switching valve 23, and the main switching device 34.
  • the cooling operation is performed.
  • the heating operation will be described.
  • the four-way switching valve 23 is indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the use side heat exchanger 52, and the compressor 2 1 suction side connected to heat source side heat exchanger 2 4 gas side It has been done.
  • the use side expansion valve 51 is fully opened, and the opening of the heat source side expansion valve 25 is adjusted to reduce the pressure of the refrigerant.
  • the main opening / closing device 34 is opened, and the entrance opening / closing device 32 a is closed, so that the foreign matter collecting device 27 is not used.
  • the refrigerant gas sucked into the compressor 21 is After being compressed, it is sent to an oil separator 22 to be separated into gas and liquid. After that, the compressed refrigerant gas is sent to the utilization unit 5 via the four-way switching valve 23 and the refrigerant gas pipe 7.
  • the refrigerant gas sent to the use unit 5 is condensed by exchanging heat with room air in the use side heat exchanger 52.
  • the condensed refrigerant liquid is sent to the heat source unit 2 via the use-side expansion valve 51 and the refrigerant liquid pipe 6.
  • the refrigerant liquid sent to the heat source unit 2 is decompressed by the heat source side expansion valve 25, and exchanges heat with the outside air in the heat source side heat exchanger 24 to evaporate.
  • the evaporated refrigerant gas is sucked into the compressor 21 again via the four-way switching valve 23 and the main switching device 34. In this way, the heating operation is performed.
  • the air conditioner 1 of the present embodiment only the heat source unit 2 and the use unit 5 are updated, and the existing refrigerant liquid pipe and refrigerant gas pipe are diverted as the refrigerant liquid pipe 6 and the refrigerant gas pipe 7.
  • the oil for the existing GFC-based refrigerant or HCFC-based refrigerant remains as foreign matter in the refrigerant liquid piping 6 and the refrigerant gas piping 7 along with the garbage and oil, etc. Foreign matter must be removed from the main refrigerant circuit.
  • the entire refrigerant circuit of the air conditioner 1 is cleaned with the refrigerant gas of the HFC-based refrigerant or the HC-based refrigerant, and the foreign matter collecting device 27 is used to clean the inside of the refrigerant circuit. This is an operation to collect foreign matter.
  • step S1 the existing use unit and heat source unit are removed, the new use unit 5 and heat source unit 2 are installed, and connected to the refrigerant liquid pipe 6 and the refrigerant gas pipe 7 to be diverted, and the air is removed.
  • the main refrigerant circuit of the harmony device 1 is configured. After evacuating the main refrigerant circuit to remove air from the main refrigerant circuit, Fill with refrigeration.
  • step S2 a state is used in which the foreign substance collecting device 27 is used (the foreign material collecting device is ON). That is, the main switch device 3 4 closed, and the inlet opening and closing device 3 2 a an open, you in the circuit configuration as refrigerant gas is introduced into the foreign matter collecting container 3 1 during operation ⁇ 0
  • step S3 an operation similar to the above-described cooling operation is performed.
  • step S2 since the circuit is configured so as to use the foreign matter collecting device 27, the refrigerant gas flowing through the suction gas pipe 35 passes through the foreign matter collecting device 27 and the compressor 2 Inhaled to 1.
  • the refrigerant gas is transferred to the foreign matter collecting device 27 along with the trash remaining in various parts of the main refrigerant circuit and the oil for the existing refrigerant remaining in the refrigerant liquid pipe 6 and the refrigerant gas pipe ⁇ .
  • the refrigerant gas containing the foreign matter is introduced into the lower part of the foreign matter collecting container 31 via the inlet pipe 32 and the guide pipe 31a as shown in FIG.
  • the foreign substances contained in the refrigerant gas are collected at the lower part of the foreign substance collection container 31, and only the refrigerant gas from which the foreign substances have been removed is sucked into the compressor 21 again through the outlet pipe 33. Is done.
  • step S4 the cooling operation is performed until a predetermined time elapses, and after the predetermined time elapses, the process proceeds to the next step S5.
  • the predetermined time is set to a time required for removing foreign matter in the main refrigerant circuit.
  • step S5 the foreign matter collection device 27 is not used (the foreign matter collection device OFFF).
  • the main switchgear 34 is opened and the inlet switchgear 32 a is closed to switch to a circuit configuration (normal operation state) in which the refrigerant gas bypasses the foreign matter collecting container 31.
  • the pipe cleaning operation (gas cleaning) is performed.
  • the operation of the pipe cleaning operation (liquid cleaning) will be described.
  • the refrigerant flowing in the gas-side refrigerant circuit 12 is in a gaseous state, the refrigerant gas pipe 7 is cleaned with the refrigerant gas.
  • the refrigerant flowing in the gas-side refrigerant circuit 12 is made wet (gas-liquid two-phase flow) by adjusting the opening of the use-side expansion valve 51 to perform pipe cleaning. Do Is the way.
  • step S11 the existing use unit and heat source unit are removed, the new use unit 5 and heat source unit 2 are installed, and connected to the refrigerant liquid pipe 6 and the refrigerant gas pipe 7 to be diverted.
  • the refrigerant circuit of the air conditioner 1 is configured. Then, the inside of the main refrigerant circuit is evacuated to remove air from the main refrigerant circuit, and then a new refrigerant is filled.
  • step S12 the state where the foreign substance collecting device 27 is used is set (the foreign material collecting device ON).
  • the main switchgear 34 is closed and the inlet switchgear 32a is opened so that the refrigerant gas is introduced into the foreign matter collecting container 31 during operation.
  • step S13 the same cooling operation as in the case of gas cleaning is performed.
  • step S14 the cooling operation is performed until a predetermined time (first cooling time) elapses, and after the first cooling time elapses, the process proceeds to the next step S15.
  • step S15 the refrigerant pressure after the pressure reduction is increased to near the saturation pressure by increasing the opening of the use side expansion valve 51 from the opening during the cooling operation in step S13.
  • a wet state gas-liquid two-phase flow
  • wet cooling operation since the refrigerant flowing through the gas-side refrigerant circuit 12 is in a wet state, the refrigerant liquid flows into the foreign matter collecting container 31 together with the foreign matter. As a result, the refrigerant liquid accumulates together with the foreign matter in the lower part of the foreign matter collecting container 31, and only the refrigerant gas from which the foreign matter and the refrigerant liquid have been separated is sent out from the outlet and sucked into the compressor 21.
  • step S16 the wet cooling operation is performed until a predetermined time (second cooling time) elapses, and after the second cooling time elapses, the process proceeds to the next step S17.
  • step S17 the same cooling operation as in step S13 is performed again. That is, by reducing the opening of the use-side expansion valve 51 to about the opening during the cooling operation in step S13, the refrigerant pressure after the pressure reduction is lower than the saturation pressure, and the state is dry (only the refrigerant gas). To Then, the refrigerant liquid accumulated in the foreign substance collecting container 31 evaporates again and is sucked into the compressor 21, so that only the foreign substance is collected in the foreign substance collecting container 31.
  • step S18 the humidity is maintained until a predetermined time (third cooling time) has elapsed. Re-cooling operation is performed, and after the third cooling time has elapsed, the flow proceeds to the next step S19.
  • the total time of the first, second, and third cooling times is set to a time necessary for removing foreign matter in the refrigerant circuit.
  • step S19 the foreign matter collecting device 27 is set in a non-use state (foreign material collecting device OFFF). That is, the main switching device 34 is opened, the entrance switching device 32a is closed, and the refrigerant gas is switched to a circuit configuration (normal operation state) in which the foreign matter collecting container 31 is bypassed.
  • a non-use state foreign material collecting device OFFF.
  • the pipe cleaning operation (liquid cleaning) is performed as described above.
  • the air conditioner 1 of the present embodiment has the following features.
  • the circuit configuration is operated by operating the main opening / closing device 34 so that the refrigerant passes through the foreign substance collecting container 31.
  • the pipe washing operation as described above, foreign matter remaining in the main refrigerant circuit is introduced into the foreign matter collecting container 31 together with the refrigerant, and only the foreign matter is separated and collected.
  • the discharged refrigerant is returned from the foreign matter collecting vessel 31 to the suction gas pipe 35 (gas side refrigerant circuit 12) via the outlet pipe 33.
  • the refrigerant flows downstream of the foreign matter collecting vessel 31.
  • the refrigerant from which the foreign matter has been removed is sucked into the installed compressor 21, which makes it difficult for the compressor 21 to suck the foreign matter.
  • the circuit configuration is operated by operating the main opening / closing device 34 so that the refrigerant does not pass through the foreign matter collection container 31 and normal operation is performed.
  • foreign matter may be accumulated in the inlet pipe 32 and the outlet pipe 33 during the pipe cleaning operation.
  • the inlet pipe 3 2 and the outlet pipe 33 are provided with anti-return shapes 3 2 b and 3 3 b, respectively, so that foreign substances do not return to the suction gas pipe 35. It is possible to reduce the possibility that the accumulated foreign matter is returned to the suction gas pipe 35 again. This prevents foreign substances from being sucked into the compressor 21 installed downstream even after the circuit configuration is switched, thereby improving the reliability of the device configuration for the pipe cleaning operation. be able to.
  • the circuit configuration is performed by operating the main opening / closing device 34 so that the refrigerant does not pass through the foreign matter collecting container 31.
  • the refrigerant liquid may accumulate in the foreign matter collecting container 31 together with the collected foreign matter.
  • the pipe washing operation liquid washing
  • the refrigerant liquid may remain in the foreign matter collecting container.
  • the check pipe 33 is provided in the outlet pipe 33, the refrigerant gas evaporated in the foreign matter collecting container 31 even during normal operation is operated. Can be returned to the suction gas pipe 35. Thereby, loss of the refrigerant charged in the main refrigerant circuit can be reduced, and overpressure of the foreign matter collecting container 31 can be prevented. This can improve the reliability of the device configuration for the pipe cleaning operation.
  • the inlet and the outlet of the foreign matter collecting container 31 are provided at the upper part of the container, the foreign matter in the refrigerant introduced via the inlet pipe 32 is reduced by the container. It is to be collected at the bottom. This can reduce the possibility that the collected foreign matter returns to the suction gas pipe 35 from the outlet, and thus can improve the reliability of the device configuration for the pipe cleaning operation.
  • the foreign matter collecting container 31 is provided with a guide pipe 31a extending from the upper part of the container to the lower part of the container for guiding the refrigerant flowing from the inlet to the lower part of the container, the refrigerant flows in from the inlet of the foreign matter collecting container.
  • the refrigerant containing the contaminated foreign matter is guided to the lower part of the container, and the flow of the refrigerant is not short-circuited from the inlet to the outlet. As a result, the possibility that the collected foreign matter returns to the suction gas pipe 35 can be reduced.
  • the foreign matter collection container 31 is made of a corrosion-resistant material such as stainless steel, copper, or a copper alloy. As a result, corrosion of the foreign matter collecting container 31 due to corrosive components contained in the foreign matter can be prevented, and the foreign matter collecting container 31 can be protected.
  • the main opening / closing device 34 may be changed to a three-way valve 36 which also has the function of the inlet opening / closing device 32a. This makes it possible to reduce the number of components of the foreign matter collecting device 27.
  • the guide pipe 31a provided in the foreign matter collecting container 31 is used to separate the space near the container inlet from the space near the outlet. May be changed to the partition plate 3 1 b. Further, a filter 31G may be provided at the outlet of the foreign substance collecting container 31. Thereby, the same effect as in the case where the guide pipe 31a is provided can be obtained.
  • an outlet opening / closing device including a solenoid valve is provided in the outlet pipe 3.3.
  • a pressure relief device 31 d composed of a pressure reducing valve may be provided above 33 b and the foreign substance collecting container 31.
  • a removing device 31 e for removing the collected foreign material to the outside is provided at a lower portion of the foreign material collecting container 31.
  • the take-out device 31 e is specifically composed of a drain pipe and a gate valve. Thus, the foreign matters collected after the pipe cleaning operation can be taken out.
  • an oil detection device 32G for detecting oil in the foreign matter is provided at the inlet pipe 32.
  • the details of the oil detection device 32 G are not shown.
  • a fluorescent sensor that detects the presence of oil in the refrigerant flowing into the 8626
  • gate valves 32 d and 33 d are respectively provided on the inlet pipe 32 and the outlet pipe 33 to form the foreign matter collecting vessel 31. And the suction gas pipe 35 may be separated. This makes it possible to take out the collected foreign matter together with the foreign matter collection container 31 outside.
  • FIG. 11 is a schematic diagram of a refrigerant circuit of an air conditioner 101 of a second embodiment as an example of the refrigeration apparatus of the present invention.
  • the air conditioner 101 has basically the same configuration as the air conditioner 1 of the first embodiment, and heats the inside of the foreign substance collecting container 1 31 constituting the foreign substance collecting device 127. The only difference is that a heating device 140 is provided.
  • description of the same configuration as the air conditioner 1 of the first embodiment will be omitted, and differences from the air conditioner 1 of the first embodiment will be described.
  • the air conditioner 101 like the air conditioner 1 of the first embodiment, includes a heat source unit 102 and a use unit 105 that use an HFC-based refrigerant or an HC-based refrigerant.
  • the refrigerant liquid pipe 106 and the refrigerant gas pipe 107 which are the liquid pipe and the refrigerant gas pipe, are diverted.
  • the use unit 105 mainly has a use side expansion valve 15 1 and a use side heat exchanger 15 2, similarly to the use unit 5 of the first embodiment.
  • the heat source unit 102 like the heat source unit 2 of the first embodiment, mainly includes a compressor 12 1, an oil separator 12 2, a four-way switching valve 12 3, and a heat source side heat source.
  • the refrigerant liquid piping 106 connects the liquid side of the heat exchanger 1502 of the use unit 105 to the liquid side of the heat exchanger 122 of the heat source unit 102 of the heat source unit 102. are doing.
  • the refrigerant gas pipe 107 connects the gas side of the use side heat exchanger 152 of the unit 105 to the four-way switching valve 123 of the heat source unit 102.
  • the refrigerant circuit up to the heat source side heat exchanger 124 including the expansion valve 151, the refrigerant liquid pipe 106 and the heat source side expansion valve 125 is referred to as a liquid side refrigerant circuit 111.
  • the air conditioner 101 of the present embodiment includes, as shown in FIG. 12, the foreign matter collecting device 1 It also has two feet.
  • the foreign matter collecting device 1 27 includes a foreign matter collecting container 13 1 having an internal pipe 13 1 a and an inlet opening / closing device 1.
  • Inlet piping 1 3 2 including 3 2 a and return prevention shape 1 3 2 b, Check piping 3 3 a and outlet piping including return prevention shape 1 3 3 b, and main switching device 1 3 4 It has.
  • the foreign-matter collecting device 127 of the present embodiment is provided with a heating device 140 for heating the foreign-matter collecting container 31.
  • the heating device 140 is an electric heater including a throwing heater, a band heater, and the like.
  • FIG. 13 is a flowchart showing the operation of the pipe washing operation (heating after liquid washing).
  • Figure 14 is a flow chart showing the operation of the pipe cleaning operation (heating during liquid cleaning).
  • the pipe cleaning method includes a cooling operation step S 17, S 18 (see FIG. 4) of the pipe cleaning operation (liquid cleaning) of the first embodiment, and a heating device 140.
  • the only difference is that the heating step of the container 1 3 1 is changed to S 27 and S 28. Therefore, the refrigerant liquid can be evaporated more quickly than when the refrigerant liquid is evaporated by the cooling operation, and the time required for the pipe cleaning operation can be reduced. 2Pipe cleaning operation (heating during liquid cleaning)
  • the pipe cleaning operation (heating during liquid cleaning) described here is the same as that of the first embodiment, as shown in FIG.
  • the cooling steps S3 and S4 (see Fig. 3) of the pipe cleaning operation (gas cleaning) are changed to wet cooling operation steps S33 and S34, and the refrigerant liquid accumulated in the foreign matter collection container 131 is evaporated by the heating device 140.
  • This is a pipe cleaning method. This eliminates the need to evaporate the refrigerant liquid accumulated in the foreign matter collection container 131 after the wet / cooling operation, so that the time required for the pipe cleaning operation can be reduced. Further, it is possible to suppress a decrease in the amount of refrigerant circulating in the refrigerant circuit when performing the wet cooling operation.
  • the air conditioner 101 of the present embodiment has the following features.
  • the foreign matter collection container 1 As in the pipe washing operation described above, after collecting foreign matter in the foreign matter collection container 131 or during foreign matter collection, the foreign matter collection container 1 It is possible to evaporate the refrigerant liquid accumulated in the lower part of the heater 31 by the heating device 140 and return it to the main refrigerant circuit. This makes it possible to immediately shift to the normal operation after the pipe cleaning operation, and to improve the reliability of the device configuration for the pipe cleaning operation.
  • the heating device 140 of the present embodiment is an electric heater, it is possible to heat the foreign matter collection container 131 regardless of the operating state of the air conditioner 101. Further, since the refrigerant liquid accumulated in the foreign matter collecting container 131 is heated by the heating device 140, the heating device 140 can be easily controlled.
  • the heating device 140 of the air conditioner 101 of the present embodiment instead of an electric heater, a heat source using a part of the refrigerant gas discharged from the compressor 121 as a heat source is used.
  • the exchanger may be 141.
  • the heating device 1 40 Is a heat exchanger 14 1 provided in the foreign substance collection container 13 1, an inlet pipe 14 2 connecting the outlet of the oil separator 12 2 and the heat exchanger 14 1, and a heat exchanger.
  • An outlet pipe 1 4 3 is provided for connecting 1 4 1 to the suction gas pipe 1 3 5 of the compressor 1 2 1.
  • the heating device 140 when the compressor 1 21 is not an electric motor but an engine driven compressor 2 21 such as a gas engine, the heating device 140 is used as a heating device 140. It is also possible to change to a heat exchanger 144 that uses the engine waste heat (external heat source) of the compressor 222 as shown in Fig. 6. In this modified example, the heating device 140 is provided with a heat exchanger 144 provided in the foreign matter collection container 131 and a heat source such as water heated by the engine waste heat of the compressor 222. A heat medium circuit 146 for sending the medium to the heat exchanger 145 is provided. This makes it possible to effectively use the waste heat of the gas engine.
  • the above embodiment discloses a case in which an existing air conditioner using a CFC-based or HCFC-based refrigerant is replaced with an air conditioner using an HFC-based or HC-based refrigerant. It may be applied to the case of an air conditioner using a system-based or HC-based refrigerant. In this case, dust and oil remaining in the refrigerant circuit during installation work can be mainly removed from the main refrigerant circuit.
  • the foreign matter collecting device is built in the heat source unit, but is not limited to this.
  • the foreign material collecting device can be connected to the suction side of a compressor different from the heat source unit. It may be composed of a unit.
  • the foreign matter collecting container is formed of a corrosion-resistant material, but may be a container having a corrosion-resistant coating on the inner surface of the container.
  • the method of performing the pipe cleaning operation (liquid cleaning) by adjusting the opening degree of the use side expansion valve is disclosed, but it may be performed by controlling the fan of the use unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)

Abstract

本発明は、蒸気圧縮式の冷媒回路を備えた冷凍装置において、配管洗浄運転を行うための装置構成の信頼性を向上させる。空気調和装置(1)は、圧縮機(21)と熱源側熱交換器(24)と利用側熱交換器(52)とを含む主冷媒回路と、圧縮機(21)の吸入側に設けられた異物捕集装置(27)とを備えている。異物捕集装置(27)は、異物捕集容器(31)と、入口配管(32)と、出口配管(33)と、主開閉装置(34)とを備えている。異物捕集容器(31)は、圧縮機(21)に吸入ガス配管(35)を流れる冷媒を導入して、冷媒中の異物を分離することが可能である。入口配管(32)及び出口配管(33)には、それぞれ、管内に溜まった異物が吸入ガス配管(35)に戻らないようにするための戻り防止形状(32b、33b)が形成されている。

Description

明 細 書
技術分野
本発明は、 冷凍装置、 特に、 蒸気圧縮式の冷媒回路を備えた冷凍装置に関する
背景技術
従来の蒸気圧縮式の冷媒回路を備えた冷凍装置の一つとして、 ビル等の空気調 和に用いられる空気調和装置がある。 このような空気調和装置は、 主に、 圧縮機 及び熱源側熱交換器を有する熱源ュニッ卜と、 利用側熱交換器を有する複数の利 用ユニットと、 これらのュニット間を接続するための冷媒ガス配管及び冷媒液配 管とを備えている。 そして、 このような空気調和装置の冷媒としては、 オゾン層 の破壊等の環境上の問題を考慮して、 H F C (ハイド口フルォロカ一ボン) 系冷 媒又は H C (ハイドロカ一ボン) 系冷媒が用いられるようになつている。
このような空気調和装置において、 既設ビル等における空気調和装置の更新ェ 事を行う場合、 ェ期の短縮及びコストダウンのために、 熱源ユニットと利用ュニ ッ卜とを接続する冷媒ガス配管や冷媒液配管を流用することがある。 このような 場合には、 空気調和装置の設置工事は、 以下のような工程によって行われる。
①冷媒回収
②機器据付工事
③配管■配線工事 (既設の冷媒ガス配管や冷媒液配管を流用)
④気密試験
⑤真空引き
⑥冷媒充填
⑦言式埋車 E
このような工事工程によって、 配管■配線工事の簡略化を中心としたェ期の短 縮化が図られている。 しかし、 既設の冷媒ガス配管及び冷媒液配管内には、 ゴミゃ油分等の異物が残 留しているため、 試運転を行う前に、 配管洗浄を行って異物を除去する必要があ る。 特に、 このような既設の冷媒ガス配管及び冷媒液配管を流用した空気調和装 置では、 既設の冷媒ガス配管及ぴ冷媒液配管内に C F C (クロ口フルォロカーボ ン) 系冷媒又は H C F C (ハイドロクロ口フルォロカーボン) 系冷媒の冷媒用の 油が残っていると、 更新後の H F C系冷媒又は H C系冷媒用の油に相溶せずに冷 媒回路内の異物として挙動し 冷媒回路を構成する膨張弁やキヤビラリ等を閉塞 させたり、 圧縮機を損傷させる可能性がある。
また、 既設の C F C系冷媒又は H C F C系冷媒用の油は、 従来からナフテン系 の鉱油等の極性をもたない油が使用されている。 一方、 新設の H F C系冷媒又は H C系冷媒用の油としては、 エステル系やエーテル系の極性をもつ油が使用され ている。 このため、 C F C系冷媒又は H C F C系冷媒用の油が残っていると、 冷 媒中の油の溶解度が変化し、 H F C系又は H C系冷媒の本来の冷凍性能が得られ なくなるおそれがある。 この点からも、 配管洗浄が必要である。
このような既設の冷媒ガス配管及び冷媒液配管を流用することを可能にする空 気調和装置として、 特開 2 0 0 1— 4 1 6 1 3号公報に開示された空気調和装置 がある。 この空気調和装置は、 圧縮機、 利用側熱交換器及び熱源側熱交換器等を 含む主冷媒回路と、 圧縮機の吸入ガス配管に設けられた油回収装置とを備えてい る。 そして、 この空気調和装置では、 H F C系冷媒を充填した後、 圧縮機を起動 して冷媒を循環させる運転 (配管洗浄運転) をすることによって、 循環冷媒で配 管を洗浄して、 既設の冷媒ガス配管及び冷媒液配管に残留する油を油回収装置に 回収することができるようになつている。
この油回収装置は、 吸入ガス配管の一部をバイパスするように設けられている 。 このため、 この空気調和装置では、 通常運転時には、 油回収装置を使用しない ように回路切り換えを行うことができる。 しかし、 配管洗浄運転時には、 吸入ガ ス配管から油回収装置へ分岐する入口及び出口配管内に既設装置の冷媒用の油を 含む異物が残留するため、 これらの異物が通常運転の際に吸入ガス配管に戻され て、 その下流側の圧縮機の損傷等の不具合を生じさせるおそれがある。
また、 この油回収装置の出口側には、 主冷媒回路と切り離すための仕切弁が設 置されているが、 配管洗浄運転後に仕切弁を閉止すると、 油回収装置内に冷媒液 が残留している場合、 残留した冷媒液の蒸発による容器の過圧が生じるおそれが る。
さらに、 この油回収装置を用いた配管洗浄方法として、 冷媒回路内の冷媒を湿 リ状態 (気液二相流) で流す運転を行うことがあるが、 このような運転を行うと 、 油回収装置内に冷媒液が溜まってしまい、 冷媒回路内を循環する冷媒量を減少 させることになるため、 十分な配管洗浄を行うことができなくなる場合がある。 以上のように、 従来の油回収装置の装置構成では、 配管洗浄運転を行うにあた リ、 信頼性の点で不十分な面がある。 発明の開示
この発明の目的は、 蒸気圧縮式の冷媒回路を備えた冷凍装置において、 配管洗 浄運転を行うための装置構成の信頼性を向上させることにある。
請求項 1に記載の冷凍装置は、 蒸気圧縮式の主冷媒回路と、 異物捕集容器と、 入口配管と、 出口配管と、 主開閉装置とを備えている。 蒸気圧縮式の冷媒回路は 、 圧縮機と、 利用側熱交換器と、 熱源側熱交換器と、 利用側熱交換器と圧縮機と を接続するガス側冷媒回路とを含んでいる。 異物捕集容器は、 ガス側冷媒回路を 流れる冷媒を導入して、 冷媒中の異物を分離することが可能である。 入口配管は 、 異物捕集容器に冷媒を導入するために、 ガス側冷媒回路から分岐されており、 内部に溜まった異物が前記ガス側冷媒回路に戻らないように異物捕集容器の入口 に接続されている。 出口配管は、 異物捕集容器内で異物が分離された冷媒をガス 側冷媒回路に戻すために、 入口配管の分岐部の下流側の位置でガス側冷媒回路か ら分岐され、 異物捕集容器の出口に接続されている。 主開閉装置は、 ガス側冷媒 回路において、 入口配管との分岐部と出口配管との分岐部との間の冷媒の流れを 遮断可能である。
この冷凍装置では、 冷凍装置を設置した後に、 冷媒が異物捕集容器を通過する ように主開閉装置を操作して回路構成を行い、 圧縮機を運転して冷媒を循環させ ることによって、 主冷媒回路内の異物を冷媒とともに入口配管を経由して異物捕 集容器に導入し、 異物のみを分離 '捕集する。 そして、 異物が分離された冷媒は 、 出口配管を経由して異物捕集容器からガス側冷媒回路に戻される。 これにより 、 異物捕集容器の下流側に設置された圧縮機には、 異物が除去された冷媒が吸入 されるようになり、 圧縮機の損傷等の不具合が生じにくくなつている。 ここで、 異物とは、 冷凍装置の設置工事後に冷媒回路内に残ったゴミ■油分等をいい、 C F C系冷媒ゃ H C F C系冷媒を使用した冷凍装置を既設配管を流用しつつ H F C 系冷媒ゃ H C系冷媒を使用した冷凍装置に更新する場合には、 既設配管に残留す る C F C系冷媒ゃ H C F C系冷媒用の油も含まれる。
次に、 異物捕集容器に異物を捕集した後、 冷媒が異物捕集容器を通過しないよ うに主開閉装置を操作して回路構成を行い、 通常の冷媒回路での運転を行う。 こ のとき、 入口配管には、 異物捕集のための運転を行った際に、 異物が溜まってい るおそれがある。 しカヽし、 入口配管は、 ガス側冷媒回路に異物が戻らないように 異物捕集容器の入口に接続されているため、 入口配管に溜まった異物が再びガス 側冷媒回路に戻されるおそれを少なくできる。 これにより、 回路構成の切り換え 後においても、 下流側に設置された圧縮機に異物が吸入されるのを防ぐことがで きるようになり、 配管洗浄運転を行うための装置構成の信頼性を向上させること ができる。
請求項 2に記載の冷)東装置は、 請求項 1において、 入口配管には、 内部に溜ま つた異物がガス側冷媒回路に戻らないようにするための戻り防止形状が形成され ている。
請求項 3に記載の冷凍装置は、 請求項 1又は 2において、 出口配管は、 内部に 溜まった異物がガス側冷媒回路に戻らないように異物捕集容器の出口に接続され ている。
この冷凍装置では、 出口配管がガス側冷媒回路に異物が戻らないように異物捕 集容器の出口に接続されているため、 出口配管に溜まった異物が再びガス側冷媒 回路に戻されるおそれを少なくできる。 これにより、 回路構成の切り換え後にお いても、 下流側に設置された圧縮機に異物が吸入されるのを防ぐことができるた め、 配管洗浄運転を行うための装置構成の信頼性を向上させることができる。 請求項 4に記載の冷凍装置は、 請求項 3において、 出口配管には出口配管に溜 まった異物がガス側冷媒回路に戻らないようにするための戻り防止形状が形成さ れている。
請求項 5に記載の冷凍装置は、 請求項 2又は 4において、 入口/出口配管に形 成された戻り防止形状は入口 出口配管のガス側冷媒回路との分岐部の近傍に形 成された曲げ形状である。
この冷凍装置では、 入口/出口配管に形成された戻り防止形状は入ロ 出口配 管のガス側冷媒回路の分岐部の近傍に形成された曲げ形状であり、 構成が簡単で る。
請求項 6に記載の冷凍装置は、 請求項 1 〜 5のいずれかにおいて、 ガス側冷媒 回路の入口 Z出口配管の分岐部の近傍には、 圧縮機の吸入側に向かう上り勾配の 傾斜が形成されている。
この冷凍装置では、 ガス側冷媒回路の入口/出口配管の分岐部の近傍に圧縮機 の吸入側に向かう上り勾配の傾斜が形成されているため、 さらに、 入ロ 出口配 管に溜まった異物が圧縮機に吸入されるおそれを少なくできる。
請求項 7に記載の冷凍装置は、 蒸気圧縮式の主冷媒回路と、 異物捕集容器と、 入口配管と、 出口配管と、 主開閉装置とを備えている。 蒸気圧縮式の冷媒回路は 、 圧縮機と、 利用側熱交換器と、 熱源側熱交換器と、 利用側熱交換器と圧縮機と を接続するガス側冷媒回路とを含んでいる。 異物捕集容器は、 ガス側冷媒回路を 流れる冷媒を導入して、 冷媒中の異物を分離することが可能である。 入口配管は 、 異物捕集容器に冷媒を導入するために、 ガス側冷媒回路から分岐され、 異物捕 集容器の入口に接続されている。 出口配管は、 異物捕集容器内で異物が分離され た冷媒をガス側冷媒回路に戻すために、 入口配管の分岐部の下流側の位置でガス 側冷媒回路から分岐され、 異物捕集容器の出口に接続されている。 主開閉装置は 、 ガス側冷媒回路において、 入口配管との分岐部と出口配管との分岐部との間の 冷媒の流れを遮断可能である。 そして、 出口配管には、 異物捕集容器からガス側 冷媒回路への流れのみを許容する逆止装置が設けられている。
この冷凍装置では、 冷凍装置を設置した後に、 冷媒が異物捕集容器を通過する ように主開閉装置を操作して回路構成を行い、 圧縮機を運転して冷媒を循環させ ることによって、 主冷媒回路内の異物を冷媒とともに入口配管を経由して異物捕 集容器に導入し、 異物のみを分離■捕集する。 そして、 異物が分離された冷媒は 、 出口配管を経由して異物捕集容器からガス側冷媒回路に戻される。 これにより 、 異物捕集容器の下流側に設置された圧縮機には、 異物が除去された冷媒が吸入 されて、 圧縮機の損傷等の不具合が生じにくくなつている。 ここで、 異物とは、 冷凍装置の設置工事後に冷媒回路内に残ったゴミ '油分等をいい、 C F C系冷媒 や H C F C系冷媒を使用した冷凍装置を既設配管を流用しつつ、 H F C系冷媒ゃ H C系冷媒を使用した冷凍装置に更新する場合には、 既設配管に残留する C F C 系冷媒ゃ H C F C系冷媒用の油も含まれる。
次に、 異物捕集容器に異物を捕集した後、 冷媒が異物捕集容器を通過しないよ うに主開閉装置を操作して回路構成を行い、 通常運転を行う。 このとき、 異物捕 集容器には、 捕集された異物とともに、 冷媒液が溜まっていることがある。 しか し、 出口配管には逆止装置が設けられているため、 通常運転を行う際においても 、 異物捕集容器内で蒸発した冷媒ガスをガス側冷媒回路に戻すことができる。 こ れにより、 主冷媒回路に充填された冷媒のロスを少なくできるとともに、 異物捕 集容器の過圧を防ぐことができる。 これにより、 配管洗浄運転のための装置構成 の信頼性を向上させることができる。
請求項 8に記載の冷凍装置は、 蒸気圧縮式の主冷媒回路と、 異物捕集容器と、 入口配管と、 出口配管と、 主開閉装置とを備えている。 蒸気圧縮式の冷媒回路は 、 圧縮機と、 利用側熱交換器と、 熱源側熱交換器と、 利用側熱交換器と圧縮機と を接続するガス側冷媒回路とを含んでいる。 異物捕集容器は、 ガス側冷媒回路を 流れる冷媒を導入して、 冷媒中の異物を分離することが可能である。 入口配管は 、 異物捕集容器に冷媒を導入するために、 ガス側冷媒回路から分岐され、 異物捕 集容器の入口に接続されている。 出口配管は、 異物捕集容器内で異物が分離され た冷媒をガス側冷媒回路に戻すために、 入口配管の分岐部の下流側の位置でガス 側冷媒回路から分岐され、 異物捕集容器の出口に接続されている。 主開閉装置は 、 ガス側冷媒回路において、 入口配管との分岐部と出口配管との分岐部との間の 冷媒の流れを遮断可能である。 そして、 異物捕集容器には、 内部を加熱するため の加熱装置が設けられている。
この冷凍装置では、 冷凍装置を設置した後に、 冷媒が異物捕集容器を通過する ように主開閉装置を操作して回路構成を行い、 圧縮機を運転して冷媒を循環させ ることによって、 主冷媒回路内の異物を冷媒とともに入口配管を経由して異物捕 集容器に導入し、 異物のみを分離■捕集する。 そして、 異物が分離された冷媒は 、 出口配管を経由して異物捕集容器からガス側冷媒回路に戻される。 これにより 、 異物捕集容器の下流側に設置された圧縮機には、 異物が除去された冷媒が吸入 されるため、 圧縮機の損傷等の不具合が生じにくくなつている。 ここで、 異物と は、 冷凍装置の設置工事後に冷媒回路内に残ったゴミ '油分等をいい、 C F C系 冷媒ゃ H C F C系冷媒を使用した冷凍装置を既設配管を流用しつつ、 H F C系冷 媒ゃ H C系冷媒を使用した冷凍装置に更新する場合には、 既設配管に残留する C F C系冷媒ゃ H C F C系冷媒用の油も含まれる。
次に、 異物捕集容器に異物を捕集した後、 冷媒が異物捕集容器を通過しないよ うに主開閉装置を操作して回路構成を行い、 通常運転を行う。 このとき、 異物捕 集容器には、 捕集された異物とともに、 冷媒液が溜まっていることがある。 特に 、 冷媒を湿り状態 (気液二相流) で流す場合には、 冷媒液が異物捕集容器に供給 されることになるため、 異物捕集容器内に溜まる冷媒液量が増加し、 その結果、 冷媒回路内を循環する冷媒量が減少して配管洗浄が不十分になるおそれがある。 しかし、 異物捕集容器には加熱装置が設けられているため、 異物捕集容器に溜ま つた冷媒液を加熱,蒸発させて、 主冷媒回路に冷媒を戻して、 冷媒循環量を確保 することができる。 これにより、 配管洗浄運転のための装置構成の信頼性を向上 させることができる。
請求項 9に記載の冷凍装置は、 請求項 8において、 加熱装置は圧縮機から吐出 される冷媒ガスの一部を熱源として使用する熱交換器である。
この冷凍装置では、 圧縮機から吐出される比較的高温の冷媒ガスの熱を有効に 利用することができる。
請求項 1 0に記載の冷凍装置は、 請求項 8において、 加熱装置は液側冷媒回路 を流れる冷媒液の一部を熱源として使用する熱交換器である。
この冷凍装置では、 液側冷媒回路を流れる冷媒液の熱を有効に利用することが できる。
請求項 1 1に記載の冷凍装置は、 請求項 8において、 加熱装置は電気ヒータで あ 。 この冷凍装置では、 電気ヒータを使用しているので、 冷媒回路の運転状態によ らず、 異物捕集容器を加熱することが可能である。
請求項 1 2に記載の冷凍装置は、 請求項 8において、 加熱装置は外部熱源を使 用する熱交換器である。
この冷凍装置では、 外部熱源を利用しているため、 廃熱を利用できるような装 置の設置条件において有効である。
請求項 1 3に記載の冷凍装置は、 請求項 1 〜1 2のいずれかにおいて、 主開閉 装置はガス側冷媒回路から入口配管への冷媒の流れを遮断する機能をさらに有し ている。
この冷凍装置では、 主開閉装置がガス側冷媒回路の入口配管との分岐部とガス 側冷媒回路の出口配管との分岐部との間の冷媒の流れを遮断する機能と、 ガス側 冷媒回路から入口配管への冷媒の流れを遮断する機能とを切り換えすることが可 能であるため、 回路切り換えのための構成部品を少なくできる。
請求項 1 4に記載の冷凍装置は、 請求項 1 ~ 1 3のいずれかにおいて、 異物捕 集容器は容器上部に冷媒の入口及び出口が設けられている。
この冷凍装置では、 異物捕集容器の入口及び出口が容器の上部に設けられてい るため、 入口配管を経由して導入された冷媒中の異物は、 容器の下部に捕集され るようになっている。 これにより、 捕集された異物が出口からガス側冷媒回路に 戻るおそれを少なくできるため、 配管洗浄運転のための装置構成の信頼性を向上 させることができる。
請求項 1 5に記載の冷凍装置は、 請求項 1 4において、 異物捕集容器には容器 入口から流入した冷媒を容器下部に導くための容器上部から容器下部まで延びる 案内配管が設けられている。
この冷凍装置では、 異物捕集容器に設けられた案内配管によって、 異物捕集容 器の入口から流入した異物を含む冷媒が容器下部まで案内されるため、 冷媒の流 れが入口から出口に向かって短絡してしまうのを防ぐことができる。 これにより 、 捕集された異物が出口からガス側冷媒回路に戻るおそれを少なくできるため、 配管洗浄運転のための装置構成の信頼性を向上させることができる。
請求項 1 6に記載の冷凍装置は、 請求項 1 4において、 異物捕集容器には容器 入口近傍の空間と容器出口近傍の空間とを仕切るための仕切板が設けられている この冷凍装置では、 異物捕集容器に設けられた仕切板によって、 異物捕集容器 の入口から流入した異物を含む冷媒の流れが入口から出口に向かつて短絡してし まうのを防ぐことができる。 これにより、 捕集された異物が出口からガス側冷媒 回路に戻るおそれを少なくできるため、 配管洗浄運転のための装置構成の信頼性 を向上させることができる。
請求項 1 7に記載の冷凍装置は、 請求項 1 4〜 1 7のいずれかにおいて、 異物 捕集容器の出口にはフィルタが設けられている。
この冷凍装置では、 異物捕集容器の出口にフィルタが設けられているため、 捕 集された異物がガス側冷媒回路に戻るのを確実に防ぐことができる。
請求項 1 8に記載の冷凍装置は、 請求項 1 4 ~ 1 7のいずれかにおいて、 異物 捕集容器の下部には異物を外部に取り出すための取出装置が設けられている。 この冷凍装置では、 捕集した異物を異物捕集容器の外部に取り出すことができ る。
請求項 1 9に記載の冷凍装置は、 請求項 1 4〜 1 8のいずれかにおいて、 異物 捕集容器の上部には異物捕集容器の過圧を防止するための圧逃がし装置が設けら れている。
この冷凍装置では、 異物捕集容器に圧逃がし装置が設けられているため、 異物 'を捕集した後に、 異物捕集容器に残留した冷媒液が蒸発して異物捕集容器が過圧 を防止することができる。
請求項 2 0に記載の冷凍装置は、 請求項 1 〜 1 9のいずれかにおいて、 異物捕 集容器の入口又は入口配管には異物中の油分を検知するための油検知装置が設け られている。
この冷凍装置では、 異物捕集容器の入口又は入口配管に設けられた油検知装置 によって、 配管洗浄運転時に、 異物捕集容器に流入する異物中の油分を検知する ことができるため、 油分が検知されなくなつた時点で配管洗浄運転を完了させる ことが可能になる。
請求項 2 1に記載の冷凍装置は、 請求項 1 〜 2 0のいずれかにおいて、 異物捕 集容器の内部は異物に含まれる腐食成分による腐食を防止するために、 耐食性の 材料で形成されているか、 又は、 耐食性コーティングが施されている。
この冷凍装置では、 異物捕集容器が耐食性の材料で形成されているか、 又は、 耐食性コーティングが施されているため、 異物に含まれる腐食成分による異物捕 集容器の腐食を防止して、 異物捕集容器を保護することができる。
請求項 2 2に記載の冷凍装置は、 請求項 1 〜2 1のいずれかにおいて、 異物捕 集容器はガス側冷媒回路と切り離し可能に接続されている。
この冷凍装置では、 異物捕集容器がガス側冷媒回路と切り離し可能であるため、 回収した異物を容器ごと外部に取り出すことが可能である。 図面の簡単な説明
第 1図は、 本発明の第 1実施形態の空気調和装置の冷媒回路の概略図である。 第 2図は、 第 1実施形態の異物捕集装置付近を拡大した図 (異物捕集容器につ いては断面を図示) である。
第 3図は、 第 1実施形態の配管洗浄運転 (ガス洗浄) を示すフローチャートで 第 4図は、 第 1実施形態の配管洗浄運転 (液洗浄) を示すフローチャートであ る。
第 5図は、 第 1実施形態の変形例 1の異物捕集装置付近を拡大した図 (異物捕 集容器については断面を図示) である。
第 6図は、 第 1実施形態の変形例 2の異物捕集装置付近を拡大した図 (異物捕 集容器については断面を図示) である。
第 7図は、 第 1実施形態の変形例 3の異物捕集装置付近を拡大した図 (異物捕 集容器については断面を図示) である。
第 8図は、 第 1実施形態の変形例 4の異物捕集装置付近を拡大した図 (異物捕 集容器については断面を図示) である。
第 9図は、 第 1実施形態の変形例 5の異物捕集装置付近を拡大した図 (異物捕 集容器については断面を図示) である。
第 1 0図は、 第 1実施形態の変形例 6の異物捕集装置付近を拡大した図 (異物 捕集容器については断面を図示) である。
第 1 1図は、 本発明の第 2実施形態の空気調和装置の冷媒回路の概略図である 第 1 2図は、 第 2実施形態の異物捕集装置付近を拡大した図 (異物捕集容器に ついては断面を図示) である。
第 1 3図は、 第 2実施形態の配管洗浄運転 (液洗浄後に加熱) を示すフローチ ヤー卜である。
第 1 4図は、 第 2実施形態の配管洗浄運転 (液洗浄中に加熱) を示すフローチ ヤー卜である。
第 1 5図は、 本発明の第 2実施形態の変形例 1の空気調和装置の冷媒回路の概 略図である。
第 1 6図は、 本発明の第 2実施形態の変形例 2の空気調和装置の冷媒回路の概 略図である。 発明を実施するための最良の形態
以下、 図を用いて、 本発明の冷凍装置の実施形態について説明する。
[第 1実施形態]
( 1 ) 空気調和装置の全体構成
図 1は、 本発明の冷凍装置の一例としての第 1実施形態の空気調和装置 1の冷 媒回路の概略図である。 空気調和装置 1は、 1台の熱源ユニット 2と、 それに並 列に接続された複数台 (本実施形態では、 2台) の利用ユニット 5と、 熱源ュニ ット 2と利用ュニッ卜 5とを接続するための冷媒液配管 6及ぴ冷媒ガス配管 7と を備えており、 例えば、 ビル等の空気調和に用いられる冷房運転及び暖房運転が 可能なものである。
空気調和装置 1は、 H F C系冷媒ゃ H C系冷媒を使用するものである。 本実施 形態において、 空気調和装置 1は、 既設の C F C系冷媒ゃ H C F C系冷媒を使用 した空気調和装置の熱源ュニット及び利用ュニットを熱源ュニッ卜 2及び利用ュ ニット 5に更新して構成されたものである。 すなわち、 冷媒液配管 6及び冷媒ガ ス配管 7は、 既設の冷媒液配管及び冷媒ガス配管を流用している。 利用ュニット 5は、 主に、 利用側膨張弁 5 1と、 利用側熱交換器 5 2とを有し ている。 本実施形態において、 利用側膨張弁 5 1は、 冷媒圧力の調節ゃ冷媒流量 の調節を行うために、 利用側熱交換器 5 2の液側に接続された電動膨張弁からな る開度調節が可能な弁である。 本実施形態において、 利用側熱交換器 5 2は、 ク ロスフィン式の熱交換器であり、 室内の空気と熱交換するためのものである。 本 実施形態において、 利用ユニット 5は、 ユニット内に室内の空気を取り込み、 送 リ出すためのファン (図示せず) を備えており、 室内の空気と利用側熱交換器 5 2を流れる冷媒とを熱交換させることが可能である。
熱源ユニット 2は、 主に、 圧縮機 2 1と、 油分離器 2 2と、 四路切換弁 2 3と 、 熱源側熱交換器 2 4と、 熱源側膨張弁 2 5を有している。 本実施形態において 、 圧縮機 2 1は、 電動機駆動のスクロール式の圧縮機であり、 吸入した冷媒ガス を圧縮するためのものである。 この圧縮機 2 1には、 圧縮機内の潤滑のために H F C系冷媒ゃ H C系冷媒に適するエステル系又はエーテル系の油が使用されてい る。 油分離器 2 2は、 圧縮機 2 1の吐出側に設けられ、 圧縮 '吐出された冷媒ガ ス中に含まれる油を気液分離するための容器である。 油分離器 2 2において分離 された油は、 油戻し管 2 6を介して、 圧縮機 2 1の吸入側に戻されるようになつ ている。 四路切換弁 2 3は、 冷房運転と暖房運転との切り換え時に、 冷媒の流れ の方向を切リ換えるための弁であリ、 冷房運転時には油分離器 2 2の出口と熱源 側熱交換器 2 4のガス側とを接続するとともに圧縮機 2 1の吸入側と冷媒ガス配 管 7側とを接続し、 暖房運転時には油分離器 2 2の出口と冷媒ガス配管 7側とを 接続するとともに圧縮機 2 1の吸入側と熱源側熱交換器 2 4のガス側とを接続す ることが可能である。 本実施形態において、 熱源側熱交換器 2 4は、 クロスフィ ン式の熱交換器であり、 空気を熱源として冷媒と熱交換するためのものである。 本実施形態において、 熱源ユニット 2は、 ユニット内に屋外の空気を取り込み、 送り出すためのファン (図示せず) を備えており、 屋外の空気と熱源側熱交換器 2 4を流れる冷媒とを熱交換させることが可能である。 熱源側膨張弁 2 5は、 冷 媒圧力の調節ゃ冷媒流量の調節を行うために、 熱源側熱交換器 2 4の液側に接続 された電動膨張弁からなる開度調節が可能な弁である。
冷媒液配管 6は、 利用ュニッ卜 5の利用側熱交換器 5 2の液側と熱源ュニット 2の熱源側熱交換器 2 4の液側との間を接続している。 冷媒ガス配管 7は、 利用 ュニッ卜 5の利用側熱交換器 5 2のガス側と熱源ュニット 2の四路切換弁 2 3と の間を接続している。 ここで、 利用側熱交換器 5 2から利用側膨張弁 5 1、 冷媒 液配管 6及び熱源側膨張弁 2 5を含む熱源側熱交換器 2 4までの範囲の冷媒回路 を液側冷媒回路 1 1とする。 また、 利用側熱交換器 5 2から冷媒ガス配管 7、 圧 縮機 2 1、 油分離器 2 2及ぴ四路切換弁 2 3を含む熱源側熱交換器 2 4までの範 囲の冷媒回路をガス側冷媒回路 1 2とする。 すなわち、 空気調和装置 1の主冷媒 回路は、 液側冷媒回路 1 1とガス側冷媒回路 1 2とから構成されている。
本実施形態の空気調和装置 1は、 ガス側冷媒回路 1 2に設けられた異物捕集装 置 2 7をさらに備えている。 異物捕集装置 2 7は、 利用ュニッ卜 5や熱源ュニッ ト 2の設置工事後に主冷媒回路内に残ったゴミ■油分等や流用される冷媒液配管 6及び冷媒ガス配管 7に残留した既設の空気調和装置に使用していた C F C系冷 媒又は H C F C系冷媒用の油を捕集するためのものである。 本実施形態において 、 異物捕集装置 2 7は、 熱源ュニット 2に内蔵されており、 ガス側冷媒回路 1 2 の圧縮機 2 1の吸入側に設けられている。
( 2 ) 異物捕集装置の構成
図 2は、 本実施形態の空気調和装置 1の異物捕集装置 2 7付近を拡大した図で ある (異物捕集容器については断面を図示している) 。 異物捕集装置 2 7は、 異 物捕集容器 3 1 と、 入口配管 3 2と、 出口配管 3 3と、 主開閉装置 3 4とを備え ている。
異物捕集容器 3 1は、 ガス側冷媒回路 1 2を流れる冷媒を導入して、 冷媒中の 異物を分離することが可能である。 具体的には、 異物捕集容器 3 1は、 四路切換 弁 2 3と圧縮機 2 1の吸入側とを接続する吸入ガス配管 3 5に入口配管 3 2及び 出口配管 3 3を介して接続されている。 ここで、 吸入ガス配管 3 5は、 ガス側冷 媒回路 1 2を構成しているため、 異物捕集容器 3 1は、 ガス側冷媒回路 1 2に接 続されていることになる。
入口配管 3 2は、 異物捕集容器 3 1に冷媒を導入するための配管であり、 吸入 ガス配管 3 5から分岐されて、 異物捕集容器 3 1の入口に接続されている。 ここ で、 入口配管 3 2の分岐位置は、 油分離器 2 2からの油を異物捕集容器 3 1に導 入しないように、 油戻し管 2 6の上流側の位置にしている。 入口配管 3 2には、 異物捕集容器 3 1の入口へ冷媒を流通/遮断するための入口開閉装置 3 2 aが設 けられている。 本実施形態において、 入口開閉装置 3 2 aは、 電磁弁である。 ま た、 入口配管 3 2には、 入口配管 3 2内に溜まった異物が吸入ガス配管 3 5に戻 らないようにするための戻り防止形状 3 2 bが形成されている。 具体的には、 戻 リ防止形状 3 2 bは、 入口配管 3 2の吸入ガス配管 3 5との分岐部付近に形成さ れた曲げ形状を有している。 本実施形態において、 戻り防止形状 3 2 bの曲げ形 状は、 吸入ガス配管 3 5の分岐部の高さ位置よりも一旦上方へ延び、 それから下 方に延びるような形状を有している。
出口配管 3 3は、 異物捕集容器 3 1内で異物を分離した冷媒をガス側冷媒回路 1 2に戻すための配管であり、 入口配管 3 2の下流側の位置で吸入ガス配管 3 5 から分岐され、 異物捕集容器 3 1の出口に接続されている。 ここで、 出口配管 3 3の分岐位置は、 入口配管 3 2と同様に、 油分離器 2 2からの油が出口配管 3 3 に流れ込むことがないように、 油戻し管 2 6の上流側の位置にしている。 出口配 管 3 3には、 異物捕集容器 3 1から吸入ガス配管 3 5への流れのみを許容する逆 止装置 3 3 aが設けられている。 本実施形態において、 逆止装置 3 3 aは、 逆止 弁である。 また、 出口配管 3 3には、 入口配管 3 2と同様に、 出口配管 3 3内に 溜まった異物が吸入ガス配管 3 5に戻らないようにするための戻り防止形状 3 3 bが形成されている。 本実施形態において、 戻り防止形状 3 3 bの曲げ形状は、 戻り防止形状 3 2 bと同様に、 吸入ガス配管 3 5の分岐部の高さ位置よりも一旦 上方へ延び、 それから下方に延びるような形状を有している。
主開閉装置 3 4は、 吸入ガス配管 3 5の入口配管 3 2の分岐部と吸入ガス配管 3 5の出口配管 3 3の分岐部との間の冷媒の流れを遮断可能に設けられている。 本実施形態において、 主開閉装置 3 4は、 電磁弁である。 また、 吸入ガス配管 3 5の入口配管 3 2及び出口配管 3 3との分岐部の近傍には、 圧縮機 2 1に向かつ て上リ勾配の傾斜が形成されている。
異物捕集容器 3 1は、 例えば、 縦型円筒形状の容器であり、 容器の上部に入口 及び出口が設けられている。 そして、 異物捕集容器 3 1の入口には、 入口配管 3 2から流入した冷媒を容器下部に導くための案内配管 3 1 aが設けられている。 そして、 異物捕集容器 3 1は、 異物に含まれる腐食成分による腐食を防止するた めに、 ステンレス、 銅又は銅合金等の耐食性材料によって形成されている。
( 3 ) 空気調和装置の動作
次に、 空気調和装置 1の動作について、 図 1、 図 3及び図 4を用いて説明する 。 ここで、 図 3は、 配管洗浄運転 (ガス洗浄) の運転動作を示すフローチャート である。 図 4は、 配管洗浄運転 (液洗浄) の運転動作を示すフローチャートであ る。
①通常運転 (冷房運転)
まず、 冷房運転について説明する。 冷房運転時は、 四路切換弁 2 3が図 1の実 線で示される状態、 すなわち、 圧縮機 2 1の吐出側が熱源側熱交換器 2 4のガス 側に接続され、 かつ、 圧縮機 2 1の吸入側が利用側熱交換器 5 2のガス側に接続 された状態となっている。 また、 熱源側膨張弁 2 5は全開とされ、 利用側膨張弁 5 1は冷媒を減圧するように開度調節されている。 さらに、 主開閉装置 3 4は開 とされ、 かつ、 入口開閉装置 3 2 aは閉止されており、 異物捕集装置 2 7を使用 しない状態になっている。
この主冷媒回路の状態で、 熱源ユニット 2のファン (図示せず) 、 利用ュニッ ト 5のファン (図示せず) 及び圧縮機 2 1を起動すると、 圧縮機 2 1に吸入され た冷媒ガスは、 圧縮された後、 油分離器 2 2に送られて気液分離される。 その後 、 圧縮された冷媒ガスは、 四路切換弁 2 3を経由して熱源側熱交換器 2 4に送ら れて、 外気と熱交換して凝縮される。 この凝縮した冷媒液は、 熱源側膨張弁 2 5 及び冷媒液配管 6を経由して利用ユニット 5側に送られる。 そして、 利用ュニッ ト 5に送られた冷媒液は、 利用側膨張弁 5 1で減圧された後、 利用側熱交換器 5 2で室内空気と熱交換して蒸発される。 この蒸発した冷媒ガスは、 冷媒ガス配管 7、 四路切換弁 2 3及び主開閉装置 3 4を経由して、 再び、 圧縮機 2 1に吸入さ れる。 このようにして、 冷房運転が行われる。
②通常運転 (暖房運転)
次に、 暖房運転について説明する。 暖房運転時は、 四路切換弁 2 3が図 1の破 線で示される状態、 すなわち、 圧縮機 2 1の吐出側が利用側熱交換器 5 2のガス 側に接続され、 かつ、 圧縮機 2 1の吸入側が熱源側熱交換器 2 4のガス側に接続 された状態となっている。 また、 利用側膨張弁 5 1は全開とされ、 熱源側膨張弁 2 5は冷媒を減圧するように開度調節されている。 さらに、 主開閉装置 3 4は開 とされ、 かつ、 入口開閉装置 3 2 aは閉止されており、 異物捕集装置 2 7を使用 しない状態になっている。
この主冷媒回路の状態で、 熱源ユニット 2のファン (図示せず) 、 利用ュニッ ト 5のファン (図示せず) 及び圧縮機 2 1を起動すると、 圧縮機 2 1に吸入され た冷媒ガスは、 圧縮された後、 油分離器 2 2に送られて気液分離される。 その後 、 圧縮された冷媒ガスは、 四路切換弁 2 3及び冷媒ガス配管 7を経由して利用ュ ニット 5に送られる。 そして、 利用ユニット 5に送られた冷媒ガスは、 利用側熱 交換器 5 2で室内空気と熱交換して凝縮される。 この凝縮した冷媒液は、 利用側 膨張弁 5 1及び冷媒液配管 6を経由して熱源ユニット 2に送られる。 そして、 熱 源ユニット 2に送られた冷媒液は、 熱源側膨張弁 2 5で減圧された後、 熱源側熱 交換器 2 4で外気と熱交換して蒸発される。 この蒸発した冷媒ガスは、 四路切換 弁 2 3及び主開閉装置 3 4を経由して、 再び、 圧縮機 2 1に吸入される。 このよ うにして、 暖房運転が行われる。
③配管洗浄運転 (ガス洗浄)
次に、 配管洗浄運転 (ガス洗浄) の動作について説明する。 本実施形態の空気 調和装置 1は、 熱源ユニット 2及び利用ユニット 5のみを更新して、 既設の冷媒 液配管及ぴ冷媒ガス配管を冷媒液配管 6及び冷媒ガス配管 7として流用している ため、 設置工事後に、 ゴミゃ油分等とともに、 既設の G F C系冷媒又は H C F C 系冷媒用の油が冷媒液配管 6及び冷媒ガス配管 7に異物として残留しており、 通 常運転を行う前に、 これらの異物を主冷媒回路内から除去する必要がある。 ここ で説明する配管洗浄運転 (ガス洗浄) は、 空気調和装置 1の冷媒回路全体を H F C系冷媒又は H C系冷媒の冷媒ガスによリ洗浄して、 異物捕集装置 2 7によって 冷媒回路内の異物を捕集する運転である。
まず、 ステップ S 1において、 既設の利用ュニット及び熱源ュニットを撤去し て、 新設の利用ュニット 5及び熱源ュニット 2を据え付けて、 流用される冷媒液 配管 6及び冷媒ガス配管 7と接続して、 空気調和装置 1の主冷媒回路を構成する 。 そして、 主冷媒回路内を真空引きして、 主冷媒回路内の空気を除去した後、 新 たな冷媒を充填する。
次に、 ステップ S 2において、 異物捕集装置 2 7を使用する状態 (異物捕集装 置 O N ) にする。 すなわち、 主開閉装置 3 4を閉、 入口開閉装置 3 2 aを開とし て、 運転時に冷媒ガスが異物捕集容器 3 1に導入されるような回路構成にしてお < 0
次に、 ステップ S 3において、 上述の冷房運転と同様な運転を行う。 但し、 ス テツプ S 2において、 異物捕集装置 2 7を使用するように回路構成しているため 、 吸入ガス配管 3 5を流れる冷媒ガスは、 異物捕集装置 2 7を経由して圧縮機 2 1に吸入される。 この運転により、 冷媒ガスは、 主冷媒回路の各所に残留したゴ ミ等と、 冷媒液配管 6及び冷媒ガス配管 Ίに残留した既設冷媒用の油とを同伴し て異物捕集装置 2 7に流入する。 この異物を含む冷媒ガスは、 図 2に示すように 、 入口配管 3 2及び案内配管 3 1 aを経由して、 異物捕集容器 3 1の下部に導入 される。 そして、 冷媒ガス中に含まれる異物は、 異物捕集容器 3 1の下部で捕集 されて、 異物が除去された冷媒ガスのみが、 出口配管 3 3を経由して圧縮機 2 1 に再び吸入される。
次に、 ステップ S 4において、 所定時間が経過するまで冷房運転を行い、 所定 時間が経過した後、 次のステップ S 5に進む。 ここで、 所定時間は、 主冷媒回路 内の異物を除去するために必要な時間に設定されている。
次に、 ステップ S 5において、 異物捕集装置 2 7を使用しない状態 (異物捕集 装置 O F F ) にする。 すなわち、 主開閉装置 3 4を開、 入口開閉装置 3 2 aを閉 として、 冷媒ガスが異物捕集容器 3 1をバイパスする回路構成 (通常運転の状態 ) に切り換える。
以上のようにして、 配管洗浄運転 (ガス洗浄) が行なわれる。
④配管洗浄運転 (液洗浄)
次に、 配管洗浄運転 (液洗浄) の動作について説明する。 上述の配管洗浄運転 (ガス洗浄) では、 ガス側冷媒回路 1 2内を流れる冷媒がガス状態であるため、 冷媒ガス配管 7の部分については、 冷媒ガスで洗浄するようになっている。 ここ で説明する配管洗浄運転 (液洗浄) は、 利用側膨張弁 5 1の開度調節により、 ガ ス側冷媒回路 1 2を流れる冷媒を湿り状態 (気液二相流) にして配管洗浄を行う 方法である。
まず、 ステップ S 1 1において、 既設の利用ュニット及び熱源ュニットを撤去 して、 新設の利用ユニット 5及び熱源ユニット 2を据え付けて、 流用される冷媒 液配管 6及び冷媒ガス配管 7と接続して、 空気調和装置 1の冷媒回路を構成する 。 そして、 主冷媒回路内を真空引きして、 主冷媒回路内の空気を除去した後、 新 たな冷媒を充填する。
次に、 ステップ S 1 2において、 異物捕集装置 2 7を使用する状態 (異物捕集 装置 O N ) にする。 すなわち、 主開閉装置 3 4を閉、 入口開閉装置 3 2 aを開と して、 運転時に冷媒ガスが異物捕集容器 3 1に導入されるような回路構成にして お
次に、 ステップ S 1 3において、 ガス洗浄の場合と同様の冷房運転を行う。 次に、 ステップ S 1 4において、 所定時間 (第 1冷房時間) が経過するまで冷 房運転を行い、 第 1冷房時間が経過した後、 次のステップ S 1 5に進む。
次に、 ステップ S 1 5において、 利用側膨張弁 5 1の開度をステップ S 1 3に おける冷房運転時の開度よりも大きくすることによって、 減圧後の冷媒圧力を飽 和圧力付近まで高めて湿り状態 (気液二相流) にする (湿り冷房運転) 。 ここで 、 ガス側冷媒回路 1 2を流れる冷媒が湿り状態であるため、 異物捕集容器 3 1に は異物とともに冷媒液が流入する。 これにより、 異物捕集容器 3 1の下部には、 異物とともに冷媒液が溜まり、 異物及び冷媒液が分離された冷媒ガスのみが出口 から送り出されて圧縮機 2 1に吸入される。
次に、 ステップ S 1 6において、 所定時間 (第 2冷房時間) が経過するまで湿 リ冷房運転を行い、 第 2冷房時間が経過した後、 次のステップ S 1 7に進む。 次に、 ステップ S 1 7において、 再び、 ステップ S 1 3と同じ冷房運転を行う 。 すなわち、 利用側膨張弁 5 1の開度をステップ S 1 3における冷房運転時の開 度程度まで小さくすることよって、 減圧後の冷媒圧力を飽和圧力よりも低くして 乾き状態 (冷媒ガスのみ) にする。 すると、 異物捕集容器 3 1に溜まっていた冷 媒液は、 再び蒸発して圧縮機 2 1に吸入されて、 異物捕集容器 3 1には異物のみ が捕集された状態になる。
次に、 ステップ S 1 8において、 所定時間 (第 3冷房時間) が経過するまで湿 リ冷房運転を行い、 第 3冷房時間が経過した後、 次のステップ S 1 9に進む。 こ こで、 第 1、 第 2及び第 3冷房時間の合計時間は、 冷媒回路内の異物を除去する ために必要な時間に設定されている。
次に、 ステップ S 1 9において、 異物捕集装置 2 7を使用しない状態 (異物捕 集装置 O F F ) にする。 すなわち、 主開閉装置 3 4を開、 入口開閉装置 3 2 aを 閉として、 冷媒ガスが異物捕集容器 3 1をバイパスする回路構成 (通常運転状態 ) に切り換える。
以上のようにして、 配管洗浄運転 (液洗浄) が行われる。
( 4 ) 空気調和装置の特徴
本実施形態の空気調和装置 1には、 以下のような特徴がある。
本実施形態の空気調和装置 1では、 装置の設置後に、 図 1及び図 2に示すよう に、 冷媒が異物捕集容器 3 1を通過するように主開閉装置 3 4を操作して回路構 成を行い、 上記のような配管洗浄運転を行うことによって、 主冷媒回路内に残留 した異物を冷媒とともに異物捕集容器 3 1に導入し、 異物のみを分離 "捕集する 。 そして、 異物が分離された冷媒は、 出口配管 3 3を経由して異物捕集容器 3 1 から吸入ガス配管 3 5 (ガス側冷媒回路 1 2 ) に戻される。 これにより、 異物捕 集容器 3 1の下流側に設置された圧縮機 2 1には、 異物が除去された冷媒が吸入 されて、 圧縮機 2 1に異物が吸入されにくくなつている。
次に、 配管洗浄運転を完了した後、 冷媒が異物捕集容器 3 1を通過しないよう に主開閉装置 3 4を操作して回路構成を行い、 通常運転を行う。 このとき、 入口 配管 3 2及び出口配管 3 3には、 配管洗浄運転を行った際に、 異物が溜まってい るおそれがある。 しかし、 入口配管 3 2及び出口配管 3 3には、 吸入ガス配管 3 5に異物が戻らないように、 それぞれ戻り防止形状 3 2 b、 3 3 bが形成されて いるため、 入口配管 3 2に溜まった異物が再び吸入ガス配管 3 5に戻されるおそ れを少なくできる。 これにより、 回路構成の切り換え後においても、 下流側に設 置された圧縮機 2 1に異物が吸入されることを防ぐことができるため、 配管洗浄 運転のための装置構成の信頼性を向上させることができる。
また、 入口配管 3 2及び出口配管 3 3に形成された戻り防止形状 3 2 b、 3 3 bは、 入口配管 3 2及び出口配管 3 3の吸入ガス配管 3 5との分岐部の近傍に形 成された曲げ形状であるため、 構成が簡単である。
さらに、 吸入ガス配管 3 5の入口配管.3 2及び出口配管 3 3の分岐部の近傍に は、 圧縮機 2 1の吸入側に向かう上り勾配の傾斜が形成されているため、 異物が 圧縮機 2 1に吸入されるおそれをさらに少なくできるようになつている。
本実施形態の空気調和装置 1では、 配管洗浄運転の後、 冷媒が異物捕集容器 3 1を通過しないように主開閉装置 3 4を操作して回路構成を行い、 通常の運転を 行うが、 このとき、 異物捕集容器 3 1には、 捕集された異物とともに、 冷媒液が 溜まっていることがある。 特に、 配管洗浄運転 (液洗浄) において、 図 4に示さ れるステップ S 1 7の冷房運転が不十分な場合には、 冷媒液が異物捕集容器に溜 まったままになることがある。 しかし、 本実施形態の空気調和装置 1では、 出口 配管 3 3に逆止装置 3 3 aが設けられているため、 通常運転を行う際においても 、 異物捕集容器 3 1内で蒸発した冷媒ガスを吸入ガス配管 3 5に戻すことができ る。 これにより、 主冷媒回路に充填された冷媒のロスを少なくできるとともに、 異物捕集容器 3 1の過圧を防ぐことができる。 これにより、 配管洗浄運転のため の装置構成の信頼性を向上させることができる。
本実施形態の空気調和装置 1では、 異物捕集容器 3 1の入口及び出口が容器の 上部に設けられているため、 入口配管 3 2を経由して導入された冷媒中の異物は 、 容器の下部に捕集されるようになっている。 これにより、 捕集された異物が出 口から吸入ガス配管 3 5に戻るおそれを少なくできるため、 配管洗浄運転のため の装置構成の信頼性を向上させることができる。
また、 異物捕集容器 3 1には、 入口から流入した冷媒を容器下部に導くための 容器上部から容器下部まで延びる案内配管 3 1 aが設けられているので、 異物捕 集容器の入口から流入した異物を含む冷媒が容器下部まで案内されて、 冷媒の流 れが入口から出口に向かって短絡してしまうおそれがなくなる。 これにより、 捕 集された異物が吸入ガス配管 3 5に戻るおそれを少なくできる。
さらに、 異物捕集容器 3 1は、 ステンレス、 銅又は銅合金等の耐食性材料で形 成されているため、 異物に含まれる腐食成分による異物捕集容器 3 1の腐食を防 止し、 異物捕集容器 3 1を保護できる。
( 5 ) 異物捕集装置の変形例 1
本実施形態の異物捕集装置 2 7において、 図 5に示すように、 主開閉装置 3 4 を入口開閉装置 3 2 aの機能を兼ねる三方弁 3 6に変更してもよい。 これにより 、 異物捕集装置 2 7の構成部品を少なくできる。
( 6 ) 異物捕集装置の変形例 2
本実施形態の異物捕集装置 2 7において、 図 6に示すように、 異物捕集容器 3 1に設けられている案内配管 3 1 aを容器入口近傍の空間と出口近傍の空間とを 仕切るための仕切板 3 1 bに変更してもよい。 さらに、 異物捕集容器 3 1の出口 にはフィルタ 3 1 Gが設けてもよい。 これにより、 案内配管 3 1 aを設けた場合 と同様な効果が得られる。
( 7 ) 異物捕集装置の変形例 3
本実施形態の異物捕集装置 2 7において、 図 7に示すように、 出口配管 3 3に 設けられている逆止装置 3 3 aに代えて、 出口配管 3.3に電磁弁からなる出口開 閉装置 3 3 bと異物捕集容器 3 1の上部に減圧弁からなる圧逃がし装置 3 1 dと を設けてもよい。 これにより、 逆止装置 3 3 aを設けた場合と同様な効果が得ら れる。
( 8 ) 異物捕集装置の変形例 4
本実施形態の異物捕集装置 2 7において、 図 8に示すように、 異物捕集容器 3 1の下部に捕集された異物を外部に取り出すための取出装置 3 1 eが設けられて いる。 取出装置 3 1 eは、 具体的には、 ドレン配管と仕切弁とから構成されてい る。 これにより、 配管洗浄運転後に捕集された異物を取り出すことができる。
( 9 ) 異物捕集装置の変形例 5
本実施形態の異物捕集装置 2 7において、 図 9に示すように、 入口配管 3 2に 異物中の油分を検知するための油検知装置 3 2 Gが設けられている。 この油検知 装置 3 2 Gは、 詳細は図示しないが、 例えば、 入口配管 3 2に装着されたサイト グラスと、 サイトグラスに装着された紫外線照射器と、 紫外線の照射により異物 捕集容器 3 1に流入する冷媒中の油分の有無を検知する蛍光センサとから構成さ 8626
22 れている。 このような油検知装置 3 2 Gを備えることによって、 油分が検知され なくなった時点で、 配管洗浄運転を完了させることが可能になる。 これにより、 主冷媒回路内から確実に異物を除去することができる。
( 1 0 ) 異物捕集装置の変形例 6
本実施形態の異物捕集装置 2 7において、 図 1 0に示すように、 入口配管 3 2 及び出口配管 3 3にそれぞれ仕切弁 3 2 d、 3 3 dを設けて、 異物捕集容器 3 1 と吸入ガス配管 3 5とを切り離し可能にしてもよい。 これにより、 捕集された異 物を異物捕集容器 3 1ごと外部に取り出すことが可能である。
[第 2実施形態]
( 1 ) 空気調和装置及び異物捕集装置の構成
図 1 1は、 本発明の冷凍装置の一例としての第 2実施形態の空気調和装置 1 0 1の冷媒回路の概略図である。 空気調和装置 1 0 1は、 第 1実施形態の空気調和 装置 1 と基本的には同じ構成であり、 異物捕集装置 1 2 7を構成する異物捕集容 器 1 3 1の内部を加熱することが可能な加熱装置 1 4 0を備えている点のみが異 なる。 以下の空気調和装置 1 0 1の説明では、 第 1実施形態の空気調和装置 1と 同じ構成については説明を省略し、 第 1実施形態の空気調和装置 1との相違点に ついて説明する。
空気調和装置 1 0 1は、 第 1実施形態の空気調和装置 1 と同様、 H F C系冷媒 や H C系冷媒を使用する熱源ュニット 1 0 2及び利用ュニット 1 0 5を備えてお リ、 既設の冷媒液配管及び冷媒ガス配管である冷媒液配管 1 0 6及び冷媒ガス配 管 1 0 7を流用している。 利用ユニット 1 0 5は、 第 1実施形態の利用ユニット 5と同様に、 主に、 利用側膨張弁 1 5 1と、 利用側熱交換器 1 5 2とを有してい る。 熱源ユニット 1 0 2は、 第 1実施形態の熱源ユニット 2と同様に、 主に、 圧 縮機 1 2 1 と、 油分離器 1 2 2と、 四路切換弁 1 2 3と、 熱源側熱交換器 1 2 4 と、 熱源側膨張弁 1 2 5と、 油戻し管 1 2 6とを有している。 冷媒液配管 1 0 6 は、 利用ュニッ卜 1 0 5の利用側熱交換器 1 5 2の液側と熱源ュニッ卜 1 0 2の 熱源側熱交換器 1 2 4の液側との間を接続している。 冷媒ガス配管 1 0 7は、 利 用ュニット 1 0 5の利用側熱交換器 1 5 2のガス側と熱源ユニット 1 0 2の四路 切換弁 1 2 3との間を接続している。 ここで、 利用側熱交換器 1 5 2から利用側 膨張弁 1 5 1、 冷媒液配管 1 0 6及び熱源側膨張弁 1 2 5を含む熱源側熱交換器 1 2 4までの範囲の冷媒回路を液側冷媒回路 1 1 1とする。
本実施形態の空気調和装置 1 0 1は、 図 1 2に示すように、 第 1実施形態の空 気調和装置 1と同様に、 ガス側冷媒回路 1 1 2に けられた異物捕集装置 1 2フ をさらに備えている。 異物捕集装置 1 2 7は、 第 1実施形態の空気調和装置 1の 異物捕集装置 2 7と同様に、 内部配管 1 3 1 aを有する異物捕集容器 1 3 1 と、 入口開閉装置 1 3 2 a及び戻り防止形状 1 3 2 bを含む入口配管 1 3 2と、 逆止 装置 3 3 a及び戻り防止形状 1 3 3 bを含む出口配管 1 3 3と、 主開閉装置 1 3 4とを備えている。 そして、 本実施形態の異物捕集装置 1 2 7には、 異物捕集容 器 3 1を加熱するための加熱装置 1 4 0が設けられている。 本実施形態において 、 加熱装置 1 4 0は、 投げ込みヒータやバンドヒータ等からなる電気ヒータであ る。
( 2 ) 空気調和装置の動作
次に、 空気調和装置 1 0 1の動作について、 図 1 1、 図 1 3及び図 1 4を用い て説明する。 ここで、 図 1 3は、 配管洗浄運転 (液洗浄後に加熱) の運転動作を 示すフローチャートである。 図 1 4は、 配管洗浄運転 (液洗浄中に加熱) の運転 動作を示すフローチヤ一トである。
尚、 以下の説明では、 通常運転 (冷房及び暖房運転) の動作についての説明を 省略し、 配管洗浄運転のみについて説明する。
①配管洗浄運転 (液洗浄後に加熱)
次に、 配管洗浄運転 (液洗浄後に加熱) の動作について説明する。 この配管洗 浄方法は、 図 1 3に示されるように、 第 1実施形態の配管洗浄運転 (液洗浄) の 冷房運転ステップ S 1 7、 S 1 8 (図 4参照) を加熱装置 1 4 0による異物捕集 容器 1 3 1の加熱ステップ S 2 7、 S 2 8に変更している点のみが異なる。 この ため、 冷房運転によって冷媒液を蒸発させる場合に比べて速やかに冷媒液を蒸発 させることが可能となり、 配管洗浄運転に要する時間を短縮することができる。 ②配管洗浄運転 (液洗浄時に加熱)
次に、 配管洗淨運転 (液洗浄時に加熱) の動作について説明する。 ここで説明 する配管洗浄運転 (液洗浄時に加熱) は、 図 1 4に示すように、 第 1実施形態の 配管洗浄運転 (ガス洗浄) の冷房ステップ S3、 S4 (図 3参照) を湿り冷房運 転ステップ S33、 S34に変更するとともに、 加熱装置 1 40によって異物捕 集容器 1 31に溜まる冷媒液を蒸発させる配管洗浄方法である。 これにより、 湿 リ冷房運転の後に、 異物捕集容器 1 31に溜まった冷媒液を蒸発させる必要がな くなるため、 配管洗浄運転に要する時間を短縮することができる。 また、 湿り冷 房運転を行う際に、 冷媒回路内を循環する冷媒量が減少するのを抑えることがで さる。
(3) 空気調和装置の特徴
本実施形態の空気調和装置 1 01には、 以下のような特徴がある。
本実施形態の空気調和装置 1 01では、 上記に示される配管洗浄運転のように 、 異物捕集容器 1 31に異物を捕集した後、 又は、 異物捕集時に、 異物とともに 異物捕集容器 1 31の下部に溜まる冷媒液を加熱装置 1 40によって蒸発させて 、 主冷媒回路に戻すことが可能である。 これにより、 配管洗浄運転後に速やかに 通常運転に移行することができ、 配管洗浄運転のための装置構成の信頼性を向上 させることができる。
また、 配管洗浄運転 (液洗浄時に加熱) では、 湿り冷房運転中においても、 異 物捕集容器 1 31に冷媒液が溜まった状態を防ぐことができるため、 冷媒回路内 を循環する冷媒量を確保することが可能である。 さらに、 異物捕集容器 1 31の 容量を小さくすることもできる。
本実施形態の加熱装置 1 40は、 電気ヒータであるため、 空気調和装置 1 01 の運転状態によらず、 異物捕集容器 1 31を加熱することが可能である。 また、 異物捕集容器 1 31に溜まった冷媒液を加熱装置 1 40で加熱する構成としてい るので、 加熱装置 1 40の制御が容易である。
(4) 加熱装置の変形例 1
本実施形態の空気調和装置 1 01の加熱装置 1 40において、 図 1 5に示すよ うに、 電気ヒータの代わりに、 圧縮機 1 21から吐出される冷媒ガスの一部を熱 源として使用する熱交換器 1 41にしてもよい。 本変形例では、 加熱装置 1 40 は、 異物捕集容器 1 3 1に設けられた熱交換器 1 4 1 と、 油分離器 1 2 2の出口 と熱交換器 1 4 1とを接続する入口配管 1 4 2と、 熱交換器 1 4 1と圧縮機 1 2 1の吸入ガス配管 1 3 5とを接続する出口配管 1 4 3とを備えている。 これによ リ、 圧縮機 1 2 1から吐出される比較的高温の冷媒ガスの熱を有効利用できる。
( 5 ) 加熱装置の変形例 2
本実施形態の空気調和装置 1 0 1において、 圧縮機 1 2 1が電動機駆動ではな くガスエンジン等のエンジン駆動の圧縮機 2 2 1とする場合には、 加熱装置 1 4 0として、 図 1 6に示すような圧縮機 2 2 1のエンジン廃熱 (外部熱源) を利用 した熱交換器 1 4 4に変更することも可能である。 本変形例では、 加熱装置 1 4 0は、 異物捕集容器 1 3 1に設けられた熱交換器 1 4 5と、 圧縮機 2 2 1のェン ジン廃熱により加熱された水等の熱媒体を熱交換器 1 4 5に送るための熱媒回路 1 4 6とを備えている。 これにより、 ガスエンジンの廃熱を有効利用できる。
[他の実施形態]
以上、 本発明の実施形態について図面に基づいて説明したが、 具体的な構成は 、 これらの実施形態に限られるものではなく、 発明の要旨を逸脱しない範囲で変 更可肯 gである。
①前記実施形態においては、 本発明を空気調和装置に適用したものが開示され ているが、 他の蒸気圧縮式の冷媒回路を備えた冷凍装置に適用してもよい。
②前記実施形態においては、 圧縮機が 1台のものが開示されているが、 複数台 め圧縮機を備えたものでもよい。 また、 圧縮機の型式は、 前記実施形態に限定さ れない。
③前記実施形態においては、 C F C系又は H C F C系冷媒を使用した既設の空 気調和装置を H F C系又は H C系冷媒を使用した空気調和装置に更新した場合を 開示しているが、 既設装置が H F C系又は H C系冷媒を使用した空気調和装置の 場合に適用してもよい。 この場合においては、 主に、 設置工事時に冷媒回路内に 残留するゴミ ■油等を主冷媒回路内から除去することができる。
④前記実施形態においては、 異物捕集装置は熱源ュニッ卜に内蔵されているが 、 これに限定されるものではなく、 異物捕集装置を熱源ユニットとは別の圧縮機 の吸入側に接続可能なュニッ卜で構成してもよい。 ⑤前記実施形態においては、 異物捕集容器は耐食性材料で形成されているが、 容器内面に耐食性コーティングを施したものでもよい。
⑥第 1実施形態においては、 配管洗浄運転 (液洗浄) を利用側膨張弁の開度調 節によって行う方法を開示したが、 利用ュニッ卜のファン制御によって行っても よい。
⑦第 2実施形態において、 異物捕集容器に種々の加熱装置を設けたいくつかの 変形例を開示したが、 その他、 加熱装置を液側冷媒 0路を流れる冷媒液によって 加熱する熱交換器にしてもよい。 産業上の利用可能性
本発明を利用すれば、 蒸気圧縮式の冷媒回路を備えた冷凍装置において、 配管 洗浄運転を行うための装置構成の信頼性を向上させることができる。

Claims

請 求 の 範 囲
1. 圧縮機 (21、 121、 221 ) と、 利用側熱交換器 (52、 1 52) と 、 熱源側熱交換器 (24、 124) と、 前記利用側熱交換器と前記圧縮機とを接 続するガス側冷媒回路 (12、 1 12) とを含む蒸気圧縮式の主冷媒回路と、 前記ガス側冷媒回路を流れる冷媒を導入して、 冷媒中の異物を分離することが 可能な異物捕集容器 (31、 131) と、
前記異物捕集容器に冷媒を導入するために、 前記ガス側冷媒回路から分岐され ており、 内部に溜まった異物が前記ガス側冷媒回路に戻らないように前記異物捕 集容器の入口に接続された入口配管 (32、 132) と、
前記異物捕集容器内で異物が分離された冷媒を前記ガス側冷媒回路に戻すため に、 前記入口配管の分岐部の下流側の位置で前記ガス側冷媒回路から分岐され、 前記異物捕集容器の出口に接続された出口配管 (33、 133) と、
前記ガス側冷媒回路において、 前記入口配管との分岐部と前記出口配管との分 岐部との間の冷媒の流れを遮断可能な主開閉装置 (34、 134) と、
を備えた冷凍装置 (1、 101) 。
2. 前記入口配管 (32、 132) には、 内部に溜まった異物が前記ガス側冷 媒回路 (12、 1 12) に戻らないようにするための戻り防止形状 (32 b、 1 32b) が形成されている、 請求項 1に記載の冷凍装置 (1、 101) 。
3. 前記出口配管 (33、 133) は、 内部に溜まった異物が前記ガス側冷媒 回路 (12、 1 1 2) に戻らないように前記異物捕集容器 (31、 1 31 ) の出 口に接続されている、 請求項 1又は 2に記載の冷凍装置 (1、 101) 。
4. 前記出口配管 (33、 133) には、 内部に溜まった異物が前記ガス側冷 媒回路 (12、 1 12) に戻らないようにするための戻り防止形状 (33 b、 1 33 b) が形成されている、 請求項 3に記載の冷凍装置 (1、 101) 。
5. 前記入ロ 出口配管 (32、 33、 132、 133 ) に形成された戻り防 止形状 (32b、 33 b、 1 32b、 133b) は、 前記入口 Z出口配管の前記 ガス側冷媒回路 (12、 1 1 2) との分岐部の近傍に形成された曲げ形状である 、 請求項 2又は 4に記載の冷凍装置 (1、 101) 。
6. 前記ガス側冷媒回路 (1 2、 1 1 2) の前記入口及び出口配管 (32、 3 3、 1 32、 1 33) との分岐部の近傍には、 前記圧縮機 (21、 121、 22 1 ) の吸入側に向かう上り勾配の傾斜が形成されている、 請求項 1〜5のいずれ かに記載の冷凍装置 ( 1、 1 01 ) 。
7. 圧縮機 (21、 1 21、 221 ) と、 利用側熱交換器 (52、 1 52) と 、 熱源側熱交換器 (24、 1 24) と、 前記利用側熱交換器と前記圧縮機とを接 続するガス側冷媒回路 (1 2、 1 12) とを含む蒸気圧縮式の主冷媒回路と、 前記ガス側冷媒回路を流れる冷媒を導入して、 冷媒中の異物を分離することが 可能な異物捕集容器 (31、 1 31 ) と、
前記異物捕集容器に冷媒を導入するために、 前記ガス側冷媒回路から分岐され 、 前記異物捕集容器の入口に接続された入口配管 (32、 1 32) と、
前記異物捕集容器内で異物が分離された冷媒を前記ガス側冷媒回路に戻すため に、 前記入口配管の分岐部の下流側の位置で前記ガス側冷媒回路から分岐され、 前記異物捕集容器の出口に接続された出口配管 (33、 1 33) と、
前記ガス側冷媒回路において、 前記入口配管との分岐部と前記出口配管との分 岐部との間の冷媒の流れを遮断可能な主開閉装置 (34、 1 34) とを備え、 前記出口配管には、 前記異物捕集容器から前記ガス側冷媒回路への流れのみを 許容する逆止装置 (33 a、 1 33a) が設けられている、
冷凍装置 ( 1、 101 ) 。
8. 圧縮機 (121、 221 ) と、 利用側熱交換器 (1 52) と、 熱源側熱交 換器 (1 24) と、 前記利用側熱交換器と前記圧縮機とを接続するガス側冷媒回 路とを含む蒸気圧縮式の主冷媒回路と、
前記ガス側冷媒回路を流れる冷媒を導入して、 冷媒中の異物を分離することが 可能な異物捕集容器 (1 31 ) と、
前記ガス側冷媒回路から分岐され、 前記異物捕集容器の入口に接続された冷媒 を導入するための入口配管 (1 32) と、
前記入口配管の分岐部の下流側の位置で前記ガス側冷媒回路から分岐され、 前 記異物捕集容器の出口に接続され、 前記異物捕集容器内で異物が分離された冷媒 を前記ガス側冷媒回路に戻すための出口配管 (1 33) と、 前記ガス側冷媒回路において、 前記入口配管との分岐部と前記出口配管との分 岐部との間の冷媒の流れを遮断可能な主開閉装置 (34、 1 34) とを備え、 前記異物捕集容器には、 内部を加熱するための加熱装置 (1 40) が設けられ ている、
冷凍装置 (1 01 ) 。
9. 前記加熱装置 (1 40) は、 前記圧縮機 (1 21、 221 ) から吐出され る冷媒ガスの一部を熱源として使用する熱交換器である、 請求項 8に記載の冷凍 装置 ( 1 01 ) 。
1 0. 前記加熱装置 (1 40) は、 前記液側冷媒回路 (1 1 2) を流れる冷媒 液の一部を熱源として使用する熱交換器である、 請求項 8に記載の冷凍装置 ( 1
01 ) 。
1 1. 前記加熱装置 (1 40) は、 電気ヒータである、 請求項 8に記載の冷凍 装置 ( 1 01 ) 。
1 2. 前記加熱装置 (1 40) は、 外部熱源を使用する熱交換器である、 請求 項 8に記載の冷凍装置 (1 01 ) 。
1 3. 前記主開閉装置 (34、 1 34) は、 前記ガス側冷媒回路 (1 2、 1 1 2) から前記入口配管 (32、 1 32) への冷媒の流れを遮断する機能をさらに 有している、 請求項 1〜1 2のいずれかに記載の冷凍装置 (1、 1 01 ) 。
1 . 前記異物捕集容器 (31、 1 31 ) は、 容器上部に冷媒の入口及び出口 が設けられている、 請求項 1〜1 3のいずれかに記載の冷凍装置 (1、 1 01 )
1 5. 前記異物捕集容器 (31、 1 31 ) には、 容器入口から流入した冷媒を 容器下部に導くための容器上部から容器下部まで延びる案内配管 (31 a、 1 3 1 a) が設けられている、 請求項 1 4に記載の冷凍装置 (1、 1 01 ) 。
1 6. 前記異物捕集容器 (31 ) には、 容器入口近傍の空間と容器出口近傍の 空間とを仕切るための仕切板 (31 b) が設けられている、 請求項 1 4に記載の 冷凍装置 ( 1 ) 。
1 7. 前記異物捕集容器 (31 ) の出口には、 フィルタ (31 G) が設けられ ている、 請求項 14〜1 6のいずれかに記載の冷凍装置 (1 ) 。
1 8. 前記異物捕集容器 (31 ) の下部には、 異物を外部に取り出すための取 出装置 (31 e) が設けられている、 請求項 1 4~1 7のいずれかに記載の冷凍 装置 ( 1 ) 。
1 9. 前記異物捕集容器 (31 ) の上部には、 前記異物捕集容器の過圧を防止 するための圧逃がし装置 (31 d) が設けられている、 請求項 1 4〜1 8のいず れかに記載の冷凍装置 ( 1 ) 。
20. 前記異物捕集容器 (31 ) の入口又は前記入口配管 (32) には、 異物 中の油分を検知するための油検知装置 (32 c) が設けられている、 請求項 1 ~ 1 9のいずれかに記載の冷凍装置 (1 ) 。
21. 前記異物捕集容器 (31、 1 31 ) の内部は、 異物に含まれる腐食成分 による腐食を防止するために、 耐食性の材料で形成されているか、 又は、 耐食性 コーティングが施されている、 請求項 1〜20に記載の冷凍装置 (1、 1 01 )
22. 前記異物捕集容器 (31 ) は、 前記ガス側冷媒回路 (1 2) と切り離し 可能に接続されている、 請求項 1〜21のいずれかに記載の冷凍装置 (1 ) 。
PCT/JP2003/008626 2002-07-10 2003-07-07 冷凍装置 WO2004008050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03741249A EP1521049A4 (en) 2002-07-10 2003-07-07 REFRIGERATION APPARATUS
KR1020047009894A KR100598997B1 (ko) 2002-07-10 2003-07-07 냉동 장치
AU2003280987A AU2003280987B2 (en) 2002-07-10 2003-07-07 Refrigeration apparatus
US10/494,968 US7104086B2 (en) 2002-07-10 2003-07-07 Refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-201173 2002-07-10
JP2002201173A JP3714304B2 (ja) 2002-07-10 2002-07-10 冷凍装置

Publications (1)

Publication Number Publication Date
WO2004008050A1 true WO2004008050A1 (ja) 2004-01-22

Family

ID=30112553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008626 WO2004008050A1 (ja) 2002-07-10 2003-07-07 冷凍装置

Country Status (7)

Country Link
US (1) US7104086B2 (ja)
EP (1) EP1521049A4 (ja)
JP (1) JP3714304B2 (ja)
KR (1) KR100598997B1 (ja)
CN (1) CN100417878C (ja)
AU (1) AU2003280987B2 (ja)
WO (1) WO2004008050A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039891A1 (de) * 2004-10-06 2006-04-20 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Klimakompressor oder klimaanlage
JP4197020B2 (ja) * 2006-08-10 2008-12-17 ダイキン工業株式会社 二酸化炭素を冷媒として用いる冷凍装置における冷媒充填方法
JP5055965B2 (ja) * 2006-11-13 2012-10-24 ダイキン工業株式会社 空気調和装置
JP5445577B2 (ja) 2011-12-29 2014-03-19 ダイキン工業株式会社 冷凍装置およびその異冷媒充填検出方法
KR101622846B1 (ko) * 2014-10-27 2016-05-19 엘지전자 주식회사 오일분리기 및 이를 구비한 공기조화기
US11592216B2 (en) * 2018-09-12 2023-02-28 Carrier Corporation Liquid receiver for heating, air conditioning and refrigeration system
EP4187176A1 (en) * 2020-06-30 2023-05-31 Trane International Inc. Dynamic liquid receiver and control strategy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255351A (ja) * 1993-03-02 1994-09-13 Seiko Epson Corp 電気自動車の冷却サイクル
JPH0875323A (ja) * 1994-09-09 1996-03-19 Sanyo Electric Co Ltd 冷凍装置
JPH09318197A (ja) * 1996-05-30 1997-12-12 Hitachi Ltd 冷蔵庫の冷凍サイクル
JP2000274887A (ja) * 1999-03-29 2000-10-06 Sanyo Electric Co Ltd 空気調和機
JP2001041613A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 冷凍サイクル装置
JP2001147059A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 電気冷蔵庫
JP2001255044A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd 配管洗浄装置及び冷媒再生装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512050A (ja) 1974-06-23 1976-01-09 Kinzoku Giken Kk Akyumureetaa
US4554792A (en) * 1981-07-08 1985-11-26 Margulefsky Allen L Method and apparatus for rehabilitating refrigerant
JPH0620419B2 (ja) 1987-06-30 1994-03-23 松下電器産業株式会社 感熱装置
JPH0833247B2 (ja) * 1988-09-12 1996-03-29 三菱電機株式会社 冷凍空調装置
AU677453B2 (en) * 1993-12-09 1997-04-24 Refrigeration Technologies Pty Ltd Refrigeration oil flushing system
JP3439178B2 (ja) 1993-12-28 2003-08-25 三菱電機株式会社 冷凍サイクル装置
JP3435822B2 (ja) 1994-03-15 2003-08-11 三菱電機株式会社 空気調和装置
JPH0894216A (ja) 1994-09-22 1996-04-12 Zexel Corp A/cサイクル洗浄装置及び洗浄方法
US6510698B2 (en) * 1999-05-20 2003-01-28 Mitsubishi Denki Kabushiki Kaisha Refrigeration system, and method of updating and operating the same
JP2003042603A (ja) 2001-08-02 2003-02-13 Mitsubishi Electric Corp 冷凍サイクル装置の製造方法、冷凍サイクル装置、及び冷凍サイクル装置の運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255351A (ja) * 1993-03-02 1994-09-13 Seiko Epson Corp 電気自動車の冷却サイクル
JPH0875323A (ja) * 1994-09-09 1996-03-19 Sanyo Electric Co Ltd 冷凍装置
JPH09318197A (ja) * 1996-05-30 1997-12-12 Hitachi Ltd 冷蔵庫の冷凍サイクル
JP2000274887A (ja) * 1999-03-29 2000-10-06 Sanyo Electric Co Ltd 空気調和機
JP2001041613A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 冷凍サイクル装置
JP2001147059A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 電気冷蔵庫
JP2001255044A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd 配管洗浄装置及び冷媒再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1521049A4 *

Also Published As

Publication number Publication date
CN1585880A (zh) 2005-02-23
AU2003280987B2 (en) 2006-02-23
US7104086B2 (en) 2006-09-12
AU2003280987A1 (en) 2004-02-02
KR100598997B1 (ko) 2006-07-10
KR20040071747A (ko) 2004-08-12
CN100417878C (zh) 2008-09-10
US20050160762A1 (en) 2005-07-28
EP1521049A4 (en) 2010-03-10
JP3714304B2 (ja) 2005-11-09
EP1521049A1 (en) 2005-04-06
JP2004044871A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
AU2001252560B2 (en) Method for refrigerant and oil collecting operation and refrigerant and oil collection controller
WO2004008050A1 (ja) 冷凍装置
WO2005017423A1 (ja) 冷凍装置
WO2004090442A1 (ja) 冷凍装置
JP2004205109A (ja) 空気調和装置の配管洗浄方法、配管洗浄装置、空気調和装置の配管洗浄システム、及び配管洗浄システムの制御装置
JP4110818B2 (ja) 冷凍装置
JP2004263885A (ja) 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置
JP3714305B2 (ja) 冷凍装置及び冷凍装置の冷媒充填方法
JP2003021436A (ja) 配管洗浄方法、空気調和機の更新方法及び空気調和機
JP4186764B2 (ja) 冷凍装置
JP3885601B2 (ja) 冷媒及び油回収方法、冷媒及び油回収制御装置、及び空気調和装置
JP3933079B2 (ja) 冷凍装置およびその配管洗浄方法
JP3700723B2 (ja) 冷凍装置
JP3835365B2 (ja) 冷凍装置及び冷凍装置の配管洗浄方法
JP2004333121A (ja) 空気調和装置の更新方法、及び、空気調和装置
US7334426B2 (en) Refrigerating apparatus
JP2004340430A (ja) 冷凍装置
JP2004218931A (ja) 空気調和装置の配管洗浄方法及び空気調和装置
JP2004333121A5 (ja)
JP3704608B2 (ja) 配管洗浄方法及び配管洗浄装置並びに冷凍機器
JP4097520B2 (ja) 空気調和装置の配管洗浄方法及び配管洗浄システム
JP2003194437A (ja) 残油回収方法
JP2010002136A (ja) 空気調和装置
JP2004293883A (ja) 空気調和装置の配管洗浄方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10494968

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038014734

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003741249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003280987

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020047009894

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003741249

Country of ref document: EP