WO2004002898A1 - 電気脱イオン装置 - Google Patents

電気脱イオン装置 Download PDF

Info

Publication number
WO2004002898A1
WO2004002898A1 PCT/JP2003/007972 JP0307972W WO2004002898A1 WO 2004002898 A1 WO2004002898 A1 WO 2004002898A1 JP 0307972 W JP0307972 W JP 0307972W WO 2004002898 A1 WO2004002898 A1 WO 2004002898A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exchange membrane
anode
cathode
water
Prior art date
Application number
PCT/JP2003/007972
Other languages
English (en)
French (fr)
Inventor
Masayuki Miwa
Shin Sato
Takayuki Moribe
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to KR1020047021670A priority Critical patent/KR100643068B1/ko
Priority to AT03761784T priority patent/ATE512933T1/de
Priority to AU2003244174A priority patent/AU2003244174A1/en
Priority to EP03761784A priority patent/EP1553056B1/en
Publication of WO2004002898A1 publication Critical patent/WO2004002898A1/ja
Priority to US11/015,797 priority patent/US7247225B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/50Stacks of the plate-and-frame type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an electrodeionization apparatus, and more particularly to an electrodeionization apparatus suitable for a case where the amount of deionized water (production water) per unit time is small.
  • a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between electrodes (anode and cathode) to alternately form a desalting chamber and a concentrating chamber.
  • electrodes anode and cathode
  • ion-exchange resin With an ion-exchange resin.
  • the water to be treated flows into the desalination chamber while applying a voltage between the anode and the cathode, and the concentrated water flows through the concentration chamber to remove impurity ions in the water to be treated. Produce deionized water.
  • a plurality of deionization chambers and concentration chambers are alternately formed between the cathode and the anode, so the electrical resistance between the cathode and the anode is large, and the voltage between the two electrodes is increased. Voltage is high. Moreover, attributable to C a 2 + and carbonate components in the raw water (C 0 2, HCO 3-) - Ru calcium carbonate scale has occurred frequently in the ion exchange membrane surface of the concentration chamber.
  • a first object of the present invention is to provide an electrodeionization apparatus suitable for use when the amount of produced water is small, which has a low applied voltage between electrodes and is less likely to generate scale.
  • a cathode exchange membrane and an anion exchange membrane are disposed one by one between a cathode and an anode, and a concentration exchange membrane is provided between the cathode and the cation exchange membrane.
  • a cathode / chamber compartment is provided between the anode and the anion exchange membrane; a concentrating compartment / anode compartment is provided between the anode and the anion exchange membrane; a desalination compartment is provided between the cation exchange membrane and the anion exchange membrane; An electrodeionization apparatus in which a conductor is filled in each of the anode chamber and the concentration / cathode chamber, and an ion exchanger is filled in the desalination chamber; and One cation exchange membrane and one anion exchange membrane are disposed between the cathode plate and the anode plate, and a concentration chamber and a cathode chamber are provided between the cathode plate and the cation exchange membrane, and the anode plate and the anion exchange membrane are provided.
  • a concentration chamber / anode chamber is provided between the cation exchange membrane and the anion exchange membrane; a desalination chamber is provided between the cation exchange membrane and the anion exchange membrane; and the cathode plate and the anode plate have water passages for electrode water.
  • An electrodeion device in which the cathode plate is in contact with the cation exchange membrane and the anode plate is in contact with the anion exchange membrane;
  • the electrodeionization apparatus disclosed in Japanese Patent Application Laid-Open No. 2003-136063 has a single desalting chamber, and a concentrating chamber that also serves as an anode chamber and a condensing chamber that also serves as a cathode chamber on both sides of the desalting chamber.
  • the distance between the electrodes is small, and the applied voltage between the electrodes is low.
  • the present applicant has further studied the electrodeion device disclosed in Japanese Patent Application Laid-Open No. 2003-136063, and found that if C 1-ions were present in the raw water, C 1-would be generated in both the concentration chamber and the anode chamber.
  • C 1 2 is generated by receiving an oxidation reaction, may or conductors, such as the cation exchange resin packed in the concentrate chamber and the anode chamber, or ion-exchange membrane which faces the concentration compartment and an anode compartment is degraded gradually It was found to be.
  • a second object of the present invention is to prevent deterioration of a conductor such as a cation exchange resin or the like and an ion exchange membrane.
  • a first cation exchange membrane, an anion exchange membrane, and a second cation exchange membrane are arranged in this order between a cathode and an anode, and the cathode and the first cation exchange membrane are arranged in this order.
  • a concentration chamber / cathode chamber is provided between the first cation exchange membrane and the anion exchange membrane; and a desalination chamber is provided between the first cation exchange membrane and the second cation exchange membrane.
  • An enrichment chamber is provided between the membrane and an anode chamber is provided between the second cation exchange membrane and the anode, and the enrichment chamber, the anode chamber, and the enrichment / cathode chamber are each filled with a conductor.
  • the desalting chamber is filled with an ion exchanger.
  • electrode water is supplied to the anode plate and the cathode plate.
  • a water passage is provided, and the anode plate and the cathode plate are in contact with the ion exchange membrane.
  • the electrodeposition device of the second aspect has a first click between the cathode and the anode.
  • An on-exchange membrane, an anion-exchange membrane, and a second cation-exchange membrane are arranged in this order, and a concentration chamber and a cathode chamber are provided between the cathode and the first force thione-exchange membrane, and A desalination chamber is provided between the anion exchange membrane and the anion exchange membrane; a concentration chamber is provided between the anion exchange membrane and a second force thione exchange membrane;
  • An anode chamber is provided between the anode and the anode, the cathode plate and the anode plate have a water passage for electrode water, the cathode plate is in contact with the first cation exchange membrane, and the anode plate is in contact with the second cation exchange membrane. It is characterized by being in contact with an exchange membrane.
  • the first and second aspect of the electrodeionization apparatus have a single desalination chamber, and a concentrating chamber and a cathode / concentrating chamber are arranged on both sides of the desalting chamber, respectively. Since the anode chamber is arranged next to the concentration chamber, the distance between the electrodes is small, and the applied voltage between the electrodes is low.
  • the anode compartment is provided separately from the concentration compartment and both are separated by the second cation exchange membrane, the movement of C 1-ions from the concentration compartment to the anode compartment is prevented. Therefore, C 1 2 generated at the anode chamber, since to be due only to C 1-electrode water introduced into the anode chamber, is not significantly C 1 2 generation amount in the anode chamber. Therefore, and conductors such as cation exchange resin filled in the anode chamber, second Kachio-exchange membrane facing the anode chamber is prevented from being degraded by C 1 2.
  • the deionization chamber may be divided into a number of small chambers by a partition member, and each of the small chambers may be filled with an ion exchanger. At least the-part of the partition member facing each of the small chambers is inclined with respect to the average flow direction of water in the desalination chamber. This inclined part allows water to pass, but ion-exchange resin does. It has a structure that is not allowed. At least a portion of the water that has flowed into the desalination chamber flows obliquely to the average flow direction of the water, and is dispersed and flows throughout the desalination chamber. Therefore, the contact efficiency between water and the ion exchange resin is improved, and the deionization characteristics are improved.
  • the shape projected on the ion exchange membrane surface may be a hexagon or a rectangle.
  • the small chambers it is preferable to arrange the small chambers such that a pair of parallel sides is in an average water flow direction.
  • each side is arranged so as to be inclined with respect to the average water flow direction.
  • One chamber may be filled with only one type of ion exchanger having ion exchange characteristics, or may be filled with multiple types of ion exchangers having ion exchange characteristics.
  • one compartment may be filled with a mixture of an anion exchanger and an amphoteric ion exchanger.
  • raw water or deionized water from the desalination chamber is passed through the anode chamber as electrode water, the effluent of the anode chamber is passed through the concentration chamber, and the effluent of the concentration chamber is discharged.
  • FIG. 1 is a schematic longitudinal sectional view of the electrodeionization apparatus according to the embodiment.
  • FIG. 2 is an exploded perspective view of an electrodeionization apparatus according to another embodiment in which a partition member is disposed in a desalination chamber.
  • FIG. 3 is a perspective view of the partition member.
  • FIG. 4 is an exploded view of the partition member.
  • FIG. 5 is an explanatory diagram of the water passing state of the partition members.
  • FIG. 6 is a longitudinal sectional view of an electrode portion of an electrodeionization apparatus according to another embodiment.
  • FIG. 7 is a schematic longitudinal sectional view of an electrodeionization apparatus according to another embodiment.
  • a first click is placed between the cathode 1 and the anode 2.
  • One on-exchange membrane 3, one anion-exchange membrane 4, and one second cation-exchange membrane 3 are provided.
  • a condensing chamber / cathode chamber 5 is formed between the cathode 1 and the first force cation exchange membrane 3, and a desalting chamber 7 is formed between the first cation exchange membrane 3 and the anion exchange membrane 4.
  • a concentrating chamber 10 is formed between the second cation exchange membrane 4 and the second cation exchange membrane 3 ′, and an anode chamber 6 is formed between the second cation exchange membrane 3 ′ and the anode 2 .
  • the cation exchange resin 8 is filled in each of the concentration chamber / cathode chamber 5, the concentration chamber 10 and the anode chamber 6.
  • the ion exchange resin to be filled in the concentration chamber / cathode chamber 5, the concentration chamber 10 and the anode chamber 6 may be a mixture of an anion exchange resin, an anion exchange resin and a cation exchange resin. It is preferable to use a cation exchange resin for the concentration chamber and the cathode chamber 5 and the anode chamber 6 from the viewpoint of the strength of the resin.
  • the desalting chamber 7 is filled with a cation exchange resin 8 and an anion exchange resin 9 in a mixed state.
  • One end of the desalting chamber 7 is provided with an inlet for raw water, and the other end is provided with an outlet for deionized water.
  • An inlet of raw water or deionized water is provided at one end of the anode chamber 6.
  • the effluent from the anode chamber 6 flows into the concentration chamber 10 from one end thereof and flows out from the other end.
  • the effluent from the concentrating chamber 10 flows into the concentrating chamber / cathode chamber 5 from one end thereof, and is discharged from the other end as the concentrated water / cathode electrode water.
  • raw water is introduced into the desalting chamber 7 with a voltage applied between the cathode 1 and the anode 2 and taken out as deionized water.
  • the raw water or the deionized water is introduced into the anode chamber 6 and is sequentially circulated through the concentrating chamber 10 and the condensing chamber / cathode chamber 5.
  • Forces in the raw water permeate the first cation exchange membrane 3 and are mixed with the cathode water and discharged.
  • the anion in the raw water permeates through the ayuon exchange membrane 4 and moves to the concentration chamber 10, where it mixes with the effluent of the concentration chamber and is discharged through the concentration chamber / cathode chamber 5.
  • the point where the anion exchange resin 9 is filled in the concentration chamber 10 and a part of the deionized water flows through the anode chamber 6 and the ascending flow also flows into the concentration chamber 10 It differs from the electric deionization device shown in Fig. 1 in that water is passed through, and the other configuration is the same. 7, members having the same functions as the members shown in FIG. 1 are denoted by the same reference numerals.
  • the effect of the electrodeionization apparatus of FIG. 7 in which the concentration chamber 10 is filled with the anion exchange resin 9 is as follows.
  • the anion component is concentrated most by concentration polarization.
  • concentration polarization of HCO 3 — and HS i O 3 that are difficult to move becomes too large, the electric resistance becomes large. There is a problem that the removal rate is lowered due to the rise or the difficulty in moving the ions.
  • the concentration chamber 10 is filled only with the anion exchanger in terms of the moving speed of the aion.
  • the concentration polarization of the concentration surface of the anion exchange membrane 10 in the concentration chamber 10, particularly the concentration polarization of weak ionic components such as co 2 and silica, is large in the amount of weak ionic components such as CO 2 and silica flowing into the desalting chamber 7. more, also C 0 2, as the component of silica is large, also likely to occur as the current density is large to move 0 concentrating chamber 1 through 4 side Anion exchange membranes from the desalting 7.
  • the filling ratio of the aion exchanger / force thione exchanger in the concentration chamber 10 is larger than the filling ratio of the ion exchanger / force thione exchanger in the desalting chamber 7, and preferably the filling rate of the concentration chamber 10
  • the electrodeionization device is excellent in desalination performance and operation stability even when the load of these weak ionic components is high. it can.
  • the effective surface of the anion exchange membrane 4 in the desalination chamber 7 Product carbonate load flowing into the desalting compartment 7 to the (dm 2) (mg- C_ ⁇ 2 Zh) is 80 or more on news 250-300
  • the effective area of the Anion exchange membrane 4 of the desalting chamber 7 (dm 2 silica loading flowing into the desalting compartment for) (mg- S i 0 2 / h) is 8 or more, further 1 5-25
  • the current density is 30 OMA / dm 2 or more, more 600 ⁇ ; 1200m AZdm 2
  • the electrodeionization apparatus can be further miniaturized, and this is extremely effective in terms of economy.
  • the water supplied to the electrodeionization equipment is generally water obtained by treating raw water such as tap water with activated carbon and reverse osmosis membrane separation (RO), and has an electric conductivity of 3 to 10 ⁇ S / cm and CO (2)
  • the concentration is about 3 to 30 ppm, and the silica concentration is about 0.2 to 1. O ppm.
  • the ionization exchanger in the desalting chamber 7 has an anion exchanger / force thione exchanger packing ratio of 60Z40 to 70/30 (for example, a regenerated type of ion exchange resin and cation exchange resin). (The volume ratio in some cases).
  • the ion exchanger filled in the concentrating chamber 10, the desalting chamber 7, the concentrating / cathode chamber 5, and the anode chamber 6 is made of ion-exchange resin from the viewpoint of handleability. It is preferred that there be.
  • the degree of crosslinking of the ion exchange resin is preferably about 3 to 8% for the anion exchange resin and about 5 to 10% for the cation exchange resin. This is because if the degree of cross-linking of the ion exchange resin is small, the strength becomes weak, and if the degree of cross-linking is high, the electric resistance increases.
  • the concentration chamber 10 may be filled with an ion exchanger other than ion exchange resin such as ion exchange fiber. It is preferable to make the filling ratio larger than the anion exchanger / force thione exchanger filling ratio, and particularly to use only the anion exchanger. As described above, when the ratio of the ion-exchange resin is increased, in a long-term operation, the deterioration is advanced and the electric resistance may be increased. That is, in general, it is considered that, for example, in the presence of oxygen, the anion exchange resin deteriorates earlier than the oxidation deterioration of the cation exchange resin.
  • the anode chamber 6 since an oxidizing agent is generated due to an electrode reaction on the plate surface of the anode 2, it is preferable that the anode chamber 6 is filled with only a strong thione exchanger and has high resistance to oxidation.
  • the anode 2 since the anode 2 may be deteriorated by an oxidizing agent and the cathode 1 may cause pitting corrosion, it is desirable to use an electrode plate having excellent corrosion resistance made of a material such as titanium plated with platinum.
  • C 1 _ in the desalting chamber moves only to the concentration chamber 10 and does not move to the anode chamber 6.
  • C 1 concentration in the anode chamber 6 becomes C 1-only present in the raw water or deionized water, C 1 2 significantly less caused by anodic Sani spoon in the anode chamber 6. Therefore, deterioration of the cation exchange resin S in the anode chamber 6 and the second cation exchange membrane 3 facing the anode chamber 6 are prevented.
  • the cathode chamber also serves as the concentration chamber, the electrical conductivity of the electrode water in the cathode chamber is high. This also allows a sufficient current to flow between the electrodes 1 and 2 even when the applied voltage between the electrodes 1 and 2 is low.
  • the flow direction of the water in the condensing room / cathode room 5 and the condensing room 10 may be either the same flow as the desalting room 7 or the counter flow. It is desirable that the concentration chamber / cathode chamber 5 and the anode chamber 6 be ascending flow water. This is, in each chamber 5, 6, H 2 and 0 2 by the DC current, since in some cases small amounts of C 1 2 like gas occurs, the uneven flow to promote discharge of water flow and gas upflow This is to prevent it.
  • the concentration chamber 10 was omitted from the electrodeionization apparatus shown in Figs. 1 and 7, and the C1 load of the anode chamber was assumed to be C1— from the desalting chamber 7 flowing into the anode chamber 6.
  • An example is calculated next.
  • Raw water with a C1 concentration of 3 ppm is supplied at 0.8 LZh to the anode chamber, and this raw water is supplied at 1.5 LZh to the desalination chamber.
  • Anode chamber inflow CI amount 0.8 L / h- 2.4mg / h
  • the load capacity of anode chamber C 1 is 2.4 mg / h because only C 1 in the raw water flowing into the anode chamber. If deionized water is passed through the anode compartment, the load on the anode compartment C 1 will be substantially zero.
  • a part of the raw water or deionized water from the deionization chamber 7, preferably a part of the deionized water is supplied to the anode chamber 6, the concentration chamber 10, the cathode. It is desirable to pass water in the order of the room / concentration room 5.
  • the concentrating chamber / cathode chamber and the anode chamber may be configured as shown in FIG. 6, in which the cathode plate 80 and the anode plate 90 have a water passage for electrode water. I have.
  • the cathode plate 80 is arranged so as to be in contact with the first cation exchange membrane 3, and the anode plate 90 is arranged so as to be in contact with the second cation exchange membrane 3 '.
  • Such electrode plates 80 and 90 have a large number of It can be formed by laminating a plurality of perforated plates having openings so that the holes of adjacent perforated plates partially overlap.
  • the cathode plate 80 with the water passage constitutes a concentration chamber and a cathode chamber.
  • the anode plate 90 with a water passage is constituted by the anode compartment 90 between the cation exchange membranes 3 and 3 'of FIG. 6 (indicated by a two-dot chain line). Or, it is the same as the configuration between the membranes 3 and 3 'in FIG. In Fig. 6, water is passed in the same way as Fig. 1 or Fig. 7.
  • Electrodeionization apparatus having a desalination chamber divided into a number of small chambers (Figs. 2 to 5)] Referring to Figs. 2 to 5, a partition member is arranged in the desalination chamber and a number of small chambers are provided in the desalination chamber.
  • the electrodeionization device formed as described above will be described.
  • a cathode electrode plate 12 is disposed along the cathode-side end plate 11, and a frame-shaped frame 13 for forming a concentration chamber and a cathode chamber is formed on the periphery of the cathode electrode plate 12.
  • a first cation exchange membrane 14 is superimposed on the frame 13, and a frame 20 for forming a desalting chamber, an anion exchange membrane 15, and a concentration chamber are stacked on the cation exchange membrane 14.
  • the forming frame 16S, the second cation exchange membrane 14S, and the anode chamber forming frame 16 are stacked in this order.
  • An anode electrode plate 17 is superimposed on the second cation exchange membrane 14 S via a frame 16 for forming an anode chamber, and an anode-side end plate 18 is further superposed to form a laminate. .
  • This laminate is fastened with bolts or the like.
  • the inside of the frame 20 is a desalination chamber.
  • a partition member 21 is disposed in the desalting chamber, and the partition member 21 is filled with an ion exchange resin 23 made of a mixture of an anion exchange resin and a cation exchange resin.
  • the space inside the enrichment room / cathode room frame 13 is the enrichment room / cathode room 30, and the inside of the enrichment room frame 16 S is the enrichment room 50.
  • the inside of the anode chamber frame 16 is an anode chamber 40.
  • the cathode chamber 30, the concentration chamber 50, and the anode chamber 40, which also serve as the concentration chamber, are filled with a cation exchange resin 8 as a conductor.
  • the end plate 11 and the frame 13 are provided with through holes 31, 32, 35, 36, respectively, and the frame 13 is provided with Slits 33 and 34 are provided.
  • the holes 31 and 32 overlap each other, and the holes 35 and 36 also overlap each other.
  • Frey The holes 32 and 35 of the chamber 13 communicate with the concentrating chamber / cathode chamber 30 via the slits 33 and 34, respectively.
  • the cathodic electrode water flows in the order of the perforations 31, 32, the slit 33, the concentration chamber / cathode chamber 30, the slit 34, the perforations 35, 36, and flows out as the condensed water / cathode electrode water.
  • the end plate 18 and the frame 16 are provided with through holes 41, 42, 45 and 46, respectively, and the frame 16 is provided with slits 43 and 44 in order to allow the anode electrode water to flow through the anode chamber 40. .
  • the through holes 41 and 42 overlap each other, and the through holes 45 and 46 also overlap each other.
  • the through holes 42 and 45 of the frame 16 communicate with the concentrating chamber 40 and the anode chamber 40 through the slits 43 and 44, respectively.
  • the anode electrode water flows in the order of the through holes 41 and 42, the slit 43, the anode chamber 40, the slit 44, and the through holes 45 and 46, and flows out as the anode electrode water.
  • the end plates 18, the anion exchange membrane 15 and the frames 16, 16S, 20 have through holes 51, 52, 53S, 53, 62, 54, respectively. 57 and 60 are provided, and the frames 20 are provided with slits 55 and 56. It should be noted that the anion exchange membrane 15, the frame 16 S, the cation exchange membrane 14 S, and the through-hole for passing water to the desalting chamber provided below the frame 16 are not shown.
  • the through holes 51 and 60 are provided in the end plate 18, the through holes 54 and 57 are provided in the frame 20, the through holes 52 are provided in the frame 16, and the through holes 53 are anion exchange membranes 15. It is provided in.
  • the holes 51 to 54 and 62 overlap each other, and the holes 57 to 60 also overlap each other.
  • the through holes 54 and 57 of the frame 20 communicate with the desalting chamber through slits 55 and 56, respectively.
  • Raw water is through holes 51, 52, 53, 54, 62, slits 5.5, desalination room, slits
  • Perforated holes Flow in the order of 57-60 and flow out as deionized water (production water).
  • through holes 64, 65, 66 and 65S are provided above the end plate 18 and the frames 16, 16S and the cation exchange membrane 14S.
  • Numeral 66 communicates with the inside of the concentration chamber 50 through a slit 67 provided in the frame 16S.
  • a slit 67 provided in the frame 16S.
  • a hole and a frame are provided in the lower part of the frame 16S for the enrichment room.
  • a through hole (not shown) is provided below the cation exchange membrane 14 S and the anode chamber frame 40 so as to overlap with the through hole, and a lower portion of the end plate 18 is provided.
  • raw water or deionized water flows into the anode chamber 40 through the through holes 41 and 42 and flows out through the through holes 45 and 46.
  • This effluent flows into the concentrating chamber 50 through the through hole 68, flows out through the through holes 66, 65S, 65, 64, and then flows out of the through holes 31 and 32 into the concentrating chamber and cathode. It flows into the chamber 30 and is discharged from the through holes 35 and 36 as concentrated water and cathode electrode water.
  • the desalting chamber frame 20 is a rectangular shape that is long in the vertical direction.
  • the partition members 21 arranged on the frame 20 2 are hexagonal honeycomb-shaped, and a large number of small chambers 22 are arranged vertically and horizontally.
  • Each of the small chambers 22 is arranged so that a pair of side sides thereof is in the longitudinal direction of the frame 20, that is, in the vertical direction.
  • the partition member 21 may be formed in advance integrally, or may be a combination of a plurality of members. For example, as shown in FIG. 4, it is configured by connecting the long-side surfaces 71 of the zigzag bent plate 70 together.
  • the bent plate 70 is provided with oblique inclined surfaces 72 and 73 which are continuous with the longitudinal surface 71 at an angle of 120 °.
  • An adhesive can be used to connect the longitudinal surfaces 71 to each other.
  • the bent plate 70 is made of a material that allows water to pass through but does not allow ion-exchange resin to pass through, such as woven fabric, non-woven fabric, mesh, and porous material.
  • the bent plate 70 is preferably made of a synthetic resin or metal having acid resistance and alkali resistance so as to have rigidity.
  • the longitudinal surface 71 may or may not have water permeability.
  • the partition member 21 may be fitted into the frame 20. Alternatively, a water-permeable sheet or mesh may be stretched on one side of the frame 20 and a partition member may be bonded thereto.
  • Raw water that has flowed into the desalination chamber from the through-hole 54 through the slit 55 flows into the adjacent small chamber 22 through the partition member 21 surrounding the small chamber 22 as shown in Fig. 5, and gradually flows downward. During this time, it undergoes deionization. Finally, the water reaches the lower part of the deionization chamber, passes through the slit 56 and the through holes 57 to 60, and is taken out of the electric deionization apparatus as deionized water.
  • the average flow direction of water in the desalination chamber is as follows: a through hole 54 and a slit 55 for inflow of raw water exist at the upper part of the frame 20, and a slit 56 and a through hole 57 for taking out desalinated water.
  • the water to be treated should flow obliquely from one small chamber 22 to the left and right small chambers 22. Become. For this reason, the water to be treated is distributed almost evenly in each of the small chambers 22, and the contact efficiency between the water to be treated and the ion exchange resin 23 is improved.
  • the small chamber 22 is relatively small, and the downward pressure applied to the ion exchanger in each small chamber 22 by the own weight and the water pressure of the ion exchanger is small. Therefore, the ion exchanger is not compressed in any of the small chambers 22, and the ion exchanger is not locally compacted in the lower part of the small chamber.
  • the ion exchange resin filled in each of the small chambers 22 is a mixture of an anion exchange resin and a cation exchange resin, but may be any of the following (i) to (iii).
  • Some small chambers are filled with aion exchange resin, other partial chambers are filled with cation exchange resin, and the remaining chambers are a mixture of aion exchange resin and cation exchange resin or amphoteric ion exchange resin. Fill.
  • the number of small chambers filled with anion-exchange resin and the number of small chambers filled with the cation-exchange resin may be adjusted according to the ratio of anion and cation in the raw water.
  • Desalting of LV is 1 5 to 4 5 m / h in the electrodeionization apparatus, SV is preferably 8 0 ⁇ 2 8 0 H r one 1 mm.
  • the electrodeionization apparatus shown in Figs. 2 to 5 also has a small number of lamination chambers between the cathode and anode, so it has low electric resistance and can supply a required amount of current with a small voltage.
  • C 1— in the desalting chamber moves only to the concentration chamber 50 and does not flow into the anode chamber 40, so the C 1— concentration in the anode chamber 40 is low, and the anode chamber Low amount of C 1 2 in 40 No. This prevents the cation exchange resin 8 in the anode chamber 40 and the cation exchange membrane 14S facing the anode chamber 40 from deteriorating.
  • the honeycomb structure is filled in the desalination chamber, high-purity treated water can be obtained.
  • the honeycomb-shaped structure may be omitted.
  • Activated carbon and RO-treated water were passed through the electrodeionization apparatus shown in Fig. 7.
  • the water quality of this feed water was: electric conductivity: 10 ⁇ SZcm, CO 2 concentration: 30 ppm, SiO 2 concentration: 2 ppm, and water temperature was 10 ° C.
  • the desalting chamber 7 of this electrodeionization apparatus has an effective width of 17 mm, an effective height of 194 mm, and a thickness of 5 mm, and the enrichment chamber 10, anode chamber 6, and cathode / concentration chamber 5 all have a thickness of 2.5. mm.
  • the desalting chamber 7 is filled with anion-exchange resin Z and a mixed ion-exchange resin having a cation exchange resin of 7/3 (volume ratio), and the concentration chamber 10 is filled with anion-exchange resin.
  • the cation exchange resin was filled in the room / concentration room 5.
  • electrode plates made of platinum on titanium were used.
  • the electric current was passed for one month under the condition of 0.2 A.
  • the water flow conditions at this time were as follows, but after one month, the specific resistance of the produced water was 15 ⁇ ⁇ cm, and the operating voltage was 8 V, which was stable from the beginning.
  • Ratio of water flow (L / h) in the desalting chamber to the effective area (dm 2 ) of the ion exchange membrane 4 in the desalting chamber 7 9.1
  • the electrodeionization apparatus of the present invention has a single concentrating chamber / cathode chamber, a desalting chamber, a concentrating chamber, and an anode chamber disposed between the cathode and the anode, respectively. Since it is small and the cathode chamber is also used as a concentrating chamber and the electrode water is concentrated water with high electrical conductivity, a sufficient amount of current flows even if the voltage applied between the electrodes is reduced, and sufficient deionization is performed. Can be managed.
  • the electrodeionization apparatus of the present invention is extremely suitable for uses in which the amount of produced water is small, such as for small-scale laboratories and small fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 電極間の印加電圧を低くしても必要量の電流を流し、十分に脱イオン処理することができる電気脱イオン装置が提供される。陰極1と陽極2との間に第1のカチオン交換膜3とアニオン交換膜4と第2のカチオン交換膜3'とを1枚ずつ配置し、陰極1と陽極2との間に順次に濃縮室兼陰極室5、脱塩室7、濃縮室10及び陽極6を形成している。濃縮室兼陰極室5及び陽極室6にはそれぞれカチオン交換樹脂8が充填されている。脱塩室7にはカチオン交換樹脂8とアニオン交換樹脂9とが混合状態にて充填されている。陽極室6へは原水又は脱イオン水が導入され、その流出水が順次に濃縮室10、濃縮室兼陰極室5を流れる。

Description

明細書 電気脱イオン装置 発明の分野
本発明は電気脱イオン装置に係り、詳しくは単位時間当りの脱ィオン水(生産水) の生産水量が少ない場合に好適な電気脱イオン装置に関する。 発明の背景
従来の電気脱イオン装置は、 電極 (陽極と陰極) 同士の間に複数のカチオン交換 膜とァニオン交換膜とを交互に配列して脱塩室と濃縮室とを交互に形成し、 脱塩室 にィォン交換樹脂を充填した構成を有する。この電気脱ィオン装置にあっては陽極、 陰極間に電圧を印加しながら脱塩室に被処理水を流入させると共に、 濃縮室に濃縮 水を流通させて被処理水中の不純物イオンを除去し、 脱イオン水を製造する。
従来の電気脱イオン装置は、 陰極と陽極との間に複数の脱塩室と濃縮室とを交互 に形成したものであるため、 陰極と陽極との間の電気抵抗が大きく、 両極間の印加 電圧が高い。 また、 原水中の C a 2 +及び炭酸成分 (C 0 2, H C O 3-) に起因す-る 炭酸カルシウムスケールが濃縮室のイオン交換膜面にしばしば生じていた。
本発明は、 生産水量が少ない場合に採用するのに好適な、 電極間の印加電圧が低 く、 また、 スケールが発生しにくい電気脱イオン装置を提供することを第 1の目的 とする。 発明の概要
本出願人は、 上記第 1の目的を達成するものとして、 陰極と陽極との間にカチォ ン交換膜とァニオン交換膜とが 1枚ずつ配置され、 該陰極とカチオン交換膜との間 に濃縮室兼陰極室が設けられ、 該陽極とァニォン交換膜との間に濃縮室兼陽極室が 設けられ、 該カチオン交換膜とァニオン交換膜との間に脱塩室が設けられ、 該濃縮 室兼陽極室内及び濃縮室兼陰極室内にそれぞれ導電体が充填され、 該脱塩室内にィ オン交換体が充填されてなる電気脱イオン装置;及び、 陰極板と陽極板との間にカチオン交換膜とァニオン交換膜とが 1枚ずつ配置され、 該陰極板とカチオン交換膜との間に濃縮室兼陰極室が設けられ、 該陽極板とァニォ ン交換膜との間に濃縮室兼陽極室が設けられ、 該カチオン交換膜とァニオン交換膜 との間に脱塩室が設けられ、 該陰極板及ぴ陽極板が電極水の通水路を有し、 該陰極 板がカチオン交換膜に接し、 該陽極板が該ァニオン交換膜と接している電気脱ィォ ン装置;
をそれぞれ特開 2003-136063号にて提案している。
かかる特開 2003-136063号の電気脱イオン装置は、 脱塩室が 1室であ り、 且つこの脱塩室の両側にはそれぞれ陽極室を兼ねた濃縮室と陰極室を兼ねた濃 縮室とが配置されているため、 電極間距離が小さく、 電極間の印加電圧が低い。 この特開 2003— 136063号の電気脱ィオン装置について、 本出願人がさ らに研究を重ねたところ、 原水中に C 1—イオンが存在すると、 濃縮室兼陽極室に おいて C 1—が酸化反応を受けて C 12が発生し、該濃縮室兼陽極室内に充填された カチオン交換樹脂等の導電体や、 あるいは濃縮室兼陽極室に臨むイオン交換膜が 徐々に劣化する可能性があることが見出された。
本発明は、 かかるカチオン交換樹脂等の導電体やイオン交換膜の劣化を防止する ことを第 2の目的とする。
第 1アスペクトの電気脱イオン装置は、 陰極と陽極との間に、 第 1のカチオン交 換膜と、 ァニオン交換膜と、 第 2のカチオン交換膜とがこの順に配置され、 該陰極 と第 1のカチオン交換膜との間に濃縮室兼陰極室が設けられ、 第 1のカチオン交換 膜と該ァニオン交換膜との間に脱塩室が設けられ、 該ァニオン交換膜と第 2のカチ オン交換膜との間に濃縮室が設けられ、 該第 2のカチオン交換膜と該陽極との間に 陽極室が設けられ、 該濃縮室内、 該陽極室内及び濃縮室兼陰極室内にそれぞれ導電 体が充填され、 該脱塩室内にィォン交換体が充填されてなるものである。
第 2ァスぺクトの電気脱イオン装置は、 上記請求項 1の電気脱イオン装置の陽極 室及び濃縮室兼陰極室内に導電体を充填する代わりに、 陽極板及び陰極板に電極水 を流す通水路を設けると共に、 該陽極板と陰極板がイオン交換膜と接するようにし たものである。
即ち、 第 2アスペク トの電気脱イオン装置は、 陰極と陽極との間に、 第 1のカチ オン交換膜と、 ァニオン交換膜と、 第 2のカチオン交換膜とがこの順に配置され、 該陰極と第 1の力チオン交換膜との間に濃縮室兼陰極室が設けられ、 第 1のカチォ ン交換膜と該ァニォン交換膜との間に脱塩室が設けられ、 該ァニォン交換膜と第 2 の力チオン交換膜との間に濃縮室が設けられ、 該第 2の力チオン交換膜と該陽極と の間に陽極室が設けられ、 該陰極板及ぴ陽極板が電極水の通水路を有し、 該陰極板 が第 1のカチオン交換膜に接し、 該陽極板が第 2のカチオン交換膜と接しているこ とを特徴とするものである。
かかる第 1及び第 2ァスぺク トの電気脱イオン装置は、 脱塩室が 1室であり、 且 つこの脱塩室の両側にはそれぞれ濃縮室と陰極室兼濃縮室とが配置され、 この濃縮 室の隣りに陽極室が配置されているため、 電極間距離が小さく、 電極間の印加電圧 が低い。
本発明では、 濃縮室とは別個に陽極室が設けられ、 両者が第 2のカチオン交換膜 で隔てられているので、 濃縮室から陽極室への C 1—イオンの移動が阻止される。 そのため、 陽極室内で発生する C 1 2は、 陽極室内に導入された電極水中の C 1—に のみ由来するものとなるので、陽極室での C 1 2発生量が著しく ない。このため、 陽極室内に充填されたカチオン交換樹脂等の導電体や、 陽極室に臨む第 2のカチォ ン交換膜が C 1 2によって劣化することが防止される。
本発明では、 脱塩室が 1室であり、 単位時間当たりの生産水量が少ないが、 小規 模実験用、 小型燃料電池用などには十分に実用することができる。
本発明の電気脱イオン装置は、脱塩室内を区画部材によつて多数の小室に区画し、 各小室にイオン交換体を充填してもよい。 この各小室に臨む区画部材の少なくとも —部は、 脱塩室内の平均的な水の流れ方向に対して傾斜しており、 この傾斜した部 分は、 水は通過させるが、 イオン交換樹脂は通過させない構造となっている。 この 脱塩室内に流入した水の少なくとも一部は、 平均的な水の流れ方向に対し斜め方向 に流れるようになり、 脱塩室内の全体に分散して流れる。 従って、 水とイオン交換 樹脂との接触効率が向上し、 脱イオン特性が向上する。
この小室を平均的な水の流れ方向及びこれと直交方向のいずれにおいても膜面に 沿って複数個配置することにより、 (例えば縦横に多数配置することにより、) 水と イオン交換樹脂との接触効率がきわめて高いものとなる。 また、 各小室内の上下方 向の高さが小さくなり、 イオン交換樹脂が局部的に圧縮されにくくなる。 従って、 小室に隙間が生じることがなく、 イオン交換樹脂の充填密度が高い。
この小室は、イオン交換膜面に投影した形状が六角形又は四角形であってもよい。 六角形の場合には、 1対の平行な辺が平均的な水の流れ方向となるように各小室を 配置するのが好ましい。 四角形の場合には、 各辺が平均的な水の流れ方向に対し傾 斜するように配置する。この様な構造にすることによって、脱塩効率が高まるため、 脱塩室への高流速通水が可能となり、 脱塩室 1室当たりの処理流量を多くすること ができる。
1つの小室内に 1種類のィオン交換特性のイオン交換体のみを充填してもよく、 複数種類のイオン交換特性のイオン交換体を充填してもよい。 例えば 1つの小室内 にァニォン交換体と両性ィオン交換体とを混合して充填してもよい。
本発明の電気脱イオン装置においては、 原水又は脱塩室からの脱イオン水を電極 水として陽極室に通水し、 この陽極室流出水を濃縮室に通水し、 この濃縮室流出水 を濃縮室兼陰極室へ通水するよう構成してもよい。 図面の簡単な説明
図 1は、 実施の形態に係る電気脱イオン装置の概略的な縦断面図である。
図 2は、 区画部材を脱塩室内に配置した別の実施の形態に係る電気脱イオン装置 の分解斜視図である。
図 3は、 区画部材の斜視図である。
図 4は、 区画部材の分解図である。
図 5は、 区画部材の通水状況説明図である。
図 6は、 別の実施の形態に係る電気脱イオン装置の電極部分の縦断面図である。 図 7は、 別の実施の形態に係る電気脱イオン装置の概略的な縦断面図である。 詳細な説明
以下、 図面を参照して実施の形態について説明する。
[図 1の電気脱イオン装置]
図 1に示す電気脱イオン装置にあっては、 陰極 1と陽極 2との間に、 第 1のカチ オン交換膜 3と、 ァニオン交換膜 4と、 第 2のカチオン交換膜 3, とを 1枚ずつ配 置している。陰極 1と第 1の力チオン交換膜 3との間に濃縮室兼陰極室 5を形成し、 第 1のカチオン交換膜 3とァニオン交換膜 4との間に脱塩室 7を形成している。 了 二オン交換膜 4と第 2のカチオン交換膜 3 ' との間に濃縮室 1 0を形成し、 第 2の カチオン交換膜 3 ' と陽極 2との間に陽極室 6を形成している。
濃縮室兼陰極室 5、 濃縮室 1 0及ぴ陽極室 6にはそれぞれカチオン交換樹脂 8が 充填されている。 この濃縮室兼陰極室 5、 濃縮室 1 0及ぴ陽極室 6に充填されるィ オン交換樹脂は、 ァニオン交換樹脂ゃァニオン交換樹脂とカチオン交換樹脂を混合 したものであってもよいが、 特に濃縮室兼陰極室 5及び陽極室 6には樹脂の強度の 点からはカチオン交換樹脂を用いるのが好ましレ、。 脱塩室 7にはカチオン交換樹脂 8とァニオン交換樹脂 9とが混合状態にて充填されている。
脱塩室 7の一端側には原水の流入口が設けられ、 他端側には脱ィオン水の流出口 が設けられている。
陽極室 6の一端側には原水又は脱ィォン水の流入口が設けられている。 陽極室 6 の流出水は濃縮室 1 0へその一端側から流入し、 他端側から流出する。 濃縮室 1 0 の流出水は、 濃縮室兼陰極室 5へその一端側から流入し、 他端側から濃縮水兼陰極 電極水として 出される。
図 1において、 陰極 1と陽極 2との間に電圧を印加した状態にて原水を脱塩室 7 に導入し、 脱イオン水として取り出す。 上記の通り、 原水又は該脱イオン水を陽極 室 6に導入し、 順次に濃縮室 1 0及ぴ濃縮室兼陰極室 5に流通させる。 原水中の力 チオンは第 1のカチオン交換膜 3を透過し、 陰極電極水に混入して排出される。 原 水中のァニオンはァユオン交換膜 4を透過して濃縮室 1 0に移動し、 濃縮室流出水 に混入して濃縮室兼陰極室 5を経て排出される。
[図 7の電気脱イオン装置]
図 7の電気脱イオン装置は、 濃縮室 1 0にァニオン交換樹脂 9が充填されている 点、 及び陽極室 6に脱イオン水の一部が通水され、 濃縮室 1 0にも上昇流で通水が 行われる点が図 1に示す電気脱ィオン装置と異なり、 その他は同様の構成とされて いる。 図 7において、 図 1に示す部材と同一機能を奏する部材には同一符号を付し てある。 濃縮室 1 0にァニオン交換樹脂 9を充填した図 7の電気脱イオン装置の効果は次 の通りである。
図 7の電気脱イオン装置においても、 図 1の電気脱イオン装置と同様に、 原水中 のカチオンは第 1のカチオン交換膜 3を透過し、陰極電極水に混入して排出される。 原水中のァニオンはァニオン交換膜 4を透過して濃縮室 1 0に移動し、 濃縮室流出 水に混入して濃縮室兼陰極室 5を経て排出される。 このとき排出されにくい C O 2、 シリ力等の弱ィオン成分は、脱塩室 7内の水解離で発生した O H により H C O 3一、 H S i 0 3一の形態に変化し、 濃縮室 1 0にお出される。
ァニオン交換膜 4の濃縮室 1 0近傍の界面では濃度分極によりァニオン成分が最 も濃縮されるが、移動しにくい H C O 3—、 H S i O 3 の濃度分極が大きくなりすぎ ると、 電気抵抗が上昇したり、 イオンが移動しにくくなることによる除去率の低下 が起こってしまう問題がある。
このとき、 ァニオン交換膜 4の濃縮室 1 0近傍の界面に反対電化のカチオン交換 樹脂が存在すると、 ァニオンの移動が遅くなるため、 上記濃度分極はさらに発生し やすくなる。 逆に、 ァニオン交換樹脂が存在すると、 ァニオンの移動が速やかにな り、 濃度分極は発生しにくい。
特に、濃縮室 1 0のィオン交換体のァニオン交換体ノカチオン交換体充填比率が、 脱塩室 7のァニオン交換体/力チオン交換体充填比率よりも大きくなると、 このァ ユオンの移動が速やかになり、 好ましい。 とりわけ、 濃縮室 1 0にァニオン交換体 のみが充填されていることがァユオンの移動速度の面で好ましい。
濃縮室 1 0のァニオン交換膜 1 0の濃縮面の濃度分極、 特に c o 2、 シリカ等の 弱イオン成分の濃度分極は、 脱塩室 7に流入する C O 2、 シリカ等の弱イオン成分 が多いほど、 また脱塩室 7からァニオン交換膜 4面を通して濃縮室 1 0に移動する C 0 2、 シリカ等の成分が多いほど、 また電流密度が大きいほど発生しやすい。 しかし、 濃縮室 1 0のァ-オン交換体/力チオン交換体充填比率を脱塩室 7のァ 二オン交換体/力チオン交換体充填比率よりも大きく、 好ましくは濃縮室 1 0の充 填物をァニオン交換体のみ、 より好ましくはァニオン交換樹脂のみとすることによ り、 これらの弱イオン成分の負荷が高くても、 脱塩性能、 運転安定性に優れる電気 脱イオン装置とすることができる。 例えば、 脱塩室 7のァニオン交換膜 4の有効面 積 (dm2) に対する脱塩室 7に流入する炭酸負荷量 (mg— C〇2Zh) が 80以 上、 さらには 250〜300、 脱塩室 7のァニオン交換膜 4の有効面積 (dm2) に対する脱塩室に流入するシリカ負荷量 (mg— S i 02/h) が 8以上、 さらに は 1 5〜25、 電流密度が 30 OmA/ dm2以上、 さらには 600〜; 1200m AZdm2としても、 脱塩性能、 電気抵抗等の観点で安定した電気脱イオン装置が 得られるため、 電気脱イオン装置をより一層小型化することができ、 経済面におい てもきわめて有効である。
なお、 電気脱イオン装置の給水は、 一般的に巿水等の原水を活性炭、 逆浸透膜分 離 (RO) 処理した水が用いられ、 その電気伝導度は 3〜10 μ S/cm、 C02 濃度は 3〜30 p pm、 シリカ濃度は 0. 2〜1. O p pm程度である。 このよう な水の処理には、 脱塩室 7のィオン交換体のァニオン交換体/力チオン交換体充填 比率は 60Z40〜70/30 (例えばァ-オン交換樹脂、 カチオン交換樹脂が再 生型である場合の体積比) 程度とすることが望ましい。
図 1, 7の電気脱イオン装置において、 濃縮室 10や脱塩室 7、 濃縮室兼陰極室 5、 陽極室 6に充填されるイオン交換体は、 取り扱い性の観点から、 イオン交換樹 脂であることが好適である。 この場合、 イオン交換樹脂の架橋度はァニオン交換樹 脂で 3〜8%、 カチオン交換樹脂で 5〜10%程度とすることが好ましい。 これは イオン交換樹脂の架橋度が小さいと強度が弱くなり、 架橋度が大きいと電気抵抗が 大きくなってしまうためである。
図 7の電気脱イオン装置において、 濃縮室 10にイオン交換繊維等のイオン交換 樹脂以外のイオン交換体を充填しても良いが、 ァニオン交換体 Zカチオン交換体充 填比率を脱塩室 7のァニオン交換体/力チオン交換体充填比率よりも大きくし、 特 にァニオン交換体のみとすることが好ましい。 このように、 ァ-オン交換樹脂の比 率が大きくなると、 長期的の運転では、 劣化が進み、 電気抵抗が上がってしまうこ とがある。 即ち、 一般的に、 例えば酸素存在下ではカチオン交換樹脂の酸ィ匕劣化よ りも、 ァニオン交換樹脂の劣化が先に起こると考えられる。 特に、 濃縮室 10中の ァニオン交換樹脂の比率を高める場合、 とりわけァニオン交換樹脂単独とする場合 には、 酸化劣化等にも強い樹脂である、 熱安定性のあるァニオン交換樹脂を用いる ことが好適である。 図 1, 7の電気脱イオン装置において、 濃縮室兼陰極室 5では、 カチオン交換体 が多いほどカチオンの移動が速やかになるため、 カチオン交換体のみが充填されて いることが望ましい。 また、 陽極室 6では、 陽極 2の板面での電極反応により酸ィ匕 剤発生があるため、 酸化に強 、力チオン交換体のみが充填されていることが好まし い。 また、 陽極 2は酸化剤による劣化、 陰極 1では孔食発生のおそれがあるため、 チタンに白金メツキしたもの等の材質の耐食性に優れた電極板を用いることが望ま しい。
図 1, 7の電気脱イオン装置にあっては、 陰極 1と陽極 2との間にそれぞれ 1個 の濃縮室兼陰極室 5、 脱塩室 7、 濃縮室 1 0及び陽極室 6のみが配置されており、 陰極 1と陽極 2との距離が小さい。 そのため、 電極 1, 2間の印加電圧が低くても 十分に電極 1, 2間に電流を流して脱ィオン処理することができる。
また、 本発明では脱塩室内の C 1 _は濃縮室 1 0にのみ移動し、 陽極室 6へは移 動しない。 このため、 陽極室 6内の C 1 濃度は原水又は脱イオン水中に存在する C 1—のみとなり、 陽極室 6で陽極酸ィ匕により生じる C 1 2が著しく少ない。 そのた め、陽極室 6内のカチオン交換樹脂 Sや、陽極室 6に臨む第 2のカチオン交換膜 3, の劣化が防止される。
なお、 陰極室が濃縮室を兼ねていることから、 陰極室内の電極水の電気伝導度が 高い。 これによつても、 電極 1, 2間の印加電圧が低くても電極 1, 2間に十分に 電流を流すことが可能となる。
濃縮室兼陰極室 5及ぴ濃縮室 1 0での通水方向は、 脱塩室 7と並流通水でも向流 通水でもよい。 濃縮室兼陰極室 5及び陽極室 6は、 上昇流通水であることが望まし い。 これは、 各室 5, 6には、 直流電流によって H 2や 02、 場合によっては少量の C 1 2等の気体が発生するので、 上昇流で通水し気体の排出を促進させ偏流を防ぐ ためである。
なお、 図 1, 7の電気脱イオン装置から濃縮室 1 0を省略し、 脱塩室 7から C 1 —が陽極室 6にすベて流入するとした場合の、 陽極室の C 1負荷量の一例を次に計 算する。 なお、 陽極室には C 1濃度 3 p p mの原水を 0 . 8 L Z hで供給し、 脱塩 室にはこの原水を 1 . 5 LZ hで供給するものとする。
この場合、 脱塩室から C 1の実質的に全量が陽極室へ移動することから、 陽極室 の C 1負荷量は
脱塩室からの C 1量 = 1. 5 L h - 3mg/L = 4. 5mg/h
陽極室流入 C I量 =0. 8 L/h -
Figure imgf000011_0001
2. 4mg/h
の和 6. 9mg/hとなる。
これに対し、 図 1, 7の場合であれば、 陽極室 C 1負荷量は、 陽極室への流入原 水中の C 1のみであるから上記 2. 4mg/hとなる。 なお、 陽極室に脱イオン水 を通水するならば、 陽極室 C 1負荷量は実質的にゼロになる。
この一例からも明らかな通り、 脱塩室と陽極室との間に濃縮室を配置することに より、 陽極室の C 1濃度を低くし、 陽極室での C 12発生量を減少させることがで さる。
このような電気脱イオン装置では、 図 1, 7に示す如く、 原水又は脱塩室 7から の脱イオン水の一部、 好ましくは脱イオン水の一部を陽極室 6、 濃縮室 10、 陰極 室兼濃縮室 5の順に通水することが望ましい。
この理由を以下に示す。
即ち、 陽極室 6では C 1 イオンが存在すると、 電極反応で塩素が発生し、 樹脂 等の部材を劣化させることがあるため、 前述の如く、 C 1 イオンを含まない脱ィ オン水を用いることが好ましい。 また、 濃縮室 10のァニオン交換膜 4面ではカル シゥムスケールが発生しやすいが、 脱イオン水を陽極室 6に通水した場合には、 こ の水には C a 2+イオンが含まれていないため、 このカルシウムスケールも防止する ことができる。 なお、 本発明の電気脱イオン装置では、 脱塩室 7からの C 1—ィォ ンは第 2のカチオン交換膜 3により陽極室 6には流入しないため、 塩素発生を押さ えられる。
[濃縮室兼陰極室及び陽極室の別の構成 (図 6)]
本発明の電気脱イオン装置においては、 濃縮室兼陰極室及び陽極室は図 6に示す 構成とされてもよく、 ここでは、 陰極板 80及び陽極板 90が電極水の通水路を有 している。 陰極板 80が第 1のカチオン交換膜 3に接し、 陽極板 90が第 2のカチ オン交換膜 3' と接するように配置されている。 これによつて、 濃縮室兼陰極室及 び陽極室内の電気抵抗が小さくなり、 低い印加電圧でも効率的に脱イオン処理を行 うことが可能となる。 このような電極板 80, 90は、 厚み方向に貫通する多数の 開口を有した孔明き板を複数枚積層して、 隣接する孔明き板の孔同士が部分的に重 なり合うようにすることにより、 形成することができる。
この通水路付きの陰極板 8 0は濃縮室兼陰極室を構成する。 通水路付きの陽極板 9 0は陽極室を構成する図 6のカチオン交換膜 3 , 3 ' の間の構成 1 0 0 ( 2点鎖 線で仮想的に示されている。) は、 図 1又は図 7の膜 3, 3 ' の間の構成と同じであ る。 図 6において、 水は図 1又は図 7と同様に通水される。
[多数の小室に区画された脱塩室を有する電気脱イオン装置 (図 2〜5 ) ] 図 2〜 5を参照して、 脱塩室内に区画部材を配置して脱塩室内に多数の小室を形 成した電気脱イオン装置について説明する。
陰極側のェンドプレート 1 1に沿って陰極電極板 1 2が配置され、 この陰極電極 板 1 2の周縁部に枠状の濃縮室兼陰極室形成用枠状フレーム 1 3が重ね合わされて いる。 この枠状フレーム 1 3に対して第 1のカチオン交換膜 1 4が重ね合わされ、 このカチオン交換膜 1 4に対して脱塩室形成用の枠状フレーム 2 0、 ァニオン交換 膜 1 5、 濃縮室形成用の枠状フレーム 1 6 S、 第 2のカチオン交換膜 1 4 S、 及び 陽極室形成用枠状フレーム 1 6がこの順に重ね合わされている。 第 2のカチオン交 換膜 1 4 Sに対し陽極室形成用の枠状フレーム 1 6を介して陽極電極板 1 7が重ね 合わされ、 さらに陽極側エンドプレート 1 8が重ね合わされて積層体とされる。 こ の積層体はボルト等によって締め付けられる。
枠状フレーム 2 0の内側が脱塩室となっている。 この脱塩室に区画部材 2 1が配 置されており、 区画部材 2 1内にァニオン交換樹脂とカチオン交換樹脂との混合物 よりなるイオン交換樹脂 2 3が充填されている。
濃縮室兼陰極室用フレーム 1 3の内側スペースが濃縮室兼陰極室 3 0となってお り、 濃縮室用フレーム 1 6 Sの内側が濃縮室 5 0となっている。 陽極室用フレーム 1 6の内側が陽極室 4 0となっている。 この濃縮室兼用の陰極室 3 0、 濃縮室 5 0 及ぴ陽極室 4 0には導電体としてカチオン交換樹脂 8が充填されている。
濃縮室兼陰極室 3 0に陰極電極水を流通させるために、 エンドプレート 1 1とフ レーム 1 3にそれぞれ透孔 3 1 , 3 2, 3 5 , 3 6が設けられると共に、 フレーム 1 3にスリ ット 3 3 , 3 4が設けられている。
透孔 3 1, 3 2は互いに重なり合い、 透孔 3 5, 3 6も互い重なり合う。 フレー ム 13の透孔 32, 35はそれぞれスリ ット 33, 34を介して濃縮室兼陰極室 3 0に連通している。
陰極電極水は、 透孔 31, 32、 スリ ット 33、 濃縮室兼陰極室 30、 スリット 34、 透孔 35, 36の順に流れ、 濃縮水兼陰極電極水として流出する。
陽極室 40に陽極電極水を流通させるために、 エンドプレート 1 8とフレーム 1 6にそれぞれ透孔 41, 42, 45, 46が設けられると共に、 フレーム 16にス リット 43, 44が設けられている。
透孔 41, 42は互いに重なり合い、 透孔 45, 46も互い重なり合う。 フレー ム 16の透孔 42, 45はそれぞれスリ ット 43, 44を介して濃縮室兼陽極室 4 0に連通している。
陽極電極水は、 透孔 41, 42、 スリ ット 43、 陽極室 40、 スリット 44、 透 孔 45, 46の順に流れ、 陽極電極水として流出する。
フレーム 20の内側の脱塩室に原水を流通させるために、 エンドプレート 18、 ァニオン交換膜 1 5及びフレーム 16, 16 S, 20にそれぞれ透孔 51, 52, 53 S, 53, 62, 54, 5 7, 60が設けられると共に、 フレーム 20にスリ ット 55, 56が設けられている。 なお、 ァニオン交換膜 1 5、 フレーム 1 6 S、 カチオン交換膜 14 S及ぴフレーム 16の下部に設けられた脱塩室への通水用の透 孔は図示されていない。 透孔 5 1, 60はエンドプレート 1 8に設けられ、 透孔 5 4, 5 7はフレーム 20に設けられ、 透孔 5 2はフレーム 16に設けられ、 透孔 5 3はァニオン交換膜 1 5に設けられている。
透孔 51〜54, 62は互いに重なり合い、透孔 57〜60も互いに重なり合う。 フレーム 20の透孔 54, 57はそれぞれスリット 55, 56を介して脱塩室に連 通している。
原水は、 透孔 51, 52, 53, 54, 62、 スリ ット 5· 5、 脱塩室、 スリッ ト
56、 透孔 57〜 60の順に流れ、 脱イオン水 (生産水) として流出する。
濃縮室 50に水を流すために、 ェンドブレート 1 8とフレーム 16, 16 S及ぴ カチオン交換膜 14 Sの上部に透孔 64, 6 5, 66及ぴ 65 Sが設けられ、 透孔
66は該フレーム 1 6 Sに設けられたスリッ ト 67を介して濃縮室 50内に連通し ている。 濃縮室用フレーム 16 Sの下部には、 透孔 66、 スリッ ト 67と同様の透 孔及びフレーム (図示略) が設けられ、 この透孔と重なるようにカチオン交換膜 1 4 S及び陽極室用フレーム 4 0の下部に透孔 (図示略) が設けられると共にェンド プレート 1 8の下部に透孔 6 8が設けられている。 濃縮室 5 0へは、 水は透孔 6 8 を介して導入され、流出水は濃縮室 5 0からの流出水は、透孔 6 6, 6 5 S , 6 5,
6 4を通って流出する。
この実施の形態でも、 陽極室 4 0に原水又は脱イオン水が透孔 4 1, 4 2から流 入し、 透孔 4 5, 4 6を経て流出する。 この流出水は透孔 6 8を経て濃縮室 5 0に 流入し、 透孔 6 6, 6 5 S , 6 5, 6 4を経て流出し、 次いで透孔 3 1 , 3 2から 濃縮室兼陰極室 3 0に流入し、 透孔 3 5, 3 6より濃縮水兼陰極電極水として排出 される。
なお、 上記の脱塩室用フレーム 2 0は上下方向に長い長方形状のものである。 こ のフレーム 2 0內に配置された区画部材 2 1は六角形のハニカム形状のものであり、 小室 2 2は上下左右に多数配置されている。 各小室 2 2の 1対の側辺がフレーム 2 0の長手方向即ち上下方向となるように配置されている。
この区画部材 2 1は、 予め一体成形されたものであってもよく、 複数の部材を組 み合わせたものであってもよい。 例えば図 4のようにジグザグ状の屈曲板 7 0の長 手方向面 7 1同士を連結することにより構成される。 この屈曲板 7 0は、 長手方向 面 7 1に対し 1 2 0 ° の角度で連なる通水性の斜向面 7 2, 7 3を備えている。 長 手方向面 7 1同士を連結するには例えば接着剤を用いることができる。 この屈曲板
7 0は、 水は通過させるがイオン交換樹脂は通過させない材料、 例えば織布、 不織 布、 メッシュ、 多孔質材などにより構成されている。 この屈曲板 7 0は耐酸性及ぴ 耐アルカリ性を有した合成樹脂又は金属により剛性を有するように形成されるのが 好ましい。 長手方向面 7 1は通水性を有していてもよく、 有していなくてもよレ、。 区画部材 2 1はフレーム 2 0に嵌め込まれてもよい。 また、 フレーム 2 0の片面 側に透水性シート又はメッシュを張設し、 これに区画部材を接着してもよい。
透孔 5 4からスリット 5 5を介して脱塩室に流入した原水は、 図 5の通り小室 2 2を囲む区画部材 2 1を通過して隣接する小室 2 2に流れ込み、徐々に下方に流れ、 この間に脱イオン処理を受ける。 そして、 遂には脱塩室の下部に達し、 スリット 5 6及ぴ透孔 5 7〜6 0を通り、脱塩水として電気的脱イオン装置外に取り出される。 この脱塩室における平均的な水の流れ方向は、 原水流入用の透孔 5 4及びスリッ ト 5 5がフレーム 2 0の上部に存在し、 脱塩水取出用のスリット 5 6及び透孔 5 7 がフレーム 2 0の下部に存在するところから、 上から下に向う鉛直方向となってい る。 この平均的な水の流れ方向に対し小室の上部及ぴ下部が傾斜しているので、 被 処理水は 1つの小室 2 2から左及ぴ右側の小室 2 2へ斜めに分かれて流下するよう になる。このため、被処理水が各小室 2 2にほぼ均等に分散して流れるようになり、 被処理水とィォン交換樹脂 2 3との接触効率が良好なものとなる。
この脱塩室にあっては、 小室 2 2が比較的小さく、 イオン交換体の自重及び水圧 によつて各小室 2 2内においてイオン交換体に対し加えられる下向きの圧力が小さ い。従って、いずれの小室 2 2内においてもイオン交換体が圧縮されることがなく、 イオン交換体が小室内の下部において局部的に圧密化されることがない。 この実施 の形態では、 各小室 2 2に充填したイオン交換樹脂は、 ァニオン交換樹脂とカチォ ン交換樹脂との混合物であるが、 次の(i)〜(iii)のいずれかでもよい。
(i) すべての小室にァニオン交換樹脂、 カチオン交換樹脂、 両性イオン交換樹 脂のうち 1,種類のものを充填する。
(ii) すべての小室にァニオン交換樹脂、 カチオン交換樹脂及び両性イオン交換 樹脂の 2又は 3の混合物を充填する。混合比、混合種はすべて共通であってもよく、 一部又はすベての小室において異なっていてもよい。
(iii) 一部の小室にァ-オン交換樹脂を充填し、 他の一部の小室にカチオン交換 樹脂を充填し、 残りの小室にァユオン交換樹脂とカチオン交換樹脂の混合物又は両 性ィオン交換樹脂を充填する。
なお、 (ii), (iii)の場合、 原水のァニオン、 カチオン比率に応じ、 ァニオン交換 樹脂を充填する小室、及びカチオン交換樹脂を充填する小室の数を調整してもよレ、。 この電気脱イオン装置の脱塩室の L Vは 1 5〜4 5 m/ h、 S Vは 8 0〜2 8 0 H r一1程度が好ましい。
この図 2〜 5の電気脱イオン装置も、 陰極 ·陽極間の積層室数が少ないので、 電 気抵抗が小さく、 少ない電圧で、 必要量の電流を流すことができる。 この実施の形 態においても、 脱塩室内の C 1—は濃縮室 5 0にのみ移動し、 陽極室 4 0には流入 しないので、 陽極室 4 0内の C 1—濃度は低く、 陽極室 4 0内の C 1 2発生量が少な い。 これにより、 陽極室 40内のカチオン交換樹脂 8や陽極室 40内に臨むカチォ ン交換膜 14 Sの劣化が防止される。
また、 脱塩室内にハニカム状構造体を充填しているので、 高純度の処理水を得る ことができる。 なお、 図 2〜 5において、 脱塩室の幅 (水の平均的な流れ方向と直 交方向の幅) が小さいときには、 ハニカム状構造体を省略してもよい。
[実施例及び比較例]
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
実施例 1
図 7に示す電気脱イオン装置に、 巿水を活性炭、 RO処理した水を通水した。 こ の給水の水質は、 電気伝導度: 10 μ SZcm、 CO 2濃度: 30 p p m、 S i 02 濃度: 2 p pmで、 水温は 10°Cであった。
この電気脱イオン装置の脱塩室 7は有効幅 17 mm、 有効高さ 194mm、 厚さ 5 mmであり、 濃縮室 10、 陽極室 6、 陰極室兼濃縮室 5はいずれも厚さ 2. 5 m mとした。 また、 脱塩室 7にはァニオン交換樹脂 Zカチオン交換樹脂 = 7/3 (体 積比)の混合ィオン交換樹脂を充填し、濃縮室 10にはァニオン交換樹脂を充填し、 陽極室 6及び陰極室兼濃縮室 5にはカチオン交換樹脂を充填した。 陽極 2及ぴ陰極 1にはチタンに白金メツキした電極板を用いた。
脱塩室 7の入り口水量を 3 L/hとし、生産水 (脱イオン水) の一部 (1 LZh) を陽極室 6、 濃縮室 10、 陰極室兼濃縮室 5の順で通水した後、 排出した。
電流は 0. 2 Aの条件で 1ヶ月通水を行った。 このときの通水条件は下記の通り であったが、 1ヶ月後の生産水の比抵抗は 15ΜΩ · cm、 運転電圧は 8 Vと初期 から変化なく安定していた。
脱塩室 7のァ-オン交換膜 4の有劲面積 (dm2) に対する脱塩室通水水量 (L /h) の比 =9. 1
脱塩室 7のァニオン交換膜 4の有効面積 (dm2) に対する脱塩室に流入する炭 酸負荷量 (mg-C02/h) =272
脱塩室 7のァニオン交換膜 4の有効面積 (dm2) に対する脱塩室に流入するシ リカ負荷量 (mg— S i 02Zh) =18
電流密度 (mAZdm2) =606 比較例 1
濃縮室 1 0のイオン交換樹脂をァ-オン交換樹脂 Zカチオン交換樹脂 = 7 / 3 (体積比) の混合イオン交換樹脂としたこと以外は実施例 1と同様に通水を行った ところ、 通水初期 (3日目) は、 生産水の比抵抗は 1 0 Μ Ω · c m、 運転電圧は 8 Vであったが、 1ヶ月後の生産水の比抵抗は 8 Μ Ω · c m、 運転電圧は 1 2 Vとな り、 水質が低下すると共に、 電気抵抗が上昇する傾向がみられた。 産業上の利用可能性
以上の通り、 本発明の電気脱イオン装置は、 陰極と陽極との間にそれぞれ 1個の 濃縮室兼陰極室、 脱塩室、 濃縮室及び陽極室を配置したものであり、 電極間距離が 小さく、 また陰極室と濃縮室とが兼用され電極水が高電気伝導度の濃縮水となって いるため、 電極間の印加電圧を低くしても必要量の電流を流し、 十分に脱イオン処 理することができる。 また、 陽極室での C 1 2発生が防止ないし抑制されるため、 陽極室内のカチオン交換樹脂等の導電体や、 陽極室に臨む第 2のカチオン交換膜の 劣化が長期にわたり防止される。
本発明の電気脱イオン装置は、 小規模実験室用、 小型燃料電池用など生産水量が 少量の用途にきわめて好適である。

Claims

請求の範囲
1 . 陰極;
陽極;
該陰極と陽極との間に配置された、 第 1のカチオン交換膜、 ァ-オン交換膜、 及 ぴ第 2のカチオン交換膜;
該陰極と第 1のカチオン交換膜との間に設けられた濃縮室兼陰極室;
第 1のカチオン交換膜と該ァニオン交換膜との間に設けられた脱塩室; 該ァニオン交換膜と第 2のカチオン交換膜との間に設けられた濃縮室; 該第 2の力チオン交換膜と該陽極との間に設けられた陽極室;
該濃縮室内、 該陽極室内及び濃縮室兼陰極室内にそれぞれ充填された導電体;及 ぴ
該脱塩室内に充填されたィオン交換体
を有する電気脱イオン装置。
2 . 請求項 1において、
該脱塩室内に区画部材が配置され、 該区画部材と該カチオン交換膜及ぴァユオン 交換膜とによって囲まれた多数の小室が該脱塩室内に形成されており、
該小室にそれぞれイオン交換体が充填されており、
各小室に臨む区画部材の少なくとも一部は該脱塩室内の平均的な水の流れ方向に 対し傾斜しており、 ·
該区画部材の少なくとも傾斜した部分は、 水を通過させるがイオン交換体の通過 を阻止する構造となっていることを特徴とする電気脱イオン装置。
3 . 請求項 1において、 陽極室内及び濃縮室兼陰極室内に充填された導電体がィ オン交換樹脂であることを特徴とする電気脱イオン装置。
4 . 請求項 3において、 前記イオン交換樹脂がカチオン交換樹脂であることを特 徴とする電気脱ィォン装置。
5 . 請求項 1において、 前記濃縮室に充填された導電体がイオン交換体であり、 該濃縮室内のィォン交換体のァ二オン交換体/力チオン交換体充填比率が、 前記脱 塩室のイオン交換体のァニオン交換体/力チオン交換体充填比率よりも大きいこと を特徴とする電気脱ィォン装置。
6 . 請求項 5において、 該濃縮室のイオン交換体がイオン交換樹脂であることを 特徴とする電気脱ィォン装置。
7 . 請求項 6において、 該イオン交換樹脂は、 架橋度 3〜 8 %のァニオン交換樹 脂と架橋度 5〜1 0 %のカチオン交換樹脂の少なくとも一方であることを特徴とす る電気脱イオン装置。
8 . 請求項 5において、 前記脱塩室にァニオン交換体とカチオン交換体とが充填 されており、 前記濃縮室にァニオン交換体のみが充填されていることを特徴とする 電気脱イオン装置。
9 . 請求項 5において、 前記陰極室兼濃縮室及び陽極室にカチオン交換体のみが 充填されていることを特徴とする電気脱ィォン装置。
1 0 . 通水路を有した陰極板;
通水路を有した陽極板;
該陰極板に接する第 1のカチオン交換膜;
該陽極板に接する第 2のカチオン交換膜;
該第 1のカチオン交換膜と第 2のカチオン交換膜との間に配置されたァニオン交 該陰極と第 1の力チオン交換膜との間に設けられた濃縮室兼陰極室;
第 1のカチオン交換膜と該ァニオン交換膜との間に設けられた脱塩室;及び 該ァニオン交換膜と第 2の力チオン交換膜との間に設けられた濃縮室
を有する電気脱イオン装置。
1 1 . 請求項 1 0において、 該脱塩室内にイオン交換樹脂などのイオン交換体が 充填されていることを特徴とする電気脱イオン装置。
1 2 . 請求項 1 1において、
該脱塩室内に区画部材が配置され、 該区画部材と該カチオン交換膜及びァ-オン 交換膜とによつて囲まれた多数の小室が該脱塩室内に形成されており、
該小室にそれぞれイオン交換体が充填されており、
各小室に臨む区画部材の少なくとも一部は該脱塩室内の平均的な水の流れ方向に 対し傾斜しており、 該区画部材の少なくとも傾斜した部分は、 水を通過させるがイオン交換体の通過 を阻止する構造となっていることを特徴とする電気脱イオン装置。
13. 請求項 10において、 濃縮室内にイオン交換樹脂などの導電体が充填され ていることを特徴とする電気脱イオン装置。
14. 請求項 1又は 10において、 前記脱塩室のァユオン交換膜の有効面積 (d m2) に対する該脱塩室の通水水量 (LZh) の比が 5以上であることを特徴とす る電気脱イオン装置。
15. 請求項 1又は 10において、 前記脱塩室のァニオン交換膜の有効面積 (d m2) に対する該脱塩室に流入する炭酸負荷量 (mg— C02/h) が 80以上であ ることを特徴とする電気脱ィォン装置。
16. 請求項 1又は 10において、 前記脱塩室のァニオン交換膜の有効面積 (d m2) に対する該脱塩室に流入するシリカ負荷量 (mg— S i O2/h) が 8以上で あることを特徴とする電気脱ィォン装置。
17. 請求項 1又は 10において、 電流密度が 30 OmA/ dm2以上であるこ とを特徴とする電気脱ィオン装置。
18. 請求項 1又は 10において、 該濃縮室に熱安定性のァニオン交換樹脂が充 填されていることを特徴とする電気脱ィォン装置。
19. 請求項 1又は 10において、 原水又は脱塩室からの脱イオン水を電極水と して陽極室に通水し、 この陽極室流出水を濃縮室に通水し、 この濃縮室流出水を濃 縮室兼陰極室へ通水する流路が設けられていることを特徴とする電気脱ィォン装置。
PCT/JP2003/007972 2002-07-01 2003-06-24 電気脱イオン装置 WO2004002898A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047021670A KR100643068B1 (ko) 2002-07-01 2003-06-24 전기 탈이온 장치
AT03761784T ATE512933T1 (de) 2002-07-01 2003-06-24 Elektrische entionisierungsvorrichtung
AU2003244174A AU2003244174A1 (en) 2002-07-01 2003-06-24 Electric deionizer
EP03761784A EP1553056B1 (en) 2002-07-01 2003-06-24 Electric deionizer
US11/015,797 US7247225B2 (en) 2002-07-01 2004-12-20 Electrodeionization apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002192312 2002-07-01
JP2002-192312 2002-07-01
JP2002-332671 2002-11-15
JP2002332671A JP3864891B2 (ja) 2002-07-01 2002-11-15 電気式脱イオン装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/015,797 Continuation US7247225B2 (en) 2002-07-01 2004-12-20 Electrodeionization apparatus

Publications (1)

Publication Number Publication Date
WO2004002898A1 true WO2004002898A1 (ja) 2004-01-08

Family

ID=30002333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007972 WO2004002898A1 (ja) 2002-07-01 2003-06-24 電気脱イオン装置

Country Status (8)

Country Link
US (1) US7247225B2 (ja)
EP (1) EP1553056B1 (ja)
JP (1) JP3864891B2 (ja)
KR (1) KR100643068B1 (ja)
CN (1) CN1301916C (ja)
AT (1) ATE512933T1 (ja)
AU (1) AU2003244174A1 (ja)
WO (1) WO2004002898A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934035B (zh) * 2004-03-18 2014-12-24 爱德华兹有限公司 电膜方法和装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956836B2 (ja) * 2002-11-15 2007-08-08 栗田工業株式会社 電気脱イオン装置
JP4400218B2 (ja) * 2004-01-09 2010-01-20 栗田工業株式会社 電気式脱イオン装置及び脱イオン方法
JP4855068B2 (ja) * 2005-12-28 2012-01-18 オルガノ株式会社 電気式脱イオン水製造装置及び脱イオン水製造方法
US7427342B2 (en) * 2006-06-02 2008-09-23 General Electric Company Method and apparatus for shifting current distribution in electrodeionization systems
CA2656468C (en) * 2006-06-22 2014-09-02 Siemens Water Technologies Corp. Electrodeionization apparatus and low scale potential water treatment
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
KR100769257B1 (ko) 2006-08-03 2007-10-23 한국정수공업 주식회사 서로 다른 전극부셀 구조를 갖는 전기막이온제거장치
WO2008048656A2 (en) * 2006-10-18 2008-04-24 Kinetico Incorporated Electroregeneration apparatus and water treatment method
JP2008161761A (ja) * 2006-12-27 2008-07-17 Kurita Water Ind Ltd 純水製造方法及び装置
EP2112125A4 (en) * 2006-12-27 2011-09-14 Kurita Water Ind Ltd METHOD AND DEVICE FOR PRODUCING PURE WATER
JP2008161760A (ja) * 2006-12-27 2008-07-17 Kurita Water Ind Ltd 純水製造方法及び装置
JP4867720B2 (ja) * 2007-03-06 2012-02-01 栗田工業株式会社 純水製造方法及び装置
JP2008221195A (ja) * 2007-03-16 2008-09-25 Miura Co Ltd 純水製造システムの運転方法
KR101227853B1 (ko) * 2007-05-21 2013-01-31 삼성전자주식회사 연수장치
WO2009073175A2 (en) 2007-11-30 2009-06-11 Siemens Water Technologies Corp. Systems and methods for water treatment
CN102372345B (zh) * 2010-08-10 2013-07-31 通用电气公司 超级电容器脱盐装置及脱盐方法
CN108097048B (zh) * 2010-10-04 2021-06-22 水技术国际有限责任公司 用于处理具有高流速的第二遍ro透过水的分流式edi设备
US8496797B2 (en) * 2010-12-14 2013-07-30 General Electric Company Electrical deionization apparatus
JP5695926B2 (ja) * 2011-02-08 2015-04-08 オルガノ株式会社 電気式脱イオン水製造装置
KR20120104719A (ko) * 2011-03-14 2012-09-24 삼성전자주식회사 재생가능한 필터 유닛, 이를 포함하는 필터 장치 및 필터 장치의 구동방법
CN102329007A (zh) * 2011-07-28 2012-01-25 清华大学 一种微生物脱盐电池
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US9724645B2 (en) 2012-02-02 2017-08-08 Tangent Company Llc Electrochemically regenerated water deionization
JP6571312B2 (ja) * 2014-02-06 2019-09-04 三菱ケミカルアクア・ソリューションズ株式会社 純水製造方法
CN105314710A (zh) * 2014-07-30 2016-02-10 松下知识产权经营株式会社 液体处理装置
EP3045431A1 (en) * 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization
JP2016159263A (ja) * 2015-03-04 2016-09-05 パナソニックIpマネジメント株式会社 水処理装置及び水処理装置の運転方法
US10604426B2 (en) 2016-12-23 2020-03-31 Magna Imperio Systems Corp. High efficiency electrochemical desalination system that incorporates participating electrodes
KR102521139B1 (ko) * 2017-06-23 2023-04-12 쿠리타 고교 가부시키가이샤 전기 탈이온 장치의 제어 방법 및 설계 방법
JP6532554B1 (ja) * 2018-01-19 2019-06-19 オルガノ株式会社 電気式脱イオン水製造装置
WO2019169128A1 (en) * 2018-03-02 2019-09-06 Lyondellbasell Acetyls, Llc Method and apparatus for resin wafer enhanced electrodeionization to selectively separate acids
JP2021037469A (ja) * 2019-09-03 2021-03-11 栗田工業株式会社 電気脱イオン装置及び脱イオン水の製造方法
CN114457359B (zh) * 2021-12-24 2024-03-19 苏州思萃同位素技术研究所有限公司 利用离子交换膜制备卤化氘的装置及卤化氘的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593563A (en) * 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
WO1998011987A1 (en) * 1996-09-23 1998-03-26 United States Filter Corporation Electrodeionization apparatus and method
EP1068901A2 (en) * 1999-07-13 2001-01-17 Kurita Water Industries Ltd. Electrodeionization apparatus
EP1075868A2 (en) * 1999-08-11 2001-02-14 Kurita Water Industries Ltd. Electrodeionization apparatus and pure water producing apparatus
JP2001113279A (ja) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2001113280A (ja) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2002011475A (ja) * 2000-06-30 2002-01-15 Kurita Water Ind Ltd 電気脱イオン装置及び純水製造装置
JP2002136971A (ja) * 2000-11-02 2002-05-14 Kurita Water Ind Ltd 電気的脱イオン装置
JP2002210473A (ja) * 2001-01-22 2002-07-30 Kurita Water Ind Ltd 電気脱イオン装置
JP2003126862A (ja) * 2001-10-23 2003-05-07 Kurita Water Ind Ltd 電気式脱イオン装置及び脱イオン方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1043554A (en) * 1910-07-11 1912-11-05 Appliance Mfg Company Off Stamp-affixing machine.
SU1757725A1 (ru) * 1989-09-29 1992-08-30 Научно-Производственное Объединение "Ниихиммаш" Способ снижени солесодержани водных растворов и мембранный аппарат дл его осуществлени
WO1998020972A1 (en) 1996-11-12 1998-05-22 United States Filter Corporation Electrodeionization apparatus and method
CN1117704C (zh) * 1997-08-14 2003-08-13 王方 电去离子软水方法及所用装置
JP3385553B2 (ja) * 1999-03-25 2003-03-10 オルガノ株式会社 電気式脱イオン水製造装置及び脱イオン水製造方法
KR100765017B1 (ko) 1999-05-14 2007-10-09 오씨 외를리콘 발처스 악티엔게젤샤프트 하이브리드 디스크의 제조 방법 및 하이브리드 디스크
JP3826690B2 (ja) * 1999-08-11 2006-09-27 栗田工業株式会社 電気脱イオン装置及び純水製造装置
US6365023B1 (en) * 2000-06-22 2002-04-02 Millipore Corporation Electrodeionization process
JP3794268B2 (ja) * 2001-01-05 2006-07-05 栗田工業株式会社 電気脱イオン装置及びその運転方法
TW550635B (en) * 2001-03-09 2003-09-01 Toshiba Corp Manufacturing system of electronic devices
US6649037B2 (en) * 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
US6748744B2 (en) * 2001-11-21 2004-06-15 Pratt & Whitney Canada Corp. Method and apparatus for the engine control of output shaft speed

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593563A (en) * 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
WO1998011987A1 (en) * 1996-09-23 1998-03-26 United States Filter Corporation Electrodeionization apparatus and method
EP1068901A2 (en) * 1999-07-13 2001-01-17 Kurita Water Industries Ltd. Electrodeionization apparatus
EP1075868A2 (en) * 1999-08-11 2001-02-14 Kurita Water Industries Ltd. Electrodeionization apparatus and pure water producing apparatus
JP2001113279A (ja) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2001113280A (ja) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd 電気脱イオン装置
JP2002011475A (ja) * 2000-06-30 2002-01-15 Kurita Water Ind Ltd 電気脱イオン装置及び純水製造装置
JP2002136971A (ja) * 2000-11-02 2002-05-14 Kurita Water Ind Ltd 電気的脱イオン装置
JP2002210473A (ja) * 2001-01-22 2002-07-30 Kurita Water Ind Ltd 電気脱イオン装置
JP2003126862A (ja) * 2001-10-23 2003-05-07 Kurita Water Ind Ltd 電気式脱イオン装置及び脱イオン方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934035B (zh) * 2004-03-18 2014-12-24 爱德华兹有限公司 电膜方法和装置

Also Published As

Publication number Publication date
JP3864891B2 (ja) 2007-01-10
JP2004082092A (ja) 2004-03-18
KR20050024452A (ko) 2005-03-10
AU2003244174A1 (en) 2004-01-19
KR100643068B1 (ko) 2006-11-10
CN1678533A (zh) 2005-10-05
US7247225B2 (en) 2007-07-24
EP1553056B1 (en) 2011-06-15
CN1301916C (zh) 2007-02-28
ATE512933T1 (de) 2011-07-15
EP1553056A4 (en) 2009-06-24
EP1553056A1 (en) 2005-07-13
US20050098436A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
WO2004002898A1 (ja) 電気脱イオン装置
KR100405642B1 (ko) 전기식 탈이온수 제조장치 및 탈이온수 제조방법
JP3826690B2 (ja) 電気脱イオン装置及び純水製造装置
KR100386528B1 (ko) 전기 탈이온화 장치
US7520971B2 (en) Apparatus and method for electrodeionization
US3761386A (en) Novel membrane spacer
JP2004216302A (ja) 電気脱イオン装置及び水処理装置
JP3956836B2 (ja) 電気脱イオン装置
JP3305139B2 (ja) 電気脱イオン法による脱イオン水の製造方法
JP4997678B2 (ja) 電気脱イオン装置
JP4819026B2 (ja) 電気式脱イオン水製造装置および脱イオン水製造方法
WO1997046491A1 (fr) Procede de production d'eau deionisee par une technique de deionisation electrique
JP2009208046A (ja) 電気式脱イオン水製造装置
JP4597388B2 (ja) 電気式脱イオン水製造装置及び脱イオン水の製造方法
JP3985497B2 (ja) 電気式脱イオン装置
JP3985494B2 (ja) 電気式脱イオン装置及び脱イオン方法
JP4599669B2 (ja) 電気的脱イオン装置
JP2001321773A (ja) 電気式脱イオン水製造装置及び脱イオン水製造方法
JP2002136971A (ja) 電気的脱イオン装置
JP4819020B2 (ja) スパイラル型電気式脱イオン水製造装置
JP2004073898A (ja) 電気脱イオン装置
JP2001157824A (ja) 電気的脱イオン装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11015797

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047021670

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003761784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038207494

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047021670

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003761784

Country of ref document: EP