WO2003107496A1 - レーザ加工装置及び該加工装置の制御方法 - Google Patents

レーザ加工装置及び該加工装置の制御方法 Download PDF

Info

Publication number
WO2003107496A1
WO2003107496A1 PCT/JP2003/007574 JP0307574W WO03107496A1 WO 2003107496 A1 WO2003107496 A1 WO 2003107496A1 JP 0307574 W JP0307574 W JP 0307574W WO 03107496 A1 WO03107496 A1 WO 03107496A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
laser
output
thinning
power
Prior art date
Application number
PCT/JP2003/007574
Other languages
English (en)
French (fr)
Inventor
城所 仁志
松原 真人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020047020238A priority Critical patent/KR100698953B1/ko
Priority to US10/517,656 priority patent/US7902482B2/en
Publication of WO2003107496A1 publication Critical patent/WO2003107496A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Definitions

  • the present invention relates to a laser processing apparatus that performs pulsed laser oscillation and a method for controlling a power supply apparatus that supplies electric power for generating electric discharge necessary for laser oscillation, and relates to a pulse of laser pulse output without increasing the capacity of the power supply apparatus.
  • the present invention relates to a technique for greatly expanding the usable range of the width and expanding the processable range of the gas laser processing apparatus.
  • FIG 9 shows the basic configuration of a conventional pulse laser oscillator (hereinafter referred to as a pulse laser oscillator) for a gas laser processing machine.
  • a pulse laser oscillator for a gas laser processing machine.
  • the command pulse group 2 output from the control device 1 controls the power supply device 3 for the pulse laser oscillator (for example, the three-phase rectifier circuit 4, the inverter circuit 5, the step-up transformer 6, etc.), and as a result, the laser Discharge occurs when power is supplied to the discharge space 7 filled with the medium (mixed gas), and the laser medium excited by the discharge is connected to the resonator 8 (electrode 9 and partial reflection mirror 1 10 and total reflection mirror). 1 1 1), and the laser beam 1 2 is output.
  • the pulse laser oscillator for example, the three-phase rectifier circuit 4, the inverter circuit 5, the step-up transformer 6, etc.
  • the inverter circuit 5 operates correspondingly, and the direct current rectified by the phase rectifier circuit 4 is operated.
  • the power is converted into AC power, and the voltage is boosted to a voltage required for discharge by the step-up transformer 6.
  • the AC power supplied to generate a discharge that excites a laser medium is generally
  • the applied voltage to the electrode (hereinafter referred to as discharge voltage) is several kV
  • the current that flows during discharge (hereinafter referred to as discharge current) has a peak of several tens A
  • the AC frequency during discharge (hereinafter referred to as discharge frequency) is approximately several hundred kH.
  • AC power supplied to the discharge space corresponding to the command pulse group 2 from the control device 1 as shown in Fig. 10 (the number of AC components is Equivalent to the switching frequency N of circuit 5), the laser output is output.
  • the electric power for causing discharge is defined as discharge electric power in this specification.
  • one pulse and one pulse of the laser pulse output outputted in this way is irradiated to the object to be processed.
  • control device 1 that outputs the command pulse group 2 will be described in detail.
  • laser pulse output is the main control parameter for controlling the laser output of the pulse laser oscillator.
  • the peak output indicating the peak value, the repetitive pulse frequency indicating the frequency at which the laser pulse is output, and the pulse width indicating the pulse width of the laser pulse output are set.
  • the optimum value of energy per pulse of laser output (hereinafter referred to as pulse energy) expressed by peak output X pulse width is determined depending on the material and processing method of the workpiece to be processed. The values for the parameters are determined.
  • control parameters can be set as appropriate, and the set parameters Command pulse group 2 is output according to the event.
  • the processing machine system is designed to output the command pulse group 2 so that the laser pulse output necessary for processing can be obtained by these control parameters.
  • the peak of the discharge power is used to control the peak output by the command pulse group 2 output based on the control parameters set in the control device 1.
  • switching frequency switching frequency
  • the discharge voltage is controlled in order to control the peak of the discharge power.
  • a method of controlling the discharge current peak by controlling the inverse circuit 5 by PWM control is used.
  • the repetition pulse frequency is the number of laser pulses irradiated per second, and is the number of command pulses output from the control device per second.
  • the repetitive pulse frequency is sufficiently smaller than the discharge frequency described above (that is, the switching frequency of the inverter circuit 5).
  • the discharge frequency is several hundred kHz or more as described above.
  • the repetition pulse frequency is generally several kHz at the maximum.
  • the pulse width is determined by the number of pulses in the pulse group of the discharge power output by the inverter circuit corresponding to one command pulse group. For example, if you want to increase the pulse width by 2 times (2 t) with respect to the laser pulse output with pulse width t as shown in Fig. 10, switch the inverse circuit as shown in Fig. 12 The laser pulse width is doubled (2 t) by doubling the number N of singing times (2N).
  • Fig. 13 shows the relationship between the pulse output of the pulse laser output from the pulse laser oscillator and the pulse width.
  • the area represented by the peak output X pulse width indicates the pulse energy. .
  • the upper limit of the pulse energy is determined by the specifications of the light resistance of the total reflection mirror and the partial reflection mirror (Fig. 9) that make up the resonator part of the laser oscillator.
  • the pulse width is changed from tl to t 2 (t 1 ⁇ If the pulse width is increased from t 1 to t 2 while keeping the peak output p 1 constant, the energy (2 p 1 X t 2) per pulse of the laser output will be Since the light intensity limit may be exceeded and the mirror may burn out, the pulse width cannot be simply increased. In such a case, the peak output must be reduced from p1 to p2. Yes (pl xt lp 2 xt 2).
  • the method of changing the discharge voltage applied to the electrode is generally used.
  • the discharge voltage or discharge current increases relative to the rating of the power supply, the load on the power supply increases.
  • the discharge voltage decreases, the discharge becomes unstable (discharge is difficult), and the change width of the applied voltage is usually about 10% of the rated voltage.
  • the processing materials and types of processing in laser processing machines are diversified, and the laser irradiation time is short (that is, the pulse width is small) as in the case of polyimide resins.
  • Laser irradiation time is relatively long, such as those that can be processed and glass epoxy materials that contain glass fibers. (In other words, a longer pulse width) may result in better quality processing, so a pulse laser processing machine that can change the pulse width significantly is desired.
  • the conventional control method of the power supply for a gas laser processing machine has a small change width of the applied voltage. Therefore, in order to efficiently generate a discharge without exceeding the light intensity limit of the mirror, change of the pulse width is required. It had to be limited, and it was difficult to change the pulse width significantly (for example, change from less than 1 ⁇ s to several hundred ⁇ s).
  • pulse width control when the number of switching of the inverter circuit 5 in the power supply 3 is N, as shown in Fig. 10 and Fig. 12, the pulse width ⁇ of the laser output is
  • the present invention has been made to solve the above-described problems, and provides a pulse rate.
  • a laser processing apparatus capable of greatly changing the pulse width at a low cost while avoiding heat generation of a power supply device due to an increase in the number of times of switching in a laser processing machine that performs the oscillation, and a control method therefor.
  • the laser processing apparatus inputs a command pulse group according to a control parameter setting for controlling the laser pulse output, and inputs the command pulse group, and sets the preset value to a preset value.
  • power supply means for generating pulse power to be supplied to the load in accordance with the command pulse group output from the thinning means, and pulse power supplied from the power supply means
  • oscillator means for exciting the laser medium filled in the discharge space and outputting the laser beam by the discharge generated by the above.
  • the switching frequency of the inverter circuit in the power supply means is changed by regular thinning of the command pulse group by the thinning means (and the switching cycle of the inverter circuit is changed at the rise and fall of the discharge power). It is set earlier than the constant and the fall time constant of the laser output Further, it is provided with a switching means, and sets the thinning of the command pulse group output from the control means by the thinning means.
  • the laser processing apparatus control method outputs a command pulse group according to a control parameter setting for controlling the laser pulse output, and generates a pulse power to be supplied to a load according to the command pulse group.
  • the command pulse group is regularly thinned out The number of switching of the inverter circuit in the power supply means for generating the pulse power is changed.
  • the laser power is maintained while maintaining a discharge voltage sufficient for generating the discharge.
  • the pulse width can be greatly changed at low cost while avoiding heat generation of the power supply due to an increase in the number of switching times.
  • FIG. 1 is a basic configuration diagram of a pulse laser oscillator based on an embodiment of the present invention.
  • FIG. 2 shows the command pulse group output waveform from the control device in the case of the pulse width command 2 t of the pulse laser oscillator according to the embodiment of the present invention, the corresponding discharge power waveform, and the corresponding laser pulse output. It is a waveform diagram. It is a basic block diagram.
  • FIG. 3 is a diagram of a circuit configuration example of the thinning circuit constituting the thinning means based on the embodiment of the present invention.
  • FIG. 4 is a diagram of a circuit configuration example of a thinning circuit constituting a thinning means when having a function of switching the number of thinning pulses based on the embodiment of the present invention.
  • FIG. 5 is a discharge power waveform and laser pulse output waveform diagram based on the relationship between the switching cycle of the power supply device and the rise time constant of the discharge power.
  • Figure 6 shows the discharge power waveform based on the relationship between the switching cycle of the power supply and the rise time constant of the discharge power.
  • FIG. 7 is a discharge power waveform and a laser pulse output waveform diagram based on the relationship between the switching cycle of the power supply device and the rise time constant of the discharge power.
  • FIG. 8 shows a control device setting screen based on an embodiment of the present invention and a command pulse group output as a result.
  • FIG. 9 is a basic configuration diagram of a conventional pulse laser oscillator.
  • FIG. 10 is a conventional command pulse group output waveform from the control device in the case of a pulse width command t, a corresponding discharge power waveform, and a corresponding laser pulse output waveform diagram.
  • FIG. 11 is a setting screen example of a conventional control device, and a peak output command and a command pulse group waveform diagram output as a result.
  • FIG. 12 is a conventional command pulse group output waveform from the control device in the case of a pulse width command 2 t, a corresponding discharge power waveform, and a corresponding laser pulse output waveform diagram.
  • FIG. 13 is a graph showing the relationship between the pulse width and the laser peak output in the pulse laser oscillator.
  • FIG. 1 is a basic configuration diagram showing an embodiment of the present invention.
  • 1 is a control device that controls laser oscillation by outputting command pulse group 2 based on the control parameters of peak output setting, repetitive pulse frequency setting, and pulse width setting
  • 3 is a three-phase rectifier circuit 4 and an inverter circuit 5 and a step-up transformer 6 etc., a power supply unit for a pulse laser oscillator
  • 4 is a three-phase power source that is converted into a direct current by full-wave adjustment using a thyristor etc.
  • Phase rectifier circuit 5 is an inverter circuit that converts high-frequency alternating current to generate a discharge necessary to obtain laser output
  • 6 is a step-up transformer that boosts the voltage to a dischargeable voltage
  • 7 is a laser medium (mixed) The discharge space filled with gas)
  • 8 is a resonator composed of electrode 9
  • 1 2 is the laser beam to be output
  • 1 3 is in response to the pulse width command Output command buffer Thinning a predetermined amount of pulses from the scan group 2 It is a thinning circuit constituting the thinning means.
  • the command pulse group 2 output in response to the pulse width command set by the control device 1 is input to the thinning circuit 1 3, and a predetermined amount of pulses are thinned out by the thinning circuit 1 3 and sent to the power supply device 3. It is done.
  • the inverter circuit 5 is operated by the thinned command pulses, and the DC power rectified by the three-phase rectifier circuit 4 is converted to AC power, and the voltage is boosted to a voltage required for discharge by the boosting transformer 6.
  • electric power is supplied to the discharge space 7 filled with the laser medium to generate electric discharge.
  • the laser medium excited by the electric discharge is excited by the resonator 8 and the laser beam 1 2
  • the laser beam output is output as 1 pulse and 1 pulse is emitted to the object to be processed.
  • the AC component of the supplied pulse power is supplied at a constant number and constant intervals as shown in FIG. It will be thinned out.
  • the pulse width t is increased twice for a pulse with t switching times and pulse width t, the pulse width is usually doubled, so the switching number N is also doubled (Fig. 10). 1 2)
  • the number of switching of the chamber 5 circuit is reduced by thinning out the command pulse group 2 output from the control device 1 at the switching frequency 2 N, for example, every other pulse.
  • the pulse width can be doubled while N is left.
  • the decimation circuit 13 is composed of a general logic circuit composed of flip-flops and count circuit as shown in FIG.
  • command pulse group 2 output from controller 1 is input from VIN of decimation circuit 1 3
  • the decimation pulse signal is output from VOUT.
  • the thinning pulse output from the thinning circuit 1 3 corresponding to the command pulse group 2 is input to the inverter circuit 5, the alternating current of the pulse power supplied from the power supply generated by the inverter circuit 5 is obtained.
  • the components are also output in the thinned state.
  • the discharge current peak and peak output change depending on the interval of thinning out the pulses as described later. Therefore, the pulses allowed by the resonator mirrors that make up the laser oscillator Determine the number of pulses to be thinned out in consideration of energy.
  • Fig. 4 shows an example of a circuit with a function for switching the thinning number according to the pulse width used.
  • Fig. 4 two modes are provided depending on the pulse width used (for example, the short mode is set when thinning is not performed, and the long mode is set when thinning one pulse every two pulses), and it is automatically set according to the pulse width setting.
  • the control device 1 identifies which mode it is in, and the control device 1 outputs a mode select signal so that the pulse decimation number is switched and the pulse signal is output from VOUT.
  • the mode select signal is a logic signal (H or L) output from the control device 1 to the multiplexer 14 in the thinning circuit 1 3 according to the pulse width value set in the control device 1, for example,
  • the pulse width setting for controller 1 is 1 to 20 s
  • the short mode is selected (no decimation is performed), and the mode select signal is output from controller 1 to decimation circuit 13 as logic L.
  • the input signal ( finger) by multiplexer 1 4
  • the command pulse group 2) is selected and output to the inverse circuit 5 from the thinning circuit 13.
  • the mode select signal is output from the controller 1 to the decimation circuit 13 as the long mode (thinning one pulse every two pulses).
  • the command pulse group resulting from the decimation by the multiplexer 14 is selected and output from the decimation circuit 13 to the inverse circuit 5.
  • the pulse width of the laser pulse output can be greatly expanded without increasing the number of switching times N.
  • the switching cycle of the power supply 3 is set earlier than the rising / falling time constant of the discharge power and the falling time constant of the laser output. It is necessary to be.
  • the rise time constant of the discharge power refers to the rise time required for the discharge power to reach the desired peak value
  • the fall time constant of the discharge power refers to the discharge power from the peak value to power 0.
  • the fall time required for The fall time constant of the laser output refers to the fall time required from the peak value until the laser output becomes zero.
  • the discharge power peak becomes smaller than the discharge power peak P 0 (t) when no thinning is performed, and the effect of suppressing the discharge power peak can be obtained.
  • the laser pulse output is approximately proportional to the discharge power, the peak of the laser pulse output energy is suppressed by thinning out the AC component of the discharge power, and the problem described above, ie, the laser pulse width, is reduced. Enlarging it increases the laser pulse output energy, which is very effective for the problem of exceeding the light intensity limit of the resonator mirror.
  • the switching cycle of the power supply device earlier than the falling time constant of the laser pulse output, as shown in Fig. 7, the next switching is performed before the laser pulse output falls completely.
  • the laser pulse output is output as a single continuous pulse without dropping.
  • the switching frequency • is 2 MHz or more (switching cycle 0.5 S or less).
  • the hardware by the thinning circuit 1 3 Shows a circuit that thins out pulses, but the result of thinning out the number of thinning-out processing for the input pulses in the control device (that is, processing by software)
  • the method is not particularly limited to the method shown in the present invention.
  • the number of pulses to be thinned out and the ratio are determined according to the desired pulse width or the amount of laser pulse output energy, or the limit of the switching frequency of the power supply (ie, the limit of the heat generation amount of the power supply). It is not uniform and is not limited to the examples.
  • Fig. 8 shows an example of the control parameter setting screen that is set to control the actual laser output.
  • a pulse width mode item for setting the thinning number is provided, and a short mode that does not perform thinning according to the set pulse width is provided.
  • the above-described mode select signal is output from the control device to the thinning circuit, and it is selected whether or not to thin the command pulse group.
  • control device 1 may automatically switch according to the set pulse width as described above.
  • the peak output setting may be a constant value. It is not necessary.
  • the AC component of the pulse power supplied from the power supply device is thinned out at a constant number and constant intervals by the command pulse group output from the control device, without increasing the number of times of switching.
  • the pulse width of the laser output that can be used can be greatly extended.
  • the enclosure can be expanded more than before.
  • the number of switching is increased to several tens to several hundreds S without increasing the number of switching.
  • the machineable range can be expanded compared to the conventional case by providing a device that can be switched according to the machining conditions when the pulse width is extended.
  • the laser processing apparatus and its control method according to the present invention are particularly suitable for use in fine processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)

Abstract

レーザパルス出力を制御するための制御パラメータ設定に応じて指令パルス群を出力する制御手段と、この指令パルス群を入力し、予め設定された設定値に基づき該指令パルス群のパルスを間引く間引き手段と、この間引き手段から出力される指令パルス群に応じて負荷に供給するパルス電力を発生させる電源手段と、この電源手段より供給されたパルス電力により発生した放電によって、放電空間に満たされたレーザ媒体を励起させてレーザ光を出力させる発振器手段とを備えた、パルスレーザ発振をおこなうレーザ加工機であり、スイッチング回数の増加による電源装置の発熱を避けつつ安価にパルス幅を大きく変化させることができる。

Description

明 細 書 レーザ加工装置及び該加工装置の制御方法.
技術分野
本発明は、 パルスレーザ発振をおこなうレーザ加工装置及び、 レーザ 発振に必要な放電を発生させるための電力を供給する電源装置の制御方 法に関し、 電源装置の容量を増やすことなくレーザパルス出力のパルス 幅の使用範囲を大幅に拡大して、 ガスレーザ加工装置の加工可能範囲を 拡大するための技術に関するものである。
背景技術
近年、 プリント基板に代表される微細加工用として、 出力のパルス幅 が 1〃 sから数十/ s程度のパルス発振をおこなうレーザ加工機の需要 が増加し、 実用化されてきた。
図 9に従来のガスレーザ加工機用パルスレーザ発振器 (以下パルスレ 一ザ発振器) の基本構成図を示す。
制御装置 1から出力される指令パルス群 2によってパルスレ一ザ発振 器用電源装置 3 (たとえば、 三相整流回路 4とインバー夕回路 5と昇圧 トランス 6等で構成) をコン トロールし、 その結果、 レーザ媒体 (混合 ガス) で満たされた放電空間 7に電力が供給されることによって放電が 生じ、 放電によって励起されたレーザ媒体が共振器 8 (電極 9と部分反 射ミラ一 1 0と全反射ミラ一 1 1によって構成) によってレーザ光 1 2 となって出力される構成となっている。
具体的には、 制御装置 1から指令パルス群 2が出力されると、 これに 対応してィンバ一夕回路 5が動作し、 Ξ相整流回路 4で整流された直流 電力を交流電力に変換して、 昇圧トランス 6により放電に必要な電圧に 昇圧される。
ここで、 工業用として使用されるガスレーザ加工機 (例えば炭酸ガス レーザ加工機) で使用される電源装置では、 レーザ媒体を励起する放電 を発生させるために供給する交流電力は、 一般的には、 電極への印加電 圧 (以下、 放電電圧) が数 k V、 放電時に流れる電流 (以下、 放電電流) ピークが十数 A、 放電時の交流周波数 (以下、 放電周波数) はおよそ数 百 k H z以上であり、 パルスレーザ発振器の場合、 制御装置 1からの指 令パルス群 2に対応して、 図 1 0のように、 放電空間に供給される交流 電力 (交流成分の数は、 インバー夕回路 5のスイッチング回数 Nに等し い) 、 レーザ出力が出力される。
なお、 このように、 放電を生じさせるための電力を放電電力と本明細 書では定義する。
そして、 このようにして出力されたレーザパルス出力の 1パルス 1パ ルスが、 加工対象物に照射されて加工がおこなわれる。
次に、 指令パルス群 2を出力する制御装置 1について詳述する。
プリント基板加工など微細加工用のパルスレーザ加工機では、 例えば 図 1 1に示されるような、 パルスレ一ザ発振器のレーザ出力をコント口 —ルするおもな制御パラメ一夕である、 レーザパルス出力のピーク値を 示すピーク出力、 レーザパルスが出力される周波数を示す繰り返しパル ス周波数、 レーザパルス出力のパルス幅を示すパルス幅等が設定されて いる。 また、 加工する加工物の材料や加工方法によって、 ピーク出力 X パルス幅で表されるレーザ出力 1パルスあたりのエネルギー (以下、 パ ルスエネルギー) の最適値が求められており、 それにあわせて上記制御 パラメ一夕の値がそれぞれ決定される。
なお、 これら制御パラメ一夕は、 適宜設定可能であり、 設定したパラ メ一夕に応じて指令パルス群 2が出力される。
制御装置 1では、 これら制御パラメ一夕により加工に必要なレーザパ ルス出力が得られるように指令パルス群 2を出力するよう加工機のシス テムが設計されている。 , 電源装置 3では、 加工に必要なレーザパルスエネルギーを得るため、 制御装置 1で設定された制御パラメ一夕に基づき出力された指令パルス 群 2により、 ピーク出力を制御するために放電電力のピークをコント口 ールし、 繰り返しパルス周波数をコントロールし、 パルス幅を制御する ためにィンバ一夕回路 5のスィツチング回数(以下、スィヅチング回数) の増減をコントロールする。
ここで、 放電電力のピークは、 おもに電極 9に印加する放電電圧と、 電極間に生じる放電によって流れる放電電流のピークによって決定され ることから、 放電電力のピークを制御するために、 放電電圧を制御した り、 例えば、 P WM制御によってインバー夕回路 5をコントロールする ことで放電電流ピークを制御する方法が用いられる。
繰り返しパルス周波数は、 一秒間あたりに照射するレーザパルスの数 であり、 制御装置から出力される指令パルス群の一秒間あたりの数であ る。
ここで、 繰り返しパルス周波数は、 先に述べた放電周波数 (すなわち、 ィンバ一夕回路 5のスィヅチング周波数) に対して十分小さく、 たとえ ば放電周波数が先に述べたとおり数百 kHz以上であるのに対して、繰り 返しパルス周波数は最大でも数 kHz程度であることが一般的である。 パルス幅は、 指令パルス群 1つに対応してィンバ一夕回路によって出 力される放電電力のパルス群のパルス数によって決定する。 たとえば図 1 0のようにパルス幅 tのレーザパルス出力に対して、 パルス幅を 2倍 ( 2 t ) に伸ばしたい場合、 図 1 2のようにインバー夕回路のスイッチ ング回数 N を 2倍 (2N) にすることでレーザパルス幅が 2倍 (2 t) となる。
次に、 パルスレーザ発振器から出力されるパルスレ一ザのピーク出力 とパルス幅の関係を図 13に示す。
なお、 ピーク出力 Xパルス幅で表される面積がパルスエネルギーを示 している。 .
レーザ発振器の共振器部分を構成する全反射ミラーと部分反射ミラ一 (図 9 ) の耐光強度の仕様によってパルスエネルギーの上限が決まって いる。
そのため、 例えば、 ピーク出力 p l、 パルス幅 t 1のパルスエネルギ 一 (= 1 X t 1) が、 ミラーの耐光強度の仕様によるエネルギーの上 限の場合、 パルス幅を t lから t 2 ( t 1< t 2 ) に広げようとすると き、 ピーク出力 p 1を一定のままパルス幅を t 1から t 2に伸ばすと、 レーザ出力 1パルス当たりのエネルギー (二 p 1 X t 2 ) がミラ一の耐 光強度限界を超えてしまい、 ミラーの焼損を引き起こす可能性があるこ とから、 単純にパルス幅を伸ばすことができず、 このような場合はピ一 ク出力を p 1から p 2に下げる必要がある (p l xt l p 2 xt 2)。 このようにピーク出力を変化させる場合、 電極に印加する放電電圧を 変化させる方法が一般的であるが、 放電電圧や放電電流が電源装置の定 格に対して大きくなると、 電源装置に対する負荷が大きくなり、 逆に放 電電圧が小さくなると、 放電が不安定 (放電発生が困難) となるため、 通常、 印加電圧の変化幅は定格電圧の約 1割程度である。
現在、 レ一ザ加工機による微細加工における加工材料や加工の種類も 多様化しており、 ポリイ ミ ド系樹脂のようにレーザ照射時間が短い (す なわち、 パルス幅が小さい) 方が良質な加工が得られるものや、 ガラス 繊維を含むガラスエポキシ材のように比較的レーザ照射時間が長い (す なわち、 パルス幅が長い) 方が良質な加工が得られる場合があるため、 パルス幅を大幅に変化させることのできるパルスレーザ加工機が切望さ れている。
しかしながら、 従来のガスレーザ加工機用電源装置の制御方法は、 印 加電圧の変化幅が少ないことから、 ミラ一の耐光強度限界を超えずに効 率よく放電を発生させるにはパルス幅の変化を制限しなければならず、 大幅にパルス幅を変化させる (たとえば、 1〃 s以下から数百〃 sへの 変化) ことが困難であった。
なお、 耐光強度限界の高いミラ一を用いることはその費用対効果の面か ら有効でないことは明らかである。
また、 パルス幅のコントロールについて、 電源装置 3におけるインバ 一夕回路 5のスイッチング回数を Nとするとき、 図 1 0、 図 1 2からも わかるように、 レーザ出力のパルス幅 ΐは、
t ∞ Ν
で表され、 パルス幅を増加させるためには、 スイッチング回数 Nを増加 させる必要がある。
しかしながら、 スィツチング回数 Nを増加させると、 それに比例して 電源装置に使用している半導体素子のスィッチング損失が増加し、 結果、 電源装置の発熱が増加してしまう問題が生じる。
この場合、 電源装置の冷却機構の増設や、 素子や回路の並列数を増や す等の電源装置自体の容量を増やす必要があり、 その結果、 装置自体の 構成が大型のものにならざるを得ず、 コス ト面はもちろん、 機械の設置 スペース面からも不利なものとなる。 発明の開示
本発明は、 係る課題を解決するためになされたものであり、 パルスレ —ザ発振をおこなうレ一ザ加工機において、 スィツチング回数の増加に よる電源装置の発熱を避けつつ安価にパルス幅を大きく変化させること ができるレーザ加工装置及びその制御方法を提供するものである。
本発明に係るレーザ加工装置は、 レーザパルス出力を制御するための 制御パラメ一夕設定に応じて指令パルス群を出力する制御手段と、 この 指令パルス群を入力し、 予め設定された設定値に基づき該指令パルス群 のパルスを間引く間引き手段と、 この間引き手段から出力される指令パ ルス群に応じて負荷に供給するパルス電力を発生させる電源手段と、 こ の電源手段より供給されたパルス電力により発生した放電によって、 放 電空間に満たされたレーザ媒体を励起させてレーザ光を出力させる発振 器手段と、 を備えたものである。
また、 間引き手段による指令パルス群の規則的な間引きにより、 電源 手段におけるィンバ一夕回路のスィツチング回数を変更するものである ( また、 インバー夕回路のスイッチング周期を、 放電電力の立上り立下 り時定数及ぴレ一ザ出力の立下り時定数より早く設定するものである。 さらに、 切り替え手段を備え、 間引き手段による制御手段から出力さ れる指令パルス群の間引きを設定するものである。
また、 本発明に係るレーザ加工装置の制御方法は、 レーザパルス出力 を制御するための制御パラメータ設定に応じて指令パルス群を出力し、 この指令パルス群に応じて負荷に供給するパルス電力を発生させ、 前記 パルス電力により発生した放電によって、 放電空間に満たされたレ一ザ 媒体を励起させてレーザ光を出力するレーザ加工装置の制御方法におい て、 前記指令パルス群を規則的に間引くことにより、 前記パルス電力を 発生させる電源手段におけるィンバ一夕回路のスィツチング回数を変更 するものである。
本発明によれば、 放電発生に十分な放電電圧を保ったまま、 レーザパ ルス幅を大幅に伸ばすことができる
また、 スィツチング回数の増加による電源装置の発熱を避けつつ安価 にパルス幅を大きく変化させることができる。
また、 加工条件に応じて切り替えることによって加工可能範囲を従来 よりも拡大することができる。 図面の簡単な説明
第 1図は、 本発明の実施例に基づくパルスレ一ザ発振器の基本構成図 である。
第 2図は、 本発明の実施例に基づくパルスレーザ発振器の、 パルス幅 指令 2 tの場合の制御装置からの指令パルス郡出力波形と、 それに対応 する放電電力波形と、 それに対応するレーザパルス出力波形図である。 基本構成図である。
第 3図は、 本発明の実施例に基づく、 間引き手段を構成する間引き回 路の回路構成例の図である。
第 4図は、 本発明の実施例に基づく、 間引きパルスの数を切替える機 能を有する場合の間引き手段を構成する間引き回路の回路構成例の図で ある。
第 5図は、 電源装置のスィツチング周期と放電電力の立上がり時定数 の関係に基づく放電電力波形とレーザパルス出力波形図である。
第 6図は、 電源装置のスィツチング周期と放電電力の立上がり時定数 の関係に基づく放電電力波形である。
第 7図は、 電源装置のスィツチング周期と放電電力の立上がり時定数 の関係に基づく放電電力波形とレーザパルス出力波形図である。
第 8図は、 本発明の実施例に基づく制御装置設定画面とその結果出力 される指令パルス群である。 第 9図は、 従来のパルスレーザ発振器の基本構成図である。
第 1 0図は、 従来における、 パルス幅指令 tの場合の制御装置からの 指令パルス群出力波形と、 それに対応する放電電力波形と、 それに対応 するレーザパルス出力波形図である。
第 1 1図は、 従来の制御装置の設定画面例と、 その結果出力されるピ ーク出力指令と指令パルス群波形図である。
第 1 2図は、 従来における、 パルス幅指令 2 tの場合の制御装置から の指令パルス群出力波形と、 それに対応する放電電力波形と、 それに対 応するレ一ザパルス出力波形図である。
第 1 3図は、 パルスレーザ発振器におけるパルス幅とレーザピーク出 力との関係を示した図である。 発明を実施するための最良の形態
実施の形態 1 .
図 1は、 本発明の実施の形態を示す基本構成図である。
図において、 1はピーク出力設定、 繰り返しパルス周波数設定、 パルス 幅設定の制御パラメ一夕に基づき、 指令パルス群 2を出力することによ りレーザ発振を制御する制御装置、 3は三相整流回路 4とインバー夕回 路 5と昇圧トランス 6等で構成されるパルスレーザ発振器用電源装置、 4は商用の三相電源をサイリス夕等を用いて全波整添することよって直 流に変換する三相整流回路、 5はレーザ出力を得るために必要な放電を 発生させるために高周波の交流に変換するィンバ一夕回路、 6は放電可 能な電圧に昇圧する昇圧トランス、 7はレーザ媒体 (混合ガス) で満た された放電空間、 8は電極 9と部分反射ミラー 1 0と全反射ミラ一 1 1 によって構成される共振器、 1 2は出力されるレーザ光、 1 3はパルス 幅指令に応じて出力された指令パルス群 2から所定量のパルスを間引く 間引き手段を構成する間引き回路である。
次に、 全体の概略動作について説明する。
制御装置 1で設定されたパルス幅指令に応じて出力された指令パルス 群 2は、 間引き回路 1 3に入力され、 所定量パルスを間引き回路 1 3に よって間引きを行われ、 電源装置 3に送られる。
そして、 間引かれた指令パルス群により、 インバー夕回路 5が動作し、 三相整流回路 4で整流された直流電力を交流電力に変換して、 昇圧トラ ンス 6により放電に必要な電圧に昇圧することにより供給電力をコント ロールし、 その結果、 レーザ媒体で満たされた放電空間 7に電力が供給 されることによって放電が生じ、 放電によって励起されたレーザ媒体が 共振器 8によってレーザ光 1 2となって出力され、 出力されたレーザパ ルス出力の 1パルス 1パルスが、 加工対象物に照射されて加工がおこな われる。
次に、 間引き回路 1 3について詳述する。
本実施の形態では、 従来の課題を解決すべく、 スイッチング回数を増や さずにパルス幅を大幅に増やすため、 図 2に示すように供給するパルス 電力の交流成分を一定数一定間隔で間引くものである。
例えば、 スイッチング回数 Nでパルス幅 tのパルスについて、 パルス幅 を 2倍に増やす場合を考えると、 通常はパルス幅 2倍であるから、 スィ ヅチング回数 Nも 2倍となる (図 1 0、 図 1 2参照) 。
しかし、 図 1 2のように、 制御装置 1よりスイッチング回数 2 Nで出 力された指令パルス群 2を、 例えば 1パルスおきに 1パルスずつパルス を間引くことにより、 ィンバ一夕回路 5のスィツチング回数は Nのまま パルス幅を 2倍にすることができる。
この間引き回路 1 3は、 図 3の如くフリップフロップぉよびカウン夕 回路から成る一般的な論理回路により構成される。 制御装置 1より出力された指令パルス群 2が間引き回路 1 3の VIN より入力されることによって、 間引きをおこなったパルス信号が VOUT から出力される。
指令パルス群 2に対応して間引き回路 1 3より出力された間引きパル スが、 インバー夕回路 5に入力されることによって、 インバ一夕回路 5 によって発生する電源装置から供給されるパルス電力の交流成分も間引 かれた状態で出力される。
なお、 例ではパルスを 1つおきに間引く回路を挙げているが、 後述の ようにパルスを間引く間隔によって放電電流ピークおよびピーク出力が 変化するため、 レーザ発振器を構成する共振器ミラーが許容するパルス エネルギーなどを考慮して、 何パルスおきにパルスを間引くかを決定す る。
次に、 使用するパルス幅に応じて、 間引き数を切り替える機能を備え る場合の回路例を図 4に示す。
図 4では、 使用するパルス幅によって 2つのモードを設け (たとえば、 間引きをおこなわない場合をショートモード、 2 パルス毎に 1パルス間 引く場合をロングモードと設定) 、 パルス幅の設定によって自動的に制 御装置 1がどのモードかを識別して、 制御装置 1がモ一ドセレク ト信号 を出力することによりパルスの間引き数を切り替えてパルス信号を VOUTから出力する構成となっている。
ここで、 モードセレク ト信号とは、 制御装置 1に設定されたパルス幅 の値によって制御装置 1から間引き回路 1 3中のマルチプレクサ 1 4へ 出力される論理信号 (Hあるいは L ) であり、 例えば、 制御装置 1への パルス幅設定が 1〜20〃 sの場合はショートモード (間引きを行わな い) とし、 モードセレク ト信号は論理 Lが制御装置 1から間引き回路 1 3へ出力され、 その結果、 マルチプレクサ 1 4によって入力信号 (=指 令パルス群 2 ) が選択され、 間引き回路 1 3からインバー夕回路 5へ出 力される。
これに対し、 パルス幅設定が 20〃 s〜40/i sの場合はロングモード ( 2パルス毎に 1パルス間引く) として、 モードセレク ト信号は論理 H が制御装置 1から間引き回路 1 3へ出力され、 その結果、 マルチプレク サ 1 4によって間引かれた結果の指令パルス群が選択され、 間引き回路 1 3からインバー夕回路 5へ出力される。
このようにして、 間引かれた状態のパルス電力を発振器部分に供給す ることによって、 スィツチング回数 Nを増加させることなくレーザパル ス出力のパルス幅を大幅に拡大することができる。
そのため、 電源装置 3の容量を増やす必要もなく、 また、 電源装置に 使用している半導体素子のスィツチング損失の点からも電源装置の発熱 の増加を防止でき、 装置自体の構成を小型化し、 コス ト面はもちろん、 機械の設置スペース面からも有利となる。
ただし、 このようにパルスの間引きによってパルス幅の制御を実施す る場合、 電源装置 3のスイッチング周期が、 放電電ガの立上り立下り時 定数及びレーザ出力の立下り時定数よりも早く設定されていることが必 要である。
ここで、 放電電力の立上がり時定数とは、 放電電力が所望のピーク値 に達するまでに要する立上り時間をさし、 放電電力の立下り時定数とは、 放電電力がピーク値から電力 0になるまでに要する立下り時間をさす。 また、 レーザ出力の立下り時定数とは、 ピーク値からレーザ出力 0にな るまでに要する立下り時間をさす。
放電電力の立上り立下り時定数よりも電源装置のスイツチング周期が 早く設定されていなければならないのは、 以下の理由による。
例えば、 図 5のように電源装置のスイッチングによって放電電力が完 全に立ち上がるまで 4回のスィツチングを要するとすると、 最初のスィ ヅチングによって立ち上がる放電電力 P0(t =t 1)は、放電電力のピーク Pよりも小さく (P0(t =t 1)<P)、 2番目のスイッチングを間引くこ とによって、 3番目のスイッチングで立ち上がる放電電力は、 本来、 間 引きを行わない場合の放電電力のビーク P0(t =t 3)よりも小さく P l(t=t3)となる (Pl(t=t 3)<P0(t=t 3)) o
この関係は、 3番目のスイッチング時 (t=t3) の放電電流ピークに 限らず、 放電中全般において成り立つ (Pl(t)<P0(t)、 t = t 1除 ぐ) o
同様に、 最初のスイッチング後、 2番目、 3番目の 2つのパルスを間 引き、 4番目を残し 5番目、 6番目を間引くというように全体の 2Z3 のパルスを間引く場合 (図 6 (a) 参照) を考えると、 7番目のスイツ チングで立ち上がる放電電力ピーク P2(t =t 7)は、 1つおきにパルス を間引いた場合の放電電力ピーク P l(t=t 7)よりも小さくなり (P 2(t =t 7)<Pl(t =t 7))、 放電中全般において P2(t)く Pl(t ) ( t 二 t 1除く) が成り立つ。 ' 以下、 3つ以上連続でパルスを間引く場合も同様の考え方が適用され る。
ただし、 放電電力のピークの最小値は、 最初のスイッチングで得られ る放電電力ピーク P0(t =t 1)であり、 P n(t)=P0(t =t 1)となる間 引きパルス数 nが間引きパルス数の限界値である。
また、 2回のスイッチング後 1パルス分を間引く場合 (図 6 (b) 参 照) も、 上記と同様の考え方が適用される。
2回の通常スィヅチング後、 3番目のスィヅチングを間引くことで 4 番目, 5番目のスィツチングで立ち上がる放電電力ピーク ; P3(t =t 4), P3(t=t5)は、 本来、 間引きを行わない場合の放電電力のピーク P0(t 二 t 4), P 0( t = t 5)よりも小さくなるが、 2回連続でスイッチングした 分だけ放電電力ピークは 1つおきにパルスを間引いた場合の放電電力ピ ーク P l( t = t 5)よりも大きくなる。
同様に、 3回以上のスイッチング後、 パルスを間引く場合も同様の考 え方が適用される。
すなわち、 一般に、 パルスの間隔 (=間引きパルス数) を多くするほ ど放電電力ピークが小さくなり、 逆に、 連続するパルスが多いほど放電 電力ピークが大きくなる。 ただし、 いずれの間引き方法の場合も、 間引 きを行わない場合の放電電力ピーク P 0( t )よりも放電電力ビークは小 さくなり、 放電電力ピークが抑制される効果を得ることができる。
これは、 レーザパルス出力は放電電力に略比例するため、 放電電力の 交流成分を間引くことによって、 レーザパルス出力エネルギーのピーク が抑制されたことを意味し、 先述した問題、 すなわち、 レーザパルス幅 を拡大することによってレーザパルス出力エネルギーが増大し、 共振器 ミラ一の耐光強度限界を超えてしまう問題に対して非常に有効である。 また、 レーザパルス出力の立下り時定数よりも、 電源装置のスィッチ ング周期を早く設定することによって、 図 7のように、 レーザパルス出 力が立ち下がり切る前につぎのスィヅチングを実施するため、 レーザパ ルス出力は途中で下がりきることなく、 連続した 1つのパルスとして出 力される。
これにより、 レ一ザパルス出力のパルス幅を拡大する効果を得る。 一例をあげるならば、 放電電力の立上り立下り時定数が 2 fi s程度、 レーザ出力の立下り時定数が 5〃 s程度であれば、 スィツチング周波数 • を 2 M H z以上 (スィツチング周期 0 . 5 S以下) に設定すればよい。
なお、 パルス幅の設定数値が大きいときにパルス幅の指令に応じて指 令パルス群を間引く方法について、 間引き回路 1 3によるハードウェア にてパルスを間引く回路を示しているが、 入力されるパルスに対して、 決められた数の間引き処理を制御装置内で処理 (すなわち、 ソフ トゥェ ァにて処理) して間引きをおこなった結果の指令パルス群として出力し てもよく、 とくに方法を本発明に示した方法に限定す'るものではない。 また、 間引くパルス数および割合については、 所望のパルス幅ゃレ一 ザパルス出力エネルギーの大きさ、 あるいは電源装置のスイッチング回 数の限界 (すなわち、 電源装置の発熱量の限界) に応じて決定するため、 一様ではなく、 例に挙げたものに限定しない。
次に、 実際のレーザ出力をコントロールするために設定する制御パラ メータの設定画面例を図 8に示す。
図 8では、 設定するパルス幅に応じて指令パルスを間引く設定を変化 させるため、 間引き数を設定するパルス幅モードの項目を設けて、 設定 するパルス幅に応じて間引きを行わないショ一トモ一ド或いは間引きを 行うロングモードを設定する。
これに応じて、 先述のモードセレク ト信号が制御装置から間引き回路 へ出力され、 指令パルス群に対して間引きをおこなうか、 おこなわない かが選択される。
なお、 それらモードの切り替えは、 先述の通り、 設定されたパルス幅 によって制御装置 1が自動的に切り替えても良いため、 必ずしも設定項 目としても受ける必要はない。
本構成の場合、 制御装置から出力される指令パルス群の間引きの有無 によって自動的に供給電力のピーク出力が増減するため、 ピーク出力の 設定は一定値でもよいので、 ピーク出力の設定項目は必ずしも必要では ない。
ただし、 放電電圧の増減等によってレ一ザパルス出力エネルギーを微 調整する場合はこの限りではない。 本実施の形態によれば、 制御装置から出力された指令パルス群によつ て電源装置より供給されるパルス電力の交流成分を一定数一定間隔で間 引くことによって、 スイッチング回数を増やすことなく、 使用できるレ —ザ出力のパルス幅を大幅に伸ばすことができる。
また、 レーザパルス出力のピーク出力とパルス幅を同時にコントロ一 ルできるようにすることでパルスレーザ発振器の制御が従来よりも容易 となる効果を奏する。
また、 制御装置から出力された指令パルス群によって電源装置より供 給されるパルス電力の交流成分を間引く数を切り替える機能を付加する ことによって、 従来と同じ電源容量にて、 パルスレーザ発振器の使用範 囲を従来よりも拡大することができる効果を奏する。
また、 約 1 sから数十/ z sで使用する場合と、 供給するパルス電力 の交流成分を一定数一定間隔でパルスを間引くことによってスィッチン グ回数を増やすことなく数十 Sから数百 Sまでパルス幅を伸ばして 使用する場合とを、 加工条件に応じて切り替えることができる装置を備 えることによって加工可能範囲を従来よりも拡大することができる。 産業上の利用可能性
以上のように、 この発明に係るレーザ加工装置およびその制御方法は、 特に微細加工に用いられるのに適している。

Claims

請 求 の 範 囲
1 . レーザパルス出力を制御するための制御パラメ一夕設定に応じて 指令パルス群を出力する制御手段と、
この指令パルス群を入力し、 予め設定された設定値に基づき該指令パ ルス群のパルスを間引く間引き手段と、
この間引き手段から出力される指令パルス群に応じて負荷 t供給する パルス電力を発生させる電源手段と、
この電源手段より供給されたパルス電力により発生した放電によって、 放電空間に満たされたレーザ媒体を励起させてレ一ザ光を出力させる発 振器手段と、
を備えたレーザ加工装置。
2 . 間引き手段による指令パルス群の規則的な間引きにより、 電源手 段におけるィンバ一夕回路のスィツチング回数を変更することを特徴と する請求項 1に記載のレーザ加工装置。
3 . インバー夕回路のスイッチング周期を、 放電電力の立上り立下り 時定数及びレーザ出力の立下り時定数より早く設定することを特徴とす る請求項 2に記載のレーザ加工装置。
4 . 切り替え手段を備え、 間引き手段による制御手段から出力される 指令パルス群の間引きを設定することを特徴とする請求項 1乃至 3何れ かに記載のレーザ加工装置。
5 . レーザパルス出力を制御するための制御パラメ一夕設定に応じて 指令パルス群を出力し、 この指令パルス群に応じて負荷に供給するパル ス電力を発生させ、 前記パルス電力により発生した放電によって、 放電 空間に満たされたレーザ媒体を励起させてレーザ光を出力するレーザ加 ェ装置の制御方法において、
前記指令パルス群を規則的に間引くことにより、 前記パルス電力を発 生させる電源手段におけるインバ一夕回路のスィツチング回数を変更す ることを特徴とするレーザ加工装置の制御方法。 ·
PCT/JP2003/007574 2002-06-14 2003-06-13 レーザ加工装置及び該加工装置の制御方法 WO2003107496A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047020238A KR100698953B1 (ko) 2002-06-14 2003-06-13 레이저 가공장치 및 이 가공장치의 제어방법
US10/517,656 US7902482B2 (en) 2002-06-14 2003-06-13 Laser machining apparatus and control method for the apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002173679A JP3846573B2 (ja) 2002-06-14 2002-06-14 レーザ加工装置及び該加工装置の制御方法
JP2002-173679 2002-06-14

Publications (1)

Publication Number Publication Date
WO2003107496A1 true WO2003107496A1 (ja) 2003-12-24

Family

ID=29727931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007574 WO2003107496A1 (ja) 2002-06-14 2003-06-13 レーザ加工装置及び該加工装置の制御方法

Country Status (6)

Country Link
US (1) US7902482B2 (ja)
JP (1) JP3846573B2 (ja)
KR (1) KR100698953B1 (ja)
CN (1) CN100344033C (ja)
TW (1) TWI223916B (ja)
WO (1) WO2003107496A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE483542T1 (de) * 2005-08-01 2010-10-15 Agie Charmilles Sa Verfahren zum betreiben einer funkenerosionsmaschine und funkenerosionsmaschine.
US7244906B2 (en) * 2005-08-30 2007-07-17 Electro Scientific Industries, Inc. Energy monitoring or control of individual vias formed during laser micromachining
US8173931B2 (en) * 2008-06-13 2012-05-08 Electro Scientific Industries, Inc. Automatic recipe management for laser processing a work piece
JP4942710B2 (ja) * 2008-07-22 2012-05-30 三菱電機株式会社 ガスレーザ用電源装置
JP5550648B2 (ja) * 2009-07-27 2014-07-16 三菱電機株式会社 高周波電源装置
TWI393602B (zh) * 2010-08-04 2013-04-21 Hortek Crystal Co Ltd 雷射加工製程裝置
WO2012053297A1 (ja) * 2010-10-19 2012-04-26 三菱電機株式会社 レーザ加工機制御装置およびレーザ加工機制御方法
JP5734158B2 (ja) * 2011-10-19 2015-06-10 三菱電機株式会社 レーザ加工機用電源装置
DE102012002470A1 (de) * 2012-02-03 2013-08-08 Iai Industrial Systems B.V. CO2-Laser mit schneller Leistungssteuerung
JP6270820B2 (ja) * 2013-03-27 2018-01-31 国立大学法人九州大学 レーザアニール装置
KR101628196B1 (ko) * 2014-07-14 2016-06-09 한국원자력연구원 고에너지 레이저 시스템에서 주변기기 보호장치
EP3023073B1 (en) * 2014-11-24 2021-01-27 Fotona d.o.o. Laser system for tissue ablation
JP2018055864A (ja) * 2016-09-27 2018-04-05 住友重機械工業株式会社 電線およびレーザ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186378A (en) * 1981-05-11 1982-11-16 Mitsubishi Electric Corp Laser device
JP2003243749A (ja) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp レーザ電源装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128794A (en) * 1977-10-11 1978-12-05 The United States Of America As Represented By The United States Department Of Energy Interferometric correction system for a numerically controlled machine
JPS5878675U (ja) 1981-11-21 1983-05-27 日本赤外線工業株式会社 レ−ザ装置の電源装置
JPS58141689A (ja) * 1982-02-18 1983-08-23 Mitsubishi Electric Corp モ−タ制御装置
JPH0311904A (ja) * 1989-06-07 1991-01-21 Mitsubishi Electric Corp インバータの変調方法
JPH0522941A (ja) * 1991-07-05 1993-01-29 Hitachi Metals Ltd 高力率コンバータ
US5329215A (en) * 1993-02-25 1994-07-12 Ohio Electronic Engravers, Inc. Apparatus and method for driving a leadscrew
JPH07111427A (ja) * 1993-10-08 1995-04-25 Japan Radio Co Ltd 電子ボリューム
TW365559B (en) * 1997-03-21 1999-08-01 Mitsubishi Electric Corp Gas laser machining apparatus
JP2000126879A (ja) * 1998-10-26 2000-05-09 Matsushita Electric Ind Co Ltd レーザ加工装置およびその制御方法
JP2001086232A (ja) * 1999-09-10 2001-03-30 Toyo Commun Equip Co Ltd 携帯端末のバックライトの制御方法
CN1138284C (zh) * 2000-10-23 2004-02-11 中国科学院长春光学精密机械与物理研究所 片式电阻刻蚀的激光脉宽可调控制方法
JP3842665B2 (ja) 2002-02-15 2006-11-08 株式会社日本自動車部品総合研究所 ピエゾアクチュエータ制御装置およびそれを用いた燃料噴射制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186378A (en) * 1981-05-11 1982-11-16 Mitsubishi Electric Corp Laser device
JP2003243749A (ja) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp レーザ電源装置

Also Published As

Publication number Publication date
JP3846573B2 (ja) 2006-11-15
KR20050010904A (ko) 2005-01-28
US7902482B2 (en) 2011-03-08
TW200402916A (en) 2004-02-16
CN1659751A (zh) 2005-08-24
CN100344033C (zh) 2007-10-17
KR100698953B1 (ko) 2007-03-23
JP2004022696A (ja) 2004-01-22
US20060054602A1 (en) 2006-03-16
TWI223916B (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3846573B2 (ja) レーザ加工装置及び該加工装置の制御方法
TWI449321B (zh) 高頻率電源裝置
JPH0741955A (ja) マグネトロン発振出力制御装置
JP2003311407A (ja) 溶接機
JP3829233B2 (ja) 高周波電源の制御方法
JP4805205B2 (ja) 放電負荷用電源
JP5734158B2 (ja) レーザ加工機用電源装置
JP2000277840A (ja) パルスレーザ用の充放電回路
US4890216A (en) High frequency power unit for generating gas lasers
JPS625737B2 (ja)
JP2003321210A (ja) オゾン発生装置及びオゾン発生方法
JP2000068573A (ja) レーザ電源装置
JP2024093401A (ja) レーザ電源装置
JP2015115399A (ja) レーザ電源装置およびレーザ電源装置の制御方法
JP4909209B2 (ja) 放電管用電源装置
JPH0697857B2 (ja) レ−ザ用光源の電源装置
JP2844283B2 (ja) レーザ電源装置
JP3706161B2 (ja) ガスレーザー発振器の高周波電源装置
CN117040255A (zh) 电源装置及激光装置
RU2237955C2 (ru) Импульсно-периодический лазер на парах химических элементов с управляемыми параметрами генерации (варианты)
JP2000061636A (ja) 溶接用電源装置
JPH1126845A (ja) レーザ電源装置
JP2000349375A (ja) レーザ電源装置およびレーザ装置
JPH08242583A (ja) インバータの制御装置
JPS63154274A (ja) インバ−タ式抵抗溶接機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006054602

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10517656

Country of ref document: US

Ref document number: 1020047020238

Country of ref document: KR

Ref document number: 20038136880

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047020238

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10517656

Country of ref document: US