WO2003103085A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2003103085A1
WO2003103085A1 PCT/JP2003/006819 JP0306819W WO03103085A1 WO 2003103085 A1 WO2003103085 A1 WO 2003103085A1 JP 0306819 W JP0306819 W JP 0306819W WO 03103085 A1 WO03103085 A1 WO 03103085A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substrate
conductive
mass
electrolyte
Prior art date
Application number
PCT/JP2003/006819
Other languages
English (en)
French (fr)
Inventor
聡一 内田
小林 正明
錦谷 禎範
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to JP2004510062A priority Critical patent/JPWO2003103085A1/ja
Priority to EP03730713A priority patent/EP1511116A4/en
Publication of WO2003103085A1 publication Critical patent/WO2003103085A1/ja
Priority to US10/996,837 priority patent/US20050092359A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element suitable for photovoltaic applications such as a solar cell. [Background technology]
  • a photoelectric conversion element such as a so-called wet solar cell such as a dye-sensitized solar cell has a structure in which a working electrode on the photosensitive layer side and a counter electrode on the other side and an electrolyte is stored between the electrodes.
  • the counter electrode is an indispensable material for promptly proceeding the oxidation-reduction reaction, but has a disadvantage in that the metal is corroded by the electrolyte.
  • S N_ ⁇ 2 a transparent oxide conductive film-coated glass, such as F glass is generally used, in the case of using such a material, such as platinum on the surface in order to lower the activation energy of a redox reaction It is necessary to attach a noble metal exhibiting the catalytic activity. In order to deposit precious metals such as platinum, which exhibit catalytic activity, it is necessary to perform operations such as vacuum evaporation and sputtering, and large-scale equipment must be used. There are many issues that need to be solved.
  • porous activated carbon as a counter electrode for a photoelectric conversion device of a different type
  • H. Pettersson, T. Gruszecki Solar Energy Mater. Solar Cells, vol. 70, pp 203 (2001)
  • These methods have limitations in device fabrication, such as the necessity of separately providing a porous layer between the working electrode and the counter electrode, and the necessity of sealing in a state where the electrolyte is impregnated.
  • a method has been proposed in which conductive electrodes are mixed with a carbon material to produce a counter electrode by applying pressure, but this method has a low photoelectric conversion efficiency (H. Lindstrom, A. Holmberg). , E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, Nano Lett., Vol 1, pp 97 (2001).
  • the present invention has been made in view of such circumstances, and uses a novel counter electrode. Accordingly, it is an object of the present invention to provide a photoelectric conversion element having excellent performance and being easily manufactured.
  • the present inventors have intensively studied to solve the conventional problems as described above, and as a result, have completed the present invention.
  • the present invention relates to a photoelectric conversion element having a substrate and a counter electrode made of a conductive carbon layer formed on the substrate.
  • the present invention also relates to a photoelectric conversion device, wherein the substrate is a conductive substrate.
  • the present invention will be described in detail.
  • the counter electrode of the present invention comprises a substrate and a conductive carbon layer formed on the substrate.
  • the substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose.
  • the substrate may or may not be conductive, and in addition to metals such as gold and platinum, for example, colorless or colored glass, netted glass, glass block, and the like are used. Further, a colorless or colored resin having transparency may be used. Specific examples of these resins include polyesters such as polyethylene terephthalate, polyamides, polysulfones, polyethersulfones, polyetheretherketones, polyphenylenesulfides, polycarbonates, polyimides, and polymethylmetali- talides. Rate, polystyrene, senorelose triacetate, polymethylpentene and the like.
  • the substrate in the present invention has a smooth surface at room temperature, and the surface may be a flat or curved surface, or may be deformed by stress. Further, in order to impart conductivity to the substrate, a conductive film made of a metal thin film such as gold, silver, chromium, copper, or tungsten, or a metal oxide may be provided on the surface. Examples of metal oxides include, for example, indium tin oxide (ITO (In 2 ⁇ 3: Sn)) and fluorine doped Tin Oxide (FTO ( S n ⁇ 2 : F)), Aluminum doped Zinc Oxide (AZO (ZnO: A1)) or the like is preferably used.
  • ITO In 2 ⁇ 3: Sn
  • FTO fluorine doped Tin Oxide
  • AZO Zinc Oxide
  • the conductive film has a thickness of usually 10 nm to 10 ⁇ , preferably 100 nm to 2 ⁇ m, and a surface resistance (resistivity) of usually 0.5 to 500 QZs q. Preferably, it is 2 to 50 ⁇ sq.
  • These conductive films can be formed on a substrate by a known method such as a vacuum evaporation method, an ion plating method, a CVD method, an electron beam vacuum evaporation method, and a sputtering method.
  • the conductive carbon layer formed on the substrate may be any conductive carbon layer as long as the conductive carbon layer is disposed on the substrate or on a conductive film on the substrate, and the arrangement mode is not particularly limited. However, a method of arranging them on the entire surface of the substrate, a part of the substrate, for example, a mesh shape, a stripe shape, or the like can be used.
  • the coverage (area ratio) of the conductive carbon layer on the substrate is particularly limited.
  • the content is preferably 50% or more, more preferably 80% or more, and further preferably 90% or more.
  • the shape of the stripe and the shape of the mesh are not particularly limited, and various shapes using a straight line or a curved line are usually possible.
  • the thickness of the line and the size of the mesh are not particularly limited, and can be appropriately selected according to the type of the conductive material and the like.
  • the preferred line width is 1 ⁇ m to 10 mm, particularly preferably about 2 ⁇ m to 5 mm, and the interval is usually 1 ⁇ ! 110 cm, preferably about 2 ⁇ m to 5 cm.
  • the thickness of the conductive carbon layer is usually ⁇ ! Lmnx, preferably 2 m to 0.5 mm.
  • the conductivity (electrical conductivity) of the conductive carbon layer is usually 200 QZsq or less, preferably about 20 ⁇ / sq or less.
  • the conductive carbon material constituting the conductive carbon layer is not particularly limited as long as it has a conductivity suitable for the present invention. Examples thereof include graphite-graphite, glassy carbon, and ⁇ -carbon. Examples include cetylene black, ketjen black, carbon fiber, activated carbon, petroleum coatas, fullerenes such as C60 and C70, single- and multi-walled carbon nanotubes, and preferably graphite, And carbon fiber.
  • the shape of the conductive carbon material is not particularly limited as long as it finally forms a carbon layer, and the shape of the raw material may be any of powder, short fiber, long fiber, woven fabric, nonwoven fabric, and the like. It may be in a form.
  • the powder When powder is used, it is preferable that the powder has an appropriate specific surface area. It is preferably about 100 to 200 Om 2 ng, and more preferably about 300 to 1000 m 2 Z g. Further, the average particle size is desirably about 5 to 1,000 nm, preferably about 8 to 200 nm.
  • the conductive carbon layer in the present invention may be composed only of the conductive carbon material, but may contain other optional components as long as the object of the present invention is not impaired.
  • a binder or the like is also preferably used to improve conductivity between raw materials such as carbon powder, short fibers and long fibers.
  • the binder is not particularly limited as long as it is inert to the electrolyte after curing and does not electrolyze, and examples thereof include a polymer solid electrolyte, an epoxy resin, an acrylic resin, a melamine resin, a silicone resin, and polytetrafluoroethylene. Polystyrene, carboxymethylcellulose, polyvinylidene fluoride or their derivatives or mixtures are used.
  • the mixing ratio of the conductive carbon material // binder is usually in the range of 10/90 to 90 to 10, preferably 20/80 to 8020.
  • Other optional components include metal fine particles having a property of not being corroded by the electrolyte, and conductive oxide semiconductors such as ITO, FTO, and AZO.
  • the method for forming the conductive carbon layer is not particularly limited, and a known method can be employed.
  • a binder generally, the conductive carbon material and the binder are mixed to form a paste, and the surface of the substrate is screen-printed, flat-plate printed, gravure-printed, intaglio-printed, flexographic-printed, letterpress-printed.
  • Manufacturing by special printing a method in which grooves are formed in advance on a substrate, and the grooves are filled with a paste containing a mixture of a conductive material and a binder, and then excess paste is removed with a spatula or the like. Can be. After placing the paste on the board surface, heat For example, the conductivity and the adhesion may be improved.
  • infrared heating or the like may be used in addition to the open, the Matsufur furnace and the electric furnace.
  • the firing temperature varies depending on the paste and substrate material used, but is preferably 50 ° C to 700 ° C, more preferably 100 ° C to 600 ° C, and still more preferably 200 ° C to 500 ° C.
  • firing may be performed in a nitrogen atmosphere as necessary.
  • a method of laminating a foil film made of a conductive carbon material, a woven fabric, a nonwoven fabric, a felt, a paper-shaped material, or the like on a substrate may be used.
  • the photoelectric conversion element of the present invention is characterized by using the counter electrode thus obtained.
  • Such an element is basically formed of a transparent conductive substrate and formed on the substrate.
  • the photoelectric conversion layer (semiconductor layer) and the counter electrode are provided.
  • the photoelectric conversion layer and the counter substrate may be in direct contact with each other, but usually, an electrolyte layer is disposed between them.
  • an electrolyte layer is disposed between them.
  • the electrolyte is not particularly limited, and may be either a liquid system or a solid system, and preferably exhibit reversible electrochemical redox characteristics.
  • the electrolyte, ionic conductivity usually at room temperature 1 X 1 0- 7 S / cm or more, good Mashiku the 1 X 1 0- 6 SZc m or more, more preferably 1 X 1 0- 5 S / cm or more Is desirable.
  • the ionic conductivity can be obtained by a general method such as a complex impedance method.
  • the electrolyte in the present invention the diffusion coefficient of the oxidant 1 X 1 0_ 9 cm 2 Zs than on, preferably 1 X 1 0- 8 cm 2 Z s or more, more preferably 1 X 1 CI- 7 cm 2 It is desirable to show a value of / s or more.
  • the diffusion coefficient is an indicator of ionic conductivity, and can be determined by a general method such as constant potential current characteristic measurement and cyclic voltammogram measurement.
  • the thickness of the electrolyte layer is not particularly limited, but is preferably 1 im or more, more preferably 10 Aim or more, and preferably 3 mm or less, more preferably 1 mm or less.
  • the liquid electrolyte is not particularly limited, and is usually a solvent or a reversible electrode. It is composed of a substance exhibiting a chemical redox property (soluble in a solvent) and, if necessary, a supporting electrolyte as a basic component.
  • any solvent can be used as long as it is generally used for electrochemical cells and batteries.
  • solvent one kind may be used alone, or two or more kinds may be used in combination.
  • a substance exhibiting reversible electrochemical oxidation-reduction properties is usually a so-called redox material, but the type thereof is not particularly limited.
  • Such substances include, for example, phenicene, ⁇ -benzoquinone, 7,7,8,8-tetracyanoquinodimethane, ⁇ , ⁇ , ⁇ ′, ⁇ , -tetramethyl- ⁇ -phenylenediamine, tetrathiafulvalene , Thianthracene, ⁇ -toluylamine and the like.
  • redox material only one of the oxidized form and the reduced form may be used, or the oxidized form and the reduced form may be mixed at an appropriate molar ratio and added. Further, these redox couples may be added so as to exhibit electrochemical response.
  • metallocene salts such as iodine
  • halogens such as iodine, bromine and chlorine can also be used.
  • Examples of the substance exhibiting reversible electrochemical oxidation-reduction properties include a salt having a counter-one (X—) selected from halogen ions and SCN—. Specifically, (CH 3 ) 4 N + X—, (C 2 H 5 ) 4 N + X, (n—C 4 H 9 ) 4 N + X—, and
  • Quaternary ammonium salts such as (CH 3 ) 4 P + X—, (C 2 H 5 ) 4 P + X—, (C 3 H 7 ) 4 P + X—, (C 4 H 9 ) 4 P + And a phosphonium salt such as X—.
  • the redox normal-temperature molten salt is a salt composed of an ion pair that is molten at room temperature consisting of only ion pairs containing no solvent component (that is, liquid), and usually has a melting point of 20 ° C. or less.
  • a salt composed of an ion pair that is liquid at a temperature exceeding 20 ° C. and capable of performing a reversible electrochemical redox reaction is a salt composed of an ion pair that is molten at room temperature consisting of only ion pairs containing no solvent component (that is, liquid), and usually has a melting point of 20 ° C. or less.
  • a salt composed of an ion pair that is liquid at a temperature exceeding 20 ° C. and capable of performing a reversible electrochemical redox reaction is a salt composed of an ion pair that is molten at room temperature consisting of only ion pairs containing no solvent component (that is, liquid), and usually has a melting point of 20 ° C. or
  • One of the redox room-temperature molten salts may be used alone, or two or more may be used in combination.
  • Examples of the redox room-temperature molten salt include the following.
  • R represents an alkyl group having 2 to 20, preferably 2 to 10 carbon atoms.
  • X ′ represents a counter-one, specifically, a halogen ion or SCN—.
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms (preferably a methyl group or an ethyl group), or an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 13 carbon atoms (preferably Represents a benzyl group), and may be the same or different from each other.
  • X— represents a counter ion, and specifically represents a halogen ion or SCN—.
  • R 1 R 2 , R 3 , and R 4 are each an alkyl group having 1 or more carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms (such as a phenyl group), or A methoxy group, etc., which may be the same as or different from each other, and X— represents a counter anion, specifically a halogen ion or SCN—.
  • the amount of the substance exhibiting reversible electrochemical oxidation-reduction properties is not particularly limited as long as it is dissolved in the solvent, but is usually 1% by mass to 50% by mass relative to the solvent. Is 3% by mass to 30% by mass. / 0 is desirable.
  • salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; and quaternary phosphonium salts.
  • inorganic ionic salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; and quaternary phosphonium salts.
  • Li salts are preferred.
  • salts include C 10 BFCF q SO (CF 3 S 0 2 ) (C 2 F R S 0 2 ) 2 N, PFA s F CH COO—, CH 3 (C 6 H
  • the acids are not particularly limited, and inorganic acids, organic acids, and the like can be used, and specific examples thereof include sulfuric acid, hydrochloric acid, phosphoric acids, sulfonic acids, and carboxylic acids.
  • the alkali metal is not particularly limited, and any of sodium hydroxide, lithium hydroxide, and lithium hydroxide can be used.
  • the room temperature molten salt is not particularly limited, but the room temperature molten salt in the present invention is a salt consisting of an ion pair that is molten at room temperature consisting of only an ion pair containing no solvent component (that is, a liquid state). And usually a salt comprising an ion pair having a melting point of 20 ° C or less and being liquid at a temperature exceeding 20 ° C.
  • One of the room-temperature molten salts can be used alone, or a mixture of two or more can be used.
  • room temperature molten salt examples include, for example, the following.
  • R represents an alkyl group having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms.
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms (preferably a methyl group or an ethyl group), or an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 13 carbon atoms (preferably base shows a Njiru group), may be the same or different from each other,
  • X is C 1 0 4 -., BF 4 _, (CF 3 S 0 2) 2 N -, (C 2 F 5 SO 2) Anion selected from 2 N-, PF 6- , As F 6- , CH 3 COO-, CH 3 (C 6 H 4 ) S 0 3 _, and (C 2 F 5 S 0 2 ) 3 C Represents.
  • R 2 , R 3 , and R 4 are each an alkyl group having 1 or more carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms (such as a phenyl group), or methoxymethyl).
  • . group indicates etc., may be the same or different from each other,
  • X is C 1 O 4 _, BF 4 -, (CF 3 S_ ⁇ 2) 2 N -, (C 2 F 5 S0 2) 2 N -, PF 6- , As F 6- , CH 3 COO—, CH 3 (C 6 H 4 ) S 0 3 —, and (C 2 F 5 S0 2 ) 3 C—representing the anion selected from the forces.)
  • the amount of the supporting electrolyte used is not particularly limited and is optional, but is usually 0.1 mass in the electrolyte. /.
  • the content is preferably 1% by mass or more, more preferably 10% by mass or more, and 70% by mass or less, preferably 60% by mass or less, more preferably 50% by mass or less.
  • the electrolyte used in the present invention may be a liquid system as described above, but a solid polymer electrolyte is particularly preferable from the viewpoint that all solidification is possible.
  • High molecular JP03 / 06819 Particularly preferred as solid electrolytes are (a) a polymer matrix (component (a)) and (c) a substance exhibiting at least (c) a reversible electrochemical redox characteristic (component (c) And (b) optionally further containing a plasticizer (component (b)).
  • other optional components such as (d) the above-mentioned supporting electrolyte and (e) room-temperature molten salt may be further contained, if desired.
  • the component (b), or the component (b) and the component (c), or a further optional component is held in a polymer matrix to form a solid state or a gel state.
  • a material that can be used as a polymer matrix includes a polymer matrix alone, a solid state or a gel state formed by the addition of a plasticizer, the addition of a supporting electrolyte, or the addition of a plasticizer and a supporting electrolyte.
  • a plasticizer for polymer a plasticizer alone, a solid state or a gel state formed by the addition of a plasticizer, the addition of a supporting electrolyte, or the addition of a plasticizer and a supporting electrolyte.
  • Examples of the polymer compound exhibiting the properties as the polymer matrix include hexafluoropropylene, tetrafluoroethylene, ethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, bilidene chloride, acrylic acid, methacrylic acid, and methylatari. And high molecular compounds obtained by polymerizing or copolymerizing monomers such as acrylate, ethyl acrylate, methionyl methacrylate, styrene, and bilidene fluoride. These polymer compounds may be used alone or as a mixture. Among these, a polyvinylidene fluoride polymer compound is particularly preferred.
  • polyvinylidene fluoride-based polymer compound examples include a homopolymer of vinylidene fluoride and a copolymer of vinylidene fluoride and another polymerizable monomer, preferably a radical polymerizable monomer.
  • polymerizable monomers to be copolymerized with fusibinylidene include hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, and acrylonitrile.
  • Vinylidene chloride acrylic acid, methacrylic acid, methyl acrylate, ethino acrylate, methyl methacrylate, and styrene.
  • copolymerizable monomers are preferably 1 to 5% Omo 1% based on the total amount of the monomers. Alternatively, it can be used in the range of 1 to 25 mo 1%.
  • Hexafluoropropylene is preferably used as the copolymerizable monomer.
  • a vinylidene fluoride-hexafluoropropylene copolymer obtained by copolymerizing 1 to 25 mo 1% of hexafluoropropylene with vinylidene fluoride is preferably used as an ion conductive film having a high molecular weight matrix. be able to.
  • two or more kinds of vinylidene fluoride-hexafluoropropylene copolymers having different copolymerization ratios may be mixed and used.
  • two or more of these copolymerizable monomers can be used for copolymerization with bilidene fluoride.
  • bilidene fluoride for example, bi-lidene fluoride + hexafluoropropylene + tetrafluoroethylene, fusidani bi-lidene 10-hexaf ore propylene + acryloleic acid, vinylidene fluoride + tetrafluoroethylene + ethylene, bi-lidene fluoride + tetrafluoroethylene
  • a copolymer obtained by copolymerizing with a combination of ethylene and propylene can also be used.
  • a poly (vinylidene fluoride) -based polymer compound as a polymer matrix a polyacrylic acid-based polymer compound, a polyatalylate-based polymer compound, a polymethacrylic acid-based polymer compound, and a polymethacrylate are used.
  • One or more polymer compounds selected from the group consisting of a polymer compound, a polyacrylonitrile polymer compound, and a polyether polymer compound can be used as a mixture.
  • one or more copolymers obtained by copolymerizing two or more monomers of the above-mentioned high molecular compounds with a poly (vinylidene fluoride) -based molecular compound can be used.
  • the blending ratio of the homopolymer or copolymer is usually preferably 200 parts by mass or less based on 100 parts by mass of the polyvinylidene fluoride-based polymer compound.
  • the weight average molecular weight of the polyvinylidene fluoride polymer compound used in the present invention is usually from 10,000 to 2,000, preferably from 100,000 to 100,000. Those in the range of 1, 000, 0000 can be suitably used.
  • the plasticizer (component (b)) acts as a solvent for substances exhibiting reversible electrochemical redox properties. Such plasticizers are commonly used in electrochemical cells and batteries. Any solvent can be used as long as it can be used as an electrolyte solvent. Specific examples thereof include various solvents exemplified for the liquid electrolyte.
  • Room temperature molten salts can also be used.
  • the room-temperature molten salt is a salt composed of an ion pair that is molten at room temperature and is composed of only an ion pair containing no solvent component (that is, a liquid), and usually has a melting point of 20 ° C or less. Yes, it indicates a salt composed of an ion pair that is liquid at a temperature exceeding 20 ° C.
  • the room temperature molten salt include, for example, the following.
  • R represents an alkyl group having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms
  • X ′ represents a halogen ion or SCN-.
  • R 1 and R 2 each represent an alkyl group having 1 to 10 carbon atoms (preferably a methyl group or an ethyl group), or an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 13 carbon atoms ( (Preferably a benzyl group), which may be the same or different, and X— represents a halogen ion or SCN—.
  • R 2 , R 3 , and R 4 each have 1 or more carbon atoms, preferably 1 to A 6-alkyl group, a C6-C12 aryl group (such as a phenyl group), or a methoxymethyl group, which may be the same or different;
  • X represents a halogen ion or SCN.
  • One of the plasticizers may be used alone, or two or more plasticizers may be used in combination.
  • the amount of the plasticizer (component (b)) used is not particularly limited, but is usually 20% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more in the ion conductive material. It can be contained in an amount of up to 95% by mass, preferably up to 95% by mass, more preferably up to 90% by mass.
  • the substance (c) used in the present invention that exhibits reversible electrochemical redox properties will be described.
  • Component (c) is a compound capable of performing the above-mentioned reversible electrochemical oxidation-reduction reaction, and is generally called a redox material.
  • Examples of such compounds include, but are not limited to, ferrocene, p-benzoquinone, 7,7,8,8-tetracyanoquinodimethane, N, N, ⁇ ', ⁇ , —Tetramethyl- ⁇ -phenylenediamine, tetrathiafulvalene, anthracene, ⁇ -tonoleinoleamine and the like can be used.
  • Br 2 and complex salts such as tetraalkylammonium bromide, viridinium bromide, sodium salt, ferric cyanate and ferricyanate, sodium polysulfide, and anolequinolecholine / leanorequinole resin Feed, hydroquinone-quinone, viologen and the like can be used.
  • the redox material only one of the oxidized form and the reduced form may be used, or the oxidized form and the reduced form may be mixed at an appropriate molar ratio and added.
  • the component (c) of the present invention includes a salt having a counter anion (X—) selected from a halogen ion and SCN.
  • X— counter anion
  • SCN a halogen ion and SCN.
  • quaternary ann As JP03 / 06 819 Moyuumu salt specifically, (CH 3) 4 NX one, (C 2 H 5) 4 NX-, (n- C 4 H.) 4 NX-, furthermore,
  • the redox-type room-temperature molten salt is a salt composed of an ion pair that is molten at room temperature consisting of only ion pairs containing no solvent component (that is, a liquid state), and usually has a melting point of 20 ° C or less.
  • a salt consisting of an ion pair that is liquid at a temperature exceeding 20 ° C and capable of performing a reversible electrochemical oxidation-reduction reaction.
  • the component (b) may be used in either form or not.
  • One of the redox room-temperature molten salts may be used alone, or two or more may be used in combination.
  • Examples of the redox room-temperature molten salt include the following.
  • R represents an alkyl group having 2 to 20, preferably 2 to 10 carbon atoms
  • X represents a halogen ion or SCN.
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms (preferably a methyl group or an ethyl group), or an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 13 carbon atoms (preferably Represents a benzyl group), which may be the same or different.
  • X represents a halogen ion or SCN.
  • R 2 , R 3 , and R 4 each represent an alkyl group having 1 or more carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms (such as a phenyl group), or methoxymethyl).
  • X represents a halogen ion or SCN.
  • the amount of the substance (component (c)) exhibiting reversible electrochemical redox properties is not particularly limited, and is usually 0.1 mass in the solid polymer electrolyte. /. It is preferably at least 1% by mass, more preferably at least 10% by mass, and 70% by mass. / 0 or less, preferably 60% by mass or less, more preferably 50% by mass or less.
  • the component (c) When the component (c) is used in combination with the component (b), it is desirable that the component (c) has a mixing ratio that dissolves in the component (b) and does not cause precipitation when the polymer solid electrolyte is used.
  • the ratio of component (c) / component (b) is in the range of 0.01 to 0.5, more preferably 0.03 to 0.3, by mass.
  • component (a) preferably component (a) / (component (b) + component (c)) 03 06819
  • the mass ratio is desirably in the range of 120, more preferably 1/102.
  • the amount of the supporting electrolyte (component (d)) used in the solid polymer electrolyte is not particularly limited and is optional, but is usually 0.1% by mass or more, preferably 1% by mass in the solid polymer electrolyte. Above, more preferably 10 mass. / 0 and 70% by mass or less, preferably 60% by mass or less, more preferably 50% by mass or less.
  • the solid polymer electrolyte may further contain other components.
  • Other components include an ultraviolet absorber, an amine compound and the like.
  • the ultraviolet absorber that can be used is not particularly limited, but typical examples include an organic ultraviolet absorber such as a compound having a benzotriazole skeleton and a compound having a benzophenone skeleton.
  • a compound represented by the following general formula (1) is preferably exemplified.
  • R 8 1 is a hydrogen atom, a halogen atom or a carbon number of 1-1 0, preferably an alkyl group of 1 to 6.
  • the halogen atom include fluorine, chlorine, bromine, and iodine.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a t-butyl group, and a cyclohexyl group.
  • the substitution position of R 8 1 is a 4- or 5-position of the benzotriazole ring, a halogen atom Contact Yopi the alkyl group position to the normal position 4.
  • R 8 2 is a hydrogen atom or a carbon number of 1-1 0, preferably an 1-6 alkylene Le group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, Examples thereof include an i-propyl group, a butyl group, a t-butyl group, and a cyclohexyl group.
  • R 83 represents an alkylene group or an alkylidene group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, and a propylene group.
  • the alkylidene group include an ethylidene group and a propylidene group.
  • Specific examples of the compound represented by the general formula (1) include 3- (5-chloro-2H-benzotriazo-1-yl-2-yl) -15- (1,1-dimethylethynole) -14-hydroxy Benzenepropanoic acid, 3- (2H-Venzotriazole-2-yl) -15- (1,1-dimethylethyl) -14-Hydroxy-benzenebenzeneeanoic acid, 3- (2H-Venzotria) Zone 1 2-hydroxy) 4-hydroxybenzeneethaneanoic acid, 3-
  • Examples of the compound having a benzophenone skeleton include compounds represented by the following general formula (2):
  • R 92 , R 93 , R 95 , R 96 , R 98 , and R 99 are the same or different from each other, and are a hydroxy group, a carbon atom of 1 To 10, preferably 1 to 6, alkyl or alkoxy groups.
  • alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a t-butyl group, and a cyclohexyl group.
  • alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, and a butoxy group.
  • R 91 , R 94 , and R 97 represent an alkylene group or an alkylidene group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, and a propylene group.
  • Examples of the alkylidene group include an ethylidene group and a propylidene group.
  • pl, p2, p3, ql, q2, and q3 each independently represent an integer of 0 to 3.
  • Preferred examples of the compound having a benzophenone skeleton represented by the above general formulas (2) to (4) include 2-hydroxy-14-methoxybenzophenone-15-carboxylic acid and 2,2 ′ 4-hydroxybenzophenone, 4-hydroxybenzophenone, 4- (2-hydroxybenzoinole) -1,3-hydroxybenzenepropanoic acid, 2,4-dihydroxybenzophenone, 2-hydroxy 4-Methoxybenzophenone, 2-hydroxy 4-Methoxybenzophenone-15-sulfonic acid, 2-Hyd mouth 4-41n-Otoxybenzophenone, 2,2'-Dihydroxy 4 , 4 'dimethoxybenzophenone, 2,2', 4,4-tetrahydroxybenzophenone, 2-hydroxy-4-methoxy2, one-stroke norreoxybenzophenone, and the like.
  • UV absorbers are optional, and the amount used is also particularly limited. If it is used, it is contained in the electrolyte in an amount of 0.1% by mass or more, preferably 1% by mass or more, and 20% by mass or less, preferably 10% by mass or less. It is desirable to have.
  • the amine compound that can be contained in the ion conductive film of the present invention is not particularly limited, and various aliphatic amines and aromatic amines are used. Examples thereof include pyridine derivatives, biviridine derivatives, and quinoline derivatives. It is mentioned as a typical thing. The addition of these amine compounds is expected to improve the open circuit voltage. Specific examples of these compounds include 4-t-butyl-pyridine, quinoline, isoquinoline, and the like.
  • the electrolyte may be manufactured as a redox electrolyte film, and the method will be described below.
  • these polymer solid electrolytes can be obtained by forming a mixture comprising the components (a) and (c) and optional components to be mixed into a film by a known method.
  • the molding method in this case is not particularly limited, and examples thereof include extrusion molding, a method of obtaining a film state by a casting method, spin coating, dip coating, injection, and impregnation.
  • Extrusion molding can be carried out by a conventional method. After the mixture is heated and melted, a film is molded.
  • the mixture can be further adjusted in viscosity with an appropriate diluent, applied by a usual coater used in the casting method, and dried to form a film.
  • a coater a doctor coater, a blade coater, a rod coater, a knife coater, a Rino Kushirono recorder, a gravure coater, a spray coater, and a curtain coater can be used, and can be selectively used depending on viscosity and film thickness.
  • a film can be formed by further adjusting the viscosity of the mixture with a suitable diluent, applying the mixture using a commercially available spin coater, and drying.
  • the semiconductor layer used is not particularly limited, for example, B i 2 S 3, C d S, C d S e, C dT e, Cu I n S 2, C u I n S e 2, F e 2 0 3, G a P, G aA s, I n P, Nb 2 0 5, P b S, S i, S n 0 2, T i 0 2, WO 3,
  • Examples include a layer composed of Zn0, ZnS, and the like, and a combination of a plurality of these layers may be used.
  • the semiconductor used in the present invention may be single crystal or polycrystal. As a crystal system, an anatase type, a rutile type, a brookite type and the like are mainly used, and an anatase type is preferable.
  • a known method can be used for forming the semiconductor layer.
  • the semiconductor layer can be obtained by applying a nanoparticle dispersion liquid, a sol solution, or the like of the semiconductor on a substrate by a known method.
  • the coating method in this case is not particularly limited, and includes a method of obtaining a thin film state by a casting method, a spin coating method, a dip coating method, a bar coating method, and various printing methods such as a screen printing method. be able to.
  • the thickness of the semiconductor layer is arbitrary, but is 0.5 m or more and 50 ⁇ m or less, preferably 1 im or more and 20 ⁇ m or less.
  • Various dyes can be adsorbed or contained in the semiconductor layer for the purpose of improving the light absorption efficiency of the semiconductor layer.
  • the dye used in the present invention is not particularly limited as long as it improves the light absorption efficiency of the semiconductor layer.
  • one or more kinds of various metal complex dyes and organic dyes are used. Can be.
  • a carboxyl group, a hydroxyl group, a sulfonyl group, a phosphonyl group, a carboxylalkyl group, a hydroxyalkyl group, a sulfonylalkyl group, a phosphoellalkyl group are added to the dye molecule.
  • Those having a functional group such as are preferably used.
  • Metal complex dyes include ruthenium, osmium, iron, cobalt, and zinc complexes Metal phthalocyanine, chlorophyll and the like.
  • X represents a monovalent aion, but two Xs may be independent or cross-linked.
  • X represents a monovalent aion, but two Xs may be independent or cross-linked.
  • the following are exemplified.
  • X represents a monovalent anion.
  • t a monovalent anion.
  • Y is a monovalent anion, halogen ion, SCN-, CIOBF
  • Z is an atomic group having an unshared electron pair, and two Zs may be independent or may be bridged.
  • two Zs may be independent or may be bridged.
  • Y is a monovalent anion, halogen ion, S CN-, C 1 O B F
  • organic dye a cyanine dye, a hemicyanine dye, a merocyanine dye, a xanthene dye, a triphenylmethane dye, and a metal-free phthalocyanine dye can be used.
  • Examples of the organic dye used in the present invention include the following.
  • NaOOC COONa As a method for causing the dye to be adsorbed on the semiconductor layer, a method in which a solution in which the dye is dissolved in a solvent is applied onto the semiconductor layer by spray coating / spin coating or the like, followed by drying. In this case, the substrate may be heated to an appropriate temperature. Alternatively, a method in which a semiconductor layer is immersed in a solution and adsorbed can be used. The immersion time is not particularly limited as long as the dye is sufficiently adsorbed, but is preferably 1 to 30 hours, particularly preferably 5 to 20 hours. In addition, the solvent and the substrate may be heated during the immersion as needed.
  • the concentration of the dye in a solution is preferably 1 to: L0OmMZL, and preferably about 10 to 50OmMZL.
  • the solvent used is not particularly limited as long as it dissolves the dye and does not dissolve the semiconductor layer.
  • Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol Such as anolecol, acetonitrile, propio-tolyl, methoxypropio-tolyl, glutaronitrile, etc., benzene, tonolene, o-xylene, m-xylene, p-xylene, pentane, heptane, hexane, and sic Mouth hexane, heptane, acetone, methyl ethyl ketone, methyl ethyl ketone, ketones such as 2-butanone, ethyl ether, tetra
  • the transparent conductive substrate is usually manufactured by laminating a transparent electrode layer on a transparent substrate.
  • the transparent substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose.
  • colorless or colored glass, netted glass, glass block, and the like are used.
  • a colorless or colored resin having transparency may be used.
  • polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, polymethylpentene And the like.
  • the term “transparent” in the present invention means having a transmittance of 10 to 100%
  • the substrate according to the present invention which is PT / parent / note, has a smooth surface at room temperature, and the surface may be flat or curved, or may be deformed by stress.
  • the transparent conductive film forming the conductive layer of the electrode is not particularly limited as long as the object of the present invention is achieved.
  • the transparent conductive film may be formed of a metal thin film such as gold, silver, chromium, copper, tungsten, or a metal oxide.
  • metal oxides include, for example, tin oxide or zinc oxide, indium tin oxide (ITO (In 2 O 3 : Sn)) in which a small amount of another metal element is doped, and fluorine doped tin oxide (FTO (sn 0 2: F)), Aluminum doped Zinc Oxide (AZO (Z n O: A 1)) or the like is used as a preferable.
  • the film thickness is usually from 10 nm to 10 ⁇ ⁇ , preferably from 100 nm to 2.
  • the surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention, but is usually 0.5 to 500 Q / sq, preferably 2 to 50 ⁇ / sq.
  • a photovoltaic element having a cross section shown in FIG. 1 can be preferably mentioned.
  • This device has a substrate A provided with a semiconductor layer (titania layer and dye layer) on a transparent substrate, and a conductive counter electrode (substrate B) having a conductive carbon layer formed on the substrate. . The gap between them is filled with electrolyte, and the periphery is sealed with a sealing material.
  • a lead wire is connected to a conductive portion of each substrate to extract an electromotive force.
  • the method for producing the photoelectric conversion element of the present invention is not particularly limited, but usually, the substrate A, the electrolyte, and the substrate B are laminated, the peripheral portion is appropriately sealed, and the substrate A and the substrate B are opposed at a predetermined interval. Thereafter, it can be easily manufactured by a known method such as putting an electrolyte in the gap.
  • the distance between the substrates is usually at least 0.1 im, preferably at least 1 im, and the upper limit is usually at most 1 mm, preferably at most 0.5 mm.
  • a photoelectric conversion element having good durability can be manufactured more safely. It can be provided at a low cost of material and production cost, and is suitable as a solar cell element.
  • Acrylic thermosetting resin (trade name “Ataridic”: manufactured by Dainippon Ink and Chemicals, Inc.) 10 g and melamine resin (trade name “Vancemin”: manufactured by Harima Chemicals) 2.2 g of graphite (product) (US SP: manufactured by Nippon Graphite Shoji Co., Ltd.) 12 g was added, and 24 g of ethylene glycol mono-n-butyl ether was added and mixed to prepare a conductive base.
  • melamine resin trade name “Vancemin”: manufactured by Harima Chemicals
  • the conductive paste was bar-coated on almost the entire surface of a 5 cm square glass substrate and cured by heating at 160 ° C. for 0.5 hours. Then, it was baked at 500 ° C for 3 hours in a nitrogen atmosphere to obtain a counter electrode having a conductive carbon layer.
  • the thickness of the carbon layer was 50 m, and the surface resistance of the carbon layer of the obtained counter electrode was 50 ⁇ / sq.
  • a solution of propylene carbonate containing 3mo 1 ZL of lithium iodide and 0.03mol ZL of iodine was impregnated by capillary action, and the periphery was sealed with an epoxy adhesive. A lead wire was connected to the counter electrode.
  • the cells obtained in this way were irradiated with simulated sunlight, and the current-voltage characteristics were measured. As shown in Fig. 2, good photoelectric conversion characteristics were obtained.
  • Acryl-based thermosetting resin (trade name “Acryl-G”: Honey Kasei Co., Ltd.) 48 g and melamine resin (trade name “Nikki Rack SM55 1j: Sanwa Chemical Co., Ltd.”) 10 g Black (trade name “ECP 600 JD”: manufactured by Mitsubishi Chemical Corporation) was added, and 80 g of ethylene glycolone mono-n-butyl ether was added and mixed to prepare a conductive paste.
  • the conductive paste was overcoated on almost the entire surface of a 5 cm square glass substrate, and cured by heating at 160 ° for 0.5 hour. Then, it was baked at 500 ° C. for 3 hours in a nitrogen atmosphere to obtain a counter electrode having a conductive carbon layer.
  • the thickness of the carbon layer was 50 ⁇ , and the surface resistance of the carbon layer of the obtained counter electrode was measured to be 55 ⁇ / sq.
  • the cell obtained in this way was irradiated with simulated sunlight, and the current-voltage characteristics were measured. As shown in FIG. 3, good photoelectric conversion characteristics were obtained.
  • Ketjen Black product name "ECP 600 JD”: manufactured by Mitsubishi Chemical Corporation
  • silicone-based thermosetting resin product name "RZ-7705": manufactured by Nippon Yuka Co., Ltd.
  • the conductive paste was bar-coated on almost the entire surface of a 5 cm square glass substrate, and was cured by heating at 160 for 0.5 hour. Then, it was baked at 500 ° C. for 3 hours in a nitrogen atmosphere to obtain a counter electrode having a conductive carbon layer.
  • the thickness of the carbon layer was 50 ⁇ , and the surface resistance of the carbon layer of the obtained counter electrode was measured to be 35 ⁇ / sq.
  • the cell thus obtained was irradiated with pseudo sunlight and the current-voltage characteristics were measured. As shown in FIG. 4, good photoelectric conversion characteristics were obtained.
  • FIG. 1 is an example of a cross section of a photoelectric conversion element.
  • FIG. 2 is a measurement diagram of current-voltage characteristics of the photoelectric conversion element obtained in Example 1.
  • FIG. 3 is a measurement diagram of the current-voltage characteristics of the photoelectric conversion element obtained in Example 2.
  • FIG. 4 is a measurement diagram of the current-voltage characteristics of the photoelectric conversion element obtained in Example 3.

Abstract

透明導電性基板上に形成された半導体層、電解質層、および対向電極から少なくとも構成される光電変換素子において、対向電極として、基板上に形成された導電性カーボン層を用いることで、性能に優れ、かつ容易に製造される光電変換素子が提供される。

Description

明 細 書 光 電 変 換 素 子
[技術分野]
本発明は、 太陽電池などの光発電用途に好適な光電変換素子に関する。 [背景技術]
色素増感型太陽電池などの、 いわゆる湿式太陽電池などの光電変換素子は、 一 方に感光層側の作用電極、 他方に対向電極を有し、 その電極間に電解質を蓄えた 構造を有する。 このような光発電素子においては、 対向電極は酸化還元反応を速 やかに進行させるために必須の材料であるが、 金属は電解質に腐食される点で難 点がある。 また、 S n〇2 : Fガラスなどの透明酸化物導電膜付きガラスなどが 一般に用いられるが、 そのような材料を用いた場合には、 レドックス反応の活性 化エネルギーを引き下げるために表面に白金等の触媒活性を示す貴金属を付着さ せるなどする必要がある。 し力 し、 白金等の触媒活性を示す貴金属などを付着さ せるためには、 真空蒸着やスパッタリング等の操作が必要であり、 大がかりな装 置を用いなければならず、 製造効率や歩留まりなど工業的に解決すべき課題が多 レ、。
一方、 これらと異なるタイプの光電変換素子用対向電極として、 多孔質活性炭 を用いることが提案されている (H. Pettersson, T. Gruszecki, Solar Energy Mater. Solar Cells, vol. 70, pp 203 (2001) · )。 これらの方法は、 作用電極と 対向電極の間に多孔質層を別途設ける必要があり、 また、 電解液を染み込ませた 状態で封止しなければならないなど、 素子作製上の制約があった。 また導電性微 粒子とカーボン材料を混合し、 圧力をかけて対向電極を作製する方法が提案され ているが、 この方法では、 光電変換効率が低いものであった (H. Lindstrom, A. Holmberg, E. Magnusson, S. - E. Lindquist, L. Malmqvist, A. Hagfeldt, Nano Lett., vol 1, pp 97 (2001) . )。
本発明はこのような実状に鑑み成されたものであり、 新規な対向電極を用いる ことで、 性能に優れ、 かつ容易に製造される光電変換素子を提供することを目的 とする。
[発明の開示]
本発明者らは上記のような従来の問題点を解決すべく鋭意研究を重ねた結果、 本発明を完成するに至った。
すなわち、 本発明は、 基板おょぴ該基板上に形成された導電性カーボン層から なる対向電極を有することを特徴とする光電変換素子に関する。
また、 本発明は、 前記基板が導電性基板であることを特徴とする光電変換素子 に関する。 以下、 本発明について詳細に説明する。
本発明の対向電極は、 基板おょぴ該基板上に形成された導電性カーボン層から 構成される。
基板としては、 特に限定されず、 材質、 厚さ、 寸法、 形状等は目的に応じて適 宜選択することができる。 基板には導電性があっても無くてもよく、 金、 白金な どの金属のほか、 例えば無色あるいは有色ガラス、 網入りガラス、 ガラスプロッ ク等が用いられる。 また、 無色あるいは有色の透明性を有する樹脂でも良い。 こ れらの樹脂としては、 具体的には、 ポリエチレンテレフタレートなどのポリエス テル、 ポリアミ ド、 ポリスルホン、 ポリエーテルサルホン、 ポリエーテルエーテ ルケトン、 ポリフエ二レンサルファイ ド、 ポリカーボネート、 ポリイミ ド、 ポリ メチルメタタリレート、 ポリスチレン、 トリ酢酸セノレロース、 ポリメチルペンテ ンなどが挙げられる。 なお、 本発明における基板とは、 常温において平滑な面を 有するものであり、 その面は平面あるいは曲面であってもよく、 また応力によつ て変形するものであってもよい。 また、 基板に導電性を付与するために、 表面に は、 例えば金、 銀、 クロム、 銅、 タングステンなどの金属薄膜、 金属酸化物から なる導電膜を配しても良い。 金属酸化物としては、 例えば、 錫や亜鉛などの金属 酸化物に、 他の金属元素を微量ドープした Indium Tin Oxide ( I T O ( I n 2〇 3 : S n ) )、 Fluorine doped Tin Oxide ( F T O ( S n〇2 : F ) )、 Aluminum doped Zinc Oxide (AZO (Z n O : A 1 )) などが好適なものとして用いられる。 導電膜としては、 通常 1 0 nm〜 1 0 μπι、 好ましくは 1 00 nm〜 2 μ mの 膜厚であり、 また、 表面抵抗 (抵抗率) は、 通常、 0. 5〜500 QZs q、 好 ましくは 2〜50 ΩΖ s qである。 これらの導電膜は、 真空蒸着法、 イオンプレ 一ティング法、 CVD法、 電子ビーム真空蒸着法、 スパッタリング法等の公知の 方法で基板上に作製することができる。
前記基板上に形成される導電性カーボン層としては、 導電性カーボン層が前記 基板上または前記基板上の導電膜上に配置されていれば良く、 その配置様式は特 に制限されることはないが、 基板の全面、 基板の一部、 例えば、 網目状、 ストラ ィプ状などに配置する方法を挙げることもできる。
基板の一部に導電性カーボン層を配置する場合は、 基板として導電性のものを 用いることが望ましく、 また、 この場合において、 基板に対する導電性カーボン 層の被覆率 (面積割合) は、 特に限定されないが、 導電性カーボン層の効果を十 分に発揮する観点から、 50%以上が好ましく、 より好ましくは 80%以上、 さ らに好ましくは 90%以上であることが望ましい。また、前記ストライプの形状、 網目の形状も特に制限されず、 通常直線、 曲線を使用した種々の形状が可能であ る。 線の太さ、 網目の大きさは特に制限されず、 導電性材料の種類等に応じて適 宜選択できる。 好ましい線の幅としては、 1 μ m〜 1 0 mm、 特に好ましくは 2 μ m〜 5 mm程度であり、 間隔は通常 1 μ π!〜 1 0 c m、 好ましくは 2 μ m〜 5 c m程度が望ましい。
導電性カーボン層の厚さとしては、 通常 Ι μπ!〜 lmnx、 好ましくは 2 m〜 0. 5 mmであることが望ましい。
導電性カーボン層の導電性 (電気伝導度) は、 通常 200 QZs q以下、 好ま しくは 20 Ω/s q以下程度である。
導電性カーボン層を構成する導電性カーボン材料としては、 本発明に適する導 電性を有するものであれば、 特に制限されることは無いが、 例えば、 黒鉛ゃグラ ファイ ト、 ガラス状カーボン、 ァセチレンブラック、 ケッチェンブラック、 カー ボン繊維、 活性炭、 石油コータス、 C 60や C 70などのフラーレン類、 単層ま たは多重層のカーボンナノチューブなどを挙げることができ、 好ましくは黒鉛、 カーボン繊維などが挙げられる。 なお、 導電性カーボン材料の形状としては、 最 終的にカーボン層を形成するものであれば、 特に限定されなく、 原料形状として は、 粉末、 短繊維、 長繊維、 織布、 不織布などいずれの形態でもよい。
粉末を用いる場合は、 適度な比表面積を有するものが良い。 好ましくは 1 00 〜200 Om2ノ g程度であって、 さらに好ましくは、 3 00〜 1 000m2Z g程度である。 また、 平均粒子径としては、 5〜 1 000 nm程度、 好ましくは 8〜 200 n m程度が望ましい。
本発明における導電性カーボン層は、 前記導電性カーボン材料のみから構成さ れていてもよいが、 本願発明の目的を損なわない限り、 他の任意成分を含有して も良い。
例えば、 カーボン粉末、 短繊維、 長繊維などの原料物質間の導電性を向上させ るためにバインダー等も好ましく使用される。 該バインダーとしては硬化後に電 解質に対して不活性で電解しないものであれば特に制限されず、 例えば、 高分子 固体電解質、 エポキシ樹脂、 アクリル樹脂、 メラミン樹脂、 シリコーン樹脂、 ポ リテトラフロロエチレン、 ポリスチローノレ、 カルボキシメチルセルロース、 ポリ フッ化ビニリデン又はこれらの誘導体あるいは混合物などが用いられる。 これら のバインダーを使用する場合の混合比は、 導電性カーボン材料/ /バインダー (質 量比) で通常 1 0/90〜90ノ1 0、 好ましくは 20/80〜 80 20の範 囲が望ましい。
また、 他の任意成分としては、 電解質に腐食されない特性を有する金属微粒子 や I TO、 FTO、 A ZOなどの導電性酸化物半導体などを挙げることができ る。
前記導電性カーボン層の形成方法としては特に制限されなく、 公知の方法を採 用することができる。 例えば、 バインダーを使用する場合、 一般的には、 前記導 電性カーボン材料およびバインダーを混合してペースト状とし基板表面にスクリ ーン印刷、 平板印刷、 グラビア印刷、 凹版印刷、 フレキソ印刷、 凸版印刷、 特殊 印刷する方法、 基板上にあらかじめ溝を形成しておき、 該溝に導電性材料および バインダーを混合したペーストを充填した後、 へら等で余剰のペーストを除去す る方法等により製造することができる。 ペース トを基板表面に配置した後、 加熱 等によって導電性や密着性を向上させても良い。 加熱には、 オープンやマツフル 炉、 電気炉の他、 赤外線加熱等を利用しても良い。 焼成温度は、 用いるペース ト および基板材料によって異なるが、 好ましくは 50°C〜700°C、 より好ましく は 1 00°C〜600°C、 さらに好ましくは 200°C〜500°Cである。 また、 必 要に応じて窒素雰囲気下で焼成を行っても良い。 また、 別法として、 導電性カー ボン材料からなる箔膜ゃ織布ゃ不織布、 フェルト、 紙状に整形した材料等を基板 上に積層する方法も拳げられる。
本発明の光電変換素子は、 このようにして得られた対向電極を用いることを特 徴とするが、 かかる素子は、 基本的には、 透明導電性基板、 およぴ該基板上に形 成された光電変換層 (半導体層)、 および対向電極からなり、 光電変換層と対向 基板は直接接していてもよいが、 通常両者の間に電解質層が配置される。 これら の光電変換素子としては、 例えば、 図 1のような構造を有するものを挙げること ができる。 前記電解質としては、 特に限定されなく、 液体系でも固体系でもいずれでもよ く、 可逆な電気化学的酸化還元特性を示すものが望ましい。
電解質としては、 イオン伝導度が、 通常室温で 1 X 1 0— 7S/c m以上、 好 ましくは 1 X 1 0— 6 SZc m以上、 さらに好ましくは 1 X 1 0— 5S/c m以上 であるものが望ましい。 なお、 イオン伝導度は、 複素インピーダンス法などの一 般的な手法で求めることができる。
また、 本発明における電解質は、 酸化体の拡散係数が 1 X 1 0_9c m2Zs以 上、 好ましくは 1 X 1 0— 8c m2Z s以上、 さらに好ましくは 1 X 1 CI—7 c m2 /s以上を示すものが望ましい。 なお、 拡散係数は、 イオン伝導性を示す一指標 であり、 定電位電流特性測定、 サイクリックボルタモグラム測定などの一般的な 手法で求めることができる。
電解質層の厚さは、 特に限定されないが、 1 im以上であることが好ましく、 より好ましくは 1 0 Aim以上であり、 また 3 mm以下が好ましく、 より好ましく は 1 mm以 である。
液体系の電解質としては特に限定されるものではなく、 通常、 溶媒、 可逆な電 気化学的酸化還元特性を示す物質 (溶媒に可溶なもの) およびさらに必要に応じ て支持電解質を基本的成分として構成される。
溶媒としては、 一般に電気化学セルや電池に用いられる溶媒であればいずれも 使用することができる。 具体的には、 無水酢酸、 メタノール、 エタノール、 テト ラヒ ドロフラン、 プロピレンカーボネート、 ニトロメタン、 ァセトュトリル、 ジ メチルホルムアミ ド、 ジメチルスルホキシド、 へキサメチルホスホアミ ド、 ェチ レンカーボネート、 ジメ トキシェタン、 γ—プチ口ラタ トン、 一バレロラク 卜 ン、 スルホラン、 ジメ トキシェタン、 プロピオンニトリル、 グルタロニトリル、 アジポニトリル、 メ トキシァセトニトリル、 ジメチルァセトアミ ド、 メチルピロ リジノン、 ジメチルスルホキシド、 ジォキソラン、 スルホラン、 リン酸トリメチ ル、 リン酸トリェチル、 リン酸トリプロピル、 リン酸ェチルジメチル、 リン酸ト リブチル、 リン酸トリペンチル、 リン酸トリへキシル、 リン酸トリへプチル、 リ ン酸トリオタチル、 リン酸トリノニル、 リン酸トリデシル、 リン酸トリス (トリ フフロロメチノレ)、 リン酸トリス (ペンタフロロェチノレ)、 リン酸トリフエニノレポ リエチレンダリコール、及ぴポリエチレングリコール等が使用可能である。特に、 プロピレンカーボネート、 エチレンカーボネート、 ジメチノレスノレホキシド、 ジメ トキシェタン、 ァセトニトリル、 γ—プチ口ラタ トン、 スルホラン、 ジォキソラ ン、 ジメチルホルムァミ ド、 ジメ トキシェタン、 テトラヒ ドロフラン、 アジポニ トリル、 メ トキシァセトニトリル、 メ トキシプロピオ二トリル、 ジメチルァセト アミ ド、 メチルピロリジノン、 ジメチルスルホキシド、 ジォキソラン、 スルホラ ン、 リン酸トリメチル、 リン酸トリェチルが好ましい。 溶媒はその 1種を単独で 使用しても良いし、 また 2種以上を混合して使用しても良い。
また、 可逆な電気化学的酸化還元特性を示す物質は、 通常、 いわゆるレドック ス材と称されるものであるが、 特にその種類を制限するものではない。 かかる物 質としては、 例えば、 フエ口セン、 ρ—ベンゾキノン、 7, 7 , 8 , 8—テトラ シァノキノジメタン、 Ν , Ν , Ν ' , Ν, ーテトラメチルー ρ—フエ二レンジァ ミン、 テトラチアフルバレン、 チアントラセン、 ρ— トルィルァミン等を挙げる ことができる。 また、 L i I、 N a l、 K I、 C s l、 C a l 2、 4級ィミダゾ リウムのョゥ素塩、 テトラアルキルアンモニゥムのョゥ素塩、 B r 2と L i B r、 Na B r、 KB r、 C s B r、 C a B r 2などの金属臭化物などが挙げられ、 ま た、 B r 2とテトラァノレキルアンモ-ゥムブロマイド、 ビビリジニゥムプロマイ ド、 臭素塩、 フエロシアン酸一フェリシアン酸塩などの錯塩、 ポリ硫化ナトリウ ム、 アルキルチオ一ルーアルキルジスルフイ ド、 ヒ ドロキノンーキノン、 ピオ口 ゲン色素などを挙げることができる。
レドックス材は、 酸化体、 還元体のどちらか一方のみを用いてもよいし、 酸化 体と還元体を適当なモル比で混合し、 添加することもできる。 また、 電気化学的 応答性を示すように、 これら酸化還元対を添加するなどしても良い。 そのような 性質を示す材料としては、 ハロゲンイオン、 S CN一、 C 1 04 B F ' C F3S03-、 (CF3S〇2) 2N -、 (C2F5S02) 2N -、 P F6-、 A s F6-、 CH3COO—、 CH3 (C 6H4) S 03—、 および (C2F5S02) 3C—から選 ばれる対ァニオンを有するフエロセニゥムなどのメタロセ -ゥム塩などのほか、 ヨウ素、 臭素、 塩素などのハロゲン類を用いることもできる。
また、 可逆な電気化学的酸化還元特性を示す物質としては、 ハロゲンイオンお ょぴ S CN—から選ばれる対ァ-オン (X—) を有する塩が挙げられる。 具体的 には、 (CH3) 4N + X—、 (C2H5) 4N + X一、 (n— C4H9) 4N + X—、 さらに は、
Figure imgf000009_0001
等の 4級アンモニゥム塩、 (CH3) 4P+X—、 (C2H5) 4P + X—、 (C3H7) 4 P + X—、 (C4H9) 4P + X—等のホスホニゥム塩が挙げられる。
もちろん、 これらの混合物も好適に用いることができる。
また、 可逆な電気化学的酸化還元特性を示す物質として、 レドックス性常温溶 0306819 融塩類も用いることができる。 ここで、 レドックス性常温溶融塩とは、 溶媒成分 が含まれないイオン対のみからなる常温において溶融している (即ち液状の) ィ オン対からなる塩であり、 通常、 融点が 20°C以下であり、 20°Cを越える温度 で液状であるイオン対からなる塩を示すものであって、 かつ可逆的な電気化学的 酸化還元反応を行うことができるものである。
レドックス性常温溶融塩はその 1種を単独で使用することができ、 また 2種以 上を混合しても使用することもできる。
レドックス性常温溶融塩の例としては、 例えば、 以下のものが挙げられる。
Figure imgf000010_0001
(ここで、 Rは炭素数 2〜20、 好ましくは 2〜 1 0のアルキル基を示す。 X' は対ァ-オンを示し、 具体的にはハロゲンイオンまたは S CN—などを示す。)
Figure imgf000010_0002
X"
(ここで、 R 1および R 2は各々炭素数 1〜1 0のアルキル基 (好ましくはメチ ル基またはェチル基)、 または炭素数 7〜20、 好ましくは 7〜 1 3のァラルキ ル基 (好ましくはべンジル基) を示しており、 互いに同一でも異なっても良い。 また、 X—は対ァ-オンを示し、 具体的にはハロゲンイオンまたは S CN—など を示す。)
Figure imgf000010_0003
(ここで、 R1 R2、 R3、 R4は、 各々炭素数 1以上、 好ましくは炭素数 1〜 6のアルキル基、 炭素数 6〜1 2のァリール基 (フエニル基など)、 またはメ ト キシメチル基などを示し、 互いに同一でも異なってもよい。 また、 X—は対ァニ オンを示し、 具体的にはハロゲンイオンまたは S CN—など示す。) 可逆な電気化学的酸化還元特性を示す物質の使用量は、 溶媒に溶解する限りに おいては、 特に限定されるものではないが、 通常溶媒に対して、 1質量%〜50 質量%、 好ましくは 3質量%〜 30質量。 /0であることが望ましい。
また、 必要に応じて加えられる支持電解質としては、 電気化学の分野又は電池 の分野で通常使用される塩類、 酸類、 アルカリ類、 常温溶融塩類が使用できる。 塩類としては、 特に制限はなく、 例えば、 アル力リ金属塩、 アル力リ土類金属 塩等の無機イオン塩; 4級アンモニゥム塩;環状 4級アンモニゥム塩; 4級ホス ホニゥム塩などが使用でき、 特に L i塩が好ましい。
塩類の具体例としては、 C 1 0 B F C F q S O (C F3 S02) (C2FRS02) 2N一、 P F A s F CH COO—、 CH3 (C6H
4) S03一、 および (C2F5S 02) 3C—から選ばれる対ァユオンを有する L 塩、 Na塩、 あるいは K塩が挙げられる。
また、 C 1 o B F 4—、 C F q S O (CF3S〇2) 2N―、 (C2F5SO
) ク N. P F A s F CH3 C OO CH 3 (C6H4) SO よ ぴ (C2F5S〇2) 3C—から選ばれる対ァ-オンを有する 4級アンモ-ゥム塩、 具体的には、 (CH3) 4NB F4、 (C2H5) 4NB F4、 (n— C4H9) 4NB F
(C2H5) 4NB r、 (C2H5) 4NC 104、 (n— C4H9) 4NC 1 O C
H3 (C2H5) 3NB F4、 (CH3) 2 (C2H5) 2NB F4、 (CH3) 4NSO
C F (C?H J 4NSO CF3、 (n -C4H9) 4NS 03CF3、 さらには、
Figure imgf000011_0001
+Ν CI04
Figure imgf000012_0001
Figure imgf000012_0002
N CIO
等が挙げられる。 また、 c 1 o , B F4_、 C F 3 S 03\ (C F 3 S 02) 2N-
(C2F5S02) 2N P F A s Ffi―、 CH3COO—、 CH3 (C 6H4)
S 03—、 および (C2F5 S〇2) 3C から選ばれる対ァニオンを有するホスホ ニゥム塩、 具体的には、 (CH3) 4P B F4、 (C2H5) 4PB F4、 (C3H7) 4 PBF4、 (C4H9) 4PB F4等が挙げられる。
また、 これらの混合物も好適に用いることができる。
酸類も特に限定されず、 無機酸、 有機酸などが使用でき、 具体的には硫酸、 塩 酸、 リン酸類、 スルホン酸類、 カルボン酸類などが使用できる。
アル力リ類も特に限定されず、 水酸化ナトリウム、 水酸化力リウム、 水酸化リ チウムなどがいずれも使用可能である。
常温溶融塩類も特に限定されることは無いが、本発明における常温溶融塩とは、 溶媒成分が含まれないイオン対のみからなる常温において溶融している (即ち液 状の) イオン対からなる塩であり、 通常、 融点が 20°C以下であり、 20°Cを越 える温度で液状であるイオン対からなる塩を示す。
常温溶融塩はその 1種を単独で使用することができ、 また 2種以上を混合して も使用することもできる。
常温溶融塩の例としては、 例えば、 以下のものが挙げられる。
Figure imgf000012_0003
(ここで、 Rは炭素数 2〜20、 好ましくは 2〜1 0のアルキル基を示す。 X— 細 19 は C 104 -、 B F4-、 (CF3S 02) 2N -、 (C2F 5S02) 2N -、 PF6-、 A s F6-、 CH3COO-、 CH3 (C6H4) S〇3 、 および (C2F5S02) 3 C一から選ばれる対ァニオンを表す。)
Figure imgf000013_0001
X"
(ここで、 R 1および R2は各々炭素数 1〜1 0のアルキル基 (好ましくはメチ ル基またはェチル基)、 または炭素数 7〜20、 好ましくは 7〜 1 3のァラルキ ル基 (好ましくはべンジル基) を示しており、 互いに同一でも異なっても良い。 また、 X は C 1 04—、 B F4_、 (C F 3 S 02) 2N -、 (C2F5SO2) 2N―、 P F6-、 A s F6-、 CH3COO-、 CH3 (C6H4) S 03_、 および (C2F5 S 02) 3 C から選ばれる対ァニオンを表す。)
Figure imgf000013_0002
(ここで、 R2、 R3、 R4は、 各々炭素数 1以上、 好ましくは炭素数 1〜 6のアルキル基、 炭素数 6〜 1 2のァリール基 (フヱニル基など)、 またはメ ト キシメチル基などを示し、 互いに同一でも異なってもよい。 また、 X は C 1 O 4_、 B F4 -、 (CF3 S〇2) 2N -、 (C2F5S02) 2N -、 P F6-、 A s F6 -、 CH3COO—、 CH3 (C 6H4) S 03—、 および (C2F5S02) 3C—力 ら選 ばれる対ァニオンを表す。)
以上の支持電解質の使用量については特に制限はなく、 任意であるが、 通常、 電解質中に 0. 1質量。 /。以上、 好ましくは 1質量%以上、 さらに好ましくは 1 0 質量%以上であり、 かつ 70質量%以下、 好ましくは 60質量%以下、 さらに好 ましくは 50質量%以下の量で含有させることができる。 また、本発明において用いる電解質としては、前記のような液体系でもよいが、 全固体化が可能であるとの観点から、 高分子固体電解質が特に好ましい。 高分子 JP03/06819 固体電解質としては、 特に好ましいものとして、 (a ) 高分子マトリ ックス (成 分 (a ) ) に、 少なくとも (c ) 可逆な電気化学的酸化還元特性を示す物質 (成 分 (c ) ) を含有し、 所望により (b ) 可塑剤 (成分 (b ) ) をさらに含有するも のが挙げられる。 また、 これらに加え、 所望によりさらに (d ) 前記した支持電 解質や (e ) 常温溶融塩などの他の任意成分を含有させてもよい。 イオン伝導性 フィルムとしては、 前記成分 (b ) または、 成分 (b ) と成分 (c )、 あるいは さらなる任意成分が、 高分子マトリックス中に保持されることによって固体状態 またはゲル状態が形成される。
本発明において高分子マトリックスとして使用できる材料としては、 高分子マ トリックス単体で、 あるいは可塑剤の添加や、 支持電解質の添加、 または可塑剤 と支持電解質の添加によって固体状態またはゲル状態が形成されれば特に制限は 無く、 一般的に用いられるいわゆる高分子化合物を用いることができる。
上記高分子マトリックスとしての特性を示す高分子化合物としては、 へキサフ ロロプロピレン、 テ トラフ口口エチレン、 トリフロ口エチレン、 エチレン、 プロ ピレン、 アクリロニトリル、 塩化ビ-リデン、 アクリル酸、 メタクリル酸、 メチ ルアタリ レート、 ェチルァク リ レート、 メチノレメタクリ レ一ト、 スチレン、 フッ 化ビ-リデンなどのモノマーを重合または共重合して得られる高分子化合物を挙 げることができる。 またこれらの高分子化合物は単独で用いても良く、 また混合 して用いても良い。 これらの中でも、 特にポリフッ化ビニリデン系高分子化合物 が好ましい。
ポリフッ化ビニリデン系高分子化合物としては、 フッ化ビニリデンの単独重合 体、 あるいはフッ化ビ-リデンと他の重合性モノマー、 好適にはラジカル重合性 モノマーとの共重合体を挙げることができる。 フツイヒビニリデンと共重合させる 他の重合性モノマー (以下、 共重合性モノマーという。) としては、 具体的には、 へキサフロロプロピレン、 テ トラフロロエチレン、 トリフロ口エチレン、 ェチレ ン、 プロピレン、 アクリロニトリル、 塩化ビニリデン、 ァクリル酸、 メタクリル 酸、 メチルァクリ レート、 ェチノレアクリ レート、 メチルメタタリ レート、 スチレ ンなどを例示することができる。
これらの共重合性モノマーは、 モノマー全量に対して 1〜5 O m o 1 %、 好ま しくは 1〜2 5 m o 1 %の範囲で使用することができる。
共重合性モノマーとしては、 好適にはへキサフロロプロピレンが用いられる。 本発明においては、 特にフッ化ビニリデンにへキサフロロプロピレンを 1〜 2 5 m o 1 %共重合させたフッ化ビニリデン一へキサフロロプロピレン共重合体を高 分子マトリックスとするイオン伝導性フィルムとして好ましく用いることができ る。 また共重合比の異なる 2種類以上のフッ化ビニリデン一へキサフロロプロピ レン共重合体を混合して使用しても良い。
また、 これらの共重合性モノマーを 2種類以上用いてフッ化ビエリデンと共重 合させることもできる。 例えば、 フッ化ビ-リデン +へキサフロロプロピレン + テトラフロロエチレン、 フツイ匕ビ-リデン十へキサフ口口プロピレン +ァクリノレ 酸、 フッ化ビニリデン +テトラフロロエチレン +エチレン、 フッ化ビ-リデン + テトラフロロエチレン +プロピレンなどの組み合わせで共重合させて得られる共 重合体を使用することもできる。
さらに、 本発明においては高分子マトリックスとしてポリフッ化ビ-リデン系 高分子化合物に、 ポリアクリル酸系高分子化合物、 ポリアタリレート系高分子化 合物、 ポリメタクリル酸系高分子化合物、 ポリメタタリレート系高分子化合物、 ポリアクリロニトリル系高分子化合物およびポリエーテル系高分子化合物から選 ばれる高分子化合物を 1種類以上混合して使用することもできる。 あるいはポリ フッ化ビ -リデン系髙分子化合物に、 上記した高分子化合物のモノマーを 2種以 上共重合させて得られる共重合体を 1種類以上混合して使用することもできる。 このときの単独重合体あるいは共重合体の配合割合は、 ポリフッ化ビニリデン系 高分子化合物 1 0 0質量部に対して、 通常 2 0 0質量部以下とすることが好まし い。
本発明において用いられるポリフッ化ビニリデン系高分子化合物の重量平均分 子量は、 通常 1 0, 0 0 0〜 2, 0 0 0, 0 0 0であり、 好ましくは 1 0 0 , 0 0 0〜1 , 0 0 0, 0 0 0の範囲のものが好適に使用することができる。 可塑剤 (成分 (b ) ) は、 可逆な電気化学的酸化還元特性を示す物質に対する 溶媒として作用する。 かかる可塑剤としては、 一般に電気化学セルや電池におい て電解質溶媒として使用され得るものであればいずれも使用することができ、 具 体的には液体系電解質において例示した各種溶媒を挙げることができる。 特に、 プロピレンカーボネート、 エチレンカーボネート、 ジメチルスルホキシド、 ジメ トキシェタン、 ァセトニトリル、 Ύ 一ブチロラタ トン、 スルホラン、 ジォキソラ ン、 ジメチルホルムアミ ド、 ジメ トキシェタン、 テトラヒ ドロフラン、 アジポニ トリル、 メ トキシァセトニトリル、 ジメチルァセトアミ ド、 メチルピロリジノン、 ジメチルスルホキシド、 ジォキソラン、 スルホラン、 リン酸トリメチル、 リン酸 トリェチルが好ましい。 また、 常温溶融塩類も用いることができる。 ここで、 常 温溶融塩とは、 溶媒成分が含まれないイオン対のみからなる常温において溶融し ている (即ち液状の) イオン対からなる塩であり、 通常、 融点が 2 0 °C以下であ り、 2 0 °Cを越える温度で液状であるイオン対からなる塩を示すものである。 常温溶融塩の例としては、 例えば、 以下のものが挙げられる。
Figure imgf000016_0001
(ここで、 Rは炭素数 2〜2 0、 好ましくは 2〜 1 0のアルキル基を示し、 X ' はハロゲンイオンまたは S C N-を示す。)
Figure imgf000016_0002
X "
(ここで、 R 1および R 2は各々炭素数 1〜 1 0のアルキル基 (好ましくはメチ ル基またはェチル基)、 または炭素数 7〜2 0、 好ましくは 7〜 1 3のァラルキ ル基 (好ましくはべンジル基) を示しており、 互いに同一でも異なっても良い。 また、 X—はハロゲンイオンまたは S C N—を示す。)
Figure imgf000016_0003
(ここで、 R 2、 R 3、 R 4は、 各々炭素数 1以上、 好ましくは炭素数 1〜 6のアルキル基、 炭素数 6〜1 2のァリール基 (フエニル基など)、 またはメ ト キシメチル基などを示し、 互いに同一でも異なってもよい。 また、 X はハロゲ ンイオンまたは S CN を示す。)
可塑剤はその 1種を単独で使用しても良いし、 また 2種以上を混合して使用し ても良い。
可塑剤 (成分 (b)) の使用量は特に制限はないが、 通常、 イオン伝導性材料 中に 20質量%以上、 好ましくは 50質量%以上、 さらに好ましくは 70質量% 以上であり、 かつ 98質量%以下、 好ましくは 95質量%以下、 さらに好ましく は 90質量%以下の量で含有させることができる。 次に、 本発明において用いる成分 (c) の可逆な電気化学的酸化還元特性を示 す物質について説明する。
成分 (c) は、 前述のような可逆な電気化学的酸化還元反応を行うことができ る化合物であって、 通常レドックス性材料と称されるものである。
かかる化合物しては、 特にその種類を制限するものではないが、 たとえば、 フ エロセン、 p—べンゾキノン、 7 , 7 , 8 , 8ーテトラシァノキノジメタン、 N, N, Ν', Ν, —テトラメチルー ρ—フエ二レンジァミン、 テトラチアフルバレ ン、 アントラセン、 ρ一トノレイノレアミン等を用いることができる。 また、 L i I、 Na l、 K I、 C s l、 C a l 2、 4級ィミダゾリゥムのヨウ素塩、 テトラアル キルアンモニゥムのヨウ素塩、 B r 2と L i B r、 Na B r、 KB r、 C s B r、 C a B r 2などの金属臭化物などが挙げられる。
また、 B r 2とテトラアルキルアンモニゥムブロマイ ド、 ビビリジニゥムプロ マイ ド、 乘素塩、 フエロシアン酸 フェリシアン酸塩などの錯塩、 ポリ硫化ナト リウム、 ァノレキノレチォ一/レーアノレキノレジスノレフイ ド、 ヒ ドロキノン一キノン、 ビ ォロゲンなどを用いることができる。 レドックス材は、 酸化体、 還元体のどちら か一方のみを用いてもよいし、 酸化体と還元体を適当なモル比で混合し、 添加す ることもできる。
また、 特に本発明の成分 (c) としては、 ハロゲンイオン、 S CN から選ば れる対ァニオン (X— ) を有する塩が挙げられる。 カチオンとしては、 4級アン JP03/06819 モユウム塩として、 具体的には、 (CH3) 4NX一、 (C2H5) 4NX—、 (n— C 4H。) 4NX—、 さらには、
x
Figure imgf000018_0001
等が挙げられる。 対ァニオン (x_) を有するホスホニゥム塩、 具体的には、
(CH3) 4PX—、 (C2H5) 4PX-、 (C3H7) 4PX-、 (C4H9) 4PX -等 が挙げられる。
もちろん、 これらの混合物も好適に用いることができる。
なお、 これらの化合物の場合は、 通常成分 (b) と併用することが好ましい。 また、 成分 (c) として、 レドックス性常温溶融塩類も用いることができる。 ここで、 レドックス性常温溶融塩とは、 溶媒成分が含まれないイオン対のみから なる常温において溶融している (即ち液状の) イオン対からなる塩であり、通常、 融点が 20°C以下であり、 20°Cを越える温度で液状であるイオン対からなる塩 を示すものであって、 かつ可逆的な電気化学的酸化還元反応を行うことができる ものである。成分(c )としてレドックス性常温溶融塩類を用いる場合、成分(b) を併用しなくても、 併用してもどちらの形態でもよレ、。
レドックス性常温溶融塩はその 1種を単独で使用することができ、 また 2種以 上を混合しても使用することもできる。
レドックス性常温溶融塩の例としては、 例えば、 以下のものが挙げられる。
Figure imgf000018_0002
(ここで、 Rは炭素数 2〜20、 好ましくは 2〜1 0のアルキル基を示し、 X はハロゲンイオンまたは S CN を示す。)
V ヽ R2
X"
(ここで、 R 1および R 2は各々炭素数 1〜 1 0のアルキル基 (好ましくはメチ ル基またはェチル基)、 または炭素数 7〜20、 好ましくは 7〜 1 3のァラルキ ル基 (好ましくはべンジル基) を示しており、 互いに同一でも異なっても良い。 また、 X はハロゲンイオンまたは S CN を示す。)
Figure imgf000019_0001
(ここで、 R2、 R3、 R4は、 各々炭素数 1以上、 好ましくは炭素数 1〜 6のアルキル基、 炭素数 6〜 1 2のァリール基 (フエニル基など)、 またはメ ト キシメチル基などを示し、 互いに同一でも異なってもよい。 また、 X はハロゲ ンイオンまたは S CN を示す。)
また、 可逆な電気化学的酸化還元特性を示す物質 (成分 (c)) の使用量につ いても特に制限はな.く、 通常、 高分子固体電解質中に 0. 1質量。/。以上、 好まし くは 1質量%以上、 さらに好ましくは 1 0質量%以上であり、 かつ 70質量。 /0以 下、 好ましくは 6 0質量%以下、 さらに好ましくは 50質量%以下の量で含有さ せることができる。
成分 (c) を成分 (b) と併用する場合、 成分 (c) は、 成分 (b) に溶解し かつ高分子固体電解質とした際にも析出等が起こらない混合比とすることが望ま しく、 好ましくは成分 ( c ) /成分 ( b ) が質量比で 0. 0 1〜0. 5、 さらに 好ましくは 0. 03〜0. 3の範囲である。
また、成分(a) に対しては、好ましくは成分(a) / (成分(b) +成分(c)) 03 06819 質量比が 1 2 0 さらに好ましくは 1 / 1 0 2の範囲である とが望ましい。 高分子固体電解質における支持電解質 (成分 (d ) ) の使用量については特に 制限はなく、 任意であるが、 通常、 高分子固体電解質中に 0 . 1質量%以上、 好 ましくは 1質量%以上、さらに好ましくは 1 0質量。 /0以上であり、かつ 7 0質量% 以下、 好ましくは 6 0質量%以下、 さらに好ましくは 5 0質量%以下の量で含有 させることができる。
高分子固体電解質には、 更に他の成分を含有させることができる。 他の成分と しては、 紫外線吸収剤、 ァミン化合物などを挙げることができる。 用いることが できる紫外線吸収剤としては、 特に限定されないが、 ベンゾトリアゾール骨格を 有する化合物、 ベンゾフエノン骨格を有する化合物等の有機紫外線吸収剤が代表 的な物として挙げられる。
ベンゾトリァゾール骨格を有する化合物としては、例えば、 下記の一般式(1 ) で表される化合物が好適に挙げられる。
Figure imgf000020_0001
一般式 (1 ) において、 R 8 1は、 水素原子、 ハロゲン原子または炭素数 1〜 1 0、 好ましくは 1〜 6のアルキル基を示す。 ハロゲン原子としてはフッ素、 塩 素、 臭素、 ヨウ素を挙げることができる。 アルキル基としては、 例えば、 メチル 基、 ェチル基、 プロピル基、 i一プロピル基、 ブチル基、 t一プチル基、 シクロ へキシル基等を挙げることができる。 R 8 1の置換位置は、 ベンゾトリアゾール 骨格の 4位または 5位であるが、 ハロゲン原子おょぴアルキル基は通常 4位に位 置する。 R 8 2は、 水素原子または炭素数 1〜 1 0、 好ましくは 1〜6のアルキ ル基を示す。 アルキル基としては、 例えば、 メチル基、 ェチル基、 プロピル基、 i—プロピル基、 ブチル基、 t一ブチル基、 シクロへキシル基等を挙げることが できる。 R 8 3は、 炭素数 1〜1 0、 好ましくは 1〜3のアルキレン基またはァ ルキリデン基を示す。 アルキレン基としては、 例えば、 メチレン基、 エチレン基、 トリメチレン基、 プロピレン基等を挙げることができ、 またアルキリデン基とし ては、 例えば、 ェチリデン基、 プロピリデン基等が挙げられる。
一般式 (1 ) で示される化合物の具体例としては、 3— ( 5—クロロー 2 H— ベンゾトリァゾ一ノレ一 2—ィル) 一 5— ( 1, 1一ジメチルェチノレ) 一 4ーヒ ド 口キシーベンゼンプロパン酸、 3— ( 2 H—べンゾトリァゾールー 2—ィル) 一 5— ( 1 , 1ージメチルェチル) 一 4ーヒ ドロキシ一ベンゼンエタン酸、 3— ( 2 H—べンゾトリァゾーノレ一 2ーィノレ) 一 4ーヒ ドロキシベンゼンエタン酸、 3 -
( 5—メチルー 2 H—べンゾトリァゾールー 2—ィル) - 5 - ( 1ーメチルェチ ノレ) 一 4—ヒ ドロキシベンゼンプロパン酸、 2— ( 2 ' —ヒ ドロキシ一 5 ' —メ チルフエニル) ベンゾトリァゾール、 2— ( 2, ーヒ ドロキシー 3,, 5, 一ビ ス ( α , α—ジメチノレベンジル) フエニル) ベンゾトリァゾール、 2— ( 2, 一 ヒ ドロキシー 3,, 5 ' ージー tーブチノレフエ二ノレ) ベンゾト リァゾーノレ、 2 -
( 2 ' 一ヒ ドロキシー 3 ' - tーブチルー 5 ' 一メチルフエ-ノレ) 一 5—クロ口 ベンゾトリァゾ一ル、 3 - ( 5 _クロ口一 2 H—べンゾトリァゾールー 2一ィル) 一 5— (1 , 1一ジメチルェチノレ) 一 4ーヒ ドロキシ一ベンゼンプロパン酸ォク チルエステル等が挙げられる。
ベンゾフ ノン骨格を有する化合物としては、 例えば、 下記の一般式 (2 ) 〜
( 4 ) で示される化合物が好適に挙げられる。
Figure imgf000021_0001
Figure imgf000021_0002
19
Figure imgf000022_0001
上記一般式 .(2) 〜 (4) において、 R92、 R93、 R95、 R96、 R98、 及 び R99は、 互いに同一もしくは異なる基であって、 ヒ ドロキシル基、 炭素数 1 〜10、 好ましくは 1〜6のアルキル基またはアルコキシ基を示す。 アルキル基 としては、 例えば、 メチル基、 ェチル基、 プロピル基、 i一プロピル基、 ブチル 基、 t一ブチル基、 及ぴシクロへキシル基を挙げることができる。 またアルコキ シ基としては、 例えば、 メ トキシ基、 エトキシ基、 プロポキシ基、 i一プロポキ シ基、 及びブトキシ基を挙げることができる。
R91、 R94、 及び R 97は、 炭素数 1〜10、 好ましくは 1〜 3のアルキレン 基またはアルキリデン基を示す。 アルキレン基としては、 例えば、 メチレン基、 エチレン基、 トリメチレン基、 及びプロピレン基を挙げることができる。 アルキ リデン基としては、 例えば、 ェチリデン基、 及ぴプロピリデン基が挙げられる。 p l、 p 2、 p 3、 q l、 q 2、 及び q 3は、 それぞれ別個に 0乃至 3の整数 を表す。
上記一般式 (2) 〜 (4) で表されるベンゾフエノン骨格を有する化合物の好 ましい例としては、 2—ヒ ドロキシ一 4ーメ トキシベンゾフエノン一 5—カルボ ン酸、 2, 2 ' ージヒ ドロキシー 4—メ トキシベンゾフエノン一 5—力ノレボン酸、 4一 ( 2—ヒ ドロキシベンゾィノレ) 一 3—ヒ ドロキシベンゼンプロパン酸、 2, 4ージヒ ドロキシべンゾフエノン、 2—ヒ ドロキシー 4ーメ トキシべンゾフエノ ン、 2—ヒ ドロキシー 4ーメ トキシベンゾフエノン一 5—スルホン酸、 2—ヒ ド 口キシ一 4一 n—オタ トキシベンゾフエノン、 2, 2' —ジヒ ドロキシー 4, 4 ' ージメ トキシベンゾフエノン、 2, 2 ', 4, 4, ーテトラヒ ドロキシベンゾフ ェノン、 2—ヒ ドロキシー 4ーメ トキシー 2, 一力ノレボキシベンゾフエノン等が 挙げられる。
もちろん、 これらを二種以上組み合わせて使用することができる。
紫外線吸収剤の使用は任意であり、 また使用する場合の使用量も特に制限され 03 06819 るものではないが、 使用する場合は電解質中に 0 . 1質量%以上、 好ましくは 1 質量%以上であり、 2 0質量%以下、 好ましくは 1 0質量%以下の範囲の量で含 有させることが望ましい。
本発明のイオン伝導性フィルムに含有させることができるァミン化合物とし ては、 特に限定されず、 各種脂肪族ァミン、 芳香族ァミンが用いられるが、 例え ば、 ピリジン誘導体、 ビビリジン誘導体、 キノリン誘導体などが代表的な物とし て挙げられる。 これらのァミン化合物を添加することで、 開放電圧の向上が見込 まれる。 これらの化合物の具体例としては、 4一 t一プチルーピリジン、 キノリ ン、 イソキノリンなどが挙げられる。 次に本発明において電解質はレドックス電解質フィルムとして製造しても良く、 以下にその方法について説明する。
なお、 これらの高分子固体電解質は、 前記成分 (a ) 及び (c ) 並びに所望に より配合される任意成分からなる混合物を、 公知の方法によりフィルムに成形す ることにより得ることが出来る。 この場合の成形方法としては特に限定されず、 押出し成型、 キャス ト法によるフィルム状態で得る方法、 スピンコート法、 ディ ップコート法や、 注入法、 含浸法などを挙げることができる。
押出し成型については常法により行うことができ、 前記混合物を過熱溶融した 後、 フィルム成型することが行われる。
キャスト法については、前記混合物をさらに適当な希釈剤にて粘度調整を行い、 キャスト法に用いられる通常のコータにて塗布し、 乾燥することで成膜すること ができる。 コータとしては、 ドクタコータ、 ブレードコータ、 ロッドコータ、 ナ ィフコータ、 リノく一スローノレコータ、 グラビアコータ、 スプレイコータ、 カーテ ンコータを用いることができ、 粘度および膜厚により使い分けることができる。 スピンコート法については、 前記混合物をさらに適当な希釈剤にて粘度調整を 行い、市販のスピンコーターにて塗布し、乾燥することで成膜することができる。 ディップコ一ト法については、 前記混合物をさらに適当な希釈剤にて粘度調整 を行って混合物溶液を作製し、 適当な基盤を混合物溶液より引き上げた後、 乾燥 することで成膜することができる。 0306819 本発明の光電変換素子において、 用いられる半導体層としては、 特に限定され ないが、 例えば、 B i 2S3、 C d S、 C d S e、 C dT e、 Cu I n S2、 C u I n S e 2、 F e 203、 G a P、 G aA s、 I n P、 Nb 205、 P b S、 S i、 S n 02、 T i 02、 WO 3、 Z n 0、 Z n S等から成る層が挙げられ、 またこれ らの層の複数の組み合わせであってもよい。 好ましくは C d S、 C d S e、 C u I n S2、 Cu I n S e 2、 F e 23、 G a A s、 I n P、 Nb 2O5、 P b S、 S n 02、 T i 02、 WO 3、 Z n Oであり、 特に好ましくは T i 02、 Z n 0、 S n 02、 N b 205であり、 最も好ましくは T i 02、 Z n Oから成る層である。 本発明に用いられる半導体は単結晶でも多結晶でも良い。 結晶系としては、 ァ ナターゼ型、 ルチル型、 ブルッカイト型などが主に用いられるが、 好ましくはァ ナターゼ型である。 半導体層の形成には公知の方法を用いることができる。
半導体層の形成方法としては、 上記半導体のナノ粒子分散液、 ゾル溶液等を、 公知の方法により基板上に塗布することで得ることが出来る。 この場合の塗布方 法としては特に限定されずキャスト法による薄膜状態で得る方法、 スピンコート 法、 ディップコート法、 バーコ一ト法のほか、 スクリーン印刷法を初めとした各 種の印刷方法を挙げることができる。
半導体層の厚みは任意であるが 0. 5 m以上、 50 μ m以下、 好ましくは 1 im以上 20 μ m以下である。 半導体層の光吸収効率を向上すること等を目的として、 種々の色素を半導体層 に吸着や含有させることが出来る。
本発明において用いられる色素としては、 半導体層の光吸収効率を向上させる 色素であれば、 特に制限されるものではなく、 通常、 各種の金属錯体色素や有機 色素の一種または二種以上を用いることができる。 また、 半導体層への吸着性を 付与するために、 色素の分子中にカルボキシル基、 ヒドロキシル基、 スルホニル 基、 ホスホニル基、 カルボキシルアルキル基、 ヒ ドロキシアルキル基、 スルホ二 ルアルキル基、 ホスホエルアルキル基などの官能基を有するものが好適に用いら れる。
金属錯体色素としては、 ルテニウム、 オスミウム、 鉄、 コバルト、 亜鉛の錯体 や金属フタロシアニン、 クロロフィル等を用いることができる。
本発明において用いられる金属錯体色素としては、 以下のようなものが例示さ れる。
(色素 1 )
Figure imgf000025_0001
ここで Xは、 一価のァ-オンを示すが、 2つの Xは独立でも、 架橋されていて いても良い。 例えば、 次のようなものが例示される。
Figure imgf000025_0002
(色素 2 )
Figure imgf000025_0003
で Xは、 一価のァニオンを示す。 例えば次のようなものが例示される t
Figure imgf000026_0001
Yは一価ァニオンであって、 ハロゲンイオン、 S CN―、 C I O B F
C F , S O (C F 3 S 02) 。『、 (C 2F R S 02) 2N―、 P F6—、 A s F
CH3COO CH3 (C6H4) S 03—、 および (C2F5S〇2) 3C—等を挙 げることができる。
(色素 3)
Figure imgf000026_0002
ここで Zは、 非共有電子対を有する原子団であって、 2つの Zは独立でも、 架 橋されていていても良い。 例えば、 次のようなものが例示される。 JP03/06819
Figure imgf000027_0001
Yは一価ァニオンであって、 ハロゲンイオン、 S CN―、 C 1 O B F
CF3S03-、 (C F 3 S 02) 2N -、 (C2F5S02) 2N -、 P F6-、 A s F6 -、 CH3COO—、 CH3 (C6H4) S 03—、 および (C2F5 S〇2) 3C—等を挙 げることができる。
(色素 4)
Figure imgf000027_0002
また、 有機色素としては、 シァニン系色素、 へミシァニン系色素、 メロシア二 ン系色素、 キサンテン系色素、 トリフエニルメタン系色素、 金属フリーフタロシ ァニン系色素を用いることができる。
本発明において用いる有機色素としては、 以下のようなものが例示される。
NaOOC COONa
Figure imgf000027_0003
Figure imgf000028_0001
色素を半導体層に吸着させる方法としては、 溶媒に色素を溶解させた溶液を、 半導体層上にスプレーコートゃスピンコートなどにより塗布した後、 乾燥する方 法により形成することができる。 この場合、適当な温度に基板を加熱しても良い。 または半導体層を溶液に浸漬して吸着させる方法を用いることも出来る。 浸漬す る時間は色素が十分に吸着すれば特に制限されることはないが、 好ましくは 1〜 3 0時間、 特に好ましくは 5〜2 0時間である。 また、 必要に応じて浸漬する際 に溶媒や基板を加熱しても良い。 好ましくは溶液にする場合の色素の濃度として は、 1〜: L 0 0 O mMZ L、 好ましくは 1 0〜 5 0 O mMZ L程度である。 用いる溶媒としては、 色素を溶解しかつ半導体層を溶解しなければ特に制限さ れるとはなく、 メタノール、 エタノール、 1一プロパノール、 2—プロパノール、 1ーブタノ一ノレ、 2—ブタノール、 tーブタノ一ノレなどのァノレコール、 ァセトニ トリル、 プロピオ-トリル、 メ トキシプロピオ-トリル、 グルタロニトリル、 な どのュトリノレ系溶媒、 ベンゼン、 トノレェン、 o—キシレン、 m—キシレン、 p— キシレン、 ペンタン、 ヘプタン、 へキサン、 シク口へキサン、 ヘプタン、 ァセト ン、 メチルェチルケトン、 ジェチルケトン、 2—ブタノンなどのケトン、 ジェチ ルエーテル、 テトラヒ ドロフラン、 エチレンカーボネート、 プロピレンカーポネ ート、 ニトロメタン、 ジメチルホルムアミ ド、 ジメチルスルホキシド、 へキサメ チルホスホアミ ド、 ジメ トキシェタン、 γ—ブチロラタ トン、 —バレロラク ト ン、 スルホラン、 ジメ トキシエタン、 アジポニトリル、 メ トキシァセトニトリル、 ジメチルァセトアミ ド、 メチルピロリジノン、 ジメチルスルホキシド、 ジォキソ ラン、 スルホラン、 リン酸トリメチル、 リン酸トリェチル、 リン酸トリプロピル、 リン酸ェチルジメチル、 リン酸トリブチル、 リン酸トリペンチル、 リン酸トリへ キシル、 リン酸トリへプチル、 リン酸トリオクチル、 リン酸トリノ-ル、 リン酸 トリデシル、 リン酸トリス (トリフフロロメチル)、 リン酸トリス (ペンタフ口 ロェチル)、 リン酸トリフヱニノレポリエチレングリコール、 及びポリエチレング リコール等が使用可能である。 次に、 透明導電性基板について説明する。
透明導電性基板は、 通常、 透明基板上に透明電極層を積層させて製造される。 透明基板としては、 特に限定されず、 材質、 厚さ、 寸法、 形状等は目的に応じて 適宜選択することができ、 例えば無色あるいは有色ガラス、 網入りガラス、 ガラ スブロック等が用いられる他、無色あるいは有色の透明性を有する樹脂でも良い。 具体的には、 ポリエチレンテレフタレートなどのポリエステル、 ポリアミ ド、 ポ リスルホン、 ポリエーテルサルホン、 ポリエーテルエーテルケトン、 ポリフエ二 レンサルフアイ ド、 ポリカーボネート、 ポリイミ ド、 ポリメチルメタクリレート、 ポリスチレン、 トリ酢酸セルロース、 ポリメチルペンテンなどが挙げられる。 な お、 本発明における透明とは、 1 0〜 1 0 0 %の透過率を有することであり、 ま P T /舅/賺 た、 本発明における基板とは、 常温において平滑な面を有するものであり、 その 面は平面あるいは曲面であってもよく、 また応力によって変形するものであって よい。
また、 電極の導電層を形成する透明導電膜としては、 本発明の目的を果たすも のである限り特に限定されなく、 例えば、 金、 銀、 クロム、 銅、 タングステンな どの金属薄膜、 金属酸化物からなる導電膜などが挙げられる。 金属酸化物として は、 例えば、 酸化錫や酸化亜鉛に、 他の金属元素を微量ドープした Indium Tin Oxide ( I TO ( I n 2 O 3 : S n ) )、 Fluorine doped Tin Oxide (F T O ( S n 02 : F))、 Aluminum doped Zinc Oxide (AZO ( Z n O : A 1 ) ) などが好適 なものとして用いられる。
膜厚は、 通常 1 0 nm〜l 0 ^πι、 好ましくは 1 00 nm〜2 である。 ま た、 表面抵抗 (抵抗率) は、 本発明の基板の用途により適宜選択されるところで あるが、 通常、 0. 5〜500 Q/s q、 好ましくは 2〜 50 Ω/ s qである。 本発明の光電変換素子の例としては、 例えば、 図 1に示す断面を有する光起電 力素子を好ましく挙げることができる。 この素子は、 透明基板上に半導体層 (チ タニア層及ぴ色素層) を備えた基板 Aと、 基板上に導電性カーボン層が形成され た導電性対向電極 (基板 B) を有している。 そして、 両者の間隙は電解質が満た され、 周辺がシール材で密封されている。 また、 図示はしていないが、 起電力を 取り出すために各基板の導電部分にリード線が接続されている。
本発明の光電変換素子を製造する方法は、 特に限定されないが、通常、基板 A、 電解質、 基板 Bを積層し周辺部を適宜シールし、 基板 Aと基板 Bを所定の間隔に おいて対向させたのち、 間隙に電解質を入れるなどの、 公知の方法により容易に 製造することができる。 なお、 基板の間隔は、 通常 0. 1 i m以上、 好ましくは 1 i m以上であり、 上限としては通常 1 mm、 好ましくは 0. 5 mm以下である ことが望ましい。
[産業上の利用可能性]
本発明の対向電極を用いることにより、 耐久性の良い光電変換素子を、 より安 価な材料コス ト、 製造コス トで提供することが可能となり、 太陽電池用の素子と して好適である。
[発明を実施するための最良の形態]
以下に実施例を挙げ、 本発明を具体的に説明するが、 本発明はこれらになんら 制限されるものではない。
(実施例 1 )
アク リル系熱硬化性樹脂 (商品名 「アタリディック」 :大日本インキ化学工業 社製) 10 gおよびメラミン樹脂 (商品名 「バンセミン」:ハリマ化成社製) 2. 2 gにグラフアイ ト (商品名 「US S P」 : 日本黒鉛商事社製) 1 2 gを加え、 エチレングリコールモノー n—プチルエーテル 24 gを添加、 混合し、 導電性べ ーストを調整した。
上記導電性ペーストを、 5 c m角ガラス基板上のほぼ全面にバーコ一トし、 1 60°Cで 0. 5時間加熱硬化させた。 その後、 窒素雰囲気下、 500°Cで 3時間 焼成し導電性カーボン層を有する対向電極とした。 カーボン層の厚さは、 50 mであって、 得られた対向電極のカーボン層の表面抵抗を測定すると、 50 Ω/ s qであった。
フィルム抵抗値 30 Ω/ s qの 5 c m角 S n〇2 : Fガラス (ガラス基板上に S n02 : F膜を形成した透明導電性ガラス) 上に SOLARON I X社製 T i 一 Na n o x i d e T をバーコートして乾燥させた。 バーコートの際には、 膜厚が均一になるよう、 透明導電性ガラスのサイド 5 mmにスコッチテープを貼 り付けた。 塗布した基板を、 500°Cで 30分焼成した。 これを下記式で示され るルテニウム色素 Zエタノール溶液 (3. 0 X 1 0" m o 1 /L) に 1 5時間 浸し、 色素層を形成した。 得られた基板と前記対向電極を合わせ、 0. 3mo 1 ZLのヨウ化リチウムと 0. 03mo l ZLのヨウ素を含むプロピレンカーボネ 一ト溶液を毛細管現象によって染み込ませ、 周辺をエポキシ接着剤で封止した。 なお、 透明導電基板の導電層部分と対向電極にはリード線を接続した。
このようにして得たセルに疑似太陽光を照射し、 電流電圧特性を測定したとこ PC漏細 19 ろ、 図 2に示すとおり、 良好な光電変換特性を得た
Figure imgf000032_0001
(実施例 2)
ァクリル系熱硬化性樹脂 (商品名 「ァクリル— G」 : ハニー化成社製) 48 g およびメラミン榭脂 (商品名 「二力ラック SM5 5 1 j :三和ケミカル社製) 1 0 gにケッチェンブラック (商品名 「E C P 6 00 J D」 :三菱化学社製) 1 0 gを加え、エチレングリコーノレモノー n—プチルエーテル 80 gを添加、混合し、 導電性ペーストを調製した。
上記導電性ペーストを、 5 c m角ガラス基板上のほぼ全面にパーコートし、 1 60°〇で0. 5時間加熱硬化させた。 その後、 窒素雰囲気下、 500°Cで 3時間 焼成して導電性カーボン層を有する対向電極とした。 カーボン層の厚さは、 50 μπιであって、 得られた対向電極のカーボン層の表面抵抗を測定すると、 5 5 Ω / s qでめった。
次に、 フィルム抵抗値 30 Ω/ s qの 5 c m角 S n〇2 : Fガラス (ガラス基 板上に S n〇2 : F膜を形成した透明導電性ガラス) 上に S OLAR ON I X社 製 「T i一 N a n o X i d e T」 をバーコ一トして乾燥させた。 パーコートの 際には、 膜厚が均一になるよう、 透明導電性ガラスのサイド 5mmにスコッチテ ープを貼り付けた。 塗布した基板を、 500°Cで 30分焼成した。 これをルテ- ゥム色素 (商品名 「 Ru t h e n i um— 5 3 5— b i s TBA」 : S o l a r o n i x社製) Zエタノール溶液 ( 5. 0 X 1 0— 4m o 1 /L) に 1 5時間浸 し、 色素層を形成した。 得られた基板と前記対向電極を合わせ、 0. lmo \/ Lのヨウ化リチウム、 0. 5mo 1 ZLのヨウ化 1一プロピル一 2, 3—ジメチ ノレイミダゾリゥム、 0. 5mo 1 ZLの 4— t一ブチルピリジン、 0. 05mo 1 /Lのヨウ素を含む 3—メ トキシプロピオ二トリル溶液を毛細管現象によって 染み込ませ、 周辺をエポキシ接着剤で封止した。 なお、 透明導電基板の導電層部 分と対向電極にはリード線を接続した。
このようにして得たセルに疑似太陽光を照射し、 電流電圧特性を測定したとこ ろ、 図 3に示すとおり、 良好な光電変換特性を得た。
(実施例 3 )
シリコン系熱硬化性樹脂 (商品名 「RZ— 7 70 5」 : 日本ュユカ一社製) 4 8 gにケッチェンブラック (商品名 「E C P 6 00 J D」 :三菱化学社製) 1 0 gを加え、エチレングリコールモノー n—ブチルエーテル 80 gを添加、混合し、 導電性ペーストを調製した。
上記導電性ペーストを、 5 c m角ガラス基板上のほぼ全面にバーコートし、 1 6 0 で0. 5時間加熱硬化させた。 その後、 窒素雰囲気下、 500°Cで 3時間 焼成して導電性カーボン層を有する対向電極とした。 カーボン層の厚さは、 50 μπιであって、 得られた対向電極のカーボン層の表面抵抗を測定すると、 35 Ω / s qでめった。
次に、 フィルム抵抗値 30 Ω/ s qの 5 cm角 S n02 : Fガラス (ガラス基 板上に S n〇2 : F膜を形成した透明導電性ガラス) 上に SOLAR ON I X社 製 「T i一 N a n o x i d e T」 をバーコ一トして乾燥させた。 バーコ一トの 際には、 膜厚が均一になるよう、 透明導電性ガラスのサイ ド 5 mmにスコッチテ ープを貼り付けた。 塗布した基板を、 500°Cで 30分焼成した。 これをルテニ ゥム色素 (商品名 「Ru t h e n i um— 620— 1 H— 3 TBAJ : S o 1 a r o n i x社製) /ェタノール溶液 (5. 0 X 1 0— 4mo l ZL) に 1 5時間 浸し、 色素層を形成した。 得られた基板と前記対向電極を合わせ、 0. lmo l ZLのヨウ化リチウム、 0. 5mo 1 ZLのヨウ化 1一プロピル一 2, 3—ジメ チルイミダゾリゥム、 0. 5mo 1 /Lの 4一 t一ブチルピリジン、 0. 05m o 1 ZLのヨウ素を含む 3—メ トキシプロピオ-トリル溶液を毛細管現象によつ て染み込ませ、 周辺をエポキシ接着剤で封止した。 なお、 透明導電基板の導電層 部分と対向電極にはリード線を接続した。
このようにして得たセルに疑似太陽光を照射し、 電流電圧特性を測定したとこ ろ、 図 4に示すとおり、 良好な光電変換特性を得た。
[図面の簡単な説明]
図 1は、 光電変換素子の断面の例である。
図 2は、 実施例 1で得られた光電変換素子の電流電圧特性の測定図である。 図 3は、 実施例 2で得られた光電変換素子の電流電圧特性の測定図である。 図 4は、 実施例 3で得られた光電変換素子の電流電圧特性の測定図である。

Claims

請 求 の 範 囲
1 . 基板おょぴ該基板上に形成された導電性カーボン層からなる対向電 極を有することを特徴とする光電変換素子。
2 . 透明導電性基板上に形成された半導体層、 電解質層、 および基板上 に形成された導電性力一ポン層から少なくとも構成される光電変換素子。
3 . 前記基板が導電性基板であることを特徴とする請求の範囲第 1項又 は第 2項に記載の光電変換素子。
4 . 前記電解質層が、 高分子固体電解質層であることを特徴とする請求 の範囲第 2項に記載の光電変換素子。
5 . 前記半導体層が、 色素を含有することを特徴とする請求の範囲第 2 項に記載の光電変換素子。
PCT/JP2003/006819 2002-06-04 2003-05-30 光電変換素子 WO2003103085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004510062A JPWO2003103085A1 (ja) 2002-06-04 2003-05-30 光電変換素子
EP03730713A EP1511116A4 (en) 2002-06-04 2003-05-30 PHOTOELECTRIC TRANSFORMER
US10/996,837 US20050092359A1 (en) 2002-06-04 2004-11-24 Photovoltaic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-163482 2002-06-04
JP2002163482 2002-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/996,837 Continuation US20050092359A1 (en) 2002-06-04 2004-11-24 Photovoltaic device

Publications (1)

Publication Number Publication Date
WO2003103085A1 true WO2003103085A1 (ja) 2003-12-11

Family

ID=29706634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006819 WO2003103085A1 (ja) 2002-06-04 2003-05-30 光電変換素子

Country Status (4)

Country Link
US (1) US20050092359A1 (ja)
EP (1) EP1511116A4 (ja)
JP (1) JPWO2003103085A1 (ja)
WO (1) WO2003103085A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244919A (ja) * 2005-03-04 2006-09-14 Nippon Oil Corp 光電変換素子
JP2007073414A (ja) * 2005-09-08 2007-03-22 Fujikura Ltd 電極及びその製造方法、並びに光電変換素子
JP2009048946A (ja) * 2007-08-22 2009-03-05 Teijin Dupont Films Japan Ltd 色素増感型光電変換素子

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036793A1 (de) * 2004-07-29 2006-03-23 Konarka Technologies, Inc., Lowell Nanoporöse Fullerenschichten und deren Verwendung in der organischen Photovoltaik
EP1672653B1 (en) * 2004-12-20 2019-07-17 Merck Patent GmbH Patterned photovoltaic cell
KR101174887B1 (ko) * 2006-01-20 2012-08-17 삼성에스디아이 주식회사 담지촉매를 이용한 태양 전지용 대향 전극
DE102006023638A1 (de) * 2006-05-18 2007-11-22 Sefar Ag Photovoltaische Zelle
US20080001141A1 (en) * 2006-06-28 2008-01-03 Unidym, Inc. Doped Transparent and Conducting Nanostructure Networks
KR20080006735A (ko) * 2006-07-13 2008-01-17 삼성전자주식회사 촉매 담지 탄소나노튜브를 이용한 태양전지 및 그 제조방법
WO2008066933A2 (en) * 2006-12-01 2008-06-05 The Regents Of The University Of California Enhancing performance characteristics of organic semiconducting films by improved solution processing
CN102969167B (zh) * 2007-08-28 2016-08-03 3G太阳能光电有限公司 具有改善的辅助电极的光伏染料电池
US7910015B2 (en) * 2007-10-22 2011-03-22 Institute Of Nuclear Energy Research Polymer electrolyte for dye sensitized solar cell
US8227691B2 (en) * 2007-10-31 2012-07-24 The Regents Of The University Of California Processing additives for fabricating organic photovoltaic cells
US20090194167A1 (en) * 2008-02-05 2009-08-06 Konarka Technologies, Inc. Methods of Forming Photoactive Layer
JP5219538B2 (ja) * 2008-02-12 2013-06-26 大成建設株式会社 太陽光発電薄膜を基材に直接形成した太陽電池
FR2932009B1 (fr) * 2008-06-02 2010-09-17 Saint Gobain Cellule photovoltaique et substrat de cellule photovoltaique
JP5273709B2 (ja) * 2008-07-02 2013-08-28 シャープ株式会社 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール
KR100997843B1 (ko) 2008-08-29 2010-12-01 주식회사 솔켐 전기방사법에 의해 제조된 고분자 전해질을 포함한 염료감응형 태양전지 소자 및 이의 제조방법
KR101033304B1 (ko) 2009-02-09 2011-05-09 광주과학기술원 발광특성을 가지는 유기 태양전지 및 그 제조방법
WO2010125953A1 (ja) * 2009-04-30 2010-11-04 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
KR101131055B1 (ko) 2010-07-09 2012-03-30 포항공과대학교 산학협력단 투명기판 상에 메조포러스 탄소전극이 형성된 상대전극을 포함하는 염료감응형 태양전지 및 이의 제조방법
WO2014150235A1 (en) * 2013-03-15 2014-09-25 The Trustees Of Dartmouth College Multifunctional nanostructured metal-rich metal oxides
KR20140122361A (ko) * 2013-04-09 2014-10-20 삼성에스디아이 주식회사 염료감응 태양전지용 전해질 및 이를 이용한 염료감응 태양전지
KR101728329B1 (ko) * 2015-11-19 2017-05-02 현대자동차주식회사 터치 입력장치, 이를 포함하는 차량, 및 그 제조방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092477A (ja) * 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH11329519A (ja) * 1998-04-27 1999-11-30 Minnesota Mining & Mfg Co <3M> 光電池
JP2000036331A (ja) * 1998-07-16 2000-02-02 Konica Corp 金属酸化物、半導体、光電変換材料用電極及び太陽電池
JP2000100482A (ja) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd 色素増感型太陽電池
JP2000285979A (ja) * 1999-03-31 2000-10-13 Toshiba Corp 光増感型太陽光発電セル
JP2001076776A (ja) * 1999-09-09 2001-03-23 Tdk Corp 色素増感型太陽電池
JP2001253894A (ja) * 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001345126A (ja) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd 光電変換素子
JP2002042910A (ja) * 2000-07-26 2002-02-08 Nippon Kayaku Co Ltd 半導体電極
JP2002093475A (ja) * 2000-09-19 2002-03-29 Dainippon Printing Co Ltd 色素増感型太陽電池セルおよびそれを用いた色素増感型太陽電池モジュール、およびそれらの製造方法
JP2002100419A (ja) * 2000-09-25 2002-04-05 Mitsubishi Chemicals Corp 光電変換素子
JP2002298936A (ja) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd 光電変換素子、及びその製造方法
JP2003142168A (ja) * 2001-10-31 2003-05-16 Japan Science & Technology Corp 高分子固体電解質を正孔輸送層とする色素増感型太陽電池の対極を電子伝導性材料と高分子電解質からなる材料で形成した固体色素増感型太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291763B1 (en) * 1999-04-06 2001-09-18 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photo cell
EP1049117B1 (en) * 1999-04-26 2011-11-02 FUJIFILM Corporation Ruthenium complex dye
ATE342573T1 (de) * 2000-08-15 2006-11-15 Fuji Photo Film Co Ltd Photoelektrische zelle und herstellungsmethode
EP1207572A1 (en) * 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
US6677516B2 (en) * 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092477A (ja) * 1996-09-12 1998-04-10 Agency Of Ind Science & Technol 有機色素増感型酸化物半導体電極及びそれを含む太陽電池
JPH11329519A (ja) * 1998-04-27 1999-11-30 Minnesota Mining & Mfg Co <3M> 光電池
JP2000036331A (ja) * 1998-07-16 2000-02-02 Konica Corp 金属酸化物、半導体、光電変換材料用電極及び太陽電池
JP2000100482A (ja) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd 色素増感型太陽電池
JP2000285979A (ja) * 1999-03-31 2000-10-13 Toshiba Corp 光増感型太陽光発電セル
JP2001076776A (ja) * 1999-09-09 2001-03-23 Tdk Corp 色素増感型太陽電池
JP2001253894A (ja) * 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001345126A (ja) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd 光電変換素子
JP2002042910A (ja) * 2000-07-26 2002-02-08 Nippon Kayaku Co Ltd 半導体電極
JP2002093475A (ja) * 2000-09-19 2002-03-29 Dainippon Printing Co Ltd 色素増感型太陽電池セルおよびそれを用いた色素増感型太陽電池モジュール、およびそれらの製造方法
JP2002100419A (ja) * 2000-09-25 2002-04-05 Mitsubishi Chemicals Corp 光電変換素子
JP2002298936A (ja) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd 光電変換素子、及びその製造方法
JP2003142168A (ja) * 2001-10-31 2003-05-16 Japan Science & Technology Corp 高分子固体電解質を正孔輸送層とする色素増感型太陽電池の対極を電子伝導性材料と高分子電解質からなる材料で形成した固体色素増感型太陽電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIYOAKI INOUE ET AL.: "Shikiso zokangata taiyo denchi no taikyoku no kento(I)", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 69 KAI TAIKAI KOEN YOSHISHU, 3I19, 25 March 2002 (2002-03-25), pages 250, XP002972156 *
See also references of EP1511116A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244919A (ja) * 2005-03-04 2006-09-14 Nippon Oil Corp 光電変換素子
JP2007073414A (ja) * 2005-09-08 2007-03-22 Fujikura Ltd 電極及びその製造方法、並びに光電変換素子
JP2009048946A (ja) * 2007-08-22 2009-03-05 Teijin Dupont Films Japan Ltd 色素増感型光電変換素子

Also Published As

Publication number Publication date
JPWO2003103085A1 (ja) 2005-10-06
EP1511116A1 (en) 2005-03-02
EP1511116A4 (en) 2010-05-05
US20050092359A1 (en) 2005-05-05

Similar Documents

Publication Publication Date Title
WO2003103085A1 (ja) 光電変換素子
JP4583025B2 (ja) ナノアレイ電極の製造方法およびそれを用いた光電変換素子
WO2013099567A1 (ja) 電極複合体、及びこれを備える光電気素子
US20090078307A1 (en) Three-Pole Two-Layer Photo-Rechargeable Battery
JP4528082B2 (ja) 導電性パターンを有する電極基板および太陽電池
JP4948029B2 (ja) 色素増感型太陽電池
JP4812311B2 (ja) 色素増感型太陽電池
KR20070072215A (ko) 금속 메쉬층을 구비하는 광전변환소자용 전극, 그의제조방법 및 상기 전극을 채용한 염료감응 태양전지
JP5134867B2 (ja) 光電変換素子
JP4993895B2 (ja) 色素増感型太陽電池素子
JP5000119B2 (ja) 色素増感型太陽電池素子
JP5000162B2 (ja) 色素増感型太陽電池
WO2006051644A1 (ja) 色素増感型太陽電池
JP5197965B2 (ja) 光電変換素子
JP2006244919A (ja) 光電変換素子
JP4954855B2 (ja) 色素増感太陽電池の製法
JP2006134827A (ja) 電極および色素増感型太陽電池
JP2005044697A (ja) 光電変換素子
JP4885511B2 (ja) 色素増感型太陽電池素子の製造方法
JP5128076B2 (ja) 色素増感型太陽電池及びその製造方法
JP5540744B2 (ja) 光電変換素子
WO2003085773A1 (fr) Élément de conversion photoélectrique
CN110323069A (zh) 染料敏化太阳能电池和其制造方法
JP2005150278A (ja) 電極および機能性素子
JP4676733B2 (ja) 酸化チタン電極の製造方法および光電変換素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004510062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10996837

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003730713

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003730713

Country of ref document: EP