WO2003093343A1 - Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester - Google Patents

Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester Download PDF

Info

Publication number
WO2003093343A1
WO2003093343A1 PCT/EP2003/004121 EP0304121W WO03093343A1 WO 2003093343 A1 WO2003093343 A1 WO 2003093343A1 EP 0304121 W EP0304121 W EP 0304121W WO 03093343 A1 WO03093343 A1 WO 03093343A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
highly functional
derivatives
acids
hyperbranched
Prior art date
Application number
PCT/EP2003/004121
Other languages
English (en)
French (fr)
Inventor
Eva Wagner
Bernd Bruchmann
Peter Keller
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29224957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003093343(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to KR1020047017319A priority Critical patent/KR100974259B1/ko
Priority to US10/510,354 priority patent/US20050165177A1/en
Priority to DE50305493T priority patent/DE50305493D1/de
Priority to EP03729931A priority patent/EP1501882B1/de
Priority to AU2003240456A priority patent/AU2003240456A1/en
Publication of WO2003093343A1 publication Critical patent/WO2003093343A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/81Preparation processes using solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used

Definitions

  • the present invention relates to a method for producing highly functional, hyperbranched polyesters, characterized in that
  • the present invention relates to highly functional, hyperbranched polyesters, obtainable by the process described above, and the use of the highly functional, hyperbranched polyesters thus obtained in coatings, lacquers, coatings and adhesives and printing inks.
  • Modified, highly functional hyperbranched polyesters and polyester based denimers are known as such, see for example WO 96/19537, and are already used in some applications, for example as an impact modifier.
  • dendrimers are too expensive for general use because the syntheses place high demands on the yields of the building reactions and purity of the intermediate and end products and require reagents which are too expensive for large-scale use.
  • the production of hyperbranched, highly functional polyesters produced by conventional esterification reactions usually requires very drastic conditions, cf. WO 96/19537, for example high temperatures and / or strong acids. This can lead to side reactions such as dehydration reactions, decarboxylate ions and, as a result of the side reactions, to undesirable resinification and discoloration.
  • GB 2 272 904 discloses a process for the lipase-catalyzed preparation of a polyester in which at least one aliphatic dicarboxylic acid is reacted with itself to form polyesters with at least one aliphatic diol or polyol or at least one aliphatic hydroxycarboxylic acid.
  • the process is carried out at temperatures from 10 to 60 ° C., preferably at 40 to 45 ° C., and - even when using glycerol - preferably gives unbranched polyester (page 3, lines 26/27).
  • the process disclosed in GB 2 272 904 can therefore be used for the targeted construction of linear polymers. Pentaerythritol cannot be implemented in the process disclosed in GB 2 272 904 (page 3, line 28).
  • the example demonstrates the synthesis of a linear polyester from adipic acid and butane-1,4-diol.
  • WO 94/12652 discloses a process for the enzyme-catalyzed synthesis of polyesters which is carried out in the absence of solvents (page 3, line 26). A distinction can be made between two process steps. In the first step, enzymatic oligomers are made from diols and dicarboxylic acids or related products. The enzyme is then either recovered and the reaction continued at an elevated temperature, or the enzyme is left in the reaction mixture and the temperature is increased, accepting a possible irreversible destruction of the enzyme.
  • WO 98/55642 describes a special process for the enzyme-catalyzed synthesis of polyesters by reacting either hydroxycarboxylic acids or aliphatic dicarboxylic acids with aliphatic diols or polyols and optionally an aliphatic one
  • Hydroxycarboxylic acid in a two-stage process in the first stage - optionally in the presence of water - the starting products are reacted in a molar ratio of 1: 1 to 1.1: 1 and the second stage is carried out at elevated temperature.
  • the method disclosed does not convert sterically hindered secondary hydroxyl groups (page 7, lines 27/28), the secondary hydroxyl group of, for example, glycerol being classified as sterically hindered (page 8, line 4), so that linear products are involved in the reaction of glycerol be preserved.
  • WO 99/46397 discloses the synthesis of polyesters by reacting, for example, a polyol with two primary and at least one secondary alcohol function with one or more ren di- or tricarboxylic acids in the presence of an effective amount of a lipase, preferably working under reduced pressure, so that linear polyesters are obtained.
  • LE Iglesias et al. in Biotechnology Techniques 1999, 13, 923 report that linear polyesters are obtained if esterified glycerol with adipic acid in the presence of an enzyme at 30 ° C.
  • BI Kline et al. report in Polymer Mat. Be . Closely. 1998, 79, 35 that linear polyesters are obtained if glycerol is reacted with adipic acid divinyl ester in the presence of an enzyme at 50 ° C.
  • a process for the synthesis of polyester polyols is known from EP-A 0 680 981, which consists in that a polyol, for example glycerol, and adipic acid in a ratio (OH: COOH 3: 1) in the absence of catalysts and solvents Heated 150-160 ° C. Products are obtained which are suitable as polyester polyol components of rigid polyurethane foams.
  • WO 98/17123 discloses a process for the esterification of glycerol with adipic acid to give polymers which are used in chewing gum. They are obtained by a solvent-free process of esterifying glycerol with adipic acid at 150 ° C (example A). A catalyst is not used. After 4 hours, gels begin to form. However, gel-like polyester polyols are used for numerous applications such as printing inks and Adhesives are undesirable because they can form lumps and reduce the dispersing properties.
  • the products obtained by the processes described above are generally difficult to use as components for adhesives or printing inks because they are generally undesirable gel-like products. In addition, they are usually discolored, which is caused by resinification, decarboxylation, intramolecular condensation reactions or similar undesirable side reactions. Finally, the reaction mixtures generally have a large excess of OH groups, based on the COOH group, so that little branched products are obtained.
  • the object was therefore to provide a process for the production of highly functional, hyperbranched polyesters ' which avoids the disadvantages known from the prior art. There was still the task of providing new, highly functional, hyperbranched polyesters. Finally, the task was to provide new uses for highly functional, hyperbranched polyesters.
  • Highly functional hyperbranched polyesters in the sense of the present invention are molecularly and structurally inconsistent. They differ in their molecular inconsistency of dendrimers and can therefore be produced with considerably less effort.
  • the dicarboxylic acids which can be converted according to variant (a) include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecane- ⁇ , ⁇ -dicarboxylic acid, dodecane- ⁇ , ⁇ -dicarboxylic acid, ice and trans-cyclohexane-1, 2-dicarboxylic acid, ice and trans-cyclohexane-1, 3-dicarboxylic acid, ice and trans-cyclohexane-1, 4-dicarboxylic acid, ice and trans-cyclopentane-1, 2-dicarboxylic acid and also ice and trans-cyclopentane-1,3-dicarboxylic acid,
  • -C-C ⁇ o-alkyl groups for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec. -Butyl, tert.
  • n-pentyl iso-pentyl, sec.-pentyl, neo-pentyl, 1,2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec.-hexyl, n-heptyl, iso-heptyl , n-octyl, 2-ethylhexyl, n-nonyl or n-decyl,
  • C 3 -C 2 cycloalkyl groups for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl; cyclopentyl, cyclohexyl and cycloheptyl are preferred;
  • Alkylene groups such as methylene or ethylidene or
  • C 6 ⁇ -C aryl groups such as phenyl, 1-naphthyl, 2-naphthyl, 1-A thryl, 2-A thryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl and 9- Phenanthryl, preferably phenyl, 1-naphthyl and 2-naphthyl, particularly preferably phenyl.
  • Exemplary representatives for substituted dicarboxylic acids are: 2-methylmalonic acid, 2-ethylmalonic acid, 2-phenylmalonic acid, 2-methylsuccinic acid, 2-ethylsuccinic acid, 2-phenylsuccinic acid, itaconic acid, 3, 3-dimethylglutaric acid.
  • the dicarboxylic acids which can be reacted according to variant (a) include ethylenically unsaturated acids such as, for example, maleic acid and fumaric acid, and aromatic dicarboxylic acids such as, for example, phthalic acid, isophthalic acid or terephthalic acid. Mixtures of two or more of the aforementioned representatives can also be used.
  • the dicarboxylic acids can be used either as such or in the form of derivatives.
  • Mono- or dialkyl esters preferably mono- or dimethyl esters or the corresponding mono- or diethyl esters, but also those of higher alcohols such as n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n-pentanol, n -Hexanol derived mono- and dialkyl esters,
  • Succinic acid, glutaric acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid or their mono- or dimethyl esters are particularly preferably used.
  • Adipic acid is very particularly preferably used.
  • the following can be used as at least trifunctional alcohols: glycerol, butane-1, 2, 4-triol, n-pentane-1,2, 5-triol, n-pentane-1, 3, 5-triol, n-hexane -1,2, 6-triol, n-hexane-1,2, 5-triol, n-hexane-1,3, 6-triol, trimethylolbutane, trimethylolpropane or di-trimethylolpropane, triethylolethane, pentaerythritol or dipentaerythritol; Sugar alcohols such as mesoerythritol, threitol, sorbitol, mannitol or mixtures of the above at least trifunctional alcohols.
  • Tricarboxylic acids or polycarbonic acids which can be reacted according to variant (b) are, for example, 1, 2, 4-benzenetricarboxylic acid, 1,3, 5-benzenetricarboxylic acid, 1,2,4, 5-benzenetetracarboxylic acid and mellitic acid.
  • Tricarboxylic acids or polycarboxylic acids can be used in the reaction according to the invention either as such or in the form of derivatives.
  • Mono-, di- or trialkyl esters preferably mono-, di- or tri-methyl esters or the corresponding mono-, di- or triethyl esters, but also those of higher alcohols such as n-propanol, iso-propanol, n- Butanol, isobutanol, tert-butanol, n-pentanol, n-hexanol derived mono-, di- and triesters, as well as mono-, di- or trivinyl esters
  • the diols for variant (b) of the present invention are, for example, ethylene glycol, propane-1,2-diol, propane-1,3-diol, butane-1,2-diol, butane-1,3-diol, butane l, 4-diol, butane-2, 3-diol, pentane-1, 2-diol, pentane-1, 3-diol, pentane-l, 4-diol, pentane-1, 5-diol, pentane-2, 3-diol,
  • Pentane-2 4-diol, hexane-1, 2-diol, hexane-1, 3-diol, hexane-l, 4-diol, hexane-1, 5-diol, hexane-1, 6-diol, hexane 2,5-diol, heptane-1,2-diol 1,7-heptanediol, 1,8-0ctanediol, 1,2-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,2-decanediol, 1 , 12-dodecanediol, 1, 2-dodecanediol, 1, 5-hexadiene-3, 4-diol, cyclopentanediols, cyelohexanediols, inositol and derivatives, (2) -
  • One or both hydroxyl groups in the diols mentioned above can also be substituted by SH groups.
  • Ethylene glycol, propane-1,2-diol and diethylene glycol, triethylene glycol, dipropylene glycol and tripropylene glycol are preferred.
  • the molar ratio of hydroxyl groups to carboxyl groups in variants (a) and (b) is 2: 1 to 1: 2, in particular 1.5: 1 to 1: 1.5.
  • the at least trifunctional alcohols converted according to variant (a) of the process according to the invention can each have hydroxyl groups of the same reactivity. Preference is also given here to at least trifunctional alcohols whose OH groups are initially equally reactive, but in which a drop in reactivity due to steric or electronic influences can be induced in the remaining OH groups by reaction with at least one acid group. This is the case, for example, when using trimethylolpropane or pentaerythritol.
  • the at least trifunctional alcohols converted according to variant (a) of the process according to the invention can also have hydroxyl groups with at least two chemically different reactivities.
  • the different reactivity of the functional groups can be based either on chemical (e.g. primary / secondary / tertiary OH group) or on steric causes.
  • the triol can be a triol which has primary and secondary hydroxyl groups, a preferred example being glycerol.
  • the process is preferably carried out in the absence of diols and monofunctional alcohols.
  • the process according to the invention is carried out in the presence of a solvent.
  • a solvent for example, hydrocarbons such as paraffins or aromatics are suitable.
  • paraffins are n-heptane and cyclohexane.
  • aromatics are toluene, ortho-xylene, meta-xylene, para-xylene, xylene as a mixture of isomers, ethylbenzene, chlorobenzene and ortho- and meta-dichlorobenzene zol.
  • ethers such as dioxane or tetrahydrofuran
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • the amount of solvent added is at least 0.1% by weight, based on the mass of the starting materials to be reacted, preferably at least 1% by weight and particularly preferably at least 10% by weight.
  • Excess solvents, based on the mass of starting materials used to be converted can also be used, for example " 1.01 to 10 times. Solvent amounts of more than 100 times, based on the mass of starting materials used to be converted , are not advantageous because the reaction rate drops significantly at significantly lower concentrations of the reactants, which leads to uneconomical long reaction times.
  • a dehydrating agent as an additive, which is added at the beginning of the reaction.
  • Molecular sieves are particularly suitable, in particular molecular sieve 4 ⁇ , MgS0 and Na 2 S0 4 . Additional dehydrating agents can also be added during the reaction, or dehydrating agents can be replaced by fresh dehydrating agents. Water or alcohol formed during the reaction can also be distilled off and, for example, a water separator can be used.
  • the process according to the invention can be carried out in the absence of acidic catalysts.
  • the process is preferably carried out in the presence of an acidic inorganic, organometallic or organic catalyst or mixtures of two or more acidic inorganic, organometallic or organic catalysts.
  • aluminum compounds of the general formula AI (OR) 3 and titanates of the general formula Ti (OR) can be used as acidic inorganic catalysts, where the radicals R can in each case be the same or different and are selected independently of one another
  • Ci-Cio-alkyl radicals for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert. -Butyl, n-pentyl, iso-pentyl, sec.-pentyl, neo-pentyl, 1,2-dirnethylpropyl, iso- Amyl, n-hexyl, iso-hexyl, sec.-hexyl, n-heptyl, iso-heptyl, n-octyl, 2-ethylhexyl, n-nonyl or n-decyl,
  • C 3 -C -cycloalkyl radicals for example cyclopropyl, cyclobutyl, 5 cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl; cyclopentyl, cyclohexyl and cycloheptyl are preferred.
  • radicals R in Al (OR) 3 or Ti (OR) 4 are preferably each 10 and selected from isopropyl or 2-ethylhexyl.
  • Preferred acidic organometallic catalysts are selected, for example, from dialkyltin oxides R 2 SnO, where R is defined as above.
  • a particularly preferred representative of acidic organometallic catalysts is di-n-butyltin oxide, which is commercially available as so-called oxo-tin.
  • Preferred acidic organic catalysts are acidic organic compounds with, for example, phosphate groups, sulfonic acid
  • Sulfonic acids such as para-toluenesulfonic acid are particularly preferred.
  • acidic ion exchangers as acidic organic catalysts, for example polystyrene resins containing sulfonic acid groups, which crosslinked with about 2 mol% of divinylbenzene
  • Enzymes or decomposition products of enzymes do not belong to the acidic organic catalysts in the sense of the present invention.
  • the 40 dicarboxylic acids reacted according to the invention do not belong to the acidic organic catalysts in the sense of the present invention.
  • the use of enzymes is advantageously dispensed with. 5
  • the process according to the invention is carried out under an inert gas atmosphere, that is to say, for example, under carbon dioxide, nitrogen or noble gas, among which argon should be mentioned in particular.
  • the inventive method is carried out at temperatures from 80 to 200 ° C. Preferably one works at temperatures from 130 to 180, in particular up to 150 ° C or below. Maximum temperatures up to 145 ° C. are particularly preferred, very particularly preferably up to 135 ° C.
  • the printing conditions of the method according to the invention are not critical per se. You can work at a significantly reduced pressure, for example at 10 to 500 mbar.
  • the invention
  • the process can also be carried out at pressures above 500 mbar.
  • the reaction at atmospheric pressure is preferred; however, it is also possible to carry out the process at a slightly elevated pressure, for example up to 1200 mbar. You can also work under significantly increased pressure, for example
  • the reaction time of the process according to the invention is usually 10 minutes to 25 hours, preferably 30 minutes to 25 10 hours and particularly preferably one to 8 hours.
  • the highly functional hyperbranched polyesters can be isolated easily, for example by filtering off the catalyst and concentrating, the concentration 30 usually being carried out under reduced pressure.
  • Other well-suited processing methods are precipitation after adding water and subsequent washing and drying.
  • Another object of the present invention are the highly functional, hyperbranched polyesters obtainable by the process according to the invention. They are characterized by a particularly low proportion of discoloration and resinification.
  • hyperbranched polymers see also: P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 and A. Sunder et al., Chem. Eur. 0 J. 2000, 6, No.l, 1-8.
  • “highly functional hyperbranched” is understood to mean that branching is present in 30 to 70 mol%, preferably 40 to 60 mol%, of each monomer unit.
  • the polyesters according to the invention have a molecular weight M w of 2000 to 50,000 g / mol, preferably 3000 to 20,000, particularly preferably 3000 to 7000 and very particularly preferably 4000 g / mol.
  • the polydispersity is 1.2 to 50, preferably 1.4 to 40, particularly preferably 1.5 to 30 and very particularly preferably up to 10. They are usually readily soluble, ie clear solutions with up to 50% by weight can be obtained. , in some cases even up to 80% by weight, of the polyesters according to the invention in tetrahydrofuran (THF), n-butyl acetate, ethanol and numerous other solvents, without gel particles being detectable with the naked eye.
  • THF tetrahydrofuran
  • n-butyl acetate ethanol
  • numerous other solvents without gel particles being detectable with the naked eye.
  • the highly functional hyperbranched polyesters according to the invention are carboxy-terminated, carboxy- and hydroxyl-terminated and preferably hydroxyl-terminated and can be used for the preparation e.g. of adhesives, printing inks, coatings, foams, coatings and varnishes can be used to advantage.
  • Another aspect of the present invention is the use of the highly functional, hyperbranched polyesters according to the invention for the production of polyaddition or polycondensation products, for example polycarbonates, polyurethanes and polyethers. Preference is given to using the hydroxyl group-terminated, highly functional, hyperbranched polyesters for the production of polyaddition or polycondensation products, polycarbonates or polyurethanes.
  • Another aspect of the present invention is the use of the highly functional hyperbranched polyesters according to the invention and of the polyaddition or polycondensation products produced from highly functional, hyperbranched polyesters as a component of adhesives, coatings, foams, coatings and lacquers.
  • Another aspect of the present invention are printing inks, adhesives, coatings, foams, coatings and lacquers containing the highly functional hyperbranched polyesters according to the invention or polyaddition or polycondensation products prepared from the highly functional, hyperbranched polyesters according to the invention. They are characterized by excellent technical properties.
  • Another preferred aspect of the present invention are printing inks, in particular packaging printing inks for flexographic and / or intaglio printing, which comprise at least one solvent or a mixture of different solvents, at least one colorant, at least one polymeric binder and optionally further additives, where at least one of the polymeric binders is a hyperbranched, highly functional polyester according to the invention.
  • the hyperbranched polyesters according to the invention can also be used in the context of the present invention in a mixture with other binders.
  • further binders for the printing inks according to the invention include polyvinyl butyral, nitrocellulose, polyamides, polyacrylates or polyacrylate copolymers.
  • the combination of the hyperbranched polyesters with nitrocellulose has proven to be particularly advantageous.
  • the total amount of all binders in the printing ink according to the invention is usually 5-35% by weight, preferably 6-30% by weight and particularly preferably 10-25% by weight, based on the sum of all constituents.
  • the ratio of hyperbranched polyester to the total amount of all binders is usually in the range from 30% by weight to 100% by weight, preferably at least 40% by weight, but the amount of hyperbranched polyester is generally 3% by weight, should preferably not fall below 4% by weight and particularly preferably 5% by weight with respect to the sum of all components of the printing ink.
  • a single solvent or a mixture of several solvents can be used.
  • the usual solvents for printing inks, in particular packaging printing inks are suitable as solvents.
  • Alcohols such as ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, diethylene glycol, substituted alcohols such as, for example, are particularly suitable as solvents for the printing ink according to the invention
  • Water is also suitable in principle as a solvent.
  • Ethanol or mixtures which consist predominantly of ethanol are particularly preferred as solvents.
  • the person skilled in the art makes a suitable selection from the solvents which are possible in principle, depending on the solubility properties of the polyester and the desired properties of the printing ink. Usually 40 to 80% by weight of solvent is used in relation to the sum of all components of the printing ink.
  • the usual dyes in particular common pigments, can be used as colorants.
  • inorganic pigments such as titanium dioxide pigments or iron oxide pigments, interference pigments, carbon blacks, metal powders such as in particular aluminum, brass or copper powder, and organic pigments such as azo, phthalocyanine or isoindoline pigments.
  • organic pigments such as azo, phthalocyanine or isoindoline pigments.
  • Mixtures of different dyes or colorants can of course also be used, as can soluble organic dyes.
  • Usually 5 to 25% by weight of colorant is used in relation to the sum of all components.
  • the packaging printing ink according to the invention can optionally comprise further additives and auxiliary substances.
  • additives and auxiliaries are fillers such as calcium carbonate, aluminum oxide hydrate or aluminum or magnesium silicate.
  • Waxes increase the abrasion resistance and serve to increase the lubricity.
  • Examples are in particular polyethylene waxes, oxidized polyethylene waxes, petroleum waxes or ceresin waxes.
  • Fatty acid amides can be used to increase the surface smoothness.
  • Plasticizers serve to increase the elasticity of the dried film.
  • phthalic acid esters such as dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, citric acid esters or esters of adipic acid.
  • Dispersing aids can be used to disperse the pigments.
  • Adhesion promoters can advantageously be dispensed with in the printing ink according to the invention, without the use of adhesion promoters thereby being excluded.
  • the total amount of all additives and auxiliary substances usually does not exceed 20% by weight with respect to the sum of all components of the printing ink and is preferably 0-10% by weight.
  • the packaging printing ink according to the invention can be produced in a manner known in principle by intensive mixing or dispersing of the constituents in conventional apparatus such as, for example, dissolvers, stirred ball mills or a three-roll mill.
  • a concentrated pigment dispersion with a part of the components and a part of the solvent is advantageously first produced, which is later processed further with further constituents and further solvent to form the finished printing ink.
  • a further preferred aspect of the present invention is printing varnishes which comprise at least one solvent or a mixture of different solvents, at least one polymeric binder and optionally further additives, where at least one of the polymeric binders is a hyperbranched, highly functional polyester, and the use thereof of the printing varnishes according to the invention for priming, as a protective varnish and for producing multilayer materials.
  • the printing varnishes according to the invention naturally do not contain any colorants, but apart from that they have the same constituents as the printing inks according to the invention already described.
  • the amounts of the other components increase accordingly.
  • the invention is illustrated by working examples.
  • the analytical data of the polyesters according to the invention can be found in Table 1.
  • Adipic acid (526 g, 3.6 mol), trimethylolpropane (537 g, 4.0 mol), Fascat® (2.1 g) in toluene were placed in a 2-1 four-necked flask equipped with a water separator (200 g) heated to 125-140 ° C under nitrogen. After a reaction time of 25 h, the toluene was distilled off under reduced pressure. A colorless, viscous polyester was obtained.
  • Example 1 was repeated, but the amount of adipic acid (351 g, 2.4 mol), trimethylolpropane (268 g, 2.0 mol) and toluene (100 g) was halved, and tetra- (2-ethylhexyl) was used as the catalyst.
  • Adipic acid (351 g, 2.4 mol), trimethylolpropane (268 g, 2.0 mol) and toluene (20 g) were mixed well under nitrogen in a 1 liter four-necked flask equipped with a water separator ° C heated and the water of reaction formed distilled off. After a reaction time of 3 h Toluene distilled off under reduced pressure. A colorless, viscous polyester was obtained.
  • adipic acid (877 g, 6.0 mol) were mixed with glycerol (461 g, 5.0 mol) in the presence of di-n-butyltin oxide (Fascat®) ( 3 g) reacted with one another under nitrogen in toluene (200 g) at 130 ° C. for 6 hours.
  • Fascat® di-n-butyltin oxide
  • Azelaic acid (94 g, 0.5 mol) together with trimethylolpropane (67 g, 0.5 mol) were dissolved in toluene (20 g) under nitrogen in a 1 liter four-necked flask equipped with a water separator. After addition of di-n-butyltin oxide (Fascat®, 0.32 g), the water of reaction formed was heated to 135-140 ° C. for 9 h. After cooling to room temperature and distilling off the remaining toluene, colorless polyester was obtained.
  • di-n-butyltin oxide Fascat®, 0.32 g
  • the acid number was determined according to DIN 53402. M w was determined by GPC in THF using polystyrene calibration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester, dadurch gekennzeichnet, dass man (a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens trifunktionellen Alkoholen oder(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolenin Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, metallorganischen oder niedermolekularen organischen Katalysators umsetzt.

Description

Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester
Beschreibung
Die vorliegenden Erfindung betrifft ein Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester, dadurch gekennzeichnet, dass man
(a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens tri- funktionellen Alkoholen
oder
(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbon- säuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen
in Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, metallorganischen oder organischen Katalysators umsetzt.
Weiterhin betrifft die vorliegende Erfindung hochfunktionelle, hyperverzweigte Polyester, erhältlich nach dem oben beschrieben Verfahren, und die Verwendung der so erhaltenen hochfunktio- nellen, hyperverzweigten Polyester in Beschichtungen, Lacken, Überzügen und Klebstoffen sowie Druckfarben.
Modifizierte hochfunktionelle hyperverzweigte Polyester und Den- drimere auf Polyesterbasis sind als solche bekannt, siehe beispielsweise WO 96/19537, und werden bereits in einigen Anwendungen gebraucht, so beispielsweise als Schlagzähmodifikator. Dendrimere sind jedoch für den allgemeinen Gebrauch zu teuer, weil die Synthesen hohe Anforderungen an Ausbeuten der Aufbaureaktionen und Reinheit der Zwischen- und Endprodukte stellen und für den großtechnischen Gebrauch zu teure Reagenzien erfordern. Die Herstellung von durch konventionelle Veresterungsreaktionen hergestellten hyperverzweigten hochfunktioneilen Polyestern erfordert üblicherweise recht drastische Bedingungen, vgl. WO 96/19537, beispielsweise hohe Temperaturen und/oder starke Säuren. Dadurch kann es zu Nebenreaktionen wie beispielsweise Dehydratisationsreaktionen, Decarboxylationen und als Folge der Nebenreaktionen zu unerwünschten Verharzungen und Verfärbungen kommen. Als Veresterungsverfahren, die unter milden Bedingungen ablaufen können, sind einerseits solche unter Einsatz sehr teurer Aktivierungsreagenzien bekannt, wie beispielsweise Dicyclohexyldicarbo- diimid, weiterhin der Einsatz von Schutzgruppenchemie, die aber in großtechnischen Reaktionen unrentabel ist, und andererseits enzymatische Reaktionen, die jedoch nicht die gewünschten Produkte liefern. So ist aus GB 2 272 904 ein Verfahren zur Lipase- katalysierten Herstellung eines Polyesters bekannt, bei dem mindestens eine aliphatische Dicarbonsäure mit mindestens einem ali- phatischen Diol oder Polyol oder mindestens eine aliphatische Hydroxycarbonsäure mit sich selbst zu Polyestern umgesetzt wird. Das Verfahren wird bei Temperaturen von 10 bis 60°C, bevorzugt bei 40 bis 45°C durchgeführt und liefert - auch beim Einsatz von Gly- cerin - bevorzugt unverzweigte Polyester (Seite 3, Zeile 26/27) . Das in GB 2 272 904 offengelegte Verfahren lässt sich daher zum gezielten Aufbau von linearen Polymeren nutzen. Pentaerythrit lässt sich in GB 2 272 904 offenbarten Verfahren nicht umsetzen (Seite 3, Zeile 28). Das Beispiel demonstriert die Synthese eines linearen Polyesters aus Adipinsäure und Butan-1, 4-diol.
In WO 94/12652 wird ein Verfahren zur enzymkatalysierten Synthese von Polyestern offenbart, das in Abwesenheit von Lösemitteln durchgeführt wird (Seite 3, Zeile 26). Dabei lassen sich zwei Verfahrensschritte unterscheiden. Im ersten Schritt werden aus Diolen und Dicarbonsäuren oder verwandten Produkten enzymatisch Oligomere hergestellt. Anschließend wird das Enzym entweder zurückgewonnen und die Reaktion bei erhöhter Temperatur fortgesetzt, oder man lässt das Enzym in der Reaktionsmischung und erhöht die Temperatur, wobei man eine möglicherweise irreversible Zerstörung des Enzyms in Kauf nimmt.
In WO 98/55642 wird ein spezielles Verfahren zur enzymkatalysierten Synthese von Polyestern durch Umsetzung von entweder Hydroxy- carbonsäuren oder aber aliphatisehen Dicarbonsäuren mit aliphati- sehen Diolen oder Polyolen und optional eine aliphatische
Hydroxycarbonsäure in einem Zweistufenverfahren, wobei man in der ersten Stufe - optional in Gegenwart von Wasser - die Ausgangsprodukte in einem molaren Verhältnis von 1:1 bis 1,1:1 umsetzt und wobei die zweite Stufe bei erhöhter Temperatur durchgeführt wird. Durch das offenbarte Verfahren werden sterisch gehinderte sekundäre Hydroxylgruppen nicht umgesetzt (Seite 7, Zeile 27/28) , wobei die sekundäre Hydroxylgruppe von beispielsweise Glycerin als sterisch gehindert einzuordnen ist (Seite 8, Zeile 4), so dass bei der Umsetzung von Glycerin lineare Produkte erhalten werden. WO 99/46397 offenbart die Synthese von Polyestern durch Umsetzung von beispielsweise eines Polyols mit zwei primären und mindestens einer sekundären Alkoholfunktion mit einer oder mehre- ren Di- oder Tricarbonsäuren in Gegenwart einer effektiven Menge einer Lipase, wobei bevorzugt bei reduziertem Druck gearbeitet wird, so dass man lineare Polyester erhält. L.E. Iglesias et al . berichten in Biotechnology Techniques 1999, 13, 923, dass man li- neare Polyester erhält, wenn man Glycerin mit Adipinsäure in Gegenwart eines Enzyms bei 30°C verestert. B.I. Kline et al . berichten in Polymer Mat . Sei . Eng. 1998, 79, 35, dass man lineare Polyester erhält, wenn man Glycerin mit Adipinsäuredivinylester in Gegenwart eines Enzyms bei 50°C umsetzt.
Die oben beschriebenen enzymatisch katalysierten Reaktionen haben jedoch den Nachteil, dass sie üblicherweise recht langsam ablaufen. So betragen die Reaktionszeiten meist viele Stunden bis zu einigen Tagen.
Es ist auch bekannt, Polyhydroxyverbindungen mit Polycarbonsäuren in der Schmelze umzusetzen. So ist in US 4,749,728 ein Verfahren zur Herstellung eines Polyesters aus Trimethylolpropan und Adipinsäure (OH : COOH 3:1), bei 190°C beschrieben. Das beschrie- bene Verfahren wird in Abwesenheit von Lösemitteln und
Katalysatoren durchgeführt. Das bei der Reaktion gebildete Wasser bzw. der Ethanol wird durch einfaches Abdestillieren entfernt. Die so erhaltenen Produkte lassen sich beispielsweise mit Ep- oxiden umsetzen und zu thermisch aushärtenden Beschichtungssyste- en verarbeiten.
Aus US 4,880,980 sind Verfahren zur Herstellung von Polyestern aus Trimethylolpropan und Adipinsäure bekannt, wobei Trimethylolpropan und Adipinsäure unter Stickstoffatmosphäre in Abwesenheit eines Lösemittels auf 220°C erhitzt werden (Referenzbeispiel 8, Spalte 8) . Das bei der Reaktion gebildete Wasser wird durch Einleiten von Stickstoff in die Schmelze ausgetragen.
Aus EP-A 0 680 981 ist ein Verfahren zur Synthese von Polyester- polyolen bekannt, das darin besteht, dass man ein Polyol, beispielsweise Glycerin, sowie Adipinsäure in einem Verhältnis (OH : COOH 3:1) in Abwesenheit von Katalysatoren und Lösemitteln auf 150-160°C erhitzt. Man erhält Produkte, die sich als Poly- esterpolyolkomponente von Polyurethanhartschäumen eignen.
Aus WO 98/17123 ist ein Verfahren zur Veresterung von Glycerin mit Adipinsäure zu Polymeren bekannt, die in Kaugummi eingesetzt werden. Sie werden erhalten durch eine lösemittelfreies Verfahren der Veresterung von Glycerin mit Adipinsäure bei 150°C (Beispiel A) . Ein Katalysator wird nicht eingesetzt. Nach 4 Stunden beginnen sich Gele zu bilden. Gelartige Polyesterpolyole sind jedoch für zahlreiche Anwendungen wie beispielsweise Druckfarben und Klebstoffe unerwünscht, weil sie zur Klümpchenbildung führen können und die Dispergiereigenschaften mindern.
Die durch die oben beschriebenen Verfahren erhaltenen Produkte lassen sich im Allgemeinen nur schlecht als Komponente für Klebstoffe oder Druckfarben verwenden, weil sie in der Regel unerwünschte gelartige Produkte sind. Außerdem sind sie in der Regel verfärbt, was durch Verharzungen, Decarboxylierungen, intramolekulare Kondensationsreaktionen oder ähnliche unerwünschte Neben- reaktionen verursacht wird. Schließlich weisen die Reaktionsgemische im Allgemeinen einen hohen Überschuss an OH-Gruppen, bezogen auf die COOH-Gruppe , auf, so dass man zu wenig verzweigten Produkten gelangt.
Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von hochfunktionellen, hyperverzweigten Polyestern bereit zu stellen', das die aus dem Stand der Technik bekannten Nachteile vermeidet. Es bestand weiterhin die Aufgabe, neue hochfunktionelle, hyperverzweigte Polyester, bereit zu stellen. Schließlich bestand die Aufgabe, neue Verwendungen für hochfunktionelle, hyperverzweigte Polyester bereit zu stellen.
Es wurde nun überraschend gefunden, dass die Aufgabe durch das eingangs definierte Verfahren gelöst werden kann.
Durch das erfindungsgemäße Verfahren werden ist dadurch gekennzeichnet, dass man
(a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens tri- funktioneilen Alkoholen
oder
(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbon- säuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen
in Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, metallorganischen oder niedermolekularen organischen Katalysators umsetzt.
Hochfunktionelle hyperverzweigte Polyester im Sinne der vorliegenden Erfindung sind molekular und strukturell uneinheitlich. Sie unterscheiden sich durch ihre molekulare Uneinheitlichkeit von Dendrimeren und sind daher mit erheblich geringerem Aufwand herzustellen.
Zu den nach Variante (a) umsetzbaren Dicarbonsäuren gehören beispielsweise Oxalsäure, Malonsäure, Bernsteinsäure, Glutar- säure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecan-α,ω-dicarbonsäure, Dodecan-α,ω-dicarbonsäure, eis- und trans-Cyclohexan-1 , 2-dicarbonsäure, eis- und trans-Cyclohexan-l,3-dicarbonsäure, eis- und trans-Cyclohe- xan-1, 4-dicarbonsäure, eis- und trans-Cyclopentan-1, 2-dicarbonsäure sowie eis- und trans-Cyclopentan-1, 3-dicarbonsäure,
wobei die oben genannten Dicarbonsäuren substituiert sein können mit einem oder mehreren Resten, ausgewählt aus
Cι-Cιo-Alkylgruppen, beispielsweise Methyl, Ethyl, n-Propyl, iso- Propyl, n-Butyl , iso-Butyl , sec . -Butyl , tert . -Butyl , n-Pentyl , iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso- Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Oc- tyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,
C3-Cι2-Cycloalkylgruppen, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclo- pentyl, Cyclohexyl und Cycloheptyl;
Alkylengruppen wie Methylen oder Ethyliden oder
C6~Cι-Arylgruppen wie beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-A thryl, 2-A thryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und 9-Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevorzugt Phenyl .
Als beispielhafte Vertreter für substituierte Dicarbonsäuren seien genannt: 2-Methylmalonsäure, 2-Ethylmalonsäure, 2-Phenylma- lonsäure, 2-Methylbernsteinsäure, 2-Ethylbemsteinsäure, 2-Phe- nylbernsteinsäure, Itaconsäure, 3, 3-Dimethylglutarsäure.
Weiterhin gehören zu den nach Variante (a) umsetzbaren Dicarbonsäuren ethylenisch ungesättigte Säuren wie beispielsweise Maleinsäure und Fumarsäure sowie aromatische Dicarbonsäuren wie beispielsweise Phthalsäure, Isophthalsäure oder Terephthalsäure. Weiterhin lassen sich Gemische von zwei oder mehreren der vorgenannten Vertreter einsetzen.
Die Dicarbonsäuren lassen sich entweder als solche oder in Form von Derivaten einsetzen.
Unter Derivaten werden bevorzugt verstanden
die betreffenden Anhydride in monomerer oder auch polymerer Form,
Mono- oder Dialkylester, bevorzugt Mono- oder Dimethylester oder die entsprechenden Mono- oder Diethylester, aber auch die von höheren Alkoholen wie beispielsweise n-Propanol, iso- Propanol, n-Butanol, Isobutanol, tert.-Butanol , n-Pentanol, n-Hexanol abgeleiteten Mono- und Dialkylester,
- ferner Mono- und Divinylester sowie
- gemischte Ester, bevorzugt Methylethylester.
Im Rahmen der vorliegenden Erfindung ist es auch möglich, ein Gemisch aus einer Dicarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es im Rahmen der vorliegen- den Erfindung möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Dicarbonsäuren einzusetzen.
Besonders bevorzugt setzt man Bernsteinsäure, Glutarsäure, Adipinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure oder deren Mono- oder Dimethylester ein. Ganz besonders bevorzugt setzt man Adipinsäure ein.
Als mindestens trifunktioneile Alkohole lassen sich beispielsweise umsetzen: Glycerin, Butan-1, 2 , 4-triol, n-Pen- tan-1,2, 5-triol, n-Pentan-1, 3 , 5-triol, n-Hexan-1,2, 6-triol, n-He- xan-1,2 , 5-triol, n-Hexan-1,3 , 6-triol, Trimethylolbutan, Trimethylolpropan oder Di-Trimethylolpropan, Tri ethylolethan, Pentaerythrit oder Dipentaerythrit; Zuckeralkohole wie beispielsweise Mesoerythrit, Threitol, Sorbit, Mannit oder Gemische der vorstehenden mindestens trifunktionellen Alkohole. Bevorzugt verwendet man Glycerin, Trimethylolpropan, Trimethylolethan und Pentaerythrit. Nach Variante (b) umsetzbare Tricarbonsäuren oder Polycarbon- säuren sind beispielsweise 1, 2, 4-Benzoltricarbonsäure, 1,3, 5-Benzoltricarbonsäure, 1,2,4, 5-Benzoltetracarbonsäure sowie Mellitsäure.
Tricarbonsäuren oder Polycarbonsäuren lassen sich in der erfindungsgemäßen Reaktion entweder als solche oder aber in Form von Derivaten einsetzen.
Unter Derivaten werden bevorzugt verstanden
die betreffenden Anhydride in monomerer oder auch polymerer Form,
- Mono-, Di- oder Trialkylester, bevorzugt Mono-, Di- oder Tri- methylester oder die entsprechenden Mono-, Di- oder Triethy- lester, aber auch die von höheren Alkoholen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.- Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- Di- und Triester, ferner Mono-, Di- oder Trivinylester
sowie gemischte Methylethylester .
Im Rahmen der vorliegenden Erfindung ist es auch möglich, ein Gemisch aus einer Tri- oder Polycarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es im Rahmen der vorliegenden Erfindung möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Tri- oder Polycarbonsäuren einzusetzen.
Als Diole für Variante (b) der vorliegenden Erfindung verwendet man beispielsweise Ethylenglykol, Propan-1, 2-diol, Propan-1, 3-diol, Butan-l,2-diol, .Butan-1, 3-diol, Butan-l,4-diol, Butan-2, 3-diol, Pentan-1, 2-diol, Pentan-1, 3-diol, Pentan-l,4-diol, Pentan-1, 5-diol, Pentan-2, 3-diol,
Pentan-2 , 4-diol , Hexan-1, 2-diol, Hexan-1, 3-diol, Hexan-l,4-diol, Hexan-1, 5-diol, Hexan-1, 6-diol, Hexan-2, 5-diol, Heptan-l,2-diol 1,7-Heptandiol, 1, 8-0ctandiol, 1, 2-Octandiol, 1, 9-Nonandiol, 1, 10-Decandiol, 1, 2-Decandiol, 1, 12-Dodecandiol, 1, 2-Dodecandiol, 1, 5-Hexadien-3 , 4-diol, Cyclopentandiole, Cyelohexandiole, Inosi- tol und Derivate, (2) -Methyl-2 , 4-pentandiol, 2, 4-Dimethyl-2, -Pentandiol, 2-Ethyl-l, 3-hexandiol, 2 , 5-Dimethyl-2 , 5-hexandiol, 2,2, 4-Trimethyl-l , 3-pentandiol , Pina- col, Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tri- propylenglykol , Polyethylenglykole H0(CH2CH20)n-H oder Poly- propylenglykole HO (CH[CH3]CH0)n-H oder Gemische von zwei oder mehr Vertretern der voranstehenden Verbindungen, wobei n eine ganze Zahl ist und n = 4. Dabei kann eine oder auch beide Hydroxylgruppen in den vorstehend genannten Diolen auch durch SH-Gruppen substituiert werden. Bevorzugt sind Ethylenglykol, Propan-1, 2-diol sowie Diethylenglykol, Triethylenglykol , Dipropylenglykol und Tripropylenglykol .
Die Molverhältnis Hydroxylgruppen zu Carboxylgruppen bei den Varianten (a) und (b) betragen 2:1 bis 1:2, insbesondere 1,5:1 bis 1:1,5.
Die nach Variante (a) des erfindungsgemäßen Verfahrens umgesetzten mindestens trifunktionellen Alkohole können Hydroxylgruppen jeweils gleicher Reaktivität aufweisen. Bevorzugt sind hier auch mindestens trifunktionelle Alkohole, deren OH-Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Reaktion mit mindestens einer Säuregruppe ein Reaktivitätsabfall, bedingt durch sterische oder elektronische Einflüsse, bei den restlichen OH-Gruppen induzieren lässt. Dies ist beispielsweise bei der Verwendung von Trimethylolpropan oder Pentaerythrit der Fall .
Die nach Variante (a) des erfindungsgemäßen Verfahrens umgesetzten mindestens trifunktionellen Alkohole können aber auch Hydroxylgruppen mit mindestens zwei chemisch unterschiedlichen Reaktivitäten aufweisen.
Die unterschiedliche Reaktivität der funktionellen Gruppen kann dabei entweder auf chemischen (z.B. primäre/sekundäre/tertiäre OH Gruppe) oder auf sterischen Ursachen beruhen.
Beispielsweise kann es sich bei dem Triol um ein Triol handeln, welches primäre und sekundäre Hydroxylgruppen aufweist, bevorzugtes Beispiel ist Glycerin.
Bei der Durchführung der erfindungsgemäßen Umsetzung nach Va- riante (a) arbeitet man bevorzugt in Abwesenheit von Diolen und monofunktione11en AIkoho1en.
Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (b) arbeitet man bevorzugt in Abwesenheit von mono- oder Dicarbonsäuren.
Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Besonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, Xylol als Isomerengemisch, Ethylbenzol, Chlorbenzol und ortho- und meta-Dichlorben- zol. Weiterhin sind als Lösemittel in Abwesenheit von sauren Katalysatoren ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methyl- ethylketon und Methylisobutylketon.
Die Menge an zugesetztem Lösemittel beträgt erfindungsgemäß mindestens 0,1 Gew.-%, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmaterialien, bevorzugt mindestens 1 Gew. -% und besonders bevorzugt mindestens 10 Gew.-%. Man kann auch Über- schüsse an Lösemittel, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, einsetzen, beispielsweise "das 1,01 bis 10-fache. Lösemittel-Mengen von mehr als dem 100-fachen, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, sind nicht vorteilhaft, weil bei deutlich niedrige- ren Konzentrationen der Reaktionspartner die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.
Zur Durchführung des erfindungsgemäßen Verfahrens kann man in Gegenwart eines Wasser entziehenden Mittels als Additiv arbeiten, das man zu Beginn der Reaktion zusetzt. Geeignet sind beispielsweise Molekularsiebe, insbesondere Molekularsieb 4Ä, MgS0 und Na2S04. Man kann auch während der Reaktion weiteres Wasser entziehendes Mittel zufügen oder Wasser entziehendes Mittel durch fri- sches Wasser entziehendes Mittel ersetzen. Man kann auch während der Reaktion gebildetes Wasser bzw. Alkohol abdestillieren und beispielsweise einen Wasserabscheider einsetzen.
Man kann das erfindungsgemäße Verfahren in Abwesenheit von sauren Katalysatoren durchführen. Vorzugsweise arbeitet man in Gegenwart eines sauren anorganischen, metallorganischen oder organischen Katalysators oder Gemischen aus mehreren sauren anorganischen, metallorganischen oder organischen Katalysatoren.
Als saure anorganische Katalysatoren im Sinne der vorliegenden Erfindung sind beispielsweise Schwefelsäure, Phosphorsäure, Phosphonsäure, hypophosphorige Säure, Aluminiumsulfathydrat, Alaun, saures Kieselgel (pH = 6, insbesondere = 5) und saures Aluminiumoxid zu nennen. Weiterhin sind beispielsweise Alumium- Verbindungen der allgemeinen Formel AI (OR) 3 und Titanate der allgemeinen Formel Ti(OR) als saure anorganische Katalysatoren einsetzbar, wobei die Reste R jeweils gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus
Ci-Cio-Alkylresten, beispielsweise Methyl, Ethyl, n-Propyl, iso- Propyl, n-Butyl, iso-Butyl, sec. -Butyl, tert. -Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dirnethylpropyl, iso- Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Oc- tyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,
C3-Cι-Cycloalkylresten, beispielsweise Cyclopropyl, Cyclobutyl, 5 Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl.
Bevorzugt sind die Reste R in Al(OR)3 bzw. Ti(OR)4 jeweils gleich 10 und gewählt aus Isopropyl oder 2-Ethylhexyl .
Bevorzugte saure metallorganische Katalysatoren sind beispielsweise gewählt aus Dialkylzinnoxiden R2SnO, wobei R wie oben stehend definiert ist. Ein besonders bevorzugter Vertreter für saure 15 metallorganische Katalysatoren ist Di-n-butylzinnoxid, das als sogenanntes Oxo-Zinn kommerziell erhältlich ist.
Bevorzugte saure organische Katalysatoren sind saure organische Verbindungen mit beispielsweise Phosphatgruppen, Sulfonsäure-
20 gruppen, Sulfatgruppen oder Phosphonsäuregruppen. Besonders bevorzugt sind Sulfonsäuren wie beispielsweise para-Toluolsulfon- säure. Man kann auch saure lonentauscher als saure organische Katalysatoren einsetzen, beispielsweise Sulfonsäuregruppen-hal- tige Polystyrolharze, die mit etwa 2 mol-% Divinylbenzol vernetzt
25 sind.
Man kann auch Kombinationen von zwei oder mehreren der vorgenannten Katalysatoren einsetzen. Auch ist es möglich, solche organische oder metallorganische oder auch anorganische 30 Katalysatoren, die in Form diskreter Moleküle vorliegen, in immobilisierter Form einzusetzen.
Wünscht man saure anorganische, metallorganische oder organische Katalysatoren einzusetzen, so setzt man erfindungsgemäß 0,1 bis 35 10 Gew.-%, bevorzugt 0,2 bis 2 Gew.-% Katalysator ein.
Enzyme oder Zersetzungsprodukte von Enzymen gehören nicht zu den sauren organischen Katalysatoren im Sinne der vorliegenden Erfindung. Gleichfalls gehören die erfindungsgemäß umgesetzten 40 Dicarbonsäuren nicht zu den sauren organischen Katalysatoren im Sinne der vorliegenden Erfindung.
Zur Durchführung des erfindungsgemäßen Verfahren verzichtet man vorteilhaft auf den Einsatz von Enzymen. 5 Das erfindungsgemäße Verfahren wird unter Inertgasatmosphäre durchgeführt, das heißt beispielsweise unter Kohlendioxid, Stickstoff oder Edelgas, unter denen insbesondere Argon zu nennen ist.
5
Das erfindungsgemäße Verfahren wird bei Temperaturen von 80 bis 200°C durchgeführt. Vorzugsweise arbeitet man bei Temperaturen von 130 bis 180, insbesondere bis 150°C oder darunter. Besonders bevorzugt sind maximale Temperaturen bis 145°C, ganz besonders 10 bevorzugt bis 135°C.
Die Druckbedingungen des erfindungsgemäßen Verfahrens sind an sich unkritisch. Man kann bei deutlich verringertem Druck arbeiten, beispielsweise bei 10 bis 500 mbar. Das erfindungsgemäße
15 Verfahren kann auch bei Drucken oberhalb von 500 mbar durchgeführt werden. Bevorzugt ist aus Gründen der Einfachheit die Umsetzung bei Atmosphärendruck; möglich ist aber auch eine Durchführung bei leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispiels-
20 weise bei Drucken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphärendruc .
Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 10 Minuten bis 25 Stunden, bevorzugt 30 Minuten bis 25 10 Stunden und besonders bevorzugt eine bis 8 Stunden.
Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyester leicht isolieren, beispielsweise durch Abfiltrieren des Katalysators und Einengen, wobei man das Einengen 30 üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.
Ein weiterer Gegenstand der vorliegenden Erfindung sind die nach 35 dem erfindungsgemäßen Verfahren erhältlichen hochfunktionellen, hyperverzweigten Polyester. Sie zeichnen sich durch besonders geringe Anteile an Verfärbungen und Verharzungen aus. Zur Definition von hyperverzweigten Polymeren siehe auch: P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und A. Sunder et al., Chem. Eur. 0 J. 2000, 6, No.l, 1-8. Unter "hochfunktionell hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung jedoch verstanden, dass in 30 bis 70 mol-%, bevorzugt 40 bis 60 mol-% jeder Monomereinheit eine Verzweigung vorliegt.
5 Die erfindungsgemäßen Polyester haben ein Molekulargewicht Mw von 2000 bis 50.000 g/mol, bevorzugt 3000 bis 20.000, besonders bevorzugt 3000 bis 7000 und ganz besonders bevorzugt 4000 g/mol. Die Polydispersität beträgt 1,2 bis 50, bevorzugt 1,4 bis 40, besonders bevorzugt 1,5 bis 30 und ganz besonders bevorzugt bis 10. Sie sind üblicherweise her gut löslich, d.h. man kann klare Lösungen mit bis zu 50 Gew.-%, in einigen Fällen sogar bis zu 80 Gew.-%, der erfindungsgemäßen Polyester in Tetrahydrofuran (THF) , n-Butylacetat, Ethanol und zahlreichen anderen Lösemitteln darstellen, ohne dass mit bloßem Auge Gelpartikel detektierbar sind.
Die erfindungsgemäßen hochfunktionellen hyperverzweigten Poly- ester sind carboxyterminiert, carboxy- und Hydroxylgruppen-termi- niert und vorzugsweise Hydroxylgruppen-terminiert und können zur Herstellung z.B. von Klebstoffen, Druckfarben, Beschichtungen, Schaumstoffen, Überzügen und Lacken vorteilhaft eingesetzt werden.
Ein weiterer Aspekt der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen hochfunktionellen, hyperverzweigten Polyestern zur Herstellung von Polyadditions- oder Polykondensations- produkten, beispielsweise Polycarbonaten, Polyurethanen und Poly- ethern. Bevorzugt ist die Verwendung der erfindungsgemäßen Hydro- xylgruppen-terminierten hochfunktionellen, hyperverzweigten Polyestern zur Herstellung von Polyadditions- oder Polykondensations- produkten Polycarbonaten oder Polyurethanen.
Ein weiterer Aspekt der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen hochfunktionellen hyperverzweigten Polyester sowie der aus hochfunktionellen, hyperverzweigten Polyestern hergestellten Polyadditions- oder Polykondensationspro- dukte als Komponente von Klebstoffen, Beschichtungen, Schaum- Stoffen, Überzügen und Lacken. Ein weiterer Aspekt der vorliegenden Erfindung sind Druckfarben, Klebstoffe, Beschichtungen, Schaumstoffe, Überzüge und Lacke, enthaltend die erfindungsgemäßen hochfunktionellen hyperverzweigten Polyester oder aus den erfindungsgemäßen hochfunktionellen, hyperverzweigten Polyestern hergestellte Polyadditions- oder Polykondensationsprodukte . Sie zeichnen sich durch hervorragende anwendungstechnische Eigenschaften aus .
Ein weiterer bevorzugter Aspekt der vorliegenden Erfindung sind Druckfarben, insbesondere Verpackungsdruckfarben für den Flexo- und/oder Tiefdruck, die mindestens ein Lösemittel oder ein Gemisch verschiedener Lösemittel, mindestens ein Farbmittel, mindestens ein polymeres Bindemittel sowie optional weitere Zusatzstoffe umfasst, wobei es sich bei mindestens einem der polymeren Bindemittel um einen erfindungsgemäßen hyperverzweigten hochfunktionellen Polyester handelt. Die erfindungsgemäßen hyperverzweigten Polyester können im Rahmen der vorliegenden Erfindung auch im Gemisch mit anderen Bindemitteln eingesetzt werden. Beispiele für weitere Bindemittel für die erfindungsgemäße Druckfarben umfassen Polyvinylbutyral, Nitro- cellulose, Polyamide, Polyacrylate oder Polyacrylat-Copolymere. Besonders vorteilhaft hat sich die Kombination der hyperverzweigten Polyester mit Nitrocellulose erwiesen. Die Gesamtmenge aller Bindemittel in der erfindungsgemäßen Druckfarbe beträgt üblicherweise 5 - 35 Gew.-%, bevorzugt 6 - 30 Gew.-% und besonders bevorzugt 10 - 25 Gew.-% bezogen auf die Summe aller Bestandteile. Das Verhältnis von hyperverzweigtem Polyester zu der Gesamtmenge aller Bindemittel liegt üblicherweise im Bereich von 30 Gew.-% bis 100 Gew.-%, bevorzugt mindestens 40 Gew.-%, wobei aber die Menge an hyperverzweigtem Polyester im Regelf lle 3 Gew. %, bevorzugt 4 Gew. % und besonders bevorzugt 5 Gew. % bezüglich der Summe aller Bestandteile der Druckfarbe nicht unterschreiten sollte.
Es kann ein einzelnes Lösemittel oder auch ein Gemisch mehrerer Lösemittel eingesetzt werden. Als Lösemittel prinzipiell geeignet sind die üblichen Lösemittel für Druckfarben, insbesondere Verpackungsdruckfarben. Insbesondere geeignet als Lösemittel für die erfindungsgemäße Druckfarbe sind Alkohole wie beispielsweise Ethanol, 1-Propanol, 2-Propanol, Ethylenglykol , Propylenglykol, Diethylenglykol , substituierte Alkohole wie beispielsweise
Ethoxypropanol, Ester wie beispielsweise Ethylacetat, Isopropyl- acetat, n-Propyl oder n-Butylacetat. Als Lösungsmittel ist weiterhin Wasser prinzipiell geeignet. Besonders bevorzugt als Lösemittel ist Ethanol bzw. Gemische, die zu einem überwiegenden Teil aus Ethanol bestehen. Unter den prinzipiell möglichen Lösemitteln trifft der Fachmann je nach den Löslichkeitseigenschaften des Polyesters und der gewünschten Eigenschaften der Druckfarbe eine geeignete Auswahl. Es werden üblicherweise 40 bis 80 Gew. % Lösemittel bezüglich der Summe aller Bestandteile der Druckfarbe eingesetzt.
Als Farbmittel können die üblichen Farbstoffe, insbesondere übliche Pigmente eingesetzt werden. Beispiele sind anorganische Pigmente wie beispielsweise Titandioxid-Pigmente oder Eisenoxid- pigmente, Interferenzpigmente, Ruße, Metallpulver wie insbesondere Aluminium, Messing oder Kupferpulver, sowie organische Pigmente wie Azo-, Phthalocyanin- oder Isoindolin-Pigmente. Es können selbstverständlich auch Gemische verschiedener Farbstoffe oder Farbmittel eingesetzt werden sowie außerdem lösliche organische Farbstoffe. Es werden üblicherweise 5 bis 25 Gew. % Farbmittel bezüglich der Summe aller Bestandteile eingesetzt. Die erfindungsgemäße Verpackungsdruckfarbe kann optional weitere Additive und Hilfsstoffe umfassen. Beispiele für Additive und Hilfsstoffe sind Füllstoffe wie Calciumcarbonat, Aluminiumoxidhydrat oder Aluminium- bzw. Magnesiumsilikat. Wachse erhöhen die Abriebfestigkeit und dienen der Erhöhung der Gleitfähigkeit. Beispiele sind insbesondere Polyethylenwachse, oxidierte Poly- ethylenwachse, Petroleumwachse oder Ceresinwachse. Fettsäureamide können zur Erhöhung der Oberflächenglätte eingesetzt werden. Weichmacher dienen der Erhöhung der Elastizität des getrockneten Films. Beispiele sind Phthalsäureester wie Dibutylphthalat, Di- isobutylphthalat, Dioctylphthalat, Citronensäureester oder Ester der Adipinsäure. Zum Dispergieren der Pigmente können Dispergier- hilfsmittel eingesetzt werden. Bei der erfindungsgemäßen Druckfarbe kann vorteilhaft auf Haftvermittler verzichtet werden, ohne dass die Verwendung von Haftvermittlern damit ausgeschlossen sein soll. Die Gesamtmenge aller Additive und Hilfsstoffe übersteigt üblicherweise nicht 20 Gew. % bezüglich der Summe aller Bestandteile der Druckfarbe und beträgt bevorzugt 0 - 10 Gew. %.
Die Herstellung der erfindungsgemäßen Verpackungsdruckfarbe kann in prinzipiell bekannter Art und Weise durch intensives Vermischen bzw. Dispergieren der Bestandteile in üblichen Apparaturen wie beispielsweise Dissolvern, Rührwerkskugelmühlen oder einem Dreiwalzenstuhl erfolgen. Vorteilhaft wird zunächst eine konzen- trierte Pigmentdispersion mit einem Teil der Komponenten und einem Teil des Lösemittels hergestellt, die später mit weiteren Bestandteilen und weiterem Lösemittel zur fertigen Druckfarbe weiter verarbeitet wird.
Ein weiterer bevorzugter Aspekt der vorliegenden Erfindung sind Drucklacke, die mindestens ein Lösemittel oder ein Gemisch verschiedener Lösemittel, mindestens ein polymeres Bindemittel sowie optional weitere Zusatzstoffe umfassen, wobei es sich bei mindestens einem der polymeren Bindemittel um einen erfindungsgemäßen hyperverzweigten hochfunktionellen Polyester handelt, sowie die Verwendung der erfindungsgemäßen Drucklacke zum Grundieren, als Schutzlack sowie zum Herstellen von Mehrschichtmaterialien.
Die erfindungsgemäßen Drucklacke enthalten naturgemäß keine Farb- mittel, weisen aber abgesehen davon die gleichen Bestandteile auf wie die bereits geschilderten erfindungsgemäßen Druckfarben. Die Mengen der übrigen Komponenten erhöhen sich dementsprechend.
Überraschenderweise werden durch die Verwendung von Druckfarben, insbesondere Verpackungsdruckfarben, und Drucklacken mit Bindemitteln auf Basis von hyperverzweigten Polyestern, Mehrschichtmaterialien mit hervorragender Haftung zwischen den einzelnen Schichten erhalten. Der Zusatz von Haftvermittlern ist nicht mehr erforderlich. Dabei ist es ganz besonders überraschend, dass ohne Haftvermittler sogar bessere Ergebnisse erzielt werden können, als wenn Haftvermittler zugesetzt werden. Insbesondere auf pola- ren Folien konnte die Haftung deutlich verbessert werden.
Die Erfindung wird durch Arbeitsbeispiele erläutert. Die analytischen Daten der erfindungsgemäßen Polyester findet man in Tabelle 1.
Beispiel 1
In einen 2-1-Vierhalskolben, der mit einem Wasserabscheider versehen war, wurden Adipinsäure (702 g, 4,8 mol) und Trimethylol- propan (537 g, 4,0 mol) sowie Di-n-butylzinnoxid, kommerziell erhältlich als Fascat ® (2,4 g, 4201 E-Coat, elf atochem) , unter Stickstoff in Toluol (200 g) auf 125 bis 130°C erhitzt. Nach einer Reaktionsdauer von 11 h wurde das Toluol unter vermindertem Druck abdestilliert. Man erhielt einen farblosen, viskosen Polyester, der gut löslich in z.B. Butylacetat und THF war.
Beispiel 2
In einem 2-1-Vierhalskolben, der mit einem Wasserabscheider ver- sehen war, wurden Adipinsäure (526 g, 3,6 mol), Trimethylolpropan (537 g, 4,0 mol), Fascat ® (2,1 g) in Toluol (200 g) auf 125 bis 140°C unter Stickstoff erhitzt. Nach einer Reaktionsdauer von 25 h wurde das Toluol unter vermindertem Druck abdestilliert. Man erhielt einen farblosen, viskosen Polyester.
Beispiel 3
Beispiel 1 wurde wiederholt, jedoch wurden die Menge an Adipinsäure (351 g, 2,4 mol), Trimethylolpropan (268 g, 2,0 mol) und Toluol (100 g) halbiert, und als Katalysator wurde Tetra- (2-Ethylhexyl) titanat (1,2 g) anstelle von Di-n-butylzinnoxid (Fascat®) eingesetzt. Nach einer Reaktionsdauer von 6 h wurde das Toluol unter vermindertem Druck abdestilliert. Man erhielt einen farblosen Polyester, , η = 54500 mPa-s (50°C) .
Beispiel 4
In einem 1-1-Vierhalskolben, der mit einem Wasserabscheider versehen war, wurden unter Stickstoff Adipinsäure (351 g, 2,4 mol), Trimethylolpropan (268 g, 2,0 mol) und Toluol (20 g) gut vermischt, auf 150°C erhitzt und dabei das entstehende Reaktionswasser abdestilliert. Nach einer Reaktionsdauer von 3 h wurde das Toluol unter vermindertem Druck abdestilliert. Man erhielt einen farblosen, viskosen Polyester.
Beispiel 5
In einem 2-1-Vierhalskolben, der mit einem Wasserabscheider versehen war, wurden Adipinsäure (877 g, 6,0 mol) mit Glycerin (461 g, 5,0 mol) in Gegenwart von Di-n-butylzinnoxid (Fascat®) (3 g) unter Stickstoff in Toluol (200 g) 6 Stunden bei 130°C miteinander umgesetzt. Man erhält ein in Ethanol und in n-Butylacetat gut lösliches Produkt,
η = 66.700 mPa-s (50°C)
Beispiel 6
In einem 1-1-Vierhalskolben, der mit einem Wasserabscheider versehen war, wurden unter Stickstoff Azelainsäure (94 g, 0,5 mol) zusammen mit Trimethylolpropan (67 g, 0,5 mol) in Toluol (20 g) gelöst. Nach Zugabe von Di-n-butylzinnoxid (Fascat®, 0,32 g) wurde unter Auskreisen des entstehenden Reaktionswassers für 9 h auf 135-140CC erhitzt. Nach Abkühlen auf Raumtemperatur und Ab- destillieren des restlichen Toluols erhielt man farblosen Polyester.
Tabelle 1 Reaktionsparameter der Beispiele 1 bis 6 und analytische Daten der erhaltenen Polyester
Figure imgf000017_0001
Die Säurezahl wurde nach bestimmt nach DIN 53402. Mw wurde durch GPC in THF mittels Polystyroleichung bestimmt.
n.b. : nicht bestimmt

Claims

Patentansprüche
1. Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester, dadurch gekennzeichnet, dass man
(a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens trifunktionellen Alkoholen
oder
(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen
in Gegenwart eines Lösemittels und optional in Gegenwart eines sauren anorganischen, metallorganischen oder organischen Katalysators umsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man in Variante (a) einen mindestens trifunktionellen Alkohol einsetzt, der Hydroxylgruppen von mindestens zwei chemisch unterschiedlichen Reaktivitäten aufweist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man in Variante (a) einen mindestens trifunktionellen Alkohol einsetzt, der Hydroxylgruppen von jeweils chemisch gleicher Reaktivität aufweist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man in Variante (b) mindestens eine Tricarbonsäure oder Polycarbonsäure einsetzt, die Carboxylgruppen von mindestens zwei unterschiedlichen Reaktivitäten aufweist.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man als trifunktionellen Alkohol Glycerin einsetzt.
6. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass man als trifunktionellen Alkohol Trimethylolpropan einsetzt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man als Derivate der Di- Tri- oder Polycarbonsäuren die jeweiligen Methyl- oder Ethylester einsetzt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man das während der Umsetzung gebildete Wasser, Methanol bzw. Ethanol aus dem Reaktionsgleichgewicht entfernt .
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man als Lösemittel Toluol einsetzt.
10. Hochfunktionelle, hyperverzweigte Polyester, erhältlich nach einem Verfahren nach einem der vorangehenden Ansprüche.
11. Verwendung von hochfunktionellen, hyperverzweigten Polyestern nach Anspruch 10 als Bestandteil von Druckfarben, Klebstoffen, Beschichtungen, Lacken und Überzügen.
PCT/EP2003/004121 2002-04-30 2003-04-22 Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester WO2003093343A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047017319A KR100974259B1 (ko) 2002-04-30 2003-04-22 고작용성 과분지화 폴리에스테르의 제조 방법
US10/510,354 US20050165177A1 (en) 2002-04-30 2003-04-22 Method for producing highly functional, hyperbranched polyesters
DE50305493T DE50305493D1 (de) 2002-04-30 2003-04-22 Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester
EP03729931A EP1501882B1 (de) 2002-04-30 2003-04-22 Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester
AU2003240456A AU2003240456A1 (en) 2002-04-30 2003-04-22 Method for producing highly functional, hyperbranched polyesters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10219508A DE10219508A1 (de) 2002-04-30 2002-04-30 Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester
DE10219508.0 2002-04-30

Publications (1)

Publication Number Publication Date
WO2003093343A1 true WO2003093343A1 (de) 2003-11-13

Family

ID=29224957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004121 WO2003093343A1 (de) 2002-04-30 2003-04-22 Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester

Country Status (9)

Country Link
US (1) US20050165177A1 (de)
EP (1) EP1501882B1 (de)
KR (1) KR100974259B1 (de)
CN (1) CN100567360C (de)
AT (1) ATE343607T1 (de)
AU (1) AU2003240456A1 (de)
DE (2) DE10219508A1 (de)
ES (1) ES2276066T3 (de)
WO (1) WO2003093343A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075563A1 (de) * 2004-02-04 2005-08-18 Basf Aktiengesellschaft FLIEßFÄHIGE POLYESTERFORMMASSEN
WO2005118677A1 (de) * 2004-06-01 2005-12-15 Basf Aktiengesellschaft Hochfunktionelle, hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
WO2006008130A1 (de) * 2004-07-21 2006-01-26 Basf Aktiengesellschaft Kontinuierliches verfahren zur herstellung von polyalkylenarylaten mit hyperverzweigten polyestern und/oder polycarbonaten
WO2006040101A1 (de) * 2004-10-13 2006-04-20 Basf Aktiengesellschaft Fliessfähige thermoplaste mit halogenflammschutz
WO2006042705A1 (de) * 2004-10-20 2006-04-27 Basf Aktiengesellschaft Fliessfähige polyamide mit hyperverzweigten polyestern/polycarbonaten
WO2006082201A1 (de) * 2005-02-01 2006-08-10 Basf Aktiengesellschaft FLIEßFÄHIGE POLYESTER MIT CARBODIIMID-STABILISATOREN
US7148293B2 (en) 2002-08-30 2006-12-12 Basf Aktiengesellschaft Method for the production of hyperbranched water-soluble polyesters
WO2007125041A1 (de) * 2006-04-28 2007-11-08 Basf Se Hyperverzweigte polyester mit niedriger säurezahl und ihre verwendung
DE102007026722A1 (de) 2007-06-06 2008-12-11 Basf Coatings Japan Ltd., Yokohama Klarlackzusammensetzungen enthaltend hyperverzweigte, dendritische hydroxyfunktionelle Polyester
DE102008002704A1 (de) 2007-07-02 2009-01-08 Basf Se Verfahren zur Verbesserung der Haftung von Verbundstoffen, bestehend aus geschäumten Polyurethan und massiven Materialien
US7544746B2 (en) 2002-05-29 2009-06-09 Tate & Lyle Public Limited Company Hyperbranched polymers
DE102008060454A1 (de) 2008-12-05 2010-06-10 Basf Coatings Ag Beschichtungsmittel und daraus hergestellte Beschichtungen mit hoher Kratzbeständigkeit und Witterungsstabilität sowie guten optischen Eigenschaften
WO2011141266A1 (de) 2010-04-15 2011-11-17 Basf Se Verfahren zur herstellung von flammgeschützten polyurethan-schaumstoffen
US20120202943A1 (en) * 2005-07-22 2012-08-09 Basf Se Flowable polyesters with polyester elastomers
WO2013113587A1 (de) 2012-02-03 2013-08-08 Basf Se Hyperverzweigte polymere zur modifikation der zähigkeit von gehärteten epoxidharz-systemen
US8569438B2 (en) 2006-12-19 2013-10-29 Basf Coatings Gmbh Coating agents having high scratch resistance and weathering stability
US8658752B2 (en) 2008-06-25 2014-02-25 Basf Coatings Gmbh Use of partially silanized polyisocyanate-based compounds as crosslinking-agents in coating compositions, and coating compositions comprising the compounds
US8679589B2 (en) 2007-12-19 2014-03-25 Basf Coatings Gmbh Coating agent having high scratch resistance and high weathering resistance
US8808805B2 (en) 2007-12-19 2014-08-19 Basf Coatings Gmbh Coating agent with high scratch resistance and weathering resistance
US9090732B2 (en) 2007-12-19 2015-07-28 Basf Coatings Gmbh Coating composition having a high scratch resistance and weathering stability
WO2018065571A1 (de) 2016-10-07 2018-04-12 Basf Se Verfahren zur herstellung von wässrigen dispersionen
WO2018188986A1 (de) 2017-04-13 2018-10-18 Basf Se Polymere als additive für kraft und schmierstoffe
US10377914B2 (en) 2013-08-22 2019-08-13 Basf Se Method for producing emulsion polymerisates
WO2022018213A1 (en) 2020-07-23 2022-01-27 Basf Se Application of the ring-opening of uretdiones at low temperature and ambient atmosphere
WO2022029130A1 (en) 2020-08-04 2022-02-10 Basf Se Branched polyaspartic acid esters and their preparation

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163163A1 (de) 2001-12-20 2003-07-03 Basf Ag Verfahren zur Herstellung hochfunktioneller, Hyperverzweigter Polyester durch enzymatische Veresterung
DE102004005652A1 (de) 2004-02-04 2005-08-25 Basf Ag Fließfähige Polyesterformmassen
MY139705A (en) * 2004-07-19 2009-10-30 Basf Ag Mixtures of hyperbranched polyesters with polycarbonates as additive for polyester molding compositions
DE102004059243A1 (de) * 2004-08-10 2006-02-23 Basf Ag Thermoplastische Formmassen mit verbesserten Fließ- und Entformungseigenschaften
DE102004038979A1 (de) * 2004-08-10 2006-02-23 Basf Ag Schlagzähmodifizierte Polyester mit hyperverzweigten Polyestern
DE102004038976A1 (de) * 2004-08-10 2006-02-23 Basf Ag Fließfähige Polyesterformmassen mit ASA/ABS und SAN
DE102004049342A1 (de) * 2004-10-08 2006-04-13 Basf Ag Fließfähige Thermoplaste mit halogenfreiem Flammschutz
DE102005002044A1 (de) * 2005-01-14 2006-07-20 Basf Ag Fließfähige Polyester mit Hydrolyseschutz
DE102005025970A1 (de) * 2005-06-03 2006-12-07 Basf Ag Poröse Polyisocyanat-Polyadditionsprodukte
DE102005027549A1 (de) 2005-06-14 2006-12-21 Basf Ag Mehrkomponentenformkörper mit Polyesterschichten
DE102005034980A1 (de) * 2005-07-22 2007-01-25 Basf Ag Fasern und Flüssigkeitsbehälter aus PET
JP2008120920A (ja) 2006-11-13 2008-05-29 Toyobo Co Ltd ハイパーブランチポリマーおよびそれを用いた電子写真用トナー
WO2008058886A1 (de) * 2006-11-14 2008-05-22 Basf Se Hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
ATE484535T1 (de) * 2007-05-16 2010-10-15 Basf Se Xerogele auf basis von aromatischem polyharnstoff
CA2699713C (en) 2007-10-08 2015-12-22 Bernd Bruchmann Use of hyperbranched polyesters and/or polyesteramides for splitting oil-water emulsions
US8399554B2 (en) 2007-11-19 2013-03-19 Basf Se Use of highly branched polymers in polymer dispersions for gloss colours
JP2011503336A (ja) 2007-11-19 2011-01-27 ビーエーエスエフ ソシエタス・ヨーロピア 凍結/融解安定性が向上したポリマー分散液を製造するための高分岐ポリマーの使用
JP5730295B2 (ja) 2009-06-15 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 架橋剤として高分岐型ポリマーを有するマイクロカプセル
EP2277934A1 (de) 2009-07-24 2011-01-26 Basf Se Verwendung von hochfunktionellen, hoch- oder hyperverzweigten Polyestern
WO2011009766A1 (de) 2009-07-24 2011-01-27 Basf Se Hochfunktionelle, hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
CN102639597B (zh) 2009-11-26 2014-05-21 巴斯夫欧洲公司 超支化聚酯在化妆品和皮肤病配制剂中的用途
WO2011073222A2 (de) 2009-12-18 2011-06-23 Basf Se Hyperverzweigte polyester mit hydrophobem kern zur solubilisierung schwerlöslicher wirkstoffe
BR112012015039B1 (pt) 2009-12-18 2020-09-24 Basf Se Composição, poliéster hiper-ramificado, processo para preparar o poliéster hiper-ramificado e uso do poliéster hiper-ramificado
US8722796B2 (en) 2010-01-20 2014-05-13 Basf Se Process for preparing an aqueous polymer dispersion
ES2460944T3 (es) 2010-01-20 2014-05-16 Basf Se Procedimiento para la preparación de una dispersión acuosa de polímero
US9109112B2 (en) 2010-06-25 2015-08-18 E I Du Pont De Nemours And Company Polyoxymethylene compositions with branched polymers
KR101738209B1 (ko) 2010-06-25 2017-05-19 이 아이 듀폰 디 네모아 앤드 캄파니 폴리옥시메틸렌 조성물의 용융 유동 개선을 얻는 방법
MX2013011751A (es) * 2011-04-15 2013-11-04 Basf Se Poliesteres hiper-ramificados en tintas de impresion.
EP2697319A1 (de) * 2011-04-15 2014-02-19 Basf Se Hyperverzweigte polyester in druckfarben
BR112015005538B1 (pt) 2012-09-20 2021-03-02 Basf Se processo para preparar ésteres de ácido fosfórico hiper-ramificados
US10184024B2 (en) * 2013-06-18 2019-01-22 Xerox Corporation Carmine colorants
EP3027410A4 (de) * 2013-08-02 2017-04-05 Basf Se Mehrschichtige zusammensetzung für verpackungen
WO2015193336A1 (en) 2014-06-20 2015-12-23 Basf Se Nanoporous carbon foams
US10316131B2 (en) 2014-12-23 2019-06-11 Basf Se Hyperbranched polymer modified with isocyanate linker and mix of short and long chain alkyl polyether
WO2019111746A1 (ja) * 2017-12-08 2019-06-13 東洋紡株式会社 ポリエステル樹脂、ポリエステル樹脂水分散体、及びポリエステル樹脂水分散体の製造方法
US20200332115A1 (en) 2017-12-21 2020-10-22 Covestro Deutschland Ag Polycarbonate composition
KR20220134581A (ko) 2020-01-27 2022-10-05 바스프 에스이 열에 내성인 열가소성 폴리아미드 성형 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668763A (en) * 1985-05-07 1987-05-26 Dynamit Nobel Ag Polyesters containing side chains and the use thereof
US4749728A (en) * 1986-06-06 1988-06-07 The Glidden Company Epoxy/nucleophile transesterification catalysts and thermoset coatings
JPS63172727A (ja) * 1987-01-12 1988-07-16 Mitsubishi Rayon Co Ltd 架橋ポリエステル樹脂の製造方法
EP0680981A1 (de) * 1994-05-06 1995-11-08 C.O.I.M. S.p.A. Verwendung von Polyesterpolyolen zur Polyurethanhartschaumherstellung
US5663281A (en) * 1996-07-30 1997-09-02 E. I. Du Pont De Nemours And Company Process for preparing high molecular weight polyesters
CN1255486A (zh) * 1998-12-01 2000-06-07 中国科学院化学研究所 一种带有羧基的聚酯齐聚物的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675316A5 (de) * 1987-08-11 1990-09-14 Cerberus Ag
GB8825814D0 (en) * 1988-11-04 1988-12-07 Ici Plc Polyester polymers & aqueous dispersions thereof
DE10163163A1 (de) * 2001-12-20 2003-07-03 Basf Ag Verfahren zur Herstellung hochfunktioneller, Hyperverzweigter Polyester durch enzymatische Veresterung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668763A (en) * 1985-05-07 1987-05-26 Dynamit Nobel Ag Polyesters containing side chains and the use thereof
US4749728A (en) * 1986-06-06 1988-06-07 The Glidden Company Epoxy/nucleophile transesterification catalysts and thermoset coatings
JPS63172727A (ja) * 1987-01-12 1988-07-16 Mitsubishi Rayon Co Ltd 架橋ポリエステル樹脂の製造方法
EP0680981A1 (de) * 1994-05-06 1995-11-08 C.O.I.M. S.p.A. Verwendung von Polyesterpolyolen zur Polyurethanhartschaumherstellung
US5663281A (en) * 1996-07-30 1997-09-02 E. I. Du Pont De Nemours And Company Process for preparing high molecular weight polyesters
CN1255486A (zh) * 1998-12-01 2000-06-07 中国科学院化学研究所 一种带有羧基的聚酯齐聚物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200048, Derwent World Patents Index; Class A21, AN 2000-524951, XP002247805 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 446 (C - 546) 24 November 1988 (1988-11-24) *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544746B2 (en) 2002-05-29 2009-06-09 Tate & Lyle Public Limited Company Hyperbranched polymers
US7148293B2 (en) 2002-08-30 2006-12-12 Basf Aktiengesellschaft Method for the production of hyperbranched water-soluble polyesters
CN100455626C (zh) * 2004-02-04 2009-01-28 巴斯福股份公司 可流动的聚酯模塑组合物
JP4695099B2 (ja) * 2004-02-04 2011-06-08 ビーエーエスエフ ソシエタス・ヨーロピア 流動能を有するポリエステル成形材料
KR101152559B1 (ko) * 2004-02-04 2012-07-05 바스프 에스이 유동성 폴리에스테르 성형 조성물
JP2011102391A (ja) * 2004-02-04 2011-05-26 Basf Se 流動能を有するポリエステル成形材料
JP2007520609A (ja) * 2004-02-04 2007-07-26 ビーエーエスエフ アクチェンゲゼルシャフト 流動能を有するポリエステル成形材料
WO2005075563A1 (de) * 2004-02-04 2005-08-18 Basf Aktiengesellschaft FLIEßFÄHIGE POLYESTERFORMMASSEN
AU2005211504B2 (en) * 2004-02-04 2010-08-05 Basf Aktiengesellschaft Fluid polyester moulding masses
WO2005118677A1 (de) * 2004-06-01 2005-12-15 Basf Aktiengesellschaft Hochfunktionelle, hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
US7858732B2 (en) 2004-06-01 2010-12-28 Basf Aktiengesellschaft Highly functional, highly branched or hyperbranched polyesters, the production thereof and the use of the same
US8044170B2 (en) 2004-06-01 2011-10-25 Basf Aktiengesellschaft Highly functional, highly branched or hyperbranched polyesters, the production thereof and the use of the same
KR101188971B1 (ko) 2004-06-01 2012-10-08 바스프 에스이 고작용성의 고분지형 또는 과분지형 폴리에스테르, 이의제조 방법 및 이의 용도
US7858733B2 (en) 2004-06-01 2010-12-28 Basf Aktiengesellschaft Highly functional, highly branched or hyperbranched polyesters, the production thereof and the use of the same
WO2006008130A1 (de) * 2004-07-21 2006-01-26 Basf Aktiengesellschaft Kontinuierliches verfahren zur herstellung von polyalkylenarylaten mit hyperverzweigten polyestern und/oder polycarbonaten
KR101188577B1 (ko) 2004-07-21 2012-10-05 바스프 에스이 초분지형 폴리에스테르 및/또는 폴리카르보네이트를함유하는 폴리알킬렌 아릴레이트의 연속 제조 방법
WO2006040101A1 (de) * 2004-10-13 2006-04-20 Basf Aktiengesellschaft Fliessfähige thermoplaste mit halogenflammschutz
US8278381B2 (en) 2004-10-13 2012-10-02 Basf Se Flowable thermoplastics with halogen flame retardancy system
WO2006042705A1 (de) * 2004-10-20 2006-04-27 Basf Aktiengesellschaft Fliessfähige polyamide mit hyperverzweigten polyestern/polycarbonaten
CN102516748B (zh) * 2004-10-20 2014-07-02 巴斯夫欧洲公司 包含超支化聚酯/聚碳酸酯的可流动性聚酰胺
KR101246467B1 (ko) 2005-02-01 2013-03-21 바스프 에스이 카르보디이미드 안정화제가 있는 유동성 폴리에스테르
WO2006082201A1 (de) * 2005-02-01 2006-08-10 Basf Aktiengesellschaft FLIEßFÄHIGE POLYESTER MIT CARBODIIMID-STABILISATOREN
US20120202943A1 (en) * 2005-07-22 2012-08-09 Basf Se Flowable polyesters with polyester elastomers
WO2007125041A1 (de) * 2006-04-28 2007-11-08 Basf Se Hyperverzweigte polyester mit niedriger säurezahl und ihre verwendung
US9353287B2 (en) 2006-12-19 2016-05-31 Basf Coatings Gmbh Coating agents having high scratch resistance and weathering stability
US8569438B2 (en) 2006-12-19 2013-10-29 Basf Coatings Gmbh Coating agents having high scratch resistance and weathering stability
CN101679589B (zh) * 2007-06-06 2012-07-25 巴斯福涂料股份有限公司 含有超支化的、树枝状的、羟基官能的聚酯的清漆组合物
US9334355B2 (en) 2007-06-06 2016-05-10 Basf Japan Ltd. Clear paint compositions comprising hyperbranched, dendritic, hydroxyl-functional polyesters
WO2008148555A1 (de) * 2007-06-06 2008-12-11 Basf Coatings Japan Ltd. Klarlackzusammensetzungen enthaltend hyperverzweigte, dendritische hydroxyfunktionelle polyester
DE102007026722A1 (de) 2007-06-06 2008-12-11 Basf Coatings Japan Ltd., Yokohama Klarlackzusammensetzungen enthaltend hyperverzweigte, dendritische hydroxyfunktionelle Polyester
DE102008002704A1 (de) 2007-07-02 2009-01-08 Basf Se Verfahren zur Verbesserung der Haftung von Verbundstoffen, bestehend aus geschäumten Polyurethan und massiven Materialien
US8679589B2 (en) 2007-12-19 2014-03-25 Basf Coatings Gmbh Coating agent having high scratch resistance and high weathering resistance
US8808805B2 (en) 2007-12-19 2014-08-19 Basf Coatings Gmbh Coating agent with high scratch resistance and weathering resistance
US9090732B2 (en) 2007-12-19 2015-07-28 Basf Coatings Gmbh Coating composition having a high scratch resistance and weathering stability
US8658752B2 (en) 2008-06-25 2014-02-25 Basf Coatings Gmbh Use of partially silanized polyisocyanate-based compounds as crosslinking-agents in coating compositions, and coating compositions comprising the compounds
DE102008060454A1 (de) 2008-12-05 2010-06-10 Basf Coatings Ag Beschichtungsmittel und daraus hergestellte Beschichtungen mit hoher Kratzbeständigkeit und Witterungsstabilität sowie guten optischen Eigenschaften
US8486539B2 (en) 2008-12-05 2013-07-16 Basf Coatings Gmbh Coating compositions and coatings produced from them with high scratch resistance, weathering stability, and good optical properties
WO2011141266A1 (de) 2010-04-15 2011-11-17 Basf Se Verfahren zur herstellung von flammgeschützten polyurethan-schaumstoffen
WO2013113587A1 (de) 2012-02-03 2013-08-08 Basf Se Hyperverzweigte polymere zur modifikation der zähigkeit von gehärteten epoxidharz-systemen
US10377914B2 (en) 2013-08-22 2019-08-13 Basf Se Method for producing emulsion polymerisates
WO2018065571A1 (de) 2016-10-07 2018-04-12 Basf Se Verfahren zur herstellung von wässrigen dispersionen
US11427728B2 (en) 2016-10-07 2022-08-30 Basf Se Method for producing aqueous dispersions
WO2018188986A1 (de) 2017-04-13 2018-10-18 Basf Se Polymere als additive für kraft und schmierstoffe
WO2022018213A1 (en) 2020-07-23 2022-01-27 Basf Se Application of the ring-opening of uretdiones at low temperature and ambient atmosphere
WO2022029130A1 (en) 2020-08-04 2022-02-10 Basf Se Branched polyaspartic acid esters and their preparation

Also Published As

Publication number Publication date
ATE343607T1 (de) 2006-11-15
EP1501882B1 (de) 2006-10-25
DE50305493D1 (de) 2006-12-07
EP1501882A1 (de) 2005-02-02
ES2276066T3 (es) 2007-06-16
US20050165177A1 (en) 2005-07-28
CN1649931A (zh) 2005-08-03
KR20040104650A (ko) 2004-12-10
KR100974259B1 (ko) 2010-08-06
DE10219508A1 (de) 2003-11-13
CN100567360C (zh) 2009-12-09
AU2003240456A1 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
EP1501882B1 (de) Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester
EP1756197B1 (de) Hochfunktionelle, hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
EP1675887B1 (de) Hyperverzweigte polyester mit ethylenisch ungesättigten gruppen
EP1458881A1 (de) Verfahren zur herstellung hochfunktioneller, hyperverzweigter polyester durch enzymatische veresterung
DE69434579T2 (de) Aliphatische Polyester und Verfahren zu seiner Herstellung
EP1537166A1 (de) Verfahren zur herstellung hyperverzweigter, wasserlöslicher polyester
EP3713987A1 (de) Kontinuierliches verfahren zur herstellung eines aliphatischen polyesters
WO2009153193A1 (de) Verwendung eines c11-diols oder c11-diolgemisches zur herstellung von polymeren
WO2010010075A1 (de) Verwendung von 2-isopropyl-2-alkyl-1,3-propandiolen zur herstellung von polymeren
EP2379656B1 (de) Schnelltrocknende beschichtungsmassen
EP1515844B1 (de) Mehrschichtmaterialien zum herstellen von verpackungen
EP1799746B1 (de) Verfahren zur herstellung von polyestern
WO2007125029A1 (de) Hochfunktionelle, hoch- oder hyperverzweigte polyester mit niedriger säurezahl sowie deren herstellung und verwendung
EP1092742B1 (de) Emulgatoren für Alkydharzemulsionen mit hohem Feststoffgehalt
DE3425183A1 (de) Ungesaettigte polyester
WO2011009766A1 (de) Hochfunktionelle, hoch- oder hyperverzweigte polyester sowie deren herstellung und verwendung
EP0321502A1 (de) Lufttrocknende alkydharzbindemittel, verfahren zu ihrer herstellung, überzugsmittel auf der basis der alkydharzbindemittel sowie deren verwendung als bautenanstrichmittel
DE19841405C2 (de) Verfahren zur Herstellung eines thixotropen Bindemittels für Bautenanstrichmittel, thixotrope Bindemittel und Verwendung
DE1928904C2 (de) Verfahren zur Herstellung einer wässrigen Lösung oder Dispersion eines Fettsäureesters
DE102006021855A1 (de) Hyperverzweigter Polyester, Verfahren zu seiner Herstellung sowie seine Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003729931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10510354

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047017319

Country of ref document: KR

Ref document number: 20038094800

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047017319

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003729931

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003729931

Country of ref document: EP