WO2003087432A1 - Couverture pour article exothermique presentant d'excellentes proprietes d'absorption de chaleur, feuille metallique traitee en surface pour cette couverture, et applications associees - Google Patents

Couverture pour article exothermique presentant d'excellentes proprietes d'absorption de chaleur, feuille metallique traitee en surface pour cette couverture, et applications associees Download PDF

Info

Publication number
WO2003087432A1
WO2003087432A1 PCT/JP2003/004510 JP0304510W WO03087432A1 WO 2003087432 A1 WO2003087432 A1 WO 2003087432A1 JP 0304510 W JP0304510 W JP 0304510W WO 03087432 A1 WO03087432 A1 WO 03087432A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
mass
parts
absorbing
paint
Prior art date
Application number
PCT/JP2003/004510
Other languages
English (en)
French (fr)
Inventor
Kohei Ueda
Hiroshi Kanai
Takehiro Takahashi
Ikuya Inoue
Masamoto Tanaka
Kenji Inada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1020047016348A priority Critical patent/KR100717413B1/ko
Priority to AU2003227474A priority patent/AU2003227474A1/en
Priority to JP2003584364A priority patent/JP4369761B2/ja
Publication of WO2003087432A1 publication Critical patent/WO2003087432A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the present invention relates to a product excellent in heat absorption, and more particularly to a metal and non-metallic power par having a heat generating part therein, such as a motor, an electronic part, a heater, a battery, and the like.
  • the present invention relates to a surface-treated metal plate used as a material of the present invention.
  • the present invention also relates to a refrigerator having high heat efficiency using such a material having excellent heat absorption, a portable device (mopile machine) or a vehicle device in which a high endothermic paint is applied to the inside and inside of a case to suppress a rise in temperature. And its case.
  • a mobile device or a vehicle device As a mobile device or a vehicle device
  • metal plates such as steel plates and aluminum plates have been used as cover materials for the outer plates and internal parts of home appliances, but such metal plates require performance such as corrosion resistance and design. Therefore, it is common to use it after surface treatment.
  • a metal plate include a zinc-plated steel plate having excellent corrosion resistance, a zinc-plated steel plate coated with an opening mate treatment, and a pre-coated plate that has been painted in advance to impart design properties. Examples include a metal plate.
  • Japanese Patent Publication No. 411,191 discloses that an organic composite film in which a colloid sol having a specific fine particle size is additionally prepared in an aqueous organic resin is formed on a steel plate coated with a mouth-coat. Accordingly, a technology for improving corrosion resistance ⁇ fingerprint resistance has been disclosed. Further, Japanese Patent Application Laid-Open No. 5-65666 discloses a technique for improving the galling property by coating a steel sheet with a paint containing a wax and a lubricant. Japanese Patent Application Publication No. 0-161628 discloses a technique for imparting fingerprint resistance and grounding property by coating a chromate-treated metal surface with a skin whose surface roughness and thickness are controlled. I have.
  • non-metallic materials such as plastics are also used as cover materials for outer panels and internal parts of home appliances.
  • heat sources such as motors and electronic components have been used inside these computers and home appliances.
  • the calorific value of these heat sources is also increasing, it is required that the outer panel of the product and the power member of the internal parts have the property of suppressing the heat generated inside or the property of efficiently dissipating the heat. It has been.
  • heat-generating power pars for home appliances and the like also require conductivity for grounding.
  • a heat radiation fin is provided on the electronic component in consideration of heat dissipation, and a heat dissipation opening is provided in the electronic device case.
  • fans are forcibly cooled inside electronic devices.
  • the main technology has been to form openings for high heat or to form cases with high heat conductive materials.
  • a method of applying highly radioactive paint on the outside has also been proposed.
  • Japanese Patent Application Laid-Open No. H11-34069 discloses a coating containing an infrared absorbent on the inner surface side of a housing of an electronic device including a portable information device in addition to a TV receiver.
  • the application of a coating is disclosed.
  • Various methods have been proposed and adopted for cooling and heat dissipation of electronic devices as described above.However, in the case of mobile devices or vehicle devices, the material of the case is often restricted due to reasons such as aesthetics and lightness. In addition, more efficient cooling and heat dissipation are required for miniaturization and higher performance.
  • a first object of the present invention is to develop a technique for imparting excellent heat absorption to a metal and nonmetal heating element and a surface-treated metal plate based on the above-mentioned requirements, and to provide a metal having excellent heat absorption.
  • An object of the present invention is to provide a heating element made of non-metallic and non-metallic elements and a surface-treated metal plate.
  • a second object of the present invention is to develop a technology in which excellent heat absorption is imparted to the outer panel in connection with the first object, and provide a refrigerator having excellent heat efficiency and an excellent heat absorption.
  • An object of the present invention is to provide a manufacturing method for efficiently manufacturing a refrigerator.
  • a third object of the present invention is to provide a case in which heat dissipation is further improved in a portable device or a vehicle device incorporating a heat-generating electronic component, and to provide a portable device or a vehicle-mounted device having such a case. To provide is there. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that if a material with high heat absorption is applied to the inner surface of a heat source power par made of metal or non-metal such as home appliances, a material with high heat absorption is not applied It was found that the temperature inside the heat source power was lower than that of the heat source.
  • the present invention has been completed based on such knowledge, and the gist thereof is as follows.
  • the total emissivity in the region of wave number 600 to 300 cm- 1 measured at a certain temperature between 80 ° C and 200 ° C A heat-generating element having excellent heat-absorbing properties, characterized by being coated with a heat-absorbing film layer of 0.70 or more.
  • the heat-absorbing film layer has a carbon content of less than 0.1 ⁇ to 1 to 20 parts by mass of carbon having a particle size of less than 0.1 ⁇ and a particle size of 0.1 ⁇ or more and 50 ⁇ or less with respect to 100 parts by mass of the binder solid content. Contains 1 to 140 parts by mass of carbon and has a particle size of 0
  • the heat-absorbing film layer is composed of 100 parts by mass of a binder solid content, 100 to 150 parts by mass of a heat-absorptive pigment, and 1 to 150 parts by mass of a conductive pigment.
  • the heating element according to any one of the above (1) to (3), which is excellent in heat absorption.
  • the heat-absorptive coating layer has carbon particles having a particle size of less than 0.1 ⁇ m, 1 to 20 parts by mass, and a particle size of 0.1 ⁇ or more, based on 100 parts by mass of the binder solid content. Carbon containing 1 to 140 parts by mass of carbon less than ⁇ , and carbon with a particle size of less than 0.1 ⁇ m and a car with a particle size of 0.1 ⁇ m or more and 50 ⁇ or less (10) or (11), wherein the surface-treated metal sheet having excellent heat absorbability is 10 to 150 parts by mass in total.
  • the heat-absorbing film layer has a binder solid content of 100 parts by mass, a heat-absorbing pigment of 100 to 150 parts by mass, and a conductive pigment of 1 to 150 parts by mass.
  • the heat-absorbing pigment is carbon black having an average particle size of l to 100 nm
  • the conductive pigment is a flaky metal N having an average particle size of 0.5 to 50 ⁇ m. i and a chain metal N i, and
  • the heat-absorbing film is composed of 1 to 20 parts by mass of carbon having a particle size of less than 0.1 ⁇ m and a particle size of 0.1 ⁇ or more with respect to 100 parts by mass of the binder solid content.
  • 1 to 140 parts by mass of carbon having a particle size of 0.1 m or less, and a total of carbon having a particle size of less than 0.1 ⁇ m and carbon having a particle size of 0.1 tm or more and less than 50 ⁇ is 10 to 15
  • the refrigerator according to any one of (17) to (19) above, which is 0 parts by mass and has a dry film thickness of 1 ⁇ or more.
  • a refrigerator excellent in heat efficiency characterized in that the heating element power pad according to any one of the above (1) to (9) is used as an outer plate.
  • the heat absorbing film layer according to any one of (17) to (20) above is previously contained on one surface of a flat metal plate, and the other surface contains a clear or colored pigment.
  • a method of manufacturing a refrigerator with excellent heat absorption characterized in that a coating film is applied to produce a highly heat-absorbing pre-coated metal plate, which is cut and processed and then assembled into a refrigerator.
  • a heat-absorbing film layer is provided inside a case of a portable device or an in-vehicle device incorporating a heat-generating electronic component, and the heat-absorbing film layer is
  • a conductive pigment wherein the heat-absorbing pigment is carbon black having an average particle size of 1 to 10 O nm, and the conductive pigment is an average. It is composed of flaky metal Ni and chain metal Ni with a particle size of 0.5 to 50 ⁇ , and the mass ratio of flake metal Ni / chain metal Ni is 0.1 to 6 Is;
  • FIG. 1 is a view showing a configuration of a heat generating member or case having excellent heat absorption of the present invention.
  • FIG. 2 is a diagram showing an embodiment of a measurement box for measuring heat absorption.
  • the heating element can be any component that generates heat, such as a motor, an electronic component, a heater, and a battery, and is not particularly limited.
  • the heating element power par is used for the purpose of covering, surrounding, and housing such a heating element.
  • the heat-absorbing heating element of the present invention will be mainly described based on a heat-generating element made of a metal plate.
  • the present invention is not limited to this. Applicable.
  • the heat radiation When thermal radiation is incident on a metal plate, a surface-treated metal plate, or a non-metallic material, the heat radiation hardly transmits, so the heat radiation is either reflected or absorbed.
  • the present inventors have conducted intensive studies based on this finding, and as a result, measured at least a temperature of 80 ° C. or more and 200 ° C. or less on at least one side of the metal plate or the attached metal plate.
  • the surface-treated metal plate previously coated with a heat-absorbing coating layer with a total emissivity of 0.70 or more in the region of a wave number of 600 to 300 cm- 1 was coated with an endothermic coating layer.
  • the heating element is covered with a cover made by forming and processing so that the surface is inside the power par of the heating element, the temperature inside the force par rises with a metal plate that does not cover the heat absorbing inner surface with the heat absorbing film. It was found to be lower than when covered with the created cover.
  • the total emissivity in the region of wave number 600 to 300 c ⁇ ⁇ 1 measured at a certain temperature between 80 ° C and 200 ° C on the inner surface of the nonmetallic material When the heating element is covered with a force par with a heat-absorbing film layer of 0.70 or more, the temperature inside the cover will be higher than when the heat-absorbing film is covered with a cover that does not cover the inner surface of the cover. However, it was also found that it decreased.
  • FIG. 1 shows the configuration of a metal or non-metallic heating element having excellent heat absorption according to the present invention.
  • the metal or non-metallic heating element of the present invention is characterized in that it is made of a metal plate or a non-metallic material 1 and its inner surface is covered with a heat-absorbing coating layer 2.
  • reference numeral 3 denotes a heating element. It is preferable to apply the heat-absorbing coating layer 2 to a flat metal plate or a non-metallic material in advance, and to process it to create a metal or non-metallic heating element, since the working efficiency is improved in the production. is there.
  • the heat-absorbing coating layer may cover not only the inner surface of the heating element bar but also the outer surface. It is more preferable to cover the outer side because the temperature of the metallic or non-metallic heating element itself decreases due to the effect of heat radiation equivalent to heat absorption.
  • the metal plate and the non-metallic material constituting the metal and non-metallic heating element with excellent heat absorption of the present invention may be a metal plate or a plated metal plate or a non-metallic material in order to secure the heat absorption.
  • At least one side of the material is composed of: a) 100 parts by mass of a solid content of a binder, and b) 100 to 150 parts by mass of a heat-absorbing pigment, and 80 to 200 parts by mass or less. is accomplished by coating the heat-absorbing coating layer total radiation rate is 0. 7 0 or more at a wave number 6 0 0 ⁇ 3 0 0 0 cm _ 1 of the area measured at a certain temperature.
  • heat-absorbing pigment generally known pigments such as carbon, charcoal, and graphite can be used, and commercially available pigments may be used.
  • carbon black is a suitable pigment because it has a very small particle size and is widely dispersed in the film, and particularly preferably a carbon black having a particle size of 1 to 10 nm.
  • the present inventors further provide a coating layer coated on a metal plate or a non-metallic material.
  • carbon may be generally known carbon such as carbon rack, charcoal, and graphite.
  • the carbon is necessary to add a large amount of carbon having a smaller particle size. The concealing effect is small even when a small amount of force-bon is added, and the gap is generated between carbon and carbon even when a large amount of force-bon is added. Becomes smaller.
  • the fine-grained carbon is dispersed in the gaps between the large-grained carbon dispersed in the film, so that the fine particles are concealed from the metal plate and non-metallic material by carbon without adding a large amount of carbon.
  • the properties are improved and the heat absorbing effect is exhibited.
  • the amount of carbon to be added is determined based on the binder solid content of 100 parts by mass. 1 to 20 parts by mass of carbon having a diameter of less than 0.1 ⁇ and 1 to 140 parts by mass of carbon having a particle size of 0 to ⁇ and a particle size of less than 0.1 ⁇
  • the total of the fine-grained carbon and the large-diameter carbon having a particle size of 0.1 ⁇ m or more and 50 ⁇ m or less is 10 to 150 parts by mass, and the thickness of the endothermic coating layer is 1 ⁇ That is all.
  • the lower limit of the particle size of the fine carbon is not particularly specified, If it exceeds 0.1 ⁇ , a gap is likely to be formed between carbons, which is not suitable because it does not play a role as fine carbon. If the added amount of the fine carbon is less than 1 part by mass, the effect of hiding the metal plate or nonmetallic material is inferior and the heat absorption is inferior. It is not suitable because it becomes gel-like over time. If the particle size of the large-diameter carbon is less than 0.1 ⁇ m, it does not function as the large-diameter carbon and exhibits the same behavior as the fine-particle carbon, which is not suitable.
  • the particle size of the large-diameter carbon is more than 50 ⁇ , it is not suitable because the coating property is reduced when a coating liquid containing the same is applied, or the appearance of the coated film is deteriorated.
  • the particle size of the large-diameter carbon is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. More preferably, it is not less than 0.1 / zm and not more than 10 zm. If the amount of the large-diameter carbon is less than 1 part by mass, the heat absorption is poor, and if it is more than 140 parts by mass, the skin becomes brittle and the workability of the film is poor, which is not suitable.
  • the heat absorption of the coating is inferior. If the total amount of the fine carbon particles and the large-diameter carbon particles is less than 10 parts by mass, the heat absorption is poor. If the total amount is more than 150 parts by mass, the film becomes brittle and the workability of the film becomes poor, and the coating liquid increases. It is not suitable because it is sticky and coating workability is inferior. If the thickness of the endothermic coating is less than 1 ⁇ , the heat absorption of the coating is inferior.
  • the metal plate or the non-metal material constituting the metal or non-metallic heating element having excellent heat absorption according to the present invention is a metal plate or a non-metal material. Or at least one side of a metal plate or a non-metallic material which has been applied, a) a binder solid content of 100 parts by mass, and b) a heat-absorbing pigment of 10 to 150 parts by mass, and c) A range of a wave number of 600 to 300 c c ⁇ which is composed of 1 to 150 parts by mass of the conductive pigment and measured at a certain temperature of 80 ° C or more and 200 ° C or less. Heat-absorbing coating with a total emissivity of 0.70 or more at Achieved by coating the layers.
  • the conductive pigment known materials such as flake metal Ni, chain metal Ni, granular metal Al, flaky metal A1, and stainless steel powder may be used, and commercially available pigments may be used.
  • metals generally reflect heat easily and tend to impede the heat absorption of heat-absorbing pigments.
  • Metal Ni has a property that it is less likely to hinder the heat absorption of heat-absorbing pigments than other metal pigments, and chain-like metal Ni has a chain-like shape, which reduces the heat-reflecting area in the coating. Therefore, heat absorption is hardly hindered, which is more preferable.
  • the chain metal Ni alone has poor conductivity, it is preferable to use a combination of the flake metal Ni and the chain metal Ni.
  • the mass ratio of the flaky metal Ni Z chain metal Ni is 0.1 to 6, the heat absorption and the conductivity are excellent, so the flake metal Ni is more preferable.
  • the conductive pigment is fuerosilicon because the emissivity of the heat-absorbing film layer is improved, and in the case of a surface-treated metal plate, the corrosion resistance is also improved.
  • Hue mouth silicon is excellent not only in conductivity but also in heat absorption, and can serve as both a conductive pigment and a heat absorbing pigment. Characteristics can be secured.
  • the wave number measured at a certain temperature of 80 ° C or more and 200 ° C or less is 600 ° C. It is not suitable because the total emissivity of the metal plate in the region of ⁇ 30000 cm- 1 is less than 0.70.
  • it exceeds 150 parts by mass the coating layer becomes brittle, and the coating layer becomes brittle. This is not suitable because the impact resistance of the steel sheet decreases and the workability when processing a metal plate decreases.
  • the thickness of the heat-absorptive coating layer can be arbitrarily selected as required, but is preferably 1 to 50 ⁇ m for a metal plate and 1 to 100 ⁇ m for a nonmetallic material. 1 mu 8 0 ° C or more is less than m 2 0 0 ° wavenumber 6 0 C was measured by the following certain temperature 0-3 0 0 0 metal plates in the region of the c ⁇ 1 or nonmetal materials of all emissivity 0 It is hard to be over 70.
  • the thickness is more preferably equal to or more than 1 ⁇ and less than 10 ⁇ m.
  • a binder constituting the heat-absorbing film layer of the present invention a generally known film binder such as an inorganic film formed by a resin-gel method or an inorganic-organic composite film formed by a sol-gel method is used. Can be used. It is preferable to use the resin in the form of a paint because of its handling and ease of film formation.
  • polyester resin generally known ones, for example, polyester resin, urethane resin, acryl resin, epoxy resin, melamine resin, chlorinated vinyl resin and the like can be used, and any of thermoplastic type and thermosetting type can be used. It may be.
  • These resins may be used in combination of several kinds as necessary. These resins differ in their properties, such as workability, work adhesion, and film hardness, depending on the type, molecular weight of the resin, and glass transition temperature Tg of the resin. No, it is necessary to select as needed.
  • the type of resin that is cured using a cross-linking agent depends on the type and amount of the cross-linking agent and the type and amount of catalyst used in the cross-linking reaction. Since the hardness and the like are different, they are not particularly specified and need to be appropriately selected as needed.
  • These resins can be used by melting a solid resin by heat, dissolving it in an organic solvent, or pulverizing it into a powder. Further, it may be a water-soluble or water-dispersed emulsion type. Furthermore,
  • UV curing type an ultraviolet (UV) curing type or an electron beam (EB) curing type may be used. Any of these can be of a commercially available type.
  • EB electron beam
  • solvent-based melamine-cured polyester-based, solvent-based isocyanate-cured polyester-based, and water-dispersed acrylemarsion are preferable.
  • the following are preferred: However, these are only examples, and the present invention is not limited to these.
  • the number average molecular weight of the polyester resin is preferably 200 to 300, and the Tg of the polyester resin is 110 to 70. ° C is preferable, and the addition amount of the melamine resin is preferably 5 to 70 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the molecular weight of the polyester resin is less than 2000, the processability of the film is reduced, and if it is more than 300, the viscosity is too high when the resin is dissolved in a solvent, which is not suitable. If the Tg of the polyester resin is less than -10 ° C, the film will not be formed because the film will not be formed, and if it is more than 70 ° C, the film will be too hard and the workability will be reduced and unsuitable. If the amount of the melamine resin is less than 5 parts by mass with respect to 100 parts by mass of polyester, the film is uncured. If it exceeds 70 parts by mass, the film becomes too hard and the workability deteriorates, so that it is not suitable.
  • Polyester resins to be used are generally commercially available, for example, "Viron” manufactured by Toyobo Co., Ltd., and Sumika Peyer Urethane Co., Ltd.
  • the melamine resin used is also generally available on the market, for example, Mitsui Cytec Co., Ltd.
  • the molecular weight of the polyester resin is preferably 200 to 300 in terms of the number average molecular weight, and the Tg of the polyester resin is _10 to 7 0 ° C is preferable, and the amount of the isocyanate added is [NCO group equivalent of the isocyanate] Z
  • the skin is likely to be uncured at the time of film formation. If the molecular weight of the polyester resin is less than 2000, the processability of the film is reduced. If the molecular weight is more than 300, the viscosity is too high when the resin is dissolved in a solvent, which is not suitable. If the T g of the polyester resin is lower than ⁇ 10 ° C., the film is not suitable because the film is not formed, and if it exceeds 70 ° C., the film is too hard, and the workability is deteriorated and is not suitable.
  • polyester resin to be used commercially available polyester resins such as “Pylon” manufactured by Toyobo Co., Ltd. and “Desmophen” manufactured by Sumika Peyer Urethane Co., Ltd. can be used.
  • the isocyanate to be used, commercially available ones, for example, “Sumijur” and “Desmodur” manufactured by Sumika Peyer Co., Ltd., and “Takenate” manufactured by Mitsui Takeda Chemical Co., Ltd. can be used.
  • a water-dispersible acrylic emulsion type can also be generally used, and may be a commercially available one.
  • the water-dispersed acrylic emulsion type may be used by adding a resin having good adhesion, such as a generally known epoxy resin.
  • the type and amount of the epoxy resin affect the performance of the coating film, and can be appropriately selected as needed.
  • the coating workability is high and the problem of volatile organic solvents being released into the atmosphere does not occur. This eliminates the need for organic solvent combustion equipment, and is more preferable.
  • a coloring pigment, a water-proof pigment, and a water-proofing agent can be added in combination.
  • Is a colored pigment titanium oxide (T i O 2), zinc oxide (Z n O), zirconium oxide (Z r O 2), calcium carbonate (C a C 0 3), sulfuric acid barium (B a S 0 4), alumina (a 1 2 0 3), Kao link rate, carbon black, and organic pigments such as iron oxide (F e 2 O 3, F e 3 O 4), commonly known coloring such as organic pigments Pigments can be used.
  • anti-chromic pigments such as strontium chromate and calcium chromate, as well as zinc phosphite, zinc phosphite, aluminum phosphite and aluminum phosphite are used.
  • Commonly-known non-close ports such as aluminum phosphate, molybdate, molybdate phosphate, mixed pigment of panadate and phosphoric acid, silica, and calcium-silicate type silica called calcium silicate Protective pigments and flame retardants can be used.
  • the base material of the metal sheet of the present invention may be a steel sheet or a plated steel sheet.
  • the corrosion resistance of the metal plate of the present invention is improved by adding a water-proof pigment and a heat-proof agent, which is more preferable.
  • non-chromium-based anti-pigment pigments and anti-oxidants are more effective.
  • reagents may be used, or commercially available ones may be used.
  • Examples of commercially available water-resistant pigments include zinc phosphate-based pigments “EXPERT_NP500” and “EXPERT-NP530” manufactured by Toho Pigment Co., and phosphorous acid manufactured by Toho Pigment Co.
  • color pigments water-proof pigments and heat-proofing agents have different film properties such as emissivity, processability, appearance, and corrosion resistance depending on the type, amount added, and particle size. There is a need.
  • a generally known leveling agent, pigment dispersant, wax, and the like can be added to the heat-absorbing film layer of the present invention, if necessary.
  • the types and amounts of these additives are not particularly limited, and can be appropriately selected as needed.
  • the wax is effective for improving the formability of the surface-treated metal sheet of the present invention when it is formed and for preventing the heat-absorbing film layer from being scratched.
  • a film component containing a binder can be applied in a generally known paint form.
  • the coating form include a solvent-based coating in which a resin is dissolved in a solvent, a water-based coating in which an emulsion resin is dispersed in water, a powder coating in which the resin is pulverized into powder, and a pulverized powder. Slurry powder coating with resin dispersed in water, ultraviolet (UV) curable coating, electron beam (EB) curable coating, film laminating resin into a film, and melting of resin And the like.
  • UV ultraviolet
  • EB electron beam
  • the coating method is not particularly limited, and generally known coating methods such as roll coating, roller curtain coating, curtain flow coating, air spray coating, airless spray coating, brush coating, die coater coating, and the like can be adopted. . In addition, dip coating, ink jet coating, or the like may be used.
  • the metal plate Prior to coating the metal plate with the heat-absorbing coating layer, it is preferable to perform a pretreatment on the metal plate in order to increase the film adhesion of the metal plate. This pretreatment improves the adhesion of the heat-absorbing film and the corrosion resistance of the metal plate, and is more preferable.
  • the coating films adhere to each other without performing the pre-coating treatment because the pre-coating treatment step can be omitted.
  • the coating pretreatment generally known ones, for example, coating chromate treatment, electrolytic chromate treatment, zinc phosphate treatment, zirconia-based treatment, and titania-based treatment can be used.
  • non-chromate pretreatment based on organic compounds such as resins has also been developed.However, the use of resin-based non-chromate pre-treatment reduces the burden on the environment. It is suitable.
  • Examples of non-chromate pretreatments based on organic compounds such as resins are disclosed in JP-A-09-282921, JP-A-10-2515. No. 09, Japanese Unexamined Patent Publication No. Hei 10-33 7530, Japanese Unexamined Patent Publication No. 2000-17464, Japanese Unexamined Patent Publication No. 2000-248, Japanese Patent Application Laid-Open No. 2000-2707359, Japanese Patent Application Laid-Open No. 2000-282522, Japanese Patent Application Laid-Open No.
  • any metal material that can be processed may be used, and generally known metal materials can be used.
  • the metal material may be an alloy material. Examples include steel, aluminum, titanium, copper, and magnesium alloys.
  • plating examples include zinc plating, aluminum plating, copper plating, and nickel plating. Alloy plating may be used.
  • Alloy plating may be used.
  • steel sheets cold-rolled steel sheets, hot-rolled steel sheets, hot-dip galvanized steel sheets, electro-zinc-plated steel sheets, hot-dip galvanized steel sheets, aluminum-plated steel sheets, aluminum-zinc alloy-plated steel sheets, stainless steel sheets, etc.
  • steel plates and plated steel plates can be applied.
  • steel sheets coated with iron and zinc such as molten alloyed zinc coated steel sheets, themselves have high heat absorption properties. And it is suitable.
  • a heat-absorbing film is coated on a steel sheet coated with a metal with high thermal conductivity such as aluminum or copper, the absorbed heat is evenly dispersed through the plating layer on the metal surface, so that the metal can be prevented from becoming hot locally.
  • Steel sheets coated with metals with high thermal conductivity such as aluminum and copper not only have improved thermal conductivity, but also have the strength and formability of steel sheets, and have high thermal conductivity such as aluminum and copper. Since it is cheaper than using metal alone, manufacturing costs can be reduced and it is more suitable.
  • a generally known processing method can be used as a processing method for forming a metal heating element by molding a metal.
  • processing methods such as forging, forging, punching, bending, drawing, overhanging, and roll forming.
  • a pre-coat method in which a heat absorbing film layer is previously coated on a metal plate and then formed and processed is more preferable because the production efficiency is high.
  • the non-metallic materials used in the present invention are all inorganic and organic materials except metallic materials, but may be natural materials in addition to plastics, resins, ceramics, pottery, cement and the like.
  • resin generally known resins such as an acrylic resin, a vinyl chloride resin, a HIPS resin, an ABS resin, and a polycarbonate resin can be used.
  • ceramics generally known ceramics such as alumina-based, aluminum nitride-based, palmitate-based and stotium titanate-based ceramics can be used.
  • the surface of the non-metallic material to be coated with the heat-absorbing film may be subjected to a generally known chemical conversion treatment or a roughening treatment so that the heat-absorbing film is roughened.
  • a generally known chemical conversion treatment or a roughening treatment so that the heat-absorbing film is roughened.
  • Examples of the heat-generating parts having excellent heat absorption properties of the present invention and materials used therefor include VTRs, audio equipment, DVDs, televisions, liquid crystal televisions, plasma displays, and plasma display tuners.
  • Personal computer peripheral devices such as personal computers, notebook computers, optical disk drives, and hard disk drives
  • mobile devices such as mobile phones and electronic notepads, refrigerators, outdoor units of air conditioners, indoor units of air conditioners, and laundry Appliances, lighting equipment, etc.
  • general home appliances battery cases, in-vehicle battery cases, in-vehicle electronic components, car navigation systems, car audio equipment, vending machines, currency exchange machines, ticketing machines such as prepaid cards and tickets
  • Internal and external unit electronics cover the effect is exhibited by using the present invention product in the inner and outer control apparatus cover.
  • the refrigerator, the portable device, and the vehicle device the effects of which have been confirmed by the inventors, using the heat generating component having excellent heat absorption and the material therefor, which are the products of the present invention, will be described in detail below.
  • refrigerators Many components that serve as heat sources, such as motors and electronic components, are used inside refrigerators.
  • refrigerators have become more electronic, and the heat generated from these heat sources accumulates inside the refrigerator, and the internal temperature tends to rise.
  • the temperature inside the refrigerator rises, more power is required to lower the temperature inside the refrigerator, and the life of the motor and electronic components is shortened.
  • the present inventors have conducted intensive studies and found that the surface of a metal material has a heat absorbing property. We found that when a high substance was applied to the inside of the refrigerator outer panel, the temperature near the heat source such as the motor decreased compared to when a substance with high heat absorption was not applied.
  • the heating element and the heat-absorbing film have been described earlier is that if the outer plate constituting the refrigerator is considered to be the heating element, the heat absorbing coating directly covering the outer plate and the inner surface of the refrigerator of the present invention will be described. Since the specific description of the conductive film is appropriate, further description is omitted here.
  • the refrigerator of the present invention may have the same structure and interior as those of the refrigerator except that the inner surface of the outer plate is coated with a specific heat-absorbing film.
  • the outer surface of the refrigerator outer plate of the present invention is colored. It is more preferable to coat the coating film with the clear coating film, since the design appearance can be imparted.
  • the colored coating layer and the clear coating layer are multi-layer coatings, and the lowermost layer is used as a protective coating layer containing a pigment, and the upper layer is used as a colored layer containing a coloring pigment. Further, if necessary, further coating a tally film thereon is more preferable, since the corrosion resistance and the design of the metal plate are improved.
  • the heat-absorbing coating layer covering the inside of the refrigerator outer plate of the present invention contains, in addition to the carbon, 1 to 50 parts by mass of conductive metal powder with respect to 100 parts by mass of a binder solid content,
  • the film has a conductive property, and the problem of adhesion of dust and dust caused by static electricity in a refrigerator assembling process is solved, which is more preferable.
  • the configuration for imparting conductivity to the heat-absorbing film layer has also been described above.
  • a heat-absorbing coating layer of the present invention was applied to one side of a flat metal plate to produce a highly heat-absorbent pre-coated metal plate, which was cut and processed. It is more preferable to later assemble the refrigerator with the heat-absorbing film layer on the inner side of the outer plate, since the working efficiency is improved.
  • a generally known processing method is used for manufacturing a pre-coated metal sheet coated with a heat-absorbing film in advance, and then performing cutting, processing, and assembling.
  • processing methods such as punching, bending, drawing, overhanging, and roll forming can be used.
  • the highly heat-absorbing paint of the present invention by applying the highly heat-absorbing paint of the present invention to the inner surface side of an electronic device case having a built-in heat-generating electronic component or battery, it is possible to remarkably suppress a rise in the temperature inside the electronic device. It was found.
  • the portable device (mopile device) and the in-vehicle device are not particularly limited, and include a mobile phone, a notebook computer, a PDA, a car battery, a navigation system device, a car audio device, an in-vehicle control device, and the like. It is.
  • the electronic components that generate heat are not particularly limited, and include, for example, electronic components such as CPU elements, MPU elements, DSP elements, electronic integrated circuits, and resistors.
  • electronic components such as CPU elements, MPU elements, DSP elements, electronic integrated circuits, and resistors.
  • the batteries generally known ones can be applied.
  • the material constituting the case of the portable device or the vehicle device of the present invention is not particularly limited, and examples thereof include a Mg alloy case, an A1 alloy case, a steel plate case, other metal cases, and a plastic case. Particularly useful for Mg alloy case, A1 alloy case and steel plate case.
  • the heat-absorbing film layer of the case of the portable device or the in-vehicle device of the present invention has, in one embodiment, 100 to 100 parts by mass of a binder solid content of 1 to 20 parts by mass of carbon having a particle size of less than 0 • 1 ⁇ m.
  • the total with carbon is 10 to 150 parts by mass.
  • the heat-absorptive film layer may have a binder solid content of 100 parts by mass, a heat-absorptive pigment of 100 to 150 parts by mass, and a conductive pigment of 1 to 150 parts by mass.
  • the heat-absorbing pigment is carbon black having an average particle size of! To 100 nm
  • the conductive pigment is a flaky metal Ni having an average particle size of 0.5 to 50 ⁇ and a chain. The mass ratio of the flaky metal Ni Z and the chain metal Ni is 0.1 to 6.
  • the heat-absorptive film layer is formed such that the heat-absorptive pigment is 100 to 150 parts by mass and the feline silicone 10 to 150 parts by mass with respect to 100 parts by mass of the binder solid content. Consists of parts by mass.
  • the heat-absorptive coating layer is composed of 100 to 150 parts by mass of a silicone with a binder content of 100 parts by mass.
  • the specific contents of the heat-absorbing coating layer in each of these embodiments are basically the same as those described above for the heat generating physical strength bar. Therefore, a specific description is omitted here.
  • the heating element described above may be used as a case of a portable device or a vehicle device.
  • a film component containing a binder can be applied in a generally known paint form.
  • the paint may be in the form of a solvent-based paint in which a resin is dissolved in a solvent, an aqueous paint in which an emulsified resin is dispersed in water, or the like.
  • UV curable paint ultraviolet
  • EB electron beam
  • the thickness of the high heat-absorbing film be 1 to 100 ⁇ . If the film thickness is less than 1 ⁇ , it is not suitable because the heat absorption of the film is poor. If the coating is more than 1000 / zm, the heat absorbing property is saturated and is not economically meaningful, which is not preferable. It is more preferably from 10 to 500 m. In order to secure the conductivity, it is more preferable that the thickness be 1 m or more and less than 10 m.
  • the highly heat-absorbing film layer of the present invention it is common to apply the highly heat-absorbing film layer of the present invention to the surface of the case after the case is formed. However, in the case of a plate material, it may be applied before forming.
  • the surface covered with the heat-absorbing film layer is inside the case of the electronic component / pattern that generates heat, the temperature inside the electronic device and the battery case is reduced.
  • the configuration of the case having excellent heat absorption of the present invention may be the same as that of FIG.
  • the case of the present invention is characterized in that it is made of, for example, a Mg alloy plate 1 and its inner surface is covered with a highly absorbent film layer 2.
  • reference numeral 3 denotes a heat-generating electronic component or a battery.
  • the heat-absorbing coating layer may be coated on the outside as well as on the inside of the case. If it is coated on the outside, it is easier to release the heat absorbed into the metal plate, which is the heating element case, due to the effect of heat radiation equivalent to heat absorption. It is. Further, the exterior of the case may be coated with a colored coating to give a design appearance. This colored coating layer is a multilayer coating film. In the case of metal, the lowermost layer is used as a protective coating layer containing a protective pigment, and the upper layer is used as a coloring layer containing a coloring pigment. May be.
  • the colored organic coating layer (including the protective coating layer in the case of a multilayer coating film) itself has a certain degree of heat radiation, so if it is coated in a total of 10 ⁇ m or more, it will This is more preferable because it lowers the temperature.
  • polyester resin a commercially available organic solvent-soluble / amorphous polyester resin (hereinafter referred to as polyester resin) (number average molecular weight: 1300, Tg 20 ° C) was dissolved in an organic solvent (a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1).
  • polyester / melamine type a commercially available hexomer methoxy monomethylated melamine, Cymel 303, manufactured by Mitsui Cytec Co., Ltd.
  • solvent-based normal drying a commercially available room temperature drying type solvent-based tally paint
  • water-based normal drying a commercially available room temperature drying-type water-based tally coating
  • Fine particle can Large particle caho, and other additive pigments
  • Riester / Melamine Fine particle can (* 2) 5 Large particle size carbon A (* 3) 20 25 1 Not added
  • Polyester / melamine fine particle can (* 2) 5 Large particle size caho ', A (* 3) 140 145 Unadded calo
  • Paint 2 10 e. Reester / isocyanate Fine particle can (* 2) 5 Large particle caho, A (* 3) 20 25
  • Paint 4-14 Fine particle can (* 2) 5 Large particle size kaho ', No A (* 3) 0.5 10.5 Not added
  • Fine particle can (* 2) 20 Large particle size caho, A (* 3) 140 160 Not added
  • Reagent graphite powder is further pulverized and used with an average particle size of ⁇ ⁇ ⁇ ⁇ using a sieving classifier.
  • a pretreatment liquid was applied on a degreased steel sheet coated with electrogalvanized steel by a roll coater, followed by hot-air drying under conditions where the reached sheet temperature was 60 ° C.
  • ZM1300AN (hereafter referred to as chromate treatment) manufactured by Nippon Parker Rising Co., Ltd., which is a commercially available mouthmate treatment, and Nippon Puriki Rising Co., Ltd., a commercially available non-chromate pretreatment, were used for the pretreatment.
  • C-E300 (hereinafter, non-chromate treatment) was used.
  • Adhesion amount of chromate treatment, C r adhesion amount at 5 0 mg / m 2, the adhesion amount of Roh emissions chromate treatment were the 2 0 0 mg / m 2 as a whole amount of the coating film.
  • the heat-absorbing film paint shown in Table 1 was applied on the pre-treated electric zinc plated steel sheet by a roll coater, and dried and cured in an induction heating furnace using hot air.
  • the drying and hardening conditions were set at 230 ° C at the ultimate plate temperature (PMT).
  • Pretreatment and heat-absorptive coatings were applied to one or both sides as needed to obtain test specimens.
  • Tables 5 to 8 show the details of the prepared surface coated plate.
  • all of the surface-coated plates described in Tables 5 to 7 are coated with the same type of heat-absorbing coating layer on both sides under the same conditions. However, only one surface is coated with the heat-absorbing film layer, and the other surface is not coated. Table 5
  • Non-chromate paint 1-2 5 0.91 o o ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Non-chromate treatment paint 1-5 5 ⁇ 0.95 o o ⁇ X X ⁇ ⁇ ⁇
  • a test was performed by creating a measurement box shown in Fig. 2.
  • the upper surface of the measuring box 4 is open, and the opened surface is covered with the prepared surface coating plate 5.
  • the temperature controller is set so that the temperature of the heat source 6 becomes 100 ° C. Control the temperature of the heat source at 7, and measure the temperature A of the thermocouple 8 installed in the measuring box 4 and the temperature B of the thermocouple 9 attached to the outer surface of the surface painted plate with the digital thermometer 10 respectively. did.
  • the evaluation criteria for temperature A are as follows.
  • a 1 mm square cut is made in the heat-absorbing coating layer of the surface coated plate with a cutter knife, extruded 7 mm with an Erichsen tester so that the coating surface becomes convex, and then a tape peeling test was performed.
  • a cutter knife extruded 7 mm with an Erichsen tester so that the coating surface becomes convex, and then a tape peeling test was performed.
  • tape peeling twice For information on how to make a grid-like cut, how to extrude Erichsen, and how to peel off the tape, refer to the method described in JIS-K540.8.2, and JIS-K540. It carried out according to the method of description. In this test, the tape peeling test was performed twice at the same place (hereinafter referred to as “tape peeling twice”).
  • the evaluation after peeling the tape was performed according to the figure of the example of evaluation described in JIS-K540.8.5.5. When the score was 10 points, ⁇ , and when the score was 8 or more and less than 10 points, ⁇ , 8 points When less than, it was evaluated as X.
  • the prepared surface coated plate was bent at 180 °. Then, the damaged state of the coating film of the processed portion was observed with a loupe, and evaluated according to the following criteria.
  • the bending was performed in a 20 ° C atmosphere with three 0.6 mm spacers interposed between them (generally referred to as 3T bending).
  • a cylindrical drawing test was conducted on the prepared surface coated plate using a hydraulic Eriksen type press working tester.
  • the cylindrical drawing test is performed under the following conditions: punch diameter: 50 mm, punch shoulder; R: 5 mm, die shoulder R: 5 mm, drawing ratio: 2.3, BHF: 1 t, and the metal plate is drawn from the mold. Processing was performed until it came off.
  • the damaged state of the coating film in the processed part was observed with a loupe, and evaluated according to the following criteria.
  • a saline water fog test was performed on the prepared surface coated plate by the method described in JIS K540.0.1. Brine was sprayed on the surface of the heat-absorbing coating layer. The test time was 120 h.
  • the specimen surface was cut with a cutter knife.
  • the coating method of the cross cut part was evaluated as ⁇ when the maximum blister width on one side of the cross cut was less than 2 mm, ⁇ when it was 2 mm or more and less than 5 mm, and X when it was 5 mm or more. .
  • the above-mentioned salt spray test was also performed on flat plates manufactured so that the return (paris) at the time of cutting came to the evaluation surface side of the coated steel sheet (upside-down), and the swelling of the coating film from the end surface was performed. The width was observed.
  • the evaluation method of the end face part was evaluated as ⁇ when the swollen width from the end face was less than 2 mm, ⁇ when it was 2 mm or more and less than 5 mm, and X when it was 5 mm or more.
  • the conductivity of the heat-absorbing film layer of the prepared surface coated plate was measured.
  • the measurement method is the resistivity meter “L oresta_EP / MC P” manufactured by Mitsui Chemicals, Inc.
  • the resistivity of the surface of the surface-coated plate was measured by the four-terminal method of “I T 360” and evaluated according to the following criteria.
  • Table 5 shows the results of evaluating the effect of the type and amount of the added pigment on the heat-absorbing coating layer coated on the surface coated plate.
  • the surface-coated plate of the present invention (Invention Examples I1-11-125) has a total emissivity in the range of 600-300 cm- 1 at a wave number of 800 measured at a temperature of 80.
  • the emissivity is 70 or more, the heat absorption is higher than that of Comparative Examples I-I 26 and I-27 having the emissivity of less than 0.70, and it is understood that the composition is suitable as a cover for the heating element.
  • the heat-absorbing film layer of the surface-coated plate of the present invention is composed of a binder solid content of 10% by mass, a heat-absorbing pigment of 10 to 150 parts by mass, and a conductive pigment of 1 to 150 parts by mass. When it is performed, it has excellent workability and conductivity, and is more preferable.
  • the amount of the heat-absorbing pigment added is less than 10 parts by mass (Comparative Example I-126), the emissivity is less than 0.7, and the heat absorption is poor, which is not suitable.
  • the amount of the heat-absorbing pigment added exceeds 150 parts by mass (Example I-15 of the present invention), the emissivity is high, but the processability such as bending property and press moldability deteriorates, so that 150 Parts or less are more preferable.
  • the amount of the conductive pigment is less than 1 part by mass (Example I-18 of the present invention)
  • the conductivity cannot be ensured, so that 1 part by mass or more is more preferable.
  • the amount of the conductive pigment is more than 150 parts by mass (Comparative Example I-27)
  • the conductive pigment hinders the heat absorption, so that the emissivity is less than 0.7 and the heat absorption is low. Inferior, and unsuitable because the workability of the coating layer is greatly reduced. It is.
  • the heat-absorbing pigment contained in the heat-absorbing coating layer of the surface coated plate of the present invention is a car pump rack having an average particle diameter of 1 to 100 nm, and the conductive pigment has an average particle diameter of 0.5 to 5 It is composed of a flaky metal Ni of 0 / xm and a chain metal Ni, and the mass ratio of the flaky metal NiZ chain metal Ni is 0.1 to 6. It is more preferable because of its excellent heat absorption and conductivity.
  • the heat-absorbing pigment has a relatively large particle size such as charcoal powder or graphite powder (the present invention I_6 and I-17), the emissivity is relatively low, and the conductive effect of the conductive pigment is reduced. Since large heat-absorbing pigments hinder and lower the conductivity, heat-absorbing pigments having a mean particle diameter of 1 to 100 nm are more preferable.
  • the conductive pigment contained in the heat-absorbing film layer of the surface coated plate of the present invention is aluminum powder or stainless steel powder, these conductive pigments are likely to impair the heat absorption property, Invention examples I-I5 and I-I6) have reduced emissivity.
  • flaky metal Ni and chain metal Ni having an average particle size of 0.5 to 50 ⁇ are suitable because they do not easily impair the heat absorption.
  • the mass ratio of the flaky metal Ni Z Z chain metal Ni is less than 0.1 (Examples 1 to 11 of the present invention)
  • the conductivity decreases, and the flaky metal Ni /
  • the chain metal Ni is more than 6 (Example I-1 14)
  • the heat absorption is impaired and the emissivity is low, so that the mass ratio of flake metal Ni / chain metal 1 ⁇ 1 is 0. 1 to 6 are preferred.
  • the conductive pigment is ferrosilicon (Examples 1 to 17 of the present invention) because the emissivity does not decrease and the corrosion resistance of the surface coated plate of the present invention is improved.
  • the emissivity was relatively high, and Moreover, it is suitable because of its excellent conductivity and corrosion resistance.
  • heat-absorbing pigment when conductive carbon black is used as the heat-absorbing pigment, it is more preferable because conductivity is improved.
  • the heat-absorptive pigment in the heat-absorptive coating layer of the surface-coated plate of the present invention, in addition to the heat-absorptive pigment and the conductive pigment, (Example I of the present invention I-122-125-1-2) is It is more suitable because of its excellent corrosion resistance.
  • Table 6 shows the evaluation results of the surface-coated boards with different thicknesses of the heat-absorbing coating layer.
  • Films with a film thickness of less than 1 / m have a low total emissivity, and a film thickness of more than 50 ⁇ reduces the workability of the film layer. ⁇ 50 ⁇ m is more preferred.
  • Table 7 shows the evaluation results when the pretreatment of the heat-absorbing film layer was chromate treatment (Examples 1 to 35 of the present invention) and when the pretreatment was not performed (Examples I to 36 of the present invention). . Even if the type of pretreatment is changed, there is no change in emissivity, heat absorption and other coating properties.
  • the pre-treatment is not performed, the adhesion of the coating film and the corrosion resistance are reduced, so that the pre-treatment is more preferable.
  • Table 8 shows the heat absorption evaluation results when only one surface was coated with the heat-absorbing film layer and the other surface was unpainted. Those coated with a heat-absorbing film on only one side are less heat-absorbent than those coated on both sides.
  • Adhesion amount of electrolytic zinc plated steel sheet of thickness 0. 6 mm which is two-sided with one side per 2 0 g / m 2 was plated, a commercially available Al force Li degreaser from Nihon Parkerizing Co., Ltd. "FC- 3 6 4
  • the “S” was degreased by immersion in an aqueous solution at a temperature of 60 ° C. diluted to a concentration of 20% by mass for 10 seconds, washed with water, and dried.
  • one end of the chemical zinc coated steel sheet (hereafter referred to as a side) was coated with the heat-absorbing coating shown in Table 2 using a roll coater, and hot air was also used. It was dried and cured in an induction heating furnace. The drying and hardening conditions were set to the ultimate plate temperature (PMT) of 230 ° C.
  • the test piece was obtained by coating the chemical conversion treatment and the endothermic coating on one or both sides as necessary.
  • the other side hereafter, this side is referred to as side b) was made unpainted, painted with heat-absorbing paint, and painted.
  • the colored coating was applied to Nippon Paint Co., Ltd., an undercoat paint for pre-coated steel sheets “FL640 Primer” with a dry film thickness of 5 ⁇ , baked at ⁇ 210 ° C, and then further On top of this, a black metallic color top coat paint “FL 7100 J” manufactured by Nippon Paint Co., Ltd. was applied at a dry film thickness of 15 ⁇ m and baked at PMT 230 ° C.
  • Tables 9 to 10 show the details of the prepared surface coated plate.
  • the thickness of the heat-absorbing coating film in Tables 9 to 10 is the thickness after drying.
  • Non-chromate paint 2 15 5 ⁇ Colored paint 20 ⁇ 0.88 ⁇ O ⁇ ⁇ o ⁇ X ⁇ o
  • Non-chromate treatment paint 2 21 5 ⁇ Colored paint 20 ⁇ 0.65 X o ⁇ O ⁇ ⁇ X ⁇ ⁇
  • Example I but evaluated according to the following criteria.
  • the evaluation criteria for the temperature A will be described below.
  • the surface of the surface coating plate created was set so that the a-plane was inside the measurement box (heat source side).
  • Example II 'Same as in Example I. However, this test was conducted so that the a-face side was outside the processed part, and the state of coating film damage on the processed part on the a-side was observed and evaluated. Valued.
  • Example I As in Example I. However, this test was performed so that the a-face side was on the outside of the processed part, and the state of coating film damage on the processed part of the a-face was observed and evaluated.
  • the prepared surface coated plate was subjected to a salt water fog test according to the method described in JIS K540.09.1. Brine was sprayed on the a-side of the test piece. The test time was 72 hours. Then, the state of whitening on the flat part and the end part on the a-side was observed, and when neither white part was generated on either the flat part or the end part, ⁇ , slight white mackerel was generated on the end part. However, the case where whiteness is hardly generated on the flat part is “ ⁇ ”, the case where white mackerel is generated on the end face and the whiteness is partially generated on the flat part is “ ⁇ ”. X was evaluated in the case where the white surface was ripened on the entire surface of the flat part.
  • the viscosity has increased compared to the state when the coating liquid was prepared: ⁇
  • the coating liquid is gelled or solidified compared to the state when the coating liquid was prepared: X
  • the surface-coated plate of the present invention comprises carbon having a particle size of less than 0.1 ⁇ m in an amount of 1 to 20 parts by mass and a particle size of 0.1 ⁇ or more and 50 ⁇ or less with respect to 100 parts by mass of a binder solid content.
  • carbon having a particle size of less than 0.1 ⁇ and carbon having a particle size of 0.1 ⁇ or more and 50 ⁇ or less is 10 to 150 parts by mass.
  • the heat-absorbing film When using the surface coated plate of the present invention to create a heating element, the heat-absorbing film must be inside the heating element.
  • the heat-absorbing film of the present invention is coated only on the outer side of the heat-generating body (Comparative Example II-32), the temperature inside the force-par (endothermic temperature ⁇ ) hardly decreases, which is not suitable.
  • the total emissivity of the heat-absorbing coating layer of the surface coated plate of the present invention in the wave number range of 600 to 300 cm- 1 measured at a temperature of 80 ° C. is less than 0.70.
  • the total emissivity is more preferably 0.70 or more.
  • the temperature inside the heating element (endothermic temperature A) is low and the heat-absorbing property is excellent.
  • the temperature of the plate itself (endothermic temperature B) is high.
  • the heat-absorbing film is coated on the inner side of the heating element and the outer surface is coated with the heat-absorbing film of the present invention or a generally known colored coating of 10 ⁇ m or more on the outside. It is.
  • a chemical conversion treatment solution was applied on a steel plate and an aluminum plate for degreasing with a mouth coater, and dried with hot air under conditions such that the ultimate plate temperature was 60 ° C.
  • CT-E300 manufactured by Nihon Parkerizing Co., Ltd., which is a commercially available non-chromate chemical conversion treatment, was used for the chemical conversion treatment.
  • Chemical process The surface was treated with a roll coater on both sides of a metal plate, and dried at a plate temperature of 60 ° C.
  • the amount of chromate treatment is as follows: ⁇ ⁇ ]: 5 / m 2
  • the adhesion amount of the non-chromate treatment was set to 200 mg / m 2 as the total coating amount.
  • one side of the chemical conversion-treated plated steel sheet (hereinafter, this side is referred to as a side) is coated with a paint 112 as described in Table 1 of Example I by a roll coater, and heated with hot air. Drying and curing were performed in the induction heating furnace used in combination. The drying and hardening conditions were set to the ultimate plate temperature (PMT) of 230 ° C. The test piece was obtained by coating the chemical conversion treatment and the endothermic coating paint on one or both sides as necessary. The other side (hereafter, this side is referred to as side b) was created with a colored coating.
  • PMT ultimate plate temperature
  • the colored coating was prepared by applying a paint film of FL641 Primer of 5 ⁇ m in dry film thickness, and baking it at 210 ° C PMT. Further, a black metallic color top coat “FL710” manufactured by Nippon Paint Co., Ltd. was applied thereon with a dry film thickness of 15 ⁇ m, and baked at PMT230 ° C.
  • Table 11 shows the details of the prepared surface coated plate.
  • the thickness of the heat-absorbing coating film in Table 11 is the thickness after drying.
  • the surface-coated sheet of the present invention is more preferably an iron-zinc alloy plated steel sheet, such as a hot-dip galvanized steel sheet, for the original sheet (Example m-1 of the present invention) because the emissivity is further increased and is more preferable. It is.
  • a material having high thermal conductivity such as aluminum for the original plate (Example 111-3 of the present invention), or a material obtained by plating such a material on a steel material (Example m-2 of the present invention) is a metal plate. This is more preferable because heat is radiated on the surface of the metal plate or the metal plate, and the heat on the surface of the metal plate is made uniform.
  • Alumina-based ceramics in plate form (hereinafter referred to as ceramics plate) ) was coated with the heat-absorbing film paint described in Table 3 using a bar coater and dried at room temperature for about 24 hours. In addition, the coating was made on both front and back sides and on one side as needed.
  • Tables 12 to 14 show the details of the prepared surface coated plate.
  • the surface-coated plates shown in Tables 12 and 13 each have the same type of heat-absorbing coating layer coated on both sides under the same conditions. Both of the surface-coated plates shown in Table 14 are single-sided. Only the heat-absorbing coating layer is coated, and the other surfaces are not coated.
  • thermocouple 8 in FIG. 2 was measured.
  • the conductivity of the heat-absorbing film layer of the prepared surface coated plate was measured.
  • the measurement method is as follows. Toa Denki Kogyo's resistance measurement device (SM-822) is equipped with a plate sample measurement electrode (SME-8310) made by Toa Denpa Kogyo.
  • SME-8310 plate sample measurement electrode made by Toa Denpa Kogyo.
  • the surface resistivity was measured and evaluated according to the following criteria. .
  • the surface resistivity is 1 0 X 1 0 9 ⁇ when: ⁇
  • JISK 5400 The Dupont-type impact resistance test of 8.3.2 was performed.
  • the size of the stamping die at the time of the test was 1 Z 2 inches (12.7 mm), the mass of the weight was 500 g, and the height of the weight was 20 cm. Then, the sample surface after the test was visually observed, and evaluated according to the following criteria.
  • Table 12 shows the results of evaluating the effect of the type and amount of the added pigment on the heat-absorbing coating layer coated on the surface coated plate.
  • Table 12 shows the results of tests using samples in which both surfaces of a non-metallic plate were coated with a heat-absorbing film under the same conditions.
  • the surface coated plate of the present invention (Example IV-1 to 20) of the present invention has a total wave number of 600 to 300 to 1 cm measured at any temperature of 80 ° C or higher. Since the emissivity is 0.70 or more, the heat absorption is higher than that of Comparative Examples 21 and 22 in which the emissivity is less than 0.70, and it is suitable as a power member of the heating element. I understand.
  • the heat-absorbing film layer of the surface coated plate of the present invention is composed of 100 parts by mass of a binder solid content, 100 to 150 parts by mass of a heat-absorbing pigment, and 1 to 150 parts by mass of a conductive pigment. When they are used, they have excellent workability and conductivity, and are more preferable.
  • the amount of the heat-absorbing pigment added is less than 10 parts by mass (Comparative Example IV- 21), the emissivity is less than 0.70, and the heat-absorbing property is inferior.
  • the addition amount of the heat-absorbing pigment is more than 150 parts by mass (Example IV-5 of the present invention), the emissivity is high, but the impact resistance is reduced. It is.
  • Example IV-8 of the present invention When the amount of the conductive pigment is less than 1 part by mass (Example IV-8 of the present invention), the conductivity cannot be ensured, so that 1 part by mass or more is more preferable.
  • the amount of the conductive face is more than 150 parts by mass (Comparative Example IV-22), the emissivity is less than 0.70, and the heat absorption is low because the conductive pigment inhibits the heat absorption. It is not suitable because it is inferior and the impact resistance of the coating layer is greatly reduced.
  • the heat-absorbing pigment contained in the heat-absorbing coating layer of the surface coated plate of the present invention is carbon black having an average particle size of 1 to 100 nm, and the conductive pigment has an average particle size of 0.5 to It is more preferable that the mass ratio of the flaky metal Ni / chain metal Ni of 50 ⁇ m is 0.1 to 6, because the heat absorbing property and the conductivity are more excellent.
  • the heat-absorbing pigment has a relatively large particle size (Examples IV-6 and IV-7) such as charcoal powder and graphite powder
  • the emissivity is relatively low.
  • the conductive effect of the conductive pigment is impaired and the conductivity is also reduced.
  • carbon black having an average particle diameter of 1 to 10 nm is more preferable.
  • the conductive pigment contained in the heat-absorbing film layer of the surface-coated plate of the present invention is aluminum powder or stainless steel powder, these conductive pigments are likely to impair the heat absorption property.
  • Inventive examples IV—15 and IV—16) tend to have lower emissivity.
  • a conductive pigment composed of flaky metal Ni having an average particle diameter of 0.5 to 50 ⁇ m and chain-like metal Ni is suitable because it hardly impairs heat absorption.
  • the mass ratio of the flaky metal Ni Z and the chain metal Ni is less than 0.1 (Example IV—11)
  • the conductivity is reduced, and the flaky metal Ni by the mass ratio is reduced.
  • the chain metal Ni force S 6 exceeds (Example IV- 14 of the present invention), the heat absorption tends to be impaired and the emissivity decreases, so that the flake metal N i / chain metal
  • the mass ratio of Ni is preferably from 0.1 to 6.
  • the conductive pigment is a silicon-containing silicone (Example IV-17 of the present invention) because the emissivity does not decrease.
  • the one in which only the silicon of the mouth is added without adding the heat-absorbing pigment (Example IV-19 of the present invention) is preferable because it has a relatively high emissivity and excellent conductivity.
  • conductive carbon black is used as the heat-absorbing pigment, it is more preferable because conductivity is improved.
  • Table 13 shows the evaluation results of the surface coated boards with different thicknesses of the heat absorbing coating layer. Table 13 shows the results of tests using samples in which both surfaces of a non-metallic plate were coated with a heat-absorbing film under the same conditions.
  • Those having a film thickness of less than 1 ⁇ tend to have a low total emissivity, so that the film thickness is more preferably 1 / im or more.
  • Table 14 shows that only one side is coated with a heat-absorbing coating layer and the other side is unpainted The results of evaluation of the heat absorbency in the case of are shown.
  • a heat-absorbing coating on the outside of the cover that covers the heating element as a heat source (Comparative Example IV-31) is unsuitable because it has almost no impeachment in heat absorbency.
  • the heat-absorbing coating shown in Table 4 was applied on an alumina-based ceramic plate with a bar coater, and dried at room temperature for about 24 hours.
  • Table 15 shows the details of the prepared surface coated plate.
  • Each of the surface-coated plates shown in Table 15 has the same type of heat-absorbing coating layer coated on both sides under the same conditions.
  • the surface coated plate of the present invention has a resin solid content of 10
  • V 1 ⁇ 2 ⁇ A— A 5 m ⁇ J 71 ⁇ V ⁇
  • Paint 3-2 and paint 3-20 shown in Table 3 are coated on a plate-like polycarbonate-ABS polymer alloy resin (hereinafter referred to as a plastic plate) with a bar coater. Dried for 4 hours.
  • Table 16 shows the details of the prepared surface coated plate.
  • Each of the surface coated plates shown in Table 16 has the same type of endothermic coating layer coated on both sides under the same conditions.
  • Table 16 shows the evaluation results of the prepared surface coated plate.
  • the surface coated plate of the present invention is suitable because it has an effect on heat absorption even when a plastic material such as a resin is used as a base material.
  • a 0.6-mm-thick metal plate was placed in an aqueous solution at a temperature of 60 ° C, which was obtained by diluting a commercially available alkaline degreasing agent “FC 4336” manufactured by Nippon Ichiriki Rising Co. to a concentration of 2% by mass. And degreased with alkali, washed with water and dried. Next, a chemical conversion treatment solution was applied to the degreased steel sheet coated with electrogalvanized steel by a roll coater, and dried with hot air under conditions where the ultimate sheet temperature was 60 ° C.
  • a 1 sheet Aluminum-plated steel sheet (Aluminum adhesion amount: 60 g / m 2 on one side)
  • one side of the chemical conversion-treated metal plate (hereafter, this side is referred to as the a-side) is coated with the paint selected from Tables 1 and 2 created earlier using a roll coater, and hot air is also used. It was dried and cured in the induction heating furnace. The drying and hardening conditions were set to the ultimate plate temperature (PMT) of 230 ° C.
  • the other side (hereinafter, this side is referred to as side b) was coated with a colored paint or a clear paint with a roll coater.
  • Table 17 shows details of the prepared precoated metal sheet.
  • the thickness of the heat-absorbing coating film in Table 17 is the thickness after drying.
  • the details of the method of making the refrigerator used in the experiment are described below.
  • the metal skin of a commercially available small refrigerator was removed.
  • a refrigerator was prepared by attaching the pre-coated metal plate cut and processed into the same shape as the removed metal plate so that the a-side of the pre-coated metal plate was inside the refrigerator.
  • the wave number when the plate temperature of a precoated metal plate created for use as a refrigerator outer plate was set at 80 was 600 measuring the infrared emission scan Bae-vector in ⁇ 3 0 0 0 c m- 1 region, which is compared with the light emitting space-vector of the standard black body were measured total emissivity of the genus plate.
  • the standard black body is sold on Tacos Japan Co., Ltd. - with the was also spray-coated IB blackbody spray "with thickness of 3 0 ⁇ 2 ⁇ m.
  • the emissivity was measured on the a-plane of the prepared precoated metal plate.
  • the created refrigerator was turned on, operated under normal conditions, and the temperature near the motor, which was the main internal heat source 24 hours after the start of operation, was measured by digital temperature. The temperature was measured at a position 5 cm away from the motor.
  • the temperature inside the refrigerator with the conventional metal outer plate (conventionally a metal outer plate) attached to a commercially available refrigerator was measured under the above-mentioned conditions, and this was compared with the assumed temperature of the refrigerator to be evaluated. Were evaluated in the following manner.
  • a 1 mm square cut is made with a cutter knife in the coating layer on side a of the pre-coated metal plate created for the refrigerator outer plate, and the Erichsen tester is used to make the side a ⁇ . After extruding mm, a tape peeling test was performed.
  • the pre-coated metal plate prepared for the refrigerator outer plate was subjected to a salt water mist test according to the method described in JIS-K540-9.1. Brine was sprayed on the a side of the specimen. The test time was 48 hours. Observing the whitening state of the flat part on the side a, the case where no whitening has occurred from the flat part, and the case where whitening has occurred but no redness has occurred on the flat part was evaluated as X, and the case where white and red were also generated on the plane portion was evaluated as X.
  • the conductivity of the a-plane of the precoated steel sheet prepared for the refrigerator outer panel was measured.
  • the measurement method was as follows.
  • the resistivity of the surface of the metal plate was measured by a four-terminal method of a resistivity meter “Loresta-E P ZMC P-T 360” manufactured by Mitsui Chemicals, Inc., and evaluated according to the following criteria.
  • the initial viscosity of the prepared paint was measured by the Ford Cup No. 4 method described in JIS K540.5.4.5.4. Further, after these paints were allowed to stand at room temperature for one week and then re-stirred with a stirrer, the viscosity after one week was measured again by the aforementioned Ford Cup No. 4 method. By comparing the viscosities before and after standing for one week, the increase in viscosity of each of the prepared paints was evaluated as follows. Table 18 shows the evaluation results of the viscosity aging test.
  • Non-chromate treatment paint 2 26 5 ⁇ Colored paint 20 0.85 ⁇ ⁇ ⁇ ⁇ X
  • the refrigerator according to the present invention has a total emissivity of 0.70 or more in a wave number range of 600 to 300 cm- 1 measured at a certain temperature of not less than 80 ° C and not more than 200 ° C.
  • the temperature inside the refrigerator was reduced.
  • the emissivity of the heat-absorbing film is less than 0.70 (Comparative Example W-15, 116, 18, -19)
  • the internal temperature of the refrigerator is lower than that of the conventional type. There is no big difference compared to You.
  • the emissivity of the heat-absorbing film of 0.7 to 150 parts by mass of carbon per 100 parts by mass of the binder solid content of the heat-absorbing film of the present invention is 0.7. 0 or more is preferable. Those with less than 10 carbons (Comparative Example 1 W—15, VII—16, W—18) and those without coating (Comparative Example W_19) have an emissivity of 0. Less than 70 and unsuitable. In addition, those in which the added amount of carbon exceeds 150 parts by mass (Comparative Example 17) are inadequate in workability and are therefore unsuitable.
  • the heat absorbing coating of the refrigerator outer panel of the present invention to which a conductive pigment is added, is provided with conductivity, so that static electricity is unlikely to be generated at the time of assembling the refrigerator. It is more suitable because there is no. When no conductive pigment is added (Examples W-6, VII-8, and W-9), the conductivity is poor.
  • the heat-absorbing film of the refrigerator outer panel of the present invention to which a heat-resistant pigment is added is excellent in corrosion resistance and is more preferable.
  • those added with a porous silicon are more preferable because they have excellent conductivity in addition to corrosion resistance.
  • the endothermic coating of the refrigerator outer panel of the present invention contains 1 to 20 parts by mass of carbon having a particle size of less than 0.1 with respect to 100 parts by mass of the binder solid content, and a particle size of 0.1 m or more and 50 / zm.
  • the following carbon 100 to 140 parts by mass, and the total of carbon having a particle size of less than 0.1 m and carbon having a particle size of 0.1 to 50 ⁇ is 10 to 150 parts by mass (
  • W_20, W-21 although a large amount of carbon is added to the heat-absorbing film, the heat-absorbing coating material is more preferable because the viscosity thereof is hard to increase.
  • the refrigerator has excellent adhesion and workability, which is more preferable.
  • Chemical conversion treatment Those which were not obtained were inferior in adhesion and workability.
  • any type of chemical conversion treatment may be used, but non-chromate treatment is more environmentally friendly than that using chromate treatment (Example W-11). It is suitable.
  • the heat-absorbing coating shown in Table 4 was applied to the inner surfaces of the aluminum alloy plate and the magnesium alloy plate with a bar coater and dried at room temperature for about 24 hours.
  • Table 19 (A1 alloy plate) and Table 20 (Mg alloy plate) show the details of the prepared surface coated plate.
  • Each of the surface coated plates shown in Tables 19 and 20 has the same type of heat-absorbing coating layer coated on both sides under the same conditions.
  • the surface-coated plate of the present invention contains 1 to 20 parts by mass of carbon having a particle size of less than 0.1 ⁇ with respect to 100 parts by mass of the resin solid content. And 1 to 140 parts by mass of carbon having a particle size of 0.1 ⁇ to 50 ⁇ or less, and carbon having a particle size of less than 0.1 l / zm and a particle size of 0.1 ⁇ to 50
  • the heat-absorbing film layer having a total of 10 to 150 mass parts with carbon of ⁇ or less in a dry film thickness of 1 ⁇ m or more, it is possible to obtain a surface coated plate having high heat absorption. Was completed.
  • Paint 412 and paint 419 in Table 4 on a plate-shaped polycarbonate _ ABS polymer alloy resin (hereinafter referred to as plastic plate) with a bar coater, and dry at room temperature for about 24 hours. did.
  • Table 21 shows the details of the prepared surface coated plate.
  • Each of the surface-coated plates shown in Table 21 had the same type of endothermic success / failure film layer coated on both surfaces under the same conditions.
  • Table 21 shows the evaluation results of the prepared surface coated plate.
  • the surface coated plate of the present invention is suitable because it has an effect on heat absorption even when a plastic material such as a resin is used as a base material.
  • a 0.6 mm aluminum alloy plate was placed in an aqueous solution at a temperature of 60 ° C, which was obtained by diluting a commercially available alkaline degreasing agent “FC-3115” manufactured by Japan Parkerizing Co., Ltd. to a concentration of 20% by mass for 10 seconds. It was degreased by immersion, washed with water and dried. Further, “CTE — 300” manufactured by Nippon Parkerizing Co., Ltd., which is a commercially available non-chromate treatment, was applied on a dry coat weight of 20 Omg Zm 2 roll coater.
  • the heat-absorbing film paint shown in Table 1 was applied on the degreased aluminum alloy plate with a roll coater, and dried and cured in an induction heating furnace using hot air.
  • the drying and curing conditions were set at 230 at the ultimate plate temperature (PMT).
  • the test piece was obtained by coating the heat-absorbing coating material on one side or both sides as needed.
  • Table 22 shows the details of the prepared surface-treated aluminum alloy sheet. In each of the aluminum alloy plates described in Table 22, only one surface is coated with the heat-absorbing film layer, and the other surface is not coated. Table 2 2
  • the prepared aluminum alloy plate was subjected to a salt spray test by the method described in JIS-K540.9.1.
  • the salt water was sprayed on the surface of the heat absorbing film layer.
  • the test time was 500 h.
  • the coating method of the crosscut part is evaluated as ⁇ when the maximum swollen width on one side of the crosscut is less than 2 mm, ⁇ when it is 2 mm or more and less than 5 mm, and X when it is 5 mm or more. evaluated.
  • the above-mentioned salt water mist test was conducted on the flat plate manufactured so that the return (paris) at the time of cutting (Paris) came to the evaluation side of the coated steel plate (upper burr).
  • the blister width was observed.
  • the evaluation method of the end face part was evaluated as ⁇ when the swollen width from the end face was less than 2 mm, ⁇ when it was 2 mm or more and less than 5 mm, and X when it was 5 ⁇ or more.
  • the aluminum alloy plate of the present invention (Examples X-1 to X-325) has a total emissivity in a wave number range of 600 to 300 cm- 1 measured at a temperature of 80 ° C.
  • the emissivity is 0.70 or more, and the emissivity is less than 0.70.
  • Comparative Examples X-26 and X-27 have higher heat absorption than X-27 and are suitable as a case for a heating element. I understand.
  • the heat-absorbing film layer of the aluminum alloy plate of the present invention is composed of 100 parts by mass of a binder solid content, 100 to 150 parts by mass of a heat-absorbing pigment, and 1 to 150 parts by mass of a conductive pigment. When it is performed, it becomes excellent in processability and conductivity, and is more preferable.
  • the amount of the heat-absorbing pigment added is less than 10 parts by mass (Comparative Example X-26), the emissivity is less than 0.7, and the heat-absorbing property is inferior. If the amount of the heat-absorbing pigment is more than 150 parts by mass (Example X-5), the emissivity is high, but the workability such as bending property and press moldability is reduced, so that 150 parts by mass is required. Parts or less are more preferable.
  • the added amount of the conductive pigment is less than 1 part by mass (Example X-8), the conductivity cannot be ensured, so that 1 part by mass or more is more preferable.
  • the amount of the conductive pigment is more than 150 parts by mass (Comparative Example X-27)
  • the emissivity is less than 0.7 because the conductive pigment hinders the heat absorption, and the heat absorption is low. It is not suitable because it is inferior and the workability of the coating layer is greatly reduced.
  • the heat-absorbing pigment contained in the heat-absorbing film layer of the aluminum alloy plate of the present invention is carbon black having an average particle diameter of i to 100 nm, and the conductive pigment has an average particle diameter of 0.5 to 5
  • the mass ratio of flake metal Ni / chain metal Ni is 0.1 ⁇ m to 6 ⁇ , it is composed of flaky metal Ni and chain metal Ni. It is more preferable because it is superior in absorption and conductivity.
  • the heat-absorbing pigment has a relatively large particle size such as charcoal powder or graphite powder (X-6 and X-7 of the present invention)
  • the emissivity is relatively low and the conductive effect of the conductive pigment is reduced. Since large heat-absorbing pigments hinder and lower the conductivity, heat-absorbing pigments having a mean particle diameter of 1 to 100 nm are more preferable.
  • the conductive pigment contained in the heat-absorbing film layer of the aluminum alloy plate of the present invention is aluminum powder or stainless steel powder, these conductive pigments are likely to impair the heat absorption property. Examples X-15 and X-16) have reduced emissivity.
  • flake-shaped metal Ni and chain-shaped metal Ni having an average particle size of 0.5 to 50 Zm are suitable because they hardly impair heat absorption.
  • the mass ratio of the flaky metal Ni / chain metal Ni is less than 0.1 (Example X—11)
  • the conductivity decreases
  • the flaky metal Ni Z When the chain metal Ni exceeds 6 (Example X-14), the heat absorption is impaired and the emissivity is low, so that the mass ratio of flake metal Ni / chain metal Ni is 0. 1 to 6 are preferred.
  • the conductive pigment is ferro-silicon (Example X-17 of the present invention) because the emissivity does not decrease and the corrosion resistance of the aluminum alloy plate of the present invention is improved.
  • a composition in which only fluorosilicon is added without adding a heat-absorbing pigment (Example X-19) is preferable because it has a relatively high emissivity and is excellent in conductivity and corrosion resistance.
  • the aluminum alloy plate of the present invention obtained by adding a heat-resistant pigment in addition to the heat-absorbing pigment and the conductive pigment in the heat-absorbing film layer (Example X-22 to No X-25) of the present invention is It is more preferable because of its excellent corrosion resistance.
  • Table 7 shows the evaluation results of aluminum alloy sheets with different thicknesses of the heat-absorbing coating layer. Describe. When the film thickness is less than 1 ⁇ (Example X-28), the total emissivity is low, and when it exceeds 50 ⁇ , the workability of the film layer is reduced. ⁇ 50 ⁇ is more preferred.
  • the present invention a technology for releasing heat generated inside a home electric appliance in which a large number of heat source components such as motors and electronic components are used is established. Further, it has become possible to provide a surface treatment material which is suitable for releasing heat and has excellent conductivity for grounding home appliances. By using this technology, the performance of home appliances, including refrigerators, has been improved, and the energy consumption has been reduced.
  • the present invention relates to a mobile phone, a notebook computer, a PDA, a car battery case, a car navigation system, a car audio device, a car control device in which the temperature inside the device rises due to the built-in electronic components and a battery. This technology is applied to equipment, etc., and has the effects of improving performance, reducing energy consumption, etc., and is an invention with high industrial applicability. Therefore, it can be said that the present invention is an extremely valuable industrial invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Refrigerator Housings (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明 細 書 熱吸収性に優れた発熱体力パー及びそのための表面処理金属板並び にこれらの応用 発明の技術分野
本発明は、 熱吸収性に優れた製品に関するものであり、 特に、 モ 一ター、 電子部品、 ヒーター、 バッテリーなど熱を発生する部品を 内部に有する金属製及び非金属製の力パー並びに該カパーの材料と なる表面処理金属板に関する。 また本発明は、 このような熱吸収性 に優れた材料を用いた熱効率の高い冷蔵庫、 高吸熱塗料をケースの , 内側に塗布して温度上昇を抑制した携帯機器 (モパイル機) 又は車 载機器及びそのケースにも関する。 携帯機器又は車载機器としては
、 携帯電話、 ノー トパソコン、 P D A、 車載バッテリ ーケース、 力 一ナビゲーシヨ ンシステム、 カーオーディオ機器、 車載制御機器な どが含まれる。 背景技術
従来、 家電製品の外板や内部部品のカバー材料には、 鋼板、 アル ミ板などの金属板が使用されているが、 このような金属板には、 耐 食性、 意匠性等の性能が要求されるため、 表面処理を施して使用す ることが一般的である。 そして、 このよ うな金属板と しては、 例え ば、 耐食性に優れた亜鉛めつき鋼板ゃク口メート処理を被覆した亜 鉛めつき鋼板、 予め塗装を施して意匠性を付与したプレコ一ト金属 板などが挙げられる。
また、 これら金属板に対する更なる要求性能として、 耐指紋性、 アース性、 耐加工かじり性などがあり、 これらの性能を満足するた めに、 種々の表面処理鋼板が開発されてきた。
例えば、 特公平 4一 1 4 1 9 1号公報には、 水系有機樹脂に特定 の微細な粒度のコロイ ドゾルを追加調整した有機複合皮膜を、 ク口 メ一ト被覆めつき鋼板上に形成することにより、 耐食性ゃ耐指紋性 を向上させる技術が開示されている。 また、 特開平 5— 6 5 6 6 6 号公報には、 ワックスと潤滑剤を含有した塗料をめつき鋼板に塗装 することにより、 加工かじり性を向上させる技術が開示され、 また 、 特開平 1 0— 1 6 1 2 8公報には、 表面粗さ と膜厚を制御した皮 膜でクロメート処理した金属表面を被覆することによ り、 耐指紋性 とアース性を付与する技術が開示されている。
また、 家電製品の外板や内部部品のカバー材料にはプラスチック などの非金属材料も使用されている。 しかし、 この場合にも、 近年 、 コンピューターの普及、 家電製品などの電子化に伴い、 これらコ ンピューターや家電製品の内部で、 モーターや電子部品など熱源と なる部品が数多く使われるよ うになり、 また、 これら熱源の発熱量 も増加してきているので、 製品の外板や内部部品の力パー材には、 内部で発生する熱を抑制する特性、 もしくは、 該熱を効率よく放熱 する特性が要求されてきた。 一方で、 家電製品などの発熱体力パー には、 アースを取るための導電性も要求される。
また、 従来、 電子部品を内蔵する電子機器内部の温度上昇を抑制 するためには、 放熱性に考慮して、 電子部品に放熱フィ ンを設けた り、 電子機器ケースに放熱用開口部を設けたり、 電子機器内部でフ ァンで強制冷却することなどが行われている。
電子機器は熱に弱く、 温度上昇すると誤動作を起こしたり、 性能 低下を起こすので、 放熱及び冷却が重要である。 最近では高集積化 、 微細配線化が進んでいるので、 温度上昇による誤動作、 動作速度 が遅く なるなどの性能低下に対する対策はよ り重要度を増している 。 特に、 小型電子機器である携帯機器 (モパイル機) や、 屋外で使 用されエンジン等からの発熱に曝される車载機器では、 内蔵する発 熱する電子部品やパッテリ ーの自己発熱が機器ケース内に蓄熱して 電子機器やパッテリ一が温度上昇することを抑制することが非常に 重要な課題である。
従来、 電子機器のケースの放熱性に関しては、 高熱用開口部の形 成あるいは高伝熱性材料でケースを形成することが主たる技術と し て採用されているが、 放熱性を高めるためにケースの外側に放射性 の高い塗料を塗布する方法も提案されている。
本発明に近い従来技術としては、 特開平 1 1 一 3 4 0 6 3 9号公 報に T V受信機の他携帯情報機器を含む電子機器の筐体の内面側に 赤外線吸収剤を含んだ塗装皮膜を塗布することが開示されている。 電子機器の冷却、 放熱に関しては上記の如く各種の方法が提案さ また採用されているが、 携帯機器又は車载機器では、 美観、 軽量性 等の理由からケースの材質が制約されることが多く、 また小型化、 高性能化のために、 よ り効率的な冷却、 放熱が求められている。 本発明の第 1の目的は、 上記要求を踏まえ、 金属製及び非金属製 発熱体力パー並びに表面処理金属板に優れた熱吸収性を付与する技 術を開発し、 熱吸収性に優れた金属製及び非金属製発熱体力パー並 びに表面処理金属板を提供することにある。
本発明の第 2の目的は、 上記第 1の目的と関連して、 外板に優れ た熱吸収性を付与した技術を開発し、 熱効率性に優れた冷蔵庫、 及 び熱吸収性に優れた冷蔵庫を効率よく製造する製造方法を提供する ことにある。
本発明の第 3の目的は、 発熱する電子部品を内蔵する携帯機器又 は車载機器において、 放熱性をよ り改善したケースを提供し、 また そのようなケースを有する携帯機器又は車載機器を提供することに ある。 発明の開示
発明者らは、 鋭意検討した結果、 家電製品などの金属及び非金属 で作られた熱源力パーの内側の面に熱吸収性の高い物質を施すと、 熱吸収性の高い物質を施さない場合と比べて、 熱源力パー内部の温 度が低下することを見出した。
本発明は、 かかる知見に基づいて完成されたものであって、 その 要旨とするところは、 以下のとおりである。
( 1 ) 発熱体力パー本体の少なく とも内面に、 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m— 1の領域に おける全放射率が 0. 7 0以上である熱吸収性皮膜層を被覆したこ とを特徴とする熱吸収性に優れた発熱体力パー。
( 2 ) 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部及び熱 吸収性顔料 1 0〜 1 5 0質量部から構成されることを特徴とする上 記 ( 1 ) 記載の熱吸収性に優れた発熱体力パー。
( 3 ) 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部に対し て粒径 0. 1 μΐη未満のカーボンを 1〜 2 0質量部と粒径 0. 1 μιη 以上 5 0 μπι以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0
. 1 μ m未満のカーボンと粒径 0. 1 111以上 5 0 // 111以下のカーボ ンとの合計が 1 0〜 1 5 0質量部であることを特徴とする上記 ( 1 ) 又は ( 2 ) に記載の熱吸収性に優れた発熱体力パー。
( 4 ) 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部、 熱吸 収性顔料 1 0〜 1 5 0質量部、 及び、 さ らに導電性顔料 1〜 1 5 0 質量部から構成されることを特徴とする上記 ( 1 ) 〜 ( 3 ) のいず れか 1項に記載の熱吸収性に優れた発熱体力パー。
( 5 ) 前記熱吸収性顔料が平均粒径 l 〜 1 0 0 n mのカーポンプ ラックであり、 且つ、 前記導電性顔料が平均粒径 0. 5〜 5 0 μια のフ レーク状の金属 N i と鎖状の金属 N 1 とから構成され、 且つ、 フ レーク状金属 N i /鎖状金属 N i の質量比が 0. 1 〜 6であるこ とを特徴とする上記 ( 4 ) に記載の熱吸収性に優れた発熱体力パー
( 6 ) 前記導電性顔料がフエ口シリ コンであることを特徴とする 上記 ( 2 ) 〜 ( 5 ) のいずれか 1項に記載の熱吸収性に優れた発熱 体力パー。
( 7 ) 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部、 及び 、 フヱロシリ コン 5〜 1 5 0質量部から構成されることを特徴とす る上記 ( 1 ) に記載の熱吸収性に優れた発熱体力パー。
( 8 ) 前記発熱体力バー本体が金属製である上記 ( 1 ) 〜 ( 7 ) のいずれか 1項に記載の発熱体力パー。
( 9 ) 前記発熱体力パー本体が非金属製である上記 ( 1 ) 〜 ( 7 ) のいずれか 1項に記載の発熱体力パー。
( 1 0 ) 金属板もしく はめつきされた金属板の少なく とも片面に 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m—1の領域における全放射率が 0. 7 0以上である熱吸収性皮 膜層を被覆したことを特徴とする熱吸収性に優れた表面処理金属板
( 1 1 ) 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部及び 熱吸収性顔料 1 0〜 1 5 0質量部から構成されることを特徴とする 上記 ( 1 0 ) 記載の熱吸収性に優れた表面処理金属板。
( 1 2 ) 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部に対 して粒径 0. 1 μ m未満のカーボンを 1 〜 2 0質量部と粒径 0. 1 μιη以上 5 0 μιη以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0. 1 μ m未満のカーボンと粒径 0. Ι μιη以上 5 0 μπι以下のカー ボンとの合計が 1 0〜 1 5 0質量部であることを特徴とする上記 ( 1 0 ) 又は ( 1 1 ) に記載の熱吸収性に優れた表面処理金属板。
( 1 3 ) 熱吸収性皮膜層が、 バイ ンダー固形分 1 0 0質量部、 熱 吸収性顔料 1 0〜 1 5 0質量部、 及び、 さ らに導電性顔料 1〜 1 5 0質量部から構成されることを特徴とする上記 ( 1 0 ) 〜 ( 1 2 ) のいずれか 1項に記載の熱吸収性に優れた表面処理金属板。
( 1 4 ) 前記熱吸収性顔料が平均粒径 l〜 1 0 0 n mのカーボン ブラックであり、 且つ、 前記導電性顔料が平均粒径 0. 5〜 5 0 μ mのフ レーク状の金属 N i と鎖状の金属 N i とから構成され、 且つ
、 フ レーク状金属 N i Z鎖状金属 N i の質量比が 0. 1〜 6である ことを特徴とする上記 ( 1 3 ) に記載の熱吸収性に優れた表面処理 金属板。
( 1 5 ) 前記導電性顔料がフエロ シリ コ ンであることを特徴とす る上記 ( 1 2 ) 〜 ( 1 4 ) のいずれか 1項に記載の熱吸収性に優れ た表面処理金属板。
( 1 6 ) 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部、 及 び、 フエ口シリ コ ン 5〜 1 5 0質量部から構成されることを特徴と する上記 ( 1 0 ) に記載の熱吸収性に優れた表面処理金属板。
( 1 7 ) 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m-1の領域における全放射率が 0. 7 0以上である 熱吸収性皮膜を外板の内側表面に被覆したことを特徴とする熱効率 に優れた冷蔵庫。
( 1 8 ) 熱吸収性皮膜が、 バインダー固形分 1 0 0質量部に対し てカーボンを 1 0〜 1 5 0質量部含むことを特徴とする上記 ( 1 7 ) 記載の熱効率に優れた冷蔵庫。
( 1 9 ) 熱吸収性皮膜が、 バインダー固形分 1 0 0質量部に対し て導電性の金属粉を 1〜 5 0質量部含むことを特徴とする上記 ( 1 8 ) 又は ( 1 9 ) 記載の熱効率に優れた冷蔵庫。
( 2 0 ) 熱吸収性皮膜が、 パインダー固形分 1 0 0質量部に対し て粒径 0. 1 μ m未満のカーボンを 1〜 2 0質量部と粒径 0. 1 μπι 以上 5 0 //m以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0 . 1 μ m未満のカーボンと粒径 0. 1 t m以上 5 0 μ πι未満のカーボ ンとの合計が 1 0〜 1 5 0質量部であり、 乾燥膜厚で 1 μιη以上で あることを特徴とする上記 ( 1 7 ) 〜 ( 1 9 ) のいずれか 1項に記 載の熱効率に優れた冷蔵庫。
( 2 1 ) 上記 ( 1 ) 〜 ( 9 ) のいずれか 1項に記載の発熱体力パ 一を外板としたことを特徴とする熱効率に優れた冷蔵庫。
( 2 2 ) 上記 ( 1 0 ) 〜 ( 1 6 ) のいずれか 1項に記載の表面処 理金属板を外板と し、 該金属板の熱吸収性皮膜層を内側表面とする ことを特徴とする熱効率に優れた冷蔵庫。
( 2 3 ) 外板の外側にク リヤー塗膜もしくは着色顔料を含む塗膜 を被覆した特徴とする上記 ( 1 7 ) 〜 ( 2 2 ) のいずれか 1項に記 載の熱効率に優れる冷蔵庫。
( 2 4 ) 予め、 平たい金属板の片面に上記 ( 1 7 ) 〜 ( 2 0 ) の いずれか 1項に記載の熱吸収性皮膜層を、 他方の面にク リヤーもし くは着色顔料を含む塗膜を塗装して熱吸収性の高いプレコ一ト金属 板を製造し、 これを切断、 加工した後に、 冷蔵庫に組み上げること を特徴と した熱吸収性に優れた冷蔵庫の製造方法。
( 2 5 ) 発熱する電子部品を内蔵する携帯機器又は車載機器のケ ースの内側に熱吸収性皮膜層を有し、 前記熱吸収性皮膜層が、
(Α) バインダー固形分 1 0 0質量部に対して粒径 0. 1 μηι未満 のカーボンを 1〜2 0質量部と粒径 0. 1 111以上 5 0 111以下のカ 一ボンを 1〜 1 4 0質量部含み、 粒径 0. 1 μιη未満のカーボンと 粒径 0 . 1 /zm以上 5 0 m以下のカーボンとの合計が 1 0〜 1 5 0 質量部である ;
(B) バインダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5
0質量部、 及び、 さ らに導電性顔料 1〜 1 5 0質量部から構成され 、 前記熱吸収性顔料が平均粒径 1〜 1 0 O n mのカーボンブラック であり、 前記導電性顔料が平均粒径 0. 5〜 5 0 μπιのフ レーク状 の金属 N i と鎖状の金属 N i とから構成され、 フ レーク状金属 N i /鎖状金属 N i の質量比が 0. 1〜 6である ;
(C) パインダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 フエ口シリ コ ン 5〜 1 5 0質量部から構成される
(D) パインダー固形分 1 0 0質量部、 及び、 フエ 口 シリ コ ン 5 〜 1 5 0質量部から構成される
のいずれかであることを特徴とする携帯機器又は車载機器。
( 2 6 ) 発熱する電子部品を内蔵する携帯機器又は車载機器のケ ースが、 上記 ( 1 ) 〜 ( 9 ) のいずれか 1項に記載の発熱体力バー であることを特徴とする携帯機器又は車载機器。
( 2 7 ) 発熱する電子部品を内蔵する携帯機器又は車载機器のケ ースが、 上記 ( 1 0 ) 〜 ( 1 6 ) のいずれか 1項に記載の表面処理 金属板を加工してなるものであって、 該金属板の熱吸収性皮膜層を 内側表面とすることを特徴とする携帯機器又は車载機器。
( 2 8 ) 前記ケースが M g合金製又は A 1合金製である上記 ( 2 5 ) 〜 ( 2 7 ) のいずれか 1項に記載の携帯機器又は車载機器。
( 2 9 ) 上記 ( 2 5 ) に記載の熱吸収性皮膜層を有する携帯機器 又は車载機器用ケース。 図面の簡単な説明
図 1は本発明の熱吸収性に優れた発熱体力パー又はケースの構成 を示す図である。 図 2は熱吸収性を測定する測定箱の態様を示す図である。 発明の実施の形態
(金属製及び非金属製発熱体力パー並びに表面処理金属板) 本発明において発熱体は、 モーター、 電子部品、 ヒーター、 パッ テリーなど熱を発生する部品のすべてであることができ、 特に限定 されない。 また、 発熱体力パーは、 そのよ うな発熱体を覆う、 囲繞 する、 収容するなどの目的で使用されるものである。
以下では本発明の熱吸収性発熱体力パーを主と して金属板製の発 熱体力パーに基づいて説明するが、 本発明はこれに限定されず、 非 金属製発熱体力パーにも同様に適用されるものである。
熱は物体から発散する電磁波の一部であり、 熱放射線が物体に入 射すると、 一部は反射し、 一部は透過し、 残りの部分は吸収される ことが知られている (例えば西川、 藤田共著の 「機械工学基礎講座 電熱工学」 、 p . 2 8 9、 発行 : 理工学社 ( 1 9 8 3 ) ) 。
金属板、 もしくは表面処理を施した金属板、 あるいは非金属材料 に熱放射線が入射した場合、 熱放射線が透過することは殆ど無いた め、 熱放射線は反射するか吸収するかのいずれかとなる。
ここで、 発熱体から発生した熱放射線が発熱体力パー内面に入射 したときに、 入射した熱放射線の多くが反射してしまう と、 発熱体 カバー内部に熱が菴つてしまい、 力パー内の温度が上昇する。
それ故、 熱源力パー内の温度を低下させるためには、 力パー内部 で熱放射線の反射を抑制する必要があるが、 本発明者らは、 鋭意研 究の結果、 カバー内部を熱吸収性の高い皮膜層で被覆することによ り、 熱放射線の反射を抑制できることを知見した。
' 金属板や非金属材料などの表面に入射した熱放射線の吸収率を調 ベる方法として、 赤外線分光光度計による反射法がよく知られてい るが、 本方法で測定する場合、 金属板又は非金属材料の表面の粗度 が粗いと、 入射した熱放射線が乱反射するので、 精度の高い吸収率 を得ることが困難である。
熱放射に関するキルヒホッフの法則によると、 一定温度において は、 物体の吸収率と放射率は同じとなる (例えば、 西川、 藤田共著 の 「機械工学基礎講座 電熱工学」 、 p . 2 9 0、 発行 : 理工学社 ( 1 9 8 3 ) ) 。
本発明者らは、 本知見を基にして、 鋭意検討した結果、 金属板も しくはめつきされた金属板の少なく とも片面に、 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m— 1の領域に ける全放射率が 0. 7 0以上である熱吸収性皮膜層を予め被覆した 表面処理金属板を、 吸熱性皮膜層を被覆した面が発熱体の力パーの 内側となるよ うに成形加工して作製したカバーで発熱体を覆う と、 力パー内部の温度が、 熱吸収性皮膜を力パー内面に被覆していない 金属板で作成したカバーで覆う ときと比べて、 低下することを見出 した。 同様に、 非金属材料製力パーの内面に 8 0 °C以上 2 0 0 °C以 下のある温度で測定した波数 6 0 0〜 3 0 0 0 c πΤ1の領域にける 全放射率が 0 . 7 0以上である熱吸収性皮膜層を施した力パーで発 熱体を覆う と、 カバー内部の温度が、 熱吸収性皮膜をカバー内面に 被覆していないカバーで覆う ときと比べて、 低下することも見出し た。
周波数 6 0 0 c m 1未満、 もしく は、 3 0 0 0 c m-1超の波数領 域の放射線吸収は、 力パー内における温度低下効果が非常に小さい ため、 これらの波数領域の放射線を含めた放射率は不適である。 ま た、 波数 6 0 0〜 3 0 0 0 (: 111- 1の領域にぉける全放射率が 0. 7 0未満の熱吸収性皮膜層を被覆した場合は、 力パー内における温度 低下効果が小さいため、 不適である。 本発明の熱吸収性に優れた金属製又は非金属製発熱体力パーの構 成を図 1に示す。 本発明の金属製又は非金属製発熱体力パーは金属 板又は非金属材料 1 で構成され、 且つ、 内面を熱吸収性皮膜層 2で 被覆したことを特徴と している。 なお、 図中、 3が発熱体である。 熱吸収性皮膜層 2を平たい金属板又は非金属材料に予め被覆させ、 これを加工して金属製又は非金属製発熱体力パーを作成すると、 作 成する上で作業効率が向上するため好適である。
また、 金属板又は非金属材料の熱吸収性皮膜層を被覆した面が発 熱体力パーの内面を構成していないと、 発熱体力パー内における温 度低下効果が得られない。 熱吸収性皮膜層は、 発熱体力バーの内面 だけでなく、 外側にも被覆してもよい。 外側にも被覆した場合は、 熱吸収と等価である熱放射の影響で、 金属製又は非金属製発熱体力 パー自身の温度が低下するのでより好適である。
本発明の熱吸収性に優れた金属製及び非金属製発熱体力パーを構 成する金属板及び非金属材料は、 熱吸収性を担保するために、 金属 板もしくはめっきされた金属板又は非金属材料の少なく とも片面に 、 a ) パイ ンダー固形分 1 0 0質量部、 及び、 b ) 熱吸収性顔料 1 0〜 1 5 0質量部から構成され、 且つ、 8 0で以上 2 0 0 以下の ある温度で測定した波数 6 0 0〜 3 0 0 0 c m _ 1の領域における全 放射率が 0 . 7 0以上である熱吸収性皮膜層を被覆することで達成 される。
熱吸収性顔料と して、 カーボン、 炭、 黒鉛など、 一般的に公知の ものを使用でき、 市販のものを用いてもよい。 上記熱吸収性顔料の 中でもカーボンブラックは粒径が非常に小さくて、 皮膜中に広く分 散するので好適な顔料であり、 特に、 粒径が 1 〜 1 0 O n mのもの が好適である。
本発明者らは、 更に、 金属板又は非金属材料に被覆した皮膜層の 全放射率を高く し、 熱吸収性を向上させるためにはカーボンを皮膜 層中に添加し、 これらの物質で金属板又は非金属材料を隠蔽すると 好適であること知見した。 なお、 ここで、 カーボンとは、 カーボン ラック、 炭、 黒鉛など一般に公知のカーボンを使用することができ る。 カーボンで金属板又は非金属材料を隠蔽するためには、 よ り粒 径の小さいカーボンを多量に添加する必要がある。 粒径の小さい力 一ボンを少量添加しても隠蔽効果は小さく、 また、 粒径の大きい力 一ボンでは、 多量に添加しても隙間がカーボンとカーボンの間に発 生するため、 隠蔽効果が小さくなる。 しかし、 粒径の小さなカーボ ンを多量に添加した場合、 バインダー固形分とカーボンを含む塗液 の粘度が上昇して塗布作業性が低下する、 塗液中に分散している微 粒子カーボンが経時で凝集して塗液がゲル状になる等の問題が発生 する。 これらの問題を解決するために、 発明者らが鋭意研究したと ころ、 0 . 1 μ m未満の小さな粒径のカーボンと 0 . Ι μ πι以上 5 0 /x m以下の大粒径のカーボンを併用することで、 前記問題が解決さ れることを知見した。 これらを併用することで、 皮膜中に分散した 大粒径カーボンの隙間に微粒系カーボンが分散するため、 微粒子力 一ボンを多量に添加しなくても、 カーボンによる金属板及び非金属 材料の隠蔽性は向上し熱吸収性効果が発揮される。
この知見によ り得られた本発明の好適な態様において、 熱吸収性 皮膜層 (以下吸熱皮膜と称す) は、 添加するカーボンの添加量を、 バインダー固形分 1 0 0質量部に対して粒径 0 . 1 μ πι未満の力一 ボンを 1〜 2 0質量部と粒径 0 . 以上 δ θ μ ιπ以下のカーボン を 1〜 1 4 0質量部含み、 且つ粒径 0 . 1 μ πι未満の微粒系カーボ ンと粒径 0 . 1 β m以上 5 0 μ m以下の大粒径カーボンとの合計が 1 0〜 1 5 0質量部であり、 且つ吸熱皮膜層の膜厚は 1 μ ιη以上であ る。 微粒系カーボンの粒径の下限は特に規定するものではないが、 0 . 1 μ ιηを超えるとカーボンとカーボンの間に隙間ができやすく 、 微粒子カーボンと しての役割を発揮しないため不適である。 微粒 系カーボンの添加量は 1質量部未満であると、 金属板又は非金属材 料の隠蔽効果に劣り熱吸収性が劣るため不適であり、 2 0質量部超 では塗液の粘度が高くなつたり、 経時でゲル状になったりするため 不適である。 大粒径カーボンの粒径が 0 . 1 μ m未満であると大粒 径カーボンと しての役割を発揮せずに、 微粒子カーボンと同じ挙動 を示す、 ため不適である。 大粒径カーボンの粒径が 5 0 μ ιη超であ る と、 これを含む塗液を塗布する際に塗布性が低下したり、 塗布後 の皮膜外観が悪く なったりするため不適である。 大粒径カーボンの 粒径は、 好ましく は、 0 . 1 μ m以上 3 0 μ m以下である。 より好ま しく は 0 . 1 /z m以上 1 0 z m以下である。 大粒径カーボンの添加量 は、 1質量部未満であると熱吸収性が劣り、 1 4 0質量部超では皮 膜が脆くなり、 皮膜の加工性に劣るため不適である。 更に、 微粒子 カーボンと大粒径カーボンの合計添加量が 1 0質量部未満であると 熱吸収性が劣り、 1 5 0質量部超では皮膜が脆くなり皮膜の加工性 に劣る、 塗液が増粘して塗布作業性が劣るため不適である。 吸熱皮 膜の膜厚が 1 μ πι未満であると、 皮膜の熱吸収性が劣るため不適で める。
本発明の熱吸収性に優れた金属製又は非金属製発熱体力パーを構 成する金属板又は非金属材料は、 1つの好ましい態様において、 熱 吸収性と導電性を担保するために、 金属板もしくはめつきされた金 属板、 または非金属材料の少なく とも片面に、 a ) バインダー固形 分 1 0 0質量部、 及び、 b ) 熱吸収性顔料 1 0〜 1 5 0質量部の他 、 さらに c ) 導電性顔料 1 ~ 1 5 0質量部から構成され、 且つ、 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c πι · 1の領域における全放射率が 0 . 7 0以上である熱吸収性皮膜 層を被覆することで達成される。
導電性顔料としては、 フレーク状金属 N i 、 鎖状金属 N i 、 粒状 金属 A l 、 鱗片状金属 A 1 、 ステンレス粉など公知のものを使用で き、 市販のものを用いてもよい。 しかし、 金属は一般的に熱を反射 し易く、 熱吸収性顔料の熱吸収を阻害する傾向がある。 金属 N i は 、 他の金属顔料と比べて熱吸収性顔料の熱吸収を阻害しにくい性質 を持ち、 鎖状金属 N i は、 鎖状のため、 皮膜内で熱を反射する面積 が小さくなるので、 熱吸収を阻害しにく く、 より好適である。
しかし、 鎖状金属 N i のみでは導電性に劣るので、 フレーク状金 属 N i と鎖状金属 N i とを組み合わせて用いるのが好ましい。 この 場合、 フレーク状金属 N i Z鎖状金属 N i の質量比が 0. 1〜 6で あると熱吸収性と導電性に優れるこ とになるので、 よ り好適である フレーク状金属 N i は、 皮膜内で熱を反射する面積が大きいため 熱吸収を阻害しやすい。 そのため、 フレーク状金属 N i /鎖状金属 N i の質量比が 0. 1未満であると導電性に劣り、 一方、 6超では 熱吸収性に劣る。
更に、 上記導電性顔料がフユロシリ コンであると熱吸収性皮膜層 の放射率が向上し、 且つ、 表面処理金属板の場合は耐食性も向上す るため、 よ り好適である。 フエ口シリ コンは導電性のみならず熱吸 収性にも優れていて、 導電顔料と熱吸収性顔料を兼ねることができ るので、 単独で添加しても、 熱吸収性と導電性の両特性を確保する こ とができる。
パイ ンダー固形分 1 0 0質量部に対する熱吸収性顔料の添加量が 1 0質量部未満であると、 8 0 °C以上 2 0 0 °C以下のある温度にお いて測定した波数 6 0 0〜 3 0 0 0 c m-1の領域における金属板の 全放射率が 0. 7 0未満となるので不適である。 樹脂固形分 1 0 0質量部に対する熱吸収性顔料の添加量が多いほ ど、 放射率がよ り高くなりよ り好適であるが、 1 5 0質量部超では 皮膜層が脆く なり、 皮膜層の耐衝撃性が低下するので、 また金属板 を加工する際の加工性が低下するので、 不適である。
熱吸収性皮膜層の膜厚は、 必要に応じて任意に選定できるが、 金 属板では 1 〜 5 0 μ m、 非金属材料では 1〜 1 0 0 0 μ mが好適であ る。 1 μ m未満では 8 0 °C以上 2 0 0 °C以下のある温度で測定した 波数 6 0 0〜 3 0 0 0 c πΓ 1の領域における金属板または非金属材 料の全放射率が 0 . 7 0以上になりにくい。 また、 金属板の場合は 5 0 /z m超では皮膜層の加工性が低下するので好適でなく、 非金属 材料の場合 1 0 0 0 μ ιη超では熱吸収性が飽和して経済的に意味を 持たないため好適でない。 また、 導電性を考慮すると、 1 μ πι以上 1 0 μ m未満がよ り好適である。
本発明の熱吸収性皮膜層を構成するパインダ一として、 樹脂ゃゾ ルゲル法によつて形成される無機皮膜や、 ゾルゲル法によって形成 される無機有機複合皮膜など、 一般に公知の皮膜用バインダーを使 用することができる。 樹脂を塗料のような形態で用いることは、 取 り扱い、 皮膜形成方法の容易さなどから好適である。
樹脂としては、 一般に公知のもの、 例えば、 ポリエステル樹脂、 ウレタン樹脂、 アタ リル樹脂、 エポキシ榭脂、 メラミ ン樹脂、 塩化 ビュル樹脂などを用いることができ、 熱可塑タイプ、 熱硬化タイプ のいずれのタイプであってもよい。
これらの樹脂は、 必要に応じて数種のものを併用してもよい。 こ れらの樹脂は、 種類、 樹脂の分子量、 樹脂のガラス転移温度 T gに よっても、 皮膜の性能、 例えば、 加工性、 加工密着性、 皮膜硬度な どが異なるため、 特に規定するものではなく、 必要に応じて適宜選 定する必要がある。 また、 架橋剤を用いて硬化させるタイプの樹脂は、 架橋剤の種類 や添加量、 架橋反応時の触媒の種類や触媒添加量によっても、 皮膜 の性能、 例えば、 加工性、 加工密着性、 皮膜硬度などが異なるため 、 特に規定するものではなく、 必要に応じて適宜選定する必要があ る。
これらの樹脂は固体のものを熱溶融したり、 有機溶剤に溶解して 用いたり、 粉砕して粉体にして用いることができる。 また、 水溶性 のものや、 水分散したェマルジヨ ンタイプのものでもよい。 更には
、 紫外線 (U V ) 硬化タイプや電子線 (E B ) 硬化タイプのもので もよい。 これらは、 いずれも市販のタイプのものを使用することが できる。
本発明者らがこれまでに得た知見によれば、 溶剤系のメラミ ン硬 化型ポリエスエル系、 溶剤系のイソシァネート硬化型ポリエステル 系、 水分散型ァク リルェマルジョ ンなどが好適であり、 特に、 次の ものが好適である。 しかし、 これらは一例であり、 これに限定され るものではない。
溶剤系のメラミン硬化型ポリエスエル系の場合、 ポリエステル樹 脂の分子量は、 数平均分子量で 2 0 0 0〜 3 0 0 0 0が好適であり 、 ポリ エステル樹脂の T gは一 1 0〜 7 0 °Cが好適であり、 メラミ ン樹脂の添加量は、 ポリ.エステル樹脂 1 0 0質量部に対して 5〜 7 0質量部が好適である。
ポリエステル樹脂の分子量が 2 0 0 0未満では皮膜の加工性が低 下し、 3 0 0 0 0超では、 樹脂が溶剤に溶解したときに粘度が高す ぎるため不適である。 ポリエステル樹脂の T gがー 1 0 °C未満では 皮膜が成膜しないため不適であり、 7 0 °C超では皮膜が硬すぎるた め、 加工性が低下し不適である。 メ ラミ ン樹脂の添加量がポリエス テル 1 0 0質量部に対して 5質量部未満であると、 皮膜が未硬化と なり不適であり、 7 0質量部超では、 皮膜が硬くなりすぎて加工性 が低下するため、 不適である。
使用するポリ エステル樹脂は、 一般に市販されているもの、 例え ば、 東洋紡績社製の 「バイ ロ ン」 や、 住化パイエルウレエタン社製
「デスモフェン」 などを使用することができる。 使用するメラミ ン 樹脂も、 一般に市販されているもの、 例えば、 三井サイテック社製
「サイメル」 、 「マイ コー ト」 、 大日本イ ンキ化学工業社製 「べッ カ ミ ン」 、 「スーパーべッカミン」 などを使用することができる。 溶剤系のィ ソシァネー ト硬化型ポリエスエル系の場合、 ポリエス テル樹脂の分子量は、 数平均分子量で 2 0 0 0〜 3 0 0 0 0が好適 であり、 ポリエステル樹脂の T gは _ 1 0〜 7 0 °Cが好適であり、 イ ソシァネー トの添加量は、 [イ ソシァネー トの N C O基当量] Z
[ポリエステル樹脂の OH基当量] = 0. 8〜 1. 2であると好適 である。
[イ ソシァネートの N C O基当量] / [ポリエステル樹脂の OH 基当量] の値が 0. 8未満もしく は 1 . 2超では、 皮膜生成時に皮 膜が未硬化となりやすい。 ポリエステル樹脂の分子量が 2 0 0 0未 満では皮膜の加工性が低下し、 3 0 0 0 0超では、 樹脂が溶剤に溶 解したときに粘度が高すぎるため不適である。 ポリエステル樹脂の T gがー 1 0 °C未満では、 皮膜が成膜しないため不適であり、 7 0 °C超では皮膜が硬すぎるため、 加工性が低下し不適である。
使用するポリエステル樹脂は、 一般に市販されているもの、 例え ば、 東洋紡績社製の 「パイ ロ ン」 、 住化パイエルウレタン社製 「デ スモフェン」 などを使用することができる。
使用するイ ソシァネー トも、 一般に市販されているもの、 例えば 、 住化パイエル社製 「スミジュール」 、 「デスモジュール」 、 三井 武田ケミカル社製 「タケネー ト」 などを使用することができる。 また、 水分散型ァク リルェマルジヨ ンタイプのものも一般に公知 のものを使用でき、 市販のものでもよい。 水分散型アク リルェマル ジョ ンタイプのものは、 一般に公知のエポキシ樹脂など、 密着性の 良い樹脂を添加して使用してもよい。
エポキシ樹脂の種類及び添加量は、 塗膜性能の影響するので、 必 要に応じて適宜選定することができる。 水分散系ァク リル樹脂のよ うに水系樹脂の場合、 皮膜の塗布作業性が高い上に、 揮発性有機溶 剤の大気放出問題が発生しないので、 塗布設備における排気ダク ト の強化や揮発性有機溶剤の燃焼設備などが不要となり、 よ り好適で ある。
本発明の熱吸収性皮膜層中には、 熱吸収性顔料、 導電性顔料に加 えて、 必要に応じて、 着色顔料ゃ防鲭顔料及び防鲭剤を併用して添 加することができる。
着色顔料と しては、 酸化チタン (T i O2 ) 、 酸化亜鉛 ( Z n O ) 、 酸化ジルコニウム ( Z r O2 ) 、 炭酸カルシウム (C a C 03 ) 、 硫酸バリ ウム (B a S 04 ) 、 アルミナ (A 1203 ) 、 カオ リ ンク レー、 カーボンブラック、 酸化鉄 (F e 2O3 、 F e 3 O4 ) 等の無機顔料や、 有機顔料などの一般に公知の着色顔料を使用でき る。
また、 防鲭顔料については、 ス ト ロ ンチウムク ロメー ト、 カルシ ゥムクロメートなどの一般に公知のク口ム系防鲭顔料や、 リ ン酸亜 鉛、 亜リ ン酸亜鉛、 リ ン酸アルミ、 亜リ ン酸アルミ、 モリブデン酸 塩、 リ ン酸モリブデン酸塩、 パナジン酸ノリ ン酸混合顔料、 シリカ 、 カルシウムシリケ一ト と呼ばれる C a を吸着させたタイプのシリ 力などの一般に公知の非ク 口ム系の防鲭顔料及び防鲭剤を使用でき る。
特に、 本発明の金属板の母材が、 鋼板もしく はめっき鋼板のよう に腐食し易い金属で有る場合、 防鲭顔料及び防鲭剤を添加すること で、 本発明の金属板の耐食性が向上するので、 より好適である。 近年の環境問題を配慮した場合は、 非クロム系の防鲭顔料及び防 鲭剤がより効果的である。 これらの非クロム系防鲭顔料及び防鲭剤 は、 試薬を用いてもよいし、 市販のものを用いることもできる。
市販されている防鲭顔料としては、 東邦顔料社製のリ ン酸亜鉛 系防鲭顔料 「E X P E R T _ N P 5 0 0」 、 「E X P E R T— N P 5 3 0」 、 東邦顔料社製の亜リ ン酸亜鉛系防鲭顔料 「E X P E R T — N P 1 5 0 0」 、 「 E X P E R T— N P 1 5 3 0」 、 「E X P E R T _N P 1 6 0 0」 、 「 E X P E R T— N P 1 7 0 0」 、 ティカ 社製の ト リポリ リ ン酸アルミ 「K一 WH I T Eシリーズ」 、 S HE R W I N W i l l i a m s社製のモリブデン酸塩系顔料及びリ ン 酸モリ ブデン酸塩系顔料 「 S H E R— WH I T Eシリ ーズ」 、 日本 ァエロジル社及びデグサ社製の気相シリカ 「A E R O S I Lシリー ズ」 、 日産化学社製のコロイダルシリカ 「スノーテクスシリーズ」 、 G R A C E社製の C a吸着型シリカ 「シールデッタス—シリーズ 」 等がある。
これら着色顔料ゃ防鲭顔料及び防鲭剤は、 種類、 添加量、 粒径の 違いにより、 放射率や加工性、 外観、 耐食性などその他の皮膜性能 が大きく異なるので、 必要に応じて適宜選定する必要がある。
また、 本発明の熱吸収性皮膜層には、 必要に応じて、 一般に公知 のレべリ ング剤、 顔料分散剤、 ワックスなどを添加することができ る。 これら添加剤の種類や添加量は、 特に規定されるものではなく 、 必要に応じて適宜選定することができる。 特に、 ワックスは本発 明の表面処理金属板を成形加工したときの成形性向上、 熱吸収性皮 膜層のキズ付き防止等に効果的である。
本発明の熱吸収性皮膜層を金属板表面にあるいは非金属材料表面 に形成するためには、 バインダーを含む皮膜成分を、 一般に公知の 塗料形態にして塗布することができる。 例えば、 塗料形態と しては 、 樹脂を溶剤に溶解した溶剤系塗料、 ェマルジヨ ン化した樹脂を水 などに分散した水系塗料、 樹脂を粉碎してパウダー化した粉体塗料 、 粉砕しパウダー化した樹脂を水などに分散させたスラリ一粉体塗 料、 紫外線 (U V ) 硬化型塗料、 電子線 (E B ) 硬化型塗料、 樹脂 をフィルム状にして貼り付けるフィルムラミネー ト、 樹脂を溶融さ せてから塗布する形態などがある。
塗布方法は、 いずれも特に限定されず、 一般に公知の塗装方法、 例えば、 ロール塗装、 ローラーカーテン塗装、 カーテンフロー塗装 、 エアースプレー塗装、 エアーレススプレー塗装、 刷毛塗り塗装、 ダイコーター塗装などが採用できる。 また浸漬塗装、 イ ンクジエツ ト塗装などでもよい。
なお、 金属板に熱吸収性皮膜層を被覆する前に、 金属板の皮膜密 着性を上げるため、 金属板に前処理を施すのが好ましい。 この前処 理を施すと熱吸収性皮膜の密着性や金属板の耐食性が向上し、 より 好適である。
塗装前処理を施さなくても塗膜が密着すれば、 塗装前処理工程が 省略できるのでよ り好適である。 塗装前処理と しては、 一般に公知 のもの、 例えば、 塗布クロメート処理、 電解ク ロメー ト処理、 リ ン 酸亜鉛処理、 ジルコニァ系処理、 チタニア系処理を使用することが できる。
また、 近年、 樹脂等の有機化合物をベース と したノ ンクロメート 前処理も開発されているが、 樹脂をベースと したノ ンクロメート前 処理を用いると、 環境への負荷が低減されるためよ り好適である。 樹脂等の有機化合物をベースと したノンクロメー ト前処理の例と しては、 特開平 0 9— 8 2 8 2 9 1号公報、 特開平 1 0— 2 5 1 5 0 9号公報、 特開平 1 0— 3 3 7 5 3 0号公報、 特開 2 0 0 0— 1 7 4 6 6号公報、 特開 2 0 0 0— 2 4 8 3 8 5号公報、 特開 2 0 0 0— 2 7 3 6 5 9号公報、 特開 2 0 0 0— 2 8 2 2 5 2号公報、 特 開 2 0 0 0— 2 6 5 2 8 2号公報、 特開 2 0 0 0— 1 6 7 4 8 2号 公報等に記載された技術が挙げられ、 これらの技術を用いることが できるが、 上記以外にも、 一般に公知技術を用いることができる。 既に市販されているノンク口メート処理を用いてもよい。 これら の前処理の種類や付着量の違いによって、 熱吸収性皮膜層の密着性 や金属板の耐食性が大きく異なるので、 必要に応じて適宜選定する 必要がある。
本発明の金属板は、 加工して金属製発熱体力パーを製造すること が目的であるため、 加工が可能な金属材料であればよく、 一般に公 知の金属材料を用いることができる。 金属材料が合金材料であって もよい。 例えば、 鋼、 アルミ、 チタン、 銅、 マグネシウム合金など が挙げられる。 特に、 アルミや銅など熱伝導率の高い金属を用いる と、 吸収した熱が金属内にて均一分散するため、 局部的に金属が熱 くなることを避けられることから、 好適である。 また、 これらの材 料の表面にはめつきが施されていてもよい。
めっきの種類と しては、 亜鉛めつき、 アルミめつき、 銅めつき、 ニッケルめっき等が挙げられる。 合金めつきであってもよい。 鋼板 の場合は、 冷延鋼板、 熱延鋼板、 溶融亜鉛めつき鋼板、 電気亜鉛め つき鋼板、 溶融合金化亜鉛めつき鋼板、 アルミめつき鋼板、 アルミ 一亜鉛合金化めつき鋼板、 ステンレス鋼板など、 一般に公知の鋼板 およびめつき鋼板を適用できる。
しかし、 溶融合金化亜鉛めつき鋼板のように、 鉄と亜鉛の合金め つき鋼板は、 これ自身が高い熱吸収性を有しているため、 これに熱 吸収皮膜を被覆すると熱吸収性がよ り向上し、 好適である。 また、 アルミや銅など熱伝導率の高い金属をめつきした鋼板に熱吸収皮膜 を被覆すると、 吸収した熱が金属表面のめっき層を通して均一分散 するため、 局部的に金属が熱くなることを避けられるため、 より好 適である。 これらアルミや銅など熱伝導率の高い金属をめつきした 鋼板は、 熱伝導性が向上するだけでなく、 鋼板の有する強度、 成形 性も兼ね備えている上、 アルミや銅など熱伝導率の高い金属を単体 で用いるよ り安価であるため、 製造コス トが削減でき、 より好適で める。
これらの金属板には、 塗装前処理を施す前に湯洗、 アルカ リ脱脂 、 酸洗などの通常の処理を行う ことができる。 金属を成形して金属 製発熱体力パーを製造する際の加工方法は、 一般に公知の加工方法 を用いることができる。 例えば、 鍛造加工、 铸造加工、 打ち抜き加 ェ、 曲げ加工、 絞り加工、 張り出し加工、 ロールフォーミ ングなど の加工方法が挙げられる。 また、 予め、 熱吸収性皮膜層を金属板に 被覆した後に成形加工するプレコ一ト方式であると、 製造効率がよ く、 より好適である。
本発明で用いる非金属材料は、 金属材料を除く無機材料及び有機 材料のすべてであるが、 プラスチック、 樹脂、 セラミ ック、 陶器、 セメントなどのほか、 天然素材でもよい。 その他、 樹脂では、 ァク リル系樹脂、 塩化ビニル系樹脂、 H I P S系樹脂、 A B S系樹脂、 ポリカーボネー ト系樹脂など一般に公知の樹脂が使用できる。 また 、 セラミ ックスと しては、 アルミナ系、 窒化アルミ系、 チタン酸パ リ ゥム系、 チタン酸ス ト口ンチウムなどの一般に公知のセラミ ック スを使用できる。
また、 非金属材料の場合、 必要に応じて、 熱吸収性皮膜を被覆す る非金属材料表面に、 一般に公知の化成処理を施したり、 粗度を粗 くするなどして、 熱吸収性皮膜の密着性を向上させることもできる 本発明品である熱吸収性に優れた発熱体力パー及びそのための材 料の用途と しては、 V T R、 オーディオ機器、 D V D、 テレビ、 液 晶テレビ、 プラズマディスプレー、 プラズマディスプレーチューナ 一などのオーディォビジュアル機器及びそれらの周辺機器、 パソコ ン、 ノートパソコン、 光ディスク ドライブ、 ハー ドディスク ドライ ブなどのパソコン周辺機器、 携帯電話、 電子メモ帳などのモパイル 機器、 冷蔵庫、 エアコン室外機、 エアコン室内機、 洗濯機、 照明器 具などの一般家電製品、 バッテリーケース、 車載バッテリーケース 、 車載電子部品機器、 カーナビゲーシヨ ンシステム、 カーオーディ ォ機器、 自動販売機、 両替機、 プリペイ ドカー ドや切符などの発券 機などが挙げられ、 これらの外力パーや内部部品板、 内外部部電子 部品カバー、 内外部制御機器カバーに本発明品を使用すると効果が 発揮される。
本発明品である熱吸収性に優れた発熱体力パー及びそのための材 料を用いて、 発明者らが効果を確認した冷蔵庫と携帯機器及び車载 機器に関して、 以下に詳細を記載する。
(冷蔵庫)
冷蔵庫内部にはモーターや電子部品など熱源となる部品が数多く 使われている。 特に近年、 冷蔵庫の電子化が進み、 これら熱源から 発生する熱が冷蔵庫の内部蓄積し、 内部の温度が上昇し易くなって きている。 冷蔵庫内部の温度が上昇すると、 冷蔵室内の温度を低下 させるためによ り多く の電力が必要となり、 また、 このためにモー ターや電子部品の寿命も短くなる。 しかし、 近年ではエコロジーの 観点から、 冷蔵庫などの電気製品に対しての消費電力低下の要望が 増加している。
本発明者らは、 鋭意検討した結果、 金属材料の表面に熱吸収性の 高い物質を冷蔵庫外板の内側に施すと、 熱吸収性の高い物質を施さ ない場合と比べて、 モーターなどの熱源付近の温度が低下すること を見出した。
先に発熱体力パー及び熱吸収性皮膜について説明したことは、 冷 蔵庫を構成する外板を発熱体力パーと考えればそのまま本発明の冷 蔵庫の外板及びその内側表面に被覆する熱吸収性皮膜の具体的説明 について妥当するので、 ここではこれ以上の説明は省略する。
本発明の冷蔵庫は、 外板の内側表面に特定の熱吸収性皮膜が被覆 されている以外の冷蔵庫の構造及び内部は公知のものと同様でよい 本発明の冷蔵庫外板の外側面には着色塗膜ゃク リヤー塗膜を被覆 すると意匠外観を付与できるため、 よ り好適である。 この着色塗膜 層ゃク リヤー塗膜層は、 多層塗膜にして、 最下層に防鲭顔料を含む 防鲭塗膜層、 これよ り上の層は着色顔料を含む着色層と して使用し 、 また必要に応じて、 更にその上にタ リヤー皮膜を被覆するなどす ると、 金属板の場合に耐食性が向上し、 意匠性も増すため、 よ り好 適である。
また、 冷蔵庫を組み立てる工程において、 ベルトコンベア一やそ の他搬送機器との摩擦により、 冷蔵庫外板に用いる金属板の表面皮 膜に静電気が発生し、 組立ライン内の埃や塵が金属板表面に付着す る問題が発生する。 この問題を解決するためには塗膜に導電性を付 与させで皮膜表面に蓄積した静電気を逃がす必要がある。 本発明の 冷蔵庫外板の内側に被覆する熱吸収性皮膜層には前記カーボンに加 えて、 バインダー固形分 1 0 0質量部に対して導電性の金属粉を 1 〜5 0質量部含むと、 皮膜が導線性を有し、 冷蔵庫組立工程におけ る静電気起因の埃や塵の付着問題が解決され、 よ り好適である。 熱 吸収性皮膜層に導電性を付与する構成についても先に述べた。 本発明の冷蔵庫を製造する際は、 予め、 平たい金属板の片面に本 発明の熱吸収性皮膜層を塗装して熱吸収性の高いプレコ一ト金属板 を製造し、 これを切断、 加工した後に、 熱吸収性皮膜層が外板の内 側となるようにして冷蔵庫に組み上げると作業効率が高くなるため 、 よ り好適である。
本発明の冷蔵庫を作成する際に、 予め熱吸収性皮膜を被覆したプ レコー ト金属板を製造し、 その後に、 切断、 加工、 組立を行う場合 の加工方法は、 一般に公知の加工方法を用いることができる。 例え ば、 打ち抜き加工、 曲げ加工、 絞り加工、 張り出し加工、 ロールフ ォーミ ングなどの加工方法が挙げられる。
(携帯機器及び車載機器)
本発明は、 発熱する電子部品やパッテリ一を内蔵する電子機器ケ ースの内面側に、 本発明の高吸熱性塗料を塗布することにより、 電 子機器内部の温度上昇を顕著に抑制できることを見出したものであ る。
本発明において携帯機器 (モパイル機) 、 車載機器は、 特に限定 されず、 携帯電話、 ノー トパソコ ン、 P D A、 車载パッテリー、 力 一ナビゲーシヨ ンシステム機器、 カーオーディオ機器、 車載制御機 器などが含まれる。
発熱する電子分品は特に限定されず、 例えば、 C P U素子、 M P U素子、 D S P素子、 電子集積回路、 抵抗等の電子部品をいう。 パ ッテリ一も、 一般に公知のものを適用する事ができる。
本発明の携帯機器又は車载機器のケースを構成する材料も、 特に 限定されず、 M g合金ケース、 A 1合金ケース、 鋼板ケース、 その 他の金属ケース、 プラスチックケース等が挙げられるが、 中でも M g合金ケース、 A 1合金ケース、 鋼板ケースの場合に特に有用であ る。 本発明の携帯機器又は車載機器のケースの熱吸収性皮膜層は、 1 つの態様において、 パインダー固形分 1 0 0質量部に対して粒径 0 • 1 μ m未満のカーボンを 1〜 2 0質量部と粒径 0. Ι μιη以上 5 0 μιη以下のカーボンを 1 〜 1 4 0質量部含み、 粒径 0. 1 μπι未満の カーボンと粒径 0. 1 μ m以上 5 0 // m未満のカーボンとの合計が 1 0〜: 1 5 0質量部である。
熱吸収性皮膜層は、 第 2の態様において、 バイ ンダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 さらに導電性 顔料 1〜 1 5 0質量部から構成され、 前記熱吸収性顔料が平均粒径 :!〜 1 0 0 n mのカーボンブラックであり、 前記導電性顔料が平均 粒径 0. 5〜 5 0 μπιのフ レーク状の金属 N i と鎖状の金属 N i と から構成され、 フ レーク状金属 N i Z鎖状金属 N i の質量比が 0. 1〜 6である。
熱吸収性皮膜層は、 第 3の態様において、 バインダー固形分 1 0 0質量部に対して、 熱吸収性顔料 1 0〜 1 5 0質量部及びフエ口シ リ コ ン 1 0〜 1 5 0質量部から構成される。
熱吸収性皮膜層は、 第 4の態様において、 バインダー固形分 1 0 0質量部に対してフヱ口シリ コ ン 1 0〜 1 5 0質量部から構成され る。
これらの各態様における熱吸収性皮膜層の具体的な内容は先に発 熱体力バーについて説明したと基本的に同様である。 従って、 ここ では具体的な説明は省略する。 また、 先に説明した発熱体力パー等 を携帯機器又は車载機器のケースと しても良い。
本発明の高吸熱性皮膜層をケース表面に形成するためには、 パイ ンダーを含む皮膜成分を、 一般に公知の塗料形態にして塗布するこ とができる。 例えば、 塗料形態と しては、 樹脂を溶剤に溶解した溶 剤系塗料、 ェマルジョ ン化した樹脂を水などに分散した水系塗料、 樹脂を粉砕してパウダー化した粉体塗料、 粉碎しパウダー化した樹 脂を水などに分散させたスラ リ ー粉体塗料、 紫外線 (U V ) 硬化型 塗料、 電子線 (E B ) 硬化型塗料、 樹脂をフィルム上にして貼り付 けるフィルムラミネー ト、 樹脂を溶融させてから塗布する形態など がある。
高熱吸収性皮膜の膜厚は 1〜 1 0 0 0 μ ιηであることが望ましい 。 皮膜が 1 μ πι未満であると、 皮膜の熱吸収性が劣るため不適であ る。 皮膜が 1 0 0 0 /z m超であると熱吸収性が飽和して、 経済的に 意味をなさないため、 好適でない。 よ り好ましく は 1 0〜 5 0 0 mである。 導電性を担保するためには、 1 ^ m以上 1 0 m未満がよ り好適である。
本発明の高吸熱性皮膜層をケースが形成されてからその表面に塗 ェすることが一般的であるが、 板材の場合には成形加工前に塗工し ておいてもよい。
本発明では、 吸熱性皮膜層を被覆した面が発熱する電子部品ゃパ ッテリ一のケースの内側となることで、 電子機器及びバッテリーケ ース内部の温度が低下する。
本発明の熱吸収性に優れたケースの構成は図 1 と同様でよい。 本 発明のケースは例えば M g合金板 1 で構成され、 且つ、 内面を高吸 収性皮膜層 2で被覆したことを特徴と している。 なお、 図中、 3が 発熱電子部品もしく は、 バッテリーである。
また、 高熱吸収性皮膜層を被覆した面がケースの内面でないと、 電子機器ケース内における温度低下効果が得られない。 しかし、 高 熱吸収性皮膜層は、 ケースの内面に加えて、 外側にも被覆してもよ い。 外側にも被覆した場合は、 熱吸収と等価である熱放射の影響で 、 発熱体ケースである金属板中に吸収した熱を放出し易くなるため 、 ケース自身の温度が低下し、 よ り好適である。 また、 ケースの外側には着色塗膜を被覆して意匠外観を付与して もよい。 この着色塗膜層は、 多層塗膜にして、 金属製の場合最下層 に防鲭顔料を含む防鲭塗膜層、 これよ り上の層は着色顔料を含む着 色層と して使用しても良い。 これら場合、 着色有機皮膜層 (多層塗 膜の場合は防鲭塗膜層も含む) は、 これ自身にある程度の熱放射性 を有しているため、 トータルで 1 0 μ m以上被覆する と、 ケースの 温度を低下させるため、 よ り好適である。 実施例
以下、 実験に用いた熱吸収性皮膜塗料の作成方法について詳細を 説明する。
市販の有機溶剤可溶型/非晶性ポリエステル樹脂 (以下、 ポリエ ステル樹脂と称す) である東洋紡績社製 「パイ ロ ン G K 1 4 0」 ( 数平均分子量 : 1 3 0 0 0、 T g 2 0 °C ) を有機溶剤 (ソルべッソ 1 5 0 とシク ロへキサノンとを質量比で 1 : 1 に混合したもの) に 溶解した。
次に、 有機溶剤に溶解したポリ エステル樹脂にポリ エステル樹脂 の固形分 1 0 0質量部に対して市販のへキサーメ トキシ一メチル化 メ ラミ ンである三井サイテック社製のサイメル 3 0 3を 1 5質量部 添加し、 更に、 市販の酸性触媒で有る三井サイテック社製の 「キヤ タ リス ト 6 0 0 3 B」 を 0 . 5質量部添加し攪拌することで、 メラ ミ ン硬化型ポリエステル系のク リヤー塗料 (以下ポリエステル/メ ラミ ン系と称す) を得た。
また、 樹脂の影響を見るために、 前記の有機溶剤に溶解したポリ エステル樹脂に、 市販の H D I をベースと したプロ ック化ィ ソシァ ネー トである住化パイエルゥレタン社製 「スミジュール B L 3 1 7 5」 を、 [イ ソシァネー トの N C O基当量] / [ポリエステル樹脂 の O H基当量] = 1 . 0 となるよ うに配合し、 更に、 三井武田ケミ カル社製反応触媒 「T K一 1」 を樹脂固形分に対して 0 . 0 5 %添 加することで、 ィソシァネー ト硬化型ポリ エステル系のク リヤー塗 料 (以下ポ リ エステル/イ ソシァネー ト系と称す) を得た。
更に、 市販の水分散型アク リ ルェマルジヨ ンタイプの樹脂を準備 し、 これに市販の水溶性エポキシ樹脂を固形分にして 5質量%添加 したものを作成し、 水分散型ァク リルェマルジョ ンノエポキシのク リヤー塗料 (以下、 水系ァク リルと称す) とした。
更に、 市販の常温乾燥型の溶剤系タ リヤー塗料 (以下溶剤系常乾 と称す) と市販の常温乾燥型の水系タ リヤー塗料 (以下水系常乾と 称す) をそれぞれ準備した。
次に、 作成および準備したタ リヤー塗料には、 熱吸収性顔料、 導 電性顔料、 防鲭顏料を必要に応じて添加し、 攪拌することで熱吸収 性皮膜塗料を'得た。 作成した塗料の詳細を表 1〜 4に記載する。
Figure imgf000032_0001
表 1—2
熱吸収性顔;! その他添加顔 ϊ|
全顔科 全顔料 全顔料 塗料 No. パインダ一種
添刀口顔料 tt 添刀口里 添カロ顔料種 添刀 U量 刀ロ顔
ホ J (ホ 1) 丄 J . τ丄 iy リエスアル/メフ^ノ フエロンリコン ( 11) 30 术添刀
ΜΨΤ 1—20 ホ リエスァル /イソンァ不一卜 カーホ ノフ フック(*2) liD フレーク Νι ¾ ^Νι=6 15 术添刀口
料 1—21 τΚ アクリルエマルン ヨン カーホ ノフ フック(水18) 15 フレ-ク NiZ¾i状 Νι=6 15 添加
塗料 1—22 ホ リエスァル / フ:;ン カーホ ノフ フック (水 2) 10 フレーク Νι/鎖状 Νι=6θ6) 10 布百ンリカ *14) 5 — ェ, ヽ
塗料 1—23 % リエスァル /スフ ¾ン 力—ホ ンフ フック ( 2) 10 フレーク Ni/® Ni=6(ネ 6) 10 カルンゥムンリケ一ト (*15) 30 塗料 1—24 ホ リエスァル /メフ;;ン カーホ ノフっ 、 、 10 フレーク Ni/鎖状 Ni=6( 6) 10 卜リホ リリノ酸/ル (*16) 30
「 塗枓 1 25 アクリルエマルン ヨン カーホ ノフ フック(*18) 10 フレーク Ni/¾i Ni=6 10 コ tjイタ ルンリカ (氺 17) 5 塗料 1—26 ホ リエスァル / フ ン カーホ ンフ フック(*2) 5 フレ-ク Ni/鎖状 Ni=6(*6) 10 未添カロ
塗料 1—27 ホ リエステル /メラミン 力—ホ ンフ フック(ホ 2) 15 フレーク Ni |¾:ίλ:Νι =6 ( *6 ) 200 未添カロ
堡枓 1—28 ホ リエスァル /メフ ノ カーホ ノブ フック (ネ 2) 30 フレーク 貝状 Ni— b(*/ J I ΠD 术 刀口
¾=-Jc| on
丄 f リエスアル/メフ ノ i 、、 ίΛ , 丄 0 未添加 木十- ¾?"ノh JUn
塗料 1—30 ホ'リヱステル/メラミン カーホ"ンフ"ラック(*2) 18 未添カロ カルシウムシリケ—ト(*15) 10 塗料 1 -31 ホ°リヱステルノメラミン 力-ホ' フ"ラック 02) 19 未添力 α トリホ 'リリン酸アルミ 016) 10 塗料 1 32 ホ。リエステ/レ zイソシァネ ト カーホ"ンフ'、ラック(*2) 20 フレ-ク NiZ鎖状 Ni=6(*7) 10 未添加
塗料 1—33 ホ。リエステル// (ラミン 未添加 未添加 未添加
塗料 1— 34 ホ°リエステル Zメラミン 力—ホ、'ン ^ラック(*2) 5 未添カロ 未添カロ
塗料 1—35 ホ'リエステル/メラミン カ ホ'ンフ"ラック(*2) 200 未添加 未添加
塗料 1 36 ホ。リエステル / /メラミン 未添加 未添加 酸化チ ノ (*19) 15
表 2—1
微粒子カ ン 大粒径カ-ホ、、ン その他添加顔料
全顔料 全顔料 全カ- 、、ン 全顔料 塗料 No. パインダ一種 添カロ量 添カロ量 添カロ量 添カロ量 添加顔料種 添加顔料種 添加顔料種
(*1) (*1) (*1) (*1)
(質量部) (質量部) (質量部) 塗料 2— 1 f リ Iステル/ /メラミン 微粒子力-ホ、、ン(*2) 3 大粒径カ- )fン A(*3) 10 13 未添カロ
塗料 2— 2 ホ。リエステル/メラミン 微粒子力-ホ"ン(*2) 10 大粒径カ-ホ"ン A(*3) 10 20 未添カロ
塗料 2— 3 ホ。リエステル /メラミン 微粒子力-ホ ン 02) 20 大粒径カ-ホ ン A(*3) 10 30 . 未添カロ
塗料 2— 4 ホ。リエステ/ メラミン 微粒子カ-ホ"ン(*2) 5 大粒径カ-ホ"ン A(*3) 5 10 未添カロ
CO
t 塗科 2— 5 ホ。リエステル /メラミン 微粒子カ ン(*2) 5 大粒径カ-ホ"ン A(*3) 20 25 一 未添加
塗料 2— 6 ホ'リエステル /メラミン 微粒子力-ホ"ン (*2) 5 大粒径カ-ホ"ン A(*3) 50 55 未添加
塗料 2— 7 ホ°リエステル Zメラミン 微粒子力-ホ"ン (*2) 5 大粒径カ-ボ、、ン A(*3) 100 105 未添: ira
塗料 2— 8 ホ'リエステル /メラミン 微粒子カ ン (*2) 5 大粒径カ ホ'、ン A(*3) 140 145 未添カロ
塗料 2— 9 ホ°リエステル/メラミン 微粒子力-ホ"ン (*2) 5 大粒径カ-ホ"ン B(*20) 20 25 未添カロ
塗料 2— 10 ホ。リエステル /イソシァネ-ト 微粒子カ ン (*2) 5 大粒径カ-ホ、、ン A(*3) 20 25 未添カロ
塗料 2— 11 ホ。リエステル zメラミン 微粒子; HTン (*2) 5 大粒径カ-ホ"ン A(*3) 20 25 10 塗料 2—12 ホ'リエステル/メラミン 微粒子カ ン (*2) 5 大粒径カ- ン A(*3) 20 25 導電防鲭顔料 (*11) 10 塗料 2— 13 リエステル Zメラミン 微粒子力 ホ"ン (*2) 5 大粒径カ-ホ"ン A(*3) 20 25 防鲭顔料 A(*15) 10
表 2— 2
微粒子カ ン 大粒径カ-ホ'ン その他添加顔料
全顔料 全顔料 カーホ'ン 全顔料 塗料 No. パインダ一種 添カロ量 添加量 添加量 添加量 添加顔料種 添加顔料種 添加顔料種
(*1) 01) (*1) (*1)
(質量部) (質量部) (質量部) 塗料 2— 14 ホ'リエステル/メラミン 微粒子カ ン(*2) 5 大粒径カ ン Α(*3) 20 25 防鲭顔柳(*16) 10 塗料 2—15 ホ'リエステル/メラミン 微粒子力-ホ ン(*2) 30 大粒径カ-ホ ン Α(*3) 10 40 未添カロ
塗料 2— 16 ホ。リエステル/メラミン 微粒子カ ン(*2) 5 大粒径カーホ、、ン Α(*3) 180 190 未添カロ
塗料 2— 17
Figure imgf000035_0001
リエステル メラミン 微粒子力-ホ ン(*2) 20 大粒径カ ン Α(*3) 140 150 未添カロ
CO CO 塗料 2— 18 ホ。リエステル/メラミ、ン、 微粒子カ ン(*2) 5 大粒径カ-ホ'ノ C(*21) 20 30 未添カロ
塗料 2— 19 ホ。リエステル/メラミン 微粒子カ ン(*2) 大粒径カ-ホ"ン A(*3) 10 10 未添カロ
塗料 2— 20 リエステル /メラミン 微粒子力-ホ、、ン (*2) 0. 5 大粒径カ-ホ"ン A(*3) 10 10. 5 未添加
塗料 2— 21 ホ°リエステル/メラミン 微粒子力-ホ、、ン (*2) 5 未添加 5 未添力!]
塗料 2一 22 ホ。リ Iステル/メラミン 微粒子力-ホ"ン (*2) 5 大粒径カ-ホ"ン A(*3) 0. 5 10. 5 未添カロ
塗料 2— 23 ホ'リエステル zメラミン 未添加 未添加 アルミ粉 (*9) 20 塗料 2— 24 ホ。リエステル/メラミン 未添加 未添加 酸化チタン (*19) 20 塗料 2— 25 Φ°リエステル/メラミン 微粒子カ ン (*2) 15 大粒径カ-ホ'、ン A(*3) 15 30 未添加
塗料 2一 26 ホ'リヱステル/メラミン 微粒子カ ン (*2) 15 大粒径カ ン A(*3) 85 100 未添加
Figure imgf000036_0001
表 4
微粒子力-ホ ノ 大粒径カ-ホ'ン その他添加顔料
全顔料 全顔料 全力-ホ"ン 全顔料 塗料 No.
†in 添加量
歸 添加量 添加量 床 fin雜 親 添加量
(*1) (*1) (*1) (*1) (質量部) (質量部) (質量部) 塗料 4—1 微粒子カ- ン (*2) 3 大粒径カ ホン A(*3) 10 13 未添加 ― 塗料 4一 2 微粒子カ-ボ'、ン 2) 10 大粒径カ-ホ、'ン A(*3) 10 20 未添加 ― 塗料 4一 3 微粒子力-ホ"ン (*2) 20 大粒径カ ン A(*3) 10 30 未添加 一 塗料 4一 4 微粒子力-ホ"ン 02) 5 大粒径カ ン A(*3) 5 10 未添加 ― 塗料 4— 5 微粒子カ ン (*2) 5 大粒径カ-ホ"ン A(*3> 20 25 未添加 一 塗料 4一 6 微粒子力-ホ"ン (*2) 5 大粒径カ-ホ"ン A(*3) 50 55 未添加 ― 塗料 4一 7 微粒子カ ン (*2) 5 大粒径カ ホ"ン A(*3) 100 105 未添カロ ― on 塗料 4 - 8 微粒子カ ン (*2) 5 大粒径カ-ホ"ン A(*3) 140 145 未添加 一 塗料 4— 9 微粒子カ ン (*2) 5 大粒径カ-ホ、、ン B(*20) 20 25 未添加 ― 塗料 4— 10 未添加 ― 大粒径カ-ホ A(*3) 10 10 未添加
塗料 4一 11 微粒子力-ホ、、ン (*2) 0. 5 大粒径カ-ホ"ン A(*3) 10 10. 5 未添加
塗料 4一 12 微粒子; HTン (*2) 30 大粒径カ-ホ、、ン A(*3) 10 40 未添カロ
塗料 4— 13 微粒子; ホ"ン (*2) 5 未添加 5 未添カロ
塗料 4—14 微粒子カ ン(*2) 5 大粒径カ-ホ'、ン A(*3) 0. 5 10. 5 未添加
塗料 4—15 微粒子力-ホ、、ン (*2) 5 大粒径力-ホ"ン A(*3) 180 190 未添加
塗料 4一 16 微粒子カ ン (*2) 20 大粒径カ-ホ、、ン A(*3) 140 160 未添加
塗料 4一 17 微粒子力-ホ"ン (*2) 5 大粒径カ-ホ、、ン C(*21) 20 25 未添カロ
塗料 4一 18 未添加 未添加 アルミ粉 (*9) 20 塗料 4— 19 未添加 未添加 酸化チタン(*19) 20
表 1〜 4中、 (* 1 ) 〜 ( * 1 9 ) の注については、 以下のとお りである。
(* 1 ) : 塗料中の樹脂固形分 1 0 0質量部に対する添加顔料の質
( * 2 ) : 東海カーボン社製 「トーカブラック # 7 3 5 0 F」 を使 用 ( 2 8 n m 微粒子カーボン)
(* 3 ) : 共同組合ラテス ト製 「備長炭パウダー」 を使用 (最大粒 径 : 5 μ πιΖ大粒径カーボン A)
(* 4) : 試薬の黒鉛末を更に粉砕し、 ふるい分け分級機にて平均 粒径 Ι Ο μ ΠΙと したものを使用
( * 5 ) 東海カーボン社製 「トーカブラック # 5 5 0 0 F」 を使用 (粒径 : 2 5 n m)
(* 6 ) : 市販のフレーク状金属 N i と鎖状金属 N i を入手し、 質 量比でフ レーク N i 鎖状 N i = 6 となるように混合したものを使 用 (平均粒径 : 5 μ m)
(* 7 ) : 市販のフ レーク状金属 N i と鎖状金属 N i を入手し、 質 量比でフ レーク N i /鎖状 N i = 1 となるように混合したものを使 用 (平均粒径 : 5 μ m)
(* 8 ) : 市販のフ レーク状金属 N i と鎖状金属 N i を入手し、 質 量比でフレーク N i /鎖状 N i = 0. 1 となるように混合したもの を使用 (平均粒径 : 5 μ m)
( * 9 ) : 東洋アルミ社製 「アルミニウム粉 0 2— 0 0 0 5」 を使 用 (平均粒径 : 1 0 μ m)
(* 1 0 ) : 市販のステンレス粉を使用 (平均粒径 : 2 0 μ m)
(* 1 1 ) : J I S - G 2 3 0 2記载のフエロシリ コ ン 2号を粉砕 機にて粉砕し、 ふるい分け分級機にて平均粒径 1 0 μ πιとしたもの を使用 ( * 1 2 ) : 市販のフ レーク状金属 N i と鎖状金属 N i を入手し、 質量比でフ レーク N i 鎖状 N i = 0 . 0 5 となるように混合した ものを使用 (平均粒径 : 5 m)
( * 1 3 ) : 市販のフ レーク状金属 N i と鎖状金属 N i を入手し、 質量比でフ レーク N i /鎖状 N i = 7 となるよ うに混合したものを 使用 (平均粒径 : 5 m)
( * 1 4 ) : 日本ァエロジル社製 「A E R O S I L 3 0 0」 を使用
( 1 2 n m)
( * 1 5 ) : G r a c e社製 「シールデクス C 3 0 3」 を使用 ( 3 β m)
( * 1 6 ) : ティ力社製 「K— WH I T E K— 1 0 5」 を使用 ( 平均粒径 : 2 . 3 μ ΐΐΐ)
( * 1 7 ) : 日産化学社製 「スノーテッ クス Ν」 を使用 (本防鲭顔 料は水分散タイプのため、 表中に記載した添加量は固形分の量を示 す、 粒径 : 1 0〜 2 0 n m)
( * 1 8 ) : 大日精化学工業社製 「A Fブラック U 1 4」 を使用 ( 本防鲭顔料は樹脂混合の水分散タイプのため、 表中に記載した添加 量はカーボンブラックのみの量を示す、 粒径 : 1 0〜 5 0 n m)
( * 1 9 ) : 石原産業社製酸化チタン 「タイペータ C R 9 5」 を使 用
( * 2 0 ) : 試薬の黒鉛末を更に粉砕し、 ふるい分け分級機にて平 均粒径 4 0 μ mと したものを使用 (大粒径カーボン B )
( * 2 1 ) : 試薬の黒鉛末を更に粉砕し、 ふるい分け分級機にて平 均粒径 6 0 /Z mと したものを使用 (大粒径カーボン C )
なお、 表 1 〜 4中のパインダ一はいずれも常乾溶剤系である。 以下、 実施例の詳細について詳細を説明する。
(実施例 I ) 以下、 実験に用いた熱吸収性表面塗装板の作成方法について詳細 を説明する。
付着量が片面当たり 2 0 g /m2 で両面がめっきされた厚み 0. 6 mmの電気亜鉛めつき鋼板を、 市販のアルカ リ脱脂剤である日本 パー力ライジング社製の 「F C— 3 6 4 S」 を 2 0質量%濃度に希 釈した 6 0 °C温度の水溶液中に 1 0秒間浸漬することで脱脂し、 水 洗後、 乾燥した。
次いで、 脱脂した電気亜鉛めつき鋼板上にロールコーターにて前 処理液を塗布し、 到達板温が 6 0 °Cとなるよ うな条件で熱風乾燥さ せた。
本実験では、 前処理に市販のク口メート処理である 日本パーカラ イジング社製の 「 ZM 1 3 0 0 AN」 (以下クロメート処理) と、 市販のノンクロメート前処理である 日本パー力ライジング社製の 「 C T一 E 3 0 0」 (以下ノ ンクロメート処理) を使用した。
クロメー ト処理の付着量は、 C r付着量で 5 0 m g /m2、 ノ ン クロメート処理の付着量は、 全皮膜量と して 2 0 0 m g /m2と し た。
更に、 前処理を施した電気亜鉛めつき鋼板の上に、 表 1に記載す る熱吸収性皮膜塗料をロールコーターにて塗装し、 熱風を併用した 誘導加熱炉にて乾燥硬化させた。 乾燥硬化条件は、 到達板温 (PM T) で 2 3 0 °Cと した。 前処理及び熱吸収性皮膜塗料は必要に応じ て片面もしく は両面に塗装することで試験片を得た。
作成した表面塗装板の詳細を表 5〜 8に記載する。 なお、 表 5〜 7中に記載の表面塗装板は、 いずれも、 同じ種類の熱吸収性皮膜層 を両面に同じ条件で被覆したものであり、 表 8中記載の表面塗装板 は、 いずれも、 片面のみに熱吸収性皮膜層を被覆し、 他の面は被覆 していないものである。 表 5
No. 熱吸収性 塗膜 折り すレス 耐食性
前処理種 塗料種 膜厚 放射率 導電性 温度 A 温度 B 密着性 曲げ性 成形性 クロスカット 端 ιή
I一 1 ノンクロメート処理 塗料 1— 1 5 μπι 0.80 o 〇 〇 〇 〇 Δ Δ 〇
1-2 ノンクロメート処理 塗料 1-2 5 0.91 o o 〇 〇 〇 Δ Δ Δ
1-3 ク Pメ-ト処理 塗料 1一 3 5 μπι 0.94 o o 〇 Δ Δ Δ △ Δ
1-4 ノンクロメート処理 塗料 1一 4 5 μπι 0.95 o o 〇 Δ Δ Δ Δ Δ
1-5 ノンクロメ-ト処理 塗料 1-5 5 μιη 0.95 o o 〇 X X Δ Δ Δ
I一 6 ノンク Pメ-ト処理 塗料 1-6 5 μτα 0.80 〇 〇 〇 〇 〇 Δ Δ Δ
1-7 ク Pメ-ト処理 塗料 1一 7 5 0.78 Δ Δ 〇 〇 〇 Δ Δ Δ
1-8 ノンクロメ-ト処理 塗料 1一 8 5 μτϋ 0.81 o 〇 〇 〇 〇 Δ Δ X
1-9 ノンクロメ-ト処理 塗料 1一 9 5 β Ά 0.92 〇 〇 O 〇 〇 Δ Δ 〇
I一 10 ノンクロメ-ト処理 塗料 1—10 5 μιη 0.80 o o 〇 O 〇 Δ Δ 〇
I一 11 ノン メ-ト処理 塗料 1—11 5 μπι 0.92 〇 o 〇 〇 〇 Δ Δ X
I一 12 ノンク ト処理 塗料 1 -12 5 zm 0.92 o o 〇 〇 〇 Δ Δ △ 本発明例 I一 13 ノンクロメ-ト処理 塗料 1一 13 5 ΐα 0.93 o o 〇 〇 〇 Δ Δ Δ
I -14 ノンクロメ-ト処理 塗料 1 -14 5 μΐΆ 0.72 Δ △ 〇 〇 〇 Δ Δ 〇
I一 15 ノンクロメ-ト処理 塗料 1一 15 5 ιη 0.72 Δ Δ 〇 〇 〇 Δ Δ 〇
I -16 ノンクロメ-ト処理 塗料 1— 16 5 μιπ 0.73 Δ Δ 〇 〇 〇 Δ Δ 〇
I -17 ノンクロメ-ト処理 塗料 1—17 5 μΐΆ 0.95 〇 〇 〇 〇 〇 〇 〇 Δ
I一 18 ノンクロメ-ト処理 塗料 1一 18 5 πϊ 0.92 〇 〇 〇 O O Δ Δ 〇
I一 19 ノンクロメ-ト処理 塗料 1一 19 5 μιη 0.80 〇 〇 〇 〇 o 〇 〇 〇
I一 20 ノンクロメ-ト処理 塗料 1一 20 5 μιη 0.93 〇 〇 〇 〇 〇 Δ Δ Δ
I -21 ノン知メ-ト処理 塗料 1 -21 5 μτα 0.91 〇 〇 〇 〇 〇 〇 〇 △
I -22 ノンクロメート処理 塗料 1 -22 5 βΙΆ 0.81 〇 〇 〇 〇 〇 〇 〇 Δ
I一 23 ノンクロメ-ト処理 塗料 1 -23 5 βίΆ 0.80 〇 〇 〇 〇 〇 〇 〇 Δ
I -24 ノンクロメート処理 塗料 1 -24 5 μια 0.82 o . 〇 〇 〇 o 〇 〇 Δ
I一 25 ノンクロメート処理 塗料 1一 25 5 βχα. 0.80 〇 〇 〇 〇 〇 〇 〇 Δ
I -26 ノンクロメ-ト処理 塗料 1一 26 5 ηι 0.65 X X 〇 O 〇 Δ Δ 〇 比較例
I -27 ノンクロメ-ト処理 塗料 1 -27 5 μιη 0.65 X X 〇 X X Δ Δ 〇
表 6
熱吸収性 析 V 1り すレス 耐食性
No. 前処理種 膜厚 放射率 導電性 温度 A 温度 B 密着性 曲げ性 成形性 知スかクト 端面
I -28 ノンクロメ-ト処理 塗料 1—2 0.5 μιη 0. 70 Δ Δ 〇 〇 〇 Δ Δ △
I -29 ノンクロメ-ト処理 塗料 1一 2 1. Ο μπι 0. 85 〇 〇 〇 〇 O Δ Δ △
I -30 ノンクロメ-ト処理 塗料 1— 2 10 ηι 0.94 〇 〇 〇 〇 〇 Δ Δ Δ 本発明例 I -31 ノンク メ-ト処理 塗料 1—2 1ο ιη 0. 95 O 〇 〇 o o Δ △ Δ
I -32 ノンクロメ-ト処理 塗料 1—2 2ο πι 0. 95 O 〇 〇 〇 〇 △ Δ Δ
I—33 ノンクロメ-ト処理 塗料 1一 2 50 μπι 0.95 〇 〇 〇 Δ Δ Δ Δ Δ
I -34 ノンクロメート処理 塗料 1—2 0. 95 〇 〇 〇 X X Δ Δ Δ
熱吸収性 折り 7°レス 耐食性
No. 前処理種 膜厚 放射率 導電性 温度 A 温度 B 密着性 曲げ性 成形性 クロスカット 端面 本発明例 I -35 メ-ト処理 塗料 1—2 5 μιη 0.91 〇 〇 〇 〇 〇 Δ Δ Δ 比較例 I一 36 無し (未処理) 塗料 1一 2 5 μπι 0. 91 〇 〇 Δ Δ Δ X X Δ
熱吸収性
No. 前処理種 膜厚 放射率 備考
温度 A 温度 B
本発明例 I -37 ノンクロメート処理 塗料 1一 2 5 ια 0. 91 〇 X 吸熱性試験時に箱の内側に金属板の皮膜層面力 外側に 未塗装面が来るように設置
吸熱性試験時に箱の外側に金属板の皮膜層面が、 内側に 比較例 I一 38 ノンクロメ-ト処理 塗料 1一 2 5 πι 0. 91 X Δ
未塗装面が来るように設置
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定
日本分光社製のフーリエ変換赤外分光光度計 「VA L OR _III 」 を用いて、 表面塗装板の板温度を 8 0 °Cにしたときの波数 6 0 0 〜 3 0 0 0 c m— 1の領域における赤外発光スぺク トルを測定し、 こ れを標準黒体の発光スぺク トルと比較することで、 表面塗装板の全 放射率を測定した。 なお、 標準黒体は鉄板にタ コスジャパン社販売 (ォキツモ社製造) の 「TH I — 1 B黒体スプレー」 を 3 0 ± 2 μ mの膜厚でスプレー塗装したものを用いた。
2 ) 表面塗装板の熱吸収性測定試験
図 2に示す測定箱を作成して試験を行った。 測定箱 4は上面が開 放されており、 この開放された面を、 作成した表面塗装板 5で覆い 、 この状態で、 熱源 6の温度が 1 0 0 °Cとなるように、 温度コント ローラー 7にて熱源の温度を制御して、 測定箱 4内に設置した熱電 対 8の温度 Aと表面塗装板外面に貼り付けた熱電対 9の温度 Bを、 それぞれ、 デジタル温度計 1 0で測定した。
更に、 評価する表面塗装板と同じ板厚の未処理の電気亜鉛めつき 鋼板についても、 同様の測定を行い、 作成した表面塗装板と未処理 の電気亜鉛めつき鋼板との測定値を比較して、 以下の基準で評価し た。
温度 Aの評価基準は以下のとおりである。
[ { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装板での 測定値) } ≥ 4 °C] のとき : 〇
[ 4°C> { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装 板での測定値) } ≥ 2 °C] のとき : △
[ 2 °C> { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装 板での測定値) } ] のとき : X また、 温度 Bの評価基準は以下のとおりである。
[ 2 0 °C≥ { (評価する表面塗装板での測定値) 一 (電気亜鉛めつ き鋼板の測定値) } ] のとき : 〇
[ 3 0 °C≥ { (評価する表面塗装板での測定値) 一 (電気亜鉛めつ き鋼板の測定値) } > 2 0 °C ] のとき : △
[ { (評価する表面塗装板での測定値) 一 (電気亜鉛めつき鋼板の 測定値) } > 3 0 °C ] のとき : X
3 ) 塗膜密着性試験
表面塗装板の熱吸収性皮膜層に、 1 mm角の碁盤目状の切れ目を カッターナイフで入れ、 皮膜面が凸となるよ うにエリ クセン試験機 で 7 mm押し出した後に、 テープ剥離試験を行った。
碁盤目状の切れ目の入れ方、 エリ クセンの押し出し方法、 テープ 剥離の方法については、 J I S— K 5 4 0 0. 8. 2記載の方法、 及び、 J I S— K 5 4 0 0. 8. 5記載の方法に準じて実施した。 なお、 本試験では同じ場所で 2回続けてテープ剥離試験を実施して いる (以降 2回テープ剥離と称す) 。
テープ剥離後の評価は、 J I S— K 5 4 0 0. 8.. 5記載の評価 の例の図に従って行い、 評点 1 0点の時に〇、 8点以上 1 0点未満 の時に△、 8点未満の時に Xと評価した。
4 ) 塗膜の折り 曲げ試験
作成した表面塗装板に 1 8 0° 折り曲げ加工を施した。 そして、 加工部の塗膜損傷状態をルーペにて観察し、 以下の基準で評価した 。 折り曲げ加工は 2 0 °C雰囲気中で、 0. 6 mmのスぺーサーを間 に 3枚挟んで実施した (一般的に 3 T曲げと呼ばれる) 。
塗膜に全くの損傷が無い場合 : 〇
塗膜が部分的に損傷している場合 : △
塗膜が加工部全面で激しく損傷している場合 : X 5 ) プレス成形試験
作成した表面塗装板について、 油圧式エリ クセンタイプのプレス 加工試験機にて円筒絞り試験を行った。 円筒絞り試験は、 ボンチ径 : 5 0 mm, ポンチ肩; R : 5 mm、 ダイス肩 R : 5 mm、 絞り比 : 2. 3、 B H F : 1 t の条件で行い、 金属板が金型から絞り抜ける まで加工を行った。
さらに、 加工部の塗膜損傷状態をルーペにて観察し、 下記の基準 で評価した。
塗膜に全くの損傷が無い場合 : 〇
塗膜が部分的に損傷している場合 : △
塗膜が加工部全面で激しく損傷している場合 : X
6 ) 耐食性
作成した表面塗装板に対し、 J I S— K 5 4 0 0. 9. 1記載の 方法で塩水嘖霧試験を実施した。 塩水は熱吸収性皮膜層の面に噴霧 した。 試験時間は 1 2 0 h と した。
試験片表面にはカッターナイフにてク ロ スカツ トを入れた。 ク ロ スカツ ト部の塗膜の評価方法は、 クロスカッ ト片側の最大膨れ幅が 2 mm未満の場合に〇、 2 mm以上 5 mm未満の場合に△、 5 mm 以上の場合に Xと評価した。
また、 切断時の返り (パリ) が塗装鋼板の評価面側にくるよ うに (上パリ となるように) 作製した平板についても、 前述の塩水噴霧 試験を実施し、 端面からの塗膜の膨れ幅を観察した。 端面部の評価 方法は端面からの膨れ幅が 2 mm未満の場合には〇、 2 mm以上 5 mm未満の場合には△、 5 mm以上の場合には Xと評価した。
7 ) 導電性試験
作成した表面塗装板の熱吸収性皮膜層の導電性を測定した。 測定 方法は、 三井化学社製の抵抗率計 「L o r e s t a _ E P/MC P 一 T 3 6 0」 の四端子法にて表面塗装板の表面の抵抗率を測定し、 以下の基準で評価した。
抵抗率が 0. 1 X 1 0— 2 Ω未満の場合 : 〇
抵抗率が 0 . 1 X 1 0— 2以上 1 . 0 X 1 0 Ω未満の場合 : △ 抵抗率が 1 . 0 X 1 0—1 Ω以上の場合 : X
以下、 作成した表面塗装板の評価結果を記載する。
表面塗装板に被覆された熱吸収性皮膜層の添加顔料種及び添加量 の影響について評価した結果を、 表 5に記载する。
本発明の表面塗装板 (本発明例 I 一 1〜 1 一 2 5 ) は、 8 0での 温度で測定した波数 6 0 0〜 3 0 0 0 c m—1の領域における全放射 率が 0. 7 0以上であることで、 放射率が 0. 7 0未満である比較 例 I 一 2 6 と I — 2 7よ り熱吸収性が高く、 発熱体のカバーとして 好適であることがわかる。
本発明の表面塗装板の熱吸収性皮膜層は、 バインダー固形分 1 0 〇質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 導電性顔料 1 〜 1 5 0質量部から構成されていると、 加工性や導電性に優れたも のとなり、 より好適である。
熱吸収性顔料の添加量が 1 0質量部未満 (比較例 I 一 2 6 ) であ ると放射率が 0. 7未満となり、 熱吸収性が劣るため不適である。 熱吸収性顔料の添加量が 1 5 0質量部超 (本発明例 I 一 5 ) である と放射率は高いが、 折り曲げ性ゃプレス成形性などの加工性が低下 するため、 1 5 0質量部以下がより好適である。
導電性顔料の添加量が 1質量部未満 (本発明例 I 一 8 ) であると 導電性が担保できなくなるため、 1質量部以上がよ り好適である。 導電性顔料の添加量が 1 5 0質量部超 (比較例 I 一 2 7 ) では、 導 電性顔料が熱吸収性を阻害するため、 放射率が 0. 7未満となって 熱吸収性が劣り、 且つ、 皮膜層の加工性も大きく低下するため不適 である。
本発明の表面塗装板の熱吸収性皮膜層に含まれる熱吸収性顔料が 平均粒径 1〜 1 0 0 n mのカーポンプラックで、 且つ、 導電性顔料 が、 平均粒径 0. 5〜5 0 /xmのフ レーク状の金属 N i と鎖状の金 属 N i とから構成されていて、 フ レーク状金属 N i Z鎖状金属 N i の質量比が 0. 1〜 6であると、 熱吸収性と導電性によ り優れるた めより好適である。
熱吸収性顔料が炭パウダーや黒鉛パウダ一のよ うに粒径が比較的 大きなもの (本発明 I _ 6及び I 一 7 ) では、 放射率が比較的低く 、 且つ、 導電性顔料の導電効果を大きな熱吸収性顔料が阻害し導電 性も低下するため、 熱吸収性顔料は、 平均粒径 1〜 1 0 0 n mの力 一ボンブラックがよ り好適である。
本発明の表面塗装板の熱吸収性皮膜層に含まれる導電性顔料がァ ルミ粉やステンレス粉であると、 これらの導電性顔料が熱吸収性を 阻害し易く、 これらを添加したもの (本発明例 I 一 1 5及び I — 1 6 ) は放射率が低下する。
平均粒径 0. 5〜 5 0 μιηのフ レーク状の金属 N i と鎖状の金属 N i とから構成されたものは熱吸収性を阻害しにく く好適である。 しかし、 フ レーク状金属 N i Z鎖状金属 N i の質量比が 0. 1未満 (本発明例 1 — 1 1 ) であると導電性が低下し、 質量比でフ レーク 状金属 N i /鎖状金属 N i が 6超 (本発明例 I 一 1 4 ) では、 熱吸 収性が阻害され放射率が低いので、 フ レーク状金属 N i /鎖状金属 1^ 1 の質量比は 0. 1〜6が好適である。
導電性顔料がフエロシリ コ ン (本発明例 1 — 1 7 ) であると、 放 射率が低下せず、 且つ、 本発明の表面塗装板の耐食性も向上するた めよ り好適である。 熱吸収性顔料を添加せずにフエロシリ コンのみ を添加したもの (本発明例 I 一 1 9 ) は、 放射率が比較的高く、 且 つ、 導電性や耐食性に優れるため好適である。
また、 熱吸収性顔料と して導電性カーボンブラックを用いた場合 、 導電性が向上するためよ り好適である。 本発明の表面塗装板の熱 吸収性皮膜層中に熱吸収性顔料及び導電性顔料に加えて、 防鲭顔料 を添加したもの (本発明例 I 一 2 2至乃 1 — 2 5 ) は、 耐食性に優 れるためよ り好適である。
熱吸収性皮膜層の膜厚が異なる表面塗装板の評価結果を表 6に記 载する。 膜厚が 1 / m未満でのもの (本発明例 I 一 2 8 ) は全放射 率が低く、 また、 5 0 μ πι超では皮膜層の加工性が低下するため、 膜厚は;!〜 5 0 μ mがよ り好適である。
表 7に、 熱吸収性皮膜層の前処理をクロメート処理にした場合 ( 本発明例 1 — 3 5 ) と、 前処理を施さなかった場合 (本発明例 I 一 3 6 ) の評価結果を示す。 前処理の種類を変えても放射率及び熱吸 収性、 他の塗膜性能に変化は無い。
しかし、 ク ロメート処理を施したものはク ロメート処理皮膜中に 含まれる 6価ク ロムの環境問題が発生するため、 これを含まない処 理 (ノ ンク ロメート処理) の方がよ り好適である。
また、 前処理を施さなかった場合、 塗膜密着性及び耐食性が低下 するため、 前処理を施した方がよ り好適である。
表 8に、 片面のみに熱吸収性皮膜層を被覆し、 他の面を未塗装と した場合の熱吸収性評価結果を示す。 片面のみに熱吸収性皮膜を被 覆したものは両面被覆したものよ り熱吸収性に劣る。
片面のみ被覆した場合、 熱源となる発熱体の覆う力パーの外側に 熱吸収性皮膜層を施したもの (比較例 I 一 3 8 ) は、 熱吸収性に効 果が殆ど無く不適である。
(実施例 Π )
以下、 実験に用いた熱吸収性表面塗装板の作成方法について詳細 を説明する。 '
付着量が片面当たり 2 0 g /m2 で両面がめっきされた厚み 0. 6 mmの電気亜鉛めつき鋼板を、 市販のアル力 リ脱脂剤である日本 パーカライジング社製の 「F C— 3 6 4 S」 を 2 0質量%濃度に希 釈した 6 0 °C温度の水溶液中に 1 0秒間浸漬することで脱脂し、 水 洗後、 乾燥した。
次いで、 脱脂した電気亜鉛めつき鋼板上にロールコーターにて化 成処理液を塗布し、 到達板温が 6 0 °Cとなるような条件で熱風乾燥 させた。
本実験では、 化成処理に市販のクロメ一 ト処理である 日本パー力 ライジング社製の 「 Z M 1 3 0 0 AN」 (以下クロメート処理) と 、 市販のノ ンク ロメ一ト化成処理である 日本パー力ライジング社製 の 「C T一 E 3 0 0」 (以下ノンクロメート処理) を使用した。 ィ匕 成処理は金属板の両面にロールコーターにて処理し、 到達板温 6 0 °Cの条件で乾燥した。 クロメート処理の付着量は、 C r付着量で 5 0 m g /m ノンクロメー ト処理の付着量は、 全皮膜量として 2 0 0 m g /m2とした。
更に、 化成処理を施した電気亜鉛めつき鋼板上の片面 (以下、 こ ちらの面を a面と称す) に、 表 2に記載する吸熱皮膜塗料をロール コーターにて塗装し、 熱風を併用した誘導加熱炉にて乾燥硬化させ た。 乾燥硬化条件は、 到達板温 (PMT) で 2 3 0 °Cと した。 化成 処理及び吸熱皮膜塗料は必要に応じて片面もしくは両面に塗装する ことで試験片を得た。 また、 他方の面 (以下、 こちらの面を b面と 称す) は、 未塗装のままのもの、 熱吸収性塗料を塗装したもの、 着 色塗装を施したものを作成した。 なお、 着色塗装は、 日本ペイント 社製のプレコ一 ト鋼板用下塗り塗料 「F L 6 4 1 プライマー」 を乾 燥膜厚で 5 μΐη塗装し、 ΡΜΤ 2 1 0 °Cで焼き付けたのち、 更にそ の上に日本ペイント社製のブラックメタ リ ック色の上塗り塗料 「F L 7 1 0 0 J を乾燥膜厚で 1 5 μ m塗装し、 P M T 2 3 0 °Cで焼き 付けた。
作成した表面塗装板の詳細を表 9〜 1 0に記載する。 なお、 表 9 〜 1 0中の熱吸収性塗膜の膜厚は乾燥後の膜厚である。
表 9
執 a面の塗料 b面の塗料 熱吸収性
: wり 吸熱 フ。レス 涂 の
No. 化成処理種 放射率 密着性 耐食性 導電性 皮膜の 曲 tmげり件 1ェ 形 1 紘 の 棰類 腺 種類 厚 ffiSA 外観 状^
H— 1 ノンク — !··¾ι 塗料 2— 1 5 μιη 着色塗料 20μιη 0.75 〇 〇 〇 〇 o o X o 〇
Π— 2 ノンタロヌート 塗料 2— 2 0 μιη 着色塗科 20μπι 0.80 o 〇 o 〇 o o X o o π— ¾ 1 o 塗料 2— 3 0 着色塗料 20μΐϋ 0.85 ◎ 〇 o o X A
Π— 4 ±t 塗料 2— 4 5 μπι 着色塗料 20μιη 0 71 〇 〇 o X o ο
Π— 5 ノン ロヌー ^Ji 塗料 2— 5 ο μιη 着色塗料 20μπι 0.76 〇 O o 〇 〇 o X o
Π— 6 ノンクロメ一トタ 塗料 2— 6 5 μπι 着色塗料 20μιη 0.86 ◎ 〇 o o o o X o 〇
Π— 7 ノンク メ一ト^ 塗料 2— 7 5 zm 着色塗料 20μπι 0.89 ◎ 〇 〇 〇 〇 〇 X 〇 〇 本発明例
Π— 8 ノンクロメ 処理 塗料 2— 8 5 zm 着色塗料 20 μπ 0.90 ◎ O 〇 Δ △ 〇 X o 〇
H— 9 ノンク ϋメ一ト 塗料 2— 9 5 jum 着色塗料 20 μπ 0.74 〇 〇 o o 〇 o X o △
Π—10 ノン メート処理 塗料 2— 10 5 μιη 着色塗料 20μπι 0.77 〇 〇 〇 〇 〇 〇 X 〇 〇
Π—11 /ンク ヌート 揮 塗料 2—11 5 μιη 着色塗料 20μπι 0.74 〇 〇 o o o A 〇 o o
Π—12 塗料 2— 12 5 μια 着色塗料 20μπι 0.78 o 〇 o o o ◎ o o 〇
ΤΤ— "Π ノン々 1·机 ffl 塗料 2— 13 5 jum 着色塗料 20μιη 0 75 〇 〇 X o o 11 r5 塗料 2— 14 5 μιη 着色塗料 20μπΐ 〇 〇 o X oリ n
Π—15 ノンクロメート 塗料 2—15 5 μιη 着色塗料 20μπι 0.88 ◎ O 〇 〇 o 〇 X 〇 o
Π— 16 ノンクロメ-ト処理 塗料 2— 16 5 μπι 着色塗料 20μπ 0.88 ◎ O 〇 △ △ 〇 X Δ 〇
Π-17 ノンクロメ-ト処理 塗料 2— 17 5 μιη 着色塗料 20μπι 0.88 ◎ O 〇 Δ Δ 〇 X Δ 〇
Π-18 ノン メ-ト処理 塗料 2 _ 18 5 μιη 着色塗料 20μπι 0.88 〇 〇 〇 〇 〇 〇 X 〇 X
Π— 19 ノン知メ-ト処理 塗料 2— 19 5 μπι 着色塗料 20μπι 0.65 X 〇 〇 〇 〇 〇 X 〇 〇 比較例
Π-20 ノン ;!一ト処理 塗料 2—20 5 μ m 着色塗料 20μπι 0.66 X 〇 o 〇 △ 〇 X 〇 〇
Π— 21 ノンクロメ-ト処理 塗料 2— 21 5 μπι 着色塗料 20μιπ 0.65 X o 〇 O △ 〇 X 〇 〇
Π— 22 ノンクメート処理 塗料 2一 22 5 μιη 着色塗料 20μιη 0.65 X 〇 〇 〇 〇 〇 X 〇 〇
Π— 23 ノン メート処理 塗料 2— 23 5 μπι 着色塗料 20μϋΐ 0.45 X 〇 o O 〇 〇 〇 〇 〇
Π-24 ノンクメ-ト処理 塗料 2— 24 5 μιη 着色塗料 20μιη 0.55 X o 〇 〇 〇 〇 X 〇 〇
表 10
a面の塗料 b面の塗料 熱吸収性 吸熱
吸熱 折り Tレス 塗料の
No. 化成処理種 放射率 密着性 耐食性 導電性 皮膜の 曲げ性 成形性 経時の 膜厚 膜厚 温度 A 温度 B
状態 比較例 Π-25 ノン知メ-ト処理 塗料 2— 2 0. μηι着色塗料 20 /im 0.60 X 〇 〇 〇 〇 X X o 〇
Π-26 ノン メート処理 塗料 2— 2 1 μη 着色塗料 20 im 0.69 △ 〇 〇 〇 〇 Δ X 〇 〇
Π— 27 ノンク。メ-ト処理 塗料 2— 2 3 μΒΐ 着色塗料 20 μιιι 0.75 〇 〇 O 〇 〇 Δ X 〇 〇
Π— 28 ノン メ-ト処理 塗料 2— 2 0 μπι 塗料 2- 2 5 η 0.76 〇 〇 〇 〇 〇 〇 X 〇 〇 本発明例
Π-29 ノン メ-ト処理 塗料 2— 2 0 μπι 未塗装 0.76 〇 Δ 〇 〇 〇 〇 X 〇 〇
Π— 30 ク ϋメート処理 塗料 2— 2 5 μιη 着色塗料 20 μπ 0.76 〇 〇 O Δ △ O X 〇 〇
Π— 31 未処理 塗料 2 - 2 ο μΏ> 着色塗料 20/im 0.76 〇 O X X X O X 〇 〇 比較例 Π-32 ノンクロメート処理 塗料 2 5 μπι 0.10 X 〇 X X
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定
実施例 I におけると同様であるが、 本実験では作成した表面塗装 板の a面の放射率を測定した。
2 ) 表面塗装板の熱吸収性測定試験
実施例 I におけると同様であるが、 以下の基準で評価した。 以下 、 温度 Aの評価基準を説明する。 また、 本実験では作成した表面塗 装板の a面が測定箱の内側 (熱源側) となるように設置した。
[ { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装板での 測定値) } ≥ 4 °C ] のとき : ◎
[ 4 °C > { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装 板での測定値) } ≥ 3 °C ] のとき : 〇
[ 3 °C > { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装 板での測定値) } ≥ 2 °C ] のとき : △
[ 2 °C > { (電気亜鉛めつき鋼板の測定値) 一 (評価する表面塗装 板での測定値) } ] のとき : X
以下、 温度 Bの評価基準を説明する。
[ 2 0 °C≥ { (評価する表面塗装板での測定値) 一 (電気亜鉛めつ き鋼板の測定値) } ] のとき : 〇
[ { (評価する表面塗装板での測定値) 一 (電気亜鉛めつき鋼板の 測定値) } > 2 0 °C ] のとき : △
3 ) 塗膜密着性試験
実施例 I におけると同様。 ただし、 本試験では、 a面の密着性を 評価した。
4 ) 塗膜の折り曲げ試験
実施例 I におけると'同様。 伹し、 本試験は、 a面側が加工部外側 となるよ うに実施し、 a面の加工部の塗膜損傷状態を観察して、 評 価した。
5 ) プレス成形試験
実施例 I におけると同様。 但し、 本試験は、 a面側が加工部外側 となるように実施し、 a面の加工部の塗膜損傷状態を観察して、 評 価した。
6 ) 耐食性
作成した表面塗装板を J I S— K 5 4 0 0 . 9 . 1記載の方法で 塩水嘖霧試験を実施した。 塩水は試験片の a面に噴霧した。 試験時 間は 7 2 h と した。 そして、 a面側の平面部と端面部の白鲭発生状 態を観察し、 平面部と端面部のいずれも白鲭が発生していない場合 を◎、 端面部に若干の白鯖が発生しているが平面部には殆ど白鲭が 発生していない場合を〇、 端面部に白鯖が発生し、 且つ平面部にも 白鲭が部分的に発生している場合を△、 端面部と平面部の全面に白 鲭が癸生している場合は Xと評価した。
7 ) 導電性試験 ,
実施例 I におけると同様。 但し、 本試験は、 a面で実施した。
8 ) 吸熱塗料の経時の状態観察
金属板の a面に塗装した吸熱性塗料を常温で 1 ヶ月放置した後の 塗液の状態を目視にて観察し、 次のよ うに評価した。
塗液を作成した時の状態と比べて変化無し : 〇
塗液を作成した時の状態と比べて粘度が増加している : △ 塗液を作成した時の状態と比べて塗液がゲル状になっている、 も しく は固まっている : X
9 ) 吸熱皮膜の外観
金属板上の a面側に被覆した皮膜の外観を目視にて観察し、 次の ように評価した。
平滑な外観である : 〇 添加顔料が皮膜厚より僅かに大きいため、 皮膜面表面に僅かな凹 凸外観が観察される : △
添加顔料が皮膜より非常に大きいため、 皮膜表面に激しい凹凸外 観が観察される : X
以下評価結果の詳細について述べる。
本発明の表面塗装板は、 バイ ンダー固形分 1 0 0質量部に対して 粒径 0. 1 μ m未満のカーボンを 1〜 2 0質量部と粒径 0. 1 μηι以 上 5 0 μπι以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0. 1 μιη未満のカーボンと粒径 0 . 1 μιη以上 5 0 μηι以下のカーボン との合計が 1 0〜 1 5 0質量部である熱吸収性皮膜層を乾燥膜厚で 1 μηι以上被覆することで、 熱吸収性の高い表面処理粉金属板を得 ることができた。
本発明の表面塗装板を使い、 発熱体力パーを作成する場合は、 熱 吸収性皮膜を発熱体力パーの内側と しなければならない。 本発明の 吸熱皮膜を発熱体力パーの外側のみに被覆した場合 (比較例 Π— 3 2 ) 、 力パー内部の温度 (吸熱性温度 Α) は殆ど低下しないため、 不適である。
本発明の表面塗装板の熱吸収性皮膜層で、 8 0 °Cの温度で測定し た波数 6 0 0〜 3 0 0 0 c m— 1の領域における全放射率が 0. 7 0 未満であるもの (本発明例 Π— 2 6 ) は、 カバー内部の温度 (吸熱 性 : 温度 A) が殆ど低下しないため、 全放射率は 0. 7 0以上のも のが、 より好適である。
本発明の熱吸収性皮膜層に導電性顔料を添加した場合 (本発明例 Π— 1 1 ) 、 導電性が付与されるため、 発熱体力パーにアース性な どを求められる用途には、 よ り好適である。 本発明の熱吸収性皮膜 層に防鲭顔料を添加したばあい (本発明例 Π— 1 3, Π - 1 4 ) 、 耐食性が向上するため、 耐食性が求められる用途には、 より こ うて きである。 さ らに、 耐食性と導電性の両特性を有するフエロシリ コ ンを本発明の熱吸収性皮膜層に添加した場合 (本発明例 Π— 1 2 ) 、 導電性が付与された上、 耐食性も向上するため、 よ り好適である 。 また、 発熱体力パーの内側のみに熱吸収性皮膜を被覆して、 外側 には何も被覆していないものは、 力パー内部の温度 (吸熱性温度 A ) は低く吸熱性に優れるが、 金属板自身の温度 (吸熱性温度 B) は 高い。 そのため、 発熱体力パーの内側に熱吸収性皮膜を被覆した上 に、 外側にも本発明の吸熱性皮膜もしく は一般に公知の着色塗膜を 1 0 μ m以上被覆した方が、 よ り好適である。
(実施例 m)
以下、 実験に用いた熱吸収性表面塗装板の作成方法について詳細 を説明する。
めっき付着量が片面当たり 6 0 g /m2 で両面がめっきされた厚 み 0. 6 mmの溶融合金化亜鉛めつき鋼板 (GA) を、 市販のアル力 リ脱脂剤である日本パーカライジング社製の 「F C _ 3 6 4 S」 を 2 0質量%濃度に希釈した 6 0 °C温度の水溶液中に 1 0秒間浸漬す ることで脱脂し、 水洗後、 乾燥した。 また、 めっき付着量が片面当 たり 6 0 g /m2 で両面がめっきされた厚み 0. 6 mmのアルミめつ き鋼板 (アルシート) と厚み 0. 6 mmのアルミ板 (A L) を、 市販 のアルミ用アル力リ脱脂剤である 日本パー力ライジング社製の 「F C一 3 1 5」 を 4 0質量%濃度に希釈した 7 0 °C温度の水溶液中に 1 0秒間浸漬することで脱脂し、 水洗後、 乾燥した。
次いで、 脱脂しためつき鋼板およびアルミ板上に口一ルコータ一 にて化成処理液を塗布し、 到達板温が 6 0 °Cとなるよ うな条件で熱 風乾燥させた。
本実験では、 化成処理に市販のノ ンクロメート化成処理である 日 本パーカライジング社製の 「C T一 E 3 0 0」 を使用した。 化成処 理は金属板の両面にロールコーターにて処理し、 到達板温 6 0 °Cの 条件で乾燥した。 クロメート処理の付着量は、 〇 ]:付着量で 5
Figure imgf000057_0001
/m2 、 ノ ンクロメート処理の付着量は、 全皮膜量と して 2 0 0 mg /m2 とした。
更に、 化成処理を施しためっき鋼板上の片面 (以下、 こちらの面 を a面と称す) に、 実施例 I の表 1 に記載の塗料 1 一 2をロールコ 一ターにて塗装し、 熱風を併用した誘導加熱炉にて乾燥硬化させた 。 乾燥硬化条件は、 到達板温 (PMT) で 2 3 0 °Cと した。 化成処 理及び吸熱皮膜塗料は必要に応じて片面もしく は両面に塗装するこ とで試験片を得た。 また、 他方の面 (以下、 こちらの面を b面と称 す) は、 着色塗装を施したものを作成した。 なお、 着色塗装は、 日 本ペイント社製のプレコ一ト鋼板用下塗り塗料 「F L 6 4 1 プライ マー」 を乾燥膜厚で 5 μ m塗装し、 PMT 2 1 0 °Cで焼き付けたの ち、 更にその上に日本ペイント社製のブラックメタ リ ック色の上塗 り塗料 「F L 7 1 0 0」 を乾燥膜厚で 1 5 μ m塗装し、 P MT 2 3 0 °Cで焼き付けた。
作成した表面塗装板の詳細を表 1 1に記載する。 なお、 表 1 1 中 の熱吸収性塗膜の膜厚は乾燥後の膜厚である。
表 1
熱吸収性 折り フ°レス
No. 原板 放射率 密着性 耐食性 備考
温度 A 温度 B 曲げ性 成形性
n Π-1 GA 0. 90 〇 〇 〇 〇 〇 〇 〇
D
本発明例 m— 2 ALシ-ト 0. 80 〇 〇 〇 〇 〇 〇 〇 吸熱性試験時に金属板の熱が
Π- 3 AL 0. 80 〇 〇 〇 〇 〇 〇 〇 表面全体に均一化されていた
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定
実施例 Πにおけると同様
2 ) 表面塗装板の熱吸収性測定試験
実施例 Πにおけると同様
3 ) 塗膜密着性試験
実施例 Πにおけると同様
4 ) 塗膜の折り曲げ試験
実施例 Πにおけると同様
5 ) プレス成形試験
実施例 Πにおけると同様
6 ) 耐食性
実施例 Πにおけると同様
7 ) 導電性試験
実施例 Π おけると同様
以下評価結果の詳細について述べる。
本発明の表面塗装板は、 原板に溶融合金化亜鉛めつき鋼板のよ う な鉄一亜鉛合金メ ッキ鋼板であると (本発明例 m— 1 ) 放射率が更 に高くなり よ り好適である。 また、 原板にアルミのよ うに熱伝導性 の高い材料を用いたり (本発明例 111— 3 ) 、 このよ う な材料を鋼材 などにめっきしたもの (本発明例 m— 2 ) は、 金属板中もしく は金 属板表面で熱が発散し、 金属材板表面の熱が均一化されるため、 よ り好適である。
(実施例 IV )
以下、 実験に用いた熱吸収性塗装板の作成方法について詳細を説 明する。
板状のアルミナ系セラミ ックス (以下、 セラミ ックス板と称する ) に表 3に記載する熱吸収性皮膜塗料をバーコ一ターにて塗装し、 常温にて約 2 4時間乾燥した。 なお、 塗装は、 必要に応じて、 表裏 両面に塗装したものと片面のみ塗装したものとを作製した。
作製した表面塗装板の詳細を表 1 2〜 1 4に示す。 表 1 2, 1 3 に示した表面塗装板は、 いずれも同じ種類の熱吸収性皮膜層を両面 に同じ条件で被覆したものであり、 表 1 4に示した表面塗装板は、 いずれも片面のみに熱吸収性皮膜層を被覆し、 他の面は被覆してい ないものである。
表 1 2
No. 塗料種 膜厚 放射率 熱吸収性 耐衝撃性 輔生
IV- 1 塗料 3— 1 5 μϊΆ 0.80 〇 〇 〇
IV- 2 塗料 3— 2 ο μιη 0.91 〇 〇 Δ
IV- 3 塗料 3— 3 Ο βΊΆ 0.94 〇 〇 △
IV- 4 塗料 3— 4 ο μιη 0.95 〇 X △
IV- 5 塗料 3— 5 5 μπι 0.95 〇 X Δ
IV- 6 塗料 3— 6 5 ιη 0.80 〇 〇 △
IV- 7 塗料 3 _ 7 5 μ m 0.78 Δ 〇 Δ
IV- 8 塗料 3— 8 5 βίΆ 0.81 〇 〇 X
IV- 9 塗料 3— 9 5 βίΆ 0.92 〇 〇 〇
IV— 10 塗料 3— 10 5 μηι 0.80 〇 〇 〇 太 1
IV - 11 塗料 3—11 5 jum 0.92 〇 〇 X
IV— 12 塗料 3— 12 5 jum 0.92 〇 〇 △
IV— 13 塗料 3— 13 5 jam 0.93 〇 〇 △
IV— 14 塗料 3— 14 5 ΊΆ 0.72 △ 〇 〇
IV— 15 塗料 3— 15 5 jum 0.72 Δ 〇 〇
IV— 16 塗料 3— 16 5 βΊΆ 0.73 Δ 〇 〇
IV— 17 塗料 3— 17 5 μ,η 0.95 〇 〇 Δ
IV— 18 塗料 3— 18 5 f m 0.92 〇 〇 〇
IV— 19 塗料 3— 19 5 m 0.80 〇 〇 〇
IV— 20 塗料 3— 20 5 μπι 0.91 〇 〇 Δ
IV— 21 塗料 3— 21 5 m 0.65 X 〇 〇 比較例
IV— 22 塗料 3— 22 5 ιη 0.65 X X 〇 表 1 3
Figure imgf000062_0001
以下、 作成した塗装カバーの評価試験について詳細を説明する。
1 ) 表面塗装板材料の放射率測定
実施例 I におけると同様。
2 ) 表面塗装板材料の熱吸収性測定試験
実施例 I におけると同様であるが、 本実験では、 図 2中の熱伝対 8の温度のみを測定した。
更に、 塗装しない未処理板についても、 同様の測定を行い、 測定 値を比較して、 以下の基準で評価した。 [ { (未処理板の測定値) 一 (評価する表面処理板での測定値) }
≥ 4 °C] のとき : 〇
[ 4 °C> { (未処理板の測定値) 一 (評価する表面処理板での測定 値) } ≥ 2 °C] のとき : △
[ 2 °C> { (未処理板の測定値) 一 (評価する表面処理板での測定 値) } ] のとき : X
3 ) 導電性試験
作成した表面塗装板の熱吸収性皮膜層の導電性を測定した。 測定 方法は、 東亜電波工業社製の抵抗測定装置 ( S M— 8 2 2 0 ) に東 亜電波工業社製の平板試料測定用電極 ( SME— 8 3 1 0 ) を取り 付けて、 皮膜表面の表面抵抗率を測定し、 以下の基準で評価した。 表面抵抗率が 1 . 0 X 1 09 Ω以下の場合 : 〇
表面抵抗率が 1 . 0 Χ 1 09 Ω超、 1 . O X I O H Q以下の場合 : Δ
表面抵抗率が 1 . 0 X 1 011 Ω超の場合 : X
4 ) 塗膜の耐衝撃性試験
J I S K 5 4 0 0 8. 3. 2のデュポン式耐衝撃性試験を 実施した。 なお、 試験実施時の打ち型のサイズは 1 Z 2インチ ( 1 2. 7 mm) 、 重りの質量は 5 0 0 g、 重りの高さは 2 0 c mとし た。 そして、 試験後のサンプル表面を目視にて観察し、 以下の基準 で評価した。
塗膜の割れや剥離が確認できない場合 : 〇
塗膜の割れや剥離が確認できる場合 : X
表面塗装板に被覆された熱吸収性皮膜層の添加顔料種及び添加量 の影響について評価した結果を表 1 2に示す。 なお、 表 1 2は、 い ずれも非金属板の両面に同条件の熱吸収性皮膜を塗装したサンプル を用いた試験の結果である。 本発明の表面塗装板 (本発明例 IV— 1〜 2 0 ) は、 8 0 °C以上の いずれかの温度で測定した波数 6 0 0〜 3 0 0 0— 1 c mの領域にお ける全放射率が 0 . 7 0以上であることで、 放射率が 0 . 7 0未満 である比較例 2 1, 2 2よ り熱吸収性が高く、 発熱体の力パーと し て好適であることがわかる。
本発明の表面塗装板の熱吸収性皮膜層は、 バインダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 導電性顔料 1 〜 1 5 0質量部から構成されていると、 加工性や導電性に優れたも のとなり、 よ り好適である。
熱吸収性顔料の添加量が 1 0質量部未満 (比較例 IV— 2 1 ) であ ると、 放射率が 0 . 7 0未満となり、 熱吸収性が劣るため不適であ る。 熱吸収性顔料の添加量が 1 5 0質量部超 (本発明例 IV— 5 ) で あると、 放射率は高いが、 耐衝撃性が低下するため、 1 5 0質量部 以下がよ り好適である。
導電性顔料の添加量が 1質量部未満 (本発明例 IV— 8 ) であると 、 導電性が担保できなくなるため、 1質量部以上がより好適である 。 導電性顔科が 1 5 0質量部超 (比較例 IV— 2 2 ) では、 導電性顔 料が熱吸収性を阻害するため、 放射率が 0 . 7 0未満となって熱吸 収性が劣り、 かつ、 皮膜層の耐衝撃性も大きく低下するため、 不適 である。
本発明の表面塗装板の熱吸収性皮膜層に含まれる熱吸収性顔料が 、 平均粒径 1〜 1 0 0 n mのカーボンブラックで、 かつ、 導電性顔 料が、 平均粒径 0 . 5〜 5 0 μ mのフレーク状金属 N i /鎖状金属 N i の質量比が 0 . 1〜 6であると、 熱吸収性と導電性により優れ るため、 より好適である。
熱吸収性顔料が、 炭パウダーや黒鉛パウダーのように粒径が比較 的大きなもの (本発明例 IV— 6, IV - 7 ) では、 放射率が比較的低 く、 かつ、 導電性顔料の導電効果を阻害して導電性も低下するため
、 熱吸収性顔料は、 平均粒径 1〜 1 0 O n mのカーボンブラックが よ り好適である。
本発明の表面塗装板の熱吸収性皮膜層に含まれる導電性顔料が、 アルミ粉やステンレス粉であると、 これらの導電性顔料が熱吸収性 を阻害し易く、 これらを添加したもの (本発明例 IV— 1 5, IV- 1 6 ) は、 放射率が低下する傾向にある。
平均粒径 0. 5〜 5 0 μ mのフ レーク状の金属 N i と鎖状の^属 N i とから構成された導電性顔料は、 熱吸収性を阻害しにく く好適 である。 しかし、 フ レーク状金属 N i Z鎖状金属 N i の質量比が 0 . 1未満 (本発明例 IV— 1 1 ) であると、 導電性が低下し、 質量比 でフ レーク状金属 N i /鎖状金属 N i 力 S 6超 (本発明例 IV— 1 4) では、 熱吸収性が阻害される傾向にあり放射率が低下しているので 、 フ レーク状金属 N i /鎖状金属 N i の質量比は 0. 1〜 6が好適 である。
導電性顔料がフエ口シリ コ ン (本発明例 IV— 1 7 ) であると、 放 射率が低下しないためよ り好適である。 熱吸収性顔料を添加せずに フエ 口 シリ コ ンのみを添加したもの (本発明例 IV— 1 9 ) は、 放射 率が比較的高く、 かつ、 導電性に優れるため、 好適である。
また、 熱吸収性顔料と して導電性カーボンブラックを用いた場合 、 導電性が向上するためよ り好適である。
熱吸収性皮膜層の膜厚が異なる表面塗装板の評価結果を表 1 3に 示す。 なお、 表 1 3は、 いずれも非金属板の両面に同条件の熱吸収 性皮膜を塗装したサンプルを用いた試験の結果である。
膜厚が 1 μ πι未満のもの (本発明例 IV— 2 3 ) は、 全放射率が低 くなる傾向にあるため、 膜厚は 1 /i m以上がよ り好適である。
表 1 4に、 片面のみに熱吸収性皮膜層を被覆し、 他の面を未塗装 とした場合の熱吸収性評価結果を示す。 片面のみ被覆した場合、 熱 源となる発熱体を覆うカバ一の外側に熱吸収性皮膜を施したもの ( 比較例 IV— 3 1 ) は、 熱吸収性に劾果が殆ど無く不適である。
(実施例 V )
以下、 実験に用いた熱吸収性塗装板の作成方法について詳細に説 明する。
アルミナ系のセラミ ックス板上に、 表 4に示した熱吸収性皮膜塗 料をバーコ一ターにて塗装し、 常温にて約 2 4時間乾燥した。 作成 した表面塗装板の詳細を表 1 5に示す。 表 1 5に示した表面塗装板 は、 いずれも同じ種類の熱吸収性皮膜層を両面に同じ条件で被覆し たものである。
以下、 作成した表面処理板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定試験
実施例 IVにおけると同様。
2 ) 表面塗装板の熱吸収性測定試験
実施例 IVにおけると同様。
3 ) 塗膜の耐衝撃性試験
実施例 IVにおけると同様。
4 ) 吸熱塗料の経時の状態観察
セラミ ック板に塗装した各吸熱性皮膜塗料を実施例 Πにおけると 同様に評価した。
5 ) 吸熱性皮膜の外観
セラミ ック板上に被覆した皮膜の外観を目視にて観察し、 実施例
Πにおけると同様に評価した。
以下、 作成した表面塗装板の評価結果について詳細を説明する。 表 1 5に示したよ うに、 本発明の表面塗装板は、 樹脂固形分 1 0
0質量部に対して、 粒径 0 . l /z m未満のカーボンを 1〜 2 0質量 部と粒径 0. 1 μ πι以上 3 0 以下のカーボンを 1〜 1 4 0質量 部を含み、 かつ、 粒径 0. 1 μ m未満のカーボンと粒径 0. 1 ; u m 以上 5 0 /x m未満のカーボンとの合計が 1 0〜 1 5 0質量部である 熱吸収性皮膜層を乾燥膜厚で 1 μ πι以上被覆することで、 熱吸収性 の高い表面塗装板を得るこ とができた。
表 1 5
熱吸収性塗料 ロ 執涂¾1«の Z TTO Λ5¾
No. mm 放射率 熱吸収性 耐衝撃性 導電性 終時の状熊 のタ 11-観
V V— 1 \J f t τη nリ. 7ς o o X
V nリ. sn o o X o
V V— U β II π o X A
V ½: 涂 A— A 5 m ΠJ 71 ο V π
^r^^ ^ν 1 V V— A—— m o
V 涂 A — β 5 m U. ΟΌ
V V—— 7 丄 A —— 7 5 i m v- π
V o 5 jU m π υ. o ynu 八 八 リ り
V 5 β ΪΏ. π 7/1 r
リ A
V u 5 /z m U. ΌΟ /\
比較例 V V— 1 1 S / / τη υ· ΌΌ■ y八 V /\ o 本御月例 V V— 12 塗料 4— 12 5 μ m 0リ 88 o 〇 X ο 〇
V— 13 塗料 4— 13 5 μ m 0.65 X 〇 X 〇 〇 比較例
V— 14 塗料 4— 14 5 μ m 0. 65 X 〇 X 〇 〇
V— 15 塗料 4— 15 5 μ m 0.88 〇 X X Δ - 〇 本発明例 V— 16 塗料 4— 16 5 z m 0. 88 〇 X X Δ 〇
V— 17 塗料 4— 17 5 m 0. 80 〇 〇 X 〇 X
V— 18 塗料 4— 18 5 jU m 0.45 X 〇 〇 〇 〇 比較例
V— 19 塗料 4— 19 5 μ m 0.55 X 〇 X 〇 〇
(実施例 VI )
以下、 実験に用いた塗装板材料の作成方法について詳細を説明す る。
板状のポリカーボネー ト一 A B Sポリマーァロイ系の樹脂 (以下 、 プラスチック板と称する) 上に、 表 3の塗料 3— 2 と塗料 3— 2 0をバーコ一ターにて塗装し、 常温にて約 2 4時間乾燥した。 作成 した表面塗装板の詳細を表 1 6に示す。 表 1 6に示した表面塗装板 は、 いずれも同じ種類の吸熱性皮膜層を両面に同じ条件で被覆した ものである。
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定試験
実施例 IVにおけると同様。
2 ) 表面塗装板の熱吸収性測定試験
実施例 IVにおけると同様。
3 ) 塗膜の耐衝擊性試験
実施例 IVにおけると同様。
表 1 6に作成した表面塗装板の評価結果を示す。 本発明の表面塗 装板は、 母材に樹脂などのプラスチック材料を用いても熱吸収性に 効果があり、 好適である。
表 1 6
Figure imgf000069_0001
(実施例
以下、 実験に用いた熱吸収性プレコート金属板の作成方法につい て詳細を説明する。
厚み 0. 6 mmの金属板を、 市販のアルカ リ脱脂剤である日本パ 一力ライジング社製の 「F C 4 3 3 6」 を 2質量%濃度に希釈した 6 0 °C温度の水溶液中にてアルカリ脱脂し、 水洗後、 乾燥した。 次 いで、 脱脂した電気亜鉛めつき鋼板上にロールコーターにて化成処 理液を塗布し、 到達板温が 6 0 °Cとなるよ うな条件で熱風乾燥させ た。
本実験では次の金属板を用いた。
G I : 溶融亜鉛めつき鋼板 ( Z 1 2 )
G A : 合金化亜鉛めつき鋼板 (F 0 8 )
A 1 シート : アルミめつき鋼板 (アルミ付着量 : 片面 6 0 g /m 2 )
S U S : ステンレス鋼板 ( S U S 4 3 0、 表面ブライ ト仕上げ) また、 本実験では、 化成処理に市販のクロメート処理である日本 パーカライジング社製の 「 ZM 1 3 0 0 AN」 (以下クロメート処 理) と、 市販のノ ンクロメート化成処理である 日本パー力ライジン グ社製の 「C T一 E 3 0 0」 (以下ノ ンクロメー ト処理) を使用し た。 化成処理は金属板の両面にロールコーターにて処理し、 到達板 温 6 0 °Cの条件で乾燥した。 クロメート処理の付着量は、 C r付着 量で 5 0 m g Zm2、 ノ ンクロメート処理の付着量は、 全皮膜量と して 2 0 0 m g /m2と した。
更に、 化成処理を施した金属板上の片面 (以下、 こちらの面を a 面と称す) に、 先に作成した表 1及び 2よ り選出した塗料をロール コーターにて塗装し、 熱風を併用した誘導加熱炉にて乾燥硬化させ た。 乾燥硬化条件は、 到達板温 (PMT) で 2 3 0 °Cと した。 また 、 他方の面 (以下、 こちらの面を b面と称す) は、 着色塗料もしく はク リヤー塗料をロールコーターにて塗装した。 なお、 着色塗装は 、 日本ペイント社製のプレコート鋼板用下塗り塗料 「F L 6 4 1 プ ライマー」 を乾燥膜厚で 5 μηιロールコーターにて塗装し、 ΡΜΤ 2 1 0 °Cで焼き付けたのち、 更にその上に日本ペイント社製の白色 上塗り塗料 「F L 3 5 1 0」 を乾燥膜厚で 1 5 μιηロールコーター にて塗装し、 Ρ ΜΤ 2 3 0 °Cで焼き付けた。 また、 タ リヤー塗料は 、 日本ペイント社製の F L 5 0 0 0ク リヤーを 3 /Z m塗装した。 な お、 本実験で用いた着色塗膜層のプライマー塗料 「F L 6 4 1ブラ イマ一」 は、 クロメート処理を施した金属板上に塗装する場合には 、 ス ト ロ ンチウムクロメー トを樹脂固形分に対して 4 8質量%添加 したクロメ一トタイプのものを用い、 ノ ンク口メート処理を施した 金属板上に塗装する場合には、 カルシウムシリケートを 3 0質量% 添加したノンク ロメ一トタイプのものを用いた。
作成したプレコート金属板の詳細を表 1 7に記载する。 なお、 表 1 7中の熱吸収性塗膜の膜厚は乾燥後の膜厚である。
以下、 実験に用いた冷蔵庫の作成方法について詳細を記載する。 市販の小型冷蔵庫の金属外板を取り外した。 次に、 取り外した金 属板と同じ形状に切断、 加工した前記プレコー ト金属板を、 プレコ ート金属板の a面が冷蔵庫の内側となるよ うにして取り付けること で冷蔵庫を作成した。
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 冷蔵庫外板の放射率測定
日本分光社製のフーリエ変換赤外分光光度計 「 VA L OR— III 」 を用いて、 冷蔵庫外板に用いるために作成したプレコート金属板 の板温度を 8 0でにしたときの波数 6 0 0〜 3 0 0 0 c m-1の領域 における赤外発光スぺク トルを測定し、 これを標準黒体の発光スぺ ク トルと比較することで、 属板の全放射率を測定した。 なお、 標準 黒体は鉄板にタ コスジャパン社販売 (ォキツモ社製造) の 「TH I - I B黒体スプレー」 を 3 0 ± 2 μ mの膜厚でスプレー塗装したも のを用いた。
また、 放射率の測定は、 作成したプレコート金属板の a面を測定 した。
2 ) 冷蔵庫内部の温度測定試験
作成した冷蔵庫の電源を入れ、 通常の条件で運転させ、 運転開始 2 4 h後の内部の主熱源であるモーター付近の温度を、 デジタル温 度にて測定した。 なお、 温度は、 モーターから 5 c m離れた箇所の 温度を測定した。
更に、 市販の冷蔵庫に元々取り付けてあつた従来の金属外板 (従 来金属外板) を取り付けた状態の冷蔵庫内部の温度を前述した条件 下で測定し、 これと評価する冷蔵庫の想定温度とを比較して、 以下 の様に評価した。
以下、 冷蔵庫内部の温度の評価基準を説明する。
[ { (従来金属外板を有する冷蔵庫の測定値) 一 (評価する冷蔵庫 での測定値) } ≥ 4 °C] のとき : 〇
[ 4°C> { (従来金属外板を有する冷蔵庫の測定値) 一 (評価する 冷蔵庫での測定値) } ≥ 2 °C] のとき : △
[ 2 °C> { (従来金属外板を有する冷蔵庫の測定値) 一 (評価する 冷蔵庫での測定値) } ] のとき : X
3 ) 冷蔵庫外板の皮膜密着性試験
冷蔵庫外板用に作成したプレコ一ト金属板の a面の皮膜層に、 1 m m角の碁盤目状の切れ目をカッターナイフで入れ、 a面が ΰとな るようにエリ クセン試験機で 7 mm押し出した後に、 テープ剥離試 験を行った。
碁盤目状の切れ目の入れ方、 エリ クセンの押し出し方法、 テープ 剥離の方法については、 J I S— K 5 4 0 0. 8. 2記載の方法、 及び、 J I S—K 5 4 0 0. 8. 5記載の方法に準じて実施した。 テープ剥離後の評価は、 J I S— K 5 4 0 0. 8. 5記載の評価 の例の図に従って行い、 評点 1 0点の時に〇、 8点以上 1 0点未満 の時に△、 8点未満の時に Xと評価した。
4 ) 冷蔵庫外板の加工性
作成したプレコ一ト金属板を冷蔵庫の外板に加工した際に、 a面 側加工部の皮膜の損傷状態を目視にて観察して、 次のように評価し た。
加工部で皮膜の亀裂や剥離が無く良好な外観である : 〇
加工部の皮膜に小さな亀裂と剥離が発生している : △
加工部でほぼ全面的に皮膜が剥離している : X
5 ) 冷蔵庫外板の耐食性
冷蔵庫外板用に作成したプレコ一ト金属板を J I S— K 5 4 0 〇 . 9. 1記載の方法で塩水嘖霧試験を実施した。 塩水は試験片の a 面に噴霧した。 試験時間は 4 8 hと した。 そして、 a面側の平面部 の白鲭発生状態を観察し、 平面部から白鲭が発生していない場合を 〇、 平面部に白鲭は発生しているが赤鲭は発生していない場合を△ 、 平面部にも白鲭と赤鲭が発生している場合を Xと評価した。
6 ) 冷蔵庫外板の導電性試験
冷蔵庫外板用に作成したプレコ一ト鋼板の a面の導電性を測定し た。 測定方法は、 三井化学社製の抵抗率計 「L o r e s t a — E P ZMC P— T 3 6 0」 の四端子法にて金属板の表面の抵抗率を測定 し、 以下の基準で評価した。
抵抗率が 0 . 1 Χ 1 0—2Ω未満の場合 : 〇
抵抗率が 0 . 1 X 1 CT2以上 1 . 0 X 1 0—1 Ω未満の場合 : △ 抵抗率が 1 . 0 X 1 0 Ω以上の場合 : X
7:)熱吸収性皮膜塗料の粘度経時変化調査試験 本実験で用いた熱吸収性塗料 (表 1及び 2から選出した塗料) を 有機溶剤 (ソルべッソ 1 5 0 とシク ロへキサノ ンとを質量比で 1 : 1 に混合したもの) で希釈し、 全固形分濃度 (N . V . ) を 5 0質 量%となるように調整した。
そして、 作成した塗料の初期粘度を J I S . K 5 4 0 0 . 4 . 5 . 4に記載のフォー ドカップ N o . 4法にて測定した。 更に、 これ らの塗料を 1週間常温で放置した後に攪拌機にて再攪拌した後の粘 度を 1週間後の粘度として再度前記のフォードカップ N o . 4法に て測定した。 そして、 1週間放置前後の粘度を比較して、 作成した 各塗料の粘度上昇を以下のように評価した。 なお、 粘度経時変化試 験の評価結果は、 表 1 8に記载する。
[ ( 1週間後の粘度) 一 (初期粘度) ] < 2 0秒のとき : 〇
2 0≤ [ ( 1週間後の粘度) 一 (初期粘度) ] < 5 0秒のとき : △
[ ( 1週間後の粘度) 一 (初期粘度) ] ≥ 5 0秒のとき : X
表 17
a面の塗料 b面の塗料 冷蔵庫
No. 金属板 ィ匕成処理種 放射率 密着性 カロェ性 ift食 '("牛 導電性
¾g 月鎮 種類 酵 内温度
^一 1 GI ノンクロメ-ト処理 塗料 1一 1 5μπι 着色塗料 20μπι 0.70 Δ 〇 〇 Δ 〇
W-2 GI ノンクロメート処理 塗料 1一 2 5 μιη 着色塗料 20μηι 0.75 〇 〇 〇 Δ 〇
"\1-3 GI ノンクロメ-ト処理 塗料 1—28 5βΙΒ 着色塗料 20 πι 0.80 〇 〇 〇 Δ 〇
Έ.-4 GI ノンクロメート処理 塗料 1—3 5μιη 着色塗料 20μιη 0.85 〇 〇 〇 Δ 〇
W-5 GI ノンクロメ-ト処理 塗料 1—4 5 μιη 着色斷 20 0.85 〇 〇 〇 Δ 〇 -6 GI ノン メ-ト処理 塗料 1一 29 5 μπι 着色赌 20 m 0.75 〇 Ο 〇 〇 X
YH-7 GI クロメート処理 塗料 1—17 5μιη 着色塗料 20μπι 0.78 〇 〇 〇 〇 〇 -8 GI クロメート処理 塗料 1—30 5μτα 着色塗料 20μτα 0.75 〇 〇 〇 〇 X 本 明例
M-9 GI ク Βメート処理 塗料 1—31 5μιη 着色塗料 20 μιη 0.75 〇 〇 〇 〇 X
"VI— 10 GI 知メート処理 塗料 1一 32 5 μηι 着色塗料 20 μΒ 0.75 〇 〇 〇 Δ 〇
W-11 GI クロメ-ト麵 ¾S1 -2 5μΐη 着色塗料 20μ:α 0.75 〇 〇 〇 〇 〇 -12 GI 未処理 塗料 1一 2 5 ΐη 着色塗料 20/zm, 0.75 〇 Δ Δ Δ 〇
YH—13 GA クロメート処理 塗料 1一 2 5 ΐη 着色塗料 20 Mm 0.90 〇 〇 〇 Δ 〇 - EG ノンクロメ-ト処理 塗料 1—2 5μτη 着色塗料 20μια 0.78 〇 〇 〇 Δ 〇
M-15 AIシ-ト クロメート処理 塗料 1一 2 5/xm クリャ-塗料 3 μΐη 0.75 〇 〇 〇 Δ 〇 -16 SUS ノンク。メ-ト処理 塗料 1—2 5 μπι クリヤ-塗料 3 μηι 0.73 〇 〇 〇 〇 〇 -17 GI ノンクロメート処理 塗料 1一 33 5μιη 着色塗料 20 μ 0.40 X 〇 〇 〇 X
ΥΠ-18 GI ノンク。メ-ト処理 塗料 1一 34 5 μηι 着色塗料 20μπι 0.55 X 〇 〇 〇 X 比較例 W-19 GI ノク。メ-ト処理 塗料 1—35 5μπι 着色塗料 20 m 0.85 〇 〇 X 〇 X
W-20 GI クロメ-ト処理 塗料 1—36 5μιη 着色塗料 20μΐα 0.56 X 〇 〇 〇 X
W-21 GI ノンクロメート処理 未難 着色塗料 20 μιη 0.56 X X 〇
^一 22 GI ノンクロメ-ト処理 塗料 2— 25 5μτΛ 着色塗料 20/xm 0.80 〇 〇 〇 Δ X 本発明例
-23 GI ノンクロメート処理 塗料 2— 26 5 μτΛ 着色塗料 20 0.85 〇 〇 〇 Δ X
表 1 8
Figure imgf000076_0001
以下評価結果の詳細について述べる。
評価結果を表 1 7に記载する。 本発明の冷蔵庫は、 8 0 °C以上の 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m— 1の 領域における全放射率が 0. 7 0以上である熱吸収性皮膜を金属製 外板の内側表面に被覆することで、 冷蔵庫内部の温度が低下させる こ とが達成された。 熱吸収性皮膜の放射率が 0. 7 0未満のもの ( 比較例 W— 1 5, Ή一 1 6 , 1 8 , - 1 9 ) は、 冷蔵庫の内 部温度が、 従来のタイプのものと比べて大きな差が無く、 不適であ る。
本発明の冷蔵庫外板に被覆する熱吸収性皮膜にはパインダー固形 分 1 0 0質量部に対してカーボンを 1 0 〜 1 5 0質量部含むと熱吸 収性皮膜の放射率が 0 . 7 0以上となり好適である。 カーボンの添 加量が 1 0未満のもの (比較例一 W— 1 5 , VII— 1 6 , W— 1 8 ) や被覆していないもの (比較例 W_ 1 9 ) は、 放射率が 0. 7 0未 満となり不適である。 また、 カーボンの添加量が 1 5 0質量部超の もの (比較例 1 7 ) は加工性に劣るため、 不適である。
本発明の冷蔵庫外板の熱吸収性皮膜には導電性顔料を添加したも のは導電性が付与されるため、 冷蔵庫組立時に静電気が発生しにく く、 静電気起因の塵や埃の付着問題がなく、 よ り好適である。 導電 性顔料を添加しない場合 (本発明例 W— 6 , VII- 8 , W— 9 ) は、 導電性が劣っている。
本発明の冷蔵庫外板の熱吸収性皮膜には防鲭顔料を添加したもの (本発明例 7 , - 8 , W— 9 ) は耐食性に優れ、 より好適で ある。 特にフ 口シリ コンを添加したもの (本発明例 W— 7 ) は耐 食性に加えて導電性にも優れるため、 より好適である。
本発明の冷蔵庫外板の吸熱性皮膜には、 バインダー固形分 1 0 0 質量部に対して粒径 0 . 未満のカーボンを 1 〜 2 0質量部と 粒径 0 . 1 m以上 5 0 /z m以下のカーボンを:!〜 1 4 0質量部含 み、 かつ、 粒径 0 . 1 m未満のカーボンと粒径 0 . 1 以上 5 0 μ πι以下のカーボンとの合計が 1 0〜 1 5 0質量部であるもの ( 本発明例 W_ 2 0 , W- 2 1 ) は、 熱吸収性皮膜中にカーボンを多 量に添加しているが、 熱吸収性塗料の粘度が上昇しにくいためより 好適である。
本発明の冷蔵庫外板には熱吸収性皮膜を塗装する前に化成処理を 施すと、 密着性や加工性に優れ、 よ り好適である。 化成処理を施し ていないもの (本発明例 YE— 1 2 ) は密着性や加工性に劣っている 。 更に、 化成処理の種類は、 いずれでも良いが、 ク ロメート処理を 用いたもの (本発明例 W— 1 1 ) よりはノ ンク ロメート処理を施し たものの方が、 環境問題の点から、 よ り好適である。
(実施例 )
以下、 実験に用いた熱吸収性塗装板の作成方法について詳細に説 明する。
アルミ合金板及びマグネシゥム合金板の内面に、 表 4に示した熱 吸収性皮膜塗料をバーコ一ターにて塗装し、 常温にて約 2 4時間乾 燥した。 作成した表面塗装板の詳細を表 1 9 ( A 1合金板) 及び表 2 0 ( M g合金板) に示す。 表 1 9及び表 2 0に示した表面塗装板 は、 いずれも同じ種類の熱吸収性皮膜層を両面に同じ条件で被覆し たものである。
以下、 作成した表面処理板の評価試験について詳細を説明する。
1 ) 表面塗装板材料の放射率測定
実施例 IVにおけると同様
2 ) 表面塗装板材料の熱吸収性測定試験
実施例 IVにおけると同様
3 ) 塗膜の耐衝撃性試験
実施例 IVにおけると同様
4 ) 吸熱塗料の経時の状態観察
アルミ合金板及びマグネシウム合金板上に塗装した各吸熱性皮膜 塗料を実施例 Πにおけると同様に評価した。
5 ) 吸熱性皮膜の外観
アルミ合金板及びマグネシゥム合金板上に被覆した皮膜の外観を 目視にて観察し、 実施例 Πにおけると同様に評価した。
以下、 作成した表面塗装板の評価結果について詳細を説明する。 表 1 9及び表 2 0に示したように、 本発明の表面塗装板は、 樹脂 固形分 1 0 0質量部に対して、 粒径 0. 1 μ πι未満のカーボンを 1 〜 2 0質量部と粒径 0. 1 μ πι以上 5 0 μ πι以下のカーボンを 1〜 1 4 0質量部を含み、 かつ、 粒径 0. l /z m未満のカーボンと粒径 0. 1 μ πι以上 5 0 μ πι以下のカーボンとの合計が 1 0〜 1 5 0質 量部である熱吸収性皮膜層を乾燥膜厚で 1 μ m以上被覆することで 、 熱吸収性の高い表面塗装板を得ることができた。
表 1 9
熱吸収性塗料 吸熱塗料の 吸熱皮膜の 故射率 埶 p 而 III) J衛 |¾J墼 1ェ ^電'
種類 膜厚 経時の状態 外観 - 1 塗料 4一 1 0 t m 0.72 〇 〇 X 〇 〇 m- 1 塗料 4— 2 D μ m 0.81 〇 〇 X 〇 〇 m-s 塗料 4— 3 0 μ m 0.84 〇 〇 X △ 〇 观ー 4 塗料 4一 4 5 μτη. 0.71 〇 〇 X 〇 〇 本発明例 m- 5 塗料 4一 5 5 μιη 0.77 〇 〇 X 〇 〇
m- 6 塗料 4— 6 5 μ m 0.87 〇 〇 X 〇 〇
M- 7 塗料 4— 7 5 μ m 0.90 〇 〇 X 〇 〇 m-8 塗料 4— 8 5 μΐιι 0.91 〇 X X 〇 〇 m-9 塗料 4一 9 5 βΐΐί 0.73 〇 〇 X 〇 Δ 一 10 塗料 4一 10 5 β ΐΆ 0.65 X 〇 X 〇 〇 -ll 塗料 4一 11 5 μ m 0.65 X 〇 X 〇 〇 本発明例 m-i2 塗料 4一 12 5 μ m 0.88 〇 〇 X 〇 〇
11-13 塗料 4一 13 5 μ ΐΏ. 0.63 X 〇 X 〇 〇 比較例
M- 塗料 4一 14 5 μτη 0.65 X 〇 X 〇 〇 m-i5 塗料 4一 15 5 μΐη 0.89 〇 X X Δ 〇 本発明例 — 16 塗料 4一 16 5 μ m 0.88 〇 X X Δ 〇
M-17 塗料 4— 17 5 μ m 0.82 〇 〇 X 〇 X m-i8 塗料 4—18 5 At m 0.44 X 〇 〇 〇 〇 比較例
m-19 塗料 4— 19 5 μ m 0.52 X 〇 X 〇 〇
表 2 0
熱吸収性塗料
、 故射率 執吸耐 Φ 耐衛墼 '["φ 霄- 吸熱塗料の 吸熱皮膜の 種類 膜厚 経時の状態 外観 m-20 塗料 4 _ 1 5 μ m 0. 77 〇 〇 X 〇 〇 m-21 塗料 4 _ 2 o m 0. 83 〇 〇 X 〇 〇 m-22 塗料 4 _ 3 o m 0. 88 〇 〇 X Δ 〇 观一23 塗料 4一 4 o μ m 0. 74 〇 〇 X 〇 〇 本発明例 m-24 塗料 4— 5 5 z m 0. 80 〇 〇 X 〇 〇
11-25 塗料 4— 6 o μ m 0. 87 〇 〇 X 〇 〇 观一 26 塗料 4一 7 5 μ m 0. 90 〇 〇 X 〇 〇 m-27 塗料 4— 8 5 m 0. 91 〇 X X 〇 〇D M-28 塗料 4— 9 5 μ m 0. 75 〇 〇 X 〇 Δ 观一29 塗料 4— 10 5 μ m 0. 64 X 〇 X 〇 〇 ヒ 例
"VDI-30 塗料 4 _11 5 /z m 0. 63 X 〇 X 〇 〇 本発明例 ー 31 塗料 4—12 5 μ m 0. 89 〇 〇 X 〇 〇
HI一 32 塗料 4一 13 5 μ m 0. 63 X 〇 X 〇 〇 比較例
W-33 塗料 4 _14 5 μ τ 0. 62 X 〇 X 〇 〇
W-34 塗料 4—15 5 μ m 0. 89 〇 . X X △ 〇 本発明例 观ー 35 塗料 4一 16 5 μ m 0. 88 〇 X X △ 〇 观一 36 塗料 4— 17 5 μ m 0. 82 〇 〇 X 〇 X 观ー 37 塗料 4— 18 5 z m 0. 43 X 〇 〇 〇 〇 比較例
W-38 塗料 4一 19 5 β ΏΙ 0. 54 X 〇 X 〇 〇
(実施例 IX )
以下、 実験に用いた塗装板材料の作成方法について詳細を説明す る。
板状のポリカーボネート _ A B Sポリマーァロィ系の樹脂 (以下 、 プラスチック板と称する) 上に、 表 4の塗料 4 一 2 と塗料 4 一 9 をバーコ一ターにて塗装し、 常温にて約 2 4時間乾燥した。 作成し た表面塗装板の詳細を表 2 1に示す。 表 2 1 に示した表面塗装板は 、 いずれも同じ種類の吸熱成否膜層を両面に同じ条件で被覆したも のである。
以下、 作成した表面塗装板の評価試験について詳細を説明する。
1 ) 表面塗装板の放射率測定試験
実施例 IVおけると同様。
2 ) '表面塗装板の熱吸収性測定試験
実施例 IVにおけると同様。
3 ) 塗膜の耐衝擊性試験
実施例 IVにおけると同様。
表 2 1 に作成した表面塗装板の評価結果を示す。 本発明の表面塗 装板は、 母材に樹脂などのプラスチック材料を用いても熱吸収性に 効果があり、 好適である。
表 2 1
Figure imgf000083_0001
(実施例 X)
以下、 実験に用いた熱吸収性アルミ合金板の作成方法について詳 細を説明する。
0. 6 mmのアルミ合金板を、 市販のアルカリ脱脂剤である 日本 パーカライジング社製の 「F C— 3 1 5」 を 2 0質量%濃度に希釈 した 6 0 °C温度の水溶液中に 1 0秒間浸漬することで脱脂し、 水洗 後、 乾燥した。 更にその上に市販のノ ンク ロメート処理である日本 パーカライジング社製の 「C T E _ 3 0 0」 を乾燥付着量にして 2 0 O m g Zm2ロールコーターにて塗装した。
次いで、 脱脂したアルミ合金板上に、 表 1に記載する熱吸収性皮 膜塗料をロールコーターにて塗装し、 熱風を併用した誘導加熱炉に て乾燥硬化させた。 乾燥硬化条件は、 到達板温 (PMT) で 2 3 0 でと した。 熱吸収性皮膜塗料は必要に応じて片面もしくは両面に塗 装することで試験片を得た。
作成した表面処理アルミ合金板の詳細を表 2 2に記載する。 表 2 2中記載のアルミ合金板は、 いずれも、 片面のみに熱吸収性皮膜層 を被覆し、 他の面は被覆していないものである。 表 2 2
Figure imgf000084_0001
以下、 作成したアルミ合金板の評価試験について詳細を説明する
1 ) アルミ合金板の放射率測定
実施例 I と同じ。
2 ) アルミ合金板の熱吸収性測定試験
実施例 IVと同じ。
3 ) 塗膜密着性試験
実施例 I と同じ。
4 ) 塗膜の折り曲げ試験
実施例 I と同じ。
5 ) プレス成形試験
実施例 I と同じ。
6 ) 耐食性
作成したアルミ合金板に対し、 J I S—K 5 4 0 0. 9. 1記載 の方法で塩水噴霧試験を実施した。 塩水は熱吸収性皮膜層の面に噴 霧した。 試験時間は 5 0 0 h と した。
ク ロ スカツ ト部の塗膜の評価方法は、 ク ロスカツ ト片側の最大膨 れ幅が 2 mm未満の場合に〇、 2 mm以上 5 mm未満の場合に△、 5 mm以上の場合に Xと評価した。
また、 切断時の返り (パリ) が塗装鋼板の評価面側にく るように (上バリ となるように) 作製した平板についても、 前述の塩水嘖霧 試験を実施し、 端面からの塗膜の膨れ幅を観察した。 端面部の評価 方法は端面からの膨れ幅が 2 mm未満の場合には〇、 2 mm以上 5 mm未満の場合には△、 5 πιπι以上の場合には Xと評価した。
7 ) 導電性試験
実施例 I と同じ。
アルミ合金板に被覆された熱吸収性皮膜層の添加顔料種及び添加 量の影響について評価した結果を、 表 2 2に記載する。
本発明のアルミ合金板 (本発明例 X— 1〜X— 3 2 5 ) は、 8 0 °Cの温度で測定した波数 6 0 0〜 3 0 0 0 c m—1の領域における全 放射率が 0. 7 0以上であることで、 放射率が 0. 7 0未満である 比較例 X— 2 6 と X— 2 7よ り熱吸収性が高く、 発熱体のケースと して好適であることがわかる。
本発明のアルミ合金板の熱吸収性皮膜層は、 パインダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 導電性顔料 1〜 1 5 0質量部から構成されていると、 加工性や導電性に優れた ものとなり、 よ り好適である。
熱吸収性顔料の添加量が 1 0質量部未満 (比較例 X— 2 6 ) であ る と放射率が 0. 7未満となり、 熱吸収性が劣るため不適である。 熱吸収性顔料の添加量が 1 5 0質量部超 (本発明例 X— 5 ) である と放射率は高いが、 折り曲げ性やプレス成形性などの加工性が低下 するため、 1 5 0質量部以下がより好適である。
導電性顔料の添加量が 1質量部未満 (本発明例 X— 8 ) であると 導電性が担保できなくなるため、 1質量部以上がよ り好適である。 導電性顔料の添加量が 1 5 0質量部超 (比較例 X— 2 7 ) では、 導 電性顔料が熱吸収性を阻害するため、 放射率が 0. 7未満となって 熱吸収性が劣り、 且つ、 皮膜層の加工性も大きく低下するため不適 である。
本発明のアルミ合金板の熱吸収性皮膜層に含まれる熱吸収性顔料 が平均粒径 i〜 l 0 0 n mのカーボンブラックで、 且つ、 導電性顔 料が、 平均粒径 0. 5〜 5 0 μπιのフ レーク状の金属 N i と鎖状の 金属 N i とから構成されていて、 フ レーク状金属 N i /鎖状金属 N i の質量比が 0. 1〜 6であると、 熱吸収性と導電性により優れる ためより好適である。 熱吸収性顔料が炭パゥダーゃ黒鉛パウダ一のように粒径が比較的 大きなもの (本発明 X— 6及び X— 7 ) では、 放射率が比較的低く 、 且つ、 導電性顔料の導電効果を大きな熱吸収性顔料が阻害し導電 性も低下するため、 熱吸収性顔料は、 平均粒径 1〜 1 0 0 n mの力 一ボンブラックがよ り好適である。
本発明のアルミ合金板の熱吸収性皮膜層に含まれる導電性顔料が アルミ粉やステンレス粉であると、 これらの導電性顔料が熱吸収性 を阻害し易く、 これらを添加したもの (本発明例 X— 1 5及び X— 1 6 ) は放射率が低下する。
平均粒径 0 . 5 ~ 5 0 Z mのフ レーク状の金属 N i と鎖状の金属 N i とから構成されたものは熱吸収性を阻害しにく く好適である。 しかし、 フ レーク状金属 N i /鎖状金属 N i の質量比が 0 . 1未満 (本発明例 X— 1 1 ) であると導電性が低下し、 質量比でフ レーク 状金属 N i Z鎖状金属 N i が 6超 (本発明例 X— 1 4 ) では、 熱吸 収性が阻害され放射率が低いので、 フ レーク状金属 N i /鎖状金属 N i の質量比は 0 . 1〜6が好適である。
導電性顔料がフエロシリ コ ン (本発明例 X— 1 7 ) であると、 放 射率が低下せず、 且つ、 本発明のアルミ合金板の耐食性も向上する ためよ り好適である。 熱吸収性顔料を添加せずにフ ロシリ コンの みを添加したもの (本発明例 X— 1 9 ) は、 放射率が比較的高く、 且つ、 導電性や耐食性に優れるため好適である。
また、 熱吸収性顔料と して導電性カーボンブラックを用いた場合 、 導電性が向上するためより好適である。 本発明のアルミ合金板の 熱吸収性皮膜層中に熱吸収性顔料及び導電性顔料に加えて、 防鲭顔 料を添加したもの (本発明例 X— 2 2至乃 X— 2 5 ) は、 耐食性に 優れるためよ り好適である。
熱吸収性皮膜層の膜厚が異なるアルミ合金板の評価結果を表 7に 記載する。 膜厚が 1 μ ηι未満でのもの (本発明例 X— 2 8 ) は全放 射率が低く、 また、 5 0 μ ιη超では皮膜層の加工性が低下するため 、 膜厚'は 1 〜 5 0 μ ιηがより好適である。
産業上の利用可能性
本発明によ り、 内部にモーターや電子部品など熱源となる部品が 数多く使われる家電製品の内部で発生する熱を放出する技術が確立 された。 更には、 熱を放出するのに適し、 且つ、 家電製品のアース を取るための導電性に優れた表面処理材を提供することが可能とな つた。 この技術を利用することで、 冷蔵庫を含む家電製品の性能が よりアップし、 且つ、 エネルギー消費量も低減することが可能とな つた。 同様に、 本発明は、 電子部品やバッテリーを内蔵するため機 器内部の温度が上昇する携帯電話、 ノートパソ コ ン、 P D A、 車载 バッテリーケース、 カーナビゲーシヨ ンシステム、 カーオーディオ 機器、 車载制御機器などにも、 この技術は応用され、 性能アップ、 エネルギー消費量の低減などの効果があり、 産業上の利用可能性が 高い発明である。 従って、 本発明は産業上のきわめて価値の高い発 明であるといえる。

Claims

請 求 の 範 囲
1 . 発熱体力パー本体の少なく とも内面に、 8 0 °C以上 2 0 0 °C 以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c m-1の領域にお ける全放射率が 0 . 7 0以上である熱吸収性皮膜層を被覆したこと を特徴とする熱吸収性に優れた発熱体力パー。
2. 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部及び熱吸 収性顔料 1 0〜 1 5 0質量部から構成されることを特徴とする請求 項 1記載の熱吸収性に優れた発熱体力パー。
3, 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部に対して 粒径 0. 1 μ m未満のカーボンを 1〜 2 0質量部と粒径 0 . 1 μιη以 上 5 0 itm以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0.
1 μπι未満のカーボンと粒径 0. 1 / m以上 5 0 /xm以下のカーボン との合計が 1 0〜 1 5 0質量部であることを特徴とする請求項 1又 は 2に記載の熱吸収性に優れた発熱体力パー。
4. 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部、 熱吸収 性顔料 1 0〜 1 5 0質量部、 及び、 さらに導電性顔料 1 〜 1 5 0質 量部から構成されることを特徴とする請求項 1〜 3のいずれか 1項 に記載の熱吸収性に優れた発熱体力バー。
5. 前記熱吸収性顔料が平均粒径 1〜 1 0 O n mのカーボンブラ ックであり、 且つ、 前記導電性顔料が平均粒径 0. 5〜 5 0 //mの フ レーク状の金属 N i と鎖状の金属 N i とから構成され、 且つ、 フ レーク状金属 N i /鎖状金属 N i の質量比が 0. 1 〜 6であること を特徴とする請求項 4に記載の熱吸収性に優れた発熱体力パー。
6. 前記導電性顔料がフエロシリ コ ンであることを特徴とする請 求項 2〜 5のいずれか 1項に記載の熱吸収性に優れた発熱体力パー
7. 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部、 及び、 フエ口シリ コン 5〜 1 5 0質量部から構成されることを特徴とする 請求項 1に記載の熱吸収性に優れた発熱体力パー。
8. 前記発熱体力パー本体が金属製である請求項 1〜 7のいずれ か 1項に記載の発熱体力パー。
9. 前記発熱体力パー本体が非金属製である請求項 1〜 7のいず れか 1項に記載の発熱体力パー。
1 0. 金属板もしくはめつきされた金属板の少なく とも片面に 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0〜 3 0 0 0 c in 1の領域における全放射率が 0. 7 0以上である熱吸収性皮膜 層を被覆したことを特徴とする熱吸収性に優れた表面処理金属板。
1 1 . 熱吸収性皮膜層が、 バイ ンダー固形分 1 0 0質量部及び熱 吸収性顔料 1 0〜 1 5 0質量部から構成されることを特徴とする請 求項 1 0記載の熱吸収性に優れた表面処理金属板。
1 2. 熱吸収性皮膜層が、 パインダー固形分 1 0 0質量部に対し て粒径 0. 1 μιη未満のカーボンを 1〜 2 0質量部と粒径 0. 1 μιη 以上 5 0 μιη以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0 . 1 μπι未満のカーボンと粒径 0. 1 111以上 5 0 111以下のカーポ ンとの合計が 1 0〜 1 5 0質量部であることを特徴とする請求項 1 0又は 1 1に記載の熱吸収性に優れた表面処理金属板。
1 3. 熱吸収性皮膜層が、 バインダー固形分 1 0 0質量部、 熱吸 収性顔料 1 0〜 1 5 0質量部、 及び、 さ らに導電性顔料 1〜 1 5 0 質量部から構成されるこ とを特徴とする請求項 1 0〜 1 2のいずれ か 1項に記載の熱吸収性に優れた表面処理金属板。
1 4. 前記熱吸収性顔料が平均粒径 1〜 1 0 0 n mのカーポンプ ラックであり、 且つ、 前記導電性顔料が平均粒径 0. 5〜 5 0 μιη のフレーク状の金属 N i と鎖状の金属 N i とから構成され、 且つ、 フレーク状金属 N i /鎖状金属 N i の質量比が 0. 1〜 6であるこ とを特徴とする請求項 1 3に記載の熱吸収性に優れた表面処理金属 板。
1 5 · 前記導電性顔料がフエロシリ コンであることを特徴とする 請求項 1 2〜 1 4のいずれか 1項に記載の熱吸収性に優れた表面処 理金属板。
1 6. 熱吸収性皮膜層が、 バインダ—固形分 1 0 0質量部、 及び 、 フエ口シリ コン 5〜 1 5 0質量部から構成されることを特徴とす る請求項 1 0に記載の熱吸収性に優れた表面処理金属板。
1 7. 8 0 °C以上 2 0 0 °C以下のある温度で測定した波数 6 0 0 〜 3 0 0 0 c πΓ1の領域における全放射率が 0. 7 0以上である熱 吸収性皮膜を外板の内側表面に被覆したことを特徴とする熱効率に 優れた冷蔵庫。
1 8. 熱吸収性皮膜が、 パインダー固形分 1 0 0質量部に対して カーボンを 1 0〜 1 5 0質量部含むことを特徴とする請求項 1 7記 載の熱効率に優れた冷蔵庫。
1 9. 熱吸収性皮膜が、 バインダー固形分 1 0 0質量部に対して 導電性の金属粉を 1〜 5 0質量部含むことを特徴とする請求項 1 8 又は 1 9記載の熱効率に優れた冷蔵庫。
2 0. 熱吸収性皮膜が、 バインダー固形分 1 0 0質量部に対して 粒径 0. 1 μιη未満のカーボンを 1〜 2 0質量部と粒径 0. 1 μπι以 上 5 0 μπι以下のカーボンを 1〜 1 4 0質量部含み、 且つ粒径 0 - 1 μ m未満のカーボンと粒径 0. 1 ιη以上 5 0 / m未満のカーボン との合計が 1 0〜 1 5 0質量部であり、 乾燥膜厚で 1 /zm以上であ ることを特徴とする請求項 1 7〜 1 9のいずれか 1項に記載の熱効 率に優れた冷蔵庫。
2 1. 請求項 1 ~ 9のいずれか 1項に記載の発熱体力パーを外板 としたことを特徴とする熱効率に優れた冷蔵庫。
2 2. 請求項 1 0〜 1 6のいずれか 1項に記載の表面処理金属板 を外板とし、 該金属板の熱吸収性皮膜層を内側表面とすることを特 徴とする熱効率に優れた冷蔵庫。
2 3. 外板の外側にク リヤー塗膜もしくは着色顔料を含む塗膜を 被覆した特徴とする請求項 1 7〜2 2のいずれか 1項に記載の熱効 率に優れる冷蔵庫。
2 4. 予め、 平たい金属板の片面に請求項 1 7〜 2 0のいずれか 1項に記載の熱吸収性皮膜層を、 他方の面にク リヤーもしくは着色 顔料を含む塗膜を塗装して熱吸収性の高いプレコ一ト金属板を製造 し、 これを切断、 加工した後に、 冷蔵庫に組み上げることを特徴と した熱吸収性に優れた冷蔵庫の製造方法。
2 5. 発熱する電子部品を内蔵する携帯機器又は車載機器のケー スの内側に熱吸収性皮膜層を有し、 前記熱吸収性皮膜層が、
(A) バインダー固形分 1 0 0質量部に対して粒径 0. 1 μιη未満 のカーボンを 1〜2 0質量部と粒径 0. 1 111以上 5 0 ]11以下のカ 一ボンを 1〜 1 4 0質量部含み、 粒径 0. 1 μια未満のカーボンと 粒径 0. 1 μιη以上 5 0; m以下のカーボンとの合計が 1 0〜1 5 0 質量部である ;
(B) パインダ一固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5
0質量部、 及び、 さ らに導電性顔料 1〜 1 5 0質量部から構成され 、 前記熱吸収性顔料が平均粒径 1〜 1 0 0 n mのカーボンブラック であり、 前記導電性顔料が平均粒径 0. 5〜5 0 μπιのフ レーク状 の金属 N i と鎖状の金属 N i とから構成され、 フレーク状金属 N i Z鎖状金属 N i の質量比が 0. 1〜6である ;
(C) パインダー固形分 1 0 0質量部、 熱吸収性顔料 1 0〜 1 5 0質量部、 及び、 フエ口シリ コ ン 5〜 1 5 0質量部から構成される (D ) バインダー固形分 1 0 0質量部、 及び、 フヱロシリ コン 5 〜 1 5 0質量部から構成される
のいずれかであることを特徴とする携帯機器又は車载機器。
2 6 . 発熱する電子部品を内蔵する携帯機器又は車载機器のケー スが、 請求項 1 〜 9のいずれか 1項に記載の発熱体力パーであるこ とを特徴とする携帯機器又は車載機器。
2 7 . 発熱する電子部品を内蔵する携帯機器又は車载機器のケー スが、 請求項 1 0〜 1 6のいずれか 1項に記載の表面処理金属板を 加工してなるものであって、 該金属板の熱吸収性皮膜層を内側表面 とすることを特徴とする携帯機器又は車载機器。
2 8 . 前記ケースが M g合金製又は A 1合金製である請求項 2 5 〜 2 7のいずれか 1項に記載の携帯機器又は車载機器。
2 9 . 請求項 2 5に記載の熱吸収性皮膜層を有する携帯機器又は 車载機器用ケース。
PCT/JP2003/004510 2002-04-12 2003-04-09 Couverture pour article exothermique presentant d'excellentes proprietes d'absorption de chaleur, feuille metallique traitee en surface pour cette couverture, et applications associees WO2003087432A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047016348A KR100717413B1 (ko) 2002-04-12 2003-04-09 열 흡수성이 우수한 발열체 커버와 이를 위한 표면 처리금속판 및 그 응용
AU2003227474A AU2003227474A1 (en) 2002-04-12 2003-04-09 Cover for exothermic article excellent in heat absorbing property and surface treated metal sheet therefor, and applications thereof
JP2003584364A JP4369761B2 (ja) 2002-04-12 2003-04-09 熱吸収性に優れた発熱体カバー及びそのための表面処理金属板並びにこれらの応用

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-110712 2002-04-12
JP2002110712 2002-04-12
JP2002324190 2002-11-07
JP2002324256 2002-11-07
JP2002-324273 2002-11-07
JP2002-324271 2002-11-07
JP2002-324256 2002-11-07
JP2002324271 2002-11-07
JP2002324273 2002-11-07
JP2002-324190 2002-11-07

Publications (1)

Publication Number Publication Date
WO2003087432A1 true WO2003087432A1 (fr) 2003-10-23

Family

ID=29255642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004510 WO2003087432A1 (fr) 2002-04-12 2003-04-09 Couverture pour article exothermique presentant d'excellentes proprietes d'absorption de chaleur, feuille metallique traitee en surface pour cette couverture, et applications associees

Country Status (6)

Country Link
JP (1) JP4369761B2 (ja)
KR (1) KR100717413B1 (ja)
CN (1) CN100352971C (ja)
AU (1) AU2003227474A1 (ja)
MY (1) MY136867A (ja)
WO (1) WO2003087432A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305993A (ja) * 2004-03-25 2005-11-04 Furukawa Sky Kk 放熱性に優れた高機能樹脂被覆アルミニウム材
JP2008023975A (ja) * 2006-06-22 2008-02-07 Nippon Steel Corp 薄型ディスプレイパネルを用いる表示装置のバックカバー用亜鉛系めっき鋼板
JP2009220511A (ja) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd 耐食性、熱放射性、導電性に優れた表面処理鋼板および塗装鋼鈑
JP2014520962A (ja) * 2011-07-13 2014-08-25 ポスコ 表面処理用樹脂組成物及びこれによってコーティングされた鋼板
KR102187851B1 (ko) * 2020-07-24 2020-12-08 (주)네오쿨 음료용 냉장고

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945566A (zh) * 2007-03-23 2011-01-12 株式会社神户制钢所 导电性树脂涂敷金属板
CN103140064B (zh) * 2011-11-30 2016-03-30 华为终端有限公司 壳体的设计方法及壳体、包括该壳体的电子设备
CN103096615A (zh) * 2012-11-14 2013-05-08 南京市江宁区丁卯电子科技中心 一种安装有发光二极管的柔性电路板
JP6526950B2 (ja) * 2013-12-18 2019-06-05 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料
JP6941796B2 (ja) * 2016-11-30 2021-09-29 パナソニックIpマネジメント株式会社 非水電解質二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627884A (ja) * 1992-05-01 1994-02-04 Osaka Sealing Insatsu Kk ノンセパ型ラベル原紙
JPH0927503A (ja) * 1995-07-10 1997-01-28 Dainippon Screen Mfg Co Ltd 基板加熱装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9619134D0 (en) * 1996-09-13 1996-10-23 Pilkington Plc Improvements in or related to coated glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627884A (ja) * 1992-05-01 1994-02-04 Osaka Sealing Insatsu Kk ノンセパ型ラベル原紙
JPH0927503A (ja) * 1995-07-10 1997-01-28 Dainippon Screen Mfg Co Ltd 基板加熱装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305993A (ja) * 2004-03-25 2005-11-04 Furukawa Sky Kk 放熱性に優れた高機能樹脂被覆アルミニウム材
JP4634747B2 (ja) * 2004-03-25 2011-02-16 古河スカイ株式会社 放熱性に優れた高機能樹脂被覆アルミニウム材
JP2008023975A (ja) * 2006-06-22 2008-02-07 Nippon Steel Corp 薄型ディスプレイパネルを用いる表示装置のバックカバー用亜鉛系めっき鋼板
JP2009220511A (ja) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd 耐食性、熱放射性、導電性に優れた表面処理鋼板および塗装鋼鈑
JP2014520962A (ja) * 2011-07-13 2014-08-25 ポスコ 表面処理用樹脂組成物及びこれによってコーティングされた鋼板
KR102187851B1 (ko) * 2020-07-24 2020-12-08 (주)네오쿨 음료용 냉장고

Also Published As

Publication number Publication date
CN100352971C (zh) 2007-12-05
JPWO2003087432A1 (ja) 2005-08-18
CN1646730A (zh) 2005-07-27
AU2003227474A1 (en) 2003-10-27
JP4369761B2 (ja) 2009-11-25
KR20050000394A (ko) 2005-01-03
KR100717413B1 (ko) 2007-05-11
MY136867A (en) 2008-11-28

Similar Documents

Publication Publication Date Title
JP5216868B2 (ja) 鋼板、及び鋼板表面処理組成物
TWI252162B (en) Precoated metal sheet for light reflectors
JP2008238814A (ja) 塗装鋼板、加工品および薄型テレビ用パネル
WO2003087432A1 (fr) Couverture pour article exothermique presentant d&#39;excellentes proprietes d&#39;absorption de chaleur, feuille metallique traitee en surface pour cette couverture, et applications associees
JP4653386B2 (ja) 防熱性に優れた表面処理金属板及びこれを用いた筐体
JP2004027064A (ja) 放熱性と電磁波吸収性に優れた塗料及び塗装金属板
JP5176890B2 (ja) 塗装鋼板およびこれを用いてなる電子機器用筐体
JP3563731B2 (ja) 放熱性及び導電性に優れた電子機器部材用塗装体
JP2007301973A (ja) 表面処理金属板
JP4782043B2 (ja) 表面処理金属板
KR20140012495A (ko) 가공성이 우수한 수지코팅 강판 및 이에 사용되는 수지조성물
WO2005002844A1 (ja) 樹脂塗装金属板
WO2006134679A1 (ja) 導電性皮膜被覆鋼板
JP2004243310A (ja) 放熱性表面処理金属板および電子機器用筐体
JP4336304B2 (ja) 導電性を有する吸熱性塗装鋼板およびその製造方法
JP4194041B2 (ja) 耐疵付き性及び耐指紋性に優れた樹脂塗装金属板、及び電子機器部品
KR101115745B1 (ko) 흑색수지 강판, 이에 사용되는 내지문성 흑색수지 조성물 및 밀착성 수지 조성물
KR101178615B1 (ko) 프리코트 금속판
JP2010022911A (ja) プレコート鋼板の製造方法およびその製造方法により製造されたプレコート鋼板。
TWI313641B (en) Heat-generating element cover with excellent heat absorptivity, surface-treated metal sheet therefor and their applications
JP2003286585A (ja) プレス成形性及び導電性に優れた両面プレコートアルミニウム板とそれを用いたプレス加工方法
JP2005139535A (ja) 放熱性と着色性に優れた塗装金属板
JP2004134722A (ja) 冷却能の高い電気・電子機器用筐体
JP5789242B2 (ja) 塗膜積層金属板
JP2004074145A (ja) 放熱性に優れた電子機器部材用塗装体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003584364

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047016348

Country of ref document: KR

Ref document number: 20038083159

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1-2004-501636

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1200401197

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1020047016348

Country of ref document: KR

122 Ep: pct application non-entry in european phase