WO2005002844A1 - 樹脂塗装金属板 - Google Patents

樹脂塗装金属板 Download PDF

Info

Publication number
WO2005002844A1
WO2005002844A1 PCT/JP2004/009872 JP2004009872W WO2005002844A1 WO 2005002844 A1 WO2005002844 A1 WO 2005002844A1 JP 2004009872 W JP2004009872 W JP 2004009872W WO 2005002844 A1 WO2005002844 A1 WO 2005002844A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
coated
metal plate
heat
coating film
Prior art date
Application number
PCT/JP2004/009872
Other languages
English (en)
French (fr)
Inventor
Takeshi Watase
Yasuo Hirano
Takuya Kusaka
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US10/563,305 priority Critical patent/US20060182948A1/en
Publication of WO2005002844A1 publication Critical patent/WO2005002844A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to electromagnetic wave absorption and processability, which are particularly useful as a constituent material of a housing or the like in electronic, electric, optical devices, etc. (hereinafter, may be represented by electronic devices).
  • the present invention relates to an excellent resin-coated metal plate, and more particularly to a resin-coated metal plate having improved properties such as heat dissipation; heat dissipation and self-cooling; scratch resistance and fingerprint resistance; BACKGROUND ART
  • characteristics electromagnetromagnetic wave shielding properties
  • JP-A-2000-111111276 proposes an electromagnetic wave absorber in which a soft magnetic metal powder is dispersed in an insulating sheet made of a thermosetting resin. .
  • Japanese Patent Publication No. JP-A-2001-2747587 discloses an electromagnetic wave formed by mixing and dispersing a flaky powder made of stainless steel in a base made of a synthetic resin material.
  • a radio wave absorber in which a wave absorption layer is laminated on a radio wave reflection layer made of metal has been proposed.
  • this technology was provided to achieve absorption of higher frequency electromagnetic waves (1 GHz or more)
  • the electromagnetic wave absorption layer substantially removes a large amount of magnetic powder. It must be contained, and the film thickness is too thick (about 1.5 to 3.5 mm).
  • the internal temperature of electronic equipment is usually about 40 to 70 ° C at ambient temperature, and it can be as high as 100 ° C at the maximum, but then ICs, CPUs (semiconductor elements), disks, motors, etc. It has been pointed out that stable operation is hindered because the temperature exceeds the heat-resistant temperature of. Further, when the temperature rises, the semiconductor element is broken and malfunctions, and there is a problem that the life of electronic device parts is shortened.
  • Japanese Patent Application Laid-Open Publication No. 2002-228805 discloses an outer layer coating and an inner layer coating on the substrate surface.
  • a heat-radiating surface treatment material having a heat emissivity of the inner layer coating film of 70% or more is disclosed in Japanese Patent Application Publication No. JP-A-2002-266783.
  • Each of the heat-radiating surface treatment materials having a single-layer coating film and having a thermal emissivity of 60% or more as the surface treatment material has been disclosed. All of these documents are used for applications such as home appliances that generate heat inside (such as outer box-shaped objects) and heat sinks. Uses) are common, but the basic concept for improving heat dissipation is different, and the specific means are also different. .
  • these documents all state that the heat generated inside the compressor must be propagated in the order of compressor, radiator, and radiator, and the heat from the radiator (surface) must be quickly dissipated from the radiator. It is to provide a surface treatment material with a high heat release rate on the surface based on the concept of "need to increase the emissivity", and does not consider the emissivity on the back surface of the surface treatment material at all.
  • the idea of the above document is that "a heat source (heating element) inside an electronic device is brought into contact with a surface treatment material, and the amount of heat released from the heat source is absorbed by the surface treatment material (the back surface) by heat conduction.
  • heat radiation from the surface of the surface treatment material
  • heat conduction ⁇ radiation heat conduction ⁇ radiation
  • heat (radiation body) Radiant heat is absorbed (radiated ') by the heat-radiating coating on the back side, and this heat is radiated from the coating on the front side (radiation ⁇ radiation).
  • the surface treatment material in the above document only discloses means for increasing the emissivity of the front surface, and does not intend to increase the emissivity of the back surface at all. (No coating film), and there is no disclosure of a configuration in which a heat dissipation coating film is provided on the back surface or a coating film is provided on the back surface to secure a predetermined emissivity as in the present invention.
  • Japanese Patent Publication JP-A-3-120378 discloses a far-infrared radiating plate used for heating equipment members (a ceramic layer having far-infrared characteristics is formed on a base material). Is disclosed.
  • the far-infrared radiation plate described in Japanese Patent Publication No. JP-A-2001-27474587 requires heat radiation characteristics at a very high temperature of about 200-300 ° C. This is used in the field of heat appliances (typically stoves, etc.), and as in the case of the coated body of the present invention, in particular, the internal temperature is usually about 40 to 70 ° C. at ambient temperature, at most There is no intention to apply it to electronic equipment parts with a temperature of about 100 ° C.
  • the above-mentioned document does not disclose any technical concept unique to the present invention in which the amount of heat released from the electronic device is absorbed and radiated from the “back surface of the substrate” to the “surface of the substrate”. .
  • the housing of electronic equipment is also required to have an action of suppressing the temperature rise of the housing itself. As a result, it is possible to prevent a consumer from touching the housing and getting burned while operating the electronic device product, thereby providing a safe product.
  • this “characteristic of suppressing the temperature rise of the housing of the electronic device itself” is referred to as “self-cooling property” for the purpose of distinguishing it from the aforementioned “heat dissipation property”.
  • self-cooling property this “characteristic of suppressing the temperature rise of the housing of the electronic device itself”
  • heat dissipation property this “characteristic of suppressing the temperature rise of the housing of the electronic device itself”
  • the above-mentioned heat dissipation measures methods such as attaching heat-sinking parts such as heat sinks and heat pipes, and methods such as attaching holes to metal plates and attaching fans
  • the housing of the electronic device is required to have excellent conductivity.
  • the conventionally used black coated steel sheet (steel coated with black coating) is too thick for black coating, resulting in high electrical resistance, which is particularly desirable for application to electronic equipment.
  • the ground cannot be taken.
  • the housing of the electronic device is required to have scratch resistance.
  • black metal plates have the problem that scratches are very likely to occur during handling and processing (reduction in scratch resistance), and are also noticeable when fingerprints adhere (reduction in fingerprint resistance). I have.
  • methods for improving the “scratch resistance” include increasing the hardness of the film, and adding luster to the film to increase the lubricity of the film.
  • improvements effect of the above method there is a limit to the improvement effect of the above method, and when severe processing is required, for example, by bending a black metal plate, the film hardness and lubricity cannot be increased so much. It has such a defect.
  • Japanese Patent Publication No. JP-A-2001-183322 discloses a conductive black surface in which a black coating film is coated with a clear coating film.
  • a treated metal plate is disclosed. This was filed based on the finding that "Clear coating film is effective for imparting conductivity and has an effect of remarkably enhancing scratch resistance and fingerprint resistance". It can also be applied to applications that require bending. However, subsequent studies have shown that it is difficult to control the flaws generated on the wedges and the like of the steel sheet even if the flaws of the film can be improved with the clear coating film. In addition, in the case of a metal plate coated with a clear coating, the color tone of the black coating is reflected as it is as an external appearance. It may not be fully demonstrated. '
  • the present inventors have studied and focused on a white face and a brilliant pigment in order to provide a new coating film that can solve the above-mentioned problem instead of the clear coating film.
  • the above-mentioned pigments are known per se, and typical examples thereof include titanium oxide and the like as white pigments; pearl pigments, aluminum pigments and the like as bright pigments (metallic pigments). These pigments have a glittering, metallic, pearly, etc. feeling due to the reflected light, and provide a variety of designs with an excellent appearance, so they can be used in automobiles, various printed materials, OA equipment, etc. Although used for various purposes, there is no idea to use the pigment for the purpose of improving the scratch resistance and the fingerprint resistance.
  • Japanese Patent Publication No. JP-A-2002-3667371 discloses various brilliant pigments / metallic paint-modified pearlescent pigments. These pigments are only proposed for the original purpose of improving the properties (brightness, light reflection amount, etc.) of these pigments, and the above pigments exert any effects in relation to scratch resistance / fingerprint resistance. There is no teaching as to how to obtain, or how to control the resin coating containing the pigment to improve the scratch resistance and the like.
  • the present invention has been made under such a circumstance, and its object is to exhibit excellent electromagnetic wave absorption and workability, and to provide good heat dissipation as required; heat dissipation and self-cooling;
  • An object of the present invention is to provide a resin-coated metal plate for electronic device members, which has both scratch resistance and fingerprint resistance; and conductivity, and is particularly useful as a constituent material for an electronic device housing.
  • the resin-coated metal plate of the present invention which has achieved the above object, has the gist of including the following embodiments (I) to (VI).
  • At least one side of the metal plate contains a magnetic coating containing magnetic powder of 260% (the meaning of%; hereinafter, unless otherwise specified, "% j" means "% by mass”).
  • the film is a coated plate coated on the steel plate surface with a thickness of 3 to 50 m.
  • Examples of the magnetic powder used in the present invention include soft magnetic ferrite and magnetic metal powder, and whichever is used, it is equivalent to about 10% by volume in terms of volume.
  • the resin constituting the magnetic coating film is preferably a polyester resin.
  • the magnetic coating film may be further provided with a conductivity-imparting agent in an amount of about 20 to 40% to impart conductivity to the magnetic coating film.
  • the film thickness is preferably 3 to 15 ⁇ m in order to maintain excellent conductivity.
  • the total content of the conductivity imparting agent and the magnetic powder is preferably 30 to 60%.
  • At least one of the heat dissipation magnetic coating film and the heat dissipation coating film contains 1% or more of carbon black
  • the surface not containing carbon black should contain at least 10% of a heat dissipation additive other than carbon black; or
  • the surface that does not contain titanium oxide contains 1% or more of a heat dissipation additive other than titanium oxide.
  • Both sides of a metal plate are coated with the magnetic coating film, which is the magnetic coating film having heat dissipation, and on one surface of the metal plate, the magnetic coating film is provided with heat dissipation.
  • a heat-dissipating magnetic coating is applied, and another side of the metal plate is coated with a heat-dissipating coating of more than 1 ⁇ in,
  • At least one of the heat-dissipating magnetic coating films contains 1% or more of carbon black (preferable average particle size is 5 to 100 nm),
  • the surface not containing carbon black contains at least 10% of a heat dissipation additive other than carbon black, or
  • At least one of the heat-dissipating magnetic coating films contains 30% or more of titanium oxide, and a heat-dissipating material other than titanium oxide is added to the surface not containing titanium oxide. 1% or more of the agent.
  • the heat dissipation coating contains 1% or more of a heat dissipation additive
  • the magnetic coating optionally further contains 1% or more of a heat dissipation additive.
  • the magnetic coating on the first surface of the metal plate optionally contains 1% or more of a heat dissipation additive
  • the magnetic coating film on the second surface opposite to the first surface contains 1% or more of a heat dissipation additive.
  • a resin-coated metal plate excellent in electromagnetic wave absorption, workability, scratch resistance, and fingerprint resistance (hereinafter, may be referred to as a fourth coated body)
  • the magnetic coating is coated on one side of a metal plate, the magnetic coating selectively contains a black additive, and the magnetic coating containing the black additive has a white color.
  • a resin coating containing at least one of a pigment and a bright pigment is selectively coated,
  • Another side of the metal plate is coated with a black coating containing a black additive and a resin coating containing at least one of a white pigment and a bright pigment.
  • the magnetic coating is coated on a surface of a metal plate, At least one of the magnetic coating films is a black magnetic coating film containing a black additive.
  • a resin coating containing at least one of a white pigment and a bright pigment is coated on the black magnetic coating
  • a resin coating containing at least one of a white pigment and a bright pigment is selectively coated.
  • each of the resin coatings is 0.5 to 10 ⁇ , and the total amount of the white pigment and the bright pigment contained in the resin coating is 1 to 25 %.
  • oxide pigments are preferable as the white pigment or the bright pigment, and among them, those containing titanium oxide are most recommended.
  • V A resin-coated metal plate with excellent electromagnetic wave absorption, workability, heat dissipation, scratch resistance, and fingerprint resistance (hereinafter sometimes referred to as the fifth painted body)
  • V-1 One surface of a metal plate is coated with the heat-dissipating magnetic coating film, which is a heat-dissipating magnetic coating film, and is white when the heat-dissipating magnetic coating film contains a black additive.
  • a resin coating containing at least one of a pigment and a bright pigment is selectively coated, and on another side of the metal plate, a heat-dissipating coating having a thickness of more than 1 ⁇ and a white pigment and a bright pigment are provided. Both are coated with a resin coating containing one,
  • At least one of the heat-dissipating magnetic coating film and the heat-dissipating coating film contains at least 1% of a pump rack
  • the surface not containing titanium oxide contains 1% or more of heat dissipation additives other than titanium oxide are doing.
  • At least one side of the heat dissipation magnetic coating contains 1% or more of carbon black
  • the surface that does not contain carbon black contains more than 10% of heat dissipation additives other than carbon black
  • At least one heat-dissipating magnetic coating is coated with a resin coating containing at least one of a white pigment and a bright pigment;
  • At least one side of the heat-dissipating magnetic coating film contains 30% or more of titanium oxide
  • the surface not containing titanium oxide contains 1% or more of a heat dissipation additive other than titanium oxide.
  • At least one heat-dissipating magnetic coating film is coated with a resin coating film containing at least one of a white pigment and a bright pigment.
  • V-3 The integrated emissivity of infrared rays (wavelength: 4.5 to 15.4 ⁇ m) when the grease-coated metal body is heated to 100 ° C satisfies the following formula (2).
  • a Infrared integrated emissivity of the front surface (outside of the resin-coated metal plate)
  • b Infrared integrated emissivity of the back surface ( ⁇ side of the resin-coated metal plate) (V-4) 5 to 10 / im, and the total amount of the white pigment and the bright pigment contained in the resin coating is 1 to 25%.
  • V-5 The color tone of the resin-coated metal plate containing at least one of a white pigment and a bright pigment is represented by an L value measured by a color difference meter (SZS- ⁇ 90) manufactured by Nippon Denshoku Co., Ltd. 0 to 60.0 is satisfied.
  • (VI-1) The first surface of a metal plate is coated with the magnetic coating, the magnetic coating selectively contains a black additive, and the magnetic coating contains a black additive.
  • a resin coating containing at least one of a white pigment and a bright pigment is selectively further coated, and the second surface opposite to the first surface is coated with 1% of a black additive.
  • a black heat radiation coating film containing more than 1 ⁇ m and a resin coating film containing at least one of a white pigment and a bright pigment are coated.
  • the magnetic coating on the first surface of the metal plate is a black heat dissipating magnetic coating of more than 1 ⁇ m containing 1% or more of a black additive
  • the magnetic coating film on the second surface opposite to the first surface selectively contains a heat dissipation additive at 1% or more
  • the black heat-radiating magnetic coating film is coated with a resin coating film containing at least one of a white pigment and a bright pigment.
  • a infrared integrated emissivity of the second surface of the resin-coated metal plate
  • b infrared integrated emissivity of the first surface of the resin-coated metal plate (VI-4) 5 to 10 ⁇ , and the total amount of the white pigment and the bright pigment contained in the resin coating is 1 to 25%.
  • the color tone of the resin-coated metal plate containing at least one of a white pigment and a bright pigment is 44.0 as an L value measured by a color difference meter (SZ S- ⁇ 90) manufactured by Nippon Denshoku Co., Ltd. Satisfies ⁇ 60.0.
  • oxide pigments are preferred as the white pigment or bright pigment, and among them, those containing titanium oxide are most recommended.
  • the first to sixth coated bodies are particularly useful as housings for electronic device members.
  • an electronic device component including a heating element in a closed space, wherein the entire or a part of an outer wall of the electronic device component is the first to sixth painted bodies described above. What is constituted is also included.
  • FIG. 1 is a view for explaining the principle of electromagnetic wave absorption by the coated metal plate of the present invention.
  • FIG. 2 is a diagram illustrating a method for evaluating the electromagnetic wave absorption performance of a coated metal plate.
  • FIG. 3 is a diagram illustrating a state in which the amount of reflection of the input electromagnetic wave is reduced at the resonance frequency of the housing.
  • FIG. 4 is an explanatory diagram schematically showing a state when the electromagnetic wave absorption is measured.
  • FIG. 5 is a graph showing a range of excellent heat dissipation characteristics of the second coated body according to the present invention. .
  • FIG. 6 is a graph showing a range in which both the self-cooling property and the heat radiation property are excellent in the third coated body according to the present invention.
  • FIG. 7 is a schematic diagram of an apparatus used for measuring ⁇ 1 (heat dissipation) and ⁇ 2 (self-cooling).
  • FIG. 8 is an explanatory diagram showing an outline of the first painted body.
  • FIG. 9 is an explanatory diagram showing an outline of the second painted body.
  • FIG. 10 is an explanatory diagram showing an outline of the fourth painted body.
  • FIG. 11 is a schematic diagram of the scratch resistance test. BEST MODE FOR CARRYING OUT THE INVENTION
  • the resin-coated metal plate of the present invention includes the following embodiments (I) to (VI).
  • the coated body of the above (I) is a resin-coated metal plate excellent in heat dissipation, self-cooling, scratch resistance, and fingerprint resistance (sixth coated body)
  • a surface located on the outside air side is referred to as a front surface
  • a surface located on the inside side is referred to as a back surface
  • the first coated body of the present invention is a back surface or a front and back surface of a metal plate (where the back surface is an electronic device).
  • the present inventors have proposed to provide a metal plate having excellent electromagnetic wave absorption without reducing the workability, at least the back surface (case) of the coated steel plate constituting the electromagnetic wave absorption case. If a relatively thin magnetic coating is formed on the inner side surface that composes the body; it is called the “back side” in this specification with the minimum amount of magnetic powder contained, it will be generated inside the housing. We thought that electromagnetic waves would be reflected multiple times, and that attenuation of electromagnetic waves that eventually leaked out of the housing through air holes etc. could be expected.
  • FIG. 1 a diagram illustrating the principle of electromagnetic wave absorption by the metal plate of the present invention.
  • the electromagnetic wave transmitted from the electromagnetic wave source 2 is applied to the inner surface of the housing 1 several times as indicated by arrows A1 to A5. After being reflected, it leaks to the outside through the air holes 3 etc. (in the figure, 4 indicates the gap in the housing).
  • the attenuation (ratio of the material steel plate) in one reflection is 2 dB (decibel), for example, the electromagnetic shielding effect of 10 dB is exhibited by five multiple reflections. .
  • This electromagnetic wave attenuating effect means that the electric field intensity is reduced to 1/3 of that of the material steel plate alone. From such a viewpoint, the requirements for the coated metal sheet of the present invention have been determined.
  • Magnetic powder contains 20 to 60% of magnetic powder
  • the magnetic powder (electromagnetic wave absorbing additive) used in the present invention is not particularly limited, and typically includes a soft magnetic ferrite powder and a magnetic metal powder. These may be used alone or in combination of two or more.
  • the total amount added to the magnetic coating film must be 20 to 60%. If the addition amount is less than 20%, it is difficult to exhibit the electromagnetic wave absorption characteristics, and if it exceeds 60%, the characteristics (bending workability, film adhesion and corrosion resistance) required as a resin-coated metal plate for electronic device members are reduced. It tends to deteriorate.
  • the preferred amount of addition can vary depending on the type of the magnetic powder to be used, the thickness of the magnetic coating film (described later), and the like, but is generally 25 ° / 0 or more and 50% or less; more preferably 30% or less. % Or more and 45% or less.
  • examples of the soft magnetic ferrite powder include soft magnetic Ni-Zn-based bright powder and Mn-Zn powder.
  • magnétique metal powder examples include permalloy (Ni-Fe-based alloy having a Ni content of 35% or more) and sendust (Si-A1-Fe-based alloy). Typically, those described in Examples described later may be used.
  • the use of magnetic metal powders among the above-mentioned magnetic powders is particularly useful. Just adding the magnetic metal powder to the magnetic coating film further increases the conductivity. Can. This is because the magnetic metal powder already contains Ni useful as a conductivity-imparting agent.
  • the above magnetic powder preferably has an average particle size of 15 ⁇ or less, and a powder having a large particle size (for example, 20 ⁇ or more) is preferably removed as much as possible. This facilitates the formation of a magnetic coating film, and can suppress a reduction in workability and corrosion resistance.
  • the average particle size of the magnetic powder is obtained by measuring the particle size distribution of the magnetic powder particles after classification using a general particle size distribution meter, and calculating the integrated value from the small particle size based on the measurement result.
  • a value of 50% means a particle size (D50).
  • Such a particle size distribution can be measured by a diffraction or scattering intensity pattern generated by irradiating the magnetic powder particles with light. Examples of such a particle size distribution meter include a Micro Track 9220FRA and a Micro Track manufactured by Nikkiso Co., Ltd. HRA and the like are exemplified.
  • the magnetic powder satisfying the above preferable average particle diameter a commercially available product may be used.
  • the magnetic powder described in Examples described later can be used.
  • the thickness of the magnetic coating film is 3 to 50 m
  • the thickness of the magnetic coating film is set to 3 to 50 ⁇ . If the film thickness is less than 3 ⁇ m or more than 50 / im, bending workability, film adhesion and corrosion resistance will be reduced.
  • the preferred film thickness can vary depending on the type and amount of the magnetic powder to be used, but it is generally 4 m or more and 40 ⁇ m or less; more preferably 5 ⁇ m or more and 30 ⁇ m or less. .
  • the above-described magnetic film may be formed on at least the back surface ( ⁇ side of the resin-coated metal plate for electronic device members) of the metal plate. This is because electromagnetic wave shielding becomes a problem inside electronic device members.
  • the first coated body has a magnetic film coated on the back surface [FIG. 8 (a)] and a magnetic film coated on the front and back surfaces [FIG. 8 (b)] is included.
  • 21 is a magnetic powder
  • 22 is a metal plate.
  • the type of the resin (base resin) constituting the magnetic coating film is not particularly limited from the viewpoint of electromagnetic wave absorption, and may be an acrylic resin, an epoxy resin, a urethane resin, a polyolefin resin, a polyester resin, or a fluororesin. , A silicone resin, and a resin obtained by mixing or modifying these, and the like can be used as appropriate.
  • the coated metal sheet of the present invention is used as a housing of an electronic device, it is necessary to consider properties such as bending workability, film adhesion and corrosion resistance.
  • a crosslinking agent can be added to this magnetic coating film. Examples of such a crosslinking agent include a melamine compound and an isocyanate compound, and it is preferable to add one or more of these compounds in a range of 0.5 to 20%.
  • conductivity when it is desired to further enhance the electromagnetic wave absorption of the above-mentioned coated body, conductivity may be imparted.
  • a conductivity-imparting agent examples include simple metals such as Ag, Zn, Fe, Ni, and Cu, and metal compounds such as FeP. Of these, Ni is preferred.
  • the shape is not particularly limited, but it is recommended to use a piece-shaped one in order to obtain more excellent conductivity.
  • the amount of the above-mentioned conductivity-imparting agent be 20 to 40% in the magnetic coating film. It is recommended to adjust to As described above, when soft magnetic fluoride powder is used as the magnetic powder, conductivity cannot be imparted by itself, and therefore, the conductivity imparting agent is within the above range (20 to 40%). It is preferred to add as much as possible (eg 25% or more). On the other hand, when a magnetic metal powder is used as the magnetic powder, the metal powder itself has conductivity, so it is best to add as little as possible within the above range (20 to 40%). Good (eg 30% or less).
  • the conductivity-imparting agent may have an adverse effect on workability and the like similarly to the above magnetic powder
  • the total of the conductivity-imparting agent and the magnetic powder contained in the magnetic coating film is considered.
  • the content is preferably 60% or less.
  • a soft magnetic ferrite powder as the magnetic magnetic powder
  • its content Is preferably about 20 to 40%
  • the content of the conductivity-imparting agent is preferably about 20 to 40% (total of 60% or less)
  • magnetic metal powder is used as the magnetic powder
  • the content is preferably about 30 to 50%
  • the content of the conductivity-imparting agent is preferably 10 to 30% (60% or less in total).
  • the metal sheet used in the present invention is not particularly limited.
  • cold-rolled steel sheet hot-rolled steel sheet, galvanized steel sheet (EG), galvanized steel sheet (GI), and galvannealed steel sheet
  • EG galvanized steel sheet
  • GI galvanized steel sheet
  • GA galvannealed steel sheet
  • A1-Zn plated steel plate 5% A1-Zn plated steel plate
  • 55% A1-Zn plated steel plate various plated steel plates such as A1, steel plate such as stainless steel plate, known metal plate, etc. Can all be applied.
  • the metal plate may be subjected to a surface treatment such as a chromate treatment or a phosphate treatment for the purpose of improving corrosion resistance and adhesion of the coating film, but on the other hand, in consideration of environmental pollution and the like.
  • a surface treatment such as a chromate treatment or a phosphate treatment for the purpose of improving corrosion resistance and adhesion of the coating film, but on the other hand, in consideration of environmental pollution and the like.
  • a non-chromated metal plate may be used, and any embodiment is included in the scope of the present invention.
  • the method of performing the above “non-chromatizing treatment” is not particularly limited, and a commonly used known undercoating treatment may be performed. Specifically, it is recommended to use a phosphate-based, silica-based, titanium-based, or zirconium-based underlayer treatment alone or in combination. '
  • an antioxidant may be used in the black coating film or during the base treatment.
  • the above-mentioned protective agent include silica-based compounds, phosphate-based compounds, phosphite-based compounds, polyphosphate-based compounds, zeo-based organic compounds, benzotriazole, tannic acid, and molybdate-based compounds.
  • tungstate-based compounds, vanadium-based compounds, silane coupling agents and the like, and these can be used alone or in combination.
  • silica-based compounds for example, calcium ion-exchanged silica
  • phosphate-based compounds for example, calcium ion-exchanged silica
  • phosphite-based compounds for example, phosphate-based compounds
  • polyphosphate-based compounds for example, (Aluminum phosphite etc.) in combination with a siliceous compound: (phosphate compound, phosphite compound or polyphosphate compound) in a mass ratio of 0.5 to 9.5.
  • the corrosion resistance of the non-chromated metal sheet can be ensured by using the above-mentioned anti-corrosion agent, it is also known that the addition of the anti-corrosion agent lowers the workability. Therefore, as a component for forming a black coating film, in particular, an epoxy-modified polyester resin and / or a polyester resin having a phenol derivative introduced into a skeleton, and a crosslinking agent (preferably, an isocyanate resin and / or a melamine resin, It is recommended to use a combination of both.
  • epoxy-modified polyester resins and polyester resins with phenol derivatives introduced into the skeleton have a higher corrosion resistance and coating adhesion than polyester resins. Excellent.
  • the isocyanate-based crosslinking agent has a processability improving effect (meaning a process of improving the appearance after processing, and in the examples described later, it is evaluated by the number of cracks in an adhesive bending test).
  • a processability improving effect meaning a process of improving the appearance after processing, and in the examples described later, it is evaluated by the number of cracks in an adhesive bending test.
  • excellent workability can be ensured even when a fire retardant is added.
  • the present inventors have found that the melamine-based cross-linking agent has excellent corrosion resistance. Therefore, in the present invention, very good corrosion resistance can be obtained by using in combination with the above-described anti-corrosion agent.
  • the melamine-based resin be contained in a ratio of 5 to 80 parts by mass with respect to 100 parts by mass of the isocyanate-based resin. If the amount of the melamine resin is less than 5 parts by mass, the desired corrosion resistance cannot be obtained.On the other hand, if the amount of the melamine resin exceeds 80 parts by mass, the effect of the addition of the isocyanate resin is sufficiently exhibited. Therefore, a desired workability improving effect cannot be obtained. More preferably, The amount is from 10 parts by mass to 40 parts by mass, more preferably from 15 parts by mass to 30 parts by mass, based on 100 parts by mass of the cyanate resin.
  • the present inventors have found that the first coated body satisfies the essential characteristics required for electronic devices (ensure airtightness due to waterproofing / dustproofing, miniaturization / weight reduction, low cost, etc.)
  • the present inventors have made intensive studies particularly on improving the heat dissipation of the coated body itself. As a result, they found that the intended purpose could be achieved by coating a predetermined coating film on the front and back surfaces of the metal plate.
  • the mechanism is that "heat (radiation heat) released from the heat source (heating element) in the electronic device is absorbed (radiated) by the coating on the back surface, and this heat is radiated from the heat dissipation coating on the front surface.”
  • the most significant feature is that the concept of the so-called “heat through method” has been successfully applied to electronic equipment components. Applying this concept of the “heat through method” to electronic equipment components, the amount of heat emitted from the electronic equipment is absorbed from the “back side of the metal plate” ⁇ “the surface of the metal plate” ⁇ paint that radiates The body is previously unknown and new.
  • Both the second painted body and the third painted body agree on the basic idea in that the concept of “heat through” described above is applied to electronic equipment members to improve heat dissipation.
  • the two differ in the ultimate solution (the main solution), the technical ideas for solving the problem, and the configuration.
  • the second coated body includes a mode in which heat dissipation is extremely excellent but self-cooling is inferior.
  • the third coated body also includes a mode in which the force S, which is extremely excellent in self-cooling property, and the heat radiation property are slightly lower than those of the second coated body.
  • the area defined by the second coated body [the range of excellent heat dissipation characteristics satisfying the above formula]] is shown in Fig. 5; Figure 6 shows the overlap between the range with excellent heat dissipation characteristics that satisfies Equation (3) and the range with excellent self-cooling properties that satisfies Equation (2).
  • coated bodies have excellent heat radiation properties due to the high product of the infrared emissivity on the front and back surfaces, and also have excellent self-cooling properties due to the high infrared emissivity on the front surface compared to the back surface. Is a region that is extremely excellent in both heat radiation characteristics and self-cooling characteristics.
  • each coated body according to the present invention will be described.
  • the second painted body is based on the basic concept described above, and satisfies the above (II-1) or (II-2) in the first painted body described above.
  • the feature is that the heat dissipation is improved by satisfying the above (III-3).
  • the coated body (first coated body) which is the basic aspect of the present invention is required to have excellent electromagnetic wave absorption at least on the back side (inside the coated body for electronic device members). You. Therefore, also in the second coated body, similarly to the first coated body, a mode in which the magnetic coating is formed only on the back surface ( ⁇ -1) and a mode in which the magnetic coating is formed on the front and back surfaces ( II-2).
  • the heat dissipation coating of more than 1 ⁇ m A film is formed, and at least one of the heat radiation coating films contains carbon black, and a heat radiation additive other than carbon black is added to the surface not containing carbon black.
  • at least one of the heat-dissipating coatings contains titanium oxide, and a heat-dissipating additive other than titanium oxide is added to the surface not containing titanium oxide. Therefore, it is possible to secure desired heat radiation characteristics [(3) above].
  • the second coated body is determined in consideration of requirements required for improving electromagnetic wave absorption and workability and requirements required for improving heat radiation.
  • a magnetic film of 3 to 50 m is formed on the back surface. Therefore, in order to obtain the desired heat dissipation characteristics, it is necessary to coat the heat dissipation coating of more than 1 m on the opposite surface first (this results in the formation of the coating on the front and back surfaces) ) In addition, it is necessary to add a heat-dissipating additive (heat-dissipating additive) to each coating in order to make the front and back surfaces heat-dissipating coatings [see Fig. 9 (a)]. .
  • 21 is a magnetic powder
  • 22 is a metal plate
  • 23 is a heat dissipation additive.
  • carbon black (or titanium oxide) which has a particularly high emissivity, should be used as a heat radiation additive. It must be added to at least one side of the coating film.
  • the surface that does not contain carbon black (or the surface that does not contain titanium oxide) contains a heat-radiating additive other than carbon black (or titanium oxide).
  • Other heat radiation additives are also possible.
  • carbon black (or titanium oxide) is added to both sides, a coated body with even better heat radiation characteristics can be obtained, which is extremely useful.
  • At least one of the magnetic coating on the back surface, the heat dissipation coating on the front surface contains a car pump rack (or titanium oxide), and contains carbon black. It has been determined that the surface that does not (or does not contain titanium oxide) contains heat-dissipating additives other than force-bon black (or heat-dissipating additives other than titanium oxide). Hereinafter, the description will be made sequentially.
  • At least one of the magnetic coating and the heat dissipation coating contains 1% or more of carbon black; the surface not containing carbon black contains one or more heat dissipation additives other than carbon black. 0% or more contained
  • Carbon black is a black additive having excellent heat dissipation properties.
  • at least one side of the magnetic coating film or the heat dissipation coating film contains carbon black. It is recommended that
  • At least one of the magnetic coating film and the heat radiation coating film may contain only the car pump rack, but may be used in combination with another black additive or a heat radiation additive other than the black additive. (These examples will be described later).
  • the proportion of carbon black in the black additive is controlled to 10% or more (preferably 30% or more, more preferably 50% or more). It is recommended that Since carbon black has a lower specific gravity than other typical black mu additives (oxide-based additives, etc.), when converted by mass, the desired heat radiation effect can be obtained with a small ratio. Will be demonstrated.
  • Most preferred is a black coating in which the black additive comprises only carbon black.
  • the content of carbon black contained in the coating film needs to be appropriately controlled in relation to the film thickness of the coating film, but it is recommended to add 1% or more. Basically, the more the amount of carbon black added, the more excellent heat radiation characteristics can be obtained. Therefore, the amount is preferably 3% or more, more preferably 5% or more.
  • the upper limit is not particularly limited in relation to the heat radiation characteristics. However, when the upper limit is 15% or more, the paintability is deteriorated, and the scratch resistance is also reduced. Therefore, in consideration of paintability, the upper limit is preferably set to less than 15%, and more preferably, 13% and 12%.
  • the addition amount of carbon black in the coating film can be measured by the following method.
  • a solvent is added to a subject (analytical sample) and heated to decompose organic substances in the subject.
  • the type of solvent used depends on the type of base resin, and an appropriate solvent may be appropriately used according to the solubility of each resin.
  • a polyester resin or urethane resin is used as the base resin.
  • sodium hydroxide The subject may be added to a container (eg, an eggplant-shaped flask) to which the methanol solution has been added, and the container may be heated in a water bath at 70 ° C. to decompose organic substances in the subject.
  • the organic matter is separated by filtration with a glass filter (pore size: 0.), and the carbon in the obtained residue is quantified by a combustion infrared absorption method, and the carbon black concentration in the coating film is calculated.
  • the average particle size of the carbon black is preferably controlled to 5 to 100 nm. If the average particle size is less than 5 nm, desired heat radiation characteristics cannot be obtained, and the stability of the paint is poor and the appearance of the paint is inferior. On the other hand, when the average particle size exceeds 100 nm, not only does the heat radiation property deteriorate, but the appearance after coating becomes uneven. Preferably 10 nm or more and 90 nm or less; more preferably 15 nm or more and 80 nm or less. It is recommended that the optimum average particle size of carbon black be approximately 20 to 40 nm, considering the heat dissipation characteristics, the stability of the coating film and the uniformity of appearance after coating.
  • a commercially available carbon black satisfying the above average particle size may be used.
  • use of “Mitsubishi Carbon Black” (average particle size: 13 to 75 ⁇ m) manufactured by Mitsubishi Chemical Corporation is recommended. Is done.
  • the average particle size of the black additive used in the present invention may be calculated from the arithmetic average particle size by an electron microscope, as described in the above-mentioned commercial products.
  • heat-dissipating additives other than the above-mentioned carbon black include, for example, Fe, Co, Ni, Cu, Mn, Mo, Ag, and black additives.
  • Oxides such as Sn, sulfides, carpides (black metal fine powder, etc.); heat dissipating additives other than black additives; Ceramics such as silicon, aluminum nitride, hexagonal boron nitride, iron oxide, barium sulfate, silicon oxide, and aluminum oxide; A1 powder (scale-like AI flake, etc.); You may use a combination of two or more.
  • the content of the above-mentioned "heat dissipation additive other than CB" should be 10% or more in total, preferably 20% or more, and more preferably 30% or more. .
  • T i ⁇ 2 and A 1 flakes are ceramics such as T i ⁇ 2 and A 1 flakes; more preferred are T i O 2.
  • T i 0 2 when T i 0 2 is used, when a coating film containing T i 0 2 of about 30 to 70% is formed at about 5 to 50 ⁇ m, an infrared emissivity of about 0.8 is generally obtained. can get. If a black additive such as carbon black is further added to the coating film, the infrared emissivity is further increased. If you want to give the surface a metallic appearance, it is recommended to use A1 flakes for the surface coating. In this case, if the content of AI flakes is 5 to 30% and the thickness of the coating film is about 5 to 30 / ⁇ , an infrared emissivity of about 0.6 to 0.7 is obtained. Can be
  • T i 0 2 as Rustica, Ltd. of T i 0 2 (average particle size from 0.2 to 0.5 ⁇ ⁇ ); It is recommended to use LB 584 (average particle size 25/1 m) manufactured by Showa Aluminum Powder as A1 flake.
  • the average particle size of the “radiation additive other than CB” used in the present invention is the above-mentioned commercial product of carbon black [Mitsubishi Chemical's “Mitsubishi Carbon Black J (average particle size 13 to 75 / zm )], It is sufficient to calculate from the arithmetic mean diameter with an electron microscope.
  • At least one of the magnetic coating and the heat dissipation coating contains 30% or more of titanium oxide; the surface containing no titanium oxide contains one or more heat dissipation additives other than titanium oxide. % Or more
  • titanium oxide may be used instead of carbon black. Titanium oxide is the second most emissive heat radiation additive after carbon black.
  • the amount of addition should be 30% or more (preferably 40% or more), and a heat-radiating additive other than titanium oxide (the above-mentioned “ Of the heat dissipating additives other than CB, those excluding titanium oxide and also including carbon black) should be 1% or more (preferably 3% or more).
  • Thickness of heat dissipation coating on surface more than 1 m
  • the thickness of the heat dissipation coating on the surface needs to be more than 1 ⁇ .
  • This lower limit is determined in order to secure desired heat radiation characteristics.
  • Preferred lower limits are, in order, 3 / m, 5 Am, 7 ⁇ m, and ⁇ ⁇ ⁇ ⁇ .
  • the upper limit is not particularly limited in relation to the heat radiation characteristics, but it is intended to be applied to electronic device parts, and therefore it is necessary to improve workability; in particular, cracks in the coating film during bending.
  • control should be performed at 50 ⁇ or less (more preferably, 45 / m or less, 40 ⁇ or less, 35 / ⁇ X11 or less, 30 211 or less). Is recommended.
  • the thickness should be controlled to 12 ⁇ m or less (more preferably 11 nm or less, more preferably 10 ⁇ m or less). It is recommended that
  • the type of resin (base resin forming the heat radiation coating film) added to the coating film on the front and back surfaces is not particularly limited from the viewpoint of heat radiation characteristics, and acrylic resin, urethane resin, and polyolefin resin are used. Polyester resins, fluororesins, silicon resins, and mixtures or modified resins thereof can be used as appropriate.
  • the base resin is a non-hydrophilic resin. Satisfies a contact angle with water of 30 ° or more (more preferably 50 ° or more, and even more preferably 70 ° or more)].
  • Resins satisfying such non-hydrophilic properties can vary depending on the degree of mixing and the degree of modification.For example, it is preferable to use polyester resins, polyolefin resins, fluororesins, silicon resins, etc. Among them, the use of polyester resin is recommended.
  • pigments such as anti-reflective pigments and silica may be added to the above-mentioned coating film in addition to carbon black titanium oxide as long as the effects of the present invention are not impaired.
  • other heat dissipating additives other than these [e.g., zirconium, solid light, aluminum titanate, / 3 spodumene, silicon carbide, aluminum nitride, hexagonal boron nitride, iron oxide, Ceramics such as parium sulfate, silicon oxide, and aluminum oxide; one or two or more types of A1 powder (scale-like A1 flakes, etc.) are also added as long as the effects of the present invention are not impaired. can do.
  • crosslinking agent can be added to the coating film.
  • Frame used in the present invention examples include melamine-based compounds and dicocyanate-based compounds, and it is recommended to add one or more of them in the range of 0.5 to 20% by weight.
  • a magnetic coating film of 3 to 50 zm is formed on the front and back surfaces.
  • a heat radiation additive it is necessary to use the above magnetic coating film as a heat radiation coating film, and for that purpose, it is necessary to add a heat radiation additive to each coating film [Fig. (b)).
  • the specific configuration is the same as the above-mentioned second painted body ( ⁇ -1).
  • a and b are the infrared rays (wavelength: 4.5 to 15.4 m) when the coated body with the coating on the front and back surfaces of the metal plate is heated to 100 ° C.
  • the integrated emissivity it means the infrared integrated emissivity a on the front surface and the infrared integrated emissivity b on the back surface, respectively.
  • the above-mentioned infrared integrated emissivity is measured by a method described later, and the infrared integrated emissivity of the front surface or the back surface can be separately measured.
  • the above-mentioned “infrared integrated emissivity” means, in other words, the ease with which infrared rays (heat energy) are emitted (easy to absorb). Therefore, the higher the infrared emissivity is, the larger the amount of heat energy released (absorbed) is. For example, when 100% of the thermal energy given to an object (painted body in the present invention) is radiated, the infrared integrated emissivity is 1.
  • the integrated emissivity of infrared rays when heated to 100 ° C. is determined. This is because the coated body of the present invention is used for electric equipment (depending on the members, etc. Considering that the temperature is generally 50 to 70 ° C, and the maximum is about 100 ° C), the heating temperature should be set to 100 ° C to match the temperature of the practical level. It is specified.
  • the measuring method of the infrared integrated emissivity in the present invention is as follows.
  • Measurement wavelength range 4.5 to 15.4 Mm
  • Measurement temperature Set the sample heating temperature to ⁇ 0 o ° c
  • the spectral emission intensity (measured value) of the sample was measured in the infrared wavelength range (4.5 to 15.4 ⁇ m).
  • the measured values of the above samples are measured as the value obtained by adding / adding the radiant intensity of the background and the number of devices. Therefore, the emissivity measurement program [JEOL Ltd.] Integrated emissivity was calculated using an emissivity measurement program. The details of the calculation method are as follows.
  • ⁇ ( ⁇ ) integrated emissivity (%) of sample at temperature ⁇ (in)) ( ⁇ ,): wavelength; I, spectral emission intensity of sample at temperature T (° C)
  • A instrument function
  • KFB ⁇ : spectral radiant intensity of fixed background
  • KTB (1, TTB) is taken into account.
  • a water-cooled trap black body is placed around the sample. Because it is. Due to the installation of the above black body of the trap, fluctuating background radiation (meaning background radiation that varies depending on the sample. Since the radiation from around the sample is reflected on the sample surface, the measured value of the spectral emission intensity of the sample is The spectral radiation intensity of this background radiation (expressed as a value obtained by adding the background radiation) can be controlled to be low.
  • the above-mentioned trap blackbody uses a pseudo blackbody with an emissivity of 0.96, and the above KTB ⁇ ( ⁇ , TTB): wavelength, spectral emission intensity of the trap blackbody at the temperature TTB (° C)] It is calculated as follows.
  • KB E, TTB
  • I temperature TTB (° C).
  • the product (a X b) of a and b is 0.42 or more and satisfies [Expression 1].
  • the numerical value (product of the integrated infrared emissivity emitted from the painted body) calculated by the above “a'X b” is useful as an index indicating the heat radiation effect of the painted body itself, and the painted body that satisfies the above equation Is the above wavelength In the range, the average radiation performance is high, so the target level of the radiation performance of the first coated body was set to “aXb ⁇ 0.42”.
  • the relationship between the infrared emissivity of the front surface and the infrared emissivity of the back surface is not particularly limited as long as the target level of the above-described heat radiation characteristics is satisfied. Include both different embodiments, and both sides have the same emissivity.
  • the main purpose is to improve the self-cooling property in addition to the heat radiation property, and is limited to only the coated body having a higher infrared emissivity on the front surface than on the back surface. The two are different in this respect [Details will be described in the section on the third painted body].
  • any infrared emissivity can be set for the front and back surfaces.
  • the maximum value of the infrared emissivity is 1, in order to satisfy the above equation (1), the infrared emissivity of at least one side must be 0.42 or more; & 13 ⁇ 0.56 to satisfy In order to satisfy at least 0.56 or more of infrared emissivity on one side; & 13 ⁇ 0.64, it is necessary that at least one side has emissivity of 0.64 or more.
  • the infrared emissivity of one side is as large as possible, and it is a preferable embodiment that the infrared emissivity of at least one side satisfies 0.65 or more. More preferably, it is 0.7 or more, 0.75 or more, and 0.8 or more. A coated body having 0.65 or more on both sides is more preferable.
  • the difference (A-B) between the maximum value A and the minimum value B of the spectral emissivity in an arbitrary wavelength range of the infrared light is It is preferably 0.35 or less.
  • This “A—: B” indicates the “emission range of the emissivity” in the infrared wavelength range
  • “A—B ⁇ 0.35” indicates that in any of the infrared wavelength ranges, It shows that it exhibits stable and high radiation characteristics. Therefore, those satisfying the above requirements can be applied to electronic equipment components, such as electronic equipment equipped with various components that emit different infrared wavelengths. Expansion is expected.
  • the arbitrary emissivity measured as described above is measured, and the difference (A_B) between the maximum value (A) and the minimum value (B) of the spectral emissivity in the wavelength region is determined as “emissivity of emissivity”. Calculated as the “range of change”. The smaller the value of “A ⁇ B” is, the more stable heat radiation characteristics can be obtained, more preferably 0.3 or less, still more preferably 0.25 or less.
  • the third painted body is based on the basic idea described above, and satisfies the above ( ⁇ ⁇ -1) or ( ⁇ -2) in the first painted body; and
  • the feature is that heat dissipation and self-cooling are enhanced by satisfying (III-3).
  • the magnetic coating film is formed at least on the back surface.
  • an embodiment (III-1) in which a magnetic coating film is formed only on the back surface and an embodiment (III-2) in which a magnetic coating film is formed on the front and back surfaces.
  • the magnetic coating on the back surface does not necessarily have to be a heat dissipation coating.
  • the heat-radiating coating on the front surface and the magnetic coating on the rear surface need to contain a heat-radiating additive, so that the desired heat-radiating property and self-cooling property can be obtained. 3)] can be secured.
  • the third coated body is determined in consideration of requirements required for improving electromagnetic wave absorption and requirements required for improving heat dissipation and self-cooling. .
  • a magnetic coating film of 3 to 50 / Xm is formed on the back surface. Therefore, in order to obtain the desired heat dissipation characteristics and self-cooling property, firstly, It is necessary to coat the coating film (this results in the formation of a coating film on the front and back surfaces), and to add a heat radiation coating to the coating film in order to at least make the surface a heat radiation coating film. It is necessary to contain an agent. In addition, in order to secure a desired self-cooling property, the infrared emissivity of the front surface needs to satisfy Expression (1) (described later) as compared with the rear surface, and the heat radiation characteristics are low. In addition, it is necessary to satisfy Equation 3 (described later).
  • the third coated body does not include a single-side coated steel sheet j.
  • the heat radiation coating on the front surface contains a heat radiation additive, It has been determined that the coating may further contain a heat dissipation additive.
  • the “film thickness of the heat dissipation coating film on the surface: more than l ⁇ m” is as described in detail in (II) above.
  • the heat dissipating additive to be used examples include the heat dissipating additives described in (1) above (including a pump rack and titanium oxide). Therefore, unlike the above-mentioned second coated body, the third coated body is not limited to carbon black and titanium oxide having high emissivity, and heat-dissipating additives such as AI flakes are described later ( ⁇ -3). ) Can be used as long as it satisfies.
  • the coating amount on the back surface can be formed by appropriately adjusting the addition amount and the coating thickness according to the emissivity of the surface coating film.
  • the back side coating film is formed using the black additive, even if the back side has little heat dissipation, even if the infrared emissivity of the front side coating film is appropriately controlled, Self cooling Property can be ensured.
  • a coating film in which the above-mentioned additives are not added at all and the thickness of the coating film is controlled within a predetermined range (about 2.5 ⁇ or more) can be employed. This is because a certain degree of heat radiation characteristics can be obtained only by the resin contained in the coating film.
  • the coating film thickness may be adjusted to approximately 2.5 m or more.
  • the third coated body has the above-mentioned structure.
  • the temperature rise of the coated body itself is suppressed, when the coated body is used as a housing for electronic equipment, when the electronic equipment is in operation, the operator feels that it is not hot even if touched by the operator. Thus, it is possible to provide a safe electronic device.
  • the coated body since the coated body also has good heat dissipation, an electronic device member having these ⁇ characteristics is very useful in that it further expands its use.
  • Equation 2 b ⁇ 0.9 (a-0.05)
  • Equation (1) above sets the infrared emissivity of the front side higher than the infrared emissivity of the back side, and is set as an index indicating the heat radiation effect of transferring the heat absorbed by the painted body to the outside air side. It is useful as an index of “self-cooling” that suppresses the temperature rise of itself.
  • the above equation states, “By applying a coating with a higher infrared emissivity on the surface of the metal plate (outside air) than the back surface of the metal plate (inside the electronic device), the temperature rise of the coated body itself is suppressed. Based on the concept of “Yu”, we specified the relational expression of infrared emissivity on the front and back surfaces that can secure the desired self-cooling property (0.5 ° C or more with ⁇ 2 described later).
  • the above formula is determined by repeating various experiments based on such knowledge.
  • the amount of heat absorbed (radiated) on the back side of the metal plate is larger than that of the metal plate. Since the amount of heat radiated from the surface side of the coating increases, it is possible to efficiently suppress the temperature rise of the coated body itself.
  • the Q value is large.
  • the preferred order is 0.13 or more, 0, 24 or more, 0.35 or more, 0.47 or more.
  • Equation 3 (a— 0.05) X (b-0.05) ⁇ 0.08
  • the above equation (3) specifies the index of the heat radiation characteristic of the third painted body by the product of the infrared integrated emissivity on the front and back sides, and the left side is [(a—0.05) X (b -0.05)]
  • the level of the heat radiation characteristic (when converted to ⁇ T 1 described later, T 1 ⁇ 1.5 ° C) of the third coated body is the level of the second coated body ( ⁇ 1 ⁇ 2.6 ° C, described later). ) Has a wider tolerance. This is because improvement of self-cooling is the main problem to be solved in the third painted body, and the level of heat dissipation characteristics is slightly lower than that of the second painted body as long as the task is achieved. It has been determined based on the finding that aspects can be included.
  • the fourth painted body satisfies the above (IV-1) or (IV-2) and the above (IV-3) to (IV-4) in the first painted body. This is characterized in that the flaw resistance and fingerprint resistance are improved by performing the method. First, the purpose of defining (IV-1) and (IV-2) will be described.
  • the magnetic coating film must be formed on at least the back surface. This includes two modes, an embodiment (IV-1) in which a magnetic coating film is formed only on the back surface and an embodiment (IV-2) in which a magnetic coating film is formed on the front and back surfaces.
  • the surface is blackened, and the black surface is coated with a resin containing a predetermined white pigment and / or a bright pigment. It is necessary to form a film.
  • the fourth coated body is intended to apply a black metal plate to a constituent material of an electronic device member, and coats the above resin coating on a surface where prevention of flaws and fingerprints is required. This is because it exerts a hiding effect of adjusting the color tone of the plate to a color tone in which flaws and fingerprints are less noticeable.
  • the surface has a two-layer structure consisting of a black coating film containing a black additive and a resin coating film containing a white pigment and a white or bright pigment [FIG. 10 (a)].
  • a black coating film containing a black additive and a resin coating film containing a white pigment and a white or bright pigment
  • 21 is a magnetic powder
  • 22 is a metal plate
  • 23 is a heat dissipation additive
  • 24 is a white pigment Z bright pigment.
  • the back surface is coated with the above-described magnetic coating film, and a black additive may be added to the magnetic coating film as needed.
  • a black additive may be added to the magnetic coating film as needed.
  • a resin coating containing a white pigment and / or a brilliant pigment may be further coated. Scratches and fingerprint resistance can be ensured.
  • the "black coating film” in the present invention means a coating film containing a black additive.
  • the black additive is not particularly limited as long as it can be colored black.
  • Various black additives are included.
  • a white pigment and / or a brilliant pigment is applied to one or both of the black side surfaces of the black metal plate in order to improve the scratch resistance of the black metal plate. This is because the coating is characterized by being coated with a predetermined resin coating contained therein, and there is no intention to limit the black coating itself.
  • Typical examples of the black additive used in the present invention include carbon black, and other additives such as Fe, Co, Ni, Cu, Mn, Mo, Ag, Sn, etc.
  • Substances, sulfides, carbides and fine black metal powders can also be used.
  • Other requirements for the black coating such as the type of black additive, the type of resin added to the black coating (base resin that forms the black coating), and other components that can be added (anti-pigment, silica , Cross-linking agent, etc.) are as described in the above (II).
  • the upper and lower limits of the thickness of the black coating film having such a configuration are not particularly limited in relation to scratch resistance and fingerprint resistance, the lower limit is preferably ⁇ in consideration of corrosion resistance and workability. More preferably, it is 3 m.
  • the black coating film may contain a conductive filler typified by N′i or the like, whereby excellent conductivity can be secured.
  • a conductive boiler is added to the black coating film, it is preferable to control the lower limit of the film thickness to 2 m. Free coatings are also included), and both corrosion resistance and conductivity can be ensured.
  • a more preferred lower limit is 3 m, even more preferably 5 m.
  • the coated body of the present invention is intended to be applied particularly to electronic device parts, and therefore, an improvement in workability is required in relation to the use.
  • the upper limit of the film thickness is 50 ⁇ m (preferably 45 ⁇ , 40 ⁇ m, 35 ⁇ m). m, 30 / im) is recommended.
  • the thickness of the black coating film to which the conductive filler is added and the thickness of the resin coating film described above are 13 m or less (more preferably, 12 ⁇ or less, llwm or less, 10 m or less). The following is preferred.
  • the metal plate coated with the black coating is not particularly limited.
  • the above-mentioned metal plate may be subjected to surface treatment such as chromate treatment and phosphate treatment for the purpose of improving corrosion resistance and coating film adhesion, etc.
  • surface treatment such as chromate treatment and phosphate treatment
  • a non-chromated metal plate may be used, and any embodiment is included in the scope of the present invention.
  • At least the magnetic coating on the surface is a black magnetic coating containing a black additive, and the black magnetic coating on the surface is coated with a resin coating containing a white pigment and / or a bright pigment.
  • the back surface may be coated with a resin coating containing a white pigment and a luminous or bright pigment.
  • the thickness of the resin coating is 0.5 to 10 m
  • the added amount of the contained white pigment and / or bright pigment is set to 1 to 25% in total. Those out of these ranges have confirmed that the desired scratch resistance and fingerprint resistance cannot be obtained by the examples described later.
  • the resin coating film is coated on one or both of the black side surfaces, and contains a white pigment and a luminous or bright pigment.
  • these pigments are not coated for the original purpose of addition (to impart designability), but are completely different from conventional ones in that the black metal plate has improved scratch resistance and fingerprint resistance.
  • the thickness of the resin coating is controlled to 0.5 to 10 / xin, and the white pigment and / or the bright pigment contained in the resin coating are coated.
  • the color tone (L value) of the entire resin-coated metal plate is controlled to 44.0 to 60.0, which adjusts the total amount of added to 1 to 2.5%.
  • white pigments and glitter pigments are known as pigments that impart glitter (metallic color tone) and pearl.
  • the resin coating film containing these pigments satisfies a predetermined range, it can exhibit extremely excellent scratch-resistance and fingerprint-resistance properties, and not to mention the scratches generated on the coating.
  • the fact that it was found that flaws that could not be dealt with with the conventional clear coating film (flaws generated on the edges of steel sheets, etc.) could also be suppressed had technical significance, and the flaw resistance was high.
  • the technical idea of controlling the film thickness of the resin coating film and the amount of the pigment added to a predetermined range in relation to the fingerprint resistance and the fingerprint resistance is unique to the present invention, and has never been known before.
  • Japanese Patent Gazette ⁇ Japanese Patent Application Laid-Open No. 2000-3667371, Japanese Patent Publication 'Japanese Patent Application Laid-open No. Hei 10-330677 and this patent gazette' No. 0 02-1 27995 merely discloses a modification technique of these pigments from the viewpoint of improving the design properties, and does not intend to improve the scratch resistance and fingerprint resistance. Absent. Therefore, in those documents, the thickness of the resin coating film containing the brilliant pigment or the like is as thick as about 15 ⁇ or more (20 to 70 ⁇ ). It has been confirmed by experiments that no improvement in fingerprint resistance, etc. can be obtained (see examples below).
  • pigments used in the present invention bright pigments reflect the received light and give the paint film a design such as a metallic feeling or a pearly feeling (light interference pattern).
  • aluminum powder Metal flakes such as stainless steel flakes, mica (my strength), mica shear iron oxide ( ⁇ ⁇ ⁇ , scaly iron oxide), glass flakes, bronze pigments and the like.
  • Each brilliant pigment includes those coated with a pigment, such as resin-coated aluminum powder, silica-coated aluminum powder, fluorine compound-coated aluminum powder, and Hastelloyde coated glass flake; Pearl pigments such as pearl mica (titanium oxide-coated myric) such as those coated with various metal oxides (titanium dioxide, iron oxide, tin oxide, etc.) or various coloring pigments.
  • a pigment such as resin-coated aluminum powder, silica-coated aluminum powder, fluorine compound-coated aluminum powder, and Hastelloyde coated glass flake
  • Pearl pigments such as pearl mica (titanium oxide-coated myric) such as those coated with various metal oxides (titanium dioxide, iron oxide, tin oxide, etc.) or various coloring pigments.
  • Iriodinl03W II, Iriodinl21WII, IriodinlllWII, etc. made by Japan is recommended. These may be used alone or in combination of two or more.
  • the white pigment used in the present invention is a pigment added for the purpose of imparting whiteness to a coating film, and is, for example, titanium oxide [specifically, JP301, JP603, JP806, JRNC, etc., manufactured by Tika Co., Ltd.] ], Lead white, zinc white, chalk and the like.
  • Each of these white pigments Z bright pigments may be used alone or in combination of two or more. Therefore, there are those using two or more kinds of white pigments, those using two or more kinds of glitter pigments, those using at least one kind of white pigment and those using at least one kind of glitter pigment. Are all included in the scope of the present invention.
  • white pigments containing an oxide-based additive / "brilliant pigments" are preferable, and particularly, titanium oxide is contained.
  • titanium oxide coating my power such as IriodinlllWII manufactured by Merck Japan.
  • the average particle size of the bright pigment / white pigment varies depending on the shape of the pigment to be used.
  • the average particle size is generally 0.1 to 0 ⁇ m (preferably 0.2 ⁇ m or more, 5 ⁇ m or less; more preferably 3 ⁇ m or less); in the case of flakes (flakes), it is generally 5 to 50 / im (preferably 10 ⁇ m or more, 40 xm or less; more preferably 0.3. ..0 .. mm below) is recommended.
  • the average particle size is less than each lower limit, the concealing power of flaws and fingerprints due to the addition of the pigment decreases, and it is necessary to increase the film thickness. However, if the film thickness is too high, the workability and the like will decrease. (To be described later).
  • the average particle size exceeds each upper limit, unevenness in color tone tends to occur in the appearance of the coating film.
  • the average particle size is 0.1 m or more and 0.4 ⁇ m or less; in the case of titanium oxide coating my strength, the average particle size is 5 m or more, 50 m In the following, it is preferable that the thickness is not less than 0.3 and not more than 3 ⁇ m.
  • the average particle size of the pigment is determined by measuring the particle size distribution of the classified pigment particles using a general particle size distribution analyzer, and calculating the integrated value 50 from the small particle size side calculated based on the measurement result.
  • % Particle size means' (D50).
  • the particle size * The particle size distribution can be measured by the intensity pattern of diffraction or scattering generated by the method. Examples of such a particle size distribution meter include Microtrack 9220FRA and Microtrack HRA manufactured by Nikkiso Co., Ltd.
  • a commercially available pigment may be used as the pigment satisfying the above-mentioned preferable average particle size.
  • the titanium oxide coating strength Iriodinl03WII (average particle size of 10 to 60 m), Iriodinl21WII (average particle size of 5 to 25 m), IriodinlllWII (average particle size of 15 ⁇ or less) manufactured by Merck Japan;
  • titanium oxide JR301 (average particle diameter 0.30 / 1 m), JR603 (average particle diameter 0.28 ⁇ m), JR806 (average particle diameter 0.25 ⁇ m) manufactured by Tika Co., Ltd. ), JRNC (average particle size 0.37 ⁇ m) and the like.
  • the requirements for characterizing the fourth coated body (the thickness of the resin coating film and the amounts of white pigment and Z or bright pigment contained in the resin coating film) will be described.
  • the thickness of the resin coating is 0.5 to 10 m. This film thickness is 0.
  • the film thickness exceeds 10 ⁇ m, the workability decreases. It is preferably at most 6 / im, more preferably at most 5 / Xm.
  • the upper limit of the resin film is 6 ⁇ . If it exceeds 6 ⁇ , it is difficult to exhibit desired conductivity. It is preferably 5 ⁇ or less, more preferably 4; um or less.
  • the ratio of the above-mentioned white pigment / bright pigment to the whole resin coating film is 1 to 25% in total. If the amount is less than 1%, the amount of the pigment added to the base paint is small, and the effect of improving scratch resistance and fingerprint resistance becomes insufficient. On the other hand, if it exceeds 25%, the elongation of the coating film is reduced, and if subjected to severe bending, the coating film may be cracked and the coating film may be peeled off. More preferably 2% or more and 20% or less; even more preferably 3% or more and 15% or less.
  • the type of the resin (base resin) added to the resin coating film is not particularly limited from the viewpoints of scratch resistance and fingerprint resistance, and acrylic resins, urethane resins, and polyolefin resins can be used. Resins, polyester resins, fluorine resins, silicon resins, and mixed or modified resins thereof can be used as appropriate.
  • the above base resin is non-hydrophilic considering that it is required to improve corrosion resistance and workability in addition to heat dissipation (described later). It is preferable that the resin has a contact angle with water of 30 ° or more (more preferably 50 ° or more, more preferably 70 ° or more).
  • Resins satisfying such non-hydrophilic properties can change depending on the degree of mixing and the degree of modification.
  • polyester resins, polyolefin resins, fluorine resins, silicone resins, and mixtures or mixtures thereof It is preferable to use a modified resin.
  • a polyester resin or a modified polyester resin an epoxy-modified polyester resin, a thermosetting polyester resin such as a polyester resin having a phenol derivative introduced into a skeleton, or an unsaturated polyester resin
  • resin is recommended to use resin. .
  • an anti-pigment pigment and a paint fluidity improver may be added to the coating film as long as the function of the present invention is not impaired.
  • crosslinking agent can be added to the coating film.
  • examples of the crosslinking agent used in the present invention include melamine-based compounds and dicocyanate-based compounds, and it is recommended to add one or more of these, in an amount of 0.5 to 20%. .
  • the color tone of the resin-coated metal plate is 44.0 to 60.0 as the L value measured with a color difference meter (SZS- ⁇ 90) manufactured by 13 Denshoku Co., Ltd.
  • the resin-coated metal plate of the present invention has the above-described configuration, and the color tone of the resin-coated metal plate has an L value of 44 measured by a color difference meter (SZS- ⁇ 90) manufactured by Nippon Denshoku Co., Ltd. 0 to 60.0 are satisfied.
  • SZS- ⁇ 90 color difference meter manufactured by Nippon Denshoku Co., Ltd. 0 to 60.0 are satisfied.
  • the smaller the L value the greater the whiteness (black).
  • the L value is particularly set in the above range for the following reason.
  • the present invention provides a resin-coated metal plate having significantly improved scratch resistance and fingerprint resistance in a black metal plate. Examination of the relationship with fingerprints revealed that when the color of the coating film was black, the flaws and fingerprints were conspicuous white; on the other hand, when the color of the coating film was white, the flaws and fingerprints were dark and conspicuous found. Then, "In order to make the paint film flaws and fingerprints less noticeable, the color tone of the paint film must be within a certain range. Adjust it to the box. " Based on such knowledge, the present invention has determined the color tone (L value) of the resin-coated metal plate within the above range.
  • the flaws and fingerprints become white and conspicuous, and the desired flaw resistance and fingerprint resistance cannot be obtained. It is preferably at least 46, more preferably at least 48. If the L value exceeds 60.0, flaws and fingerprints become dark and conspicuous. It is preferably 56 or less, more preferably 52 or less.
  • a conductive filler may be added to the black metal plate and / or the resin coating.
  • This conductive filler may be added to only the black metal plate or the resin coating, or may be added to both the black metal plate and the resin coating.
  • Very good conductivity can be obtained by adding a conductive filler to both, but depending on the application, a conductive filler may be added to only one side, and the specified conductivity can be obtained. Can be secured. When both surfaces are black metal plates, they may be added to at least one of them.
  • examples of the conductive filter used in the present invention include simple metals such as Ag, Zn, Fe, Ni, and Cu; and metal compounds such as FeP. Among them, Ni is particularly preferred.
  • the shape is not particularly limited, but it is recommended that a scaly shape be used in order to obtain better conductivity.
  • the content of the conductive filler is determined by the coating film forming components (eg, a base resin such as a polyester resin, a crosslinking agent that is added as necessary, a black additive, and a conductive filler). , And all components that form a coating film, including additives that are added as necessary.) 10 to 50% in total with respect to 10.0% (in terms of solid content) And If it is less than 10%, the desired effect cannot be obtained. It is preferably at least 15%, more preferably at least 20%, even more preferably at most 35%. On the other hand, when the content of the conductive filler exceeds 50%, the processability decreases. In particular, it is recommended that the content be 45% or less when applied to parts that require a high degree of bending workability, such as painted metal sheets. More preferably, it is 40% or less, and still more preferably, it is 35% or less.
  • the coating film forming components eg, a base resin such as a polyester resin, a crosslinking agent that is added as necessary,
  • a conductive filler-containing resin coating film that satisfies the above-described requirements is formed. Conductivity can be ensured.
  • the fifth coated body satisfies the following (V-1) or (V-2) in the first coated body, and (V-3) [same as the above (II-3) And (V-4) and (V-5) [same as the above (IV-3) and (IV-4)], thereby improving heat resistance.
  • the feature is that the scratch resistance and the fingerprint resistance are enhanced. + Among them, (11-3), (IV-3) and (IV-4) are as described above.
  • the magnetic coating must be formed on at least the back surface.
  • V-1 an embodiment in which a magnetic coating film is formed only on the back surface
  • V-2 an embodiment in which a magnetic coating film is formed on the front and back surfaces.
  • V-1 When the heat-dissipating magnetic coating film, which is the magnetic coating film and has heat dissipation properties, is coated on the back surface of the metal plate, and the heat-dissipating magnetic coating film contains a black additive, A resin coating containing a white pigment and / or a bright pigment may be coated,
  • the surface of the metal plate is coated with a heat-radiating coating film of more than 1 / z m and a resin coating film containing a white pigment and / or a bright pigment,
  • the surface that does not contain titanium oxide contains 1% or more of a heat dissipation additive other than titanium oxide.
  • the surface that does not contain carbon black contains more than 10% of heat dissipation additives other than carbon black
  • At least the heat-dissipating magnetic coating on the surface is coated with a resin coating containing a white pigment and / or a brilliant pigment; or
  • At least one side of the heat-dissipating magnetic coating film contains 30% or more of titanium oxide
  • the surface not containing titanium oxide contains 1% or more of a heat dissipation additive other than titanium oxide.
  • At least the heat-dissipating magnetic coating on the surface is coated with a resin coating containing a white pigment and / or a bright pigment.
  • the fifth coated body is required to improve electromagnetic wave absorption, to improve heat radiation, and to improve scratch resistance and fingerprint resistance. It has been determined in consideration of the required requirements.
  • the sixth painted body satisfies the following (VI-1) or (VI-2) in the first painted body described above, and (VI-3) and (V 4) [ (Same as (III-3) and (III-4)], the heat dissipation and self-cooling are enhanced; (IV-5) and (IV-6 [described above]) ) And (IV-4)] are characterized by improved scratch resistance and fingerprint resistance.
  • the sixth coated body is required to have excellent electromagnetic wave absorption and workability. Therefore, it is necessary that the magnetic coating film is formed at least on the back surface.
  • VI-1 The back surface of a metal plate is coated with the magnetic coating film, and the magnetic coating film may contain a black additive.
  • a resin coating containing a white pigment and / or a brilliant pigment may be coated,
  • the surface of the metal plate is coated with a black heat-radiating coating film having a black additive of 1% or more and containing more than 1 ⁇ , and a resin coating film containing a white pigment and ⁇ or a bright pigment;
  • the magnetic coating on the surface is a black heat dissipating magnetic coating of more than 1 ⁇ m containing 1% or more of a black additive
  • the magnetic coating on the back side may contain 1% or more of heat dissipation additive
  • At least the black heat-radiating magnetic coating film on the surface is coated with a resin coating film containing a white pigment and Z or a bright pigment.
  • the above-mentioned sixth coated body is required to improve electromagnetic wave absorption, heat radiation and self-cooling, and is required to have scratch resistance and fingerprint resistance. It was determined in consideration of the requirements required for improvement, and as a result, the above-mentioned requirements were determined. The details are as described above.
  • the coated body of the present invention can be manufactured by applying a coating containing the above-mentioned components to the surface of a metal plate by a known coating method, followed by drying.
  • the coating method is not particularly limited.
  • a long metal strip surface that has been subjected to a pre-coating treatment for example, phosphate treatment, chromate treatment, etc.
  • a roll coating method or a spray method may be subjected to a roll coating method or a spray method.
  • a method in which a paint is applied using a curtain flow coater method or the like, and then dried by passing through a hot air drying oven.
  • the roll coater method is practically preferable in consideration of the uniformity of coating thickness, processing cost, coating efficiency, and the like.
  • a resin-coated metal plate is used as the metal plate
  • a phosphate treatment or a chromate treatment may be applied as a pre-coating treatment for the purpose of improving adhesion to the resin film or corrosion resistance.
  • the chromate-treated material it is preferable to suppress the amount of Cr attached during the chromate treatment to 35 mg Zm 2 or less from the viewpoint of the dissolution of debris during use of the resin-coated body. This is because within this range, chromium elution from the underlayer chromate treatment layer can be suppressed.
  • the conventional chromate-treated material tends to have a reduced water adhesion of the top coat, which is provided as needed, in a humid environment with the bleeding of hexavalent chromium. Since it is suppressed, the water-resistant adhesiveness of the overcoat does not deteriorate.
  • a non-chromate type coated body can be obtained by performing the above-described chrome pre-coating treatment by a roll coater method, a spray method, an immersion method, or the like.
  • an electronic device component including a heating element in a closed space, wherein the electronic device component is configured such that all or a part of an outer wall of the electronic device component is a coated body for the electronic device member. Electronics components are also included.
  • the above electronic equipment parts include information recording products such as CD, L'D, DVD, CD-ROM, CD-RAM, PDP, and LCD; products related to electric 'electronic' communication such as personal computers, car navigation systems and car AV; AV equipment such as projectors, televisions, videos, game machines, etc .; copiers such as copiers and printers; power box power pars for air conditioner outdoor units, control box power pars, vending machines, refrigerators, etc.
  • Example 1 Study on electromagnetic wave absorption, workability, heat dissipation, conductivity, and workability (1)
  • an electro-galvanized steel sheet (sheet thickness: 0.8 mm; ZII coating weight: 20 g / m 2 on the front and back surfaces, respectively) was used as the base steel sheet.
  • a magnetic coating film (base resin: epoxy-modified polyester, cross-linking agent: isocyanate) to which additives (magnetic powder, conductivity-imparting agent, carbon black) are added is formed on both sides (front and back) (120 X 15) O mm), and the properties of the obtained coated metal plates, such as electromagnetic wave absorption, conductivity, workability, and heat dissipation, were evaluated.
  • Each characteristic was evaluated according to the following evaluation methods (1) to (4).
  • FIG. 2 is a diagram for explaining a method for evaluating the electromagnetic wave absorption performance of a coated metal plate.
  • a high-frequency loop antenna 5 is installed in a rectangular parallelepiped housing 1 so as to be magnetically coupled.
  • This high-frequency loop antenna 5 is connected to one end of a coaxial cable 6 via a connector (not shown), and the other end of the coaxial cable 6 is connected to a network analyzer 7.
  • the network analyzer 7 generates an electromagnetic wave while sweeping the frequency, and inputs the electromagnetic wave into the housing 1 via the coaxial cable 6 and the high-frequency loop antenna 5 (high-frequency input wave: arrow B).
  • the high-frequency reflected wave is input to the network analyzer 7 as an observation value ( ⁇ frequency reflected wave: arrow C).
  • the magnitude of the energy stored in the case 1 can be determined.
  • the Q value obtained from the following equation (1) is calculated from the frequency difference ⁇ f and the resonance frequency fr obtained from the conditions that the admittance orbit satisfies (for example, see Masamitsu Nakajima, Morikita Electric Engineering Series 3 Microwave Engineering-Fundamentals and Principles-"Published by Morikita Publishing Co., Ltd., pp. 159-163.
  • the actual measurement was performed using the housing 1 having a size of 106 ⁇ 156 ⁇ 200 (mm).
  • E z means the electric field strength in the z direction
  • T E011 shows the form of the electromagnetic field distribution in the resonance mode.
  • This T E means that an electric field exists in the lateral direction as the wave travels in the z direction.
  • the suffix “0 1 1” indicates that there is one electric field intensity distribution in the y and z directions with respect to the x, y and z directions, and that the electric field intensity distribution does not change in the X direction ( For example, see the above-mentioned document, pages 141 to 144).
  • the electromagnetic field distribution shown in FIG. 4 can be expressed by the following equation.
  • Hy (— kz ⁇ ky / kc 2 ) ⁇ H011 ⁇ sin (ky ⁇ y) ⁇ cos (kz ⁇ z)
  • Ex (— j ⁇ ⁇ k ⁇ / kc 2 ) ⁇ H011 * sinky ⁇ y) ⁇ sin ( kz ⁇ z)
  • ky ⁇ / b
  • kz ⁇ / c
  • kc ky.
  • b and c are the lengths in the y and z directions of the rectangular parallelepiped (housing 1) in Fig. 4,;) are imaginary numbers, ⁇ is each frequency, and ⁇ is the magnetic permeability of air.
  • the resonance frequency of the resonance mode at this time is about 122 OMH O.
  • the Q0 value (measurement result: 1740) was set based on the case where the 6 surfaces of the rectangular parallelepiped were made of stainless steel, and then one surface of the bottom (106 mm X 156 mm surface) and The ratio of Q1ZQ0 (attenuation rate) with the Q value measured by changing the total of three sides (two sides of 106 mm x 200 mm) to test sample steel plates as the Q1 value The electromagnetic wave absorption effect of the test sample was confirmed by calculating.
  • Example J of the present invention a sample having a ratio (attenuation rate) of Q JLZQ0 calculated by the above method of 0.970 or less is evaluated as “Example J of the present invention”.
  • Method A evaluation is performed by attaching an electromagnetic wave absorbing steel plate to a part of the test equipment housing.
  • the housing itself can be evaluated as an electromagnetic wave absorbing steel sheet.
  • the ratio of the area occupied by the sample steel sheet to the total surface area of the inner surface is about 30%, and the electromagnetic wave absorption effect of the sample steel sheet is small, and it is difficult to understand. Therefore, a housing (240 X 180 X 90 mm) that can be covered with a sample steel plate up to nearly 100%, that is, the entire inner surface of the housing was manufactured.
  • the resonance frequency of this case is about 1GHz.
  • the housing is made of a frame made of SUS, and four plates made of a sample steel plate are stuck on the sides (SUS plates are stuck on the upper and lower surfaces), and the Q value is measured. With such a configuration, it is possible to increase the ratio of the area occupied by the sample steel sheet on the inner surface of the housing to nearly 100%.
  • the screws that attach the plate to the housing have a pitch of 20 to 4 Om m and reduce contact resistance, so many screws are required. The screws are torque controlled to increase the reproducibility of Q value measurement. Then, the electromagnetic wave absorption was calculated by the following equation.
  • Electromagnetic wave absorbing steel sheets are used for the housing of electronic equipment, but they are not used by sticking to a part of the surface of the housing as in Method A, but are used for the housing itself. Is closer to reality.
  • the ratio of the electromagnetic wave absorbing steel sheet to the housing area is small, so that the electromagnetic wave absorbing effect is hardly obtained.
  • the electromagnetic wave absorbing steel sheet occupies a large part of the housing area, so it can be evaluated in a state close to the actual use environment.As a result, the electromagnetic wave absorbing effect of the sample was difficult to see as a clear difference in Method A The effect becomes clearer with the B method.
  • the resistivity of the sample was measured using a Mitsubishi Chemical "Loresta EP” as a conductivity measuring device and a 4-probe probe (MSP-TPO8P) manufactured by Mitsubishi Chemical as a probe.
  • MSP-TPO8P 4-probe probe manufactured by Mitsubishi Chemical as a probe.
  • the integrated emissivity of infrared (wavelength: 4.5 to 15.4 ⁇ m) on the front and back surfaces was measured based on the method described above.
  • the heat dissipation indicated by ⁇ T1 was evaluated.
  • ⁇ 1 is much smaller in the case of using the coated body of the present invention than in the case of using a metal plate (an original plate that is not covered with a black coating film and is not subjected to a black base treatment).
  • An index for determining whether or not the ⁇ part temperature can be reduced is defined.
  • a unique heat radiation evaluation device shown in FIG. 4 is particularly used as a device for measuring ⁇ T 1.
  • the device shown in Fig. 4 has the heat radiation characteristics of the ambient temperature assumed for the application of electronic equipment etc. It is extremely useful as a device that can be evaluated, and this makes it possible to correctly evaluate the heat radiation effect at a practical level simulating electronic device applications.
  • FIG. 7 shows a rectangular parallelepiped device having a head space of 100 mm (length) ⁇ 130 mm (width) ⁇ 100 mm (height).
  • 11 is the test material (subject, measurement (The area is 100 mm x 130 mm)
  • 12 is the heat insulating material
  • 13 is the heating element
  • Bottom area is 1300 m 2 , the length of the longest straight line that can be drawn within the heating element area (Fig. 7 In the figure, the length of the diagonal line is 1664 mm]
  • 15 is the temperature measuring device.
  • the heating element 13 uses a silicon wrapper heater, on which an aluminum plate (infrared emissivity of 0.1 or less) is adhered.
  • a thermocouple as a temperature measuring device 15 is fixed at the T1 position in Fig. 7 [the center of the internal space (5 Omm above the heating element 3)].
  • the lower part of the thermocouple should be reinforced.
  • the heat insulating material 12 changes the ambient temperature in the box depending on the type and use mode of the heat insulating material (which also affects the heat radiation).
  • the measurement conditions are controlled at a temperature of 23 ° C and a relative humidity of 60% in order to eliminate data fluctuation due to outside air conditions (wind, etc.).
  • each test material 11 is installed, the power is turned on, and the hot plate 13 is heated to 140 ° C. After confirming that the temperature of the hot plate stably reaches 140 ° C and the temperature at the T1 position is 60 ° C or higher, temporarily remove the sample. When the temperature in the box has dropped to 50 ° C, install the test specimen and measure the temperature inside the box 90 minutes after installation. Next, the difference ( ⁇ 1) between the temperature when the above-mentioned test material is used and the temperature when an unpainted original plate having no coating film is used is calculated.
  • ⁇ ⁇ 1 was measured five times for each test material, and the average value of the data at three points excluding the upper and lower limits was defined as ⁇ T 1 in the present invention.
  • ⁇ Oiyo's coated body is evaluated as “a material exhibiting excellent heat dissipation properties in the coated body”. ⁇ : 3.5 ⁇ mu T1
  • test materials No. 1 to 10, 15 to 24, 27
  • magnetic coating requirements the content of the magnetic powder and the thickness of the magnetic coating
  • good characteristics are exhibited in terms of electromagnetic wave absorption and workability.
  • the attenuation rate of the above test materials is about 3 to 15%, but the inside of the equipment used for measurement has a simpler structure than actual electronic equipment. From these facts, it is presumed that, when the coated steel sheet according to the present invention is used in an actual electronic device, the multiple reflection is further increased, and the leakage electromagnetic wave can be greatly attenuated. In addition, by using the coated steel sheet of the present invention for the main body of the electronic device and the power housing of the unit in the main body, electromagnetic waves leaked from the unit due to the inner coating of the steel sheet applied to the unit are attenuated.
  • Electromagnetic waves leaking from the unit can be expected to attenuate due to multiple reflections due to the outer coating of the coated steel plate applied to the unit and the inner coating of the coated steel plate applied to the main unit. It is expected that it can be attenuated.
  • test materials that do not satisfy any of the requirements specified in the present invention have the following disadvantages.
  • No. 11 is an example in which the thickness of the magnetic coating film is 2 m, which is lower than the range of the present invention, and the electromagnetic wave absorption is good, but the workability is poor.
  • No. 12 is an example in which the thickness of the magnetic coating film is 60 / Xm, which exceeds the range of the present invention, and both the electromagnetic wave absorption and the workability are reduced.
  • No.l2 did not contain carbon black as a heat dissipation additive, the heat dissipation was evaluated as ⁇
  • the reason why the film thickness is higher than that of the example in which 1-bon black is not added (heat dissipation evaluation is X) is because the resin film thickness is as thick as 60 / m.
  • Nos. 13 and 25 are examples in which the amount of magnetic powder added is 10%, which is lower than the range of the present invention, and the workability is good, but the electromagnetic wave absorption is reduced. .
  • Nos. 14 and 26 are examples in which the amount of magnetic powder added is 70%, which exceeds the range of the present invention, and the electromagnetic wave absorption is good, but the workability is low.
  • Example 2 Study on electromagnetic wave absorption, workability, heat dissipation, and self-cooling (2)
  • various magnetic powders A to E
  • Heat radiation additives H to J
  • electromagnetic wave absorption, processability, heat radiation, and conductivity when adding a conductivity-imparting agent [Ni (average particle size: 15 to 20 mm)]
  • Ni average particle size: 15 to 20 mm
  • LB 584 manufactured by Showa Aluminum Powder Co., Ltd., average particle size 25 ⁇ m
  • a base steel sheet an electro-zinc-plated steel sheet (sheet thickness: 0.8 mm; Zn adhesion amount on both sides: 20 gZm 2 ), and a magnetic coating film (base resin: epoxy-modified polyester, cross-linking agent: isocyanate) to which various additives shown in Table 3 (magnetic powder, heat dissipation additive, and conductivity-imparting agent) are added.
  • base resin epoxy-modified polyester, cross-linking agent: isocyanate
  • Is formed on one side (front) or both sides (front and back) (120 x 150 mm) Is formed on one side (front) or both sides (front and back) (120 x 150 mm), and the electromagnetic wave absorption, workability, and conductivity of each of the coated metal plates obtained are the same as in Example 1.
  • the integrated emissivity of infrared light (wavelength: 4.5 to 15.5.4 ⁇ m) on the front and back surfaces, and the method described in Example 1 and In addition to examining the heat radiation characteristics indicated by ⁇ T1, That self-cooling property (for self-cooling ⁇ are only some examples) were evaluated.
  • the index (self-cooling property) of how the temperature rise of the coated body itself can be suppressed was determined using the unique heat radiation evaluation device shown in Fig. 7.
  • ⁇ 2 ⁇ is the temperature of the coated body when measuring No. 1 to 7 in Table 3 above as the test material
  • T2B is the metal whose coating is not coated as the test material
  • the temperature when using the board, respectively, means.
  • the measurement of ⁇ 2 was performed five times on each test material, and the average value of the data at three points excluding the upper and lower limits was defined as ⁇ 2 in the present invention, and the relative evaluation was made based on the following criteria.
  • the coated bodies of ⁇ and ⁇ are referred to as “excellent self-cooling property”. That exerts its effect.
  • ⁇ 1 is ⁇
  • the coated body of the letter and ⁇ ⁇ ⁇ is referred to as ⁇ a material exhibiting excellent heat dissipation in the coated body ''. I'm evaluating.
  • ⁇ ⁇ 1 is evaluated as ⁇
  • the coated body in the case of “ ⁇ ⁇ ” is evaluated as “the one exhibiting excellent heat dissipation properties in the coated body”.
  • the evaluation criteria for the heat dissipation ( ⁇ 1) differ in this way because, in terms of heat dissipation, the third painted body also includes a mode that is slightly lower than the second painted body.
  • Table 4 shows the results. Table 4 omits the results on electromagnetic wave absorption and processability.
  • ⁇ -Zn soft magnetic ferrite
  • B Mn-Zn soft ferrite
  • 0 ⁇ ° -malloy (783 ⁇ 4 ⁇ )
  • D C. 1Malloy (45% ⁇ )
  • Nos. 1 to 11 of Nos. 1 to 22 in Table 3 are examples in which a magnetic coating was formed only on the back surface; Nos. 12 to 22 were examples in which a magnetic coating was formed on the front and back surfaces In each case, a heat dissipation additive is added to the magnetic coating film. Further, Ni is added to the front surface / back surface as needed.
  • Example 3 Study on electromagnetic wave absorption, heat dissipation, self-cooling, scratch resistance, and fingerprint resistance (3)
  • various magnetic powders (A, 'C, E in Example 2) and a heat dissipation additive (H in Example 2) as shown in Table 5 were added to the back or both sides of the metal plate.
  • the electromagnetic wave absorption, workability, heat dissipation, self-cooling, conductivity, scratch resistance, and fingerprint resistance when a resin film containing the material (Ni in Example 2) was formed were examined. .
  • the back surface was evaluated in order to match the electromagnetic wave absorption to the state when actually applied to electronic equipment.
  • an electro-galvanized steel sheet (sheet thickness: 0.8 mm; Zn adhesion amount: 20 g / m 2 on each of the front and back surfaces) was used as the base steel sheet.
  • Magnetic powder, carbon black, and, if necessary, Ni are added to a magnetic coating (base resin: epoxy-modified polyester, 'crosslinking agent: isocyanate') on one side (front) or both sides (front and back)
  • base resin epoxy-modified polyester, 'crosslinking agent: isocyanate'
  • a film base resin: polyester resin, melamine resin used as a cross-linking agent
  • Electromagnetic wave absorption, workability, conductivity, integrated radiation rate of infrared radiation on the front and back surfaces, heat radiation characteristics ( ⁇ ⁇ 1), and self-cooling ( ⁇ 2 ) was evaluated in the same manner as in Example 3, and the scratch resistance and the fingerprint resistance were evaluated based on the following methods.
  • FIG. 11 shows a schematic diagram of a scratch resistance test performed in this example.
  • the test material was cut into a piece of 50 x 100 mm, and sandpaper (# 240mm) was used to examine the scratch resistance test on the surface (the side with the resin coating).
  • the appearance change (scratch) of the sliding portion was visually evaluated according to the following criteria.
  • the test materials of ⁇ and Hata were evaluated as “Examples of the present invention”.
  • the test method described above is based on the flaw resistance test conducted in the above-mentioned Japanese Patent Publication and Japanese Patent Application Laid-Open No. 2000-0900 / 900 (the flaw resistance and the like are enhanced by the formation of a Taliyah coating film). This is an evaluation of the flaw resistance under more severe conditions than the fouling test.
  • test materials were attached to each test material, and the visibility of the fingerprints was visually evaluated according to the following criteria.
  • the test materials of ⁇ , ⁇ and ⁇ were evaluated as “Examples of the present invention”.
  • Nos. 1 to 4 in Table 6 are examples in which a black magnetic coating was formed only on the back surface; Nos. 5 to 9 were examples in which a black magnetic coating was formed on the front and back surfaces
  • carbon black is added to the magnetic coating as a heat-dissipating black additive.
  • Ni is added to the front surface / back surface as needed.
  • Nos. 2, 4, 6, and 8 are examples in which no resin coating film was formed, and the scratch resistance and fingerprint resistance were reduced.
  • Example 4 Study on electromagnetic wave absorption, scratch resistance, and fingerprint resistance (4)
  • various magnetic powders shown in Table 7 (A in Example 2) were used. , C, and D) and a black additive (the carbon black of Example 2) and, if necessary, a conductivity-imparting agent (Ni of Example 2);
  • a resin film having various white pigments / bright pigments and, if necessary, a conductivity-imparting agent (Ni in Example 2) is formed, electromagnetic wave absorption, processability, conductivity, scratch resistance, The fingerprint resistance was examined.
  • an electro-zinc-plated steel sheet (sheet thickness: 0.8 mm; Zn adhesion amount: 20 g / m 2 on each of the front and back surfaces) was used as the base steel sheet.
  • a magnetic coating (base resin: epoxy-modified polyester, cross-linking agent: isocyanate) on one side (front side) or both sides (front and back sides) to which magnetic powder, carbon black and, if necessary, Ni) are added.
  • a resin film base resin: using polyester resin and melamine resin as a cross-linking agent
  • Table 7 was formed (120 ⁇ 150 mm). ) 0
  • details of each pigment are as follows.
  • Titanium oxide JR301, average particle size 0.3 ⁇ m, manufactured by Tiki Riki Co., Ltd.
  • Table 7 shows the results. Table 7 omits the results on electromagnetic wave absorption and workability.
  • No. 1 to 9 of No. 1 to 9 in Table 5 are examples in which magnetic powder is contained only on the back surface;
  • No. 10 to 14 are examples in which magnetic powder is contained on the front and back surfaces
  • a resin film containing a white pigment Z bright pigment is formed thereon. If necessary, Ni is added to the front / "back" surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

金属板の少なくとも片面に、20~60質量%の磁性粉末を含有する磁性塗膜が、厚さ:3~50μmで被覆されたものとすることよって、優れた電磁波吸収性及び加工性を発揮し得、必要によって良好な放熱性;放熱性及び自己冷却性;耐疵付き性及び耐指紋性;導電性を兼ね備えており、特に電子機器筺体における構成素材として有用な電子機器部材用樹脂塗装金属板を開示する。

Description

明細書 樹脂塗装金属板 技術分野 本発明は、 特に電子 ·電気 ·光学機器等 (以下、 電子機器で代表させる場合が ある) における筐体等の構成素材として有用な、 電磁波吸収性及び加工性に優れ た樹脂塗装金属板に関し、 更には、 放熱性;放熱性及び自己冷却性;耐疵付き性 及び耐指紋性;導電性等の特性が高められた樹脂塗装金属板に関するものである。 背景技術 近年、 電子機器の高性能化 ·小型化が進むなか、 電子機器から発生する電磁波 を外部に漏洩しないような特性 (電磁波シールド性) が要求されており、 こう し た特.性を如何に実現するかが電子機器設計者にとつて重要な課題となっている。 電子機器からの漏洩電磁波が多くなると、 その電子機器の周辺の配置された精密 機械等の誤作動を招くことになりかねない。 こう した観点から日本では、 電子機 器からの不要放射レベルを規制する自主規制規格として運用されている V C C I 規格において、 波長域 3 O M H z〜 1 G H zの漏洩電磁波が規制されている。 一方、 電子機器には良好な放熱性も要求されており、 こう した放熱性を良好に するには、 電子機器の筐体に空気穴が有る構造とすることが有効である (この点 は、 後程詳述する)。 しかしながら、 こう した構造では、 電磁波シールド性という 観点からすれば決して好ましいものとは言えず、 空気穴の存在は電磁波が却って 漏洩し易い箇所となる。 即ち、 電子機器の筐体において、 放熱性を良好にする構 造は、 電磁波シールド性からすれば却ってマイナスの要因となるものであり、 構 造面からすれば放熱性と電磁波シールド性は相反する特性となる。
この様に電子機器の構造面からでは上述した制約があることから、 別の角度か ら電磁波シールド性を良好にする為の技術が提案されている。例えば「電磁波は、 空気穴や配線穴から漏れるだけでなく、 鋼板同士の隙間からも漏れる」 ことに着 目し、 「導電性に優れた鋼板を用いれば、鋼板同士の隙間を減らすことができるの で電磁波の漏洩を減少できる」 という観点から、 電子機器の筐体の素材として、 電気亜鉛めつき鋼板等の導電性に優れた素材が使用されている。 しかしながら、 この方法ではせいぜい、 鋼板同士の隙間から漏れる電磁波しか減らすことが出来 ず、 空気穴や配線穴からの電磁波の漏れを防止することは出来ず、 良好な電磁波 シールド性が得られない。
一方、 電磁波吸収特性を有するシートゃテープを電磁波発信源や筐体隙間に貼 り付けることによって、 漏洩電磁波の発生を減少する技術も提案されている。 例 えば、 日本特許公報 ·特開 2 0 0 0-20 0 9 9 0号には、 C r : 5 ~ 3 5 %程度 含む F e基合金からなる軟磁性粉末を、 ゴムや樹脂に分散させた電磁波吸収体に ついて提案されている。また、 3本特許公報 '特開 2 0 0 2-1 1 1 2 7 6号には、 熱硬化性樹脂からなる絶縁性シートに軟磁性金属粉末を分散させた電磁波吸収体 について提案されている。 これらの技術は、 電磁波吸収性の面からすれば優れて いるといえる。
しかしながら、 上記 2つの文献では、 優れた電磁波吸収性を達成する目的で、 樹脂中に、実質的に多量( 1 0体積%以上)の磁性粉末を含有させる必要があり、 そうすると膜厚も厚くなつて (例えば、 1 mm以上) 加工性が困難となる為、 電 磁波発信源の表面や電子機器隙間等の極く限られた箇所にしか適用し難いという 欠点がある。
一方、 日本特許公報 ·特開 2 0 0 1 -2 74 5 8 7号には、 ステンレス鋼からな る薄片状粉体を合成樹脂製材料からなる基材中に混合 ·分散させて形成した電磁 波吸収層を、 金属からなる電波反射層に積層した電波吸収体が提案されている。 この技術は、 より高い周波数の電磁波 ( 1 GH z以上) の吸収を達成するために 提供されたものであるが、 上記電磁波吸収層は前述した各文献と同様、 実質的に 多くの磁性粉末を含有させる必要があり、 また膜厚も厚くなつて ( 1. 5〜 3. 5 mm程度) 加工性の点で問題があり、 折り曲げ加工等の苛酷な加工が要求され る電子機器用筐体の構成素材として適用することは困難である。
一方、 電子機器の高性能化 ·小型化に伴い、 近年では、 電子機器等のシャーシ 内部における発熱量が増大 (高温化) し、 高熱化するといった問題が生じている (電子機器内部の高熱化)。 電子機器の内部温度は通常雰囲気温度で約 4 0〜7 0 °C、 最高で 1 0 0 °C程度の高温になることがあるが、 そうすると、 I C、 C P U (半導体素子)、 ディスク、 モーター等の耐熱温度を超える為、 安定操業に支障 をもたらすことが指摘されている。 更に温度が上昇すると半導体素子が壊れて故 障する等し、 電子機器部品の寿命が低下するといつた問題も抱えている。
そこで、 電子機器に要求される本来の特性 (防水 ·防塵等に伴う気密性確保、 小型化 ·軽量化) を満足しつつ、 当該電子機器内部温度の低減化 (放熱特性) を も達成し得る新規な電子機器部材用筐体(筐体本体、フレーム、シールドケース、 液晶等のパックパネル等) の提供が切望されている。
この様な用途に使用される表面処理材として、 例えば 3本特許公報,特開 2 0 0 2 - 2 2 8 0 8 5号には、 基材表面に外層塗膜と内層塗膜とを備え、 当該内層塗 膜の熱放射率が 7 0 %以上である熱放射性表面処理材が ; 日本特許公報 ·特開 2 0 0 2 - 2 2 6 7 8 3号には、 基材表面に少なく とも 1層の塗膜を備えており、 表 面処理材としての熱放射率が 6 0 %以上である熱放射性表面処理材が、 夫々、 開 示されている。.これらの文献はいずれも、内部で熱を生じる家電製品等の箧体(外 側の箱状体を指す) や放熱板等の用途に使用されるものであり、 本発明と適用対 象 (用途) は共通するが、 放熱性を高める為の基本的思想が相違しており、 その 具体的手段も相違するものである。 .
即ち、 これらの文献はいずれも、 「内部で発生した熱を、圧縮機→放熱器→放熱 板の順に伝播させ、 放熱板から熱を速やかに放散させる為には、 放熱板 (表面) の熱放射性を高める必要がある」 という思想のもとに、 表面の熱放率が高い表面 処理材を提供するものであり、 当該表面処理材の裏面の放射率については全く考 慮していない。 換言すれば、 上記文献の思想は、 「電子機器内部の熱源 (発熱体) と表面処理材を接触させ、 当該熱源から放出される熱量を、 熱伝導によって表面 処理材 (の裏面) に吸熱させた後、 (表面処理材の表面から) 熱放射によって放散 させよう (熱伝導→放射)」 というものであって、 本発明の如く 「電子機器内部の 熱源 (発熱体) から放出される熱 (輻射熱) を、 裏面の放熱塗膜で吸収 (放射') し、 この熱を表面の塗膜から放射させる (放射→放射)」 という基本的思想 (後記 する) は異なるものである。 実際のところ、 上記文献の表面処理材は、 表面の放 射率を高くする為の手段しか開示されておらず、 裏面の放射率を高くすることは 全く意図していない為、 裏面は無塗装 (塗膜なし) であり、 本発明の如く裏面を 放熱塗膜としたり、 或いは裏面に塗膜を設けて所定の放射率を確保するといつた 構成は全く開示されていない。
その他、 日本特許公報 ·特開平 3 - 1 2 0 3 7 8号には、 熱器具部材に使用され る遠赤外線放射板 (基材に、 遠赤外線特性を有するセラミック層が形成されたも の) の製造方法が開示されている。 しかしながら、 上記日本特許公報 '特開 2 0 0 1 - 2 7 4 5 8 7号の遠赤外線放射板は、約 2 0 0 - 3 0 0 °Cといった非常に高 温下での放熱特性が要求される熱器具 (代表的にはス トーブ等) の分野に使用さ れるものであり、 本発明塗装体の如く、 特に、 内部温度が通常雰囲気温度で約 4 0〜 7 0 °C、 最高でも 1 0 0 °C程度となる電子機器部材への適用については、 全 く意図していない。 従って、 両者は、 適用対象 (用途) が異なる発明である。 ま た、 上記文献には、 電子機器から放出される熱量を 「基板の裏面」 → 「基板の表 面」 へと吸収→放射させるという本発明独自の技術的思は、 全く開示されていな い。 . - 更に上述した放熱特性に加え、 電子機器の筐体には、 当該筐体自体の温度上昇 を抑える作用も要求される。 これにより、 電子機器製品の稼動中に、 消費者が当 該筐体に触れてやけど等する危険を防止でき、 安全な製品を提供できるからであ る。 この 「電子機器の筐体自体の温度上昇を抑える特性」 を、 前述した 「放熱性」 と区別する目的で、 本発明では特に、 「自己冷却性」 と呼ぶ。 これらの両特性に優 れた筐体を得るに当たり、 前述した放熱対策 (ヒートシンクやヒートパイプ等の 放熱部品を取り付ける方法や、 金属板に穴をあけてファンを取り付ける方法等) を採用したのでは、 やはり、 同様の問題が見られる。 従って、 これらの两特性を 備えた筐体の提供も切望されている。
また、 電子機器の筐体には、 上述した特性に加え、 更に導電性にも優れること が要求されている。 しかしながら、 従来使用されている黒色塗装鋼板 (黒色塗膜 が被覆された鋼板) 等は、 黒色塗膜の膜厚が厚すぎて電気抵抗値が高くなり、 特 に電子機器に適用するには所望のアースがとれないといった問題がある。 更に電子機器の筐体には、耐疵付き性も要求されている。例えば黒色金属板は、 取扱い時や加工時等において、疵が非常に発生し易く(耐疵付き性の低下)、また、 指紋が付着すると目立ち易い (耐指紋性の低下) という問題を抱えている。
このうち 「耐疵付き性」 の改善に関しては、 皮膜硬度を高めたり、 皮膜中にヮ ックスを添加して皮膜の潤滑性を高める等の方法が施されている。しかしながら、 上記方法による改善効果には限界があり、例えば黒色金属板を折曲げ加工する等、 苛酷な加工が要求される場合には、 皮膜硬度や潤滑性をあまり高くすることがで きない、 といった不具合を有している。
そこで、 これらの問題を一挙に解決し得る金属板として、 日本特許公報 '特開 2 0 0 1 - 1 8 3 2 2号には、黒色塗膜にク リァー塗膜を被覆した導電性黒色表面 処理金属板が開示されている。 これは、 「クリア一塗膜は、導電性付与に有効であ 'ると共に、 特に耐疵付き性及ぴ耐指紋性を著しく高める作用がある」 という知見 に基づいて出願-されたものであり、折曲げ加工が必要な用途にも適用可能である。 しかしながら、 その後の研究により、 クリア一塗膜では、 皮膜の疵は改善し得て も鋼板のェッジ等に発生した疵そのものを抑えることは困難であることが分った。 また、 クリア一塗膜が被覆された金属'板は、 黒色塗膜の色調がそのまま外観とし て反映される為、 色調によっては疵ゃ指紋が目立ち易くなり、 クリア一塗膜形成 による改善効果が充分に発揮されない場合がある。 '
そこで本発明者らは、 クリア一塗膜に代わり、 上記課題を解決し得る新しい塗 膜を提供すべく、 白色顏科及ぴ 又は光輝顔料に着目して検討'した。
上記顏料自体は公知であり、 白色顔料として酸化チタン等 ; 光輝顔料 (メタリ ック顔料) として、 パール顔料、 アルミニウム顔料等が代表的に挙げられる。 こ れらの顏料は、 反射した光によってキラキラ感、 メタリ ック感、 パール感等を呈 し、変化に富んだ意匠性に優れた外観をもたらすことから、 自動車、各種印刷物、 O A機器等の様々な用途に使用されているが、 当該顔料を、 耐疵付き性ゃ耐指紋 性の改善目的で使用してみよう とする発想は全くない。
例えば、 日本特許公報 ·特開 2 0 0 2 - 3 6 3 7 7 1号、 日本特許公報 '特開平 1 0 - 3 3 0 6 5 7号および日本特許公報'特開 2 0 0 2 - 1 2 7 9 5号には、種々 の光輝顔料/メタリ ック塗料 改質真珠光沢顔料が開示されているが、いずれも、 これら顔料の特性 (光輝感、 光反射量等) 改善という本来の目的の為に提案され たものに過ぎず、 耐疵付き性ゃ耐指紋性との関係で、 上記顔料が如何なる作用を 発揮し得るか、 更には上記顔料を含む樹脂塗膜をどの様に制御すれば耐疵付き性 等が改善されるのか、 といった点について、 何も教示するところがない。
本発明はこう した状況の下でなされたものであって、 その目的は、 優れた電磁 波吸収性及び加工性を発揮し得、 必要によって良好な放熱性;放熱性及び自己冷 却性;耐疵付き性及ぴ耐指紋性; 導電性を兼ね備えており、 特に電子機器筐体に おける構成素材として有用な電子機器部材用樹脂塗装金属板を提供することにあ る。 発明の開示 上記課題を達成し得た本発明の樹脂塗装金属板は、 下記 (I) 〜 (VI) の態様を 包含するところに要旨を有するものである。
(I) 電磁波吸収性及び加工性に優れた樹脂塗装金属板 (以下、 第一の塗装体と 呼ぶ場合があ )
これは、 金属板の少なく とも片面に、 2 0 6 0 % ( %の意味、 以下、 特に明 記しない限り、 「%j とは 「質量%」 を意味する) の磁性粉末を含有する磁性塗膜 が、 鋼板表面に厚さ : 3〜 5 0 mで被覆された塗装板である。
本発明で用いる磁性粉末としては、 軟磁性フユライ トゃ磁性金属粉末が挙げら れるが、 いずれを用いるにしても体積換算すると 1 0体積%程度に相当するもの である。 また、 磁性塗膜を構成する樹脂は、 ポリエステル系樹脂であることが好 ましい。
本発明の塗装金属板において、 上記磁性塗膜には、 更に導電性付与剤を 2 0〜 4 0 %程度添加して磁性塗膜に導電性を付与することができるが、 この場合には 良好な導電性を維持するために皮膜厚さは 3 ~ 1 5 μ mであることが好ましい。 また導電性付与剤を添加する場合には、 導電性付与剤と磁性粉末の合計含有量が 3 0〜 6 0 %であることが好ましい。
(II) 電磁波吸収性、 加工性、 及び放熱性に優れた樹脂塗装金属板 (以下、 第 二の塗装体と呼ぶ場合がある)
これは、 上記第一の塗装体において、 下記 (II- 1) または (Π-2) を満足してお り、 且つ、 下記 (Π-3) を満足する塗装板である。
(II- 1) 金属板の片面には、 前記磁性塗膜であって放熱性を有する放熱性磁性 塗膜が被覆され、 金属板の別の片面には 1 μ m超の放熱塗膜が被覆されており、
(Π-1-i)該放熱性磁性塗膜、 及び該放熱塗膜のうち少なく とも一方は、 カーボン ブラックを 1 %以上含有しており、
カーボンブラックを含有しない面には、 カーボンブラック以外の放熱性添加剤 を 1 0 %以上含有するか;或いは、
(Π-1-ii)該放熱性磁性塗膜、及ぴ該放熱塗膜のうち少なく とも一方は、酸化チタ ンを 3 0 %以上含有しており、
酸化チタンを含有しない面には、 酸化チタン以外の放熱性添加剤を 1 %以上含 有している。
(II-2) 金属板の両面に前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、 金属板の片面には、 前記磁性塗膜であって放熱性を有する放 熱性磁性塗膜が被覆され、 金属板の別の片面には 1 μ in超の放熱塗膜が被覆され ており、
(ΙΙ-2-i)該放熱性磁性塗膜のうち少なく とも一方には、 カーボンブラック (好ま しい平均粒径は 5 ~ 1 0 0 n mである) を 1 %以上含有しており、
カーボンブラックを含有しない面には、 カーボンブラック以外の放熱性添加剤 を 1 0 %以上含有するか、 或いは、
(Π-2-ii) 該放熱性磁性塗膜のうち少なく とも一方には、 酸化チタンを 3 0 %以 上含有しており、 酸化チタンを含有しない面には、 酸化チタン以外の放熱性添加 剤を 1 %以上含有している。
(II-3) 該樹脂塗装金属体を 1 0 0 °Cに加熱したときの赤外線 (波長 : 4 . 5 〜 1 5 . 4 ^ m) の積分放射率が下式①を満足する。
a X b≥ 0 . 4 2 ... 式①
a :樹脂塗装金属板の一面の赤外線積分放射率
b :樹脂塗装金属板の別の一面の赤外線積分放射率 (III) 電磁波吸収性、 加工性、 放熱性、 及び自己冷却性に優れた樹脂塗装金属 板 (以下、 第三の塗装体と呼ぶ場合がある)
これは、 上記第一の塗装体において、 下記 (ΠΙ- 1) または (ΠΙ-2) を満足して おり、 且つ、 下記 (ΠΙ-3) を満足する塗装板である。
(III- 1) 金属板の第 1の面には前記磁性塗膜が、 第 1面とは反対側の第 2の面 には 1 μ m超の放熱塗膜が被覆されており、
前記放熱塗膜は、 放熱性添加剤を 1 %以上含有しており、
前記磁性塗膜は、 選択的に、 更に放熱性添加剤を 1 %以上含有する。
(III-2) 金属板の両面に前記磁性塗膜が被覆されており、
該金属板の第 1の面の磁性塗膜は、 選択的に放熱性添加剤を 1 %以上含有して おり、
前記第 1の面とは反対側の第 2'の面の磁性塗膜は、 放熱性添加剤を 1 %以上含 有している。
(III-3) 該樹脂塗装金属体を 1 0 0 °Cに加熱したときの赤外線 (波長 : 4 . 5 〜 1 5 . 4 μ m) の積分放射率が、 下式②及ぴ下式③を満足する。
b≤ Q . 9 ( a - 0 . 0 5 ) ... 式②
( a - 0 . 0 5 ) X ( b - 0 . 0 5 ) ≥ 0 . 0 8 ··· 式③
a :榭脂塗装金属板の上記第 2の面の赤外線積分放射率
b : 榭脂塗装金属板の上記第 1の面の赤外線積分放射率
(IV) 電磁波吸収性、 加工性、 耐疵付き性、 及び耐指紋性に優れた樹脂塗装金 属板 (以下、 第四の塗装体と呼ぶ場合がある)
これは、 上記第一の塗装体において、 下記 (IV- 1) または (IV-2) を満足して おり、 且つ、 下記 (IV-3) 及び (IV-4) を満足する塗装板である。
(IV- 1) 金属板の片面には前記磁性塗膜が被覆されており、 該磁性塗膜は黒色 添加剤を選択的に含有し、 該黒色添加剤を含有する磁性塗膜には、 白色顔料と光 輝顔料の少なく とも一方を含有する樹脂塗膜が選択的に被覆され、
該金属板の別の片面には、 黒色添加剤を含有する黒色塗膜、 及び白色顔料と光 輝顔料の少.なく とも一方を含有する樹脂塗膜が被覆されている。
(IV-2) 金属板の两面に前記磁性塗膜が被覆されており、 このうち少なく とも片面の磁性塗膜は、 黒色添加剤を含有する黒色磁性塗膜で あり、
該黒色磁性塗膜の上には、 白色顔料と光輝顔料の少なく とも一方を含有する榭 脂塗膜が被覆されており、
別の片面には、 白色顔料と光輝顔料の少なく とも一方を含有する樹脂塗膜が選 択的に被覆されている。
(IV- 3) 該樹脂塗膜の膜厚はすべて 0 . 5〜 1 0 μ ιηであり、 且つ、 該樹脂塗 膜に含まれる白色顔料と光輝顔料の添加量は、 合計で 1 ~ 2 5 %である。
(IV- 4) 白色顔料と光輝顔料の少なく とも一方を含有する該榭脂塗装金属板の 色調は、 日本電色株式会社製色差計 (S Z S -∑ 9 0 ) で測定した L値で 4 4 . 0 〜 6 0 . 0を満足する。
また、上記白色顔料あるいは光輝顔料として好ましいのは酸化物系顔料であり、 なかでも酸化チタンを含有するものが最も推奨される。
(V) 電磁波吸収性、 加工性、 放熱性、 耐疵付き性、 及ぴ耐指紋性に優れた榭 脂塗装金属板 (以下、 第五の塗装体と呼ぶ場合がある)
これは、 上 15第一の塗装体において、 下記 (V-1) または (V-2) を満足してお り、 且つ、 下記 (V-3) 〜 (V-5) を満足する塗装板である。
(V- 1) 金属板の片面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆されており、 該放熱性磁性塗膜が黒色添加剤を含有するときは、 白色顏 料と光輝顔料の少なく とも一方を含有する樹脂塗膜が選択 に被覆され、 該金属板の別の片面に、 1 μ πι超の厚さの放熱塗膜、 及び白色顔料と光輝顔料 の少なく とも一方を含有する樹脂塗膜が被覆されており、
(V-1-i) 前記放熱性磁性塗膜、 及ぴ前記放熱塗膜のうち少なく とも一方は、 力 一ポンプラックを 1 %以上含有しており、
カーボンブラックを含有しない面は、 カーボンブラック以外の放熱性添加剤を
1 0 °/0以上含有しているか; 或いは
(V- 1-ii) 前記放熱性磁性塗膜、 及び前記放熱塗膜のうち少なく とも一方は、 酸化チタンを 3 0 %以上含有しており、
酸化チタンを含有しない面は、 酸化チタン以外の放熱性添加剤を 1 %以上含有 している。
(V-2) 金属板の両面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆されており、
(V-2-i) 該放熱性磁性塗膜のうち少なく とも片面は、 カーボンブラックを 1 % 以上含有しており、
カーボンブラックを含有しない面は、 カーボンブラック以外の放熱性添加剤を 1 0 %以上含有しており、
少なく とも片面の放熱性磁性塗膜に、 白色顔料と光輝顔料の少なく とも一方を 含有する樹脂塗膜が被覆されているか; 或いは
(V-2-ii) 該放熱性磁性塗膜のうち少なく とも片面は、 酸化チタンを 3 0 %以 上含有しており、
酸化チタンを含有しない面は、 酸化チタン以外の放熱性添加剤を 1 %以上含有 しており、
少なく とも片面の放熱性磁性塗膜に、 白色顔料と光輝顔料の少なく とも一方を 含有する樹脂塗膜が被覆されている。
(V-3) 該榭.脂塗装金属体を 1 0 0 °Cに加熱したときの赤外線 (波長 : 4 . 5 〜 1 5 . 4 ^ m) の積分放射率が下式①を満足する。
a X b≥ 0 . 4 2 ... 式①
a : 表面 (樹脂塗装金属板から見て外気側) の赤外線積分放射率 b :裏面 (樹脂塗装金属板の內側) の赤外線積分放射率 (V-4) 該樹脂塗膜の膜厚はすべて 0 . 5 ~ 1 0 /i mであり、 且つ、 該樹脂塗 膜に含まれる白色顔料と光輝顔料の添加量は、 合計で 1〜 2 5 %である。
(V-5) 白色顔料と光輝顔料の少なく とも一方を含有する該樹脂塗装金属板の 色調は、 日本電色株式会社製色差計 (S Z S -∑ 9 0 ) で測定した L値で 4 4 . 0 ~ 6 0 . 0を満足する。
(VI) 電磁波吸収性、 加工性、 放熱性、 自己冷却性、 耐疵付き性、 及ぴ耐指紋 性に優れた樹脂塗装金属板 (以下、 第六の塗装体と呼ぶ場合がある)
これは、 上記第一の塗装体において、 下記 (VI-1) または (VI-2) を満足して おり、 且つ、 下記 (VI-3) ~ (VI-5) を満足する塗装板である。 (VI-1) 金属板の第 1の面に前記磁性塗膜が被覆されており、 該磁性塗膜は選 択的に黒色添加剤を含有し、 該磁性塗膜が黒色添加剤を含有するときは、 白色顔 料と光輝顔料の少なく とも一方を含有する樹脂塗膜が選択的に更に被覆され、 前記第 1の面とは反対側の第 2の面には、 黒色添加剤を 1 %以上含有する 1 μ m超の黒色放熱塗膜、 及ぴ白色顔料と光輝顔料の少なく とも一方を含有する樹脂 塗膜が被覆されている。
(VI-2) 金属板の両面に前記磁性塗膜が被覆されており、
該金属板の第 1の面の磁性塗膜は、 黒色添加剤を 1 %以上含有する 1 μ m超の 黒色放熱性磁性塗膜であり、
前記第 1の面とは反対側の第 2の面の磁性塗膜は、 放熱性添加剤を 1 %以上選 択的に含有し、
このうち少なく とも前記黒色放熱性磁性塗膜には、 白色顔料と光輝顔料の少な く とも一方を含有する樹脂塗膜が被覆されている。
(VI-3) 該榭脂塗装金属体を 1 00°Cに加熱したときの赤外線 (波長 : 4. 5 〜1 5. 4 μ m) の積分放射率が、 .下式②及ぴ下式③を満足する。
b≤0. 9 (a -0. 05) ... 式②
(a— 0. 05) X ( b - 0. 05) ≥ 0. 08··· 式③
a :榭脂塗装金属板の上記第 2の面の赤外線積分放射率 b :樹脂塗装金属板の上記第 1の面の赤外線積分放射率 (VI-4) 該樹脂塗膜の膜厚はすべて 0. 5~10 μκιであり、 且つ、 該樹脂塗 膜に含まれる白色顔料と光輝顔料の添加量は、 合計で 1〜 25 %である。
(VI-5) 白色顔料と光輝顔料の少なく とも一方を含有する該樹脂塗装金属板の 色調は、 日本電色株式会社製色差計 (S Z S-∑ 90) で測定した L値で 44. 0 ~ 60. 0を満足する。
また、上記白色顏料あるいは光輝顔料として好ましいのは酸化物系顔料であり、 なかでも酸化チタンを含有するものが最も推奨される。
上記第一〜第六の塗装体は、 特に電子機器部材の筐体として有用である。
また、本発明には、閉じられた空間に発熱体を内蔵する電子機器部品であって、 該電子機器部品は、 その外壁の全部または一部が前述した第一〜第六の塗装体で 構成されているものも包含される。
本発明によれば、 上記構成を採用することによって、 優れた電磁波吸収性及ぴ 加工性を発揮し得、 必要によって放熱性;放熱性及ぴ自己冷却性; 耐疵付き性及 ぴ耐指紋性 ;導電性も兼ね備えており、 特に電子機器における構成素材として有 用な樹脂塗装金属板を提供することができる。 図面の簡単な説明 図 1は、 本発明の塗装金属板による電磁波吸収性の原理を説明する図である。 図 2は、 塗装金属板における電磁波吸収性能の評価方法を説明する図である。 図 3は、 入力された電磁波が筐体の共振周波数で反射量が少なくなる状態を説 明する図である。
図 4は、 電磁波吸収性を測定したときの状態を模式的に示した説明図である。 図 5は、 本発明に係る第二の塗装体における、 放熱特性に優れた範囲を示すグ ラフである。 .
図 6は、 本発明に係る第三の塗装体における、 自己冷却性と放熱特性の双方に 優れた範囲を示すグラフである。
図 7は、 Δ Τ 1 (放熱性) 及び Δ Τ 2 (自己冷却性) の測定に使用した装置の 概略図である。
図 8は、 第一の塗装体の概要を示す説明図である。
図 9は、 第二の塗装体の概要を示す説明図である。
図 1 0は、 第四の塗装体の概要を示す説明図である。
図 1 1は、 耐疵付き性試験の概略図である。 発明を実施するための最良の形態 . 上述した通り、 本発明の樹脂塗装金属板は、 下記 (I) ~ (VI) の態様を包含 するものである。
(I) 電磁波吸収性及び加工性に優れた樹脂塗装金属板 (第一の塗装体) (II) 上記 ( I ) の塗装体において、 更に放熱性に優れた樹脂塗装金属板
(第二の塗装体)
(III) 上記 ( I ) の塗装体において、 更に放熱性及び自己冷却性に優れた塗 装体 (第三の塗装体)
(IV) 上記 ( I ) の塗装体において、 更に耐疵付き性及び耐指紋性に優れた 塗装体 (第四の塗装体)
(V) 上記 ( I ) の塗装体において、 放熱性、 耐疵付き性及ぴ耐指紋性に優 れた樹脂塗装金属板 (第五の塗装体)
(VI) 上記 ( I ) の塗装体において、 放熱性、 自己冷却性、 耐疵付き性、 及 び耐指紋性に優れた樹脂塗装金属板 (第六の塗装体)
以下の説明においては、 本発明の樹脂塗装金属板を用いて電子機器を製造する 際に、 外気側に位置させる方の面を表面、 内部側に位置させる方の面を裏面と称 する。
まず、 上記 (I) について説明する。
. (I) 電磁波吸収性及び加工性に優れた樹脂塗装金属板 (第一の塗装体) 本発明の第一の塗装体は、 金属板の裏面または表裏面 (ここで、 裏面とは電子 機器部材用樹脂塗装金属板の内側を意味し、 表面とは電子機器部材用樹脂塗装金 属板から見て外気側を意味する) に、 2 0〜 6 0 %の磁性粉末を含有する磁性塗 膜が、 厚さ : 3 ~ 5 0 mで被覆されたものであるところに特徴がある。
まず、 上記構成に到達した経緯について簡単に説明する。
電子機器から発生する電磁波は、 鋼板に対して吸収するよりも反射することが 多いことが判明している。 かかる観点から、 本発明者らは、 加工性を低下させる ことなしに電磁波吸収性にも優れた金属板を提供する為には、 電磁波吸収性筐体 を構成する塗装鋼板において少なく とも裏面 (筐体を構成する内部側面のこと ; 本明細書では 「裏面」 と呼ぶ) に、 比較的薄い磁性塗膜を必要最小限の磁性粉を 含有させた状態で形成してやれば、 筐体内部で発生した電磁波が多重反射し、 最 終的に空気穴などから筐体外部に漏洩する電磁波の減衰が期待できるのではない かと考えた。
即ち、 図 1 (本発明の金属板による電磁波吸収性の原理を説明する図) に示す 様に、 筐体 1内に電磁波発信源 2が存在する場合に、 この電磁波発信源 2から発 信された電磁波は、矢印 A 1〜A 5に示すように筐体 1の内面に何回か反射した後 に、 空気穴 3等から外部に漏洩することになる (図中、 4は筐体隙間を示す)。 そ して、 1回の反射における減衰 (素材鋼板比) が 2 d B (デシベル) とした場合 には、 例えば 5回の多重反射によって 1 0 d Bの電磁波シールド効果が発揮され ることになる。 この電磁波減衰効果は、 素材鋼板単独のものと比較すると、 電界 強度が 1 / 3になることを意味する。 こう した観点から、 本発明の塗装金属板で は、 各要件を規定した次第である。
次に、 上記第一の塗装体を構成する各要件について説明する。
まず、 上記塗装体を特徴付ける磁性皮膜について説明する。
(1- 1) 磁性塗膜中に、 磁性粉末を 2 0〜 6 0 %含有
本発明で用いる磁性粉末 (電磁波吸収添加剤) は特に限定されず、 代表的には 軟磁性フェライ ト粉末や磁性金属粉末等が挙げられる。 これらは単独で使用して も良いし、 2種以上を併用しても構わない。
伹し、 いずれの磁性粉末を用いるにしても、 磁性塗膜への添加量は合計で 2 0 - 6 0 %とする必要がある。 この添加量が 2 0 %未満では電磁波吸収特性が発揮 され難く、 6 0.%を超えると電子機器部材用樹脂塗装金属板として要求される特 性 (曲げ加工性、 皮膜密着性および耐食性) が劣化する傾向にある。 好ましい添 加量は、 使用する磁性粉末の種類や磁性塗膜の膜厚 (後記する) 等によっても変 化し得るが、概ね、 2 5 °/0以上、 5 0 %以下; より好ましくは 3 0 %以上、 4 5 % 以下である。
上記磁性粉末のうち、 軟磁性フェライ ト粉末としては、 軟磁性の N i - Z n系フ ヱライ ト粉末や M n - Z n粉末等が挙げられる。
また、 磁性金属粉末としては、 パーマロイ (N i - F e系合金で N i含有量が 3 5 %以上のもの) やセンダス ト (S i -A 1 - F e系合金) 等が挙げられる。 代表 的には、 後記する実施例に記載のものを使用すれば良い。
尚、 上記塗装体では、 電磁波吸収性及び加工性の向上に加えて導電性も高めた い場合がある。 その場合は、 上述した磁性粉末のうち特に磁性金属粉末の使用が 有用であり、 当該磁性金属粉末を磁性塗膜に添加するだけで、 更に導電性も高め ることができる。 上記磁性金属粉末中に、 導電性付与剤として有用な N iが既に 含まれているからである。
一方、 上述した磁性粉末のうち軟磁性フェライ ト粉末を使用する場合には、 こ れ単独で導電性を向上させることは困難である。 従って、 導電性の向上も意図す る場合には、 磁性塗膜中に、 軟磁性フ ライ ト粉末の他に、 後述する導電性付与 剤 (導電性フィラー) を添加することが好ましく、 これらの含有量を適切に制御 することが好ましい (この点については、 後述する)。
上記の磁性粉末は、平均粒径が 1 5 μ πι以下であることが好ましく、大粒径(例 えば、 2 0 μ ηι以上) の粉末はできるだけ除去することが好ましい。 これによつ て、 磁性塗膜の形成が容易となって、 加工性、 耐食性の低下を抑制できる。
ここで、 上記磁性粉末の平均粒径は、 一般的な粒度分布計によって分級後の磁 性粉末粒子の粒度分布を測定し、 その測定結果に基づいて算出される小粒径側か らの積算値 5 0 %の粒度 (D 50) を意味する。 斯かる粒度分布は、 磁性粉末粒子 に光を当てることにより生じる回折や散乱の強度パターンによって測定すること ができ、 この様な粒度分布計としては、 例えば、 日機装社製のマイクロ トラック 9220FRAやマイクロ トラック HRA等が例示される。
尚、 上述した好ましい平均粒径を満足する磁性粉末は、 市販品を使用しても良 い。 例えば後記する実施例に記載の磁性粉末が挙げられる。
(1-2) 磁性塗膜の膜厚を 3〜 5 0 m
更に本発明では、 上記磁性塗膜の膜厚を 3 ~ 5 0 μ ηιとする。 上記膜厚が 3 μ m未満、 及び 5 0 /i m超では曲げ加工性、 皮膜密着性おょぴ耐食性が低下してし まう。 好ましい膜厚は、 使用する磁性粉末の種類や添加量等によっても変化し得 るが、 概ね、 4 m以上、 4 0 μ m以下 ; より好ましくは 5 μ m以上、 3 0 μ m 以下である。
尚、 上述した磁性皮膜は、 金属板の少なく とも裏面 (電子機器部材用樹脂塗装 金属板の內側) に形成されていれば良い。 電磁波シールド性は、 電子機器部材の 内側で問題となるからである。具体的には上記第一の塗装体には図 8に示す通り、 裏面に磁性皮膜が被覆されている態様 [図 8 ( a ) ] と、 表裏面に磁性皮膜が被覆 されている態様 [図 8 ( b ) ] の両方が包含される。 尚、 図 8中、 2 1は磁性粉末、 2 2は金属板である。
以上が、 本発明における磁性塗膜の特徴部分に関する説明である。
尚、 上記磁性塗膜を構成する樹脂 (ベース榭脂) の種類としては、 電磁波吸収 性の観点からは特に限定されず、 アク リル樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリオレフイン樹脂、 ポリエステル樹脂、 フッ素樹脂、 シリコン樹脂、 およびこ れらの混合または変性した樹脂などを適宜使用することができる。 但し、 本発明 の塗装金属板は電子機器の筐体として使用されるので、 曲げ加工性、 皮膜密着性 および耐食性などの特性が要求されることを考慮すると、 ポリエステル樹脂若し くは変性ポリエステル樹脂 (例えば、 不飽和ポリエステル樹脂にエポキシ樹脂を 加えて変性させた樹脂) であることが好ましい。 この磁性塗膜には、 架橋剤を添 加することができる。 こう した架橋剤としては、 例えばメラミン系化合物やイソ シァネート系化合物が挙げられ、 これら 1種または 2種以上を 0 . 5〜2 0 %の 範囲で添加することが好ましい。
一方、 更に上記塗装体の電磁波吸収性を高めたいときは、 導電性を付与すれば 良いことが知られている。 こう した観点からすれば、 磁性塗膜中に導電性付与剤 を添加する方法が有用である。 この様な導電性付与剤としては、 A g, Z n , F e, N i, C u等の金属単体や F e P等の金属化合物が挙げられる。 このうち、 に好ましいのは N i である。 尚、 その形状は特に限定されないが、 より優れた 導電性を得るためには、 麟片状のものを使用することが推奨される。
上記導電性付与剤の添加量は概ね、 磁性塗膜中に 2 0 - 4 0 %とすることが好 ましいが、 厳密には、 使用する磁性粉末の種類等に応じてその添加量を適切に調 整することが推奨される。 前述した通り、 磁性粉末として軟磁性フユライ ト粉末 を用いる場合には、 それ単独で導電性を付与することはできない為、 上記範囲内 ( 2 0〜4 0 % ) のなかでも、 導電性付与剤をできるだけ多く添加することが好 ましい (例えば 2 5 %以上)。 これに対して、 磁性粉末として磁性金属粉末を用い る場合は、 それ自体で導電性を有しているので、 上記範囲内 (2 0〜4 0 % ) の なかでも、 できるだけ少なく添加するのが良い (例えば 3 0 %以下)。
一方、 導電性付与剤は、 上記磁性粉末と同様に加工性等に悪影響を及ぼす恐れ があることを考慮すれば、 磁性塗膜中に含まれる導電性付与剤と磁性粉末の合計 含有量は 6 0 %以下とすることが好ましい。
これらを総合的に勘案すれば、 磁性塗膜中に磁性粉末と導電性付与剤を両方添 加する場合には、 まず、 磁磁性粉末として軟磁性フェライ ト粉末を用いるときに は、 その含有量を 2 0〜4 0 %程度とし、 導電性付与剤の含有量を 2 0〜 4 0 % 程度 (合計で 6 0 %以下) とすることが好ましく ; 一方、 磁性粉末として磁性金 属粉末を用いるときには、 その含有量を 3 0〜5 0 %程度とし、 導電性付与剤の 含有量を 1 0〜3 0 % (合計で 6 0 %以下) とすることが好ましい。.
また、 本発明に用いられる金属板としては特に限定されず、 例えば冷延鋼板、 熱延鋼板、 電気亜鉛めつき鋼板 (E G )、 溶融亜鉛めつき鋼板 (G I )、 .合金化溶 融亜鉛めつき鋼板 (G A )、 5 % A 1 - Z nめっき鋼板、 5 5 % A 1 - Z nめっき鋼 板、 A 1等の各種めつき鋼板、 ステンレス鋼板等の鋼板類や、 公知の金属板等を 全て適用することができる。
更に上記金属板は、 耐食性向上、 塗膜の密着性向上等を目的として、 クロメー ト処理やリン酸塩処理等の表面処理が施されていてもよいが、 一方、 環境汚染等 を考慮して、 ノンクロメート処理した金属板を使用してもよく、 いずれの態様も 本発明の範囲内に包含される。
以下、 ノンクロメート処理した金属板について説明する。
上記 「ノンクロメ ト処理」 する方法 (下地処理) は特に限定されず、 通常、 使用される公知の下地処理を行えば良い。 具体的には、 リン酸塩系、 シリカ系、 チタン系、 ジルコニウム系等の下地処理を、 単独で、 若しくは併用して行うこと が推奨される。 '
尚、 一般にノンクロメート処理すると耐食性が低下することから、 耐食性向上 の目的で、 黒色塗膜中または下地処理の際、 防鲭剤を使用しても良い。 上記防鳍 剤としては、 シリカ系化合物、 リン酸塩系化合物、 亜リン酸塩系化合物、 ポリ リ ン酸塩系化合物、 ィォゥ系有機化合物、 ベンゾトリァゾール、 タンニン酸、 モリ プデン酸塩系化合物、 タングステン酸塩系化合物、 バナジウム系化合物、 シラン カツプリング剤等が挙げられ、 これらを単独で若しくは併用することができる。 特に好ましいのは、シリカ系化合物(例えばカルシウムイオン交換シリカ等) と、 リン酸塩系化合物、 亜リン酸塩系化合物、 ポリ リン酸塩系化合物 (例えばトリポ リ リン酸アルミユウム等)との併用であり、シリ力系化合物:(リン酸塩系化合物、 亜リン酸塩系化合物、 またはポリ リン酸塩系化合物) を、質量比率で 0 . 5〜9 .
5 : 9 . 5〜0 . 5 (より好ましくは 1 : 9〜9 : 1 ) の範囲で併用することが 推奨される。 この範囲に制御することにより、 所望の耐食性と加工性の両方を確 保することができる。
上記防鲭剤の使用によりノンクロメート処理金属板の耐食性は確保できるが、 その反面、 防鲭剤の添加による加工性低下も知られている。 その為、 黒色塗膜の 形成成分として、 特にエポキシ変性ポリエステル系樹脂及び/又はフエノール誘 導体を骨格に導入したポリエステル系樹脂、 及び架橋剤 (好ましくはイソシァネ ート系樹脂及び/又はメラミン系樹脂、 より好ましくは両者の併用) を組合わせ て使用することが推奨される。
このうちエポキシ変性ポリエステル系樹脂及びフエノール誘導体を骨格に導入 したポリエステル系樹脂 (例えばビスフエノール Aを骨格に導入したポリエステ ル系樹脂等) は、 ポリエステル系榭脂に比ぺ、 耐食性及び塗膜密着性に優れてい る。
一方、 イソシァネート系架橋剤は加工性向上作用 (加工後の外観向上作用を意 味し、後記する実施例では、密着性曲げ試験におけるクラック数で評価している) を有しており、 これにより、 防鲭剤を添加したと しても優れた加工性を確保する ことが可能となる。
また、 メラミン系架橋剤は、 優れた耐食性を有することが本発明者らの検討結 果により明らかになった。 従って、 本発明では、 前述した防鲭剤と併用すること により、 非常に良好な耐食性が得られることになる。
これらのイソシァネート系架橋剤及びメラミン系架橋剤は単独で使用しても良 いが、 両者を併用すると、 ノンクロメート処理金属板における加工性及ぴ耐食性 を一層向上させることができる。 具体的には、 イソシァネート系樹脂 1 0 0質量 部に対し、メラミン系樹脂を 5〜 8 0質量部の比率で含有することが推奨される。 メラミン系樹脂が 5質量部未満の場合、 所望の耐食性が得られず、 一方、 メラミ ン系樹脂が 8 0質、量部を超えると、 ィソシァネート系榭脂の添加による効果が良 好に発揮されず、 所望の加工性向上作用が得られない。 より好ましくは、 イソシ ァネート系樹脂 1 0 0質量部に対し、 1 0質量部以上、 4 0質量部以下、 更によ り好ましくは 1 5質量部以上、 3 0質量部以下である。
次に、 本発明の第二の塗装体 [上記 ( I ) の塗装体において、 更に放熱性に優 れた樹脂塗装金属板]、 及び第三の塗装体 [上記 ( I ) の塗装体において、 更に放 熱性及ぴ自己冷却性に優れた塗装体] について説明する。 まず、 これらに共通す る基本思想について説明する。
本発明者らは、 上記第一の塗装体において、 電子機器に要求される本来の特性 (防水 ·防塵等に伴う気密性確保、 小型化 ·軽量化、 低コス ト等) を満足しつつ、 当該電子機器内部温度の低減化 (放熱特性) をも達成し得る電子機器部材用塗装 体を提供すべく、特に、当該塗装体自体の放熱性改善を中心に鋭意検討してきた。 その結果、 金属板の表裏面に、 所定の塗膜を被覆すれば所期の目的が達成される ことを見出した。
そのメカニズムは、 「電子機器內部の熱源(発熱体)から放出される熱(輻射熱) を、 裏面の塗膜で吸収 (放射) し、 この熱を、 表面の放熱塗膜から放射させる」 というものであり、 所謂 『熱スルー方式』 の考えを、 電子機器部材にうまく適用 したところに最大の特徴がある。 この様な 『熱スルー方式』 の考えを、 電子機器 部材に適用し、 電子機器から放出される熱量を、 「金属板の裏面」 → 「金属板の表 面」 へと吸収→放射させた塗装体は従来知られておらず、 新規である。
次に、 各塗装体について説明する前に、 第二の塗装体 (放熱性に優れた塗装体) と、 第三の塗装体 (放熱性及び自己冷却性に優れた塗装体) の関係について説明 する。
第二の塗装体も第三の塗装体も、 共に前述した 「熱スルー」 の考えを電子機器 部材に適用して放熱性の向上を図る点で、 基本思想は一致する。 しかしながら、 両者は、 究極的に目指す解決課題 (主な解決課題)、 当該解決課題を解決する為の 技術的思想、 及び構成は相違する。 即ち、 第二の塗装体では、 放熱性の向上 (電 子機器内部温度の低減化) を最大の解決課題として掲げており、 「表面 ·裏面の赤 外線放射率の積はできるだけ高い程好ましい」 という思想のもと、表面 ·裏面を、 放熱塗膜を構成する一体として捉えて当該放熱塗膜の構成を特定しているのに対 し ;第三の塗装体では、 上述した 「熱スルーの考え」 を利用して放熱特性を或る 程度維持しながら、且つ、 「塗装体自体の温度上昇抑制」 を最大の解決課題として 掲げており、 「表裏面の赤外線放射率について積極的に差を設け、裏面の赤外線放 射率は表面よりも低く、 表面の赤外線放射率はできるだけ高くすることにより、 塗装体に吸収された熱を放出させる」 という思想のもと、 表面 ·裏面の塗膜構成 を夫々、 別々に捉えて制御している点で、 両者は、 目指す方向性が異なる発明と もいえる。
即ち、 第二の塗装体では、 放熱性に極めて優れるものの、 自己冷却性に劣る態 様も包含している。 一方、 第三の塗装体は、 自己冷却性に極めて優れたものであ る力 S、放熱性に関しては、第二の塗装体に比ぺると若干低い態様も包含している。 この様な両者の相違を一層明らかにすべく、 第二の塗装体で定める領域 [上式① を満足する放熱特性に優れた範囲] を図 5に ;第三の塗装体で定める領域 [上式 ③を満足する放熱特性に優れた範囲と、 上式②を満足する自己冷却性に優れた範 囲との重複部分] を図 6に、 夫々、 示す。 これらの塗装体は、 互いに重なり合う 部分 [表裏面の赤外線放射率の積が高い為に放熱特性に優れており、 且つ、 裏面 に比べて表面の赤外線放射率が高い為に自己冷却性にも優れている] も包含して いる力 S、当該部.分は、放熱特性及び自己冷却性の双方に極めて優れた領域である。 以下、 本発明に係る各塗装体について、 説明する。
(II) 上記 ( I ) の塗装体において、 更に放熱性に優れた樹脂塗装金属板 (第 二の塗装体)
上記第二の塗装体は、 前述した基本思想をベースとしてなされたものであり、 前述した第一の塗装体において、 上記 (II-1) または (II-2) を満足しており、 且 つ、 上記(Π-3) を満足することにより放熱性が高められたところに特徴がある。 まず、 上記 (II-1) または (Π-2) を定めた趣旨について説明する。
前述した通り、 本発明の基本態様である塗装体 (第一の塗装体) は、 少なく と も裏面側 (電子機器部材用塗装体の内側) の電磁波吸収性に優れていることが要 求される。 従って、 上記第二の塗装体においても、 第一の塗装体と同様、 裏面の みに磁性塗膜が形成される態様 (Π-1) と、 表裏面に磁性塗膜が形成される態様 (II-2) との、 二つに大別される。
一方、 放熱性向上という観点からすると、 金属板の表裏面に 1 μ m超の放熱塗 膜が形成されており、 且つ、 ω当該放熱塗膜のうち少なく とも一方は、 カーボン ブラックを添加しており、 力一ボンブラックを含有しない面には、 カーボンブラ ック以外の放熱性添加剤を添加するか;或いは、 (ϋ)当該放熱塗膜のうち少なく と も一方は、 酸化チタンを添加しており、 酸化チタンを含有しない面には、 酸化チ タン以外の放熱性添加剤を添加することが必要であり、 これにより、 所望の放熱 特性 [上記 (Π-3) ] を確保することができる。
この様に上記第二の塗装体は、 電磁波吸収性 ·加工性向上の為に要求される要 件と、 放熱性向上の為に要求される要件を勘案して定められたものである。
以下、 (Π- 1) または (Π-2) の態様について、 図 9を参照しつつ、 説明する。 (II- 1) 金属板の裏面にのみ、 前述した要件を満足する磁性塗膜が形成されて いる態様 [図 9 ( a ) ]
この場合、 裏面には 3〜 5 0 mの磁性塗膜が形成されている。 従って、 所望 の放熱特性を得る為にはまず、 反対側の表面に、 1 m超の放熱塗膜を被覆する ことが必要であり (これにより、 表裏面に塗膜が形成されることになる)、 且つ、 表裏面を放熱塗膜とする為に、 各塗膜には、 放熱性を有する添加剤 (放熱性添加 剤) を添加することが必要である [図 9 ( a ) を参照]。 尚、 図 9中、 2 1は磁性 粉末、 2 2は金属板、 2 3は放熱性添加剤である。
更に上記第二の塗装体で規定する所望の放熱性 [上記 (Π-3) ] を確保する為に は、 放熱性添加剤として、 特に放射率の高いカーボンブラック (または酸化チタ ン) を、 少なく とも片面の塗膜に添加しておく ことが必要であり、 カーボンブラ ックを含有しない面 (または酸化チタンを含有しない面) には、 カーボンブラッ ク以外の放熱性添加剤 (または酸化チタン以外の放熱性添加剤) を添加する。 勿 論、 両面にカーボンブラック (または酸化チタン) を添加すれば、 放熱特性に一 層優れた塗装体が得られるので、 極めて有用である。
かかる趣旨から、 上記 (Π-1) では、 裏面の磁性塗膜、.及び表面の放熱塗膜の うち少なく とも一方は、カーポンプラック (または酸化チタン)を含有しており、 カーボンブラックを含有しない面 (または酸化チタンを含有しない面) には、 力 —ボンブラック以外の放熱性添加剤 (または酸化チタン以外の放熱性添加剤) を 含有している旨、 定めた次第である。 以下、 順次、 説明する。
(ΙΙ-1-i) 磁性塗膜または放熱塗膜のうち少なく とも一方は、 カーボンブラック を 1 %以上含有し ; カーボンブラックを含有しない面には、 カーボンブラック以 外の放熱性添加剤を 1 0 %以上含有
カーボンブラックは、 優れた放熱性を有する黒色添加剤であり、 本発明では所 望の放熱特性を得る為に、 磁性塗膜または放熱塗膜のうち少なく とも片面が、 力 一ボンブラックを含有していることが推奨される。
尚、 磁性塗膜または放熱塗膜のうち少なく とも一方は、 カーポンプラックのみ 含有されていても良いが、 その他の黒色添加剤や、 黒色添加剤以外の放熱性添加 剤を併用しても良い (これらの例示は、 後記する)。 但し、 所望の放熱性を確保す る為には、 黒色添加剤中、 カーボンブラックの占める比率を 1 0 %以上 (好まし くは 3 0 %以上、 より好ましくは 5 0 %以上) に制御することが推奨される。 力 一ボンブラックは、 他の代表的な黒牟添加剤 (酸化物系の添加剤等) に比べて比 重が小さい為、 質量比率で換算した場合は、 少ない比率でも充分所望の放熱効果 が発揮されることになる。 最も好ましいのは、 黒色添加剤がカーボンブラックの みで構成される黒色塗膜である。
ここで、 塗膜中に含まれるカーボンブラックの含有量は、 当該塗膜の膜厚との 関係で適切に制御する必要があるが、 1 %以上添加することが推奨される。 基本 的には力一ボンブラックの添加量が多い程、優れた放熱特性が得られることから、 好ましくは 3 %以上、 より好ましくは 5 %以上である。 尚、 その上限は放熱特性 との関係では特に制限されないが、 1 5 %以上になると塗装性が悪くなる他、 耐 疵付き性等も低下する。 従って、 塗装性等を考慮した場合は上限を 1 5 %未満と することが好ましく、 より好ましい順に 1 3 %、 1 2 %である。
ここで、 塗膜中のカーボンブラックの添加量は、 以下の方法により、 測定する ことができる。
まず、 被験体 (分析サンプル) に溶媒を加えて加温し、 被験体中の有機物を分 解する。 使用する溶媒の種類は、 ベース系樹脂の種類によっても異なり、 各樹脂 の溶解度に応じて、 適宜、 適切な溶媒を使用すれば良いが、 例えば、 ベース樹脂 としてポリエステル系樹脂やウレタン系樹脂を用いる場合は、水酸化ナトリ ゥム- メタノール溶液を添加した容器 (ナス型フラスコ等) に被験体を加え、 この容器 を 7 0 °Cのウォーターバスで加温し、 被験体中の有機物を分解すれば良い。
次いで、 この有機物をガラスフィルター (孔径 0. で濾別し、 得られ た残渣中の炭素を、 燃焼赤外線吸収法により定量し、 塗膜中のカーボンブラック 濃度を算出する。
また、 カーボンブラックの平均粒径は 5〜 1 00 n mに制御することが好まし い。 平均粒径が 5 nm未満では、 所望の放熱特性が得られない他、 塗料の安定性 が悪く、 塗装外観に劣る。 一方、 平均粒径が 1 0 0 nmを超えると放熱特性が低 下するのみならず、 塗装後外観が不均一となってしまう。 好ましくは 1 0 nm以 上、 9 0 nm以下 ; より好ましくは 1 5 nm以上、 8 0 nm以下である。 尚、 放 熱特性に加え、 塗膜安定性、 塗装後外観均一性等を総合的に勘案すれば、 カーボ ンブラックの最適平均粒径は概ね 20〜4 0 nmとすることが推奨される。
本発明では、 上記平均粒径を満足するカーボンブラックとして市販品を使用し ても良く、 例えば、 三菱化学製 「三菱カーボンブラック」 (平均粒径 1 3 ~ 7 5 μ m) 等の使用が推奨される。 尚、 本発明に用いられる黒色添加剤の平均粒径は、 上記市販品の ンフレツ トにも記載されている通り、 電子顕微鏡による算術平均 径によって算出すれば良い。
また、 上述したカーボンブラック以外の放熱性添加剤(「 C B以外の放熱性添加 剤」) としては、 例えば、 黒色添加剤として F e, C o, N i , C u, Mn, Mo, Ag, S n等の酸化物、 硫化物、 カーパイ ドゃ黒色の金属微粉等; 黒色添加剤以 外の放熱性添加剤として、 T i 02、 ジルコニァ、 ユージライ ト、 チタン酸アルミ 二ゥム、 スポジユーメン、炭化ケィ素、窒化アルミニウム、六方晶窒化ホウ素、 酸化鉄、 硫酸バリ ゥム、 酸化ケィ素、 酸化アルミニウム等のセラミ ックス ; A 1 粉 (鱗片状の A I フレーク等) 等が挙げられ、 これらを単独、 若しぐは 2種以上 を併用しても良い。 所望の放熱特性を確保する為には、 上記 「CB以外の放熱性 添加剤」 の含有量を合計で 1 0 %以上とし、 好ましくは 20 %以上、 より好まし くは 3 0 %以上である。
これらのうち好ましいのは、 T i 〇2等のセラミックス、 A 1 フレークであり ; 更に好ましいのは T i O2である。 例えば T i 02を使用する場合、 T i 02を約 3 0〜 7 0 %含有する塗膜を、 約 5〜 5 0 μ m形成させると、 概ね、 0. 8前後の赤外線放射率が得られる。 上記 塗膜中に、 更にカーボンブラック等の黒色添加剤等を添加すれば、 赤外線放射率 は一層大きくなる。 また、 表面にメタリ ック調外観を付与したいときは、 表面の 塗膜に A 1 フレークを使用することが推奨される。 この場合、 A I フレークの含 有量を 5〜3 0 %とし、 当該塗膜の膜厚を約 5 ~ 3 0 /ζ πιとすれば、 約 0. 6 ~ 0. 7の赤外線放射率が得られる。
この様な平均粒径を満足す放熱性添加剤として市販品を使用しても良く、 例え ば T i 02としてティカ株式会社製の T i 02 (平均粒径 0. 2 ~ 0. 5 μ χη) ; A 1 フレークとして昭和アルミパウダー製の L B 5 8 4 (平均粒径 2 5 /1 m) 等の 使用が推奨される。 尚、 本発明に用いられる 「C B以外の放熱性添加剤」 の平均 粒径は、 前述したカーボンブラックの市販品 [三菱化学製 「三菱カーボンブラッ ク J (平均粒径 1 3〜 7 5 /z m)] のパンフレッ トにも記載されている通り、 電子 顕微鏡による算術平均径によって算出すれば良い。 '
(ΙΙ-1-ii) 磁性塗膜または放熱塗膜のうち少なく とも一方は、 酸化チタンを 3 0 %以上含有し ; 酸化チタンを含有しない面には、 酸化チタン以外の放熱性添加 剤を 1 %以上含有
上記第二の塗装体では、 カーボンブラックの代わりに酸化チタンを使用しても 良い。 酸化チタンは、 カーボンブラックに次.いで放射率の髙ぃ放熱性添加剤だか らである。
尚、酸化チタンを使用する場合は、その添加量を 3 0 %以上(好ましくは 4 0 % 以上) とし、酸化チタンを含有しない面には、酸化チタン以外の放熱性添加剤 (前 述した 「C B以外の放熱性添加剤」 のうち、 酸化チタンを除いたもの、 更にカー ボンブラックも含まれる) を 1 %以上 (好ましくは 3 %以上) とする。 これらの 詳細は前述した通りである。
表面の放熱塗膜の膜厚: 1 m超
上記 (ΙΙ-1-i) 及び (Π-1-ii) のいずれにおいても、 表面の放熱塗膜の膜厚は、 1 μ πι超とすることが必要である。 この下限は、 所望の放熱特性を確保する為に 定められたものであり、 上記膜厚が 1 μ m未満では、 放熱性添加剤を多く添加し ても所望の放熱特性が得られない。 好ましい下限は順に、 3 / m、 5 A m , 7 μ m、 Ι Ο μ ΐηである。
尚、 その上限は、 放熱特性との関係では特に制限されないが、 電子機器部品へ の適用を意図している関係で、 加工性の向上も要求されること ;特に曲げ加工時 における塗膜のクラックや剥離等の発生防止等を考慮すると、 5 0 μ κι以下 (よ り好ましい順に、 4 5 / m以下、 4 0 以下、 3 5 /^ X11以下、 3 0 211以下) に制御する.ことが推奨される。
更に、 良好な加工性を備えると共に、 優れた導電性も確保す.る為には、 1 2 μ m以下 (より好ましい順に 1 1 n m以下、 更により好ましくは 1 0 μ m以下) に 制御することが推奨される。
ここで、 表面 ·裏面の塗膜に添加される樹脂 (放熱塗膜を形成するベース樹脂) の種類は、 放熱特性の観点からは特に限定されず、 アクリル系樹脂、 ウレタン系 樹脂、 ポリオレフイン系樹脂、 ポリエステル系樹脂、 フッ素系樹脂、 シリ コン系 樹脂、 およびそれらの混合または変性した樹脂等を適宜使用することができる。 但し、 本発明塗装体は電子機器の筐体として使用される為、 放熱性に加え、 加工 性の向上も要求されることを考慮すると、 上記ベース樹脂は、 非親水性樹脂 [具 体的には、 水との接触角が 3 0 ° 以上 (より好ましくは 5 0 ° 以上、 更により好 ましくは 7 0 ° 以上) を満足するもの] であることが好ましい。 この様な非親水 性特性を満足する樹脂は、 混合度合や変性の程度等によっても変化し得るが、 例 えばポリエステル系樹脂、 ポリオレフイン系樹脂、 フッ素系樹脂、 シリコン系樹 脂等の使用が好ましく、 なかでもポリエステル系樹脂の使用が推奨される。
更に上記塗膜には、 本発明の作用を損なわない範囲で、 カーボンブラック 酸 化チタンの他、 防鲭顔料、 シリカ等の顔料も添加しても良い。 或いは、 これら以 外の他の放熱性添加剤 [例えば、 ジルコユア、 ュ一ジライ ト、 チタン酸アルミ二 ゥム、 /3スポジュ メ ン、 炭化ケィ素、 窒化アルミニウム、 六方晶窒化ホウ素、 酸化鉄、 硫酸パリ ゥム、 酸化ケィ素、 酸化アルミニウム等のセラミックス ; A 1 粉 (鱗片状の A 1 フレーク等) 等を 1種または 2種以上] も、 本発明の作用を損 なわない範囲で、 添加することができる。
また、 上記塗膜には、 架橋剤を添加することができる。 本発明に用いられる架 橋剤と しては、例えばメラミン系化合物ゃィソシァネート系化合物等が挙げられ、 これらを 1種または 2種以上、 0. 5〜 2 0重量%の範囲で添加することが推奨 される。
(II-2) 金属板の表裏面に、 前述した要件を満足する磁性塗膜が形成されてい る態様 [図 9 (b )]
この場合、 表裏面には 3〜5 0 z mの磁性塗膜が形成されている。 所望の放熱 特性を得る為には、 上記磁性塗膜を放熱塗膜とすることが必要であり、 その為に は、 各塗膜に放熱性添加剤を添加することが必要である [図 9 (b ) を参照]。 具体的な構成は、 前述した第二の塗装体 (Π-1) と同様である。
(II-3) 式① : a X b≥ 0. 4 2
式中、 a及ぴ bは、 金属板の表裏面に塗膜が被覆された塗装体を 1 0 0°Cに加 熱したときの赤外線 (波長: 4. 5〜 1 5. 4 m) の積分放射率において、 表 面の赤外線積分放射率 a、 裏面の赤外線積分放射率 bを夫々、 意味する。
上記の赤外線積分放射率は後述する方法で測定され、 表面若しくは裏面の赤外 線積分放射率を夫々、 別々に測定することができる。
ここで、 上 「赤外線積分放射率」 とは、 換言すれば、 赤外線 (熱エネルギー) の放出し易さ (吸収し易さ) を意味する。 従って、 上記赤外線放射率が高い程、 放出 (吸収) される熱エネルギー量は大きくなることを示す。 例えば物体 (本発 明では塗装体) に与えられた熱エネルギーを 1 0 0 %放射する場合には、 当該赤 外線積分放射率は 1 となる。
尚、本発明では、 1 0 0°Cに加熱したときの赤外線積分放射率を定めているが、 これは、 本発明塗装体が電気機器用途 (部材等によっても相違するが、 通常の雰 囲気温度は概ね、 5 0〜 70°Cで、 最高で約 1 0 0°C) に適用されることを考慮 し、 当該実用レベルの温度と一致させるベく、 加熱温度を 1 0 0°Cに定めたもの である。
本発明における赤外線積分放射率の測定方法は以下の通りである。
装置: 日本電子 (株) 製 「 J I R-5 5 0 0型フーリエ変換赤外分光
光度計」 及び放射測定ユニッ ト 「 I RR-2 0 0J
測定波長範囲 : 4. 5〜 1 5. 4 M m 測定温度:試料の加熱温度を〗 0 o°cに設定する
積算回数: 200回
分解能 : 1 6 c πι·ι
上記装置を用い、 赤外線波長域 (4 . 5〜1 5 . 4 μ m) における試料の分光 放射強度 (実測値) を測定した。 尚、 .上記試料の実測値は、 パックグラウンドの 放射強度及び装置^数が加算/付加された数値として測定される為、 これらを捕 正する目的で、 放射率測定プログラム [日本電子 (株) 製放射率測定プログラム] を用い、 積分放射率を算出した。 算出方法の詳細は以下の通りである。
Figure imgf000028_0001
式中、
ε ( λ ) : 波長 Lにおける試料の分光放射率 (%)
Ε (Τ) : 温度 Τ (で) における試料の積分放射率 (%) Μ ( λ , Τ) : 波長; I、 温度 T (°C) における試料の分光放射強度
(実測値)
A ( λ ) : 装置関数
KFB ( X ) : 波長; Lにおける固定パックグラウンド (試料によって 変化しないバックグラウンド) の分光放射強度 ΚΤΒ ( λ , ΤΤΒ) :波長 λ、 温度 ΤΤΒ (V) における トラップ黒体の
分光放射強度
KB ( λ , Τ) :波長 λ、 温度 T (°C) における黒体の分光放射強度
(ブランクの理論式からの計算値) λ 1, λ2 :積分する波長の範囲
を夫々、 意味する。
ここで、 上記 A ( λ :装置関数)、 及び上記 KFB (λ : 固定パックグラウンド の分光放射強度) は、 2つの黒体炉 (8 0°C、 1 6 0°C) の分光放射強度の実測 値、 及び当該温度域における黒体の分光放射強度 (ブランクの理論式からの計算 値) に基づき、 下記式によって算出したものである。
6Z
,s¾¾s 80c Mi Λ ) M I。。 "
, ,3, ,u))】 (c60c0¾-i 88c tccc010《6Mス MA)K ·l-。。。。
, , U) U) 80c0c K6B¾ 1。。¾ I。。
Jς , )c《 800) λs。 6c ( M λ M。 I。。
JZ.8600/ 00Zdf/X3d 式中、
M160。C ( λ , 1 60 °C) :
波長 における 1 60°Cの黒体炉の分光放射強度 (実測値) M80°C (λ, 80°C) :
波長 λにおける 80°Cの黒体炉の分光放射強度 (実測値)
160°C (2 , 1 60 °C) :
波長; Lにおける 1 60°Cの黒体炉の分光放射強度
(ブランクの理論式からの計算値)
K80°C ( λ , 80 °C) :
波長 λにおける 80°Cの黒体炉の分光放射強度
(ブランクの理論式からの計算値)
を夫々、 意味する。
尚、 積分放射率 E (T - 1 00°C) の算出に当たり、 KTB (1 , TTB) を考 慮しているのは、 ,測定に当たり、 試料の周囲に、 水冷したトラップ黒体を配置し ている為である。 上記トラップ黒体の設置により、 変動バックグランド放射 (試 料によって変化するパックグラウンド放射を意味する。 試料の周囲からの放射が 試料表面で反射される為、 試料の分光放射強度の実測値は、 このパックグランド 放射が加算された数値として表れる) の分光放射強度を低く コントロールするこ とができる。上記のトラップ黒体は、放射率 0. 96の疑似黒体を使用しており、 前記 KTB ί(λ, TTB) :波長え、 温度 TTB (°C) における トラップ黒体の分光 放射強度] は、 以下の様にして算出する。
KTB ( λ , TTB) = 0. 9 6 ΧΚΒ (λ, TTB)
式中、 KB (え, TTB) は、 波長; I、 温度 TTB (°C) における黒体の 分光放射強度を意味する。
本発明に係る第二の塗装体は、 この様にして測定した赤外線 (波長 4. 5〜1 5. 4 A m) の積分放射率 [上記 E (T= 1 00°C)] であって、 前述した a及ぴ bの積 ( a X b ) が 0. 42以上 [式①] を満足するものである。 上記 「 a'X b」 で算出される数値 (塗装体から放出される赤外線積分放射率の積) は、 塗装体自 体の放熱効果を示す指標として有用であり、 上式を満足する塗装体は、 上記波長 域において、 平均して高い放射特性を発揮することから、 上記第一の塗装体にお ける放熱特性の目標レベルを 「 a X b≥ 0. 4 2」 に定めた。 「 a X b j (最大で 1 ) の値は大きい程 ( 1に近ければ近い程)、 優れた放熱特性を発揮し、 好ましい 順に、 0. 4 9以上、 0. 5 6以上、 0. 6 1以上、 0. 6 4以上、 0. 7 2以 上である。
尚、 上記第二の塗装体では、 上述した放熱特性の目標レベルを満足する限り、 表面の赤外線放射率と、 裏面の赤外線放射率の関係は特に限定されず、 表面と裏 面の赤外線放射率が異なる態様、 及び両面が同程度の放射率を有する態様の両方 を包含する。 これに対し、 本発明に係る第三の塗装体では、 放熱性に加え、 自己 冷却性の向上を主目的としており、 裏面に比べ、 表面の赤外線放射率が高い塗装 体のみに限定している点で、 両者は相違する [詳細は、 第三の塗装体の項で詳述 する]。 - 具体的には、 上式①「a X b≥ 0. 42」 の放熱特性を満足する限りにおいて、 表面 裏面は、 任意の赤外線放射率を定めることができる。 但し、 赤外線放射率 の最大値は 1であるから、 上式①を満たす為には、 少なく とも片面の赤外線放射 率を 0. 4 2以上; & 13≥ 0. 5 6を満たす為には、 少なく とも片面の赤外線 放射率を 0. 5 6以上; & 13≥ 0. 6 4を満たす為には、 少なく とも片面の赤 外線放射率を 0. 64以上とすることが必要である。
ここで、 片面の赤外線放射率は大きければ大きい程好ましく、 少なく とも片面 の赤外線放射率が 0. 6 5以上を満足するものは好ましい態様である。 より^ま しい順に、 0. 7以上、 0. 7 5以上、 0. 8以上である。 両面が 0. 6 5以上 の塗装体は、 更に好ましい。
更に上記第二の塗装体では、 上記赤外線 (波長 4. 5- 1 5. 4 μ m) の任意 の波長域における分光放射率の最大値 Aと最小値 Bとの差 (A— B) は 0. 3 5 以下であることが好ましい。 この 「A—: B」 は、 上記赤外線波長域における 「放 射率の変化幅」 を表すもので、 「A— B≤ 0. 3 5」 とは、 上記赤外線波長域のい ずれにおいても、 安定して高い放射特性を発揮することを示している。 従って、 上記要件を満足するものは、例えば、放出される赤外線の波長が異なる部品を種々 搭載した電子機器等の用途への適用も可能となる等、 電子機器部材用への用途の 拡大が期待されるものである。 具体的には、 上記の如く測定した任意の放射率を 測定し、 当該波長域における分光放射率の最大値 (A) と最小値 (B ) との差 (A _ B ) を 「放射率の変化幅」 として算出する。 上記 「A— B」 の値は、 小さけれ ば小さい程、 安定した放熱特性を得ることができ、 より好ましくは 0 . 3以下、 更により好ましくは 0 . 2 5以下である。
(III) 上記 ( I ) の塗装体において、 更に放熱性及ぴ自己冷却性に優れた塗装 体 (第三の塗装体) :
上記第三の塗装体は、 前述した基本思想をベースとしてなされたものであり、 上記第一の塗装体において、 上記 (ΠΙ-1) または (ΙΠ-2) を満足しており、 且つ、 上記 (ΠΙ-3) を満足することにより放熱性及び自己冷却性が高められたところに 特徴がある。
まず、 上記 (ΠΙ-1) 及び (ΠΙ-2) を定めた趣旨について説明する。
上記第三の塗装体もその前提として、 電磁波 ¾収性及び加工性に優れているこ とが要求される為、 磁性塗膜は、 少なく とも裏面に形成されていることが必要で あり、 具体的には裏面のみに磁性塗膜が形成される態様 (III-1) と、 表裏面に磁 性塗膜が形成される態様 (ΠΙ-2) の二つが包含される。
一方、 放熱性及び自己冷却性の向上という観点からすると、 金属板の表面に 1 超の放熱塗膜が形成されており (裏面の磁性塗膜は、 必ずしも放熱塗膜とす る必要はない)、 且つ、 表面の放熱塗膜、 及ぴ裏面の磁性塗膜には、 放熱性添加剤 を含有することが必要であり、 これにより、 所望の放熱特性及ぴ自己冷却性 [上 記 (ΙΠ-3) ] を確保することができる。
この様に上記第三の塗装体は、 電磁波吸収性向上の為に要求される要件と、 放 熱性及び自己冷却性の向上の為に要求される要件を勘案して定められたものであ る。
以下、 これら (ΠΙ-1) 及ぴ (ΙΠ-2) の態様について、 個別に説明する。
(III-1) 金属板の裏面にのみ、 前述した要件を満足する磁性塗膜が形成されて いる態様
この場合、 裏面には 3 ~ 5 0 /X mの磁性塗膜が形成されている。 従って、 所望 の放熱特性及ぴ自己冷却性を得る為にはまず、 反対側の表面に、 超の放熱 塗膜を被覆することが必要であり (これにより、 表裏面に塗膜が形成されること になる)、 且つ、 少なく とも表面を放熱塗膜とする為に、 当該塗膜には放熱性添加 剤を含有することが必要である。 また、 所望の自己冷却性を確保する為には、 表 面の赤外線放射率は裏面に比べ、 髙く して式② (後述) を満足することが必要で あり、 且つ、 放熱特性は、 少なく とも式③ (後述) を満足することが必要である。 一方、 裏面については、 3〜 5 0 mの磁性塗膜が形成されている為、 所望の 放熱特性が得られる限り、 放熱性添加剤を更に添加することは必ずしも必要では ない。 上記磁性塗膜のみで、 或る程度の放射率を確保できるからである。 即ち、 前述した 「表面の塗膜」 は、 優れた自己冷却性を確保する為に放熱塗膜とする必 要があるが、 「裏面の塗膜」 は、 所望の特性が得られる限り、 必ずしも放熱塗膜と する必要はない。 従って、 上記第三の塗装体には、 金属板の裏面に塗膜が施され ていない 「片面塗装鋼板 j. は包含されない (塗膜なし原板の赤外線放射率は概ね 0 . 0 4で、 所望の自己冷却性は得られない) 力 上式②を満足する限りにおい て、 任意の塗膜を採用することができる。 勿論、 裏面の磁性塗膜にも、 放熱性添 加剤を添加すれば、 より優れた放熱特性が得られることは言うまでもない。 かかる趣旨から、 第三の塗装体 (III- 1) では、 表面の放熱塗膜は、 放熱性添加 剤を含有しており、 裏面の磁性塗膜は、 更に放熱性添加剤を含有しても良い旨、 定めた次第である。
まず、 上記態様において、 「表面の放熱塗膜の膜厚: l ^ m超」 については、 前 記 (II) に詳述した通りである。
また、 使用する放熱性添加剤としては、 前記 (Π) に記載の放熱性添加剤 (力 一ポンプラック、 酸化チタンを含む) が挙げられる。 従って、 上記第三の塗装体 では前述した第二の塗装体と異なり、 放射率の高いカーボンブラックや酸化チタ ンに限定されず、 A I フレーク等の放熱性添加剤も、 後記する (ΠΙ-3) を満足す る限りにおいて、 使用することができる。
具体的には、前述した黒色金属板において、表面塗膜の放射率に^じて、適宜、 添加量及び塗膜厚を適切に調整して裏面の塗膜を形成することができる。 尚、 黒 色添加剤を用いて裏面の塗膜を形成する場合、 裏面が放熱性を.殆ど有しない場合 であっても、 表面塗膜の赤外線放射率さえ、 適切に制御すれば、 所望の自己冷却 性を確保することができる。'
或いは、 上記の添加剤を全く添加せず、 塗膜厚を所定範囲 (約 2. 5 μπι以上) に制御した塗膜も採用することができる。塗膜中に含まれる樹脂のみによっても、 或る程度の放熱特性が得られるからである。
具体的には、 例えば塗膜形成樹脂として非親水性のポリエステル系樹脂を使用 する場合は、 塗膜厚を概ね、 2. 5 m以上に調整すれば良い。
(ΙΙΙ-3) 該樹脂塗装金属体を 1 00°Cに加熱したときの赤外線 (波長: 4. 5 ~1 5. 4 μ m) の積分放射率が、 下式②及ぴ下式③を満足する。
b≤0. 9 (a -O. 05) ... 式②
(a— 0. 05) X ( b - 0. 05) ≥ 0. 08··. 式③
a : 表面 (樹脂塗装金属板から見て外気側) の赤外線積分放射率 b :裏面 (樹脂塗装金属板の内側) の赤外線積分放射率 上記第三の塗装体は前述した構成を採用しており、 塗装体自体の温度上昇が抑 えられるので、 当該塗装体を電子機器の筐体として使用したとき、 電子機器稼動 時に、 取扱者が触れたとしても 「熱くない」 と感じる等、 取扱者側から見て安全 な電子機器を提供することができる。 しかも上記塗装体は、 良好な放熱性も兼ね 備えているので、 これらの两特性を兼ね備えた電子機器部材は、 更なる用途の拡 大をもたらす点で非常に有用である。
まず、 自己冷却性の指標について説明する。
式②: b≤ 0. 9 ( a - 0. 05)
上式②は、 裏面の赤外線放射率に比べ、 表面の赤外線放射率を高く し、 塗装体 に吸収された熱を外気側へ移動させる放熱効果を示す指標として定めたものであ り、 塗装体自体の温度上昇を抑制する 「自己冷却性」 の指標として有用である。 上式は、 「金属板の裏面 (電子機器内部側) に比べ、 金属板の表面 (外気側) の赤 外線放射率を高く した塗膜を施すことにより、 塗装体自体の温度上昇を抑制しよ う」 という思想のもと、 所望の自己冷却性 (後記する ΔΤ 2で 0. 5°C以上) を 確保できる表面 ·裏面の赤外線放射率の関係式を特定したものである。
塗装体を電子機器の筐体に使用する場合、 筐体内部面 (裏面) の赤外線放射率 を高めると、 電子機器内熱源から放出される赤外線吸収量が増加し、 塗装体自体 の温度は上昇してしまう。 一方、 筐体外部面 (表面) の放射率を高めれば、 塗装 体から外気に向けて放出する赤外線放出量が増加し、 塗装体の温度も低下する。 本発明は、この様な知見に基づき、種々の実験を重ねて上式を定めたものであり、 本発明によれば、 金属板の裏面側で吸収 (放射) される熱量よりも、 金属板の表 面側から放射される熱量が大きくなるので、 塗装体自体の温度上昇を効率よく抑 えることが可能になる。
この様に金属板の表面と裏面に放熱特性の異なる塗膜を設け、 放熱特性の水準 を或る程度維持しつつ、 しかも塗装体の温度上昇をも抑制させた塗装体は従来知 られておらず、 新規であると考える。
従って、 上記第三の塗装体では、 aと bの赤外線放射率の差が大きい程、 優れ た自己冷却性が得られる。具体的には、上式②を変形した式(0. 9 a— b≥ 0. 045) 中、 左辺 (0. 9 a— b) の計算値を Q値としたとき、 この Q値が大き い程好ましい。 好ましい順に、 0. 1 3以上、 0, 24以上、 0. 35以上、 0. 47以上である。
式③: (a— 0. 05) X ( b - 0. 05) ≥ 0. 08
上式③は、 第三の塗装体における放熱特性の指標を、 表裏面の赤外線積分放射 率の積によって特定したもので、 左辺 [(a— 0. 05) X (b - 0. 05)] の 計算値 R値が大きい程、 放熱特性に優れていることを示す。
上記第三の塗装体における放熱特性のレベル (後記する Δ T 1に換算すると厶 T 1≥ 1. 5°C) は、 第二の塗装体のレベル (後記する ΔΤ 1≥ 2. 6°C) に比 ベ、 許容範囲が広い。 これは、 第三の塗装体では自己冷却性の向上を主な解決課 題として掲げており、当該課題を達成する限りにおいては、放熱特性のレベルは、 第二の塗装体に比べて若干低い態様をも包含し得るという知見に基づき、 定めた ものである。
(IV) 上記 (I) の塗装体において、 更に耐疵付き性及び耐指紋性に優れた塗 装体 (第四の塗装体)
上記第四の塗装体は、 上記第一の塗装体において、 上記 (IV-1) または (IV-2) を満足しており、 且つ、 上記 (IV-3) 〜 (IV-4) を満足することにより、 耐疵付 き性及ぴ耐指紋性が高められたところに特徴がある。 まず、 上記 (IV-1) 及び (IV-2) を定めた趣旨について説明する。
上記第四の塗装体もその前提として、 電磁波吸収性及び加工性に優れているこ とが要求される為、 磁性塗膜は、 少なく とも裏面に形成されていることが必要で あり、 具体的には裏面のみに磁性塗膜が形成される態様 (IV-1) と、 表裏面に磁 性塗膜が形成される態様 (IV-2) の二つが包含される。
一方、 黒色金属板における耐疵付き性及ぴ耐指紋性の向上という観点からする と、 少なく とも表面を黒色とし、 当該黒色面に、 所定の白色顔料及び/又は光輝顔 料を含有する樹脂塗膜を形成する必要がある。 上記第四の塗装体は、 黒色金属板 を電子機器部材の構成素材へ適用することを意図しており、 疵ゃ指紋の防止が要 請される表面に上記樹脂塗膜を被覆し、 黒色金属板の色調を、 疵ゃ指紋が目立ち 難い色調に調整する隠蔽作用を発揮させるものだからである。
上記 (IV-1) 及び (IV-2) は、 かかる観点から定められたものであり、 以下、 図 1 0を参照しつつ、 説明する。
(IV-1) 金属板の裏面にのみ、 前述した要件を満足する磁性塗膜が形成されて いる態様 [図 1 0 ( a ) ]
この場合、 表面は、 黒色添加剤を含有する黒色塗膜と、 白色顔料及びノ又は光 輝顔料を含有する樹脂塗膜の二層構成とする [図 1 0 ( a )〕。 この様な二層塗膜 とすることにより、所望の耐疵付き性及び耐指紋性が発揮される。 尚、図 1 0中、 2 1は磁性粉末、 2 2は金属板、 2 3は放熱性添加剤、 2 4は白色顔料 Z光輝顔 料である。
一方、 裏面には前述した磁性塗膜が被覆されており、 当該磁性塗膜には、 必要 に応じて黒色添加剤を添加しても良い。 尚、 裏面の磁性塗膜が黒色添加剤を含有 する場合は、 更に白色顔料及び > 又は光輝顔料を含有する樹脂塗膜が被覆されて いても良く、 これにより、 裏面側においても、 優れた耐疵付き性及び耐指紋性を 確保することができる。
以下、 上記 「黒色塗膜」 と 「樹脂塗膜」 について、 夫々、 説明する。
黒色塗膜について
本発明における 「黒色塗膜」 とは、 黒色添加剤を含有する塗膜を意味する。 上 記黒色添加剤としては、要するに黒色に着色し得るものであれば特に限定されず、 種々の黒色添加剤が挙げられる。 前述した通り、 上記第四の塗装体では、 黒色金 属板における耐疵付き性等を改善する為に、 当該黒色金属板における黒色側表面 の一方または両方に、 白色顔料及び/又は光輝顔料を含有する所定の樹脂塗膜を 被覆したところに特徴があり、 黒色塗膜自体については限定する趣旨はないから である。 本発明に用いられる黒色添加剤としては、 代表的にはカーボンブラック が挙げられるが、 その他、 F e, C o, N i , C u , M n , M o , A g , S n等の 酸化物、 硫化物、 カーバイ ドや黒色の金属微粉等を使用することもできる。 上記黒色塗膜における他の要件、 例えば黒色添加剤の種類、 黒色塗膜中に添加 される樹脂 (黒色塗膜を形成するベース樹脂) の種類、 添加し得る他の成分 (防 鲭顔料、 シリカ、 架橋剤等) 等については、 前記 (II) に記載した通りである。 この様な構成からなる黒色塗膜の膜厚は上限及び下限ともに、 耐疵付き性及び 耐指紋性との関係では特に限定されないが、 耐食性や加工性等を考慮すると、 好 ましい下限は Ι πι より好ましくは 3 mである。
また、 上記黒色塗膜には、 N 'i等に代表される導電性フィラーを含有しても良 く、 これにより、 優れた導電性を確保することができる。 但し、 黒色塗膜に導電 性ブイラーを添加する場合は、 膜厚の下限を 2 mに制御することが好ましく、 これにより、 クロムフリー塗装体であっても (後記する通り、 本発明にはクロム フリー塗装体も包含される)、耐食性と導電性の両方を確保することができる。 よ り好ましい下限は 3 m、 更により好ましくは 5 mである。
一方、 上記黒色塗膜の膜厚の上限に関しては、 本発明塗装体は特に電子機器部 品への適用を意図しており、 当該用途との関係上、 加工性の向上も要求されるこ と ; また、 曲げ加工時における塗膜のクラックや剥離等の発生防止等を考慮する と、 膜厚の上限を 5 0 μ m (より好ましい順に、 4 5 μ πι、 4 0 μ m , 3 5 μ m , 3 0 /i m ) に制御することが推奨される。
尚、 良好な加工性を備えると共に、 優れた導電性も確保する為には、 黒色塗膜 及び樹脂塗膜に導電性フィラー (後記する) を添加することが推奨されるが、 こ の場合は、 当該導電性フィラーを添加した黒色塗膜の膜厚と、 前述した樹脂塗膜 の膜厚を合計で、 1 3 m以下 (より好ましい順に、 1 2 μ πι以下、 l l w m以 下、 1 0 m以下) とすることが好ましい。 上記黒色塗膜が施される金属板としては特に限定されず、 例えば冷延鋼板、 熱 延鋼板、 電気亜鉛めつき鋼板 (E G )、 溶融亜鉛めつき鋼板 (G I )、 合金化溶融 亜鉛めつき鋼板(G A )、 5 % A 1 - Z nめっき鋼板、 5 5 % A 1 - Z nめっき鋼板、 A 1等の各種めつき鋼板、 ステンレス鋼板等の鋼板類や、 公知の金属板等を全て 適用することができる。
上記金属板は、 耐食性向上、 塗膜の密着性向上等を目的として、 クロメート処 理ゃリ ン酸塩処理等の表面処理が施されていてもよいが、 一方、 環境汚染等を考 慮して、 ノンクロメート処理した金属板を使用してもよく、 いずれの態様も本発 明の範囲内に包含される。
尚、 上記第四の塗装体を特徴付ける 「樹脂塗膜」 については、 (IV-3) に詳述す る。
(IV-2) 金属板の表裏面に、 前述した要件を満足する磁性塗膜が形成されてい る態様 [図 1 0 ( b ) ]
この場合は、 少なく とも表面の磁性塗膜を、 黒色添加剤を含有する黒色磁性塗 膜とし、 当該表面の黒色磁性塗膜には、 白色顔料及び/又は光輝顔料を含有する 樹脂塗膜が被覆されており、 該裏面には、 白色顔料及びノ又は光輝顔料を含有す る樹脂塗膜が被覆されていても良い。
このうち、黒色添加剤等に関する要件は、 前記(iv-i) に記載した通りである。
(IV-3) 白色顔料及ぴノ又は光輝顔料を含有する樹脂塗膜の膜厚及び含有量 本発明では、 上記樹脂塗膜の膜厚を 0 . 5〜 1 0 m、 当該樹脂塗膜に含まれ る白色顔料及び/又は光輝顔料の添加量を、 合計で 1 ~ 2 5 %とする。 これらの範 囲を外れたものは.、 所望の耐疵付き性及び耐指紋性が得られないことを、 後記す る実施例により確認している。
以下、 上記規定について説明する前に、 まず、 本発明における 「樹脂塗膜」 の 意義、及び当該樹脂塗膜に含まれる白色顔料 光輝顔料の種類について説明する。 前述した通り、 上記樹脂塗膜は、 黒色側表面の一方または両方に被覆されるも のであり、 白色顔料及ぴノ又は光輝顔料を含有するものである。 本発明では、 こ れらの顔料を、 本来の添加目的 (意匠性付与) の為に被覆するのではなく、 黒色 金属板における耐疵付き性及び耐指紋性の改善という、 従来とは全く異なる添加 目的で被覆するものであり、 その為に、 上記樹脂塗膜の膜厚を 0 . 5〜 1 0 /x in に制御し、 且つ、 該榭脂塗膜に含まれる白色顔料及び/又は光輝顔料の添加量を 合計で 1 ~ 2. 5 %に調節する樹脂塗装金属板全体の色調 (L値) を 4 4 . 0〜 6 0 . 0に制御したところに最大の特徴がある。
前述した通り、 白色顔料や光輝顔料は、 光輝感 (メタリック色調) やパール感 を付与する顔料として公知である。 しかしながら、 本発明では、 これらの顔料を 含有する樹脂塗膜が所定範囲を満足する場合は、 極めて優れた耐疵付き性及ぴ耐 指紋性の作用を発揮し得、 皮膜に発生した疵は勿論のこと、 従来のクリア一塗膜 では対処できなかった疵 (鋼板のエッジ等に発生した疵そのもの) をも抑制でき ることを見出した点に技術的意義を有しており、 耐疵付き性及び耐指紋性との関 係で、 上記樹脂塗膜の膜厚及び顔料添加量を所定範囲に制御するという技術的思 想は、 本発明独自のものであり、 従来全く知られていなかったものである。 ちなみに前述した日本特許公報 ·特開 2 0 0 2— 3 6 3 7 7 1号、 日本特許公 報'特開平 1 0— 3 3 0 6 5 7号およぴ曰本特許公報'特開 2 0 0 2 - 1 2 7 9 5 号は、 意匠性向上といった観点から、 これら顔料の改質技術を開示しているに過 ぎず、 耐疵付き性ゃ耐指紋性の改善については全く意図していない。 その為、 そ れら文献では、 光輝顔料等を含有する樹脂塗膜の膜厚を約 1 5 μ ΐη若しくはそれ 以上 (2 0〜 7 0 μ ηι ) と厚く被覆しており、 これでは所望の耐指紋性等の改善 ¾果が得られないことを、 実験により確認している (後記する実施例を参照)。 · 本発明に用いられる顔料のうち光輝顏料は、 受けた光を反射して塗膜にメタリ ック感やパール感 (光干渉性模様) 等の意匠性を与えるものであり、 例えばアル ミニゥム粉等の金属粉、ステンレス鋼フレーク等の金属フレーク、雲母(マイ力)、 マイカシヤスアイアンォキサイ ド (Μ Ι Ο、 鱗片状酸化鉄)、 ガラスフレーク、 プ ロンズ顔料等が挙げられる。 各光輝顔料には、 これらを ーティングしたものも 包含されており、 例えば樹脂コーティングアルミニウム粉、 シリカコーティング アルミニウム粉、 フッ素化合物コーティングアルミニウム粉、 ハステロイ ドコー ティングガラスフレークの他;雲母を主成分とし、その表面を各種金属酸化物(二 酸化チタン、 酸化鉄、 酸化スズ等) または各種着色顔料で被服したものも包含さ れ、 例えばパール雲母 (酸化チタン被覆マイ力) 等のパール顔料 (例えばメルク ジャパン製の Iriodinl03W II、 Iriodinl21WII、 IriodinlllWII等) 等の使用が 推奨される。これらは単独で使用しても良いし、 2種以上を併用しても構わない。 また、 本発明に用いられる白色顔料は、 塗膜に白色度を付与する目的で添加さ れる顔料であり、例えば酸化チタン [具体的にはティカ(株)製の JP301、 JP603、 JP806, JRNC等]、 鉛白、 亜鉛華、 白亜等が挙げられる。
これらの白色顔料 Z光輝顔料は夫々、 単独で使用しても良いし、 2種以上を併 用しても構わない。 従って、 白色顔料を 2種以上使用するもの、 光輝顔料を 2種 以上使用するもの、 白色顔料の少なく とも 1種及ぴ光輝顔料の少なくも 1種を使 用するものが挙げられ、 いずれの態様も全て、 本発明の範囲內に包含される。 これらの顔料のうち、. '特に耐疵付き性及び耐指紋性の向上という観点からすれ ば、 酸化物系の添加剤を含有する白色顔料/"光輝顔料が好ましく、 なかでも酸化 チタンを含有するものが、 より好ましい。 具体的には、 白色顔料として酸化チタ ン ;光輝顔料として、 酸化チタンを含有するもの、 例えば雲母を主成分とし、 そ の表面を上述した金属酸化物で被覆したもの、 特に酸化チタン被覆マイ力 (メル クジャパン製の IriodinlllWII等) 等] の使用が推奨される。 '
また、 上記光輝顔料/白色顔料の平均粒径は、 使用する顔料の形状によっても 相違するが、 例えば粒状の場合は概ね、 0 . 1 ~ Γ 0 μ m (好ましくは 0 . 2 μ m以上、 5 μ m以下;更に好ましくは 3 μ m以下) ;鱗片状 (フレーク状) の場合 は概ね、 5〜 5 0 /i m (好ましくは 1 0 μ m以上、 4 0 x m以下 ; 更に好ましく は.3..0 .. mm下) とすることが推奨される。 平均粒径が各下限値を下回ると、 顔 料添加による、 疵ゃ指紋の'隠蔽力が低下して膜厚を高める必要があるが、 膜厚を あまり高くすると、 加工性等の低下を招いてしまう (後記する)。 一方、 平均粒径 が各上限値を超えると、 塗膜の外観に色調ムラが発生し易くなる。
より詳細には例えば酸化チタンの場合は、 平均粒径を 0 . 1 m以上、 0 . 4 〃 m以下とし ;酸化チタン被覆マイ力の場合ほ、 平均粒径を 5 : m以上、 5 0 m以下、 厚さを 0 . 以上、 3 μ m以下にすることが好ましい。
ここで、 上記顔料の平均粒径は、 一般的な粒度分布計によって分級後の顔料粒 子の粒度分布を測定し、 その測定結果に基づいて算出される小粒径側からの積算 値 5 0 %の粒度 '(D 50) を意味する。 斯かる粒度分 *は、 粒子に光を当てること により生じる回折や散乱の強度パターンによって測定することができ、 この様な 粒度分布計としては、 例えば、 日機装社製のマイクロ トラック 9220FRAやマイ クロ トラック HRA等が例示される。
尚、 上述した好ましい平均粒径を満足する顔料は、 市販品を使用しても良い。 例えば酸化チタン被覆マイ力として、 メルクジャパン製の Iriodinl03WII (平均 粒径 1 0〜 6 0 m)、 Iriodinl21WII (平均粒径 5 ~ 2 5 m)、 IriodinlllWII (平均粒径 1 5 μ ιη以下) 等 ;酸化チタンとして、 ティカ (株) 製の JR301 (平 均粒径 0. 3 0 /1 m)、 JR603 (平均粒径 0. 2 8 μ m)、 JR806 (平均粒径 0. . 2 5 μ m)、 JRNC (平均粒径 0. 3 7 μ m) 等が挙げられる。
次に、 上記第四の塗装体を特徴付ける要件 (樹脂塗膜の膜厚、 及び樹脂塗膜に 含まれる白色顔料及び Z又は光輝顔料の添加量) について説明する。
まず、 上記樹脂塗膜の膜厚は 0. 5〜1 0 mとする。 この膜厚が 0.
未満では、 耐疵付き性及び耐指紋性向上作用が不充分である。 好ましくは 1. 5 μ m以上、 より好ましくは 2 μ m以上である。 一方、 膜厚が 1 0 μ mを超えると 加工性が低下する。 好ましくは 6 /i m以下、 より好ましくは 5 /X m以下である。 尚、上記樹脂.塗膜中に、導電性向上の目的で導電性ブイラ一を添加する場合は、 当該樹脂塗膜の上限を 6 μ πιとすることが推奨される。 6 μ ιηを超えると、 所望 の導電性が発揮され難いからである。 好ましくは 5 μ ΐη以下、 より好ましくは 4 ; um以下である。
更に上記白色顔料/光輝顔料の樹脂塗膜全体に占める比率は、 合計で 1 ~ 2 5 %とする。 1 %未満では、 ベース塗料に対する顔料の添加量が少なくて耐疵付 き性及ぴ耐指紋性の向上作用が不十分となるからである。 一方、 2 5%を超える と、 塗膜の伸びが低下し、 苛酷な曲げ加工を行なう と塗膜にクラック、 更には塗 膜剥離が発生する恐れがある。 より好ましくは 2 %以上、 2 0 %以下; 更により 好ましくは 3 %以上、 1 5 %以下である。
尚、 上記樹脂塗膜中に添加される樹脂 (ベース樹脂) の種類は、 耐疵付き性及 び耐指紋性の観点からは特に限定されず、 アク リル系樹脂、 ウレタン系樹脂、 ポ リオレフイン系樹脂、 ポリエステル系樹脂、 フッ素系樹脂、 シリ コン系樹脂、 お よびそれらの混合または変性した樹脂等を適宜使用することができる。 尚、 本発 明塗装体を特に、 電子機器の筐体として使用する場合は、 放熱性 (後記する) の 他に耐食性、 加工性の向上も要求されることを考慮すると、 上記べ一ス樹脂は、 非親水性樹脂 [具体的には、 水との接触角が 3 0° 以上 (より好ましくは 5 0° 以上、更により好ましくは 7 0° 以上) を満足するもの]であることが好ましい。 この様な非親水性特性を満足する樹脂は、 混合度合や変性の程度等によっても変 化し得るが、例えばポリエステル系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、 シリコン系榭脂、 およびそれらの混合または変性した樹脂等の使用が好ましく、 なかでもポリエステル系樹脂若しくは変性したポリェステル系樹脂 (エポキシ変 性ポリエステル系樹脂、 フエノール誘導体を骨格に導入したポリエステル系樹脂 等の熱硬化性ポリエステル系樹脂または不飽和ポリエステル系樹脂) の使用が推 奨される。 .
更に上記塗膜には、 本発明の作用を損なわない範 ¾で、 防鲭顔料、 塗料流動性 向上剤 (シリカ粒子や酸化アルミニウム等) を添加しても良い。
また、 上記塗膜には、 架橋剤を添加することができる。 本発明に用いられる架 橋剤としては、例えばメラミン系化合物ゃィソシァネート系化合物等が挙げられ、 これらを 1種または 2種以上、 0. 5〜 2 0 %の範囲で添加することが推奨され る。
(IV- 4) 樹脂塗装金属板の色調は、 13本電色株式会社製色差計 (S Z S -∑ 90) で測定した L値で 44. 0〜6 0. 0
本発明の樹脂塗装金属板は、 上述した構成からなるものであり、 当該樹脂塗装 金属板の色調は、 日本電色株式会社製色差計 (S Z S-∑ 9 0) で測定した L値が 44. 0〜 6 0. 0を満足するものである。 ここで L値は、 小さい程白色度が大 きい (黒い) ことを意味している。
ここで、 L値を特に上記範囲に定めたのは以下の理由による。 前述した通り、 本発明は黒色金属板における耐疵付き性及び耐指紋性が著しく改善された樹脂塗 装金属板を提供するものであるが、 本発明者らが塗膜の色調と、 疵 '指紋との関 係について検討したところ、 塗膜の色調が黒色の場合は、 疵ゃ指紋が白く 目立つ ており ;一方、 塗膜の色調が白色の場合は,、 疵ゃ指紋が暗く 目立つことが判明し た。 そうすると、 「塗膜の疵ゃ指紋を目立ち難くする為には、塗膜の色調を所定範 囲に調整すれば良い」 ことになる。 本発明は、 この様な知見に基づき、 樹脂塗装 金属板の色調 (L値) を上記範囲に定めた次第である。
上記 L値が 4 4 . 0未満では、 疵ゃ指紋が白く 目立ってしまい、 所望の耐疵付 き性及ぴ耐指紋性が得られない。 好ましくは 4 6以上、 より好ましくは 4 8以上 である。 尚、 L値が 6 0 . 0を超えると、 疵ゃ指紋が暗く 目立ってしまう。 好ま しくは 5 6以下、 より好ましくは 5 2以下である。
尚、 上記塗装体において、 耐疵付き性及び耐指紋性に加えて、 導電性も高めた い場合には、 黒色金属板及び/又は樹脂塗膜に、 例えば導電性フィラーを添加す ることが推奨される。 この導電性フイラ一は、 黒色金属板のみ、 樹脂塗膜のみに 添加しても良いし、 或いは、 黒色金属板及ぴ樹脂塗膜の両方に添加しても良い。 両方に導電性フィラーを添加すれば、 非常に.優れた導電性が得られるが、 用途に よっては、 片面のみに導電性フィラーを添加しても良く、 これによつても、 所定 の導電性を確保することができる。 また、 両面が黒色金属板の場合は、 少なく と も一方のみに添加すればよい。
ここで、 本発明に用いられる導電性フイラ一としては、 A g、 Z n、 F e、 N i、 C u等の金属単体; F e P等の金属化合物が挙げられる。 なかでも特に好ま しいのは N iである。 尚、 その形状は特に限定されないが、 より優れた導電性を 得る為には、 鱗片状のものを使用することが推奨される。
また、 上記導電性フ.イラ一の含有量は塗膜形成成分 (ポリエステル樹脂等のベ ース樹脂の他、 必要に応じて添加される架橋剤、 更には黒色添加剤及び導電性フ イラ一、 及ぴ必要に応じて添加される添加剤も含めた、 塗膜を形成する成分すベ てを意味する) 1 0 .0 % (固形分換算) に対し、 合計で 1 0 ~ 5 0 %とする。 1 0 %未満では所望の効果が得られない。 好ましくは 1 5 %以上、 より好ましくは 2 0 %以上、 更により好ましくは 3 5 %以下である。 一方、 導電性フィラーの含 有量が 5 0 %を超えると加工性が低下する。 特に、 塗装金属板の如く高度の曲げ 加工性が要求される部位に適用する場合には、 4 5 %以下とすることが推奨され る。 より好ましくは 4 0 %以下、 更により好ましくは 3 5 %以下である。
尚、 黒色金属板として、 黒色下地処理された金属板を使用する場合にも、 上述 した要件を満足する導電性フィラー含有樹脂塗膜を形成することにより、 良好な 導電性を確保することができる。
(V) 上記 ( I ) の塗装体において、 更に放熱性、 耐疵付き性、 及び耐指紋性 に優れた塗装体 (第五の塗装体)
上記第五の塗装体は、 上記第一の塗装体において、 下記 (V-1) または (V-2) を満足しており、 且つ、 (V-3) [前記 (II-3) と同じ]を満足することにより放熱性 が高められており ; (V-4) 及ぴ (V-5) [前記 (IV-3) 及び (IV-4) と同じ] を満 足することにより、 耐疵付き性及び耐指紋性が高められたところに特徴がある。 + このうち、 (11-3)、 (IV- 3) 及び (IV-4) は、 前述した通りである。
次に、 上記 (V-1) 及び (V-2) を定めた趣旨について説明する。
上記第五の塗装体もその前提と して、 電磁波吸収性及ぴ加工性に優れているこ とが要求される為、 磁性塗膜は、 少なく とも.裏面に形成されていることが必要で あり、 具体的には裏面のみに磁性塗膜が形成される態様 (V-1) と、 表裏面に磁 性塗膜が形成される態様 (V-2) の二つが包含される。
(V-1) 金属板の裏面に'、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆されており、 該放熱性磁性塗膜が黒色添加剤を含有するときは、 白色顔 料及び/又は光輝顔料を含有する樹脂塗膜が被覆されていても良く、
該金属板の表面に、 1 /z m超の放熱塗膜、 及び白色顔料及び/又は光輝顔料を 含有する樹脂塗膜が被覆されており、
(V-1-i) 該裏面の放熱性磁性塗膜、 及ぴ該表面の放熱塗膜のうち少なく とも一 方は、 少なく ともカーボンブラックを 1 %以上含有しており、
カーボンブラックを含有しない面は、 カーボンブラック以外の放熱性添加剤を
1 0 %以上含有しているか;或いは
(V- 1-ii) 該裏面の放熱性磁性塗膜、 及ぴ該表面の放熱塗膜のうち少なく とも 一方は、 少なく とも酸化チタンを 3 0 %以上含有しており、
酸化チタンを含有しない面は、 酸化チタン以外の放熱性添加剤を 1 %以上含有 している。
(V-2) 金属板の両面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆されており、
(V-2-i) 該放熱性磁性塗膜のうち少なく とも片面は、 カーポンプラックを 1 % 以上含有しており、
カーボンブラックを含有しない面は、 カーボンブラック以外の放熱性添加剤を 1 0 %以上含有しており、
少なく とも表面の放熱性磁性塗膜に、 白色顔料及ぴ 又は光輝顔料を含有する 樹脂塗膜が被覆されているか; 或いは
(V-2-ii) 該放熱性磁性塗膜のうち少なく とも片面は、 酸化チタンを 3 0 %以 上含有しており、
酸化チタンを含有しない面は、 酸化チタン以外の放熱性添加剤を 1 %以上含有 しており、
少なく とも表面の放熱性磁性塗膜に、 白色顔料及び/又は光輝顔料を含有する 樹脂塗膜が被覆されている。
一方、 放熱性の向上という観点からすると、 前 ¾した第二の塗装体に規定する 要件 (Π-3) を満足することが必要である。
また、 耐疵付き性及び耐指紋性の向上という観点からすると、 前述した第四の 塗装体 [ (IV-3) 及び (IV-4) ] に規定する要件を満足することが必要である、 この様に上記第五の塗装体は、電磁波吸収性向上の為に要求される要件と、放熱 性向上の為に要求される要件と、 耐疵付き性及ぴ耐指紋性の向上の為に要求され る要件を勘案して定められたものである。
(VI) 上記 ( I ) の塗装体において、 更に放熱性、 自己冷却性、 耐疵付き性、 及ぴ耐指紋性に優れた塗装体 (第六の塗装体)
上記第六の塗装体は、 前述した第一の塗装体において、 下記 (VI-1) または (VI-2)を満足しており、且つ、 (VI-3)及び(V 4) [前述した(III-3)及び(ΠΙ-4) と同じ]を満足することにより、放熱性及び自己冷却性が高められており ;(IV-5) 及び (IV-6 [前述した) (IV-3) 及び (IV-4) ] を満足することにより、 耐疵付き 性及び耐指紋性が高められたところに特徴がある。
上記第六の塗装体もその前提として、 電磁波吸収性及び加工性に優れているこ とが要求される為、 磁性塗膜は、 少なく とも裏面に形成されていることが必要で あり、 具体的には裏面のみに磁性塗膜が形成される態様 (VI-1) と、 表裏面に磁 性塗膜が形成される態様 (VI -2) の二つが包含される。 (VI- 1) 金属板の裏面に前記磁性塗膜が被覆されており、 該磁性塗膜は黒色添 加剤を含有しても良く、 該磁性塗膜が黒色添加剤を含有するときは、 白色顔料及 び 又は光輝顔料を含有する樹脂塗膜が被覆されていても良く、
該金属板の表面には、黒色添加剤を 1 %以上含有する 1 μ ΐη超の黒色放熱塗膜、 及び白色顔料及び Ζ又は光輝顔料を含有する樹脂塗膜が被覆されているか; また は
(VI-2) 金属板の両面に前記磁性塗膜が被覆されており、 ·
該表面の磁性塗膜は、 黒色添加剤を 1 %以上含有する 1 μ m超の黒色放熱性磁 性塗膜であり、
' 裏面の磁性塗膜は、 放熱性添加剤を 1 %以上含有しても良く、
このうち少なく とも表面の黒色放熱性磁性塗膜は、 白色顔料及ぴ Z又は光輝顔 料を含有する樹脂塗膜が被覆されている。
一方、 放熱性及び自己冷却性の向上という観点からすると、 前述した第三の塗 装体に規定する要件 [前記 (ΠΙ-3) 及び (ΠΙ-4) ] を満足することが必要である。 また、 耐疵付き性及び耐指紋性の向上という観点からすると、 前述した第四の 塗装体に規定する要件 [前記 (IV-5) 及び (IV-6) と同じ] を満足することが必 要である、
この様に上記第六の塗装体は、 電磁波吸収性向上の為に要求される要件と、 放 熱性及ぴ自己冷却性向上の為に要求される要件と、 耐疵付き性及び耐指紋性の向 上の為に要求される要件を勘案して定められたものであり、 その結果、 前述した 要件を定めた次第である。 尚、 その詳細は前述した通りである。
次に、 本発明の塗装体を製造する方法について説明する。 本発明の塗装体は、 上記成分を含む塗料を、 公知の塗装方法で金属板の表面に塗布し、 乾燥させて製 造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、 必要に応じて塗装前処理 (例えばリン酸塩処理、 クロメート処理など) を施した 長尺金属帯表面に、 ロールコ一ター法、 スプレー法、 カーテンフローコーター法 などを用いて塗料を塗工し、 熱風乾燥炉を通過させて乾燥させる方法などが挙げ られる。 被膜厚さの均一性や処理コスト、 塗装効率などを総合的に勘案して実用 上好ましいのは、 ロールコーター法である。 尚、 金属板として樹脂塗装金属板を使用する場合には、 樹脂被膜との密着性ま たは耐食性の向上目的で、 塗装前処理としてリン酸塩処理またはクロメ一ト処理 を施しても構わない。 但し、 クロメート処理材については、 樹脂塗装体使用中の ク口ム溶出性の観点から、 クロメ一ト処理時の C r付着量を 3 5 m g Zm2以下 に抑制することが好ましい。 この範囲であれば、 下地クロメート処理層からのク ロム溶出を抑えることが可能だからである。 また、 従来のクロメート処理材は必 要に応じて設けられる上塗り塗装の耐水密着性が、 6価クロムの浚出に伴って、 湿潤環境下において低下する傾向にあるが、 上記金属板では溶出が抑制されるた め、 上塗り被膜の耐水密着性が悪化することはない。
或いは、前述したクロムプリ一の下地処理を、 ロールコーター法、スプレー法、 浸漬処理法等により施せば、ノンクロメ一トタイプの塗装体を得ることができる。 更に本発明には、 閉じられた空間に発熱体を内蔵する電子機器部品であって、 該電子機器部品は、 その外壁の全部または一部が上記電子機器部材用塗装体で構 成されている電子機器部品も包含される。 上記電子機器部品としては、 CD、 L' D、 DVD, CD-ROM, CD-RAM, PD P、 L C D等の情報記録製品 ; パ ソコン、 カーナビ、 カー AV等の電気 '電子 '通信関連製品 ; プロジェクター、 テレビ、 ビデオ、 ゲーム機等の A V機器; コピー機、 プリンタ一等の複写機; ェ アコン室外機等の電源ボックス力パー、 制御ボックス力パー、 自動販売機、 冷蔵 庫等が挙げられる。 実施例 以下実施例によって本発明をさらに詳述するが、 下記実施例は本発明を制限す るものではなく、 本発明の趣旨を逸脱しない範囲で変更実施することはすべて本 願発明に含まれる。
実施例 1 : 電磁波吸収性、 加工性、 放熱性、 導電性、 及ぴ加工性に関する検討 ( 1)
本実施例では、 金属板の表裏面に、 表 1及び 2に示す種々の磁性粉末、 導電性 付与材剤 (N i ) 及び黒色添加剤 (カーボンブラック) を添加したときにおける 電磁波吸収性、 加工性、 放熱性、 導電性、 及び加工性を調べた。
具体的には素地鋼板として電気亜鉛めつき鋼板 (板厚 : 0 . 8 m m ;表裏面に 夫々、 Z II付着量: 2 0 g / m2) を用い、 これに表 1及び 2に示す各種添加剤(磁 性粉末、 導電性付与剤、 カーボンブラック) を添加した磁性塗膜 (ベース樹脂 : エポキシ変性ポリエステル、 架橋剤 : ィソシァネート) を両面 (表裏面) に形成 し( 1 2 0 X 1 5 O m m )、得られた各塗装金属板における電磁波吸収性、導電性、 加工性、 放熱性等の特性を評価した。 尚、 各特性は下記 (1 ) ~ ( 4 ) の評価方 法に従って夫々、 評価した。
( 1 ) 電磁波吸収性評価方法
く >
図 2は、 塗装金属板における電磁波吸収性能を評価する方法を説明する為の図 である。 直方体形状の筐体 1内に、 高周波ループアンテナ 5を設置し、 磁界結合 させるように構成されている。 この高周波ループアンテナ 5は、 コネクタ (図示 せず) を介して同軸ケーブル 6の一端に接続され、 同軸ケーブル 6の他端はネッ トワークアナライザ 7に接続されている。 ネッ トワークアナライザ 7では、 周波 数を掃引しながら電磁波を発生し、 同軸ケーブル 6、 高周波ループアンテナ 5を 経由して筐体 1内に入力 (高周波入力波 :矢印 B ) するようにされている。 筐体 1の共振周波数では、 入力された電磁波が蓄積されるために、 反射量が少なくな る特性が観察される (図 3参照)。 そして、 この高周波反射波は、 観察値としてネ ッ トワークアナライザ 7に入力 (髙周波反射波 : 矢印 C ) される。
このとき、 筐体 1における下記 (1 ) 式で求められる Q値を計測すれば、 筐体 1内で蓄積されるエネルギーの大きさが分かる。 尚、 下記 (1 ) 式から求められ る Q値は、 ア ドミタンス軌道が満足する条件から、 求まる周波数差 Δ f と共振周 波数 f rから計算されるものである (例えば、 中島将光著、 「森北電気工学シリー ズ 3 マイクロ波工学 -基礎と原理-」 森北出版株式会社発行、 第 1 5 9〜 1 6 3.頁)。
0値= f r / Δ f · · · · ( 1 )
上記 ( 1 ) 式から求められる Q値が小さくなるほど、 筐体 1内で蓄積されるェ ネルギ一が減ることを意味する。 従って、 Q値が小さくなる程、 筐体 1から外部 に反射される電磁界レベルも減ることになる。 実際の測定に当たっては、 1 0 6 X 1 5 6 X 2 0 0 (mm) の大きさの筐体 1を使用して行なった。
このときの様子を模式的に図 4に示すが、 この図は、 E z = 0、 T E011 とい う最も低い周波数の共振モードでの電磁界分布を図示したものであり、 図中、 E は高周波磁界、 Fは高周波電界を夫々示している。 上記 E zは z方向の電界強度 を意味し、 T E011 は、 共振モードの電磁界分布の姿態を示している。 この T E は、 z方向に波が進むとして、その横方向に電界が存在することを意味している。 添字 「0 1 1」 は、 x、 y、 z方向に対して、 y及び z方向には電界の強度分布 が 1つあり、 X方向には電界の強度分布が変化しないことを示している(例えば、 上記文献第 1 4 1 ~ 1 4 4頁参照)。
また、 図 4に示した電磁界分布は、 以下の.式で表せる。
Hz= H011 · c o s ( k y · y ) · s i n ( k z · z )
Hy= (— k z · k y/ k c2) · H011 · s i n ( k y · y ) · c o s ( k z · z ) Ex= (— j ω μ k γ/ k c2) · H011 * s i n k y · y ) · s i n ( k z · z ) ここで、 ky= π / b , k z= π / c , k c= kyである。 b、 cは図 4の直方体 (筐体 1 ) の y、 z方向の長さ、 ;) は虚数、 ωは各周波数、 μは空気の透磁率を 夫々示す。
このときの共振モ-ドの共振周波数は約 1 2 2 O MH ζである。評価に際しては、 直方体の 6面をステンレス鋼板として場合を基準として Q0 値 (測定結果: 1 7 4 0 ) とし、 次に底面の 1面 ( 1 0 6 mm X 1 5 6 mmの面) と、 側面の 2面 ( 1 0 6 mm X 2 0 0 mmの 2面) の計 3面を、 試作した試験用サンプル鋼板に変更 して測定した Q値を Q1値として、 Q1ZQ0の比 (減衰率) を計算することによ つて試験サンプルの電磁'波吸収効果を確認した。
本発明では、 上記方法によって算出される Q JLZQ0の比 (減衰率) が 0. 9 7 0以下のものを 「本発明例 J として評価する。
ぐ B法 >
上述した A法では、 実際に電磁波吸収鋼板が使用される環境と異なるため、 よ り実使用環境に近い状態で評価できるように工夫したのが B法である。 A法では 試験装置筐体の一部に電磁波吸収鋼板を貼り付けて評価しているのに対し、 B法 では筐体自身が電磁波吸収鋼板と して評価できるようになっている。
すなわち、 A法では、 内面の全表面積に対して、 サンプル鋼板の占める面積の 割合が約 3 0 %であり、 サンプル鋼板による電磁波吸収効果が小さく、 分かり難 い。 そこで、 1 0 0 %近くまで、 即ち筐体内面の全面まで、 サンプル鋼板でカパ 一できるような筐体 (240 X 180 X 90mm) を製作した。 本筐体の共振周波数は約 1GHz である。 筐体は S U S製のフレームでできており、 それにサンプル鋼板か らなるプレート 4枚を側面に貼り付けて (上下面は S U S板を貼り付け)、 Q値を 測定する。 このような構成により、 筐体内面におけるサンプル鋼板の占める面積 の割合を 1 0 0 %近くまで増やす とが可能となる。 プレートを筐体に取り付け るネジは、 ピッチを 2 0〜4 O m mとし、 接触抵抗を軽減しているので、 多数個 のネジ止めを要する。 ネジ止めはトルク管理.し、 Q値測定の再現性を高めた。 そ して、 以下の式にて電磁波吸収性を算出した。
(サンプル Aの電磁波吸収性 ( d B ) ) = 1 0 * 1 o g 10 ( E G / A ) E G : 電気亜鉛めつき鋼板の Q値
A : サンプル Aの Q値 、
ここで、 d が高いほど電磁波吸収性に優れることになる。
電磁波吸収鋼板は電子機器筐体に使用されるが、 A法のような筐体の面の一部 に貼り付けて使用されることはなく、 筐体そのものに使用されるため、 B法の法 がより実態に近い。 また、 A法では筐体面積に対する電磁波吸収鋼板の占める割 合が小さいため、 電磁波吸収効果が出にくい。 B法では筐体面積の大部分を電磁 波吸収鋼板が占めるため、 実使用環境に近い状態で評価でき、 その結果として、 A法ではサンプルによる電磁波吸収効果が明確な差として分かりにくかったが、 B法では効果がより鮮明になる。
( 2 ) 導電性評価方法 ·
導電性測定装置として三菱化学社製「ロレスタ E P」、 プローブは三菱化学社製 4探針プロープ (E S Pプローブ: M C P - T P O 8 P ) を使用し、 サンプルの抵 抗率を測定した。 本発明では、 下記評価基準に基づいた結果が◎または〇のもの を 「本発明例」 として評価する。
[評価基準] ' ◎: 0. 1 m Ω未満
〇 : 0. 1〜 1 Ω未満
△: 1〜 1 06Ω未満
X: 1 06Ω以上
(3) 加工性評価方法
J I S K 5400に準拠した耐屈曲性試験 ( 1 80° 密着曲げ試験) を行 ない、 試験後の皮膜の割れ (クラック) およびテーピング後の皮膜の剥離程度を 目視にて観察し、 下記の基準で評価した。 本発明では、 下記評価基準に基づいた 結果が◎、 〇または△のものを 「本発明例」 として評価する。
[評価基準]
◎ : 異常なし '
〇 :僅かにクラック、 剥離あり
△ : クラック、 剥離あり
X: クラック、 剥離全面発生
(4) 放熱特性の評価方法
表面 ·裏面の放熱特性を調べる目的で、 前述した方法に基づいて表面 ·裏面の 赤外線 (波長 : 4. 5〜1 5. 4 μ m) の積分放射率を測定すると共に、 下記方 法により、 Δ T 1で示される放熱性を評価した。
[ΔΤ 1の測定 (放熱特性の評価)]
ΔΤ 1は、 金属板 (黒色塗膜が被覆されていない 黒色下地処理されていない 裸ままの原板) を用いた場合に比べ、 本発明塗装体を用いた場合には、 如何に電 子機器の內部温度を低減できるかという指標を定めたものであり、 本発明では、 Δ T 1を測定する装置として、特に、図 4に示す独自の放熱性評価装置を用いた。 図 4の装置は、 電子機器等の用途で想定される雰囲気温度 (電子機器部材の種類 等によって雰囲気温度は異なるが、 概ね 50〜70°C、 最高で 1 00°C程度) の 放熱特性を評価し得る装置として極めて有用であり、 これにより、 電子機器用途 を模擬した実用レベルでの放熱効果を正しく評価することが可能となる。
具体的には図 7は、 內部空間が 1 0 0 mm (縦) X 1 3 0 mm (横) X 1 0 0 mm (高さ) である直方体の装置である。 図 7中、 1 1は供試材 (被験体、 測定 面積は 1 0 0 X 1 3 0 mm), 1 2は断熱材、 1 3は発熱体 [底面積は 1 3 0 0 m2、 当該発熱体面積内で引ける最も長い直線の長さ (図 7では、 対角線の長さ) は 1 6 4mm]、 1 5は測温装置である。
このうち発熱体 1 3には、 シリ コンラパーヒーターを用い、 その上にアルミ板 (赤外線放射率は 0. 1以下) を密着したものを使用する。 また、 図 7の T 1位 置 [内部空間の中央部 (発熱体 3から 5 Omm上方)] に、 測温装置 1 5として熱 電対を固定する。 尚、 発熱体からの熱輻射の影響を排除する目的で、 熱電対の下 部を力パーしておく。 また、 断熱材 1 2は、 その種類や使用態様等によって箱内 雰囲気温度が変化する (放熱性にも影響する)為、赤外線放射率が 0. 0 3〜0. 0 6の金属板 [例えば電気亜鉛めつき鋼板 ( J I S S E CC等)] を用い、 後記 する方法によって T 1位置の雰囲気温度 (絶対値温度) が約 7 3〜 74°Cの範囲 になる様、 断熱材の張り方等を調整する。 その他、放熱性に影響を及ぼす因子 (例 えば供試材の固定法等) についても、 同様に T 1位置の雰囲気温度 (絶対値温度) が約 7 3〜 74 °Cの範囲になる様に調整する。
次に上記装置を用いて放熱特性 (Δ Τ 1 ) を評価する方法について説明する。 測定に当たっては、外気条件(風等)によるデータのパラツキをなくす目的で、 測定条件を、 温度 : 2 3°C、 相対湿度 : 6 0%に制御しておく。
まず、 各供試材 1 1を設置し、 電源を入れてホッ トプレート 1 3を 1 4 0°Cに まで加温する。 ホッ トプレートの温度が安定して 1 4 0°Cとなり、 T 1位置の温 度が 6 0°C以上になっていることを確認した後、 一旦、 供試材を取外す。 箱内温 度が 5 0°Cまで下がった時点で、 再ぴ供試材を設置し、 設置してから 9 0分後の 箱内温度を夫々測定する。 次に、 上記供試材を用いたときの温度と、 塗膜を施さ ない無塗装原板を用いたときの温度の差 (ΔΤ 1 ) を算出する。
尚、 Δ Τ 1は、 各供試材にっき 5回ずつ測定し、 そのうち上限、 下限を除いた 3点のデータの平.均値を、 本発明における Δ T 1 と定めた。
-この様にして算出された Δ T 1は大きい程、 放熱特性に優れていることを示し ており、 本実施例では、 下記基準で相対評価した。 尚、 本発明に係る第二の塗装 体では、 ◎及ぴ翁の塗装体を、 「当該塗装体における優れた放熱性を発揮するも の」 として評価している。 ◎: 3 . 5≤厶 T 1
: 2 . 7≤厶 T 1 < 3 . 5
〇 : 1 . 5≤厶 T 1 < 2 . 7
△ : 1 . 0≤ Δ T 1 < 1 . 5
X : 厶 T < 1 . 0
これらの結果を、 磁性塗膜構成と共に下記表 1、 及び 2に示す。
表 1
Figure imgf000055_0001
表 2
Figure imgf000056_0001
上記表より、 以下の様に考察できる。
まず、 磁性塗膜に関する要件 (磁性粉末の含有量、 及び磁性塗膜の膜厚) が本 発明の範囲を満足する供試材 (No.l ~ 1 0、 1 5〜 24、 2 7) はいずれも、 電磁波吸収性および加工性の点で良好な特性が発揮されている。
尚、電磁波吸収性に関して補足説明すると、上記供試材では減衰率が 3〜 1 5 % 程度となっているが、 測定に用いた装置の内部は実際の電子機器と比べて簡単な 構造であることから、 実際の電子機器に本発明にかかる塗装鋼板を用いた場合に は、 更に多重反射が増加し、 漏洩電磁波を大きく減衰させることができるものと 推察される。 また、 電子機器の本体および本体内ユニッ トの力パー ·筐体等に本 発明の塗装鋼板を用いることによって、 ュニッ トに適用した鋼板の内面皮膜によ るュニッ トからの漏洩電磁波を減衰が期待でき、 更にュニッ トから漏洩する電磁 波は、 ュニッ トに適用した塗装鋼板の外面皮膜および本体に適用した塗装鋼板の 内面皮膜によって多重反射による減衰が期待できることから、 本体から漏洩する 電磁波は大きく減衰させることができることが予想される。
特に上記供試材のうち、 磁性粉として磁性金属粉末 (パーマロイ) を用いた例 (No.l 5〜24) では、 導電性添加剤の有無に拘らず、 優れた導電性が発揮さ れている。 また、 磁性粉として導電性を有さない N i -Z n軟磁性フェライ トを用 いた例 (No.l〜 1 0) では、 上記磁性粉単独では良好な導電性は発揮されない が (No.1〜 5)、 磁性塗膜中に適量の導電性付与剤を添加すると、 優れた導電性 が発揮されている (No.6 ~ 1 0)。
更に、 カーボンブラックが塗膜厚との関係で適切に添加されたもの (No.7〜 1 0、 2 2〜24、 2 7) は、 優れた放熱性が得られている。
これに対し、 本発明で規定する要件のいずれかが外れる供試材は夫々、 以下の 不具合を有している。
まず、 No.l 1は、 磁性塗膜の膜厚が 2 mと、 本発明の範囲を下回る例であ り、 電磁波吸収性は良好であるが、 加工性に劣っている。
一方、 No.1 2は、 磁性塗膜の膜厚が 6 0 /X mと、 本発明の範囲を超える例で あり、 電磁波吸収性及ぴ加工性の双方が低下している。 尚、 No.l 2には、 放熱 性添加剤としてカーボンブラックを添加していないが、 放熱性の評価が△と、 力 一ボンブラックを添加しない例 (放熱性の評価は X) に比べて高くなつている理 由は、 樹脂皮膜の膜厚が 6 0 / mと厚くなつている為である。
また、 No.1 3及ぴ 2 5は、 磁性粉末の添加量が 1 0 %と、 本発明の範囲を下 回る例であり、 加工性は良好であるが、 電磁波吸収性が低下している。
一方、 No.1 4及び 2 6は、 磁性粉末の添加量が 7 0 %と、 本発明の範囲を超 える例であり、 電磁波吸収性は良好であるが、 加工性が低下している。
実施例 2 :電磁波吸収性、 加工性、 放熱性、 及び自己冷却性に関する検討 (2) 本実施例では、 金属板の裏面または両面に、 表 3に示す種々の磁性粉末 (A〜 E) 及び放熱性添加剤 (H〜 J)、 必要に応じて導電性付与材剤 〔N i (平均粒径 1 5〜2 0 Π ] を添加したときにおける電磁波吸収性、 加工性、 放熱性、 及ぴ 導電性を調べた。 このときの電磁波吸収性は.、 実際に電子機器に適用される場合 の状態に合わせるため、 裏面を評価した。
尚、 表中、 各添加剤の詳細は以下の通りである。
[磁性粉末]
A : N i -Ζ n系軟磁性フェライ ト
[戸 工業 (株) 製 B S N-1 2 5、 平均粒径 1 3. 0 μ m] B : Mn-Z n系軟磁性フヱライ ト
[戸田工業 (株) 製 KNS-4 1 5、 平均粒径 9. 9 μ m]
C : パーマロイ (7 8 %N i )
[曰本アトマイズ加工 (株) 製 S F R-P C 7 8、 平均粒径 5. 7 μ m] D : パーマロイ (4 5 %N i )
[曰本アトマイズ加工 (株) 製 S F R-P B 4 5、 平均粒径 5. 8 /x m] E : センダス ト
[日本ァトマイズ加工 (株) 製 S F R-F e S i A 1 (84.5-10-5.5)、 平均粒径 6. 9 m]
. [放熱性添加剤]
H : 力一ボンブラック
[三菱化学製 「三菱カーボンブラック」、 平均粒径 2 5 nm] I :酸化チタン [ティカ (株) 製 J R 3 0 1、 平均粒径 0. 3 μιη] J : A 1フレーク
[昭和アルミパウダー (株) 製 L B 584、 平均粒径 25 μ m] 具体的には素地鋼板として電気亜鉛めつき鋼板 (板厚: 0. 8mm ;表裏面に 夫々、 Z n付着量: 20 gZm2) を用い、 これに表 3に示す各種添加剤 (磁性粉 末、 放熱性添加剤、 及び導電性付与剤) を添加した磁性塗膜 (ベース樹脂 : ェポ キシ変性ポリエステル、 架橋剤:イソシァネート) を片面 (表面) または両面 (表 裏面) に形成し ( 120 X 1 50 mm),得られた各塗装金属板における電磁波吸 収性、加工性、及び導電性について実施例 1と同様にして評価すると共に、表面 · 裏面の放熱特性を調べる目的で、 実施例 1に記載の方法により、 表面 ·裏面の赤 外線 (波長 : 4. 5〜1 5. 4 μ m) の積分放射率、 及び Δ T 1で示される放熱 特性を調べると共に、 以下の方法により、 Δ.Τ 2で示される自己冷却性 (自己冷 却性については、 一部の例についてのみ) を評価した。
[Δ丁 2の測定 (自己冷却性の評価)]
Δ T 2 (=T 2B-T 2A) は、金属板 (塗膜が被覆されていない裸ままの原板) を用いた場合に比べ、 本発明塗装体を用いた場合には、 電子機器稼動時における 塗装体自体の温度上昇を如何に抑えられるかという指標 (自己冷却性) を定めた ものであり、 図 7に示す独自の放熱性評価装置を用いて算出した。
式中、 Τ 2 Αは、 供試材と して上記表 3の N o .1 ~ 7を測定したときの塗装体 温度を ; T 2Bは、 供試材として塗膜が被覆されていない金属板を使用したとき の温度を、 夫々、 意味する。 ΔΤ 2の測定は、 各供試材にっき 5回ずつ行い、 そ のうち上限、 下限を除いた 3点のデータの平均値を、 本発明における ΔΤ 2と定 め、 下記基準で相対評価した。
尚、 上記 ΔΤ 2は大きければ大きい程、 自己冷却性に優れていることを意味し ており、本発明に係る第三の塗装体では、 ◎及び〇の塗装体を、 「優れた自己冷却 性を発揮するもの」 として評価している。
◎: 1. 5≤ Δ T 2
〇 : 0. 5≤ Δ T 2 < 1. 5
X: Δ T 2ぐ 0. 5
尚、 上記塗装体における表面及ぴ裏面の放射率、 並びに ΔΤ 1のデータは、 前 述した表 3に示す通りであるが、 本発明に係る第三の塗装体では、 ΔΤ 1が◎、 書及び〇の塗装体を、 「当該塗装体における優れた放熱性を発揮するもの」として 評価している。 ちなみに前述した第二の塗装体では、 ΔΤ 1が◎及び眷及の塗装 体を、 「当該塗装体における優れた放熱性を発揮するもの」 と評価している。 この 様に放熱性 (ΔΤ 1) に関する評価基準が異なるのは、 放熱性に関して言えば、 第三の塗装体は第二の塗装体に比べると若干低い態様も包含しているからである。 これらの結果を表 4に記載する。 尚、 表 4には、 電磁波吸収性、 及び加工性に 関する結果は省略している。
表 3
Figure imgf000061_0001
注:放熱性添加剤の種類: H=力—ホ'ンブラック、 1=:酸化チタン、 J=AIフレーク
磁性粉末の種類: Α=Νί- Zn系軟磁性フェラ仆、 B=Mn - Zn系ソフトフェライト、 0=Λ° -マロイ(78¾Νί)、 D=ハ。一マロイ(45% Νί)、 Ε=センタ'スト 顔料の種類: Χ=パール顔料、 Υ =酸化チタン、 Ζ=ΑΙフレーク
*ノ **は、導電性添加剤として Niを 30質量% 25質量%含有
Figure imgf000062_0001
これらの表より以下の様に考察することができる。
表 3の No.1〜 2 2のうち No.1〜 1 1 は、 裏面にのみ磁性塗膜を形成した 例 ; No.1 2〜2 2は、 表裏面に磁性塗膜を形成した例であり、 いずれにおいて も、 磁性塗膜中には放熱性添加剤を添加している。 更に必要に応じて、 表面/裏 面に N i を添加している。
表 4に示す通り、 上記 No.;!〜 2 2はいずれも、 磁性粉末及ぴ放熱性添加剤の 添加量が、 本発明の範囲を満足している為、 電磁波吸収性 (表 4には示さず) 及 び放熱性に優れており、 更に N i を添加したものは、 導電性にも優れている。 また、 上記 N o .のうち Q値 0. 0 4 5、 及ぴ 1 値≥ 0. 0 8と、 自己冷却性 の要件を満足する N o .4、 6〜8、 1 0、 1 2、 1 4〜: 1 5、 20〜 2 1は、 更 に自己冷却性にも優れている。
ただし、 N o . 1, 4, 1 0、 1 4, 20.は、 磁性塗膜の膜厚が本発明の範囲 を外れているため、 曲げ加工性、 皮膜密着性おょぴ耐食性 (いずれも表 4には示 さず) に問題がある。
実施例 3 : 電磁波吸収性、 放熱性、 自己冷却性、 耐疵付き性、 及ぴ耐指紋性に 関する検討 (3·)
本実施例では、 金属板の裏面または両面に、 表 5に示す種々の磁性粉末 (実施 例 2の A、' C、 E) 及ぴ放熱性添加剤 (実施例 2の H)、 必要に応じて導電性付与 材剤 (実施例 2の N i ) を含有する磁性塗膜;並びに光輝顏料としてパール顔料 (メルクジャパン製 IriodinlllWII、 平均粒径 1 5 /i m以下)、 必要に応じて導電 性付与材剤 (実施例 2の N i ) を含有する樹脂皮膜を形成したときにおける電磁 波吸収性、 加工性、 放熱性、 自己冷却性、 導電性、 耐疵付き性、 及び耐指紋性を 調べた。 このときの電磁波吸収性は、 実際に電子機器に適用される場合の状態に 合わせるため、 裏面を評価した。
具体的には素地鋼板として電気亜鉛めつき鋼板 (板厚 : 0. 8 mm ;表裏面に 夫々、 Z n付着量: 2 0 g/m2) を用い、 これに表 5に示す各種添加剤 (磁性粉 末、 及びカーボンブラック、 更に必要に応じて N i ) を添加した磁性塗膜 (ベー ス樹脂 : エポキシ変性ポリエステル、'架橋剤 : イソシァネート) を片面 (表面) または両面 '(表裏面) に形成した後、 更に表 5に示す光輝顔料を添加した樹脂皮 膜 (ベース樹脂 : ポリエステル樹脂を用い、 架橋剤としてメラミン樹脂を使用) を形成した ( 1 2 0 X 1 5 0 m m)。
この様にして得られた各塗装金属板における電磁波吸収性、 加工性、 導電性、 表面/裏面の赤外線の積分埤射率放熱特性、 放熱特性 (Δ Τ 1 )、 及び自己冷却性 (ΔΤ 2) について実施例 3 と同様にして評価すると共に、 耐疵付き性及ぴ耐指 紋性について、 以下の方法に基づいて評価した。
[耐疵付き性]
図 1 1に、 本実施例で行なった耐疵付き性試験の概略図を示す。 まず、 上記供 試材を 5 0 X 1 0 0 mmにカッ トし、 その表面 (樹脂塗膜が施されている側) に おける耐疵付き性試験を調べる目的で、 サンドペーパー (# 24 0 0、 2 0 X 2 0 mm) に 5 0 0 gのおもり (直径 5 Ommの円柱) をかけた状態にて、 供試材 の長さ方向 ( 1 0 0mm) にわたつて合計 5 0往復摺動した後、 摺動部の外観変 化 (疵) を下記基準で目視評価した。 本発明の第一の塗装体では、 ◎、 秦及ぴ〇 の供試材を 「本発明例」 と評価している。
◎ : 疵が殆ど目立たない
• : 疵が目立ち難い
〇 : 疵がやや目立つ
X:疵が目立つ
尚、 上記の試験方法は、 前述した日本特許公報 ·特開 2 0 0 0— 20 0 9 9 0 号 (タリヤー塗膜の形成により、 耐疵付き性等を高めたもの) で実施した耐疵付 き性試験に比べ、 より過酷な条件下における耐疵付き性を評価したものである。
[耐指紋性評価]
ヮセリンを手に十分なじませてから各供試材に指紋を付け、 指紋の目立ち易さ を下記基準にて目視評価した。 本発明の第一の塗装体では、 ◎、 ·及び〇の供試 材を 「本発明例」 と評価している。
◎ : 指紋が殆ど目立たない
• : 指紋が僅かに目立つ
〇 : 指紋が若干目立つ
:指紋が目立つ これらの結果を表 6に示す。 尚、 表 6には、 A法による電磁波吸収性、 及び加 ェ性に関する結果は省略している。
表 5
Figure imgf000066_0001
注:放熱性添加剤の種類: H=力-ホ'ンフ'ラック、 1=:酸化チタン、 J=AIフレーク
磁性粉末の種類: A=Ni- Zn系軟磁性フ; tラ仆、 B=Mn-Zn系ソフトフ Iライ 0=ハ°一マロイ(78%Ni)、 D=/、°一マロイ(45<½Ni)、 E=センダスト 顔料の種類: X=パール顏料、 Y=酸化チタン、 Z=AIフレーク
は、導電性添加剤として Niを 30質量% 25質量%含有
表 6
Figure imgf000067_0001
上記表より以下の様に考察することができる。
表 6の No.l〜 9のうち No.l〜4は、 裏面にのみ黒色の磁性塗膜を形成した 例 ; No.5〜 9は、 表裏面に黒色の磁性塗膜を形成した例であ'り、 いずれにおい ても、 磁性塗膜中には放熱性の黒色添加剤としてカーボンブラックを添加してい る。 更に必要に応じて、 表面/裏面に N i を添加している。
表 6に示す通り、 上記 No.1、 3、 5、 7、 及び 9はいずれも、 磁性塗膜に関 する要件 (磁性粉末、 及び放熱性添加剤の含有量、 並びに磁性塗膜の膜厚) 及び 樹脂皮膜に関する要件 (光輝顔料の含有量、 樹脂皮膜の膜厚、 及び L値) が本発 明の範囲を満足している為、電磁波吸収性及び加工性(表 5には示さず)、放熱性、 耐疵付き性、 及ぴ耐指紋性に優れており、 更に N i を添加したものは、 導電性に も優れている。
また、 上記 N o .のうち 0値≥ 0. 04 5、 尺値≥ 0. 08と、 自己冷却性の要 件を満足する N o .l、 7〜 9は、 更に自己冷却性にも優れている。
これに対し、 No.2、 4、 6、 及ぴ 8は、 樹脂塗膜を形成しない例であり、 耐 疵付き性及び耐指紋性が低下した。
実施例 4 : 電磁波吸収性、 耐疵付き性、 及ぴ耐指紋性に関する検討 (4) 本実施例では、 金属板の裏面または両面に、 表 7に示す種々の磁性粉末 (実施 例 2の A、 C、 及び D) 及び黒色添加剤 (実施例 2のカーボンブラック)、 必要に 応じて導電性付与材剤.(実施例 2の N i ) を含有する磁性塗膜;並びに表 7に示 す種々の白色顔料/光輝顔料、 必要に応じて導電性付与材剤 (実施例 2の N i ) を ½有する樹脂皮膜を形成したときにおける電磁波吸収性、 加工性、 導電性、 耐 疵付き性、 及ぴ耐指紋性を調べた。
具体的には素地鋼板として電気亜鉛めつき鋼板 (板厚 : 0. 8mm ;表裏面に 夫々、 Z n付着量: 2 0 g/m2) を用い、 これに表 7に示す各種添加剤 (磁性粉 末、 及ぴカーボンブラック、 更に必要に応じて N i ) を添加した磁性塗膜 (ベー ス樹脂 : エポキシ変性ポリエステル、 架橋剤 : イソシァネート) を片面 (表面) または両面 (表裏面) に形成した後、 更に表 7に示す白色顔.料 光輝顔料を添加 した樹脂皮膜 (ベース樹脂 : ポリエステル榭脂を用い、 架橋剤としてメラミン樹 脂を使用) を形成した ( 1 2 0 X 1 5 0 mm)0 表中、 各顔料の詳細は以下の通りである。
[白色顔料/光輝顔料]
X :パール顔料 (メルクジャパン製 IriodinlllWII、 平均粒径 1 5 μ m以 下)
Y :酸化チタン [ティ力 (株) 製 J R 3 0 1、 平均粒径 0 . 3 μ m ]
Ζ : A 1 フレーク [昭和アルミパウダー製 L B 5 8 4、 平均粒径 2 5 β m l この様にして得られた各塗装金属板における電磁波吸収性、 導電性、 耐疵付 き性、 及ぴ耐指紋性について、 実施例 3 と同様に.して評価した。
これらの結果を表 7に示す。 尚、 表 7には、 電磁波吸収性、 及ぴ加工性に関す る結果は省略している。
表 7
Figure imgf000070_0001
注: CB=カーホ' 'ラック
磁性粉末の種類: A=Nト Ζπ系軟磁性フ; Lラ仆、 Β=Μη-Ζπ系ソフトフ Iライト、 G=A -マロイ(7854ΝΟ、 D=/、°-マロイ (45%Ni)、 Ε=センダスト 顔料の種類: Χ=パール顔料、 Υ=酸化チタン、 Ζ=ΑΙフレーク
*は、導電性添加剤として Niを 30質量%含有
上記表より以下の様に考察することができる。
表 5の N o.;!〜 1 4のうち N o. 1〜 9は、 裏面にのみ磁性粉末を含有する例 ; N o. 1 0〜 1 4は、 表裏面に磁性粉末を含有する例であり、 少なく とも表面 (黒 色塗膜) の耐疵付き性及び耐指紋性を調べる目的で、 その上に、 白色顔料 Z光輝 顔料を含有する樹脂皮膜を形成している。 更に必要に応じて、 表面/"裏面に N i を添加している。
表 7に示す通り、 上記 N o. 1 ~ 1 4はいずれも、 磁性塗膜に関する要件 (磁性 粉末の含有量、 及び磁性塗膜の膜厚) 及び樹脂皮膜に関する要件 (白色顔料 光 輝顔料の含有量、樹脂皮膜の膜厚、及び L値)が本発明の範囲を満足している為、 電磁波吸収性 (表 7には示さず)、 耐疵付き性、 及ぴ耐指紋性に優れており、 更に N i を添加したものは、 導電性にも優れてい.る。

Claims

請求の範囲
1. 金属板の少なく とも片面に、 磁性粉末を含有する磁性塗膜が、 厚さ : 3〜 5 0 μ mで被覆さ.れたものであることを特徴とする樹脂塗装金属板。
2. 前記磁性粉末が軟磁性フェライ ト粉末である請求項 1に記載の樹脂塗装金 属板。
3. 前記磁性粉末が磁性金属粉末である請求項 1に記載の樹脂塗装金属板。
4. 前記磁性塗膜を構成する樹脂が、 ポリエステル系樹脂である請求項 1に記 載の樹脂塗装金属板。
5. 前記磁性塗膜には、 更に導電性付与剤が 2 0〜4 0 %含まれると共に、 前 記磁性塗膜の厚さが 3〜 1 5 /X mである請求項 1に記載の樹脂塗装金属板。
6. 前記導電性付与剤と磁性粉末の前記磁性塗膜中の合計含有量が合計で 3 0 〜 6 0 %である請求項 5に記載の樹脂塗装金属板。
7. 請求項 1に記載の樹脂塗装金属板であって、 下記 ( 1 ) または (2) を満 足しており、 且つ、 下記 (3 ) を満足する。
( 1 ) 金属板の片面には、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆され、 金属板の別の片面には 1 /1 m超の厚さの放熱塗膜が被覆されてお <0、
前記放熱性磁性塗膜及び前記放熱塗膜のうち少なく とも一方は、 カーボンブラ ックを 1 %以上含有しており、
カーボンブラックを含有しない塗膜は、 カーボンブラック以外の放熱性添加剤 を 1 0 %以上含有している。
( 2) 金属板の両面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、
少なく とも片面の前記放熱性磁性塗膜は、 カーポンプラックを 1 %以上含有し て.おり、
カーボンブラックを含有しない塗膜は、 カーボンブラック以外の放熱性添加剤 を 1 0 %以上含有している。
( 3 ) 該樹脂塗装金属体を 1 0 0°Cに加熱したときの赤外線 (波長: 4. 5 -
1 5. 4 μ m) の積分放射率が下式①を満足する。
a X b≥ 0. 4 2 ... 式①
a :樹脂塗装金属板の一面の赤外線積分放射率
:樹脂塗装金属板の別の一面の赤外線積分放射率
8. 前記力一ボンブラックの平均粒径は 5 ~ 1 0 0 nmである請求項 7に記載 の樹脂塗装金属板。
9. 請求項 1に記載の樹脂塗装金属板であって、 下記 (1) または (2) を満 足しており、'且つ、 下記 (3) を満足する。
( 1 ) 金属板の片面には、 前記磁性塗膜であって放熱性を有する放熱性磁性塗 膜が被覆され、 金属板の別の片面には 1 μ m超の厚さの放熱塗膜が被覆されてお り、
前記放熱性磁性塗膜及び前記放熱塗膜のうち少なく とも一方は、 酸化チタンを 3 0 %以上含有しており、
酸化チタンを含有しない塗膜は、 酸化チタン以外の放熱性添加剤を 1 %以上含 有している。
(2) 金属板の両面に前記磁性塗膜であつて放熱性を有する放熱性磁性塗膜が 被覆されており、
該放熱性磁性塗膜のうち少なく とも一方は、 酸化チタンを 3 0 %以上含有して おり、
酸化チタンを含有しない塗膜は、 酸化チタン以外の放熱性添加剤を 1 %以上含 有している。
(3) 該樹脂塗装金属体を 1 0 0°Cに加熱したときの赤外線 (波長: 4. 5〜 1 5. 4 / m) の積分放射率が下式①を満足する。
a X b≥ 0. 4 2 ... 式①
a :樹脂塗装金属板の一面の赤外線積分放射率
:樹脂塗装金属板の別の一面の赤外線積分放射率
1 0. 請求項 1に記載の樹脂塗装金属板であって、 下記 ( 1 ) または (2) を 満足しており、 且つ、 下記 (3) を満足する。
(1 ) 金属板の第 1の面には前記磁性塗膜が、 第 1の面とは反対側の第 2の面 には 1 tn超の放熱塗膜が被覆されており、
前記放熱塗膜は、 放熱性添加剤を 1 %以上含有しており、
前記磁性塗膜は、 選択的に、 更に放熱性添加剤を 1 %以上含有する。
('2 ) '金属板の両面に前記磁性塗膜が被覆されており、
該金属板の第 1の面の磁性塗膜は、 選択的に放熱性添加剤を 1 %以上含有して おり、
第 1の面とは反対側の第 2の面の磁性塗膜は、 放熱性添加剤を 1 %以上含有し ている。
(3) 該樹脂塗装金属体を 1 0 0°Cに加熱したときの赤外線 (波長 : 4. 5〜 1 5. 4 μ m) の積分放射率が、 下式②及ぴ③を満足する。
b≤ 0. 9 (a - O . 0 5) ... 式②
( a - 0. 0 5) X (b— 0. 0 5) ≥ 0. 0 8 ··· 式③
a :樹脂塗装金属板の上記第 2の面の赤外線積分放射率
b :樹脂塗装金属板の上記第 1の面の赤外線積分放射率
1 1. 請求項 1に記載の樹脂塗装金属板であって、
下記 (1 ) または (2) を満足しており、 且つ、 下記 (3) 及び (4) を満足 する。
( 1 ) 金属板の片面に前記磁性塗膜が被覆されており、 該磁性塗膜は黒色添加 剤を選択的 含有し、 該黒色添加剤を含有する磁性塗膜上には、 白色顔料と光輝 顔料の少なく とも一方を含有する樹脂塗膜が選択的に被覆され、
該金属板の別の片面には、 黒色添加剤を含有する黒色塗膜 及び白色顔料と光 輝顔料の少なく とも一方を含有する樹脂塗膜が被覆されている。
(2) 金属板の両面に前記磁性塗膜が被覆されており、
このうち少なく とも片面の磁性塗膜は、 黒色添加剤を含有する黒色磁性塗膜で あり、
該黒色磁性塗膜の上には、 白色顔料と光輝顔料の少なく とも一方を含有する樹 脂塗膜が被覆されており、 . 別の片面には、 白色顔料と光輝顔料の少なく とも一方を含有する樹脂塗膜が、 選択的に被覆される。 (3) 該樹脂塗膜の膜厚はすべて 0. 5〜 1 0 /i mであり、 且つ、 該樹脂塗胰 に含まれる白色顔料と光輝顔料の添加量は、 合計で 1〜 2 5 %である。
(4) 白色顔料と光輝顔料が添加されている該樹脂塗装金属板の色調は、 曰本 電色株式会社製色差計 (S Z S-∑ 9 0) で測定した L値で 44. 0〜6 0. 0を 満足する。
1 2. 前記樹脂皮膜が含有する、 前記白色顔料と前記光輝顔料の少なく とも一 方が、 酸化物系顔料である請求項 1 1に記載の樹脂塗装金属板。
1 3. 前記樹脂皮膜が含有する、 前記白色顔料と前記光輝顔料の少なく とも一 方が、 酸化チタンを含有するものである請求項 1 1に記載の樹脂塗装金属板。
1 4. 請求項 1に記載の樹脂塗装金属板であって、
下記 ( 1 ) または (2) を満足しており、.且つ、 下記 (3) 〜 (5) を満足す る。
( 1 ) 金属板の片面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、 該放熱性磁性塗膜は選択的に黒色添加剤を含有し、 該放熱性 磁性塗膜が黒色添加剤を含有するときは、 更に、 白色顔料と光輝顔料の少なく と も一方を含有する樹脂塗膜が選択的に被覆され、
該金属板の別の片面に、 1 in超の放熱塗膜、 及び白色顔料と光輝顔料の少な く とも一方を含有する樹脂塗膜が被覆されており、
前記放熱性磁性塗膜、 及び前記放熱塗膜のうち少なく とも一方は、 カーポンプ ラックを 1 %以上含有しており、
カーボンブラックを含有しない面は、放熱性添加剤を 1 0 %以上含有している。
(2) 金属板の両面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、
該放熱性磁性塗膜のうち少なく とも片面は、 カーボンブラックを 1 %以上含有 しており、
カーボンブラックを含有しない面は、放熱性添加剤を 1 0 %以上含有しており、 少なく とも片面の放熱性磁性塗膜の上に更に、 白色顔料と光輝顔料の少なく と も一方を含有する樹脂塗膜が被覆されている。
(3) 該樹脂塗装金属体を 1 0 0°Cに加熱したときの赤外線 (波長: 4. 5〜
1 5. 4 m) の積分放射率が下式①を満足する。
a X b≥ 0. 4 2 ... 式①
a :樹脂塗装金属板の一面の赤外線積分放射率
b :樹脂塗装金属板の別の一面の赤外線積分放射率
(4) 該樹脂塗膜の膜厚は 0. 5~ 1 0 /ζ πιであり、 且つ、 該樹脂塗膜に含ま れる白色顔料と光輝顔料の添加量は、 合計で 1〜2 5 %である。
(5) 白色顔科と光輝顔料が添加されている該樹脂塗装金属板の色調は、 日本 電色株式会社製色差計 (S Z S-∑ 9 0) で測定した L値で 44. 0〜 6 0. 0を 満足する。
1 5. 前記カーボンブラックの平均粒径は 5〜 1 0 0 nmである請求項 1 4に 記載の樹脂塗装金属板。 .
1 6. 請求項 1に記載の樹脂塗装金属板であって、
下記 ( 1 ) または (2) を満足しており、 且つ、 下記 (3) 〜 ( 5) を満足す る。
(1 ) 金属板の片面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、 該放熱性磁性塗膜は選択的に黒色添加剤を含有し、 該放熱性 磁性塗膜が黒色添加剤を含有するときは、 更に、 白色顔料と光輝顔料の少なく と も一方を含有する樹脂塗膜が選択的に被覆され、
該金属板の別の片面に、 1 m超の放熱塗膜、 及び白色顏科と光輝顔料の少な く とも一方を含有する樹脂塗膜が被覆されており、
前記放熱性磁性塗膜及び前記放熱塗膜のうち少なく とも一方は、 酸化チタンを 3 0 %以上含有しており、
酸化チタンを含有しない塗膜は、 放熱性添加剤を 1 %以上含有している。
(2) 金属板の両面に、 前記磁性塗膜であって放熱性を有する放熱性磁性塗膜 が被覆されており、
該放熱性磁性塗膜のうち少なく とも片面は、 酸化チタンを 3 0 %以上含有して おり、
酸化チタンを含有しない該放熱性磁性塗膜は、 放熱性添加剤を 1 %以上含有し ており、 少なく とも片面の放熱性磁性塗膜の上に、 更に、 白色顔料と光輝顔料の少なく とも一方を含有する樹脂塗膜が被覆されている。
( 3 ) 該樹脂塗装金属体を 1 0 0 °Cに加熱したときの赤外線 (波長 : 4. 5〜 1 5、 4 μ τα) の積分放射率が下式①を満足する。
a X b ≥ 0. 4 2 ... 式①
a :樹脂塗装金属板の一面の赤外線積分放射率
b :樹脂塗装金属板の別の一面の赤外線積分放射率
( 4 ) 該榭脂塗膜の膜厚はすべて 0. 5〜 1 0 μ πιであり、 且つ、 該樹脂塗膜 に含まれる白色顔料と光輝 料の添加量は、 合計で 1〜 2 5 %である。
( 5 ) 白色顔料と光輝顔料が添加されている該樹脂塗装金属板の色調は、 曰本 電色株式会社製色差計 (S Z S -∑ 9 0 ) で測定した L値で 4 4. 0〜6 0. 0を 満足する。 '
1 7. 請求項 1に記載の樹脂塗装金属板であって、
下記 (1 ) または (2 ) を満足しており、 且つ、 下記 (3 ) 〜 (5 ) を満足す る。 .
( 1 ) 金属板の第 1の面に前記磁性塗膜が被覆されており、 該磁性塗膜は選択 的に黒色添加剤を含有し、 該磁性塗膜が黒色添加剤を含有するときは、 白色顔料 と光輝顔料の少なく とも一方を含有する樹脂塗膜が選択的に更に被覆され、 前記第 1の面とは反対側の第 2の面には、 黒色添加剤を 1 %以上含有する 1 μ m超の黒色放熱塗膜、 及び白色顔料と光輝顔料の少なく とも一方を含有する樹脂 塗膜が被覆されている。
( 2 ) 金属板の両面に前記磁性塗膜が被覆されており、
該金属板の第 1の面の磁性塗膜は、 放熱性添加剤を選択的に 1 %以上含有し、 前記第 1の面とは反対側の第 2の面の磁性塗膜は、 黒色添加剤を 1 %以上含有 する 1 /Z m超の黒色放熱性磁性塗膜であり、
このうち少なく とも前記黒色放熱性磁性塗膜には、 白色顔料と光輝顔料の少な く とも一方を含有する樹脂塗膜が被覆されている。
( 3 ) 該樹脂塗装金属体を 1 0 0 °Cに加熱したときの赤外線 (波長 : 4. 5〜 1 5. 4. M m) の積分放射率が、 下式②及ぴ下式③を満足する。 b≤ 0. 9 (a— 0. 0 5) ... 式②
( a - 0. 0 5) X (b— 0. 0 5) ≥ 0. 0 8 ··. 式③
a : 樹脂塗装金属板の上記第 2の面の赤外線積分放射率
b :樹脂塗装金属板の上記第 1の面の赤外線積分放射率
(4) 該樹脂塗膜の膜厚はすべて 0. 5〜1 0 μ ΐηであり、 且つ、 該樹脂塗膜 に含まれる白色顔料と光輝顔料の添加量は、 合計で 1〜2 5 %である。
(5) 白色顔料と光輝顔料の少なく とも一方を含有する該樹脂塗装金属板の色 調は、 日本電色株式会社製色差計 (S Z S-∑ 9 0) で測定した L値で 44. 0〜 6 0. 0を満足する。
1 8. 前記樹脂塗膜に含まれる、 前記白色顔料と前記光輝顔料の少なく とも一 方は、 酸化物系顔料である請求項 1 6に記載の樹脂塗装金属板。
1 9. 前記樹脂塗膜に含まれる、 前記白色顔料と前記光輝顔料の少なく とも一 方は、 酸化チタンを含有するものである請求項 1 6に記載の樹脂塗装金属板。
2 0. 前記樹脂塗膜に含まれる、 前記白色顔料と前記光輝顔料の少なく とも一 方は、 酸化物系顔料である請求項 1 7に記載の樹脂塗装金属板。
2 1. 前記樹脂塗膜に含まれる、 前記白色顔料と前記光輝顔料の少なく とも一 方は、 酸化チタンを含有するものである請求項 1 7に記載の樹脂塗装金属板。
PCT/JP2004/009872 2003-07-07 2004-07-05 樹脂塗装金属板 WO2005002844A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/563,305 US20060182948A1 (en) 2003-07-07 2004-07-05 Resin-coated metal sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003271501 2003-07-07
JP2003-271501 2003-07-07
JP2004054800 2004-02-27
JP2004-054800 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005002844A1 true WO2005002844A1 (ja) 2005-01-13

Family

ID=33566811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009872 WO2005002844A1 (ja) 2003-07-07 2004-07-05 樹脂塗装金属板

Country Status (4)

Country Link
US (1) US20060182948A1 (ja)
KR (1) KR100704063B1 (ja)
TW (1) TWI249580B (ja)
WO (1) WO2005002844A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654089B2 (ja) * 2004-12-03 2011-03-16 新日本製鐵株式会社 耐久密着性に優れたクロメートフリー樹脂複合型制振材料
EP2116369B1 (en) * 2007-02-28 2016-12-28 JFE Steel Corporation Coated steel sheet and television panel made of the sheet
DK200700924A (da) * 2007-06-27 2008-12-28 Innovic Holding Aps Höjeffektive IR absorberende overflader på alufolie baseret på matchende emitterende bölgelængder
DE102008002989A1 (de) * 2007-08-16 2009-02-19 Basf Se Elektrisch leitfähiges, magnetisches Kompositmaterial, Verfahren zu seiner Herstellung und seine Verwendung
US20100171889A1 (en) * 2009-01-06 2010-07-08 Joseph Pantel Weather-resistant display
MY155830A (en) * 2009-05-27 2015-12-15 Nippon Steel & Sumitomo Metal Corp Chromate-free black-coated metal plate
JP6089637B2 (ja) * 2012-11-30 2017-03-08 船井電機株式会社 表示装置
WO2015063681A1 (en) * 2013-10-28 2015-05-07 Uniwersytet Wroclawski Coating for absorbing energy, especially the energy of electromagnetic and mechanical waves, and its use
JP6343505B2 (ja) * 2014-07-04 2018-06-13 Jfe鋼板株式会社 建築用外装材
US20230406243A1 (en) * 2022-06-20 2023-12-21 Ford Global Technologies, Llc Electromagnetic compatibility (emc) shielded vehicle electrical modules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697691A (ja) * 1992-09-11 1994-04-08 Uniden Corp 電磁波遮蔽構造体
JPH06140787A (ja) * 1992-10-27 1994-05-20 Kansai Paint Co Ltd 電波反射防止体および電波反射防止法
JPH11261270A (ja) * 1998-03-10 1999-09-24 Tdk Corp シールドケース
JP2001018322A (ja) * 1999-07-05 2001-01-23 Kobe Steel Ltd 耐疵付き性及び耐指紋性に優れた導電性黒色表面処理金属板
JP2002228085A (ja) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd 熱放射性表面処理材
JP2002226783A (ja) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd 熱放射性表面処理材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647714A (en) * 1984-12-28 1987-03-03 Sohwa Laminate Printing Co., Ltd. Composite sheet material for magnetic and electronic shielding and product obtained therefrom
US5387473A (en) * 1992-03-31 1995-02-07 Nkk Corporation Weldable black steel sheet with low-gloss appearance
US5539148A (en) * 1992-09-11 1996-07-23 Uniden Corporation Electronic apparatus case having an electro-magnetic wave shielding structure
US5455116A (en) * 1992-10-27 1995-10-03 Kansai Paint Co., Ltd. Electromagnetic wave reflection-preventing material and electromagnetic wave reflection-preventing method
FI117224B (fi) * 1994-01-20 2006-07-31 Nec Tokin Corp Sähkömagneettinen häiriönpoistokappale, ja sitä soveltavat elektroninen laite ja hybridimikropiirielementti
KR100510921B1 (ko) * 1996-09-09 2005-10-25 엔이씨 도낀 가부시끼가이샤 고열전도성복합자성체
JPH10296170A (ja) * 1997-04-25 1998-11-10 Kansai Paint Co Ltd 複層塗膜形成法
JP2000281939A (ja) * 1999-03-29 2000-10-10 Daikin Ind Ltd フッ素樹脂粉体塗料組成物
JP3597098B2 (ja) * 2000-01-21 2004-12-02 住友電気工業株式会社 合金微粉末とその製造方法、それを用いた成型用材料、スラリーおよび電磁波シールド材料
JP3340112B2 (ja) * 2000-06-02 2002-11-05 北川工業株式会社 熱伝導材及びその製造方法
JP3608612B2 (ja) * 2001-03-21 2005-01-12 信越化学工業株式会社 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法
JP2002329995A (ja) * 2001-05-07 2002-11-15 Shin Etsu Chem Co Ltd 電磁波吸収体
JP2002374092A (ja) * 2001-06-15 2002-12-26 Polymatech Co Ltd 放熱性電波吸収体
TW537435U (en) * 2002-05-31 2003-06-11 Quanta Comp Inc Notebook computer with a low surface temperature
US7279218B2 (en) * 2004-01-23 2007-10-09 Kobe Steel, Ltd. Coated body having excellent thermal radiation property used for members of electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697691A (ja) * 1992-09-11 1994-04-08 Uniden Corp 電磁波遮蔽構造体
JPH06140787A (ja) * 1992-10-27 1994-05-20 Kansai Paint Co Ltd 電波反射防止体および電波反射防止法
JPH11261270A (ja) * 1998-03-10 1999-09-24 Tdk Corp シールドケース
JP2001018322A (ja) * 1999-07-05 2001-01-23 Kobe Steel Ltd 耐疵付き性及び耐指紋性に優れた導電性黒色表面処理金属板
JP2002228085A (ja) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd 熱放射性表面処理材
JP2002226783A (ja) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd 熱放射性表面処理材

Also Published As

Publication number Publication date
KR100704063B1 (ko) 2007-04-09
US20060182948A1 (en) 2006-08-17
TW200508402A (en) 2005-03-01
KR20060021394A (ko) 2006-03-07
TWI249580B (en) 2006-02-21

Similar Documents

Publication Publication Date Title
US7279218B2 (en) Coated body having excellent thermal radiation property used for members of electronic device
KR100741616B1 (ko) 전자파 흡수성 및 도전성이 우수한 도료 조성물 및 이 도료조성물에 피복되어 있는 도장금속판
JP4773278B2 (ja) 電磁波シールド性に優れた樹脂塗装金属板
KR100539847B1 (ko) 금속판 및 이를 사용한 성형품
WO2005002844A1 (ja) 樹脂塗装金属板
JP4202974B2 (ja) 電磁波吸収性及び加工性に優れた電子機器部材用樹脂塗装金属板
JP4188857B2 (ja) 放熱性に優れた電子機器部材用塗装体、及び電子機器部品
JP2008246974A (ja) 電磁波吸収性に優れた積層型樹脂塗装金属板
JP2004074412A (ja) 放熱性及び導電性に優れた電子機器部材用塗装体
JP4369761B2 (ja) 熱吸収性に優れた発熱体カバー及びそのための表面処理金属板並びにこれらの応用
KR100563919B1 (ko) 방열성이 우수한 전자기기 부재용 도장체
JP4194041B2 (ja) 耐疵付き性及び耐指紋性に優れた樹脂塗装金属板、及び電子機器部品
JP6122249B2 (ja) 電磁波シールド性に優れた樹脂塗装金属板
JP3796257B2 (ja) 放熱性及び自己冷却性に優れた電子機器部材用塗装体、並びに電子機器部品
JP3796249B2 (ja) 放熱性、自己冷却性、及び導電性に優れた電子機器部材用塗装体、並びに電子機器部品
JP5368396B2 (ja) 樹脂塗装金属材、および該金属材を用いた電子機器部品
JP3796232B2 (ja) 放熱性に優れた電子機器部材用塗装体
JP2004224017A (ja) 冷却能の高い塗装鋼板
JP2004074145A5 (ja)
JP5789242B2 (ja) 塗膜積層金属板
JP2004134722A (ja) 冷却能の高い電気・電子機器用筐体
JP2013212607A (ja) 電磁シールド性と導電性に優れた樹脂塗装金属板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019577.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057024624

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006182948

Country of ref document: US

Ref document number: 10563305

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057024624

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10563305

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020057024624

Country of ref document: KR