WO2003064942A1 - Chauffe-eau de type pompe a chaleur - Google Patents

Chauffe-eau de type pompe a chaleur Download PDF

Info

Publication number
WO2003064942A1
WO2003064942A1 PCT/JP2003/000702 JP0300702W WO03064942A1 WO 2003064942 A1 WO2003064942 A1 WO 2003064942A1 JP 0300702 W JP0300702 W JP 0300702W WO 03064942 A1 WO03064942 A1 WO 03064942A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water heater
refrigerant
electric expansion
heat pump
Prior art date
Application number
PCT/JP2003/000702
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nakayama
Shinichi Sakamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/502,570 priority Critical patent/US20050189431A1/en
Priority to EP03734843A priority patent/EP1484561A4/en
Publication of WO2003064942A1 publication Critical patent/WO2003064942A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump water heater. Background art
  • the heat pump water heater includes a refrigerant cycle 72 and a hot water supply cycle 71.
  • the refrigerant cycle 72 includes a compressor 74, a hot water supply heat exchanger (use side heat exchanger) 75, an electric expansion valve 77, and a heat source side heat exchanger (air heat exchanger) 7 8 Are sequentially connected.
  • the hot water supply cycle 71 includes a hot water storage tank (hot water supply tank) 70 and a circulation path 79, and a water circulation pump 80 and a heat exchange path 81 are interposed in the circulation path 79. I have.
  • the heat exchange path 81 is composed of a use-side heat exchanger (water heat exchanger) 75.
  • the stored water (hot water) is circulated from the water intake port provided at the bottom of the hot water storage tank 70. It flows to 79, which flows through the heat exchange path 81. At this time, the hot water is heated (boiled) by the water heat exchanger 75 and returned to the upper portion of the hot water storage tank 70 from the hot water inlet. Thereby, high-temperature hot water is stored in the hot-water storage tank 70.
  • the air heat exchanger 78 functions as an evaporator, when the outside air temperature is low, frost may form on the air heat exchanger 78, and the capacity may be reduced. For this reason, this type of heat pump water heater enables defrosting operation to remove frost. That is, a defrost operation in which the hot gas from the compressor 74 is directly supplied to the air heat exchanger 78 is enabled.
  • the discharge pipe 82 of the compressor 74 and the refrigerant flow path 83 connecting the electric expansion valve 77 and the air heat exchanger 78 are provided with a defrost valve having a defrost valve 84. Connected with the input circuit 85.
  • the present invention has been made in order to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide a heat-pump type water heater that can shorten the defrost time and can avoid liquid back. is there. Disclosure of the invention
  • a compressor 25, a water heat exchanger 26 for heating hot water, an electric expansion valve 27, and an air heat exchanger 28 are sequentially connected.
  • this is a heat pump water heater provided with a defrost circuit 38 for supplying hot gas from the compressor 25 to the air heat exchanger 28.
  • the heat pump water heater according to the present invention starts a defrost operation in which hot gas from the compressor 25 is supplied to the air heat exchanger 28, and after a lapse of a predetermined time from the start, the electric expansion valve 2 7 is closed to a predetermined opening degree.
  • the electric expansion valve 27 is closed to a predetermined opening degree after a lapse of a predetermined time from the start of the defrost operation, so that liquid back during the defrost operation can be avoided.
  • the predetermined opening degree of the electric expansion valve 27 is It is characterized in that the opening is in a fully closed state.
  • liquid back during defrost operation can be reliably avoided.
  • a heat pump water heater according to a third invention is characterized in that the electric expansion valve 27 is opened by a predetermined amount after a lapse of a predetermined time from a state in which the electric expansion valve 27 is closed to a predetermined opening degree.
  • the electric expansion valve 27 is opened by a predetermined amount after a lapse of a predetermined time from a state in which the electric expansion valve 27 is closed to a predetermined opening degree. Refrigerant accumulation in the water heat exchanger 28 can be prevented. Further, by opening the electric expansion valve 27, it is possible to prevent a decrease in the amount of circulating refrigerant.
  • the heat pump water heater according to a fourth aspect of the present invention includes a refrigerant regulator 43 for storing excess refrigerant on the high pressure side, and a flow regulating valve 44 for regulating the flow rate of the refrigerant passing through the refrigerant regulator 43. It is a heat pump water heater provided on the outlet side.
  • the heat pump water heater according to the present invention is characterized in that the flow control valve 44 is fully closed during the defrost operation.
  • the heat pump water heater of the fifth invention is characterized in that a supercritical refrigerant used in a supercritical state is used as the refrigerant.
  • a supercritical refrigerant is used, so that a high-low pressure difference is large. For this reason, after a certain period of time has elapsed from the start of the defrost operation, the effect of closing the electric expansion valve 27 to a predetermined opening degree, etc., becomes more remarkable. There is no problem such as ozone layer rupture or environmental pollution, and it is environmentally friendly.
  • the liquid bag during the defrost operation Can be avoided, and the reliability of the compressor can be ensured.
  • the reliability of the heat pump water heater is improved, and the boiling operation can be stably performed.
  • liquid back during defrost operation can be reliably avoided. This makes it possible to perform a stable boiling operation as a heat pump water heater.
  • the heat pump water heater of the third invention it is possible to prevent the accumulation of refrigerant in the water heat exchanger during the defrost operation.
  • the electric expansion valve it is possible to prevent a decrease in the amount of circulating refrigerant and to prevent an increase in the defrost operation time.
  • the capacity (average capacity) of the heat pump water heater from being reduced, and to ensure reliability.
  • the heat pump water heater of the fourth invention liquid back can be prevented, and reliability of the compressor can be ensured.
  • the refrigeration cycle can be stabilized during the defrost operation.
  • the defrost operation time can be shortened, and the boiling capacity (average capacity) is improved, making it an excellent device as a heat pump water heater.
  • the heat pump water heater of the fifth aspect of the invention since the difference between the high and low pressures is large, the above-mentioned respective effects are remarkably exhibited. In addition, there will be no problems such as ozone layer rupture and environmental pollution, and it will be a heat pump water heater that is friendly to the global environment.
  • FIG. 1 is a simplified diagram showing an embodiment of a heat pump water heater according to the present invention.
  • FIG. 2 is a simplified block diagram of a control unit of the heat pump water heater.
  • FIG. 3 is a time chart at the time of the defrost operation of the heat pump water heater.
  • FIG. 4 is a graph showing the boiling capacity of the heat pump water heater.
  • FIG. 5 is a flowchart showing the entry of a defrost operation of the heat pump water heater.
  • Fig. 6 shows the control of the electric expansion valve during the defrost operation of the heat pump water heater. It is a flowchart figure shown.
  • FIG. 7 is a flowchart showing electric expansion valve control during a defrost operation of the heat pump water heater.
  • FIG. 8 is a simplified diagram of a conventional heat pump water heater. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a simplified diagram of this heat pump water heater.
  • This heat pump water heater has a hot water supply cycle 1 and a refrigerant cycle 2.
  • the hot water supply cycle 1 includes a hot water storage tank 3, and the hot water stored in the hot water storage tank 3 is supplied to a bathtub or the like (not shown). That is, the hot water storage tank 3 is provided with a water supply port 5 on its bottom wall and a water supply port 6 on its upper wall. Then, tap water is supplied from the water supply port 5 to the hot water storage tank 3, and high-temperature hot water is supplied from the water supply port 6.
  • the hot water storage tank 3 has a water intake 10 at the bottom wall and a hot water inlet 11 at the top of the side wall (peripheral wall).
  • the water intake 10 and the hot water inlet 11 are circulated.
  • the circulation path 12 is provided with a water circulation pump 13 and a heat exchange path 14.
  • the water supply port 5 is connected to a water supply flow path 8.
  • a bypass channel 15 is provided in the circulation channel 12. That is, the bypass channel 15 branches off from the hot water inlet 11 side and is connected to the lower part (in this case, the bottom wall) of the hot water storage tank 3.
  • a first opening / closing valve 17 is provided between the branch portion 16 and the hot water inlet 11, and a second opening / closing valve 18 is provided on the branch portion 16 side of the bypass passage 15. Have been.
  • the on-off valves 17 and 18 constitute bypass switching means 19.
  • the on-off valves 17 and 18 of the bypass switching means 19 are controlled by control means 20 described later.
  • the first open / close valve 17 of the bypass switching means 19 is opened, the second open / close valve 18 is closed, and the water circulation pump 13 is driven.
  • the hot water flowing out to 12 flows through the heat exchange path 14 and flows into the upper part of the hot water storage tank 3 from the heat exchange path 14 through the hot water inlet 11.
  • the hot water entrance 1 1 The state of flowing into the upper part of the hot water storage tank 3 through the hot water storage tank 3 is referred to as a normal circulation state.
  • the circulation path 12 includes a pipe 21 on the side of the hot water supply cycle 1 and a pipe 22 of the refrigerant cycle 2.
  • the pipes 21 and 22 are connected by connecting pipes 23 and 24. I have. Since the communication pipes 23 and 24 are provided outside the room, there is a possibility that the inside may freeze when the outside air temperature is low, as described later.
  • the refrigerant cycle (heat pump type heating) 2 includes a refrigerant circulation circuit.
  • This refrigerant circulation circuit connects a compressor 25, a water heat exchanger 26 constituting a heat exchange path 14, a pressure reducing mechanism (electric expansion valve) 27, and an air heat exchanger 28 in this order. It is composed of That is, the discharge pipe 29 of the compressor 25 is connected to the water heat exchanger 26, the water heat exchanger 26 and the electric expansion valve 27 are connected through the refrigerant passage 30, and the electric expansion valve 2 is connected. 7 and the air heat exchanger 28 are connected by a refrigerant passage 31, and the air heat exchanger 28 and the compressor 25 are connected by a refrigerant passage 33 provided with an accumulator 32. .
  • a supercritical refrigerant for example, carbon dioxide
  • the air heat exchanger 28 is provided with a fan 34 for adjusting the capacity of the air heat exchanger 28.
  • the circulation path 12 includes an inlet thermistor 35 a that detects the temperature (input temperature) of hot water (low-temperature water) flowing out of the intake port 10 and entering the heat exchange path 14, and a heat exchange path 14. And a tapping thermistor 36a for detecting the temperature of the hot water heated by the tapping (the tapping temperature). Further, the air heat exchanger 28 is provided with an air heat exchange thermistor 48a for detecting the temperature of the air heat exchanger 28. In FIG. 1, the heat pump water heater is provided with an outside air temperature detecting thermistor 37a for detecting the outside air temperature.
  • the discharge pipe 29 and the refrigerant passage 31 (the position immediately before the air heat exchanger 28 in the passage connecting the electric expansion valve 27 and the air heat exchanger 28) have a defrost valve 39. Connected by defrost circuit 38. That is, the hot gas from the compressor 25 can be directly supplied to the air heat exchanger 28 functioning as an evaporator, which makes it possible to perform a defrost operation for removing frost from the evaporator 28. Become. Therefore, the refrigerant cycle 2 can perform a normal water heating operation and a defrost operation.
  • the refrigerant circulation circuit is provided with a bypass circuit 42 branching on the high pressure side and joining at a position downstream of the branch portion, and a refrigerant regulator 43 is provided in the bypass circuit 42.
  • an adjustment valve 44 for adjusting the flow rate is provided on the outlet side of the refrigerant adjuster 43. That is, the bypass circuit 42 includes a first passage 45 branched from the upstream side of the water heat exchanger 26 and connected to the refrigerant regulator 43, and a first passage derived from the refrigerant regulator 43. And a second passageway 46 that joins the water heat exchanger 26 downstream of the branching portion 45.
  • the flow control valve 44 is provided in the second passage 46.
  • a passage 47 constituting a part of the refrigerant passage 31 is provided, and a high-pressure refrigerant that has entered the refrigerant regulator 43 via a bypass circuit 42, The heat exchange with the low-pressure refrigerant flowing through the passage 47 is performed.
  • the temperature of the refrigerant in the refrigerant regulator 43 is adjusted by adjusting the opening of the regulating valve 44 to adjust the flow rate of the refrigerant passing through the refrigerant regulator 43.
  • the opening degree of the flow control valve 44 By controlling the opening degree of the flow control valve 44, the required refrigerant temperature can be maintained, and the inside of the refrigerant regulator 43 can be set to an appropriate refrigerant capacity, and the refrigerant circulation amount in this circuit can be reduced. This is because the amount is optimal.
  • the control unit of the heat pump water heater includes an incoming water temperature detecting means 35, an outgoing water temperature detecting means 36, an outside air temperature detecting means 37, and an air heat exchanger temperature detecting means. 48, timer means 50, control means 20 and the like. Data from these detecting means 35, 36, 37, 48, timer means 50, and the like are input to control means 20.
  • a control signal is transmitted to the compressor 25, the defrost valve 39, and the like based on the data and the like, and the compressor 25 and the like operate based on the control signal.
  • the incoming water temperature detecting means 35 can be constituted by the incoming water thermistor 35a
  • the outgoing water temperature detecting means 36 can be constituted by the outgoing thermistor 36a
  • the outside air temperature detecting means 37 is provided by the outside air temperature.
  • the air heat exchanger temperature detecting means 48 can be constituted by the air heat exchange thermistor 48a.
  • the timer means 50 can be configured by an existing timer or the like for measuring time, and includes a timer TDO, a timer TD1, a timer TD2, and the like, as described later.
  • the control means 20 can be constituted by a microcomputer, for example.
  • the bypass switching means 19 is set to the normal circulation state, the defrost valve 39 is closed, the compressor 25 is driven, and the water circulation pump 1
  • stored water low-temperature water
  • the hot water is heated (boiled) by the water heat exchanger 26 and returned (inflow) from the hot water inlet 11 to the upper portion of the hot water storage tank 3.
  • hot hot water can be stored in the hot water storage tank 3.
  • the control means 20 when the boiling capacity is reduced to the predetermined low capacity by the control means 20, it is determined that the air heat exchanger 28 has frost, or at every predetermined time.
  • the integrated average value of the boiling capacity is obtained, and when the integrated average value decreases continuously for a predetermined number of times, it can be determined that the air heat exchanger 28 has frost. That is, comparing the case where the air heat exchanger 28 has no frost with the case where the air heat exchanger 28 has the frost, if the air heat exchanger 28 has the frost, the boiling capacity is reduced. It can be frosted.
  • This capability (CAP) can be obtained from the following equation (2).
  • the boiling capacity CAP coefficient X pump output X (outlet water temperature-incoming water temperature) is obtained.
  • the incoming water temperature can be detected by the incoming water thermistor 35a, and the outgoing water temperature can be detected by the outgoing thermistor 36a.
  • a waveform as shown in FIG. 4 is drawn as the boiling capacity, and when this capacity decreases to a predetermined value, the defrost operation is started.
  • the capacity index of the water circulation pump 13 includes a pump command value, a rotation speed, etc., in addition to the pump output, and is an index proportional to the amount of circulating water of the water circulation pump 13.
  • the above capacity is calculated at predetermined time intervals (T SAMP: for example, 10 seconds), and the integrated average value is calculated as Equation
  • CA P AV is the average capacity
  • ⁇ CA P is the integrated value of CAP (boiling capacity)
  • N SAMP is the integrated number.
  • CAPAV is set to 0 at the start of defrosting (defrost) operation, and CAP (boiling capacity) is set to 0 during this defrosting operation and while the timer TMASK is counting. CAP AV is calculated even during defrost operation.
  • N S AMP Total number of times
  • defrost operation is performed.
  • This defrost operation is started by supplying hot gas to the air heat exchanger 28 with the water circulation pump 13 stopped.
  • the circulation path 12 especially the inside of the communication pipes 23 and 24, which are disposed outside, may freeze, so that the water circulation pump 13 is driven.
  • Perform pipe freeze prevention operation is controlled by the defrost control means 20a constituted by the control means 20. In this heat pump water heater, control to enter defrost operation is shown.
  • step S2 After the operation of the compressor 25 is started in step S1, it is determined in step S2 whether the boiling operation is completed. If it is determined in step S2 that the water is boiling, in step S3, the compressor 25 is stopped, the TD0, TD1, and TD2 timers are reset, and the boiling operation is performed. To end (complete).
  • step S2 If it is determined in step S2 that the water is not boiling, the process proceeds to step S4. Then, in step S4, it is determined whether the count time of TD1 (for example, 45 minutes) and the count time of TD2 (for example, 12 minutes) have elapsed. If these times have not elapsed, wait until TDO, TD1, and TD2 have elapsed, as shown in step S10, and if these times have elapsed, proceed to step S5. I do.
  • TD 0 is a defrost rush determination switching boiling operation integration timer, and its count time is, for example, 90 minutes
  • TD 1 is a boiling operation integration timer
  • its count time is, for example, 45 minutes.
  • step S5 it is determined whether or not DE ⁇ DDEF 1 ( ⁇ 20 ° C.) is satisfied.
  • DE is the temperature of the air heat exchanger 28 detected by the air heat exchange thermistor 48
  • DDE F 1 is the defrost rush judgment air heat exchange temperature
  • this DDE F 1 is, for example, Set to 20 ° C. That is, if the temperature of the air heat exchanger 28 is lower than 120 ° C. in step S5, the process proceeds to step S6 to perform defrosting (defrost operation).
  • step S5 If it is determined in step S5 that the temperature of the air heat exchanger 28 is equal to or higher than 120 ° C., the process proceeds to step S7.
  • step S7 TD O (eg, 90 minutes) elapses It is determined whether or not it has been done. If it has passed, the process proceeds to step S8. If not, the process proceeds to step S9.
  • step S8 it is determined whether or not DE and DDE1 are continuously established for the count time of TD3.
  • DDE 1 is a defrost rush judgment temperature (reference temperature), and can be determined, for example, at (outside air temperature-9) ° C. That is, a reference temperature lower than the outside air temperature by a predetermined temperature (in this case, 9 ° C.) is set, and the temperature of the air heat exchanger 28 is compared with this reference temperature.
  • TD 3 is a defrost rush decision continuation timer. For example, if 60 seconds, ⁇ 5 ⁇ / is set.
  • step S8 If this condition is satisfied in step S8, that is, if the temperature of the air heat exchanger 28 is lower than the reference temperature, the process proceeds to step S6, and if not, step S10 To step S2.
  • step S9 the cumulative average value of the boiling capacity is obtained every D seconds and every predetermined period (for example, 10 seconds), and the cumulative average value is continuously calculated for a predetermined number of times (for example, five times). It is determined whether or not it has decreased. If this condition is satisfied, the process proceeds to step S6. If not, the process proceeds from step S10 to step S2.
  • step S6 the defrosting process in step S6 is performed until the defrost operation is canceled. Then, after the end of step S6, after resetting the respective TDO, TD1, and TD2 timers, the process shifts from step S10 to step S2, and the boiling operation is restarted. In step 2, it is determined whether the boiling operation has been completed. Thereafter, the above procedure is repeated.
  • the defrost operation is performed if the temperature (DE) of the air heat exchanger 28 is lower than the defrost entry judgment air heat exchange temperature (DDE F 1). Otherwise, if the operation duration (TDO) is short, frost formation is determined based on the temperature (DE) of the air heat exchanger 28 and the integrated average value (CAPAV), and operation is continued. When the time (TDO) is long and frost is likely to occur, frost formation is determined based on the temperature (DE) of the air heat exchanger 28. As a result, if there is frost on the air heat exchanger 28, the frost can be reliably detected, and the defrost operation without frost can be avoided. In other words, if defrost operation is performed, Since the heating operation cannot be performed and the efficiency of the water heater is impaired, this heat pump water heater avoids this unnecessary defrost operation and improves the capacity and efficiency of the water heater. It becomes possible.
  • the frequency of the compressor 25 is reduced to a predetermined value (for example, 40 Hz), and the opening of the electric expansion valve (main pressure reducing electric expansion valve) 27 is set to a predetermined opening (for example, , 150 pulses).
  • the control valve (bypass flow rate control valve) 44 is fully closed, and the water circulation pump 13 is lowered to the pump capacity command value (for example, 10 rpm) when the defrost valve is switched. Further, the bypass switching means 19 is switched to the bypass circulation state (bypass side).
  • the defrost valve 39 is opened and the fan 34 is stopped. As a result, hot gas is supplied to the air heat exchanger 28. It should be noted that, at points b to b ′, the operating frequency of the compressor 25 is reduced by reducing the differential pressure in the refrigerant circuit to ensure that the defrost valve 39 is switched, and that the defrost valve 39 be switched. This is to reduce the impact noise when switching the G valve 39 and to prevent the compressor 25 from stepping out.
  • a predetermined time for example, 30 seconds
  • the electric expansion valve 27 After a predetermined time (for example, 10 seconds) has elapsed after the defrost valve 39 was opened, at a point c, the electric expansion valve 27 was fully closed, and the water circulation pump 13 was stopped. It increases the frequency of the compressor 2 5 to 5 8 H Z. Thereafter, at a point e where a predetermined time (for example, 30 seconds) elapses, the electric expansion valve 27 is opened by a predetermined amount, for example, until the opening degree becomes small (for example, 100 pulses), and the compression is performed. The frequency of machine 25 is increased until it reaches 76 Hz.
  • a predetermined time for example, 10 seconds
  • the opening of the electric expansion valve 27 is changed to the predetermined opening (for example, 150 pulses).
  • the predetermined opening for example, 150 pulses.
  • the electric expansion valve 27 When the outside air temperature is equal to or lower than a predetermined low temperature (for example, 0 ° C.) and this state continues for a predetermined time (for example, 600 seconds) from the point ⁇ , the electric expansion valve 27 In the fully closed state, the water circulation pump 13 is driven with the pump capacity command value during defrosting (for example, 10 rm) to perform the pipe freezing prevention operation. If the water in the circulation path 12 is not circulated in this state, the water in the circulation path 12 is not circulated for a long time, so that there is a possibility that the water may freeze in the circulation path 12. .
  • a predetermined low temperature for example, 0 ° C.
  • a predetermined time for example, 600 seconds
  • the reason why the electric expansion valve 27 is fully closed is that when the electric expansion valve 27 is in the open state, the refrigerant is deprived of heat by the circulating water and the frost of the air heat exchanger 28 is sufficiently melted. It is because it becomes impossible. If the outside air during the defrost operation does not exceed the predetermined low temperature or the defrost operation time does not continue for a predetermined time, the water circulation pump 13 during the defrost operation is not driven. This is because, under such conditions, there is no possibility that the inside of the circulation path 12 is frozen.
  • a predetermined time for example, 720 seconds
  • a predetermined time for example, 720 seconds
  • the defrost valve 39 is closed at a point g 'when a predetermined time (for example, 30 seconds) has elapsed from the point g.
  • a predetermined time for example, 10 seconds
  • control returns to normal boiling operation. The reason why the water circulation pump 13 is circulated at the point g to the point h before the normal control is to accurately detect the incoming water temperature.
  • the regulating valve 44 is set to the fully closed state in order to prevent the liquid back when the defrost valve 39 is in the open state, and to prevent the refrigeration cycle during the defrost operation. This is for stabilization. Further, reducing the frequency of the compressor 25 at points g to g 'is the same as reducing the frequency of the compressor 25 at points b to 1 ⁇ .
  • the stop (release) of the defrost operation Although it has been a point g 'after a lapse of a predetermined time, defrosting may be canceled based on the temperature of the air heat exchanger 28. That is, the defrost release determination temperature (DDE 2) may be set, and this defrost operation may be released when DE> DDE 2 is satisfied.
  • DO AT is the outside air temperature. In this case, 4 ° C ⁇ DDE2 12 ° C.
  • step S15 When the defrost signal is transmitted, the process proceeds to step S15, and the electric expansion valve 27 is throttled to a predetermined opening (for example, 150 pulses). Thereafter, after a lapse of a predetermined time (for example, 30 seconds), the flow shifts to step S16 to open the defrost valve 39 and start supplying hot gas to the air heat exchanger 28.
  • step S17 the process proceeds to step S17 to determine whether or not a predetermined time (for example, 40 seconds) has elapsed since the electric expansion valve 27 was set to the predetermined opening degree. Then, it waits until the predetermined time elapses, and if it elapses, the process proceeds to step S18, and the electric expansion valve 27 is fully closed.
  • a predetermined time for example, 40 seconds
  • step S19 it is determined whether or not a predetermined time (for example, 30 seconds) has elapsed since the electric expansion valve 27 was fully closed. Then, it waits until the predetermined time elapses, and when it elapses, the process proceeds to step S20 to set the electric expansion valve 27 to a predetermined small opening degree (for example, 100 pulses). Thereafter, the process proceeds to step S21, and it is determined whether or not a predetermined time (for example, 30 seconds) has elapsed since the electric expansion valve 27 was set to the predetermined small opening degree.
  • a predetermined time for example, 30 seconds
  • step S22 Wait until the predetermined time elapses, and when it elapses, move to step S22, and return the electric expansion valve 27 to the predetermined opening (for example, 150 pulses). It is determined whether a predetermined time (for example, 600 seconds) has elapsed since the electric expansion valve 27 was set to the predetermined opening degree. Then, it waits until the predetermined time elapses, and when it elapses, proceeds to step S24, and determines whether the outside air temperature is 0 ° C or lower. If the outside air temperature is 0 ° C or lower, proceed to step S25.If the outside air temperature exceeds 0 ° C, proceed to step S26. I do.
  • a predetermined time for example, 600 seconds
  • step S25 a pipe freeze prevention operation is performed. That is, the water circulation pump 13 is driven at a predetermined pump command value (for example, 10 rpm) to circulate the hot water in the circulation path 12. At this time, the electric expansion valve 27 is fully closed.
  • the process proceeds to step S27 to determine whether the pipe freezing prevention operation is completed. In this step S27, it is determined whether or not a predetermined time (for example, 720 seconds) has elapsed after the defrost operation signal was transmitted, and if it has elapsed, the process proceeds to step S26. If not, return to step S24.
  • the pipe freeze prevention operation is terminated when the outside air temperature exceeds 0 ° C.
  • step S26 it is determined whether or not the defrost operation has been completed. The determination of the end of the defrost operation can be made based on the time from when the defrost operation signal is transmitted and the temperature of the air heat exchanger 28 as described above.
  • the opening of the electric expansion valve 27 is controlled to open the differential opening valve 39.
  • the liquid back after the setting can be prevented.
  • accumulation of the refrigerant in the water heat exchanger 26 during defrosting can be prevented.
  • the reliability of the heat pump water heater is improved, and a stable boiling operation can be performed.
  • the hot gas of the compressor 25 is supplied to the air heat exchanger 28 to melt the frost of the air heat exchanger 28. it can.
  • the outside air temperature is, for example, a low temperature of 0 ° C. or less, if this defrost operation is continued for a long time, the water circulation pump 13 is driven, and this circulation path 12 The inside can be prevented from freezing.
  • the hot water in the circulation path 12 does not flow into the upper part of the hot water storage tank 3 through the bypass circuit 15. That is, low-temperature water is mixed into the high-temperature hot water in the upper part of the hot-water storage tank 3. Therefore, the temperature of the hot water supplied from the hot water storage tank 3 to the bathtub or the like does not decrease. For this reason, it is possible to prevent the temperature of the hot water in the hot water storage tank 3 from being lowered by the defrosting operation, and it is possible to avoid a subsequent extension of the boiling operation, thereby reducing running costs.
  • the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention.
  • the predetermined time until the electric expansion valve 27 is closed to the predetermined opening degree can be changed within a range in which liquid back does not occur after the defrost valve 39 is opened. Even if the predetermined amount can be opened from the state of being closed to the predetermined degree of opening, it can be changed within a range that can prevent accumulation of the refrigerant in the water heat exchanger 26 during the defrost operation.
  • refrigerant circuit it is preferable to use carbon dioxide gas as the refrigerant in the refrigerant circuit, but other refrigerants such as diphlore dichloromethane (R- 12) and diphloreolomethane (R- 22).
  • refrigerants such as diphlore dichloromethane (R- 12) and diphloreolomethane (R- 22).
  • alternative refrigerants such as 1,1,1,2-tetrafluoroethane (R-134a) may be used due to problems such as ozone layer destruction and environmental pollution.
  • the heat pump water heater according to the present invention is useful for those performing a hot water supply cycle and a refrigerant cycle, and is particularly suitable for performing a defrost operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

明 細 書 ヒートポンプ式給湯機 技術分野
この発明は、 ヒートポンプ式給湯機に関するものである。 背景技術
ヒートポンプ式給湯機としては、 図 8に示すように、 冷媒サイクル 7 2と、 給湯サイクル 7 1とを備える。 冷媒サイクル 7 2は、 圧縮機 7 4と、 給湯用熱交 換器 (利用側熱交換器) 7 5と、 電動膨張弁 7 7と、 熱源側熱交換器 (空気熱交 換器) 7 8とを順次接続して構成されている。 また、 給湯サイクル 7 1は、 貯湯 タンク (給湯タンク) 7 0と循環路 7 9とを備え、 この循環路 7 9には、 水循環 用ポンプ 8 0と熱交換路 8 1とが介設されている。 この場合、 熱交換路 8 1は利 用側熱交換器 (水熱交換器) 7 5にて構成される。
上記ヒートポンプ式給湯機においては、 圧縮機 7 4を駆動させると共に、 ポ ンプ 8 0を駆動 (作動) させると、 貯湯タンク 7 0の底部に設けた取水口から貯 溜水 (温湯) が循環路 7 9に流出し、 これが熱交換路 8 1を流通する。 そのとき この温湯は水熱交換器 7 5によって加熱され (沸き上げられ)、 湯入口から貯湯 タンク 7 0の上部に返流される。 これによつて、 貯湯タンク 7 0に高温の温湯を 貯める。
また、 空気熱交換器 7 8は蒸発器として機能するので、 外気温度が低い場合 等において、この空気熱交換器 7 8に着霜が生じて、能力が低下することがある。 このため、 この種のヒートポンプ式給湯機では、 着霜を除去する除霜 (デフロス ト) 運転を可能としている。 すなわち、 圧縮機 7 4からのホットガスを上記空気 熱交換器 7 8に直接供給するデフロスト運転を可能としている。 この場合、 例え ば、 圧縮機 7 4の吐出管 8 2と、 電動膨張弁 7 7と空気熱交換器 7 8とを連結す る冷媒流路 8 3とを、 デフロス ト弁 8 4を有するデフロス ト回路 8 5にて接続す る。 このため、 デフロス ト弁 8 4を開状態とすることよって、 圧縮機 7 4からの ホットガスをこのデフロスト回路 8 5に流し、このデフロスト回路 8 5を介して、 空気熱交換器 7 8にこのホットガスを直接供給して、 これによつて、 空気熱交換 器 7 8の着霜を融霜除去する。 一解決課題一
しかしながら、 上記従来のヒートポンプ式給湯機においては、 デフロス ト運 転突入時に、 高圧側の冷媒が低圧側に短時間の間に戻ることになる。 このため、 空気熱交換器 7 8と圧縮機 7 4との間に介設されたアキュームレータが、 いわゆ るオーバーフローすることになつて、 液バックが生じるおそれがあった。 また、 これを防止するため、 デフロスト運転中に常に電動膨張弁 7 7を全閉状態とすれ ば、 冷媒流量が低下して、 デフロス ト運転時間が大となり、 給湯機としての平均 能力の低下や信頼性の低下を招レ、ていた。
この発明は、 上記従来の欠点を解決するためになされたものであって、 その 目的は、 デフロス ト時間の短縮を図ることができ、 しかも液バックを回避できる ヒートボンプ式給湯機を提供することにある。 発明の開示
そこで、 第 1の発明のヒートポンプ式給湯機は、 圧縮機 2 5と、 温水を加熱 する水熱交換器 2 6と、 電動膨張弁 2 7と、 空気熱交換器 2 8とが順次接続され ると共に、 上記圧縮機 2 5からのホットガスを上記空気熱交換器 2 8に供給する ためのデフロスト回路 3 8を備えたヒートポンプ式給湯機である。 そして、 この 発明のヒートポンプ式給湯機は、 上記圧縮機 2 5からのホットガスを上記空気熱 交換器 2 8に供給するデフロスト運転を開始し、その開始から一定時間経過後に、 上記電動膨張弁 2 7を所定開度まで閉じることを特徴としている。
上記第 1の発明のヒートポンプ式給湯機では、 デフロスト運転の開始から一 定時間経過後に、 電動膨張弁 2 7を所定開度まで閉じるので、 デフロス ト運転中 の液バックを回避することができる。
第 2の発明のヒートポンプ式給湯機は、 上記電動膨張弁 2 7の所定開度が、 全閉状態の開度であることを特徴としている。
上記第 2の発明のヒートポンプ式給湯機では、 デフロスト運転中の液バック を確実に回避することができる。
第 3の発明のヒートポンプ式給湯機は、 上記電動膨張弁 2 7を所定開度まで 閉じた状態から所定時間経過後に、 この電動膨張弁 2 7を所定量だけ開くことを 特徴としている。
上記第 3の発明のヒートポンプ式給湯機では、 電動膨張弁 2 7を所定開度ま で閉じた状態から所定時間経過後に、この電動膨張弁 2 7を所定量だけ開くので、 このデフロスト運転中の水熱交換器 2 8への冷媒溜まり込みを防止できる。また、 電動膨張弁 2 7を開くことによって、 冷媒循環量の低下を防止できる。
第 4の発明のヒートポンプ式給湯機は、 高圧側に余剰冷媒を貯える冷媒調整 器 4 3を配置すると共に、 この冷媒調整器 4 3を通過する冷媒の流量を調整する 流量調整弁 4 4を、 その出口側に設けたヒートポンプ式給湯機である。 そして、 この発明のヒートポンプ式給湯機は、 上記デフロス ト運転中、 この流量調整弁 4 4を全閉状態とすることを特徴としている。
上記第 4の発明のヒートポンプ式給湯機では、 デフロスト運転中はこの流量 調整弁 4 4を全閉状態としているので、液バックを防止することができる。また、 流量調整弁 4 4を全閉とすることによって、 デフロスト運転中の冷凍サイクルの 安定化を図ることができる。
第 5の発明のヒ一トポンプ式給湯機は、 冷媒に超臨界で使用する超臨界冷媒 を用いたことを特徴としている。
上記第 5の発明のヒートポンプ式給湯機では、 超臨界冷媒を用いるので、 高 低圧差が大きい。 このため、 デフロス ト運転の開始から一定時間経過後に、 電動 膨張弁 2 7を所定開度まで閉じたりすることによる作用効果等がより顕著に現れ る。 そして、 オゾン層の破壌、 環境汚染等の問題がなく、 地球環境にやさしいヒ
°式給湯機となる。 一発明の効果一
第 1の発明のヒートポンプ式給湯機によれば、 デフロスト運転中の液バック を回避することができ、 圧縮機の信頼性を確保することができる。 これにより、 ヒートポンプ式給湯機としての信頼性が向上して、 沸き上げ運転を安定して行う ことができる。
第 2の発明のヒートポンプ式給湯機によれば、 デフロスト運転中の液バック を確実回避することができる。 これにより、 ヒートポンプ式給湯機として安定し た沸き上げ運転を行うことができる。
第 3の発明のヒートポンプ式給湯機によれば、 デフロス ト運転中の水熱交換 器への冷媒溜まり込みを防止できる。 また、 電動膨張弁を開くことによって、 冷 媒循環量の低下を防止して、 デフロス ト運転時間が大となることを回避すること ができる。 これによつて、 ヒートポンプ式給湯機としての能力 (平均能力) の低 下を防止でき、 信頼性を確保することができる。
第 4の発明のヒートポンプ式給湯機によれば、 液バックを防止することがで き、 圧縮機の信頼性を確保することができる。 また、 流量調整弁を全閉とするこ とによって、 デフロス ト運転中の冷凍サイクルの安定化を図ることができる。 こ れによって、 デフロスト運転時間の短縮が可能となって、 沸き上げ能力 (平均能 力) の向上を図って、 ヒートポンプ式給湯機として優れた装置となる。
第 5の発明のヒートポンプ式給湯機によれば、 高低圧差が大きいので、 上記 各作用効果が顕著に現れる。 また、 オゾン層の破壌、 環境汚染等の問題がなく、 地球環境にやさしいヒートボンプ式給湯機となる。 図面の簡単な説明
図 1は、この発明のヒートポンプ式給湯機の実施の形態を示す簡略図である。 図 2は、 上記ヒートポンプ式給湯機の制御部の簡略プロック図である。
図 3は、 上記ヒートポンプ式給湯機のデフロスト運転時のタイムチャート図 である。
図 4は、 上記ヒートポンプ式給湯機の沸き上げ能力を示すグラフ図である。 図 5は、 上記ヒートポンプ式給湯機のデフロスト運転突入を示すフローチヤ 一ト図である。
図 6は、 上記ヒートポンプ式給湯機のデフロスト運転中の電動膨張弁制御を 示すフローチヤ一ト図である。
図 7は、 上記ヒートポンプ式給湯機のデフロス ト運転中の電動膨張弁制御を 示すフローチヤ一ト図である。
図 8は、 従来のヒートポンプ式給湯機の簡略図である。 発明を実施するための最良の形態
次に、 この発明のヒートポンプ式給湯機の具体的な実施の形態について、 図 面を参照しつつ詳細に説明する。
図 1は、 このヒートポンプ式給湯機の簡略図を示す。 このヒートポンプ式給 湯機は、 給湯サイクル 1と冷媒サイクル 2とを備える。 給湯サイクル 1は、 貯湯 タンク 3を備え、 この貯湯タンク 3に貯湯された温湯が図示省略の浴槽等に供給 される。すなわち、貯湯タンク 3には、その底壁に給水口 5が設けられると共に、 その上壁に給湯口 6が設けられている。 そして、 給水口 5から貯湯タンク 3に水 道水が供給され、 給湯口 6から高温の温湯が出湯される。
また、 貯湯タンク 3には、 その底壁に取水口 1 0が開設されると共に、 側壁 (周壁) の上部に湯入口 1 1が開設され、 取水口 1 0と湯入口 1 1 とが循環路 1 2にて連結されている。 そして、 この循環路 1 2に水循環用ポンプ 1 3と熱交換 路 1 4とが介設されている。なお、給水口 5には給水用流路 8が接続されている。
また、 上記循環路 1 2にはバイパス流路 1 5が設けられている。 すなわち、 バイパス流路 1 5は、 湯入口 1 1側から分岐して、 貯湯タンク 3の下部 (この場 合、 底壁) に接続されている。 そして、 分岐部 1 6と湯入口 1 1との間に第 1開 閉弁 1 7が介設されると共に、 バイパス流路 1 5の分岐部 1 6側に第 2開閉弁 1 8が介設されている。各開閉弁 1 7、 1 8でバイパス切換手段 1 9が構成される。 なお、 このバイパス切換手段 1 9の各開閉弁 1 7、 1 8は、 後述する制御手段 2 0にて制御される。
このバイパス切換手段 1 9の第 1開閉弁 1 7を開状態とすると共に、 第 2開 閉弁 1 8を閉状態として、 水循環用ポンプ 1 3を駆動させれば、 取水口 1 0から 循環路 1 2に流出した温水は、 熱交換路 1 4を流れ、 この熱交換路 1 4から湯入 口 1 1を介して貯湯タンク 3の上部に流入する。 以下、 このように湯入口 1 1を 介して貯湯タンク 3の上部に流入する状態を通常循環状態と呼ぶこととする。 これに対して、 バイパス切換手段 1 9の第 1開閉弁 1 7を閉状態とすると共 に、 第 2開閉弁 1 8を開状態として、 水循環用ポンプ 1 3を駆動させれば、 取水 口 1 0から循環路 1 2に流出した温水は、 熱交換路 1 4を流れ、 この熱交換路 1 4から分岐部 1 6を介してバイパス流路 1 5に入って、 このバイパス流路 1 5か ら貯湯タンク 3の下部に流入する。 以下、 このようにバイパス流路 1 5から貯湯 タンク 3の下部に流入する状態をバイパス循環状態と呼ぶこととする。このため、 バイパス循環状態では、 貯湯タンク 3の上部に温水 (低温水) が流入しない。
また、 上記循環路 1 2は、 給湯サイクル 1側の配管 2 1と、 冷媒サイクル 2 の配管 2 2とを備え、 この配管 2 1、 2 2が連絡配管 2 3、 2 4にて連結されて いる。 なお、 この連絡配管 2 3、 2 4は室外側に配設されているので、 後述する ように、 外気温度が低い場合にその内部が凍結するおそれがある。
次に、 冷媒サイクル (ヒートポンプ式加熱) 2は、 冷媒循環回路を備えてい る。 この冷媒循環回路は、 圧縮機 2 5と、 熱交換路 1 4を構成する水熱交換器 2 6と、 減圧機構 (電動膨張弁) 2 7と、 空気熱交換器 2 8とを順に接続して構成 される。 すなわち、 圧縮機 2 5の吐出管 2 9を水熱交換器 2 6に接続し、 水熱交 換器 2 6と電動膨張弁 2 7とを冷媒通路 3 0にて接続し、 電動膨張弁 2 7と空気 熱交換器 2 8とを冷媒通路 3 1にて接続し、 空気熱交換器 2 8と圧縮機 2 5とを アキュームレータ 3 2が介設された冷媒通路 3 3にて接続している。 また、 冷媒 としては、 冷媒に超臨界で使用する超臨界冷媒 (例えば、 炭酸ガス) を用いる。 なお、 空気熱交換器 2 8にはこの空気熱交換器 2 8の能力を調整するファン 3 4 が付設されている。
そして、 循環路 1 2には、 取水口 1 0から流出して熱交換路 1 4に入る温水 (低温水) の温度 (入水温度) を検出する入水サーミスタ 3 5 aと、 熱交換路 1 4にて加熱された温水の温度 (出湯温度) を検出する出湯サーミスタ 3 6 aとが 設けられている。 さらに、 空気熱交換器 2 8には、 この空気熱交換器 2 8の温度 と検出する空気熱交サーミスタ 4 8 aが付設されている。 また、 この図 1におい て、 このヒートポンプ式給湯機は、 外気温度を検出する外気温度検出用サーミス タ 3 7 aが設けられている。 また、 吐出管 2 9と冷媒通路 3 1 (電動膨張弁 2 7と空気熱交換器 2 8とを 接続する通路における空気熱交換器 2 8の直前の位置) とは、 デフロスト弁 3 9 を有するデフロスト回路 3 8にて接続されている。 すなわち、 圧縮機 2 5からの ホットガスを蒸発器として機能する空気熱交換器 2 8に直接供給することがで き、 これによつて、 蒸発器 2 8の霜を除去するデフロスト運転が可能となる。 そ のため、 この冷媒サイクル 2は、 通常の湯沸き上げ運転と、 デフロスト運転とを 行うことができる。
さらに、 この冷媒循環回路は、 高圧側において分岐して、 この分岐部よりも 下流側の位置において合流するバイパス回路 4 2を設けると共に、 このバイパス 回路 4 2に冷媒調整器 4 3を介設し、 さらに、 この冷媒調整器 4 3の出口側に流 量調整用の調整弁 4 4を設けている。 すなわち、 バイパス回路 4 2は、 水熱交換 器 2 6の上流側から分岐して冷媒調整器 4 3に接続される第 1通路 4 5と、 この 冷媒調整器 4 3から導出されて第 1通路 4 5の分岐部よりも下流側において水熱 交換器 2 6に合流する第 2通路 4 6とを備えている。 そして、 第 2通路 4 6に上 記流量調整弁 4 4を介設している。
この冷媒調整器 4 3内には、 上記冷媒通路 3 1の一部を構成する通路 4 7が 配設され、バイパス回路 4 2を介してこの冷媒調整器 4 3内に入った高圧冷媒と、 この通路 4 7を流れる低圧冷媒との熱交換を行う。 この場合、 調整弁 4 4の開度 を調整することによって、 冷媒調整器 4 3内を通過する冷媒流量を調整して、 冷 媒調整器 4 3内の冷媒温度を調整している。 これは、 流量調整弁 4 4の開度制御 によって、 要求された冷媒温度に保持し、 冷媒調整器 4 3.内を適切な冷媒収容量 とすることができ、 この回路内の冷媒循環量を最適な量とするためである。
ところで、 このヒートポンプ式給湯機の制御部は、 図 2に示すように、 入水 温度検出手段 3 5と、 出湯温度検出手段 3 6と、 外気温度検出手段 3 7と、 空気 熱交換器温度検出手段 4 8と、 タイマ手段 5 0と、 制御手段 2 0等を備える。 こ れらの検出手段 3 5、 3 6、 3 7、 4 8及びタイマ手段 5 0等からのデータが制 御手段 2 0に入力される。この制御手段 2 0では、これらのデータ等に基づいて、 圧縮機 2 5やデフロスト弁 3 9等に制御信号が送信され、 この制御信号に基づい てこれらの圧縮機 2 5等が作動する。 また、 入水温度検出手段 3 5は上記入水サーミスタ 3 5 aにて構成でき、 出 湯温度検出手段 3 6は上記出湯サーミスタ 3 6 aにて構成でき、 外気温度検出手 段 37は上記外気温度検出サーミスタ 3 7 aにて構成でき、 空気熱交換器温度検 出手段 48は上記空気熱交サーミスタ 48 aにて構成することができる。さらに、 タイマ手段 50は、 時間を計測する既存のタイマ等にて構成することができ、 後 述するように、 タイマ TD O、 タイマ TD 1、 タイマ TD 2等を備える。 なお、 制御手段 20は例えばマイクロコンピュータにて構成することができる。 上記のように構成されたヒートポンプ式給湯機によれば、 バイパス切換手段 1 9を通常循環状態とすると共に、 デフロスト弁 3 9を閉状態として、 圧縮機 2 5を駆動させると共に、 水循環用ポンプ 1 3を駆動 (作動) させると、 貯湯タン ク 3の底部に設けた取水口 1 0から貯溜水 (低温水) が流出し、 これが循環路 1 2の熱交換路 1 4を流通する。 そのときこの温湯は水熱交換器 26によって加熱 され (沸き上げられ)、 湯入口 1 1から貯湯タンク 3の上部に返流 (流入) され る。 このような動作を継続して行うことによって、 貯湯タンク 3に高温の温湯を 貯湯することができる。
そして、 このヒートポンプ式給湯機では、 上記制御手段 20により、 沸き上 げ能力が所定低能力まで低下したときに、 上記空気熱交換器 2 8に着霜ありと判 断したり、 所定時間毎に沸き上げ能力の積算平均値を求め、 この積算平均値が所 定回数連続して低下したときに、 上記空気熱交換器 28に着霜ありと判断したり することができる。 すなわち、 空気熱交換器 28に霜を有さない場合と、 霜を有 する場合とを比較すれば、 霜を有する場合、 沸き上げ能力が低下するので、 この 能力が所定低能力まで低下すれば着霜ありとすることできる。この能力(CAP) は次の数①の式から求めることができる。
CAP = KC AP X P S R X (DB—DTO) ①
CAP :瞬時能力
KCAP :瞬時能力算出係数
P S R :ポンプ出力
D B :出湯温度 DTO :入水温度
このように、 沸き上げ能力 C AP=係数 Xポンプ出力 X (出湯温度一入水温 度) で求めることになる。 この場合、 入水温度は入水サーミスタ 3 5 aにて検出 することができ、 出湯温度は出湯サーミスタ 3 6 aにて検出することができる。 そして、 この沸き上げ能力としては、 図 4に示すような波形を描くことになり、 この能力が所定値にまで低下した時に、 デフロスト運転を開始する。 なお、 水循 環用ポンプ 1 3の能力指数としては、 ポンプ出力以外に、 ポンプ指令値、 回転数 等があり、 この水循環用ポンプ 1 3の循環水量に比例した指数である。
また、 所定時間毎に沸き上げ能力の積算平均値を求める場合、 上記能力を所 定時間 (T SAMP :例えば、 1 0秒) 毎に算出して、 この合計から積算平均値 を次の数②の式のように求める。 ここで、 C A P AVは平均能力であり、 ∑ CA Pは CAP (沸き上げ能力) の積算値であり、 N SAMPは積算回数である。 そ して、 この積算平均値が連続して所定回 (例えば、 5回) 継続して低下した場合 に空気熱交換器 28に着霜ありとすることができる。 なお、 運転開始してから、 タイマ TMA S Kのカウント時間 (例えば、 2分) が経過するまでは、 CAP (沸 き上げ能力) を 0とする。 また、 除霜 (デフロスト) 運転開始で CAPAVを 0 とし、 このデフロスト運転中とタイマ TMASKのカウント中は CAP (沸き上 げ能力) を 0とする。 なお、 デフロスト運転中も CAP AVを算出する。
C A P AV =∑ C AP/N S AMP ……②
CAPAV:平均能力
∑ CAP : CAP積算値
N S AMP :積算回数
上記のように、 着霜ありと判断された場合は、 デフロス ト運転を行う。 この デフロスト運転は、 水循環用ポンプ 1 3を停止させた状態でホットガスを空気熱 交換器 28に供給することによって開始される。 この場合、 このデフロスト運転 が長時間継続した場合等においては、 循環路 1 2、 特に室外に配設されて連絡配 管 23、 24内が凍結するおそれがあるので、 水循環用ポンプ 1 3を駆動させる 配管凍結防止運転を行う。 この配管凍結防止運転は、 上記制御手段 20にて構成 されるデフロスト制御手段 20 aでもって制御される。 このヒートポンプ式給湯機において、 デフロスト運転に入るための制御を図
5のフローチャート図に従って説明する。 沸き上げ運転を開始する状態、 つまり バイパス切換手段 1 9を通常循環状態とすると共に、 デフロスト弁 3 9を閉状態 として、 ステップ S 1のように圧縮機 2 5の運転を開始する。 この場合、 貯湯タ ンク 3に温水が入っていない等の異常状態が発生している場合があり、 このよう な場合には、 ステップ S 1 2のように異常発生処理を行って、 ステップ S 1 3の ように圧縮機 2 5を停止し、 その後、 除霜突入防止タイマ TD 2をリセットする 必要がある。
そして、 ステップ S 1で圧縮機 25の運転を開始した後、 ステップ S 2にお いて、 沸き上げ運転が完了したか否かの判定を行う。 このステップ S 2で沸き上 がっていると判断されれば、 ステップ S 3において、 圧縮機 2 5を停止して、 各 TD 0、 TD 1、及び TD 2タイマをリセットして、沸き上げ運転を終了 (完了) する。
また、 ステップ S 2で沸き上がっていないと判断されれば、 ステップ S 4へ と移行する。 そしてステップ S 4で、 TD 1のカウント時間 (例えば、 45分) 及び TD 2のカウント時間 (例えば、 1 2分) が経過したか否かを判定する。 こ れらの時間が経過していなければ、 ステップ S 1 0に示すように、 TD O、 TD 1及び TD 2が経過するまで待ち、 これらの時間が経過していれば、 ステップ S 5へ移行する。 ここで、 TD 0は除霜突入判定切換用沸き上げ運転積算タイマで あり、 そのカウント時間は、 例えば、 90分とされ、 TD 1は沸き上げ運転積算 タイマであり、 そのカウント時間は、 例えば、 45分とされる。
ステップ S 5では、 DE<DDEF 1 (- 20 °C) が成立するか否かを判断 する。 ここで、 DEとは、 空気熱交サーミスタ 48にて検出した空気熱交換器 2 8の温度であり、 DDE F 1とは除霜突入判定空気熱交温度であり、 この DDE F 1は例えば、 一 20°Cに設定される。 すなわち、 ステップ S 5で空気熱交換器 2 8の温度が一 20°Cよりも低ければ、 ステップ S 6へ移行して除霜処理 (デフ ロスト運転) を行う。
また、 ステップ S 5で、 空気熱交換器 2 8の温度が一 20°C以上であれば、 ステップ S 7へ移行する。 ステップ S 7では、 TD O (例えば、 90分) が経過 したか否かを判断する。 経過していれば、 ステップ S 8へ移行し、 経過していな ければ、 ステップ S 9へ移行する。
ステップ S 8では、 DEく DDE 1が TD 3のカウント時間だけ連続して成 立したか否かを判断する。 ここで、 DDE 1とは、除霜突入判定温度(基準温度) であり、 例えば、 (外気温度一 9) °Cで決定することができる。 すなわち、 外気 温度よりも所定温度 (この場合、 9°C) だけ低い基準温度を設定し、 空気熱交換 器 28の温度とこの基準温度とを比較する。 ただし、 一 20°C≤DDE 1≤— 4 °Cとする。 また、 TD 3とは、 除霜突入確定継続タイマであり、 例えば、 60秒 ifし ρ5ί / する。
このステップ S 8でこの条件が成立すれば、 すなわち、 空気熱交換器 28の 温度がこの基準温度よりも低下しているときに、 ステップ S 6へ移行し、 成立し なければ、 ステップ S 1 0からステップ S 2へ移行する。
また、 ステップ S 9では、 D Εく D D Ε 1でかつ所定時間 (例えば、 1 0秒) 毎に沸き上げ能力の積算平均値を求め、 この積算平均値が所定回数 (例えば、 5 回) 連続して低下したか否かを判断する。 この条件が成立すれば、 ステップ S 6 へ移行し、 成立しなければ、 ステップ S 1 0からステップ S 2へ移行する。
また、 このステップ S 6の除霜処理は、 デフロスト運転解除まで行われる。 そして、 このステップ S 6の終了後は、 各 TD O、 TD 1、 及ぴ TD 2タイマを リセットした後、 ステップ S 1 0からステップ S 2へと移行して沸き上げ運転が 再開され、 ステップ S 2でこの沸き上げ運転が終了であるかの判断を行う。 そし てこれ以降は、 上記処理手順を繰返す。
上記ヒートポンプ式給湯機においては、 空気熱交換器 28の温度 (DE) が 除霜突入判定空気熱交温度 (DDE F 1) よりも低ければ、 除霜運転を行う。 ま た、 そうでなくても、 運転継続時間 (TDO) が短いときには、 空気熱交換器 2 8の温度 (DE) と積算平均値 (CAPAV) に基づいて着霜の判断を行い、 運 転継続時間 (TDO) が長く着霜が生じ易いときには、 空気熱交換器 28の温度 (DE) に基づいて着霜の判断を行う。 この結果、 この空気熱交換器 28に着霜 があれば、 その着霜を確実に検出することができ、 霜がついていない状態でのデ フロスト運転を回避することができる。 すなわち、 デフロスト運転を行えば、 沸 き上げ運転を行うことができず、 給湯機としての効率を損なうことになるので、 このヒートポンプ式給湯機では、 この無駄なデフロス ト運転を回避して、 給湯機 としての能力および効率を向上させることが可能となる。
ところで、 沸き上げ能力を算出する際に使用する入水温度が上昇した場合、 沸き上げ能力の計算値が減少するので、 着霜の判断を、 上記のように、 沸き上げ 能力と、 空気熱交換器 2 8の温度とに基づいて行うようにすれば、 その判断を正 確に行うことができる。 すなわち、 入水温度上昇時には空気熱交換器 2 7の温度 も上昇しており、 誤検知を生じにくいものとすることができる。 次に、 デフロスト運転の制御を図 3のタイムチヤ一ト図に従って説明する。 上記のように、 デフロスト運転を開始するとの判断があれば、 図 3の b点で デフロス ト運転開始信号が発信される。 これによつて、 圧縮機 2 5の周波数を所 定値 (例えば、 4 0 H z ) まで低下させていくと共に、 電動膨張弁 (主減圧電動 膨張弁) 2 7の開度を所定開度 (例えば、 1 5 0パルス) まで絞る。 さらに、 調 整弁 (バイパス流量調整弁) 4 4を全閉状態とすると共に、 水循環用ポンプ 1 3 をデフロスト弁切換時ポンプ能力指令値(例えば、 1 0 r p m) まで低下させる。 また、 バイパス切換手段 1 9をバイパス循環状態 (バイパス側) に切換える。
この状態から所定時間 (例えば、 3 0秒) 経過した b ' 点で、 デフロス ト弁 3 9を開状態とすると共に、 ファン 3 4を停止する。 これによつて、 ホットガス が空気熱交換器 2 8へ供給されることになる。なお、この b点〜 b ' 点において、 圧縮機 2 5の運転周波数を低下させるのは、 この冷媒循環回路内の差圧を小さく してデフロスト弁 3 9の切換えを確実に行わせると共に、 デフロス ト弁 3 9の切 換時の衝撃音を小さく し、 さらには、 圧縮機 2 5の脱調防止のためである。
デフロスト弁 3 9を開状態とした後、 所定時間 (例えば、 1 0秒) 経過した c点で、電動膨張弁 2 7を全閉状態とすると共に、水循環用ポンプ 1 3を停止し、 さらには、 圧縮機 2 5の周波数を 5 8 H Zまで上昇させる。 その後、 さらに所定 時間 (例えば、 3 0秒) 経過した e点で、 電動膨張弁 2 7を所定量だけ開く、 例 えば、 小開度 (例えば、 1 0 0パルス) となるまで開くと共に、 圧縮機 2 5の周 波数を 7 6 H zとなるまで上昇させる。 次に、 電動膨張弁 2 7を小開度とした後、 所定時間 (例えば、 3 0秒) 経過 した f 点で、 電動膨張弁 2 7の開度を所定開度 (例えば、 1 5 0パルス) まで開 くと共に、 圧縮機 2 5の周波数を 9 O H zまで上昇させる。 この b点〜 c点にお いて、 水循環用ポンプ 1 3を停止しないのは、 水熱交換器 2 6の温度過昇を防止 するためである。
そして、 外気温度が所定低温度 (例えば、 0 °C) 以下で、 ί点から所定時間 (例えば、 6 0 0秒) この状態が継続した時 ( f ' 点) に、 電動膨張弁 2 7を全 閉状態として、 水循環用ポンプ 1 3を除霜中ポンプ能力指令値 (例えば、 1 0 r m) で駆動させ、 配管凍結防止運転を行う。 この状態で、 循環路 1 2内の水を 循環させなければ、 この循環路 1 2内の水を長時間循環させていないので、 この 循環路 1 2内において、 凍結するおそれがあるからである。 ここで、 電動膨張弁 2 7を全閉状態とするのは、 電動膨張弁 2 7は開状態であれば、 冷媒は循環水に 熱を奪われ、 空気熱交換器 2 8の霜を十分融かせなくなるためである。 なお、 デ フロスト運転中の外気が上記所定低温度を越えたり、 デフロスト運転時間が所定 時間継続したりしない場合には、 このデフロスト運転中の水循環用ポンプ 1 3の 駆動を行わないことになる。 これは、 このような条件では、 循環路 1 2内が凍結 するおそれがないからである。
次に、 b点から所定時間 (例えば、 7 2 0秒) 経過した g点 (この g点では、 電動膨張弁 2 7の開度を上記 1 5 0パルスに戻す) から、 圧縮機 2 5の周波数を 低下させていき、 この g点から所定時間 (例えば、 3 0秒) 経過した g ' 点でデ フロス ト弁 3 9を閉状態とし、 その後、 所定時間 (例えば、 1 0秒) 経過した h 点で、 通常の沸き上げ運転時の制御に戻る。 この g点〜 h点において、 通常制御 前に水循環用ポンプ 1 3を循環させておくのは、 入水温度を正確に検出するため である。 また、 b点〜 h点までのデフロスト運転中に、 調整弁 4 4を全閉状態と するのは、 デフロス ト弁 3 9の開状態における液バック防止、 及びデフロス ト運 転中の冷凍サイクルの安定化のためである。 さらに、 g点〜 g ' 点において圧縮 機 2 5の周波数を低下させるのは、 b点〜 1^ 点において圧縮機 2 5の周波数を 低下させると同様である。
また、 上記タイムチャートでは、 デフロスト運転の停止 (解除) は、 b点か ら所定時間経過した g' 点であつたが、 空気熱交換器 2 8の温度に基づいて、 除 霜解除を行ってもよい。 すなわち、 除霜解除判定温度 (DDE 2) を設定し、 D E >DDE 2が成立するときに、 このデフロスト運転を解除するようにしてもよ レヽ。 DDE 2は、 例えば、 DDE 2 =DOAT+ 1 0 (°C) で求めることができ る。 ここで、 DO ATとは外気温度である。 この場合、 4°C≤DDE 2 1 2°C とされる。 次に、 上記デフロスト運転が所定の長時間継続する場合の電動膨張弁 2 7の 開度の操作 (制御) を次の図 6と図 7に示すフローチャート図に従ってさらに説 明する。
デフロス ト信号が発信されれば、 ステップ S 1 5に移行して、 電動膨張弁 2 7を所定開度 (例えば、 1 50パルス) に絞る。 その後、 所定時間 (例えば、 3 0秒)経過後に、ステップ S 1 6へ移行して、デフロスト弁 3 9を開状態として、 ホットガスを空気熱交換器 28へ供給し始める。 次に、 ステップ S 1 7へ移行し て、 上記電動膨張弁 2 7を上記所定開度としてから所定時間 (例えば、 40秒) 経過したか否かを判断する。 そして、 この所定時間経過するまで待ち、 経過すれ ば、 ステップ S 1 8へ移行して、 電動膨張弁 27を全閉状態とする。
その後、 ステップ S 1 9へ移行して、 電動膨張弁 2 7を全閉状態としてから 所定時間 (例えば、 30秒) 経過したか否かを判断する。 そして、 この所定時間 経過するまで待ち、 経過すれば、 ステップ S 20へ移行して、 電動膨張弁 2 7を 所定小開度 (例えば、 1 00パルス) とする。 その後、 ステップ S 2 1へ移行し て、 電動膨張弁 2 7を所定小開度としてから所定時間 (例えば、 30秒) 経過し たか否かを判断する。
この所定時間経過するまで待ち、 経過すれば、 ステップ S 22へ移行して、 電動膨張弁 27を所定開度 (例えば、 1 50パルス) に戻す。 電動膨張弁 2 7を 所定開度としてから所定時間 (例えば、 600秒) 経過したか否かを判断する。 そして、 この所定時間経過するまで待ち、 経過すれば、 ステップ S 24へ移行し て、 外気温度が 0°C以下であるかを判断する。 外気温度が 0°C以下であれば、 ス テツプ S 2 5へ移行し、 外気温度が 0°Cを越えていれば、 ステップ S 26へ移行 する。
ステップ S 2 5では配管凍結防止運転を行う。 すなわち、 水循環用ポンプ 1 3を所定のポンプ指令値 (例えば、 1 0 r p m) にて駆動させ、 循環路 1 2内の 温水を循環させる。 この際、 電動膨張弁 2 7を全閉状態とする。 また、 配管凍結 防止運転を行った後は、 ステップ S 2 7へ移行して、 配管凍結防止運転終了か否 かを判断する。 このステップ S 2 7では、 デフロス ト運転信号が発信された後、 所定時間 (例えば、 7 2 0秒) 経過したか否かが判断され、 経過していれば、 ス テツプ S 2 6へ移行し、 経過していなければ、 ステップ S 2 4へ戻る。 なお、 配 管凍結防止運転は、 外気温度が 0 °Cを越えれば終了する。
配管凍結防止運転終了であると判断した場合には、 電動膨張弁 2 7の開度を 上記所定開度 (1 5 0パルス) に戻すと共に、 水循環用ポンプ 1 3をそのまま駆 動させる。 そして、 ステップ S 2 6では、 デフロスト運転が終了か否かを判断し て、 終了であれば終了する。 このデフロスト運転終了の判断は、 上記のように、 デフロスト運転信号が発信されてからの時間や、 空気熱交換器 2 8の温度の基づ いて行うことができる。
このように、 上記ヒートポンプ式給湯機では、 デフロスト運転中に (図 3の c点〜 f 点において)、 電動膨張弁 2 7の開度を制御することによって、 デフ口 スト弁 3 9を開状態とした後の液バックを防止することができる。また、その後、 電動膨張弁 2 7を開くことにより、 デフロス ト中の水熱交換器 2 6への冷媒溜ま り込みを防止することができる。 これによつて、 ヒートポンプ式給湯機としての 信頼性が向上して、 安定した沸き上げ運転を行うことができる。
また、 空気熱交換器 2 8に霜が付着した際には、 圧縮機 2 5のホットガスを 空気熱交換器 2 8に供給して、この空気熱交換器 2 8の霜を融かすことができる。 しかも、 外気温度が例えば、 0 °C以下の低温である場合に、 このデフロスト運転 が長時間に渡って継続すれば、 水循環用ポンプ 1 3が駆動することになつて、 こ の循環路 1 2内が凍結することを防止することができる。
さらに、 このデフロスト運転中に水循環用ポンプ 1 3が駆動しても、 循環路 1 2内の温水は、 バイパス回路 1 5を流れて、 貯湯タンク 3の上部に流入するこ とがない。 すなわち、 貯湯タンク 3の上部の高温の温湯に、 低温水が混入するこ とがなく、 この貯湯タンク 3から浴槽等に供給される湯の温度を低下させること がない。 このため、 デフロスト運転による貯湯タンク 3内の湯の低温化を防止で き、 この後の沸き上げ運転の延長を回避することができて、 ランニングコス トの 低減を図ることができる。 以上にこの発明の具体的な実施の形態について説明したが、 この発明は上記 形態に限定されるものではなく、 この発明の範囲内で種々変更して実施すること ができる。 例えば、 デフロスト運転を開始した後、 電動膨張弁 2 7を所定開度ま で閉めるまでの所定時間として、 デフロスト弁 3 9を開いた後に液バック等が生 じない範囲で変更でき、 また、 この所定開度まで閉めた状態から開ける所定量と しても、 このデフロスト運転中の水熱交換器 2 6への冷媒溜めり込み等を防止で きる範囲で変更できる。
なお、冷媒循環回路の冷媒として炭酸ガスを用いるのが好ましいが、その他、 ジクロ口ジフノレオロメタン ( R - 1 2 ) やクロ口ジフノレオロメタン ( R - 2 2 ) のような冷媒であっても、 オゾン層の破壌、 環境汚染等の問題から、 1, 1, 1 , 2—テトラフルォロェタン (R— 1 3 4 a ) のような代替冷媒であってもよい。 産業上の利用可能性
以上のように、 本発明に係るヒートポンプ式給湯機は、 給湯サイクルと冷媒 サイクルとを行うものに有用であり、 特に、 デフロスト運転を行う場合に適して いる。

Claims

請 求 の 範 囲
1. 圧縮機 (25) と、 温水を加熱する水熱交換器 (26) と、 電動膨張弁 (2 7) と、 空気熱交換器 (28) とが順次接続されると共に、 上記圧縮機 (2 5) からのホットガスを上記空気熱交換器 (28) に供給するためのデフロスト回路
(3 8) を備えたヒートポンプ式給湯機であって、
上記圧縮機 (2 5) からのホットガスを上記空気熱交換器 (28) に供給す るデフロスト運転を開始し、その開始から一定時間経過後に、上記電動膨張弁(2 7) を所定開度まで閉じることを特徴とするヒートポンプ式給湯機。
2. 上記電動膨張弁 (27) の所定開度が、 全閉状態の開度であることを特徴と する請求項 1のヒートポンプ式給湯機。
3. 上記電動膨張弁 (27) を所定開度まで閉じた状態から所定時間経過後に、 この電動膨張弁 (2 7) を所定量だけ開くことを特徴とする請求項 1又は請求項 2のヒートポンプ式給湯機。
4. 高圧側に余剰冷媒を貯える冷媒調整器 (4 3) を配置すると共に、 この冷媒 調整器 (44) を通過する冷媒の流量を調整する流量調整弁 (44) を、 その出 口側に設けたヒートポンプ式給湯機であって、 上記デフロスト運転中はこの流量 調整弁 (44) を全閉状態とすることを特徴とする請求項 1のヒートポンプ式給
5. 冷媒に超臨界で使用する超臨界冷媒を用いたことを特徴とする請求項 1のヒ 。式給湯機。
PCT/JP2003/000702 2002-01-29 2003-01-27 Chauffe-eau de type pompe a chaleur WO2003064942A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/502,570 US20050189431A1 (en) 2002-01-29 2003-01-27 Heat pump type water heater
EP03734843A EP1484561A4 (en) 2002-01-29 2003-01-27 HEAT PUMP water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-19505 2002-01-29
JP2002019505A JP3932913B2 (ja) 2002-01-29 2002-01-29 ヒートポンプ式給湯機

Publications (1)

Publication Number Publication Date
WO2003064942A1 true WO2003064942A1 (fr) 2003-08-07

Family

ID=27654242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000702 WO2003064942A1 (fr) 2002-01-29 2003-01-27 Chauffe-eau de type pompe a chaleur

Country Status (4)

Country Link
US (1) US20050189431A1 (ja)
EP (1) EP1484561A4 (ja)
JP (1) JP3932913B2 (ja)
WO (1) WO2003064942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028494B2 (en) 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US7228692B2 (en) 2004-02-11 2007-06-12 Carrier Corporation Defrost mode for HVAC heat pump systems

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005171A1 (en) * 2004-07-09 2006-01-19 Junjie Gu Refrigeration system
US20090159259A1 (en) * 2006-06-30 2009-06-25 Sunil Kumar Sinha Modular heat pump liquid heater system
US7543456B2 (en) * 2006-06-30 2009-06-09 Airgenerate Llc Heat pump liquid heater
DE102006040380A1 (de) * 2006-08-29 2008-03-06 BSH Bosch und Siemens Hausgeräte GmbH Kältemaschine und Betriebsverfahren dafür
KR100779335B1 (ko) 2006-11-22 2007-11-23 한국플랜트서비스주식회사 공기열원 히트펌프의 제어 방법
DE102007039296A1 (de) * 2007-08-20 2009-02-26 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenanlage
US20110005245A1 (en) * 2008-01-30 2011-01-13 Dux Manufacturing Limited Methods and apparatuses for operating heat pumps in hot water systems
JP2009228979A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
JP5324826B2 (ja) * 2008-06-02 2013-10-23 サンデン株式会社 ヒートポンプ式給湯装置
WO2009147743A1 (ja) * 2008-06-06 2009-12-10 株式会社前川製作所 豆の焙煎冷却方法及び装置
JP5012706B2 (ja) * 2008-07-09 2012-08-29 株式会社日本自動車部品総合研究所 ヒートポンプサイクル
KR101329509B1 (ko) * 2008-08-04 2013-11-13 엘지전자 주식회사 히트펌프 연동 온수 순환 시스템 및 제어 방법
JP5169873B2 (ja) * 2009-01-26 2013-03-27 パナソニック株式会社 ヒートポンプ給湯機
JP5084767B2 (ja) * 2009-03-11 2012-11-28 リンナイ株式会社 給湯システム
US9500376B2 (en) * 2009-03-30 2016-11-22 Mitsubishi Electric Corporation Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
US8385729B2 (en) 2009-09-08 2013-02-26 Rheem Manufacturing Company Heat pump water heater and associated control system
CN101726104B (zh) * 2009-11-20 2012-08-22 张斌 带空气置换功能的空气源热泵热水器
JP5570531B2 (ja) 2010-01-26 2014-08-13 三菱電機株式会社 ヒートポンプ装置
CN101799227B (zh) * 2010-03-13 2011-11-09 快意节能设备(深圳)有限公司 多功能空调、热水系统
JP5367633B2 (ja) * 2010-04-15 2013-12-11 株式会社コロナ 地中熱ヒートポンプ装置
KR101190492B1 (ko) 2010-05-20 2012-10-12 엘지전자 주식회사 히트펌프 연동 급탕장치
JP2012068001A (ja) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp 室外機及び空気調和装置
US9625187B2 (en) * 2010-12-15 2017-04-18 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
US10544973B2 (en) * 2011-12-16 2020-01-28 Mitsubishi Electric Corporation Air-conditioning apparatus with temperature controlled pump operation
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP5851953B2 (ja) * 2012-07-23 2016-02-03 株式会社コロナ 空気調和機
US9631826B2 (en) * 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
DE102012024347A1 (de) * 2012-12-13 2014-06-18 Robert Bosch Gmbh Heizungsvorrichtung und Verfahren zu deren Betrieb
KR20150075529A (ko) * 2013-12-26 2015-07-06 동부대우전자 주식회사 냉장고의 냉각장치 및 그 제어 방법
US10139129B2 (en) 2014-03-14 2018-11-27 A. O. Smith Corporation Water heater having thermal displacement conduit
ES2692846T3 (es) 2014-11-24 2018-12-05 Carrier Corporation Sistemas y métodos para descongelación libre y positiva
CN104676902B (zh) * 2015-03-11 2017-06-30 广东美的暖通设备有限公司 热泵热水器及其控制方法
CN105258331B (zh) * 2015-10-30 2017-04-12 广东美的暖通设备有限公司 一种热泵热水机的防冻结控制方法及系统
CN107860050A (zh) * 2017-10-24 2018-03-30 昆明东启科技股份有限公司 一种co2热泵系统和提高热力性能的方法
JP2019184112A (ja) * 2018-04-05 2019-10-24 東芝ライフスタイル株式会社 冷蔵庫
JP7117513B2 (ja) * 2019-02-15 2022-08-15 パナソニックIpマネジメント株式会社 ヒートポンプシステム
CN112082269B (zh) * 2019-06-12 2024-10-18 赵心阁 一种直热空气能热水器的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129649A (ja) * 1984-07-23 1986-02-10 松下電器産業株式会社 ヒ−トポンプ給湯装置
JPH0387578A (ja) * 1989-08-31 1991-04-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JPH04217754A (ja) * 1990-12-14 1992-08-07 Hitachi Ltd 空気調和機
JPH10220932A (ja) * 1997-01-30 1998-08-21 Mitsubishi Heavy Ind Ltd 冷凍装置の除霜方法
JPH11304309A (ja) * 1998-04-20 1999-11-05 Fujitsu General Ltd 空気調和機
JP2993180B2 (ja) * 1991-06-13 1999-12-20 ダイキン工業株式会社 空気調和装置
JP2001263812A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 給湯装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553402A (en) * 1979-09-28 1985-11-19 Cramer Sr Carl V Non-reversible multiple-refrigeration-cycle solar apparatus including a variable directing valve mechanism
US4347711A (en) * 1980-07-25 1982-09-07 The Garrett Corporation Heat-actuated space conditioning unit with bottoming cycle
US4492092A (en) * 1982-07-02 1985-01-08 Carrier Corporation Combination refrigerant circuit and hot water preheater
KR900000809B1 (ko) * 1984-02-09 1990-02-17 미쓰비시전기 주식회사 냉난방 · 급탕용(給湯用) 히트펌프장치
JPS63162272U (ja) * 1987-04-13 1988-10-24
US4949551A (en) * 1989-02-06 1990-08-21 Charles Gregory Hot gas defrost system for refrigeration systems
JP2697487B2 (ja) * 1992-05-29 1998-01-14 ダイキン工業株式会社 冷凍装置の運転制御装置
US5320166A (en) * 1993-01-06 1994-06-14 Consolidated Natural Gas Service Company, Inc. Heat pump system with refrigerant isolation and heat storage
US5440895A (en) * 1994-01-24 1995-08-15 Copeland Corporation Heat pump motor optimization and sensor fault detection
US5367601A (en) * 1994-02-16 1994-11-22 World Technology Group, Inc. Supplemental heat control system with duct temperature sensor and variable setpoint
US5465588A (en) * 1994-06-01 1995-11-14 Hydro Delta Corporation Multi-function self-contained heat pump system with microprocessor control
US5729985A (en) * 1994-12-28 1998-03-24 Yamaha Hatsudoki Kabushiki Kaisha Air conditioning apparatus and method for air conditioning
US5842352A (en) * 1997-07-25 1998-12-01 Super S.E.E.R. Systems Inc. Refrigeration system with improved liquid sub-cooling
DE19813673B4 (de) * 1998-03-27 2004-01-29 Daimlerchrysler Ag Verfahren und Vorrichtung zum Heizen und Kühlen eines Nutzraumes eines Kraftfahrzeuges
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
JP3297657B2 (ja) * 1999-09-13 2002-07-02 株式会社デンソー ヒートポンプ式給湯器
JP4059616B2 (ja) * 2000-06-28 2008-03-12 株式会社デンソー ヒートポンプ式温水器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129649A (ja) * 1984-07-23 1986-02-10 松下電器産業株式会社 ヒ−トポンプ給湯装置
JPH0387578A (ja) * 1989-08-31 1991-04-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JPH04217754A (ja) * 1990-12-14 1992-08-07 Hitachi Ltd 空気調和機
JP2993180B2 (ja) * 1991-06-13 1999-12-20 ダイキン工業株式会社 空気調和装置
JPH10220932A (ja) * 1997-01-30 1998-08-21 Mitsubishi Heavy Ind Ltd 冷凍装置の除霜方法
JPH11304309A (ja) * 1998-04-20 1999-11-05 Fujitsu General Ltd 空気調和機
JP2001263812A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1484561A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028494B2 (en) 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US7228692B2 (en) 2004-02-11 2007-06-12 Carrier Corporation Defrost mode for HVAC heat pump systems

Also Published As

Publication number Publication date
EP1484561A1 (en) 2004-12-08
JP2003222447A (ja) 2003-08-08
US20050189431A1 (en) 2005-09-01
JP3932913B2 (ja) 2007-06-20
EP1484561A4 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2003064942A1 (fr) Chauffe-eau de type pompe a chaleur
WO2003064935A1 (fr) Chauffe-eau du type a pompe a chaleur
JP4507109B2 (ja) ヒートポンプ式給湯機
JP5113447B2 (ja) ヒートポンプ給湯装置の制御方法
US9897349B2 (en) Refrigeration cycle device
KR100859245B1 (ko) 히트 펌프 급탕 마루 난방 장치
US7228695B2 (en) Heat pump type hot water supply device
JP5653451B2 (ja) ヒートポンプ式給湯装置
JP2008116156A (ja) 空気調和装置
US7481067B2 (en) Freezer
JP2002257427A (ja) 冷凍空調装置、及びその運転方法
JP2003222392A (ja) ヒートポンプ式給湯機
JP3632124B2 (ja) 冷凍装置
JP2014001863A (ja) 熱機器
JP3060980B2 (ja) ヒートポンプ給湯機
CN110513914A (zh) 一种热泵供热系统及其控制方法
JPH06341741A (ja) 冷凍装置のデフロスト制御装置
JP5094217B2 (ja) ヒートポンプ給湯装置
KR101592814B1 (ko) 열기기
JPH01291078A (ja) 冷凍装置
JPH01296066A (ja) 冷凍装置
JP2005098649A (ja) ヒートポンプ給湯装置
JPH0289971A (ja) 冷凍装置
JPH01291079A (ja) 冷凍装置
JPH0554026B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003734843

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003734843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10502570

Country of ref document: US