JP7117513B2 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
JP7117513B2
JP7117513B2 JP2019106605A JP2019106605A JP7117513B2 JP 7117513 B2 JP7117513 B2 JP 7117513B2 JP 2019106605 A JP2019106605 A JP 2019106605A JP 2019106605 A JP2019106605 A JP 2019106605A JP 7117513 B2 JP7117513 B2 JP 7117513B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
side heat
temperature
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019106605A
Other languages
English (en)
Other versions
JP2020134122A (ja
Inventor
季セン 徐
安彦 諌山
由樹 山岡
俊二 森脇
和彦 町田
和人 中谷
常子 今川
一貴 小石原
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to EP20156044.8A priority Critical patent/EP3696478B1/en
Publication of JP2020134122A publication Critical patent/JP2020134122A/ja
Application granted granted Critical
Publication of JP7117513B2 publication Critical patent/JP7117513B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプシステムに関するものである。
従来、この種のヒートポンプシステムにおいて、二段圧縮機講を備え、利用側熱交換器の下流側から冷媒の一部を膨張させて、二段圧縮機講の圧縮途中に中間冷媒をバイパスする冷凍サイクル装置が開示されている(例えば、特許文献1参照)。
図4は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。
図4に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、後段側インジェクション管120とを備えている。冷媒回路110は、直列に接続された複数の圧縮回転要素を有する圧縮機構111、熱源側熱交換器112、エコノマイザ熱交換器(以下、中間熱交換器)122、膨張機構113a、113b、利用側熱交換器114が配管により環状に接続されるとともに、加熱運転と冷却運転を切り換えるための切替機構115で構成されている。
また、前段側の圧縮機構から吐出された冷媒を、後段側の圧縮回転要素に吸入させるための中間冷媒管116に設けられ、前段側の圧縮回転要素から吐出されて後段側の圧縮回転要素に吸入される冷媒の冷却器として機能する中間冷却器117と、中間冷却器117をバイパスするように中間冷媒管116に接続されている中間冷却器バイパス管130が設けられている。
後段側インジェクション管120は、熱源側熱交換器112と利用側熱交換器114の間で冷媒回路110から分岐し、分岐した冷媒が圧縮機構111の後段側の圧縮回転要素に戻るように連通されている。また、インジェクション管120には、開度制御が可能な後段側インジェクション弁121が設けられている。
さらに、冷凍サイクル装置100は、切替機構115を冷却運転状態に切り換えることで熱源側熱交換器112の除霜を行う逆サイクル除霜運転を行う際に、熱源側熱交換器112、中間冷却器117及び後段側インジェクション管120に冷媒を流し、中間冷却器117の除霜が完了したことを検知した後に、中間冷却器バイパス管130を用いて、中間冷却器117に冷媒が流れないようにするとともに、後段側インジェクション弁121の開度が大きくなるように制御している。
特開2009-133581号公報
しかしながら、前記従来の構成では、熱源側熱交換器112で除霜を行って冷却された低温の冷媒が利用側熱交換器114へ流入するため、逆サイクル除霜運転終了後の加熱運転開始時には、利用側熱交換器114の温度が低下してしまう。
そこで、圧縮機構111、利用側熱交換器114、中間熱交換器122、膨張機構113a、膨張機構113b、熱源側熱交換器112の順に冷媒が流れる順サイクル除霜運転
を行う構成が考案できる。
しかしながら、その場合には、冷媒回路110内の冷媒は、中間熱交換器122で冷却された後、熱源側熱交換器112に流入し、除霜を行う構成のため、圧縮機構111から吐出される高温の冷媒の熱量が、中間熱交換器122で低減されて熱源側熱交換器112に供給されるため、除霜時間が長くなり、使用性が低下してしまうという課題を有していた。
本発明は、前記従来の課題を解決するもので、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供することを目的とする。
前記従来の課題を解決するために、本発明のヒートポンプシステムは、圧縮回転要素から構成される圧縮機構、前記圧縮機構から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、を有する冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路と制御装置と、を備え、前記圧縮機構から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮機構から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、を有し、前記制御装置は、前記加熱運転モードの運転実行中に、前記除霜運転モードの運転に移行する場合には、前記第2膨張装置の開度を閉方向に動作させ、その後、前記搬送装置の運転を停止して、前記加熱運転モードの運転実行を停止させることを特徴とするものである。
これにより、バイパス冷媒回路から、圧縮回転要素の圧縮途中の冷媒に合流する冷媒流量が減少するため、圧縮機構から吐出される冷媒の温度を上昇させ、吐出圧力を低下させることができる。
そして、加熱運転モードの運転を実行中に、この高温の吐出冷媒が、主冷媒回路の高圧側を流れる間に、圧縮機構や利用側熱交換器などの構成部品を加熱するため、圧縮機構や利用側熱交換器の温度が上昇する。
そして、搬送装置の運転も停止させるので、利用側熱交換器における利用側熱媒体への放熱量が抑制され、圧縮機構から吐出される冷媒の温度と圧力がさらに上昇するため、圧縮機構や利用側熱交換器の温度がより上昇する。
ここで、第2膨張装置の弁開度を閉方向に操作したときに、一旦、吐出圧力は低下するため、第2膨張装置の弁開度を閉方向に操作した後に、搬送装置の運転動作を停止した方が、圧縮機構から吐出される冷媒の温度と圧力の過昇を防止することができる。
このように、除霜運転モードの運転に移行する場合には、除霜運転モードの実行開始前の加熱運転モードの運転実行中に、第2膨張装置の開度を閉方向に動作させ、圧縮機構から吐出される冷媒の温度と圧力を段階的に上昇させることで、圧縮機構から吐出される冷媒の温度と圧力の過昇による加熱運転モードの運転停止を防止することができる。
そして、搬送装置の運転の停止後の除霜運転モードの運転においては、冷媒が高圧側から低圧側の熱源側熱交換器に向かう際に、圧縮回転要素による圧縮過程に加え、圧縮機構
や利用側熱交換器からその保有熱も受熱できる。
これにより、搬送装置の運転の停止後の除霜運転モードの運転においては、圧縮機構から吐出された冷媒が、低圧側の熱源側熱交換器に向かう際における温度低下を抑制でき、除霜運転モード実行時に熱源側熱交換器の除霜に利用できる熱量を増加させることができ、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供できる。
本発明によれば、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供できる。
本発明の実施の形態1におけるヒートポンプシステムの構成図 本発明の実施の形態1におけるヒートポンプシステムの除霜運転モード制御フローを示す図 同ヒートポンプシステムにおける冷凍サイクル装置の膨張装置の開度と冷媒流量との関係を示す図 従来の冷凍サイクル装置の構成図
第1の発明は、圧縮回転要素から構成される圧縮機構、前記圧縮機構から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、を有する冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路と制御装置と、を備え、前記圧縮機構から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮機構から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、を有し、前記制御装置は、前記加熱運転モードの運転実行中に、前記除霜運転モードの運転に移行する場合には、前記第2膨張装置の開度を閉方向に動作させ、その後、前記搬送装置の運転を停止して、前記加熱運転モードの運転実行を停止させることを特徴とするヒートポンプシステムである。
これにより、バイパス冷媒回路から、圧縮回転要素の圧縮途中の冷媒に合流する冷媒流量が減少するため、圧縮機構から吐出される冷媒の温度を上昇させ、吐出圧力を低下させることができる。
そして、加熱運転モードの運転を実行中に、この高温の吐出冷媒が、主冷媒回路の高圧側を流れる間に、圧縮機構や利用側熱交換器などの構成部品を加熱するため、圧縮機構や利用側熱交換器の温度が上昇する。
そして、搬送装置の運転も停止させるので、利用側熱交換器における利用側熱媒体への放熱量が抑制され、圧縮機構から吐出される冷媒の温度と圧力がさらに上昇するため、圧縮機構や利用側熱交換器の温度がより上昇する。
ここで、第2膨張装置の弁開度を閉方向に操作したときに、一旦、吐出圧力は低下するため、第2膨張装置の弁開度を閉方向に操作した後に、搬送装置の運転動作を停止した方が、圧縮機構から吐出される冷媒の温度と圧力の過昇を防止することができる。
このように、除霜運転モードの運転に移行する場合には、除霜運転モードの実行開始前の加熱運転モードの運転実行中に、第2膨張装置の開度を閉方向に動作させ、圧縮機構から吐出される冷媒の温度と圧力を段階的に上昇させることで、圧縮機構から吐出される冷媒の温度と圧力の過昇による加熱運転モードの運転停止を防止することができる。
そして、搬送装置の運転の停止後の除霜運転モードの運転においては、冷媒が高圧側から低圧側の熱源側熱交換器に向かう際に、圧縮回転要素による圧縮過程に加え、圧縮機構や利用側熱交換器からその保有熱も受熱できる。
これにより、搬送装置の運転の停止後の除霜運転モードの運転においては、圧縮機構から吐出された冷媒が、低圧側の熱源側熱交換器に向かう際における温度低下を抑制でき、除霜運転モード実行時に熱源側熱交換器の除霜に利用できる熱量を増加させることができ、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供できる。
第2の発明は、特に、第1の発明において、前記除霜運転モードにおいて、前記冷媒は、前記圧縮機構、前記利用側熱交換器、前記中間熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れ、また、前記制御装置は、前記第2膨張装置の開度を全閉に設定し、前記第1膨張装置の開度を全開に設定することを特徴とするものである。
これにより、制御装置は、第2膨張装置の開度を全閉に設定し、第1膨張装置の開度を全開に設定することで、圧縮機構から吐出され、利用側熱交換器を通過後、中間熱交換器を流れる主冷媒回路の冷媒が、中間熱交換器においてバイパス冷媒回路を流れる冷媒に放熱して温度低下するのを防止できる。
そのため、圧縮機構から吐出された冷媒は、高温に維持されたままの状態で、第1膨張装置において最大量を、熱源側熱交換器に供給できるため、順サイクルでの除霜運転における除霜時間を短縮でき、使用性を向上させた冷凍サイクル装置を提供できる。
第3の発明は、特に、第2の発明において、前記冷媒として、二酸化炭素を用い、前記第1膨張装置は、ニードルが弁座に対して着座しても、冷媒が所定量流れる非全閉型の膨張弁であり、前記第2膨張装置は、ニードルが弁座に対して着座すると、冷媒が流れない全閉型の膨張弁であることを特徴とするものである。
これにより、第1膨張装置を非全閉型の膨張弁とすることで、冷媒として二酸化炭素(CO2)を用いている圧力の高い冷凍サイクル装置において、ニードル(図示せず)が弁座(図示せず)に対して着座しても、冷媒が所定量(V0)流れるため、圧縮機構の運転時において、第1膨張装置に異物混入等が生じたとしても、全閉状態になりにくく、高圧冷媒の圧力上昇を抑えることができ、安全性を向上できる。
また、第2膨張装置を全閉型の膨張弁とすることで、第2膨張装置(全閉型)の弁開度を全閉とした場合、利用側熱交換器から流出し、第2膨張装置側に分配された高圧冷媒が、中間熱交換器に全く流れない。
これにより、バイパス冷媒回路から、圧縮回転要素の圧縮途中に、冷媒が合流しないため、圧縮機構から吐出される冷媒の温度を上昇させ、吐出圧力を低下させることができる。
第4の発明は、特に、第1~第3のいずれかの発明において、前記利用側熱交換器から流出する前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入する前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備
え、前記制御装置は、前記加熱運転モードの実行時には、前記圧縮回転要素を回転させ、前記熱媒体出口温度サーミスタの検出温度と前記熱媒体入口温度サーミスタの検出温度との温度差が目標温度差となるように、前記搬送装置を動作させるとともに、前記熱媒体出口温度サーミスタの前記検出温度が所定温度を超えた場合には、前記第2膨張装置の開度を全閉に設定することを特徴とするものである。
これにより、放熱器における加熱能力は、現在の暖房負荷に相当する値となり、省エネルギー性に優れた液体加熱装置温を提供できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプシステムの構成図を示すものである。ヒートポンプシステムは、冷凍サイクル装置1と、利用側熱媒体回路5と、液体加熱装置の運転動作を制御する制御装置4とから構成されている
また、冷凍サイクル装置1は、主冷媒回路2、バイパス冷媒回路3とから構成されている。
主冷媒回路2は、圧縮機構21、放熱器である利用側熱交換器22、冷却用熱交換器である中間熱交換器26、主膨張弁である第1膨張装置23、蒸発器である熱源側熱交換器24が、配管16で順次接続されて形成され、冷媒として二酸化炭素(CO2)を用いている。
なお、冷媒としては、二酸化炭素を用いるのが最適だが、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または、R32等の単一冷媒を用いることもできる。
冷媒を圧縮する圧縮機構21は、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される。利用側熱交換器22は、高段側圧縮回転要素21bから吐出された冷媒により利用側熱媒体を加熱する。なお、圧縮機構21を構成する低段側圧縮回転要素21aと高段側圧縮回転要素21bとの容積比は一定で、駆動軸(図示せず)を共通化させ、1つの容器内に配置した1台の圧縮機で構成されている。
なお、本実施の形態では、圧縮回転要素が、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される圧縮機構21を用いて説明するが、単一の圧縮回転要素においても適用でき、単一の圧縮回転要素の場合には、バイパス冷媒回路3からの冷媒が合流する位置を圧縮回転要素の圧縮途中とし、バイパス冷媒回路3からの冷媒が合流する位置までの圧縮回転要素を低段側圧縮回転要素21aとし、バイパス冷媒回路3からの冷媒が合流する位置以降の圧縮回転要素を高段側圧縮回転要素21bとして適用することができる。
また、低段側圧縮回転要素21aと高段側圧縮回転要素21bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構21の構成でもよい。
バイパス冷媒回路3は、利用側熱交換器22から第1膨張装置23までの間の配管16から分岐され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の配管16に接続されている。
バイパス冷媒回路3には、バイパス膨張弁である第2膨張装置31を設けられている。
利用側熱交換器22を通過後の一部の高圧冷媒、又は、中間熱交換器26を通過後の一部の高圧冷媒は、第2膨張装置31により減圧されて中間圧冷媒となった後に、中間熱交換器26で主冷媒回路2を流れる高圧冷媒と熱交換され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の冷媒と合流される。
また、熱源側熱交換器24の出口側と圧縮機構21の吸入側との間には、気液分離を行うアキュムレーター25が設けられている。また、主冷媒回路2には、主冷媒回路2において、圧縮機構21から吐出された高圧冷媒を利用側熱交換器22側に流すか、あるいは、熱源側熱交換器24側に流すかの流路を切り換えるための四方弁27が設けられている。
次に、第1膨張装置23と第2膨張装置31について、図3を用いて以下に説明する。第1膨張装置23は、ニードル(図示せず)が弁座(図示せず)に対して着座しても、冷媒が所定量(V0)流れる非全閉型の膨張弁である。そして、第2膨張装置31は、ニードル(図示せず)が弁座(図示せず)に対して着座すると、冷媒が流れない(冷媒流量0)全閉型の膨張弁である。
なお、第1膨張装置23を非全閉型の膨張弁とすることで、冷媒として二酸化炭素(CO2)を用いている圧力の高い冷凍サイクル装置1において、ニードル(図示せず)が弁座(図示せず)に対して着座しても、冷媒が所定量(V0)流れるため、圧縮機構21の運転時において、第1膨張装置23に異物混入等が生じたとしても、全閉状態になりにくく、高圧冷媒の圧力上昇を抑えることができ、安全性を向上できる。
また、第2膨張装置31を全閉型の膨張弁とすることで、第2膨張装置31(全閉型)の弁開度を全閉とした場合、利用側熱交換器22から流出し、第2膨張装置31側に分配された高圧冷媒が、中間熱交換器26に流れるのを、完全に防止できる。
このため、圧縮機構21の低段側圧縮回転要素21aから吐出された中間圧冷媒と合流し、高段側圧縮回転要素21bに吸入されることもないため、圧縮機構21から吐出圧力の上昇を防止でき、利用側熱交換器22における加熱能力の低下を実現できる。
また、本実施の形態における冷凍サイクル装置1においては、通常運転モードであり、搬送装置55を動作させ、利用側熱媒体を利用側熱媒体回路5において利用側熱交換器22を介して循環させ、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、利用側熱交換器22で循環する利用側熱媒体を加熱する加熱運転モードを有している。
ここで、図1に基づいて、加熱運転モードについて説明する。なお、加熱運転モード実行時の冷媒の流れ方向を実線矢印で示している。
圧縮機構21から吐出された高圧冷媒は、四方弁27を介して利用側熱交換器22に流入し、利用側熱交換器22を通過する利用側熱媒体を加熱する。利用側熱交換器22から流出した高圧冷媒は、中間熱交換器26側と第2膨張装置31側とに分配される。中間熱交換器26に流入した高圧冷媒は、第2膨張装置31で減圧された中間圧冷媒によって冷却される。
第1膨張装置23側に分配された高圧冷媒は、第1膨張装置23によって減圧されて膨張した後に、熱源側熱交換器24に流入する。熱源側熱交換器24に流入した低圧冷媒は、熱源側熱交換器24において空気から吸熱する。
一方、第2膨張装置31側に分配された高圧冷媒は、第2膨張装置31によって減圧されて膨張した後に、中間熱交換器26に流入する。中間熱交換器26に流入した中間圧冷媒は、利用側熱交換器22から流出した高圧冷媒によって加熱される。その後、中間熱交換器26から流出した中間圧冷媒は、圧縮機構21の低段側圧縮回転要素21aから吐出された中間圧冷媒と合流し、高段側圧縮回転要素21bに吸入される。
利用側熱媒体回路5においては、利用側熱交換器22に、熱媒体戻り管56と熱媒体往き管57とが接続されている。熱媒体戻り管56には、搬送ポンプである搬送装置55が設けられている。
この搬送装置55が動作することにより、熱媒体戻り管56を通じて利用側熱交換器22に利用側熱媒体が供給され、利用側熱交換器22で加熱された利用側熱媒体が、熱媒体往き管57から、例えば、床暖房等の暖房端末(図示せず)や貯湯タンク(図示せず)に供給される。
これにより、暖房や給湯が行われる。その後、利用側熱媒体は、熱媒体戻り管56を介して再び利用側熱交換器22戻る構成となっている。なお、利用側熱媒体としては、水または不凍液が用いられている。
制御装置4は、低段側圧縮回転要素21a及び高段側圧縮回転要素21bを動作させ、利用側熱交換器22で循環水を加熱するが、その循環水の温度差である熱媒体出口温度サーミスタ54の検出温度と熱媒体入口温度サーミスタ53の検出温度との温度差が目標温度差となるように、搬送装置55を動作させる。
これにより、利用側熱交換器22で生成された高温水は、暖房端末(図示せず)で放熱して暖房に利用され、暖房端末(図示せず)で放熱された低温水は、再び、利用側熱交換器22で加熱される。このときには、熱媒体出口温度サーミスタ54の検出温度と熱媒体入口温度サーミスタ53の検出温度との温度差が目標温度差となるように制御される。
そして、次第に暖房負荷が小さくなるため、熱媒体出口温度サーミスタ54の検出温度と熱媒体入口温度サーミスタ53の検出温度との温度差が目標温度差となるように制御している関係上、熱媒体出口温度サーミスタ54の検出温度及び熱媒体入口温度サーミスタ53の検出温度は次第に上昇していくが、熱媒体出口温度サーミスタ54の検出温度が所定温度を超えた場合には、利用側熱交換器22における加熱能力を下げる必要があるので、制御装置4は以下のように制御する。
すなわち、熱媒体出口温度サーミスタ54の検出温度が、所定温度を超えた場合には、低段側圧縮回転要素21a及び高段側圧縮回転要素21bの運転周波数を低下させる、あるいは、第1膨張装置23を弁開度が大きくなる方向に動作させ、冷媒が所定量流れる開度に設定する、のうち少なくともどちらか一方を実行する。
それに加え、第2膨張装置31(全閉型)を弁開度と全閉とし、利用側熱交換器22から流出し、第2膨張装置31側に分配された高圧冷媒が、中間熱交換器26に流れるのを防止している。
このため、圧縮機構21の低段側圧縮回転要素21aから吐出された中間圧冷媒と合流し、高段側圧縮回転要素21bに吸入されることもないため、圧縮機構21から吐出圧力の上昇を防止でき、かつ、利用側熱交換器22における加熱能力の低下を実現できる。
これにより、利用側熱交換器22における加熱能力は、現在の暖房負荷に相当する値と
なり、省エネルギー性に優れた温水暖房機として利用できる。
また、主冷媒回路2の第1膨張装置23の下流側と圧縮機構21の吸入側とを接続する主冷媒回路2の低圧側の配管16には、低圧側検出部として、低圧側の蒸発圧力を検出する圧力センサ51が設けられている。
なお、低圧側検出部としては、主冷媒回路2の第1膨張装置23の下流側と圧縮機構21の吸入側とを接続を接続する主冷媒回路2の低圧側の配管16に設けられ、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ30を用いてもよい。
また、熱源側熱交換器24の周辺には温度サーミスタ28が設けられており、ファン29が駆動することで、熱源側熱交換器24に熱を供給する空気の温度を、温度サーミスタ28を用いて検出している。
なお、温度サーミスタ28が検出する熱源側熱交換器24に熱を供給する空気の温度が所定値以上の場合には、熱源側熱交換器24から十分吸熱できるため、利用側熱交換器22においても十分加熱能力を発揮できるので、加熱運転モード実行中、第2膨張装置31(全閉型)の弁開度を全閉としていても良い。
また、本実施の形態における冷凍サイクル装置1においては、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、熱源側熱交換器24の除霜を行う除霜運転モードを有している。
除霜運転モードは、圧力センサ51の検出圧力、または、蒸発温度サーミスタ30の検出温度がそれぞれ所定値以下となった場合や、あるいは、温度サーミスタ28が検出する熱源側熱交換器24に熱を供給する空気の温度が所定値以下で、その状態で加熱運転モードの実行時間が、所定時間以上継続した場合には、熱源側熱交換器24が着霜していると判断し、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒の熱により、熱源側熱交換器24の着霜している霜を融解して除去するものである。
除霜運転モードの方式の代表的なものとしては、加熱運転モードの実行時に対して四方弁27が連通する流路を切り替えて、冷媒の循環方向を逆転させ、圧縮機構21から吐出された高温高圧の冷媒を熱源側熱交換器24に流入させて、その凝縮熱で熱源側熱交換器24の霜を融解する逆サイクル除霜方式がある。
一方、四方弁27を切り替えずに、加熱運転モード時と四方弁27が連通する流路は同様とし、圧縮機構21から吐出された高温高圧の冷媒を利用側熱交換器22に流入させ、第1膨張装置23へと流し、第1膨張装置23の開度を大きくして、圧縮機構21から吐出された高温高圧のガス冷媒を減圧せずに、第1膨張装置23を通過させ、その後、熱源側熱交換器24に流入させて、熱源側熱交換器24の霜を融解する順サイクル除霜方式もある。
本実施の形態における除霜運転モード制御フローについて、図2を用いて説明する。
図2に示すように、圧縮機構21、搬送装置55が運転している加熱運転モードの運転実行の状態で、制御装置4は、圧力センサ51が低段側圧縮回転要素21aの吸入圧力Psを検出する(ステップ1)。
すなわち、圧力センサ51が検出した低段側圧縮回転要素21aの吸入圧力Psが、所定の圧力Pst以下であるかを判断する(ステップ2)。
圧力センサ51が検出した低段側圧縮回転要素21aの吸入圧力Psが、所定の圧力Pst以下の場合、制御装置4は、第2膨張装置31の弁開度を制御装置4に設定されているOb(Pulse)に設定する(ステップ3)。
なお、Ob(Pulse)は、最小の弁開度、すなわち全閉状態である。したがって、このとき、制御装置4は、第2膨張装置31の弁開度は閉方向に動作させることになる。
これにより、バイパス冷媒回路3から、圧縮機構21の圧縮途中の冷媒に合流する冷媒流量が減少するため、圧縮機構21から吐出される冷媒の温度は上昇し、吐出圧力は低下する。
次に、制御装置4は、搬送装置55の運転を停止させる(ステップ4)。これにより、制御装置4は、加熱運転モードの運転を停止させる。
さらに、搬送装置55の運転も停止させるので、利用側熱交換器22における利用側熱媒体への放熱量が抑制され、圧縮機構21から吐出される冷媒の圧力および冷媒の温度がさらに上昇するため、圧縮機構21や利用側熱交換器22の温度がより上昇する。
ここで、第2膨張装置31の弁開度を閉方向に操作したときに、一旦、吐出圧力は低下するため、第2膨張装置31の弁開度を閉方向に操作した後に、搬送装置55の運転動作を停止した方が、圧縮機構21から吐出される冷媒の温度と圧力の過昇を防止することができる。
このように、除霜運転モードの運転に移行する場合には、除霜運転モードの実行開始前の加熱運転モードの運転実行中に、第2膨張装置31の開度を閉方向に動作させ、圧縮機構21から吐出される冷媒の温度と圧力を段階的に上昇させることで、加熱運転モードの運転停止を防止することができる。
そして、制御装置4は、第1膨張装置23の弁開度を制御装置4に設定されているOm(Pulse)に設定する(ステップ3)。
なお、Ob(Pulse)は、最大の弁開度、すなわち全開状態である。したがって、このとき、制御装置4は、第1膨張装置23の弁開度を開方向に動作させることになる。
すなわち、制御装置4は、第1膨張装置23の弁開度を最大の弁開度、すなわち全開状態にすることで、圧縮機構21から吐出された冷媒は、高温に維持されたままの状態で、第1膨張装置23において最大量を、熱源側熱交換器24に供給開始することになる。したがって、これを除霜運転モードの運転実行開始時とする。
なお、搬送装置55の運転の停止後の除霜運転モードの運転においては、冷媒が高圧側から低圧側の熱源側熱交換器24に向かう際に、圧縮機構21による圧縮過程に加え、圧縮機構21や利用側熱交換器22からその保有熱も受熱できる。
これにより、搬送装置55の運転の停止後の除霜運転モードの運転においては、圧縮機構21から吐出された冷媒が、低圧側の熱源側熱交換器24に向かう際における温度低下を抑制でき、除霜運転モード実行時に熱源側熱交換器24の除霜に利用できる熱量を増加させることができ、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供できる。
そして、制御装置4は、除霜運転モードの運転実行中において、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ30が検出する熱源側熱交換器24の温度Teに基づいて、除霜終了条件が成立するかどうかを判断する(ステップ6)。
すなわち、制御装置4は、蒸発温度サーミスタ30が検出した熱源側熱交換器24の温度Teが、所定温度Tetより低い場合には、ステップ6に戻り、除霜運転モードを継続する。
一方、制御装置4は、蒸発温度サーミスタ30が検出した熱源側熱交換器24の温度Teが、所定温度Tet以上の場合には、除霜運転モードの実行を終了し、再び、搬送装置55の運転を再開させて、第1膨張装置23の弁開度、第2膨張装置31の弁開度を調整し、加熱運転モードの再実行を開始する。
次に、除霜運転モードにおける冷媒の状態変化を、図1を用いて説明する。
図1に記載の破線矢印は、順サイクル除霜方式を用いて、除霜運転モードを実行した場合の冷媒の流れ方向を示している。
圧縮機構21から吐出された高圧冷媒は、四方弁27を介して利用側熱交換器22に流入し、利用側熱交換器22から流出した冷媒は、第1膨張装置23を通過後、熱源側熱交換器24に流入し、堆積した霜に放熱して霜を融解する。
熱源側熱交換器24で放熱し流出した気液二相冷媒は、アキュムレーター25に入り、ここで気液分離されて気相冷媒が、再び、圧縮機構21に戻る。
この場合、除霜運転モード実行中においても、利用側熱交換器22に高温の吐出冷媒が流れるので、利用側熱交換器22の温度低下が抑制されて、除霜運転モード実行後に開始される加熱運転モードにおける加熱能力の上昇が、逆サイクル除霜運転と比較して速くなる。
また、除霜効率を向上させるために、利用側熱交換器22を流れる利用側熱媒体の循環、すなわち、搬送装置55の運転を停止させ、利用側熱媒体の利用側熱交換器22を流れないようにして、利用側熱媒体に放熱する熱量を低減している。
また、熱源側熱交換器24に流入する冷媒の温度低下を防止するために、第2膨張装置31(全閉型)を弁開度と全閉とし、利用側熱交換器22から流出し、第2膨張装置31側に分配された高圧冷媒が、中間熱交換器26に流れるのを防止している。
このため、圧縮機構21から吐出され、四方弁27を介して、利用側熱交換器22に流入し、利用側熱交換器22から流出して、中間熱交換器26の主冷媒回路2を流れる冷媒が、中間熱交換器26の第2膨張装置31を流れる冷媒によって冷却されないため、熱源側熱交換器24に流入する冷媒の温度低下を防止できる。
さらには、第1膨張装置23の開度を全開とし、冷媒が最大量流れるようにして、圧縮機構21を運転させているので、圧縮機構21から吐出された冷媒は、高温に維持されたままの状態で、また、その最大量を熱源側熱交換器24に供給できるため、順サイクルでの除霜運転における除霜時間を短縮でき、使用性を向上させた冷凍サイクル装置を提供できる。
なお、バイパス冷媒回路3は、必ずしも利用側熱交換器22と中間熱交換器26の間で
主冷媒回路2から分岐している必要はなく、中間熱交換器26と第1膨張装置23の間で主冷媒回路2から分岐していてもよい。
さらに、第1膨張装置23の開度が全開、いわゆる、最大の弁開度とは、冷媒が、第1膨張装置23において、最大量に近い値が流れる開度であれば、全開と異なる開度も含むものとする。
以上のように、本発明にかかるヒートポンプシステムは、除霜時間を短縮し、使用性を向上させたヒートポンプシステムを提供できるので、給湯、暖房機器等に有用である。
1 冷凍サイクル装置
2 主冷媒回路
3 バイパス冷媒回路
4 制御装置
5 利用側熱媒体回路
16 配管
21 圧縮機構
21a 低段側圧縮回転要素
21b 高段側圧縮回転要素
22 利用側熱交換器(放熱器)
23 第1膨張装置(主膨張弁)
24 熱源側熱交換器(蒸発器)
26 中間熱交換器(冷却用熱交換器)
30 蒸発温度サーミスタ
31 第2膨張装置(バイパス膨張弁)
53 熱媒体入口温度サーミスタ
54 熱媒体出口温度サーミスタ
55 搬送装置(搬送ポンプ)
56 熱媒体戻り管
57 熱媒体往き管

Claims (4)

  1. 圧縮回転要素から構成される圧縮機構、前記圧縮機構から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
    前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、を有する冷凍サイクル装置と、
    搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路と、
    制御装置と、
    を備え、
    前記圧縮機構から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、
    前記圧縮機構から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、
    を有し、
    前記制御装置は、前記加熱運転モードの運転実行中に、前記除霜運転モードの運転に移行する場合には、前記第2膨張装置の開度を閉方向に動作させ、その後、前記搬送装置の運転を停止して、前記加熱運転モードの運転実行を停止させることを特徴とするヒートポンプシステム。
  2. 前記除霜運転モードにおいて、前記冷媒は、前記圧縮機構、前記利用側熱交換器、前記中間熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れ、また、前記制御装置は、前記第2膨張装置の開度を全閉に設定し、前記第1膨張装置の開度を全開に設定することを特徴とする請求項1に記載のヒートポンプシステム。
  3. 前記冷媒として、二酸化炭素を用い、前記第1膨張装置は、ニードルが弁座に対して着座しても、冷媒が所定量流れる非全閉型の膨張弁であり、前記第2膨張装置は、ニードルが弁座に対して着座すると、冷媒が流れない全閉型の膨張弁であることを特徴とする請求項2に記載のヒートポンプシステム。
  4. 前記利用側熱交換器から流出する前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入する前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備え、前記制御装置は、前記加熱運転モードの実行時には、前記圧縮回転要素を回転させ、前記熱媒体出口温度サーミスタの検出温度と前記熱媒体入口温度サーミスタの検出温度との温度差が目標温度差となるように、前記搬送装置を動作させるとともに、前記熱媒体出口温度サーミスタの前記検出温度が所定温度を超えた場合には、前記第2膨張装置の開度を全閉に設定することを特徴とする請求項1~3のいずれか1項に記載のヒートポンプシステム。
JP2019106605A 2019-02-15 2019-06-07 ヒートポンプシステム Active JP7117513B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20156044.8A EP3696478B1 (en) 2019-02-15 2020-02-07 Heat pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025292 2019-02-15
JP2019025292 2019-02-15

Publications (2)

Publication Number Publication Date
JP2020134122A JP2020134122A (ja) 2020-08-31
JP7117513B2 true JP7117513B2 (ja) 2022-08-15

Family

ID=72262779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106605A Active JP7117513B2 (ja) 2019-02-15 2019-06-07 ヒートポンプシステム

Country Status (1)

Country Link
JP (1) JP7117513B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222447A (ja) 2002-01-29 2003-08-08 Daikin Ind Ltd ヒートポンプ式給湯機
JP2009133581A (ja) 2007-11-30 2009-06-18 Daikin Ind Ltd 冷凍装置
JP2011137602A (ja) 2009-12-28 2011-07-14 Daikin Industries Ltd ヒートポンプユニットおよび暖房システム
JP2017155944A (ja) 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 冷凍サイクル装置及びそれを備えた温水暖房装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222447A (ja) 2002-01-29 2003-08-08 Daikin Ind Ltd ヒートポンプ式給湯機
JP2009133581A (ja) 2007-11-30 2009-06-18 Daikin Ind Ltd 冷凍装置
JP2011137602A (ja) 2009-12-28 2011-07-14 Daikin Industries Ltd ヒートポンプユニットおよび暖房システム
JP2017155944A (ja) 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 冷凍サイクル装置及びそれを備えた温水暖房装置

Also Published As

Publication number Publication date
JP2020134122A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
US10415861B2 (en) Refrigeration cycle apparatus
JP5430667B2 (ja) ヒートポンプ装置
JP5383816B2 (ja) 空気調和装置
KR101810809B1 (ko) 공기 조화 장치
JP4948016B2 (ja) 空気調和装置
EP2645019B1 (en) Heat pump hot-water supply device
JP2009228979A (ja) 空気調和装置
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
WO2015140951A1 (ja) 空気調和装置
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
WO2015045247A1 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP6161741B2 (ja) 空気調和装置
JP6548742B2 (ja) 空気調和装置
US20190360725A1 (en) Refrigeration apparatus
WO2017138108A1 (ja) 空気調和装置
JP2015064169A (ja) 温水生成装置
WO2017037891A1 (ja) 冷凍サイクル装置
JP2017155944A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP5573370B2 (ja) 冷凍サイクル装置及びその制御方法
US20210207834A1 (en) Air-conditioning system
JP7117513B2 (ja) ヒートポンプシステム
JP2008241176A (ja) 冷凍サイクル装置
JP2017166709A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP7038277B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
JP5826722B2 (ja) 二元冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R151 Written notification of patent or utility model registration

Ref document number: 7117513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151