JP2017166709A - 冷凍サイクル装置及びそれを備えた温水暖房装置 - Google Patents

冷凍サイクル装置及びそれを備えた温水暖房装置 Download PDF

Info

Publication number
JP2017166709A
JP2017166709A JP2016049289A JP2016049289A JP2017166709A JP 2017166709 A JP2017166709 A JP 2017166709A JP 2016049289 A JP2016049289 A JP 2016049289A JP 2016049289 A JP2016049289 A JP 2016049289A JP 2017166709 A JP2017166709 A JP 2017166709A
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
bypass
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016049289A
Other languages
English (en)
Inventor
俊二 森脇
Shunji Moriwaki
俊二 森脇
繁男 青山
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016049289A priority Critical patent/JP2017166709A/ja
Priority to EP17155274.8A priority patent/EP3220078A1/en
Publication of JP2017166709A publication Critical patent/JP2017166709A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】適正な冷凍サイクル状態に迅速に制御することで、低外気温度においても、加熱能力と効率を向上させることができる冷凍サイクル装置を提供すること。【解決手段】バイパス路3の過冷却熱交換器23の上流側に設けられたバイパス膨張手段31と、圧縮機21から吐出された冷媒の飽和温度を検出する飽和温度検出手段51と、圧縮機21から吐出された冷媒の温度を検出する温度センサ61とを備え、圧縮機21から吐出された冷媒の温度が、飽和温度より所定温度高い温度以上であり、かつ、圧縮機21の運転上限温度より所定温度低い温度未満であるときに、バイパス膨張手段31の開度を開方向に動作させることを特徴とする冷凍サイクル装置で、圧縮機21の吐出温度の異常上昇を抑制できる。【選択図】図1

Description

本発明は、放熱器から流出した冷媒の一部をバイパスし、主流冷媒とバイパス流冷媒との間で熱交換を行って主流冷媒を過冷却する冷凍サイクル装置に関するものである。
従来、この種の冷凍サイクル装置および温水暖房装置は冷媒回路の放熱器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に膨張させた冷媒を流入させることにより放熱器から流出した冷媒を過冷却している(例えば、特許文献1参照)。
図5は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。
図5に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、放熱器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。
バイパス路120は、過冷却熱交換器113と主膨張弁114の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110につながっている。また、バイパス路120には、過冷却熱交換器113よりも上流側にバイパス膨張弁121が設けられている。
さらに、冷凍サイクル装置100には、圧縮機111から吐出される冷媒の温度(圧縮機吐出管温度)Tdを検出する温度センサ141と、蒸発器115に流入する冷媒の温度(蒸発器入口温度)Teを検出する温度センサ142と、バイパス路120において過冷却熱交換器113に流入する冷媒の温度(バイパス側入口温度)Tbiを検出する温度センサ143と、バイパス路120において過冷却熱交換器113から流出する冷媒の温度(バイパス側出口温度)Tboを検出する温度センサ144とを備えている。
そして、温度センサ142で検出される蒸発器入口温度Teから圧縮機の吐出管の目標温度Td(target)が設定され、温度センサ141で検出された吐出管温度Tdが、その目標温度Td(target)となるように、主膨張弁114を制御する主膨張弁制御部と、過冷却熱交換器113でのバイパス側出口温度Tboとバイパス側入口温度Tbiとの差(Tbo−Tbi)が所定の目標値となるようにバイパス膨張弁121を制御するバイパス膨張弁制御部から構成されている。
特開平10−68553号公報
しかしながら、前記従来の構成では、バイパス膨張弁121はバイパス路120の入口側と出口側の温度差、即ち、バイパス路120出口の過熱度を制御するように動作するので、バイパス路120出口の冷媒状態を湿り状態に制御することができない。
その為に、外気温度が−20℃のような極低温時の暖房運転時にバイパス膨張弁121を開けた場合、バイパス路120の冷媒流量が適正量まで増加するまでの間に、バイパス
路120を流れる冷媒が、過冷却熱交換器113にて極端に加熱されて、圧縮機111の吸入冷媒状態が過度の過熱状態となり、圧縮機111の吐出温度が異常上昇してしまう可能性がある。
従って、極低温外気温度時はバイパス路120を使用することができず、バイパス路120使用による運転効率向上効果を得ることができないために、効率が悪く、十分な加熱能力を確保できないという課題を有していた。
本発明は、前記従来の課題を解決するもので、適正な冷凍サイクル状態に迅速に制御することで、低外気温度においても、加熱能力と効率を向上させることができる冷凍サイクル装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、前記圧縮機から吐出された冷媒の飽和温度を検出する飽和温度検出手段と、前記圧縮機から吐出された冷媒の温度を検出する温度センサと、制御装置と、を備え、前記圧縮機から吐出された冷媒の温度が、前記飽和温度より所定温度高い温度以上であり、かつ、前記圧縮機の運転上限温度より所定温度低い温度未満であるときに、前記バイパス膨張手段の開度を開方向に動作させることを特徴とするものである。
これにより、圧縮機の運転温度上限値より所定温度低い温度で、バイパス膨張弁の開度を開方向に動作させるので、バイパス路を介して高圧側から低圧側に過熱冷媒が流れるため、急激に吐出温度が上昇しても、圧縮機の運転上限温度まで到達するまでの間に、主膨張手段とバイパス膨張手段とが適正開度に制御されるため、バイパス路出口の冷媒が飽和状態となり、圧縮機の吐出温度の異常上昇を抑制できる。
また、特に、圧縮機の吐出冷媒が過熱状態で、バイパス膨張手段の開度を閉止状態から開状態とすることで、バイパス開始時に圧縮機の吐出温度が急激に上昇しても、バイパス路出口の冷媒が飽和状態となり、圧縮機の吐出温度の異常上昇を抑制できるとともに、圧縮機内のオイルに溶解していた冷媒は、蒸発して殆ど溶解していないので、圧縮機の油量が急激に減少することを防止できる。
本発明によれば、適正な冷凍サイクル状態に迅速に制御することで、低外気温度においても、加熱能力と効率を向上させることができる冷凍サイクル装置を提供できる。
本発明の実施の形態1における冷凍サイクル装置の概略構成図 同冷凍サイクル装置の圧縮機の吐出温度の温度設定を示す図 同冷凍サイクル装置の運転中のモリエル線図 同冷凍サイクル装置の運転制御のフローチャートを示す図 従来の冷凍サイクル装置の概略構成図
第1の発明は、圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過
冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、前記圧縮機から吐出された冷媒の飽和温度を検出する飽和温度検出手段と、前記圧縮機から吐出された冷媒の温度を検出する温度センサと、制御装置と、を備え、前記圧縮機から吐出された冷媒の温度が、前記飽和温度より所定温度高い温度以上であり、かつ、前記圧縮機の運転上限温度より所定温度低い温度未満であるときに、前記バイパス膨張手段の開度を開方向に動作させることを特徴とする冷凍サイクル装置である。
これにより、圧縮機の運転温度上限値より所定温度低い温度で、バイパス膨張弁の開度を開方向に動作させるので、バイパス路を介して高圧側から低圧側に過熱冷媒が流れるため、急激に吐出温度が上昇しても、圧縮機の運転上限温度まで到達するまでの時間に、主膨張手段とバイパス膨張手段とが適正開度に制御されるため、バイパス路出口の冷媒が飽和状態となり、圧縮機の吐出温度の異常上昇を抑制できる。
また、特に、圧縮機の吐出冷媒が過熱状態で、バイパス膨張手段の開度を閉止状態から開状態とすることで、バイパス開始時に圧縮機の吐出温度が急激に上昇しても、バイパス路出口の冷媒が飽和状態となり、圧縮機の吐出温度の異常上昇を抑制できるとともに、圧縮機内のオイルに溶解していた冷媒は、蒸発して殆ど溶解していないので、圧縮機の油量が急激に減少することを防止できる。
したがって、外気温度が−20℃のような極低温時においても、過冷却熱交換器での主流冷媒とバイパス路を流れる冷媒との熱交換による蒸発器におけるエンタルピー差増大効果、および、高圧側から低圧側への冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を活用することができ、より高い運転効率と十分な加熱能力を得ることができる。
第2の発明は、第1の発明において、前記バイパス膨張手段を閉止状態から開方向に動作させるとき、前記主膨張手段の開度は閉方向に動作させることを特徴とするものである。
これにより、主膨張手段での減圧量が増加し、蒸発温度の上昇を防止するので、バイパス膨張手段入口部の冷媒状態が速やかに液化され、短時間でバイパス路出口の冷媒を飽和状態にすることができる。
したがって、圧縮機の吐出温度が、目標温度に対して過度に上昇することを抑制できる。
第3の発明は、前記圧縮機から吐出された冷媒の温度が、前記圧縮機の運転上限温度より所定温度低い温度以上のとき、前記主膨張手段の開度を略最大開度にするとともに、前記圧縮機の回転数を低下させることを特徴とするものである。
これにより、圧縮機の運転消費電力を低下できるとともに、主膨張手段の減圧量が低下するので、蒸発器における冷媒の蒸発を抑制でき、圧縮機の吸入冷媒のエンタルピーが低下するので、圧縮機の吐出温度を短時間で低下させることができる。
すなわち、圧縮機の吐出温度を適正な温度まで低下しておいてから、バイパス膨張手段を開くので、再起動時など、圧縮機温度が高い状態においても、確実に圧縮機の吐出温度の異常上昇を防止できる。
第4の発明は、第1〜第3の発明のいずれかの発明の冷凍サイクル装置を備えた温水暖
房装置で、放熱器が冷媒対空気熱交換器の場合だけでなく、冷媒対水熱交換器の場合にも適用できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置および温水暖房装置の概略構成図を示すものである。
図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。
冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、またはR32等の単一冷媒等を用いることができる。
冷媒回路2は、圧縮機21、放熱器22、過冷却熱交換器23、主膨張弁(主膨張手段)24および蒸発器25が配管により環状に接続されて構成されている。
本実施の形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転と除霜運転とを切り換えるための四方弁28が設けられている。
本実施の形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房に利用する温水暖房装置の加熱手段を構成しており、放熱器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。
具体的には、放熱器22に供給管71と回収管72が接続されており、供給管71を通じて放熱器22に水が供給され、放熱器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。
回収管72により回収された温水は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房が行われる。
本実施の形態では、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間における、サブアキュムレータ26と主アキュムレータ27の間の冷媒回路2に接続されている。
また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁(バイパス膨張手段)31が設けられている。
また、冷媒回路2には、圧縮機21から吐出される冷媒の圧力(吐出圧力)Pdを検出する圧力センサ51と、圧縮機21から吐出される冷媒の温度(吐出温度)Tdを検出する温度センサ61とが設けられている。
なお、制御装置4は、圧力センサ51、温度センサ61で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を動作させる。
通常運転では、圧縮機21から吐出された冷媒が、四方弁28を介して、放熱器22に
送られ、除霜運転では、圧縮機21から吐出された冷媒が、四方弁28を介して、蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。
まず、本実施の形態の冷凍サイクル装置1Aの通常運転における冷媒の状態変化について、図1に基づいて説明する。
圧縮機21から吐出された高圧冷媒は、放熱器22に流入し、放熱器22を通過する水に放熱する。放熱器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分配される。
主膨張弁24側に分配された高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。
一方、バイパス膨張弁31側に分配された高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度、圧縮機21に吸入される。
本実施の形態の冷凍サイクル装置1Aの構成は、低外気温度時に圧縮機21に吸入される冷媒の圧力が低下して冷媒循環量が減少し、これにより放熱器22の加熱能力が低下することを防止するためのものである。
これを実現するには、過冷却により蒸発器25でのエンタルピー差を増大させるとともに、バイパス路3によって冷媒をバイパス路3に流通させることにより、冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑え、これにより冷媒回路2の低圧側部分での圧力損失を低減させることが重要である。
冷媒回路2の低圧側部分での圧力損失が低減すれば、その分、圧縮機21に吸入される冷媒の圧力が上昇して比体積が減少するため、冷媒循環量が増加する。
また、蒸発器25でのエンタルピー差を増大させれば、バイパス路3に冷媒を流通することにより蒸発器25を通過する冷媒の質量流量が低下したとしても、蒸発器25での吸熱量を確保することができる。
すなわち、冷媒の過冷却度とバイパス路3の冷媒の質量流量を最大にすれば、最大限の放熱器22の加熱能力向上効果と冷凍サイクル装置1Aの成績係数向上効果が得られる。
しかしながら、外気温度が−20℃のような極低温時や利用側負荷の小さい場合に、バイパス路3に冷媒を流す効果を活用する場合は、バイパス路3に流れる冷媒の流量が適正になるまでの間に、圧縮機の吐出温度が異常上昇するといった問題がある。
従って、バイパス路3に冷媒を流通させることによる性能向上効果を幅広い条件で活用し、機器の効率を向上するためには、この吐出温度の異常上昇を抑制することが重要なのである。
そのために、本実施の形態では、図2に示すように、制御装置4は、圧縮機21の吐出温度が、吐出圧力の飽和温度より第1所定温度高い第1設定温度以上であり、圧縮機21
の吐出温度が、運転上限温度より第2所定温度低い第2設定温度未満(図2のAゾーン)であり、かつ、圧縮機21の運転回転数が目標とする回転数で運転中や目標回転数に移行運転中であるときに、バイパス膨張手段31の開度を閉止状態から開状態となるように動作させ、かつ、主膨張弁24の開度を所定量閉方向に動作させるのである。
また、制御装置4は、圧縮機21の吐出温度が、第2設定温度以上(図2のBゾーン)であるときには、主膨張弁24の開度を略最大開度まで開き、圧縮機21の回転数を低下させて運転させる。
これにより、バイパス膨張手段31の開度を閉止状態から開状態となるバイパス開始時に、過熱冷媒がバイパスされて、急激に吐出温度が上昇しても、圧縮機21の運転上限温度に到達するまでに時間があるので、その間に主膨張弁24とバイパス膨張弁31が適正開度まで制御できる。
特に、主膨張弁24での減圧量が増加し、蒸発温度の上昇を防止するので、バイパス膨張手段31入口部の冷媒状態が速やかに液化され、短時間でバイパス路3出口の冷媒が飽和状態となり、圧縮機21の吐出温度の異常上昇を抑制できるのである。
また、バイパス膨張手段31の開度を閉止状態から開状態となるバイパス開始時に、圧縮機21の吐出温度が急激に上昇しても、圧縮機21内のオイルに溶解していた冷媒は蒸発して殆ど溶解していないので、圧縮機21の油量が急激に減少することがない。
したがって、圧縮機21の給油不良による破損や、冷凍サイクル内のオイル循環量増加による性能低下などが防止できる。
さらに、再起動時など、圧縮機21の吐出温度がすでに高い場合は、圧縮機21の消費電力が低下するとともに、蒸発器25における冷媒の蒸発が抑制され、圧縮機21の吸入冷媒エンタルピーが低下して、図3のc点のように圧縮機21の吐出温度が短時間で適正な温度まで低下する。
したがって、バイパス膨張手段31の開度を閉止状態から開状態となるバイパス開始時には、常に圧縮機21の吐出温度が適正な温度であるので、幅広い運転条件においても、確実に圧縮機21の吐出温度の異常上昇を抑制できる。
なお、圧縮機21の運転上限温度とは、圧縮機21の耐久性等を考慮して、圧縮機21の吐出温度、あるいは、圧縮機21の本体の温度が異常上昇しないように、圧縮機21の運転を停止させる温度である。
次に、本実施の形態の冷凍サイクル装置1Aの通常運転時の制御仕様を、図4に示すフローチャートに基づいて、具体的に説明する。
本実施の形態では、制御装置4は、通常運転時に、温度センサ61で検出された吐出温度Tdが、圧力センサ51で検出された吐出圧力Pdに基づいて算出される吐出飽和温度STより、第1所定温度Tm1高い第1設定温度Ts1以上であり、圧縮機21の吐出温度の運転上限温度LTより第2所定温度Tm2低い第2設定温度Ts2未満であり、かつ、圧縮機21の運転回転数が目標とする回転数Hztであるときに、バイパス膨張弁31を閉止状態から開状態となるように動作させるとともに、主膨張弁24の開度を、所定開度Pm閉方向に動作させている。
また、吐出温度Tdが、第2設定温度Ts2以上であるとき、主膨張弁24の開度を最
大開度まで開き、圧縮機21の回転数を低下させる。
以下、詳細に説明すると、まず、制御装置4は、バイパス膨張弁31を閉止状態のまま、圧縮機21を目標回転数Hztで運転し、主膨張弁24を通常制御する(ステップS1)。
そして、圧力センサ51、温度センサ61で、吐出温度Tdと、吐出圧力Pdとを検出する(ステップS2)。
次に、圧力センサ51で検出した吐出圧力Pdから、圧縮機21から吐出される冷媒の圧力での吐出飽和温度STを算出し、吐出飽和温度STに第1所定温度Tm1を加算した値である第1設定温度Ts1と、圧縮機21の吐出温度の運転上限温度LTから第2所定温度を減算して第2設定温度Ts2を算出する(ステップS3)。この吐出飽和温度STの算出は、冷媒物性式を用いて行われる。
その後、制御装置4は、吐出温度Tdと第1設定温度Ts1を比較し、TdがTs1以上か否かを判断する(ステップS4)。
吐出温度Tdが、第1設定温度Ts1より低い場合には(ステップS4でNO)、圧縮機21の温度が低く、圧縮機21内のオイルに冷媒が多く溶解している可能性があると判断し、バイパス膨張弁31を閉止状態のまま運転を継続する。
一方、吐出温度Tdが、第1設定温度Ts1以上の場合には(ステップS4でYES)、圧縮機21内のオイルに冷媒が殆ど溶解していないと判断し、次に、吐出温度Tdが第2設定温度Ts2より低いか否かを判断する(ステップS5)。
吐出温度Tdが、第2設定温度Ts2以上の場合には(ステップS5でNO)、吐出温度Tdが、圧縮機21の運転上限温度LTまで十分な温度差がなく、吐出温度Tdが運転上限温度LTに達するまでの時間が短いと判断し、主膨張弁24の開度を最大開度まで開き、圧縮機21の運転周波数を下限回転数に設定して、吐出温度Tdを低下させる運転を実施する(ステップS6)。
そして、吐出温度Tdが低下運転中のフラグを1にセット(ステップS7)した後、ステップS2に戻り、再度、吐出温度Tdを監視する。
一方、吐出温度Tdが、第2設定温度Ts2より低い場合には(ステップS5でYES)、吐出温度Tdが、バイパス膨張弁31の開度を開方向に動作させる適正温度範囲であると判断し、その後、吐出温度低下運転中のフラグが1にセットされているか否かを判断する(ステップS8)。
フラグが1以外の場合(ステップS8でNO)には、通常制御中であり、バイパス開始可能と判断し、バイパス膨張弁31を、閉止状態から初期開度まで開くとともに、主膨張弁24の開度を閉方向に所定開度Pm動作させる(ステップS11)。
一方、フラグが1の場合には(ステップS8でYES)、吐出温度低下運転を終了し、主膨張弁を初期開度に設定し、圧縮機を目標回転数に設定(ステップS9)した後、フラグを0にセット(ステップS10)し、ステップS11に移行する。
ステップ11実行時は、圧縮機21の回転数は目標回転数に到達している必要はなく、上昇途中でも良い。
以上のように、本実施の形態においては、冷媒回路2において、圧縮機21から吐出される冷媒の温度を検出する温度センサ61と、圧縮機21から吐出される冷媒の圧力を検出する圧力センサ51と、制御装置4とを備えた構成であり、制御装置4は、通常運転時に、圧縮機21の吐出温度が、吐出飽和温度より第1所定温度高い第1設定温度以上であり、圧縮機21の吐出温度の運転上限温度より第2所定温度低い第2設定温度未満であり、かつ、圧縮機21の運転回転数が目標とする回転数や目標回転数に移行運転中であるときに、バイパス膨張弁31の開度を閉止状態から開状態となるように動作させるとともに、主膨張弁24の開度を所定閉方向に動作させるのである。
また、圧縮機21の吐出温度が、第2設定温度以上であるとき、主膨張弁24の開度を最大開度まで開き、圧縮機21の運転周波数を最低回転数で運転させる。
これによって、圧縮機21の吐出温度が運転上限温度に到達するまでの間に、短時間でバイパス路3出口の冷媒が飽和状態にできるので、圧縮機21の吐出温度の異常上昇を抑制できる。
また、圧縮機21の油量が急激に減少することがないので、圧縮機21の破損や、冷凍サイクルの性能低下を防止できる。
さらに、再起動時など、圧縮機21の吐出温度がすでに高い場合においても、圧縮機21の吐出温度が短時間で適正な温度まで低下した後、バイパス膨張弁31の開度が開方向に動作されるので、圧縮機21の吐出温度の異常上昇を抑制できる。
したがって、外気温度が−20℃のような極低温時においても、バイパスによる過冷却熱交換器23での主流冷媒とバイパス流冷媒との熱交換による蒸発器25におけるエンタルピー差増大効果、および、冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を活用することができ、高い運転効率と十分な加熱能力を得ることができる。
なお、図1では、圧力センサ51が、冷媒回路2における圧縮機21と四方弁28の間に設けられているが、圧力センサ51は、圧縮機21と主膨張弁24の間であれば、冷媒回路2のどの位置に設けられていてもよい。
あるいは、圧力センサ51は、バイパス路3の過冷却熱交換器23よりも下流側に設けられていてもよい。
また、本実施の形態では、圧力センサ51により吐出飽和温度を算出しているが、吐出飽和温度は、冷媒回路2および放熱器22における高圧の二相冷媒が流通する部分の温度を検出して代用してもよい。
さらに、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、放熱器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。
また、バイパス路3の接続部は、必ずしも圧縮機21の吸入配管である必要はなく、インジェクション機構のある圧縮機の場合は、例えば、インジェクションポートに接続すればよい。
また、図1では、温度センサ61が、冷媒回路2における圧縮機21と四方弁28の間に設けられているが、温度センサ61は、圧縮機21から放熱器22の間であれば、冷媒
回路2のどの位置に設けられていてもよい。
さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。
本発明は、冷凍サイクル装置によって温水を生成し、その温水を暖房に利用する温水暖房装置に特に有用である。
1A 冷凍サイクル装置
2 冷媒回路
3 バイパス路
4 制御装置
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
31 バイパス膨張弁(バイパス膨張手段)
51 圧力センサ(飽和温度検出手段)
61 温度センサ

Claims (4)

  1. 圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、
    前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、
    前記圧縮機から吐出された冷媒の飽和温度を検出する飽和温度検出手段と、
    前記圧縮機から吐出された冷媒の温度を検出する温度センサと、
    制御装置と、
    を備え、
    前記圧縮機から吐出された冷媒の温度が、前記飽和温度より所定温度高い温度以上であり、かつ、前記圧縮機の運転上限温度より所定温度低い温度未満であるときに、
    前記バイパス膨張手段の開度を開方向に動作させることを特徴とする冷凍サイクル装置。
  2. 前記バイパス膨張手段を閉止状態から開方向に動作させるとき、前記主膨張手段の開度は閉方向に動作させることを特徴とする前記請求項1に記載の冷凍サイクル装置。
  3. 前記圧縮機から吐出された冷媒の温度が、前記圧縮機の運転上限温度より所定温度低い温度以上のとき、前記主膨張手段の開度を略最大開度にするとともに、前記圧縮機の回転数を低下させることを特徴とする前記請求項1または2に記載の冷凍サイクル装置。
  4. 前記請求項1〜3のいずれか1項に記載の冷凍サイクル装置を備えた温水暖房装置。
JP2016049289A 2016-03-14 2016-03-14 冷凍サイクル装置及びそれを備えた温水暖房装置 Pending JP2017166709A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016049289A JP2017166709A (ja) 2016-03-14 2016-03-14 冷凍サイクル装置及びそれを備えた温水暖房装置
EP17155274.8A EP3220078A1 (en) 2016-03-14 2017-02-08 Refrigeration cycle device and hot water heating device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049289A JP2017166709A (ja) 2016-03-14 2016-03-14 冷凍サイクル装置及びそれを備えた温水暖房装置

Publications (1)

Publication Number Publication Date
JP2017166709A true JP2017166709A (ja) 2017-09-21

Family

ID=57995149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049289A Pending JP2017166709A (ja) 2016-03-14 2016-03-14 冷凍サイクル装置及びそれを備えた温水暖房装置

Country Status (2)

Country Link
EP (1) EP3220078A1 (ja)
JP (1) JP2017166709A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518730B (zh) * 2018-04-10 2020-10-16 广东环境保护工程职业学院 一种基于大气温度控制的节能集中供热水系统及自适应控制方法
CN110486917B (zh) * 2019-08-23 2021-06-22 广东美的暖通设备有限公司 运行控制装置及方法、空调器和计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068553A (ja) 1996-08-27 1998-03-10 Daikin Ind Ltd 空気調和機
JP5042058B2 (ja) * 2008-02-07 2012-10-03 三菱電機株式会社 ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
FR2951250B1 (fr) * 2009-10-13 2012-11-02 Danfoss Commercial Compressors Systeme de refrigeration et unite de pompe a chaleur comprenant un tel systeme
JP5824628B2 (ja) * 2011-06-29 2015-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
US9534820B2 (en) * 2013-03-27 2017-01-03 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling vapor compression systems

Also Published As

Publication number Publication date
EP3220078A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5816789B2 (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP5452138B2 (ja) 冷凍空調装置
JP5278451B2 (ja) 冷凍サイクル装置及びそれを用いた温水暖房装置
JP5637053B2 (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP5421717B2 (ja) 冷凍サイクル装置および温水暖房装置
JP5411643B2 (ja) 冷凍サイクル装置および温水暖房装置
JP5533491B2 (ja) 冷凍サイクル装置及び温水暖房装置
JP6161005B2 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
WO2014080612A1 (ja) 冷凍サイクル装置及びそれを備えた温水生成装置
JP2011174672A (ja) 冷凍サイクル装置および温水暖房装置
JP2015218909A (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP2014119157A (ja) ヒートポンプ式加熱装置
EP3211350B1 (en) Refrigeration cycle device, and hot water heating device provided with the same
JP2011179697A (ja) 冷凍サイクル装置および冷温水装置
JP2015064169A (ja) 温水生成装置
JP6948796B2 (ja) 冷媒回路システム及び制御方法
JP5573370B2 (ja) 冷凍サイクル装置及びその制御方法
JP2011185507A (ja) 冷凍サイクル装置およびそれを備えた温水暖房装置
JP5233960B2 (ja) 冷凍サイクル装置及びそれを用いた温水暖房装置
JP2017166709A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP5440100B2 (ja) 冷凍サイクル装置及びそれを用いた温水暖房装置
JP2013117330A (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP7038277B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
JP5421716B2 (ja) 冷凍サイクル装置および温水暖房装置
JP7133817B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置