WO2009147743A1 - 豆の焙煎冷却方法及び装置 - Google Patents

豆の焙煎冷却方法及び装置 Download PDF

Info

Publication number
WO2009147743A1
WO2009147743A1 PCT/JP2008/060442 JP2008060442W WO2009147743A1 WO 2009147743 A1 WO2009147743 A1 WO 2009147743A1 JP 2008060442 W JP2008060442 W JP 2008060442W WO 2009147743 A1 WO2009147743 A1 WO 2009147743A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
roasting
cold air
heat exchanger
brine
Prior art date
Application number
PCT/JP2008/060442
Other languages
English (en)
French (fr)
Inventor
雅範 神戸
啓 岸本
康丘 葛城
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to PCT/JP2008/060442 priority Critical patent/WO2009147743A1/ja
Priority to JP2010515719A priority patent/JP5076250B2/ja
Priority to EP08765255A priority patent/EP2281469A4/en
Publication of WO2009147743A1 publication Critical patent/WO2009147743A1/ja
Priority to US12/945,779 priority patent/US20110081467A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/04Methods of roasting coffee
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting
    • A23N12/12Auxiliary devices for roasting machines
    • A23N12/125Accessories or details

Definitions

  • the present invention relates to a roasting cooling method and an apparatus thereof.
  • coffee beans are manufactured by a roasting process of beans and a cooling process immediately after roasting.
  • roasting is carried out with hot air drum roasting machine with hot air of 400 to 500 ° C. for about 10 minutes to make roast beans of about 200 ° C.
  • the cooling step the roasted beans immediately after roasting are cooled to a room temperature of about 20 ° C. by air cooling for about 5 minutes.
  • the flavor of coffee formed through the main processes of roasting and cooling is due to many chemical changes formed in the beans by roasting. This flavor changes due to the dissipation of components and chemical changes over time after roasting. Further, there are problems that the scent component is dissipated by the residual heat immediately after the roasting, the secondary roasting proceeds due to the residual heat, or uneven roasting.
  • fresh coffee has a high aroma
  • when hot water is poured into the coffee powder at the time of drip it swells greatly and shows excitement.
  • old coffee does not swell when drip and has little aroma. This swelling during drip is presumed to be caused by carbon dioxide contained in ground coffee beans. Carbon dioxide is dissipated as the ground beans become old, and the aroma is also dissipated along with the carbon dioxide gas. The amount of carbon dioxide held by the ground beans indicates the degree of aroma.
  • the scent and flavor of coffee are due to the scent components after roasting, the dissipation of carbon dioxide and chemical changes. After all, the aroma and flavor of coffee depends on the cooling process immediately after roasting and the storage after the cooling process.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-9246
  • the applicants of the present invention have provided cooling that allows roasted beans such as coffee beans to have a high aroma and flavor, and can reduce operating costs during roasting and cooling.
  • a method and apparatus are proposed.
  • this roasting and cooling apparatus will be described with reference to FIG.
  • the roasting / cooling device 60 includes a roasting machine 61, a fan 62 that sucks the exhaust discharged from the roasting machine 61, a centrifuge 63 that dedusts the exhaust sent from the fan 62, A roasting device 60 comprising a filter-type dust collector 65 for collecting the exhaust gas dedusted by the centrifugal separator 63 through a fan 64, a deodorizer 66 for deodorizing the exhaust gas after dust collection, and a cooling device 70. , Is composed of.
  • the cooling device 70 includes a cooling tank 71, a dust collector 72 including a dust collector 72a and a high-pressure fan 72b, a cold air generator 73, and a closed cold air circulation path 74 connecting them. A closed sealed cooling space is formed.
  • the roasted beans immediately after roasting are rapidly cooled with low-temperature cold air by the cold air generator 73 provided in a closed space formed in a closed shape in the closed cold air circulation path 74, so that the outdoor temperature depending on the season Stable cooling treatment is possible without being affected by fluctuations in the odor, and the chemical change of the scent component in the roasted beans is stopped, so that the generation of volatile components including the scent component can be suppressed, and the scent component is dissipated.
  • non-uniform roasting can be prevented by rapidly removing residual heat after roasting.
  • the deodorizer 66 uses only the roasting process, it can contribute to the reduction of the operating cost.
  • the roasting and cooling apparatus disclosed in Patent Document 1 has many advantages, but recently, due to the rise in the price of crude oil and the like, it is necessary to operate the roasting machine at a lower cost than before. Sex has increased. Therefore, efficient and low-cost operation is required, such as increasing the operating efficiency by increasing the size of the roasting machine.
  • the present invention relates to a roasting and cooling device of a type in which cooling cold air is closed and circulated from outside air to beans after roasting.
  • the purpose is to stabilize the operation of the roasting and cooling device by enabling control with high accuracy, thereby realizing efficient operation at low cost.
  • the method for roasting and cooling beans of the present invention comprises: In the roasting and cooling method for beans, the roasted beans are transferred to a cooling tank provided in the closed cold air circulation path, and the cooling cold air is closed and circulated, so that it is cooled rapidly. Cooling cold air is cooled by low-temperature brine in the heat exchanger provided in the closed circulation path of the cooling cold air, and the cooling bath inlet temperature of the cooling cold air is detected, and the heat exchange is performed so that the detected value becomes the set temperature.
  • a continuous roasting cooling process is made possible by performing a cooling process for the previous batch after roasting in the same time zone as the roasting process for each batch by the roasting machine.
  • the cooling cold air is cooled not by the refrigerant of the refrigeration apparatus but by the low-temperature brine, thereby enabling rapid cooling and stable control of the cooling cold air temperature.
  • the cooling tank inlet temperature of the cooling cold air is detected, and the cooling cold air temperature is controlled by controlling the flow rate or temperature of the low-temperature brine supplied to the heat exchanger so that the detected value becomes the set temperature. Can be controlled with high precision.
  • the circulating air for cooling is rapidly cooled by heat exchange with the low-temperature brine, so that there is a difference in the static pressure of the cooling cold air between the upstream side and the downstream side of the heat exchanger.
  • the pressure loss when passing through the heat exchanger is also added, and a large negative pressure is expected on the outlet side of the heat exchanger.
  • the heat exchanger inlet air temperature is around 80 ° C. and the outlet air temperature is around 5 ° C. Therefore, in order to stabilize the circulation of the cooling cold air without causing a negative negative pressure in the closed circuit, a blower is provided in each of the closed circuit on the upstream side and the downstream side of the heat exchanger.
  • roasted beans immediately after roasting are rapidly cooled with low-temperature cold air in a closed tank formed in a closed space formed by a closed circuit, so they are stable without being affected by seasonal outdoor temperature fluctuations. It is possible to stop the chemical change of the scent component in the roasted beans and to suppress the generation of volatile components containing the scent component.
  • the fragrance component once emitted from the beans circulates in the closed circulation path, returns to the cooling tank, and is adsorbed by the beans again. As a result, it is possible to prevent the fragrance component from escaping and to dissipate the gas component such as the built-in carbon dioxide gas.
  • the cooling process performed in the same time zone as the roasting process may be constituted by pre-cooling the preceding cooling tank and cooling the roasted beans in the subsequent stage.
  • the cooling tank in the pre-cooling of the former stage rapid cooling is possible together with the cooling process of the latter stage, and the cooling efficiency of roasted beans can be improved.
  • the circulation amount of the cooling cold air can be reduced during the pre-cooling of the previous stage, and during this time, the cold storage heat to the brine can be performed by the refrigeration apparatus, thereby facilitating continuous operation of the refrigeration apparatus.
  • the solid content such as the peel of coffee beans mixed in the cold air for cooling is removed by a centrifugal dust remover that does not use a filter provided in a closed circuit, and a heat exchanger is used during the roasting process. It is preferable to provide a washing step of washing the cooling cold air passage with washing water. Since the solid content such as the peel of coffee beans mixed in the cooling air is removed by the centrifugal dust remover without a filter, the pressure loss in the closed circuit can be reduced. Accordingly, the circulation amount of the cooling cold air can be ensured, and a stable cooling process can be performed. Even when the cooling of the roasted beans by the closed cold air circulation path is introduced, the conventional centrifugal dust removing device used in the cooling method by the outside air can be used as it is, and it is not necessary to provide a special filter.
  • the washing step oil and solids that cannot be removed by the centrifugal dust remover and adhere to the wall surface of the cooling cool air passage of the heat exchanger can be removed by the washing step.
  • the roasted beans may ignite in the cooling tank when the roasted beans are discharged from the roasting machine to the cooling tank. Therefore, when the roasted beans are discharged, the cooling water is injected into the cooling tank to prevent ignition. This cooling water may enter the closed circulation path from the cooling tank and freeze on the wall surface of the cooling cold air passage of the heat exchanger.
  • the apparatus for roasting and cooling beans of the present invention which can be used directly for carrying out the method of the present invention,
  • a roasting and cooling apparatus for beans comprising a roasting machine for beans, a cooling tank for cooling the roasted beans, and a closed circulation path for cooling cold air connected to the cooling tank, A heat exchanger that is provided in the closed circulation path and heat-cools the cooling cold air and the low-temperature brine to cool the cooling air.
  • a feed blower and a return blower provided respectively in the upstream cooling cold air passage and the downstream cooling cold air passage of the heat exchanger;
  • a brine heat storage tank connected to the heat exchanger via a low-temperature brine circuit, and a refrigeration apparatus for cooling the brine;
  • a temperature sensor for detecting the cooling tank inlet temperature of the cooling cold air, The temperature of the low-temperature brine supplied to the heat exchanger or the circulation rate is controlled so that the detection value of the temperature sensor becomes a set value.
  • the brine heat storage tank is provided and the brine cooled with the freezing apparatus is stored in this brine heat storage tank.
  • a cooling blower is provided by providing a feed blower and a return blower in the upstream cooling cold air passage and the downstream cooling cold air passage, respectively. The circulation of cold air can be stabilized.
  • the cooling bath inlet temperature of the cooling air is detected and the flow rate or temperature of the low-temperature brine supplied to the heat exchanger is controlled so that the detected value becomes a set value, it flows through the circulation path.
  • the temperature of the cooling air can be controlled with high accuracy.
  • the cooling process for roasted beans can be stabilized, so that the roasted beans are cooled at the same time as the roasting process for the beans, and the cooling time is adjusted to the roasting time.
  • continuous roasting is possible. This enables a highly efficient and low cost roasting and cooling operation.
  • the roasted beans are rapidly cooled by the cooling cold air circulating in the closed circuit, the roasted beans can be enhanced in aroma and taste.
  • a centrifugal dust remover provided in a cooling air circulation path between the cooling tank and the feed blower, a washing water supply path for supplying washing water to the heat exchanger, and cooling air for cooling the heat exchanger
  • a cleaning water circulation path for circulating the cleaning water in the passage may be provided, and a cleaning mechanism may be provided.
  • a shell and tube heat exchanger is used as a heat exchanger for exchanging heat between the cooling cold air and the low temperature brine, and the cooling cold air passage is inside the tube of the shell and tube heat exchanger. And low temperature brine may be passed through the outside of the tube. This facilitates cleaning of the heat exchanger, and the time required for cleaning is short.
  • the apparatus of the present invention further includes an apparatus for producing hot water such as a boiler, supplying hot water to the heat exchanger at the time of washing the heat exchanger, washing the cooling air passage for cooling the heat exchanger, It is preferable that the defrosting of the ice formed in the cooling cold air passage is performed by the cooling water sprinkled with the water. Thereby, along with the removal of oil and solids contained in the cooling cold air, it is possible to defrost the ice formed by the cooling water adhering to the cooling cold air passage.
  • an apparatus for producing hot water such as a boiler, supplying hot water to the heat exchanger at the time of washing the heat exchanger, washing the cooling air passage for cooling the heat exchanger, It is preferable that the defrosting of the ice formed in the cooling cold air passage is performed by the cooling water sprinkled with the water. Thereby, along with the removal of oil and solids contained in the cooling cold air, it is possible to defrost the ice formed by the cooling water adhering to the cooling cold air passage.
  • the cooling cold air in the roasting and cooling method for beans, is closed and circulated from the outside air to the beans after roasting, and the heat provided in the closed circulation path of the cooling cold air is used.
  • the cooling cold air is cooled by the low temperature brine in the exchanger, the cooling bath inlet temperature of the cooling cold air is detected, and the flow rate or temperature of the low temperature brine supplied to the heat exchanger so that the detected value becomes the set temperature.
  • the cooling treatment of the previous batch after roasting and preferably the cooling bath is precooled in the previous stage of the cooling treatment, so that the continuous roasting cooling treatment is possible.
  • Process operation can be performed efficiently and at low cost.
  • a roasting bean comprising a roasting machine for beans, a cooling tank for cooling the roasted beans, and a closed circulation path for cooling air connected to the cooling tank.
  • a heat exchanger that is provided in the closed circulation path and exchanges heat between the cooling cold air and the low-temperature brine to cool the cooling air, and an upstream cooling cold air passage and a downstream side of the heat exchanger A feed blower and a return blower provided in the cooling cold air flow path, a brine heat storage tank connected to the heat exchanger via a brine circulation path and supplying low-temperature brine to the heat exchanger, and the brine heat storage tank A low temperature supplied to the heat exchanger so that the detected value of the temperature sensor becomes a set value.
  • FIG. 1 is an overall configuration diagram of a coffee bean roasting and cooling device according to an embodiment of the present invention. It is a block diagram of the washing
  • the coffee bean roasting and cooling apparatus 10 produces, as main equipment, a roasting machine 11, a cooling tank 20, a closed circulation path 30 that circulates cooling cold air, and a low-temperature brine. And a brine supply device 40.
  • the roasting machine 11 is provided with a hopper 12 for temporarily storing coffee beans before roasting, and the coffee beans are sent to the hopper 12 from the passage 13. A certain amount of coffee beans are supplied in batch form from the hopper 12 to the roasting machine 11, and roasting is performed by the roasting machine 11.
  • a stirrer 15 is provided to roast coffee beans while stirring. After the roasting process, the coffee beans are opened to the cooling tank 20 by opening the discharge port 17. At this time, the hot coffee beans may come into contact with the outside air and ignite. In order to prevent the ignition, cooling water is sprayed from the nozzle 16 onto the roasted beans.
  • a centrifugal dust collector (cyclone) 53 shown in FIG. 4 a filtration dust collector 55 using a filtration filter, and a deodorizer 56 are used. In addition to removing the peel of coffee beans, the exhaust is deodorized and released to the outside air.
  • the closed circuit 30 forms a closed space formed in a sealed shape, and forms a closed space including the cooling tank 20.
  • the closed circuit 30 is provided with a heat exchanger 31 that cools the cooling air with low-temperature brine, and a feed blower 32 and a return blower are respectively connected to the upstream closed circuit and the downstream closed circuit of the heat exchanger 31. 33 is interposed to form a cold air circulation flow flowing in the direction of the arrow.
  • the cooling air circulation path 30 between the feed blower 32 and the heat exchanger 31 is provided with a centrifugal dust removing device (cyclone) 34 that does not use a filter to remove solids such as peeled coffee beans contained in the cold air. ing.
  • dampers 35 and 37 for adjusting the flow rate of the cold air and pressure sensors 36 and 38 for detecting the pressure of the cold air flowing through the closed circuit 30 are provided. Further, a temperature sensor 39 for detecting the cold air temperature is provided in the closed circulation path 30 on the inlet side of the cooling tank 20. Moreover, the heat exchanger 31 is comprised with the shell and tube type heat exchanger.
  • the brine supply device 40 includes a refrigerator 41, a brine tank 42, a brine supply path 43 and a brine return path 44 that connect the brine tank 42 and the heat exchanger 31, and the brine supply path 43 and the brine return path 44 To form a brine circulation path.
  • the brine tank 42 is partitioned into a cold brine tank 42a and a warm brine tank 42b, and the low temperature brine cooled by the refrigerator 41 is sent to the cold brine tank 42a through the flow path 47 and stored in the cold brine tank 42a.
  • the low-temperature brine stored in the cold brine tank 42 a is sent to the heat exchanger 31 through the brine supply path 43, and the cold air is cooled by the heat exchanger 31.
  • the brine that has been heated and exchanged with the cold air in the heat exchanger 31 is returned to the warm brine tank 42 b via the brine return path 44.
  • the brine stored in the warm brine tank 42 b is sent to the refrigerator 41 through the flow path 48 provided with the pump 49, and the brine is cooled by the refrigerator 41.
  • the brine supply path 43 is provided with a pump 45 and an inverter device 46 that controls the discharge amount of the pump 45.
  • the pressure sensors 36 and 38 detect the cold air pressure in the cold air circulation path 30 upstream and downstream of the heat exchanger 31, and the temperature sensor 39 detects the cold air temperature at the inlet of the cooling tank 20. Is transmitted to the control device 22.
  • the cooling air immediately after roasting is 90 ° C. at the blower 32 to cyclone 34, around 80 ° C. at the heat exchanger inlet, and around 5 ° C. at the heat exchanger outlet.
  • the control device 22 controls the inverter device 46 to control the discharge amount of the pump 45 from the detected value of the cold air temperature of the temperature sensor 39 so that the cold air temperature at the inlet of the cooling tank 20 becomes ⁇ 2 ° C.
  • the temperature is controlled at 40 ° C at the heat exchanger inlet, -4 ° C at the heat exchanger outlet, and -2 ° C at the cooling bath inlet temperature.
  • the cooling capacity of the refrigerator 41 is set so that the temperature of the low-temperature brine at the outlet of the cold brine tank 42a is -8 ° C and the temperature of the brine discharged from the heat exchanger 31 is -4 ° C.
  • the discharge air volume of the feed blower 32 and the return blower 33, the opening degree of the dampers 35 and 37, and the discharge volume of the pump 45 are controlled.
  • control device 22 causes the feed blower 32, the return blower 33, and the dampers 35, 37 so that the cold air pressure in the cold air circulation path 30 and the cooling tank 20 on the upstream side and the downstream side of the heat exchanger 31 become atmospheric pressure. To control. In this way, by rapidly cooling the roasted beans immediately after roasting with the cooling cold air, the flavor and fragrance components are not emitted from the roasted beans, and a good fragrance and taste can be produced.
  • a heat exchanger 31 is a shell-and-tube heat exchanger, which is connected by a tube plate 310 of a central body 31a and flanges 311 of channel cover parts 31b and 31c formed on both sides of the central body 31a.
  • a large number of cold air tubes 312 are laid in parallel in the longitudinal direction between the tube plates 310 inside the central body portion 31 a so that the cooling air is passed through the cold air tubes 312.
  • a hot water supply pipe 52 is connected to the channel cover part 31b, and hot water produced by the boiler 51 is supplied into the cold wind pipe 312 and the channel cover parts 31b and 31c of the central body part 31a via the hot water supply pipe 52.
  • a hot water circulation path 53 that connects the channel cover portions 31b and 31c located at both ends of the central body portion 31a is provided, and a pump 54 is interposed in the hot water circulation path 53.
  • a plurality of baffle plates 313 are arranged in the central barrel portion 31a in the radial direction, and the low-temperature brine supplied into the central barrel portion 31a is meandered by the baffle plates 313 so as to increase the heat exchange efficiency with the cooling cold air. I have to.
  • the closed circulation path 30 is closed by the dampers 35 and 37, and the hot water supplied to the outer body portions 31 b and 31 c is supplied with the hot water circulation path 53 and the cold air pipe 312 in the heat exchanger 31.
  • the inner wall of the cold air pipe 312 is washed by circulating through the air.
  • a hot water level meter 56 is attached to the channel cover portion 31c so as to check the amount of hot water stored.
  • a certain amount of coffee beans are supplied from the hopper 12 to the roasting machine 11 in a batch manner, and the roasting machine 11 performs the roasting process. Thereafter, the discharge path 17 is opened, and the roasted beans after the roasting process are sent to the cooling tank 20. At this time, when the roasted beans are likely to ignite, cooling water is sprayed from the nozzle 16 to prevent ignition.
  • the roasted coffee beans are rapidly cooled by the cold air circulating in the closed circulation path 30. Further, the cold air is cooled by exchanging heat with low-temperature brine in the heat exchanger 31.
  • the brine supply device 40 low-temperature brine is manufactured by the refrigerator 41 and the low-temperature brine is stored in the brine tank 42. The low-temperature brine stored in the brine tank 42 is supplied to the heat exchanger 31 via the brine supply path 43.
  • the pressure sensors 36 and 38 detect the pressure in the cold air circulation path 30 upstream and downstream of the heat exchanger 31 and send the detection signal to the control device 22. And by controlling the air volume of the feed blower 32 and the return blower 33 based on the detected value, the outlet portion of the heat exchanger 31 can be maintained at substantially atmospheric pressure. Thereby, the pressure in the cooling tank 20 can be set to about atmospheric pressure, and the cooling air circulation method can be easily introduced without modifying the structure of the cooling tank 20 such as reinforcement.
  • the conventional centrifugal dust removing device 34 used for cooling by the outside air can be used as it is without using a special filter for introducing the cold air circulation method, the pressure loss of the cold air circulation path 30 is reduced. it can. Therefore, the cold air pressure control of the cold air circulation path 30 can be facilitated.
  • the temperature sensor 39 detects the cold air temperature at the inlet of the cooling tank 20, and the control device 22 controls the inverter device 46 to control the discharge amount of the pump 45 so that the cold air temperature is set to ⁇ 2 ° C.
  • the roasted coffee beans can be rapidly cooled, and the rapidly cooled coffee beans can have a high aroma and flavor.
  • the operation procedure shown in FIG. 3 can be adopted in this embodiment. This operation procedure will be described based on FIG. In FIG. 3, the roasting process by the roasting machine 11 is performed for 12 minutes for each batch. (1) During the roasting process of the batch, the cooling tank 20 pre-cools the cooling tank 20 (6 minutes). (1) When the batch roasting process is completed, immediately after that, (1) the batch cooling process (6 minutes) is performed in the cooling bath 20.
  • the air volume of the feed blower 32 and the return blower 33 is minimized during the pre-cooling of the cooling tank 20, and the air volume of the feed blower 32 and the return blower 33 is maximized during the cooling process.
  • the refrigerator 41 is operated during pre-cooling to produce low-temperature brine, and the low-temperature brine is accumulated in the cold brine tank 42a.
  • the amount of low-temperature brine that cannot be caught is stored during pre-cooling. Make up with cold brine.
  • roasting and cooling device 10 can be operated every day.
  • the roasted beans are cooled while circulating the cold air in the closed circulation path 30, so that the outside air temperature is not affected, so that the roasting time and the cooling time are kept constant regardless of the season.
  • the cold air temperature is constant regardless of the season, so that the quality of the roasted beans after roasting can be easily stabilized.
  • the fragrance component once emitted from the coffee beans returns to the cooling tank 20 through the closed circulation path 30 and is adsorbed by the coffee beans again. Dissipation can be prevented, containment in coffee beans, and the aroma and flavor of coffee beans can be enhanced.
  • a deodorizing device is not required in the cold air circulation path 30, and maintenance costs and running costs required for the deodorizing device can be reduced.
  • a shell and tube heat exchanger is used as the heat exchanger 31
  • washing becomes easy, and solids and oil such as peeled coffee beans adhering to the cold air passage can be easily washed, and washing time Can be shortened.
  • warm water is used as the washing water, even if the cooling water sprayed by the roasting machine 11 freezes in the cold air passage of the heat exchanger 31, it can be defrosted during washing.
  • roasting and cooling processing for beans such as coffee beans
  • continuous operation is possible, the processing capacity can be improved, and the aroma and flavor of roasted beans can be enhanced.

Abstract

焙煎後の豆に対し、冷却処理時の冷却用冷風の流量又は温度等を高精度に制御可能にして、焙煎機の運転を安定化させ、これによって、低コストで効率的な焙煎冷却運転を実現することを目的とする。焙煎後の豆に対し、冷却用冷風を外気より閉鎖循環させ、急速冷却するようにした豆の焙煎冷却方法において、冷却用冷風の閉鎖循環路30に設けた熱交換器31で低温ブラインにより冷却用冷風を冷却すると共に、冷却用冷風の冷却槽20の入口温度を検出し、該検出値が設定温度となるように熱交換器31に供給される低温ブラインの流量又は温度を制御し、該熱交換器の上流側及び下流側の閉鎖循環路30に夫々設けたブロア32,33により該閉鎖循環路の冷風循環量及び冷風圧力を制御し、焙煎機11による1バッチ毎の焙煎処理と同時間帯に焙煎後の前バッチの冷却処理及び冷却槽20の予冷を行なうようにして、連続的な焙煎冷却処理を可能にした。

Description

豆の焙煎冷却方法及び装置
 本発明は、焙煎直後の煎り豆の冷却処理において、冷風を閉鎖循環させると共に、冷風の供給を安定化させることによって、焙煎機の運転効率を高めると共に、煎り豆の香りや風味を良くした焙煎冷却方法及びその装置に関する。
 従来、コーヒー煎り豆の製造は、豆の焙煎工程と焙煎直後の冷却工程とにより行なわれている。焙煎工程では、熱風ドラム焙煎機で400~500℃の熱風で10分程度焙煎し、200℃程度の煎り豆にしている。
 また、冷却工程では、焙煎直後の煎り豆を約5分間ほど風冷により、20℃程度の常温に冷却している。
 これら焙煎、冷却の主要工程を経て形成されたコーヒーの風味は、焙煎によって豆内に形成される多くの化学変化によるものである。この風味は、焙煎後の時間の経過につれ成分の散逸と化学変化により変化を起す。また、焙煎直後の余熱で香り成分が散逸したり、余熱により2次焙煎が進行したり、焙煎むらを起す問題がある。
 また、新鮮なコーヒーは、香りが高く、ドリップ時にコーヒーの粉末に熱湯を注ぐと、大きく膨張し、盛り上がりを見せる。一方、古いコーヒーは、ドリップ時の膨らみもなく、香りも少ない。このドリップ時の膨らみは、コーヒー挽き豆に含まれる炭酸ガスに起因すると推定される。炭酸ガスは挽き豆が古くなるにつれ散逸し、香りも炭酸ガスと共に散逸し、挽き豆の炭酸ガスの保有量が香りの度合いを示すことになる。
 前述のように、コーヒーの香りや風味は焙煎後の香り成分や炭酸ガスの散逸や化学変化に起因する。結局、コーヒーの香りや風味は、焙煎直後の冷却処理と冷却処理後の保管に左右される。
 特許文献1(特開平11-9246号公報)で、本出願人等は、コーヒー豆等の煎り豆に高い香りと風味をもたせ、かつ焙煎及び冷却時の運転コストの削減を可能にした冷却方法及び装置を提案した。以下、この焙煎冷却装置を図4に基づいて説明する。
 図4において、この焙煎冷却装置60は、焙煎機61と、焙煎機61から排出される排気を吸引するファン62と、ファン62から送られる排気を脱塵する遠心分離器63と、遠心分離器63で脱塵された排気をファン64を経て集塵する濾過式集塵器65と、集塵後の排気を脱臭する脱臭機66とからなる焙煎装置60と、冷却装置70と、から構成されている。
 冷却装置70は、冷却槽71と、集塵器72a及び高圧ファン72bからなる集塵部72と、冷気発生器73と、それらを結ぶ閉鎖冷気循環路74とからなり、閉鎖冷気循環路74は閉鎖密閉冷却空間を形成している。
 かかる構成において、焙煎直後の煎り豆は、閉鎖冷気循環路74に密閉状に形成された閉鎖空間内に設けられた冷気発生器73により、低温冷気で急速冷却されるため、季節による外気温度の変動の影響を受けず、安定した冷却処理が可能になると共に、煎り豆内の香り成分の化学変化は停止され、香り成分を含んだ揮発分の発生も抑えることができ、香り成分の散逸防止と内蔵する炭酸ガス等のガス分の散逸を防止し、豆内への封じ込めができる。即ち、閉鎖冷気循環路74で閉鎖空間を形成しているため、一旦煎り豆から出た香気成分は、循環空気により煎り豆に戻って来て、再び煎り豆に吸着されると推定される。
 また、焙煎後の余熱を急速除去することで、焙煎むらを防止できる。さらに、脱臭機66は焙煎工程のみ使用するので、運転コストの削減にも貢献できる。
特開平11-9246号公報
 前述のように、特許文献1に開示された焙煎冷却装置は、多くの長所をもつが、最近、原油価格の高騰等の事情から、以前にも増して焙煎機の低コスト運転の必要性が増大してきた。そのため、焙煎機を大型化して運転効率を高めるなど、効率的かつ低コストな運転が求められている。
 本発明は、かかる従来技術の課題に鑑み、焙煎後の豆に対し、冷却用冷風を外気より閉鎖循環させる方式の焙煎冷却装置において、冷却処理時の冷却用冷風の流量又は温度等を高精度に制御可能にして、焙煎冷却装置の運転を安定化させ、これによって低コストで効率的な運転を実現することを目的とする。
 かかる目的を達成するため、本発明の豆の焙煎冷却方法は、
 焙煎後の豆を閉鎖冷気循環路に設けられた冷却槽に移して、冷却用冷風を閉鎖循環させ、急速冷却するようにした豆の焙煎冷却方法において、
 冷却用冷風の閉鎖循環路に設けた熱交換器で低温ブラインにより冷却用冷風を冷却すると共に、冷却用冷風の冷却槽入口温度を検出し、該検出値が設定温度となるように該熱交換器に供給される低温ブラインの流量又は温度を制御し、
 該熱交換器の上流側及び下流側の閉鎖循環路に夫々設けたブロアにより該閉鎖循環路の冷風循環量及び冷風圧力を制御し、
 焙煎機による1バッチ毎の焙煎処理と同時間帯に焙煎後の前バッチの冷却処理を行なうようにして、連続的な焙煎冷却処理を可能にしたものである。
 焙煎後の豆を急速冷却することにより、香り成分の散逸を防ぎ、良い香りや風味を残すことができる。本発明方法では、冷却用冷風を冷凍装置の冷媒でなく、低温ブラインで冷却することにより、急速冷却と冷却用冷風温度の安定制御を可能にしたものである。さらに加えて、冷却用冷風の冷却槽入口温度を検出し、該検出値が設定温度となるように該熱交換器に供給される低温ブラインの流量又は温度を制御することで、冷却用冷風温度を高精度に制御可能にしている。
 熱交換器内において冷却用循環空気は低温ブラインとの熱交換により急激に冷却されるため、該熱交換器の上流側と下流側とで冷却用冷風の静圧に差が生じ、また、冷風が熱交換器内を通るときの圧力損失も加わり、熱交換器出口側では大きく負圧になることが予想される。特に焙煎後直後の冷却においては熱交換器入口空気温度は80℃前後で出口空気温度は5℃前後になる。そのため、閉鎖循環路に大きな負圧による弊害が生じることなく冷却用冷風の循環を安定させるために、熱交換器の上流側及び下流側の閉鎖循環路に夫々ブロアを介設し、夫々のブロアの風量を制御することにより、熱交換器出口部の冷風圧力を大気圧程度に維持制御可能にしている。
 これによって、煎り豆の冷却処理を安定化させ、焙煎機による1バッチ毎の焙煎処理と同時間帯に焙煎後の前バッチの冷却処理、好ましくは該冷却処理の前段で冷却槽の予冷を行なうようにして、煎り豆の急速冷却を可能にすると共に、連続的な焙煎冷却処理を可能にしている。そのため、焙煎及び冷却処理の連続運転が可能になり、効率的かつ低コストな運転が可能になる。
 また、焙煎直後の煎り豆を閉鎖循環路で密閉状に形成された閉鎖空間内に設けられた冷却槽で低温冷気で急速冷却するため、季節による外気温度の変動の影響を受けず、安定した冷却処理を可能にすると共に、煎り豆内の香り成分の化学変化を停止させ、香り成分を含んだ揮発分の発生も抑えることができる。また、一旦豆から出た香気成分は、閉鎖循環路を循環して冷却槽に戻り、再び豆に吸着される。これによって、香り成分の散逸防止と内蔵する炭酸ガス等のガス分の散逸を防止し、豆内への封じ込めができ、煎り豆の香り、風味を高めることができる。
 本発明方法において、焙煎処理と同時間帯に行なう冷却処理を、前段の冷却槽の予冷と後段の煎り豆の冷却処理とで構成するとよい。前段の予冷で冷却槽を冷却しておくことで、後段の冷却処理と合わせて急速冷却が可能になると共に、煎り豆の冷却効率を向上できる。また、前段の予冷中に冷却用冷風の循環量を少なくし、この間に冷凍装置によるブラインへの蓄冷熱を行なうことができ、これによって、冷凍装置の連続運転を容易にする。
 本発明方法において、冷却用冷風に混入するコーヒー豆の剥皮等の固形分を閉鎖循環路に設けた濾過フィルタを用いない遠心式除塵装置で除去すると共に、焙煎工程の間に、熱交換器の冷却用冷風通路を洗浄水で洗浄する洗浄工程をもうけるようにするとよい。
 冷却用冷風に混入するコーヒー豆の剥皮等の固形分を、フィルタを設けない遠心式除塵装置で除去するようにしたので、閉鎖循環路の圧力損失を低減できる。従って、冷却用冷風の循環量を確保でき、安定した冷却処理ができる。閉鎖冷気循環路による焙煎豆の冷却を導入する場合でも、外気による冷却方式で使用していた従来の遠心式除塵装置をそのまま使用できると共に、特別に濾過フィルタを新たに設ける必要はない。
 また、前記洗浄工程をもうけたことにより、遠心式除塵装置で除去できずに熱交換器の冷却用冷風通路の壁面に付着する油分及び固形分を該洗浄工程で除去することができる。
 焙煎工程では、焙煎後の煎り豆を焙煎機から冷却槽に排出する際に、冷却槽内で煎り豆が着火する場合がある。そのため、煎り豆の排出時に冷却槽内に冷却水を噴射して着火を防止している。この冷却水が冷却槽から閉鎖循環路に入り、熱交換器の冷却用冷風通路の壁面に氷結することがある。
 そのため、洗浄水として温水を用いるようにすれば、該油分及び固形分の除去と共に、冷却用冷風通路に付着した結氷をデフロストすることができる。
 前記本発明方法の実施に直接使用可能な本発明の豆の焙煎冷却装置は、
 豆の焙煎機と、焙煎された豆を冷却する冷却槽と、該冷却槽に接続された冷却用冷風の閉鎖循環路とを備えた豆の焙煎冷却装置において、
 前記閉鎖循環路に設けられ、冷却用冷風と低温ブラインとを熱交換させて冷却用冷風を冷却する熱交換器と、
 該熱交換器の上流側冷却用冷風流路及び下流側冷却用冷風流路に夫々設けられた送りブロア及び戻りブロアと、
 該熱交換器と低温ブライン循環路を介して接続されたブライン蓄熱槽、及びブラインを冷却する冷凍装置と、
 冷却用冷風の冷却槽入口温度を検出する温度センサと、を備え、
 該温度センサの検出値が設定値となるように、該熱交換器に供給される低温ブラインの温度又は循環量を制御するように構成したものである。
 本発明装置では、ブライン蓄熱槽を設け、冷凍装置で冷却したブラインを該ブライン蓄熱槽に貯留しておく。このブライン蓄熱槽から低温ブラインを前記熱交換器に供給することにより、低温ブラインの安定供給を可能にし、冷却処理の安定運転を可能にする。
 また、該熱交換器での冷却用冷風の圧力損失を考慮して、熱交換器の上流側冷却用冷風通路及び下流側冷却用冷風通路に夫々送りブロア及び戻りブロアを設けることにより、冷却用冷風の循環を安定させることができる。
 また、冷却用冷風の冷却槽入口温度を検出し、該検出値が設定値となるように、熱交換器に供給する低温ブラインの流量又は温度を制御するようにしているため、循環路を流れる冷却用冷風の温度を高精度に制御できる。
 これによって、煎り豆の冷却処理を安定化させることができるため、焙煎機による豆の焙煎処理と同時に焙煎後の豆の冷却処理を行なうと共に、焙煎時間に冷却時間を合わせるようにして、連続的な焙煎処理を可能とする。これによって、高効率で低コストな焙煎冷却運転が可能になる。また、閉鎖循環路を循環する冷却用冷風で煎り豆を急速冷却するので、煎り豆の香り、味を高めることができる。
 本発明装置において、冷却槽と送りブロア間の冷却用冷風循環路に設けられた遠心式除塵装置と、熱交換器に洗浄水を供給する洗浄水供給路と、該熱交換器の冷却用冷風通路に洗浄水を循環させる洗浄水循環路と、からなる洗浄機構と、を備えるようにするとよい。
 これによって、冷却用冷風に混入するコーヒー豆の剥皮等の固形分を、濾過フィルタを設けない遠心式除塵装置で除去するようにしたので、閉鎖循環路の圧力損失を低減できる。従って、冷却用冷風の循環量を確保でき、安定した冷却処理ができると共に、閉鎖循環路をクリーンな状態に維持できる。
 また、本発明装置において、冷却用冷風と低温ブラインとを熱交換する熱交換器として、シェルアンドチューブ型熱交換器を用い、該シェルアンドチューブ型熱交換器のチューブ内を冷却用冷風の通路とし、該チューブの外側に低温ブラインを通すように構成するとよい。これによって、熱交換器の洗浄が容易になり、洗浄に要する時間が短時間で済む。
 また、本発明装置において、ボイラ等の温水を製造する装置を備え、熱交換器の洗浄時に熱交換器に温水を供給して、該熱交換器の冷却用冷風通路の洗浄と、冷却槽内で散水された冷却水により該冷却用冷風通路に生じた結氷のデフロストを行なうように構成するとよい。
 これによって、冷却用冷風に含まれる油分及び固形分の除去と共に、冷却水が冷却用冷風通路に付着して生じた結氷をデフロストすることができる。
 本発明方法によれば、焙煎後の豆に対し、冷却用冷風を外気より閉鎖循環させ、急速冷却するようにした豆の焙煎冷却方法において、冷却用冷風の閉鎖循環路に設けた熱交換器で低温ブラインにより冷却用冷風を冷却すると共に、冷却用冷風の冷却槽入口温度を検出し、該検出値が設定温度となるように該熱交換器に供給される低温ブラインの流量又は温度を制御し、該熱交換器の上流側及び下流側の閉鎖循環路に夫々設けたブロアにより該閉鎖循環路の冷風循環量及び冷風圧力を制御し、焙煎機による1バッチ毎の焙煎処理と同時間帯に焙煎後の前バッチの冷却処理及び好ましくは該冷却処理の前段で冷却槽の予冷を行なうようにして、連続的な焙煎冷却処理を可能にしたことにより、焙煎冷却工程の運転を高効率にかつ低コストでできると共に、煎り豆に高い香りと風味をもたせて、商品価値を高めることができる。
 また、本発明装置によれば、豆の焙煎機と、焙煎された豆を冷却する冷却槽と、該冷却槽に接続された冷却用冷風の閉鎖循環路とを備えた豆の焙煎冷却装置において、前記閉鎖循環路に設けられ、冷却用冷風と低温ブラインとを熱交換させて冷却用冷風を冷却する熱交換器と、該熱交換器の上流側冷却用冷風流路及び下流側冷却用冷風流路に夫々設けられた送りブロア及び戻りブロアと、該熱交換器とブライン循環路を介して接続され該熱交換器に低温ブラインを供給するブライン蓄熱槽、及び該ブライン蓄熱槽内のブラインを冷却する冷凍装置と、冷却用冷風の冷却槽入口温度を検出する温度センサと、を備え、該温度センサの検出値が設定値となるように、該熱交換器に供給される低温ブラインの流量又は温度を制御するように構成したことにより、冷却槽内の冷風圧力及び閉鎖循環路の冷風循環量を制御して、豆の焙煎処理と同時に焙煎後の豆の冷却処理を行なうことができるので、連続的な焙煎冷却処理を可能にし、焙煎冷却運転を高効率にかつ低コストでできると共に、煎り豆に高い香りと風味をもたせることできる。
本発明の一実施形態に係るコーヒー豆の焙煎冷却装置の全体構成図である。 前記実施形態に係る焙煎冷却装置の洗浄装置の構成図である。 前記実施形態の運転手順を示す図表である。 従来のコーヒー豆の焙煎冷却装置の全体構成図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 本発明をコーヒー豆の焙煎冷却に適用した一実施形態を図1~図3に基づいて説明する。
 図1において、本実施形態に係るコーヒー豆の焙煎冷却装置10は、主要機器として、焙煎機11と、冷却槽20と、冷却用冷風を循環する閉鎖循環路30と、低温ブラインを製造するブライン供給装置40とを備えている。焙煎機11には、焙煎する前のコーヒー豆を一時貯留するホッパ12が設けられており、通路13からコーヒー豆をホッパ12に送るようにしてある。ホッパ12から焙煎機11に一定量のコーヒー豆をバッチ式で供給し、焙煎機11で焙煎処理を行なう。
 焙煎機11の内部には、攪拌器15を設けて、コーヒー豆を攪拌しながら焙煎する。焙煎処理後のコーヒー豆を排出口17を開けて冷却槽20に送り込むが、その際、高温のコーヒー豆が外気に触れて着火する場合がある。その着火を防ぐために、ノズル16から煎り豆に冷却水を噴射する。焙煎機11内の排気を排出する排気路14には、図示していないが、図4に示す遠心式脱塵器(サイクロン)53や、濾過フィルタを用いた濾過式集塵機55や脱臭機56を介設し、コーヒー豆の剥皮等を除去すると共に、排気を脱臭して外気に放出している。
 冷却槽20の内部には、閉鎖循環路30から絶えず冷風を供給し、また攪拌器21を設けて、焙煎後のコーヒー豆を攪拌しながら冷却する。閉鎖循環路30は、密閉状に形成した閉鎖空間を形成し、冷却槽20を含めて密閉空間を形成している。
 閉鎖循環路30に、低温ブラインで冷却用冷風を冷却する熱交換器31を介設すると共に、熱交換器31の上流側閉鎖循環路及び下流側閉鎖循環路の夫々に送りブロア32及び戻りブロア33を介設し、矢印方向に流れる冷風循環流を形成している。送りブロア32と熱交換器31間の冷風循環路30に、濾過フィルタを用いない遠心式除塵装置(サイクロン)34を介設して、冷風に含まれるコーヒー豆の剥皮等の固形分を除去している。
 熱交換器31の入口及び出口には、冷風の流量を調整するためのダンパ35及び37と、閉鎖循環路30を流れる冷風の圧力を検出する圧力センサ36及び38を設けている。また、冷却槽20の入口側の閉鎖循環路30には、冷風温度を検出する温度センサ39を設けている。また、熱交換器31をシェルアンドチューブ型熱交換器で構成している。
 ブライン供給装置40は、冷凍機41と、ブラインタンク42と、ブラインタンク42と熱交換器31とを結ぶブライン供給路43及びブライン戻り路44とを備え、ブライン供給路43とブライン戻り路44とでブライン循環路を形成している。
 ブラインタンク42を、冷ブライン槽42aと温ブライン槽42bとに仕切り、冷凍機41で冷却された低温ブラインを流路47を通って冷ブライン槽42aに送り、冷ブライン槽42aに貯留する。冷ブライン槽42aに貯留した低温ブラインを、ブライン供給路43を介して熱交換器31に送り、熱交換器31で冷風を冷却する。
 熱交換器31で冷風と熱交換して温まったブラインをブライン戻り路44を介して温ブライン槽42bに戻す。温ブライン槽42bに貯留したブラインをポンプ49を介設した流路48を介して冷凍機41に送り、冷凍機41でブラインを冷却する。
 また、ブライン供給路43に、ポンプ45と、ポンプ45の吐出量を制御するインバータ装置46を設けている。
 かかる構成において、圧力センサ36及び38で熱交換器31の上流側及び下流側の冷風循環路30の冷風圧力を検出すると共に、温度センサ39で冷却槽20の入口の冷風温度を検出し、これらの検出信号を制御装置22に送信する。
 焙煎直後の冷却用冷風は、ブロア32~サイクロン34で90℃、熱交換器入口で80℃前後、熱交換器出口で5℃前後となる。制御装置22では、温度センサ39の冷風温度検出値から、冷却槽20の入口部の冷風温度が-2℃となるように、インバータ装置46を制御して、ポンプ45の吐出量を制御する。
 そのため、冷却が進むにつれて熱交換器入口で40℃、熱交換器出口で-4℃、冷却槽入口温度-2℃に制御される。また、制御装置22では、冷ブライン槽42aの出口部の低温ブラインの温度を-8℃とし、熱交換器31から出たブラインの温度を-4℃となるように、冷凍機41の冷却能力、送りブロア32及び戻りブロア33の吐出風量、ダンパ35,37の開度及びポンプ45の吐出量を制御する。
 また、制御装置22により、熱交換器31の上流側及び下流側の冷風循環路30内及び冷却槽20内の冷風圧力が大気圧となるように送りブロア32、戻りブロア33及びダンパ35,37を制御する。
 このように、焙煎直後の煎り豆を冷却用冷風で急速冷却させることにより、煎り豆から味、香りの成分が発散することなく、良い香りと味を出させることができる。
 次に、熱交換器31の洗浄装置50を図2に基づいて説明する。図2において、熱交換器31はシェルアンドチューブ型熱交換器で、中央胴部31aのチューブプレート310と中央胴部31aの両側に形成されるチャンネルカバー部31b及び31cのフランジ311で結合している。中央胴部31aの内部で、チューブプレート310間に、長手方向に多数の冷風管312を並列に架設し、冷風管312内に冷却用冷風を通すようにしている。チャンネルカバー部31bに温水供給管52を接続し、ボイラ51で製造した温水を温水供給管52を介して中央胴部31aの冷風管312内及びチャンネルカバー部31b及び31c内に供給する。
 また、中央胴部31aの両端に位置するチャンネルカバー部31b及び31cを結ぶ温水循環路53を設けると共に、温水循環路53にポンプ54を介設している。中央胴部31aには、半径方向に複数のじゃま板313を配設し、中央胴部31a内に供給した低温ブラインをじゃま板313で蛇行させて冷却用冷風との熱交換効率を大きくするようにしている。
 こうして、熱交換器31の洗浄工程時には、ダンパ35及び37で閉鎖循環路30を閉鎖し、外胴部31b及び31cに供給された温水を温水循環路53と熱交換器31内の冷風管312を通して循環させることにより、冷風管312の内壁を洗浄する。また、チャンネルカバー部31cに温水レベル計56を取り付け、温水の貯留量を確認するようにしている。洗浄工程を終了したら、排水管55から温水を排出する。
 かかる構成の本実施形態において、ホッパ12から焙煎機11に一定量のコーヒー豆をバッチ式で供給し、焙煎機11で焙煎処理を行なう。その後、排出路17を開けて、焙煎処理後の煎り豆を冷却槽20に送る。このとき、煎り豆が着火するおそれがあるときは、ノズル16から冷却水を散布して着火を防ぐ。
 冷却槽20では、閉鎖循環路30を循環する冷風によって、焙煎後のコーヒー豆を急速冷却する。また、冷風を熱交換器31で低温ブラインと熱交換して冷却する。ブライン供給装置40では、冷凍機41で低温ブラインを製造し、低温ブラインをブラインタンク42に貯留する。ブラインタンク42に貯留した低温ブラインをブライン供給路43を介して熱交換器31に供給する。
 本実施形態では、圧力センサ36及び38で、熱交換器31の上流側及び下流側の冷風循環路30の圧力を検出し、該検出信号を制御装置22に送る。そして、該検出値により送りブロア32及び戻りブロア33の風量を制御することにより、熱交換器31の出口部をほぼ大気圧に維持することができる。それにより冷却槽20内の圧力もほぼ大気圧程度とすることができ、冷却槽20の構造を補強等の改造を施すことなく容易に冷風循環方法を導入することができる。
 この場合、冷風循環方法の導入のためとして特別に濾過フィルタを用いることなく、外気による冷却で使用していた従来の遠心式除塵装置34をそのまま使用できるので、冷風循環路30の圧力損失を低減できる。そのため、冷風循環路30の冷風圧力制御を容易にすることができる。
 また、温度センサ39により冷却槽20入口の冷風温度を検出し、制御装置22により、該冷風温度を-2℃とするように、インバータ装置46を制御してポンプ45の吐出量を制御する。これによって、焙煎処理したコーヒー豆を急速冷却でき、急速冷却処理したコーヒー豆に高い香りや風味をもたせることができる。
 このように、冷風循環路30の冷風温度及び冷風圧力を高精度で制御できるので、本実施形態においては、図3に示す運転手順を採用することができる。図3に基づいて、この運転手順を説明する。図3において、焙煎機11による焙煎処理を1バッチ毎に12分行なう。(1)バッチの焙煎処理中、冷却槽20では冷却槽20の予冷(6分)を行なう。(1)バッチの焙煎処理が終了したら、その直後に冷却槽20で(1)バッチの冷却処理(6分)を行なう。
 なお、冷却槽20の予冷中は、送りブロア32及び戻りブロア33の風量を最小にし、冷却処理中は、送りブロア32及び戻りブロア33の風量を最大にする。
 また、予冷中に冷凍機41を稼動して低温ブラインを製造して冷ブライン槽42aに低温ブラインを蓄積するようにし、冷却処理中に、低温ブラインの製造が追いつかない分を予冷中に蓄えた低温ブラインで補うようにする。
 このように運転することで、連続的な焙煎及び冷却処理が可能になり、運転効率を向上できる。また、前段の予冷で冷却槽20を冷却しておくことで、後段の冷却処理と合わせて急速冷却が可能になると共に、煎り豆の冷却効率を向上できる。
 図3に示すように、1バッチ焙煎を12分で行い、予冷及び冷却処理を夫々6分で行なえば、1時間で5バッチの焙煎及び冷却処理を可能とし、1日22時間焙煎冷却装置10を稼動させた後、2時間の洗浄工程を行なうようにする。これによって、焙煎冷却装置10を連日稼動させることができる。
 本実施形態によれば、冷風を閉鎖循環路30で循環させながら煎り豆を冷却するので、外気温度を影響を受けずに済み、そのため、季節を問わず焙煎時間と冷却時間を一定に保持して安定した連続運転を可能にすると共に、冷風温度が季節を問わず一定にするため、焙煎後の煎り豆の品質を容易に安定させることができる。
 また、一旦コーヒー豆から出た香気成分は、閉鎖循環路30を循環して冷却槽20に戻り、再びコーヒー豆に吸着されるので、香り成分の散逸防止と内蔵する炭酸ガス等のガス分の散逸を防止し、コーヒー豆内への封じ込めができ、コーヒー豆の香り、風味を高めることができる。
 また、冷風循環路30に脱臭装置が不要になり、脱臭装置に要するメンテナンスコスト及びランニングコストを節減できる。
 また、熱交換器31としてシェルアンドチューブ型熱交換器を用いているため、洗浄が容易になり、冷風通路に付着したコーヒー豆の剥皮等の固形分と油分を容易に洗浄できると共に、洗浄時間を短縮できる。また、洗浄水として温水を用いているため、焙煎機11で噴射される冷却水が熱交換器31の冷風通路に氷結しても、洗浄時にデフロストすることができる。
 本発明によれば、コーヒー豆等の豆の焙煎冷却処理において、連続運転を可能にして、処理能力を向上できると共に、煎り豆の香りや風味を高めることができる。

Claims (8)

  1.  焙煎後の豆を閉鎖冷気循環路に設けられた冷却槽に移して、冷却用冷風を閉鎖循環させ、急速冷却するようにした豆の焙煎冷却方法において、
     冷却用冷風の閉鎖循環路に設けた熱交換器で低温ブラインにより冷却用冷風を冷却すると共に、冷却用冷風の冷却槽入口温度を検出し、該検出値が設定温度となるように該熱交換器に供給される低温ブラインの流量又は温度を制御し、
     該熱交換器の上流側及び下流側の閉鎖循環路に夫々設けたブロアにより該閉鎖循環路の冷風循環量及び冷風圧力を制御し、
     焙煎機による1バッチ毎の焙煎処理と同時間帯に焙煎後の前バッチの冷却処理を行なうようにして、連続的な焙煎冷却処理を可能にしたことを特徴とする豆の焙煎冷却方法。
  2.  焙煎処理と同時間帯に行なう冷却処理を、前段の冷却槽の予冷と後段の煎り豆の冷却処理とで構成したことを特徴とする請求項1に記載の豆の焙煎冷却方法。
  3.  冷却用冷風に混入する固形分を前記閉鎖循環路に設けた濾過フィルタを用いない遠心式除塵装置で除去することにより、閉鎖循環路の圧力損失を低減すると共に、
     焙煎冷却工程の間に、前記熱交換器の冷却用冷風通路を洗浄水で洗浄する洗浄工程をもうけたことを特徴とする請求項1又は2に記載の豆の焙煎冷却方法。
  4.  前記洗浄水として温水を用いることにより、熱交換器の冷却用冷風通路の洗浄と同時に、焙煎機又は冷却槽内で散水された冷却水により該冷却用冷風通路に生じた結氷をデフロストすることを特徴とする請求項3に記載の豆の焙煎冷却方法。
  5.  豆の焙煎機と、焙煎された豆を冷却する冷却槽と、該冷却槽に接続された冷却用冷風の閉鎖循環路とを備えた豆の焙煎冷却装置において、
     前記閉鎖循環路に設けられ、冷却用冷風と低温ブラインとを熱交換させて冷却用冷風を冷却する熱交換器と、
     該熱交換器の上流側冷却用冷風流路及び下流側冷却用冷風流路に夫々設けられた送りブロア及び戻りブロアと、
     該熱交換器とブライン循環路を介して接続され該熱交換器に低温ブラインを供給するブライン蓄熱槽、及び該ブライン蓄熱槽内のブラインを冷却する冷凍装置と、
     冷却用冷風の冷却槽入口温度を検出する温度センサと、を備え、
     該温度センサの検出値が設定値となるように、該熱交換器に供給される低温ブラインの流量又は温度を制御するように構成したことを特徴とする豆の焙煎冷却装置。
  6.  冷却槽と送りブロア間の冷却用冷風循環路に設けられた遠心式除塵装置と、
     前記熱交換器に洗浄水を供給する洗浄水供給路と、該熱交換器の冷却用冷風通路に洗浄水を循環させる洗浄水循環路と、からなる洗浄機構と、を備えたことを特徴とする請求項5に記載の豆の焙煎冷却装置。
  7.  前記熱交換器としてシェルアンドチューブ型熱交換器を用い、該シェルアンドチューブ型熱交換器のチューブ内に冷却用冷風を通し、該チューブの外側に低温ブラインを通すように構成したことを特徴とする請求項5又は6に記載の豆の焙煎冷却装置。
  8.  温水製造装置を備え、前記熱交換器の洗浄時に該熱交換器に温水を供給して、該熱交換器の冷却用冷風通路の洗浄と、焙煎機又は冷却槽内で散水された冷却水により該冷却用冷風通路に生じた結氷のデフロストを行なうように構成したことを特徴とする請求項6又は7に記載の豆の焙煎冷却装置。
PCT/JP2008/060442 2008-06-06 2008-06-06 豆の焙煎冷却方法及び装置 WO2009147743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/060442 WO2009147743A1 (ja) 2008-06-06 2008-06-06 豆の焙煎冷却方法及び装置
JP2010515719A JP5076250B2 (ja) 2008-06-06 2008-06-06 豆の焙煎冷却方法及び装置
EP08765255A EP2281469A4 (en) 2008-06-06 2008-06-06 METHOD AND DEVICE FOR ROASTING / COOLING BEANS
US12/945,779 US20110081467A1 (en) 2008-06-06 2010-11-12 Method and device for roasting/cooling bean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060442 WO2009147743A1 (ja) 2008-06-06 2008-06-06 豆の焙煎冷却方法及び装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/945,779 Continuation US20110081467A1 (en) 2008-06-06 2010-11-12 Method and device for roasting/cooling bean

Publications (1)

Publication Number Publication Date
WO2009147743A1 true WO2009147743A1 (ja) 2009-12-10

Family

ID=41397835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060442 WO2009147743A1 (ja) 2008-06-06 2008-06-06 豆の焙煎冷却方法及び装置

Country Status (4)

Country Link
US (1) US20110081467A1 (ja)
EP (1) EP2281469A4 (ja)
JP (1) JP5076250B2 (ja)
WO (1) WO2009147743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183539A (ja) * 2017-04-27 2018-11-22 株式会社ジェイ・エフ・シー 業務用洗濯機の排水利用システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523710B2 (en) 2016-10-14 2022-12-13 Societe Des Produits Nestle S.A. Coffee containers and associated system and method for preparing roast and ground coffee
IT202000004756A1 (it) * 2020-03-06 2021-09-06 Pieta Giovanni Metodo per la tostatura di una matrice alimentare
IT202100002150A1 (it) * 2021-02-02 2022-08-02 Lavazza Luigi Spa Distributore automatico di bevande a base di caffè
DE102022116191B3 (de) * 2022-06-29 2023-10-12 Probat-Werke Von Gimborn Maschinenfabrik Gmbh Kühlanordnung für geröstetes pflanzliches Schüttgut, Rösteranordnung sowie Verfahren zum Betreiben der Rösteranordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345180A (en) * 1965-01-15 1967-10-03 Hupp Corp Coffee roasting method
JPH0198469A (ja) * 1987-10-09 1989-04-17 Kondo Unyu Kiko Kk 焙煎機における炒豆の冷却装置
JPH119246A (ja) * 1997-06-25 1999-01-19 U C C Ueshima C0Ffee Kk 豆の焙煎冷却方法とその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710561A (en) * 1969-12-24 1973-01-16 Amf Inc Apparatus for separating solid particles suspended in a gaseous stream
US4464904A (en) * 1983-05-19 1984-08-14 Union Carbide Corporation Process for the transfer of refrigeration
EP0359515B1 (en) * 1988-09-13 1993-12-08 Ngk Insulators, Ltd. Coffee bean roasting device
WO1991009541A1 (en) * 1989-12-21 1991-07-11 Kabushiki Kaisha Doutor Coffee Device for roasting coffee beans
IES990741A2 (en) * 1999-09-02 2001-04-04 David Mckernan A manufacturing process for coffee products
JP3932913B2 (ja) * 2002-01-29 2007-06-20 ダイキン工業株式会社 ヒートポンプ式給湯機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345180A (en) * 1965-01-15 1967-10-03 Hupp Corp Coffee roasting method
JPH0198469A (ja) * 1987-10-09 1989-04-17 Kondo Unyu Kiko Kk 焙煎機における炒豆の冷却装置
JPH119246A (ja) * 1997-06-25 1999-01-19 U C C Ueshima C0Ffee Kk 豆の焙煎冷却方法とその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2281469A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183539A (ja) * 2017-04-27 2018-11-22 株式会社ジェイ・エフ・シー 業務用洗濯機の排水利用システム

Also Published As

Publication number Publication date
JP5076250B2 (ja) 2012-11-21
US20110081467A1 (en) 2011-04-07
EP2281469A4 (en) 2011-06-29
JPWO2009147743A1 (ja) 2011-10-20
EP2281469A1 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5076250B2 (ja) 豆の焙煎冷却方法及び装置
CN109642764A (zh) 用于立式喷射型制冰机的排冰装置
CN103026154B (zh) 制冷装置
US20100326103A1 (en) Dehumidifier for Use in Water Damage Restoration
CN107975991A (zh) 除尘控制方法及空调系统
CN104969016A (zh) 刨冰制冰机
CN107763957A (zh) 化霜控制方法、装置及应用该方法、装置的制冷设备
US6237350B1 (en) Refrigerated display case and method for sanitizing a refrigerated display case
JP2015010738A (ja) 凍結乾燥システムおよび凍結乾燥方法
JP2007212092A (ja) 乾燥装置
JP2009144951A (ja) 冷凍冷蔵装置のデフロスト運転制御装置及び方法
CN107076456A (zh) 空气温度控制单元和用于控制空气温度并产生净化水的方法
CN208635416U (zh) 一种新型制冷设备接水盘
JP2007212090A (ja) 乾燥装置
JP2016200337A (ja) 流下式製氷機及びその運転方法
JP2007212093A (ja) 乾燥装置
WO2007094141A1 (ja) 冷却装置
JP2008170016A (ja) 冷却装置
JP2004198007A (ja) 加熱調理器
JPH0755327A (ja) 冷却装置の除霜装置
KR200395163Y1 (ko) 쇼케이스의 결로수 처리장치
JP3617906B2 (ja) 豆の焙煎冷却方法とその装置
JP2008082591A (ja) 冷却方法及び冷却装置
JP2003279183A (ja) 空気サイクル式冷却装置
JP2007212094A (ja) 乾燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515719

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008765255

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE