WO2003064035A1 - Procedimiento para la deshidrogenacion oxidativa de etano - Google Patents

Procedimiento para la deshidrogenacion oxidativa de etano Download PDF

Info

Publication number
WO2003064035A1
WO2003064035A1 PCT/ES2003/000056 ES0300056W WO03064035A1 WO 2003064035 A1 WO2003064035 A1 WO 2003064035A1 ES 0300056 W ES0300056 W ES 0300056W WO 03064035 A1 WO03064035 A1 WO 03064035A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethane
catalyst
process according
oxidative dehydrogenation
carried out
Prior art date
Application number
PCT/ES2003/000056
Other languages
English (en)
French (fr)
Other versions
WO2003064035B1 (es
Inventor
José Manuel LOPEZ NIETO
Pablo Botella Asuncion
Maria Isabel Vazquez Navarro
Ana Dejoz Garcia
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to EP03704717A priority Critical patent/EP1479438A1/en
Publication of WO2003064035A1 publication Critical patent/WO2003064035A1/es
Publication of WO2003064035B1 publication Critical patent/WO2003064035B1/es
Priority to US10/909,276 priority patent/US7319179B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/31Chromium, molybdenum or tungsten combined with bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/885Molybdenum and copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/057Selenium or tellurium; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention is encompassed in the technical field of petrochemical processes.
  • it refers to. an ethane oxidation process and more specifically to the oxidative dehydrogenation of ethane to obtain ethene.
  • Ethene is currently obtained from the catalytic cracking of petroleum or by catalytic dehydrogenation of ethane.
  • oxidative dehydrogenation reactions in the presence of oxygen or air.
  • Catalysts based on metal oxides Mo a X b Y c in which X can be one or more elements (Cr, Mn, Nb, Ta, Ti, V y) and Y is Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Ti or U for the oxidative dehydrogenation of ethane to ethene are described in US Pat. No. 4,250,346, however, the reference only proposes obtaining of ethene with high selectivity.
  • the metal oxides of Mo-V-Nb-Sb are found to be more effective for the selective oxidation of ethane to ethene as it appears from, for example, US-A-4, 524, 236 (1985); JP-10175885 (1988).
  • JP-07053414 (patent written in Japanese) an active and selective catalyst for the oxidative dehydrogenation of ethane to ethene based on MoVTeNb oxides (M ⁇ Vo. 3 Te 0.
  • WO-99/13980 describes a catalyst with Mo, V and Nb and small amounts of phosphorus, boron, hafnium, tellurium and / or arsenic with calcination temperatures.
  • Spanish patent application P200101756 describes catalysts comprising Mo-Te-V-Cu and at least one other component A selected from Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, a rare earth, alkaline or alkaline earth, for the oxidation of alkanes; but it has not been proven that said catalysts give rise to an oxidation of ethane with the required desired performance on an industrial scale.
  • the present invention relates to a process for the oxidative dehydrogenation of ethane, characterized in that it comprises contacting ethane with a catalyst comprising Mo, Te, V, Nb and at least a fifth element A selected from Cu, Ta, Sn, Se ,, Ti, Fe, Co, Ni, Cr, Zr, Ga, Sb, Bi, an alkali metal, alkaline earth metal and a rare earth, in which at least Mo, Te, V and Nb are present in the form of at least an oxide, the catalyst having, in calcined form, an X-ray diffractogram with more than ten intense diffraction lines, typically the most intense, corresponding to 2 ⁇ diffraction angles of 7.7 ° ⁇ 0.4; 8.9 ° ⁇ 0.4; 22.1 ° ⁇ 0.4; 26.6 ° ⁇ 0.4 26.9 ° ⁇ 0.4, 27.1 ° ⁇ 0.4; 28.1 ° ⁇ 0.4; 31.2 ° ⁇ 0.4; 35.0
  • At least Mo, Te, V and Nb are present in the form of at least one calcined mixed oxide.
  • the catalyst has the empirical formula:
  • MoTe h ViNb j A k O x in which h, i and j, have values between 0.001 and 4.0, k is between 0.0001 and 2.0 and x depends on the oxidation or valence state of the elements Mo, Te , V, Nb and A, that is, the "x" amount of oxygen in the catalyst depends on the composition and the method of activation.
  • the above parameters have the following values and relationships:
  • - h and i are between 0.01 and 3, preferably between 0.02 and 2
  • the i / h ratio is between 0.3 and 10
  • - j is between 0.001 and 2, preferably between 0.001 and 0.5
  • k is between 0.0001 and 2.0, preferably between 0.001 and 1, 0.
  • A is Cu, W or Bi. In a more preferred embodiment even A is Cu, W or Bi and the above parameters take the following values:
  • - j is between 0.001 and 1.5 and - k is between 0.001 and 2.0.
  • the catalyst can be a mixed oxide supported on a solid, such as silica, alumina, titanium oxide and mixtures of the same.
  • silica as a solid support is present in a proportion of 20 to 70% by weight with respect to the total catalyst weight.
  • the catalyst can also be in the form of a mixed oxide supported on a silicon carbide.
  • the catalyst in its calcined form has an X-ray diffractogram whose most intense diffraction lines, as well as the corresponding intensities relative to the peak of greater intensity, are those shown in Table 1.
  • Said catalyst can be prepared by conventional methods from solutions of compounds of the different elements, from solutions of the same pure elements, or from mixing of both, with the desired atomic ratios. Said solutions are preferably aqueous solutions.
  • the catalyst preparation process comprises at least:
  • the mixing stage can be carried out from the compounds of the different elements, from the pure elements themselves in solution, or by hydrothermal methods.
  • the elements Mo, Te, V and Nb can be incorporated into the mixing stage as pure metal elements, as salts, as oxides, as hydroxides, as alkoxides, as acids, or as mixtures of two or more of the aforementioned forms. Sulfates, nitrates, oxalates or halides are preferably used as salts, and more preferably as sulfates.
  • the Mo can be incorporated into the mixing step preferably as molibedic acid, ammonium molybdate, ammonium heptamolybdate and molybdenum oxide.
  • the Te can be incorporated into the mixing stage preferably as telluric acid, tellurium oxide and metal tellurium.
  • the V can be incorporated into the mixing step preferably as ammonium vanadate, vanadium oxide, vanadyl sulfate, vanadyl oxalate or vanadyl chloride.
  • the Nb can be incorporated into the mixing step preferably as niobium pentoxide, niobium oxalate, niobium chloride or Nb metal.
  • the elements Cu, W, Bi, Ta, Sn, Se, Ti, Fe, Co, Ni, Cr, Ga, Sb, Zr, rare earth, alkali metal or alkaline earth metal can also be incorporated into the mixing stage as salts, oxides, hydroxides, or alkoxides, pure or as mixtures of two or more elements. Preferably they are incorporated as sulfates, nitrates, oxalates or halides, and more preferably as sulfates.
  • the mixing step can be followed by a period of static permanence in the reactor, or the mixing can be carried out with stirring. Both static permanence and agitation can be performed in a normal reactor or in an autoclave.
  • the mixing step can be carried out in solution or by hydrothermal treatment.
  • the drying stage can be carried out by conventional methods in an oven, evaporation with stirring, evaporation in a rotary evaporator, or vacuum drying.
  • the step of calcining the dry solid can be carried out under an inert gas atmosphere, such as nitrogen, helium, argon or mixtures, of air or mixtures.
  • An alternative embodiment of the process is carried out, as indicated above, using hydrothermal methods (containing two or more elements in the synthesis, especially containing Mo, Te, V and Nb).
  • the temperature and time of synthesis can be decisive using hydrothermal methods.
  • the synthesis temperature is preferably performed between 100 and 250 ° C and, more specifically, between 150 and 180 ° C.
  • the synthesis time is preferably between 6 and 500 hours, and more specifically between 24 and 200 hours.
  • the calcination step can be carried out by passing a flow of inert gas (with space velocities between 1 and 400 h "1 ) or static.
  • the temperature is preferably between 250 and 1000 ° C and more preferably between 550 and 800 ° C.
  • the calcination time is not decisive, but is preferred between 0.5 hours and 20 hours.
  • the heating rate is not decisive, but it is preferred between 0, 1 ° C / minute and 10 ° C / minute.
  • the catalyst may also be initially calcined in an oxidizing atmosphere to a temperature of 200-350 ° C, and more preferably between 250 and 290 ° C, and subsequently subjected to calcination in an inert atmosphere.
  • the elements Cu, W, Bi, Ta, Sn, Se, Ti, Fe, Co, Ni, Cr, Ga, Sb, Zr, rare earth, alkali metal or alkaline earth metal can also be incorporated after the calcination by impregnation stage or precipitation In this case, the resulting solid will be subjected to a second calcination stage.
  • the catalyst for the process of the present invention can be used as obtained once calcined.
  • the catalyst can be supported on a solid such as: silica, alumina, titanium oxide or mixtures thereof, as well as silicon carbide.
  • the fixing of the different catalyst elements on the support can be carried out by conventional impregnation methods, such as pore volume, excess solution, or simply by precipitation on the support of a solution containing the active elements.
  • the oxidative dehydrogenation process of ethane according to the present invention converts ethane to ethene according to a preferred embodiment.
  • the process that gives rise to ethene is preferably carried out in the gas phase, and in the presence of water vapor.
  • the oxidative dehydrogenation of ethane gives rise to acetic acid by reaction of ethane and oxygen in the gas phase, in the presence of water
  • oxidative dehydrogenation of ethane results in acetonitrile by reaction of ethane, and oxygen, in the gas phase, in the presence of ammonia and water vapor.
  • the oxidative dehydrogenation of ethane to ethane or acetic acid is carried out using the catalyst described as cocatalyst.
  • oxidative dehydrogenation of ethane to acetonitrile is carried out using the catalyst described as cocatalyst and producing ethane oxidation.
  • the oxidative dehydrogenation of ethane produces ethylene oxide and said oxidative dehydrogenation of ethane is carried out using the catalyst as a cocatalyst producing the oxidation of ethane to ethylene oxide.
  • oxidizing agent pure oxygen, air, inert oxygen-gas mixtures (with different proportions of both) or oxygen enriched air can be used.
  • water may or may not be incorporated into the feed.
  • the water content in the reaction mixture may be from 0 to 80%, and more preferably between 20 and 60%.
  • the oxidative dehydrogenation process can be carried out in a fixed bed reactor or in a fluidized bed reactor.
  • the reaction temperature is between 250 and 550 ° C, preferably between 300 and 480 ° C, and more preferably between 350 and 440 ° C.
  • the contact time defined as the ratio between the catalyst volume () and the total gas flow rate (F), is between 0.001 and 100 s. Although the contact time depends on the method of preparation and composition of the catalyst employed, in general it is preferable between 0.05 and 50, and more preferably between 0.1 and 25 s.
  • Figure 1 shows an X-ray diffractogram of the catalyst described in Example 1
  • Figure 2 shows an X-ray diffractogram of the catalyst described in example 3
  • Figure 3 shows an X-ray diffractogram of the catalyst described in example 5
  • Figure 4 shows an X-ray diffractogram of the catalyst described in example 7
  • Figure 5 shows an X-ray diffractogram of the catalyst described in Example 9
  • Figure 6 shows an X-ray diffractogram of the catalyst described in Example 11
  • Figure 7 shows an X-ray diffractogram of the catalyst described in example 15.
  • Example 1 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Nb-0 by hydrothermal method
  • Example 2 Use of the catalyst described in example 1 for the oxidative dehydrogenation of ethane
  • Example 4 Use of the oxidation catalyst described in example 3 for oxidative dehydrogenation of ethane
  • Example 6 Use of the catalyst described in example 5 for the oxidative dehydrogenation of ethane
  • Example 7 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Nb-0 by hydrothermal method by modifying the calcination temperature
  • Example 8 Use of the catalyst described in example 5 for the oxidative dehydrogenation of ethane
  • Example 9 Preparation of an oxidation catalyst based on a mixed Mo-Te-V-Nb-Cu oxide modifying the synthesis conditions
  • the autoclave is kept at 175 ° C, in static, for 60 h.
  • the contents of the autoclave are filtered, washed with distilled water and dried at 80 ° C.
  • the solid obtained is calcined at 600 ° C for 2 h under a stream of nitrogen.
  • Example 10 Use of the catalyst described in example 9 for the oxidative dehydrogenation of ethane
  • Example 11 Preparation of an oxidation catalyst similar to that of Example 7 by modifying the synthesis conditions
  • Example 12 Use of the catalyst described in example 11 for the oxidative dehydrogenation of ethane
  • Example 13 Use of the catalyst described in Example 11 by modifying the reaction conditions
  • Example 14 Use of the catalyst described in example 11 by modifying the reaction conditions
  • Example 15 Preparation of an oxidation catalyst from a solution containing Mo-V-Te-Nb by modifying the method of preparation In 1307 ml of hot water at 80 ° C, 80.0 g of tetrahydrated ammonium heptamolybdate was dissolved, 15 , 87 g of ammonium metavanadate, and 23.97 g of telluric acid, obtaining a uniform solution. On the other hand and after heating to 40 ° C a solution (356.8 g) of niobium oxalate containing 53.97 mmol of niobium was prepared and added to the previous solution to obtain a solution.
  • Example 16 Use of the catalyst described in example 15 for the oxidative dehydrogenation of ethane
  • Example 18 Preparation of an oxidation catalyst from a solution containing Mo-V-Te-Nb-Bi by modifying the preparation method
  • Example 19 Use of the catalyst described in example 18 for the oxidative dehydrogenation of ethane with different reaction conditions

Abstract

La presente invención se refiere a un procedimiento para la deshidrogenación oxidativa de etano, caracterizado porque comprende poner en contacto etano con un catalizador que comprende Mo, Te, V, Nb y al menos un quinto elemento A seleccionado entre Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Ga, Sb, Bi, un metal alcalino, metal alcalinotérreo y una tierra rara, en el que al menos Mo, Te, V y Nb están presentes en forma de al menos un óxido, presentando el catalizador, en forma calcinada, un difractograma de rayos X con más de diez líneas de difracción intensas, típicamente las más intensas, correspondientes a ángulos 2υ de difraccíon de 7,7°±0,4; 8,9°±0,4; 22,1°±0,4; 26,6°±0,4; 26,9°±0,4; 27,1°±0,4; 28,1°±0,4; 31,2°±0,4; 35,0°±0,4 y 45,06°±0.

Description

Título
Procedimiento para la deshidrogenación oxidativa de etano.
Campo de la Técnica
La presente invención se engloba en el campo técnico de los procesos en petroquímica. De manera particular se refiere a. un proceso de oxidación de etano y de modo más específico a la deshidrogenación oxidativa de etano para la obtención de eteno .
Estado de la técnica anterior a la invención.
El eteno es en la actualidad obtenido a partir del craqueo catalítico del petróleo o por deshidrogenación catalítica de etano. Por razones económicas y técnicas, es de interés industrial el obtener olefinas a partir de hidrocarburos saturados por reacciones de deshidrogenación oxidativa (en presencia de oxígeno o aire) . Sin embargo, hasta el momento, no existen catalizadores que presenten una efectividad alta. Catalizadores basados en óxidos metálicos MoVZ (Z= Li, Na, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Se, Y, La, Ce, Al, Ti, Ti, Zr, Hf, Pb, Nb, Ta, As, Sb, Bi, Cr, , U, Te, Fe, Co y Ni) para la deshidrogenación oxidativa de etano a eteno se describen en la patente europea-EP-294 , 845 (1988). Catalizadores basados en óxidos metálicos MoaXbYc en el que X puede ser uno o más elementos (Cr, Mn, Nb, Ta, Ti, V y ) e Y es Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Ti o U para la deshidrogenación oxidativa de etano a eteno se describen en la patente estadounidense US-A-4, 250, 346, sin embargo, la referencia sólo propone la obtención de eteno con alta selectividad.
El uso de catalizadores basados en óxidos de MoVNb ya se había propuesto por Thorsteinson y col. en " The ox.ida.tive dehydrogenation of Ethane over catalyst containing Mixed Oxides of Molybden m and Vanadium" , J. Catal . 52, 116-132 (1978) .
Los óxidos metálicos de Mo-V-Nb-Sb resultan ser más efectivos para la oxidación selectiva de etano a eteno tal y como de desprende de, por ejemplo, US-A-4, 524 , 236 (1985); JP-10175885 (1988) .
En la patente US-A-4 , 524 , 236, se presenta el sistema MoVNbSbM (M= Li, Se, Na, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Y, Ta, Cr, Fe, Co, Ni, Ce, La, Zn, Cd, Hg, Al, Ti, Pb, As, Bi, Te, U, W o Mn) . En esta patente se describe que en la oxidación de etano sobre un catalizador Mθo,6i o/i6Nbo,o7Sb0,o4 se obtiene a 320 °C una conversión de etano del 34% con una selectividad a eteno del 86%. En la patente JP-10143314 se describe el sistema MoVSbX (X= Ti, Zr, Nb, Ta, Cr, , Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Zn, In, Sn, Pb, Bi, Ce y metales alcalinotérreos) con una estructura cristalina definida por un difractograma que se ilustra en la patente . En la patente japonesa, JP-07053414 (patente escrita en japonés) se propone un catalizador activo y selectivo para la deshidrogenación oxidativa de etano a eteno basado en óxidos de MoVTeNb (MθιVo.3Te0.23Nb02) , teniendo un difractograma de rayos X a 2θ= 22,1; 28,2; 36,2; 45,1; 50,0. También se han propuesto los óxidos metálicos de Mo-V- Nb-Sb como sistema efectivo para la oxidación de etano y eteno a ácido acético en EP-A-0294845.
En la patente WO-99/13980 se describe un catalizador con Mo, V y Nb y pequeñas cantidades de fósforo, boro, hafnio, teluro y/o arsénico con temperaturas de calcinación
(en aire) entre 250-450 °C para la oxidación de etano a ácido acético con rendimientos del 12,3-26,6%.
En la patente japonesa JP-10017523 (1998) se propone un catalizador compuesto de un metal (Ru, Rh, Ir, Pd y/o Pt) soportado sobre un óxido de Mo-V-X-Z. En esa patente se describe que un catalizador de Pd soportado sobre un óxido de Mo-V-Nb-Sb da lugar a un rendimiento a ácido acético del 59,7% en la oxidación de eteno a 320 °C.
Ueda y col. (Applied Catalysis, 200 (2000) 135) observan que catalizadores del tipo Mo-V-M-0 (M= Al, Ga, Bi, Sb y Te) , preparados hidrotermalmente son activos y selectivos en la oxidación de etano a eteno con selectividades a eteno inferiores al 75% para conversiones de etano inferiores al 20%.
Finalmente la solicitud de patente española P200101756 describe catalizadores que comprenden Mo-Te-V-Cu y al menos otro componente A seleccionado entre Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, una tierra rara, alcalino o alcalinotérreo, para la oxidación de alcanos; pero no se ha probado que dichos catalizadores den lugar a una oxidación de etano con el rendimiento necesario deseado a escala industrial .
Descripción de la Invención
La presente invención se refiere a un procedimiento para la deshidrogenación oxidativa de etano, caracterizado porque comprende poner en contacto etano con un catalizador que comprende Mo, Te, V, Nb y al menos un quinto elemento A seleccionado entre Cu, Ta, Sn, Se, , Ti, Fe, Co, Ni, Cr, Zr, Ga, Sb, Bi, un metal alcalino, metal alcalinotérreo y una tierra rara, en el que al menos Mo, Te, V y Nb están presentes en forma de al menos un óxido, presentando el catalizador, en forma calcinada, un difractograma de rayos X con más de diez líneas de difracción intensas, típicamente las más intensas, correspondientes a ángulos 2θ de difracción de 7,7°±0,4; 8,9°±0,4; 22,1°±0,4; 26,6°±0,4 26,9°±0,4, 27,1°±0,4; 28,1°±0,4; 31,2°±0,4; 35,0°±0,4 y
45,06°±0,4.
En una realización preferida del procedimiento, en el catalizador, al menos Mo, Te, V y Nb están presentes en forma de al menos un óxido mixto calcinado.
En una realización preferida, el catalizador tiene la fórmula empírica:
MoTehViNbjAkOx en la que h, i y j , tienen valores comprendidos entre 0,001 y 4,0, k está comprendida entre 0,0001 y 2,0 y x depende del estado de oxidación o valencia de los elementos Mo, Te, V, Nb y A, es decir, la cantidad "x" de oxígeno del catalizador depende de la composición y del método de activación. En una realización preferente los parámetros anteriores presentan los siguientes valores y relaciones:
- h e i están comprendidos entre 0,01 y 3, preferentemente entre 0,02 y 2,
- la relación i/h está comprendida entre 0,3 y 10, - j está comprendido entre 0,001 y 2, preferentemente entre 0,001 y 0,5, y k está comprendido entre 0,0001 y 2,0, preferentemente entre 0,001 y 1,0.
En una realización adicional preferida A es Cu, W o Bi . En una realización más preferida aún A es Cu, W o Bi y los parámetros anteriores toman los valores siguientes :
- h e i están comprendidos entre 0,02 y 2,
- la relación i/h está comprendida entre 0,3 y 10,
- j está comprendido entre 0,001 y 1,5 y - k está comprendido entre 0,001 y 2,0.
Según el procedimiento de la invención, el catalizador puede ser un óxido mixto soportado en un sólido, como por ejemplo sílice, alúmina, óxido de titanio y mezclas de los mismos. De forma preferida la sílice como soporte sólido, está presente en una proporción de 20 a 70% en peso respecto al peso total de catalizador. Por otra parte, el catalizador también puede estar en forma de un óxido mixto soportado en un carburo de silicio.
Típicamente, en su forma calcinada el catalizador presenta un difractograma de rayos X cuyas líneas de difracción más intensas, así como las correspondientes intensidades relativas al pico de mayor intensidad, son las que se muestran en la Tabla 1.
Tabla 1
Ángulo 2θ de Espaciado medio Intensidad difracción (± 0,4°) (A) Relativa
7,7 11,47 10-40
8,9 9,93 10-40
22,1 4,02 100
26,6 3,35 10-90
26,9 3,31 20-80
27,1 3,29 20-120
28,1 3,17 20-120
31,2 2,86 10-90
35,0 2,56 10-90
45,1 2,01 10-60
Dicho catalizador puede prepararse por métodos convencionales a partir de soluciones de compuestos de los distintos elementos, de soluciones de los mismos elementos puros, o de mezcla de ambos, con las relaciones atómicas deseadas . Dichas soluciones son preferentemente soluciones acuosas . El procedimiento de preparación del catalizador comprende al menos :
- una primera etapa, de mezclado de compuestos de los diferentes elementos, de elementos puros, o de mezcla de ambos,
- una segunda etapa, de secado del sólido obtenido en la primera etapa y
- una tercera etapa, de calcinación del sólido seco obtenido en la segunda etapa. La etapa de mezclado se puede realizar a partir de los compuestos de los distintos elementos, a partir los propios elementos puros en disolución, o bien por métodos hidrotermales .
Los elementos Mo, Te, V y Nb se pueden incorporar a la etapa de mezclado como elementos metálicos puros, como sales, como óxidos, como hidróxidos, como alcóxidos, como ácidos, o como mezclas de dos o más de las formas citadas. Como sales se usan preferentemente sulfatos, nitratos, oxalatos o haluros, y más preferentemente como sulfatos. El Mo se puede incorporar a la etapa de mezclado preferentemente como ácido molíbdico, molibdato amónico, heptamolibdato amónico y óxido de molibdeno.
El Te se puede incorporar a la etapa de mezclado preferentemente como ácido telúrico, óxido de teluro y teluro metálico.
El V se puede incorporar a la etapa de mezclado preferentemente como vanadato amónico, óxido de vanadio, sulfato de vanadilo, oxalato de vanadilo o cloruro de vanadilo. El Nb se puede incorporar a la etapa de mezclado preferentemente como pentóxido de niobio, oxalato de niobio, cloruro de niobio o Nb metal .
Los elementos Cu, W, Bi, Ta, Sn, Se, Ti, Fe, Co, Ni, Cr, Ga, Sb, Zr, tierra rara, metal alcalino o metal alcalinotérreo, también se pueden incorporar a la etapa de mezclado como sales, óxidos, hidróxidos, o alcóxidos, puros o como mezclas de dos o más elementos. Preferiblemente se incorporan como sulfatos, nitratos, oxalatos o haluros, y más preferentemente como sulfatos.
La etapa de mezclado puede ir seguida de un periodo de permanencia estática en el reactor, o bien puede realizarse el mezclado con agitación. Tanto la permanencia estática como la agitación se pueden realizar en un reactor normal o bien en un autoclave .
La etapa de mezclado puede ser llevada a cabo en disolución o por tratamiento hidrotermal.
La etapa de secado, se puede realizar por métodos convencionales en estufa, evaporación con agitación, evaporación en rotavapor, o secado a vacío.
La etapa de calcinación del sólido seco se puede realizar en atmósfera de un gas inerte, como por ejemplo, nitrógeno, helio, argón o mezclas, de aire o mezclas. Una realización alternativa del procedimiento se lleva a cabo, como se ha indicado anteriormente, empleando métodos hidrotermales (conteniendo dos o más elementos en la síntesis, especialmente conteniendo Mo, Te, V y Nb) . La temperatura y tiempo de síntesis pueden ser determinantes empleando métodos hidrotermales. Así, la temperatura de síntesis se realiza, preferiblemente, entre 100 y 250 °C y, más concretamente, entre 150 y 180°C. El tiempo de síntesis es, preferiblemente, de entre 6 y 500 horas, y más concretamente entre 24 y 200 horas. La etapa de calcinación puede llevarse a cabo haciendo pasar un flujo de gas inerte (con velocidades espaciales entre 1 y 400 h"1) o en estático. La temperatura se sitúa preferiblemente entre 250 y 1000 °C y más preferiblemente entre 550 y 800°C. El tiempo de calcinación no es determinante, pero se prefiere entre 0,5 horas y 20 horas. La velocidad de calentamiento no es determinante, pero se prefiere entre 0,l°C/minuto y 10°C/minuto. El catalizador puede también ser inicialmente calcinado en atmósfera oxidante hasta una temperatura de 200-350°C, y más preferiblemente entre 250 y 290 °C, y ser sometido posteriormente a una calcinación en atmósfera inerte.
Los elementos Cu, W, Bi, Ta, Sn, Se, Ti, Fe, Co, Ni, Cr, Ga, Sb, Zr, tierra rara, metal alcalino o metal alcalinotérreo, pueden también incorporarse después de la etapa de calcinación por impregnación o precipitación. En este caso, el sólido resultante será sometido a una segunda etapa de calcinación. El catalizador para el procedimiento de la presente invención se puede usar tal y como se obtiene una vez calcinado.
En una realización alternativa el catalizador puede ser soportado sobre un sólido tal como: sílice, alúmina, óxido de titanio o mezclas de estos, así como carburo de silicio.
En estos casos la fijación de los diferentes elementos del catalizador sobre el soporte se puede realizar por métodos convencionales de impregnación, tales como volumen de poro, exceso de disolución, o, simplemente por precipitación sobre el soporte de una disolución que contiene los elementos activos .
El procedimiento de deshidrogenación oxidativa de etano según la presente invención convierte el etano a eteno según una realización preferida. El procedimiento que da lugar a eteno se lleva a cabo preferentemente en fase gaseosa, y en presencia de vapor de agua.
Según una realización alternativa del procedimiento de la presente invención la deshidrogenación oxidativa del etano da lugar a ácido acético por reacción de etano y oxígeno en fase gaseosa, en presencia de agua
Según una realización alternativa adicional del procedimiento de la presente invención la deshidrogenación oxidativa del etano da lugar a acetonitrilo por reacción de etano, y oxígeno, en fase gaseosa, en presencia de amoniaco y vapor de agua.
Según una realización alternativa adicional del procedimiento de la presente invención la deshidrogenación oxidativa del etano a etano o a ácido acético se lleva a cabo usando el catalizador descrito como cocatalizador.
Según una realización alternativa adicional del procedimiento de la presente invención la deshidrogenación oxidativa del etano a acetonitrilo se lleva a cabo usando el catalizador descrito como cocatalizador y produciendo la amoxidación de etano.
Según una realización alternativa adicional del procedimiento de la presente invención la deshidrogenación oxidativa del etano produce óxido de etileno y dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador produciéndose la oxidación de etano a óxido de etileno.
Según el procedimiento de la presente invención se puede emplear como agente oxidante, oxígeno puro, aire, mezclas oxígeno-gas inerte (con diferente proporción de ambos) o aire enriquecido en oxígeno.
En el proceso de deshidrogenación oxidativa y de oxidación, el agua puede, o no, ser incorporada en la alimentación. El contenido de agua en la mezcla de reacción puede ser de 0 a 80%, y más preferiblemente entre 20 y 60%.
En el procedimiento de deshidrogenación oxidativa de etano a eteno se observa un incremento de la selectividad a eteno cuando la reacción se lleva a cabo en presencia de vapor de agua .
El procedimiento de deshidrogenación oxidativa se puede llevar a cabo en un reactor de lecho fijo o en un reactor de lecho fluidizado. La temperatura de reacción está comprendida entre 250 y 550°C, preferiblemente entre 300 y 480 °C, y más preferiblemente entre 350 y 440°C. El tiempo de contacto, definido como la relación entre el volumen de catalizador ( ) y el caudal total de gases alimentado (F) , está comprendido entre 0,001 y 100 s. Aunque el tiempo de contacto depende del método de preparación y composición del catalizador empleado, en general es preferible entre 0,05 y 50, y más preferiblemente entre 0,1 y 25 s.
Breve descripción de las figuras La figura 1 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 1
La figura 2 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 3
La figura 3 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 5
La figura 4 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 7
La figura 5 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 9 La figura 6 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 11
La figura 7 muestra un difractograma de rayos X del catalizador descrito en el ejemplo 15. EJEMPLOS
A continuación, se ilustrará la invención en base a unos ejemplos .
Ejemplo 1: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-0 por método hidrotermal
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80 °C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. En la disolución obtenida, se evapora el agua, con agitación, a 80 °C. El sólido resultante se seca en estufa a 90 °C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80 °C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V) . Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80°C. El sólido obtenido se calcina a 450 °C durante 2 h en corriente de nitrógeno para obtener el catalizador. Este catalizador se caracteriza por presentar un difractograma de rayos X como el mostrado en la figura 1.
Ejemplo 2: Uso del catalizador descrito en el ejemplo 1 para la deshidrogenación oxidativa de etano
4,0 g del catalizador descrito en el ejemplo 1 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano : oxígeno :helio= 30/20/50, a una temperatura de reacción de 400 °C y un tiempo de contacto, W/F, de 160 gcat h/ (molC2) • Los resultados se muestran en la tabla 2. Ejemplo 3: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-V-Nb-0
En 1307 mi de agua caliente a 80 CC se disolvieron 80,0 g de heptamolibdato amónico tetrahidratado y 15,87 g de metavanadato amónico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40 °C se preparó una disolución (356,8 g) de oxalato de niobio que contenía 53,97 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50 °C, obteniéndose un sólido. Este sólido se secó en una estufa a 110 °C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 450 °C durante 2 h en ambiente de nitrógeno para obtener el catalizador. En la figura 2 se muestra el difractograma de rayos X de dicho catalizador.
Ejemplo 4: Uso del catalizador de oxidación descrito en el ejemplo 3 para deshidrogenación oxidativa de etano
1,0 g del catalizador descrito en el ejemplo 3 se introdujo en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio= 30/10/60, a una temperatura de reacción de 400 °C y un tiempo de contacto,
W/F, de 20,4 gcat h/ (molC2) . Los resultados se muestran en la tabla 2. De los resultados obtenidos se deduce que la presencia de teluro en el catalizador produce un aumento tanto de la conversión de etano como de la selectividad a eteno.
Ejemplo 5: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-0 por método hidrotermal Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80 °C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. En la disolución obtenida, se evapora el agua, con agitación, a 80°C. El sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo. Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80°C. El sólido obtenido se calcina a 450°C durante 2 h en corriente de nitrógeno para obtener el catalizador. Este catalizador se caracteriza por presentar un difractograma de rayos X como el mostrado en la figura 3.
Ejemplo 6: Uso del catalizador descrito en el ejemplo 5 para la deshidrogenación oxidativa de etano
4,0 g del catalizador descrito en el ejemplo 5 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano : oxígeno :helio= 30/10/60, a una temperatura de reacción de 400 °C y un tiempo de contacto, W/F, de 240 gcat h/ (molC2) - Los resultados se muestran en la tabla 2.
Ejemplo 7: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-0 por método hidrotermal modificando la temperatura de calcinación
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. En la disolución obtenida, se evapora el agua, con agitación, a 80 °C. El sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80 °C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V) . Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80°C. El sólido obtenido se calcina a 600 °C durante 2 h en corriente de nitrógeno para obtener el catalizador. Este catalizador se caracteriza por presentar un difractograma de rayos X como el mostrado en la figura 4. Los resultados de difracción de rayos X indican la formación de varias fases cristalinas no observadas en el catalizador del ejemplo 1.
Ejemplo 8: Uso del catalizador descrito en el ejemplo 5 para la deshidrogenación oxidativa de etano
2,5 g del sólido calcinado preparado en el ejemplo 7 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio = 30/10/60, a una temperatura de reacción de 400°C y un tiempo de contacto, W/F, de 130 gcat h/ (molC2) • Los resultados se muestran en la tabla 2. De los resultados obtenidos se muestra que la temperatura de calcinación modifica la estructura del catalizador y las propiedades catalíticas
(conversión de etano, selectividad a eteno) de estos catalizadores . Ejemplo 9: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-Cu modificando las condiciones de síntesis
Se disuelven 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80 °C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. Se evapora el agua y el sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT. 30,0 g del sólido MT se suspenden en 213,30 g de agua a 80 °C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V) . Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 60 h. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80°C. El sólido obtenido se calcina a 600 °C durante 2 h en corriente de nitrógeno.
10,0 g del sólido calcinado se suspenden en 10,0 mi de una disolución acuosa con 0,080 g de nitrato de cobre (II). Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110 °C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600 °C durante 1 h en ambiente de nitrógeno para obtener el catalizador. En la figura 5 se muestra el difractograma de rayos X de la muestra calcinada.
Ejemplo 10: Uso del catalizador descrito en el ejemplo 9 para la deshidrogenación oxidativa de etano
2,5 g del sólido calcinado preparado en el ejemplo 9 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio = 30/10/60, a una temperatura de reacción de 400°C y un tiempo de contacto, W/F, de 74 gcat h/ (molC2) . Los resultados se muestran en la tabla 2.
Ejemplo 11: Preparación de un catalizador de oxidación similar al del ejemplo 7 modificando las condiciones de síntesis
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80 °C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. En la disolución obtenida, se evapora el agua, con agitación, a 80 °C. El sólido resultante se seca en estufa a 90 °C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V) . Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 60 h. El contenido del autoclave se filtra, lava con agua destilada y seca a 80°C. El sólido obtenido se calcina durante 2 h a 600°C en corriente de nitrógeno para obtener el catalizador. En la figura 6 se muestra el difractograma de rayos X de la muestra calcinada.
Ejemplo 12: Uso del catalizador descrito en el ejemplo 11 para la deshidrogenación oxidativa de etano
2,0 g del sólido calcinado en el ejemplo 11 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio= 30/10/60, a una temperatura de reacción de 400 CC y un tiempo de contacto, W/F, de 45 gcat h/ (molC2) . Los resultados se muestran en la tabla 2. Ejemplo 13: Uso del catalizador descrito en el ejemplo 11 modificando las condiciones de reacción
2,0 g del sólido preparado en el ejemplo 11 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio = 9/6/85, a una temperatura de reacción de 400°C y un tiempo de contacto, W/F, de 270 gcat h/ (molC2) . Los resultados se muestran en la Tabla 2.
Ejemplo 14: Uso del catalizador descrito en el ejemplo 11 modificando las condiciones de reacción
2,0 g del sólido preparado en el ejemplo 11 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio = 30/30/40, a una temperatura de reacción de 400 °C y un tiempo de contacto, W/F, de 170 gcat h/ (molC2) .Los resultados se muestran en la Tabla 2.
Ejemplo 15: Preparación de un catalizador de oxidación a partir de una disolución que contiene Mo-V-Te-Nb modificando el método de preparación En 1307 mi de agua caliente a 80°C se disolvieron 80,0 g de heptamolibdato amónico tetrahidratado, 15,87 g de metavanadato amónico, y 23,97 g de ácido telúrico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40 °C se preparó una disolución (356,8 g) de oxalato de niobio que contenía 53,97 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50 °C, obteniéndose un sólido. Este sólido se secó en una estufa a 110 CC durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600 °C durante 2 h en ambiente de nitrógeno para obtener el catalizador. En la figura 7 se muestra el difractograma de rayos X de dicho catalizador.
Ejemplo 16: Uso del catalizador descrito en el ejemplo 15 para la deshidrogenación oxidativa de etano
10,0 g del catalizador descrito en el ejemplo 15 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción de oxidación se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno: helio= 30/10/60, a una temperatura de reacción de 340 °C y un tiempo de contacto, W/F, de 134 gcat h/ (molC2) • Los resultados se muestran en la tabla 2.
Ejemplo 17: Uso del catalizador descrito en el ejemplo 15 para la deshidrogenación oxidativa de etano con diferentes condiciones de reacción 2,5 g del catalizador descrito en el ejemplo 15 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano: oxígeno :helio= 9/6/85, a una temperatura de reacción de 400 °C y un tiempo de contacto, W/F, de 222 gcat h/ (molc2) • Los resultados se muestran en la tabla 2.
Ejemplo 18: Preparación de un catalizador de oxidación a partir de una disolución que contiene Mo-V-Te-Nb-Bi modificando el método de preparación
En 1307 mi de agua caliente a 80 °C se disolvieron 80,0 g de heptamolibdato amónico tetrahidratado, 15,87 g de metavanadato amónico, 0,280 g de nitrato de bismuto y 23,97 g de ácido telúrico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40 °C se preparó una disolución (356,8 g) de oxalato de niobio que contenía 53,97 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50°C, obteniéndose un sólido. Este sólido se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600 °C durante 2 h en ambiente de nitrógeno para obtener el catalizador.
Ejemplo 19: Uso del catalizador descrito en el ejemplo 18 para la deshidrogenación oxidativa de etano con diferentes condiciones de reacción
2,5 g del catalizador descrito en el ejemplo 15 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de etano:oxígeno :helio= 9/6/85, a una temperatura de reacción de 400°C y un tiempo de contacto, W/F, de 222 gcat h/ (molC2) • Los resultados se muestran en la tabla 2.
Figure imgf000021_0001
Tabla 2. Resultados catalíticos para la deshidrogenación oxidativa de etano
Figure imgf000021_0002
Rendimiento
Temper . Conversión Selectividad
C3He/02/He Temperatura a
Ej emplo Catalizador calcina. W/F de etano a reacción °C eteno
°C (%) eteno (%)
(%)x)
2 MoVTeNb 425 160 30/10/60 400 49,1 69,6 28,8
4 oVMb 425 30/10/60 400 21,5 60,5 13,0
20,
4 D O
6 MoVTe 425 240 30/10/60 400 1,9 51,4 0,98
8 MoVTeNb 600 130 30/10/60 400 42,5 87,8 37,3
10 MoVTeNbCu 600 30/10/60 400 40,3 91,0 36,7
74
12 MoVTeNb-B 600 30/10/60 400 41,4 92,5 38,3
45
13 MoVTeNb-B 600 270 9/6/85 400 63,3 88,7 56,1
14 MoVTeNb-B 600 173 30/30/40 400 80,9 79,2 64,1
16 MoVTeNb-C 600 134 30/10/60 340 24,4 95,5 23,3
17 MoVTeNb-C 600 222 9/6/85 400 57,2 90,3 51,7

Claims

Reivindicaciones
1. Un procedimiento para la deshidrogenación oxidativa de etano, caracterizado porque comprende poner en contacto etano con un catalizador que comprende Mo, Te, V, Nb y al menos un quinto elemento A seleccionado entre Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Ga, Sb, Bi, un metal alcalino, metal alcalinotérreo y una tierra rara, y que, en forma calcinada, presenta un difractograma de rayos X con las líneas de difracción intensas correspondientes a ángulos 2θ de difracción de 7,7°±0,4; 8,9°±0,4; 22,1°±0,4; 26,6°+0,4 26,9°±0,4, 27,1°±0,4; 28,l°+0,4; 31,2°+0,4; 35,0°+0,4 y 45,06°±0,4.
2. Un procedimiento según la reivindicación 1, caracterizado porque el catalizador tiene la fórmula empírica :
MoTehViNbAkOx en la que : - h, i y j están comprendidos entre 0,001 y 4,0,
- k está comprendido entre 0,0001 y 2,0 y
- x tiene un valor que depende del estado de oxidación de los elementos Mo, Te, V, Nb y A.
3. Un procedimiento según la reivindicación 2, caracterizado porque el catalizador tiene la fórmula empírica :
MoTehViNbjAkOx en la que : - h e i están comprendidos entre 0,01 y 3,
- la relación i/h está comprendida entre 0,3 y 10,
- j está comprendido entre 0,001 y 2, y
- k está comprendido entre 0,0001 y 2,0.
4. Un procedimiento según la reivindicación 1, 2 ó 3, caracterizado porque el catalizador comprende un elemento A seleccionado entre Cu, W, Bi, y mezclas de ellos.
5. Un procedimiento según la reivindicación 2 ó 3, caracterizado porque el catalizador comprende un elemento A seleccionado entre Cu, W y Bi, y
- h e i están comprendidos entre 0,02 y 2,
- la relación i/h está comprendida entre 0,3 y 10, - j está comprendido entre 0,001 y 1,5 y
- k está comprendido entre 0,001 y 2.
6. Un procedimiento según una cualquiera de las reivindicaciones anteriores, caracterizado porque el catalizador presenta un difractograma de rayos X que comprende las siguientes líneas de difracción:
Ángulo 2θ de
Espaciado medio (A) Intensidad relativa difracción (± 0,4)
7,7 11,47 10-40
8,9 9,93 10-40
22,1 4,02 100
26,1 3,35 10-90
26,9 3,31 20-80
27,1 3,29 20-120
28,1 3,17 20-120
31,2 2,86 10-90
35,2 2,56 10-90
45,1 2,01 10-60
7. Un procedimiento según cualquiera de las reivindicaciones precedentes caracterizado porque en el catalizador al menos Mo, Te, V y Nb están presentes en forma de al menos un óxido mixto calcinado.
8. Un procedimiento según cualquiera de las reivindicaciones precedentes caracterizado porque el catalizador es un óxido mixto calcinado.
9. Un procedimiento según cualquiera de las reivindicaciones precedentes caracterizado porque el catalizador es un óxido mixto soportado en un sólido.
10. Un procedimiento según la reivindicación 9, caracterizado porque el sólido está seleccionado entre sílice, alúmina, óxido de titanio y mezclas de los mismos.
11. Un procedimiento según la reivindicación 9, caracterizado porque el sólido es sílice contenida en una proporción de 20 a 70% en peso del peso total de catalizador.
12. Un procedimiento según la reivindicación 9, caracterizado porque el sólido es carburo de silicio.
13. Un procedimiento según la reivindicación 1, caracterizado porque dicha deshidrogenación oxidativa de etano produce eteno .
14. Un procedimiento según la reivindicación 13, caracterizado porque dicha deshidrogenación oxidativa de etano a eteno se realiza en fase gaseosa y en presencia de vapor de agua.
15. Un procedimiento según la reivindicación 1, caracterizado porque dicha deshidrogenación oxidativa de etano da lugar a ácido acético.
16. Un procedimiento según la reivindicación 15, caracterizado porque dicha deshidrogenación oxidativa de etano a ácido acético se lleva a cabo por reacción de etano y oxígeno en fase gaseosa en presencia de agua.
17. Un procedimiento según la reivindicación 1, caracterizado porque dicha deshidrogenación oxidativa de etano da lugar a ácido acetonitrilo.
18. Un procedimiento según la reivindicación 17, caracterizado porque dicha deshidrogenación oxidativa de etano a acetonitrilo se lleva a cabo por reacción de etano y oxígeno, en fase gaseosa en presencia de amoniaco y vapor de agua.
19. Un procedimiento según la reivindicación 1, caracterizado porque dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador.
21. Un procedimiento según la reivindicación 19, caracterizado porque dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador produciéndose la oxidación de etano a eteno.
22. Un procedimiento según la reivindicación 19, caracterizado porque dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador produciéndose la oxidación de etano a ácido acético .
23. Un procedimiento según la reivindicación 19, caracterizado porque dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador produciéndose la amoxidación de etano a acetonitrilo.
24. Un procedimiento según la reivindicación 19, caracterizado porque dicha deshidrogenación oxidativa de etano se lleva a cabo usando el catalizador como cocatalizador produciéndose la oxidación de etano a óxido de etileno.
PCT/ES2003/000056 2002-01-31 2003-01-31 Procedimiento para la deshidrogenacion oxidativa de etano WO2003064035A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03704717A EP1479438A1 (en) 2002-01-31 2003-01-31 Method for the oxidative dehydrogenation of ethane
US10/909,276 US7319179B2 (en) 2002-01-31 2004-07-30 Method for the oxidative dehydrogenation of ethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200200276 2002-01-31
ES200200276A ES2192983B1 (es) 2002-01-31 2002-01-31 Un catalizador para la deshidrogenacion oxidativa de etano a eteno.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/909,276 Continuation US7319179B2 (en) 2002-01-31 2004-07-30 Method for the oxidative dehydrogenation of ethane

Publications (2)

Publication Number Publication Date
WO2003064035A1 true WO2003064035A1 (es) 2003-08-07
WO2003064035B1 WO2003064035B1 (es) 2003-11-13

Family

ID=27635989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000056 WO2003064035A1 (es) 2002-01-31 2003-01-31 Procedimiento para la deshidrogenacion oxidativa de etano

Country Status (4)

Country Link
US (1) US7319179B2 (es)
EP (1) EP1479438A1 (es)
ES (1) ES2192983B1 (es)
WO (1) WO2003064035A1 (es)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618952A4 (en) * 2003-04-16 2010-10-06 Toagosei Co Ltd PROCESS FOR PRODUCING A METAL OXIDE CATALYST
WO2012101069A1 (en) 2011-01-24 2012-08-02 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
EP2644604A1 (en) 2012-03-30 2013-10-02 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
WO2013164418A1 (en) 2012-05-04 2013-11-07 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
ES2428442R1 (es) * 2012-10-19 2014-02-19 Instituto Mexicano Del Petroleo Deshidrogenación oxidativa de etano a etileno y preparación de catalizador de óxido mezclado multimetálico para tal proceso.
WO2015082598A1 (en) 2013-12-06 2015-06-11 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
US9067901B2 (en) 2011-01-24 2015-06-30 Shell Oil Company Process for the production of ethylene oxide
WO2016001113A1 (en) 2014-06-30 2016-01-07 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
EP3026037A1 (en) 2014-11-26 2016-06-01 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
WO2017046315A1 (en) 2015-09-18 2017-03-23 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation
WO2017072086A1 (en) 2015-10-26 2017-05-04 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation and acetic acid recovery
WO2017072084A1 (en) 2015-10-26 2017-05-04 Shell Internationale Research Maatschappij B.V. Mechanically strong catalyst and catalyst carrier, its preparation, and its use
RU2634593C1 (ru) * 2016-06-22 2017-11-01 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен
EP3246090A1 (en) 2016-05-19 2017-11-22 Shell Internationale Research Maatschappij B.V. Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
EP3246092A1 (en) 2016-05-19 2017-11-22 Shell Internationale Research Maatschappij B.V. Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
WO2018015479A1 (en) 2016-07-22 2018-01-25 Shell Internationale Research Maatschappij B.V. Molybdenum-vanadium-niobium-ceria-based catalyst for oxidative dehydrogenation of alkanes and/or alkene oxidation
WO2018019760A1 (en) 2016-07-26 2018-02-01 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
WO2018019761A1 (en) 2016-07-26 2018-02-01 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
WO2018024650A1 (en) 2016-08-02 2018-02-08 Shell Internationale Research Maatschappij B.V. Ethylene production process and chemical complex
WO2018114752A1 (en) 2016-12-19 2018-06-28 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation with co-production of vinyl acetate
WO2018114747A1 (en) 2016-12-19 2018-06-28 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation with co-production of vinyl acetate
WO2018114900A1 (en) 2016-12-20 2018-06-28 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
US10017432B2 (en) 2013-12-06 2018-07-10 Shell Oil Company Alkane oxidative dehydrogenation and/or alkene oxidation
EP3354634A1 (en) 2017-01-30 2018-08-01 Shell International Research Maatschappij B.V. Ethane oxidative dehydrogenation
WO2018153831A1 (en) 2017-02-22 2018-08-30 Shell Internationale Research Maatschappij B.V. Gas clean-up for alkane oxidative dehydrogenation effluent
WO2018210782A1 (en) 2017-05-16 2018-11-22 Shell Internationale Research Maatschappij B.V. Oxidative coupling of methane
WO2019034435A1 (en) 2017-08-16 2019-02-21 Shell Internationale Research Maatschappij B.V. OXIDIZING DEHYDROGENATION OF ETHANE
WO2019034434A1 (en) 2017-08-16 2019-02-21 Shell Internationale Research Maatschappij B.V. OXIDIZING DEHYDROGENATION OF ETHANE
WO2019197249A1 (en) 2018-04-09 2019-10-17 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
US10501390B2 (en) 2014-06-30 2019-12-10 Shell Oil Company Alkane oxidative dehydrogenation and/or alkene oxidation
US10526269B2 (en) 2016-05-19 2020-01-07 Shell Oil Company Process of alkane oxidative dehydrogenation and/or alkene oxidation
WO2020074750A1 (en) 2018-12-11 2020-04-16 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
WO2020074748A1 (en) 2018-11-02 2020-04-16 Shell Internationale Research Maatschappij B.V. Separation of ethane oxidative dehydrogenation effluent
WO2020078980A1 (en) 2018-10-18 2020-04-23 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
WO2020127003A1 (en) 2018-12-19 2020-06-25 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
US10815169B2 (en) 2016-02-04 2020-10-27 Shell Oil Company Conversion of mixed methane/ethane streams
US11111193B2 (en) 2014-06-30 2021-09-07 Shell Oil Company Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
CN113441129A (zh) * 2021-08-06 2021-09-28 西南化工研究设计院有限公司 一种复合金属氧化物型烷烃脱氢催化剂及其制备方法
WO2022002421A1 (en) 2020-06-30 2022-01-06 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation process
WO2022002884A1 (en) 2020-06-30 2022-01-06 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation process
WO2022029108A1 (en) 2020-08-03 2022-02-10 Shell Internationale Research Maatschappij B.V. Integrated ethylene production process
US11401220B2 (en) 2016-02-26 2022-08-02 Shell Usa, Inc. Alkane oxidative dehydrogenation (ODH)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3601900A (en) * 1999-02-22 2000-09-04 Symyx Technologies, Inc. Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
JP4155034B2 (ja) * 2003-01-21 2008-09-24 東亞合成株式会社 金属酸化物触媒の製造方法
KR100807972B1 (ko) * 2005-08-10 2008-02-28 주식회사 엘지화학 아크릴산 선택성이 높은 복합 금속 산화물 촉매
US20090036721A1 (en) * 2007-07-31 2009-02-05 Abb Lummus, Inc. Dehydrogenation of ethylbenzene and ethane using mixed metal oxide or sulfated zirconia catalysts to produce styrene
MX2008015540A (es) 2007-12-26 2009-06-26 Rohm Ahd Haas Company Un proceso integrado para preparar un acido carboxilico a partir de un alcano.
EP2143704A1 (en) 2008-07-10 2010-01-13 Rohm and Haas Company An integrated process for preparing a carboxylic acid from an alkane
CA2655841C (en) * 2009-02-26 2016-06-21 Nova Chemicals Corporation Supported oxidative dehydrogenation catalyst
US20100222621A1 (en) * 2009-02-27 2010-09-02 Anne May Gaffney Oxydehydrogenation of Ethylbenzene Using Mixed Metal Oxide or Sulfated Zirconia Catalysts to Produce Styrene
US8105971B2 (en) * 2009-04-02 2012-01-31 Lummus Technology Inc. Process for making catalysts useful for the conversion of paraffins to olefins
US8105972B2 (en) * 2009-04-02 2012-01-31 Lummus Technology Inc. Catalysts for the conversion of paraffins to olefins and use thereof
US8519210B2 (en) * 2009-04-02 2013-08-27 Lummus Technology Inc. Process for producing ethylene via oxidative dehydrogenation (ODH) of ethane
DE102010001399A1 (de) 2010-01-29 2011-08-04 Wacker Chemie AG, 81737 Verfahren zur Herstellung von Carbonsäuren mit 1-3 Kohlenstoff-atomen aus nachwachsenden Rohstoffen
CA2701089A1 (en) * 2010-03-31 2011-09-30 Nova Chemicals Corporation Pulsed oxidative dehydrogenation process
CA2699836A1 (en) * 2010-03-31 2011-09-30 Nova Chemicals Corporation Oxidative dehydrogenation of paraffins
CA2828727A1 (en) 2011-03-02 2012-09-07 Mark Allen Nunley Methods for integrated natural gas purification and products produced therefrom
CA2752409C (en) * 2011-09-19 2018-07-03 Nova Chemicals Corporation Membrane-supported catalysts and the process of oxidative dehydrogenation of ethane using the same
US9545610B2 (en) * 2013-03-04 2017-01-17 Nova Chemicals (International) S.A. Complex comprising oxidative dehydrogenation unit
DE102013014241A1 (de) 2013-08-27 2015-03-05 Linde Aktiengesellschaft Verfahren zur Herstellung eines Katalysators, Katalysator sowie Verfahren für die oxidative Dehydrierung von Kohlenwasserstoffen
CA2833822C (en) 2013-11-21 2020-08-04 Nova Chemicals Corporation Inherently safe odh operation
JP2015120133A (ja) * 2013-12-25 2015-07-02 株式会社日本触媒 アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
CA2867731C (en) 2014-10-15 2022-08-30 Nova Chemicals Corporation High conversion and selectivity odh process
CN104355986A (zh) * 2014-11-05 2015-02-18 朱忠良 一种用于生产乙酸的方法
CN104447404B (zh) * 2014-12-31 2017-01-18 南通醋酸化工股份有限公司 一种应用锆钨介孔分子筛催化制备乙腈的方法
RU2600455C1 (ru) * 2015-08-25 2016-10-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен
CA2936448C (en) 2016-07-19 2024-02-20 Nova Chemicals Corporation Controlled pressure hydrothermal treatment of odh catalyst
CA2945435A1 (en) 2016-10-18 2018-04-18 Nova Chemicals Corporation Low pressure gas release hydrothermal and peroxide treatment of odh catalyst
RU2656849C1 (ru) * 2016-12-14 2018-06-07 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для окислительной конверсии этана в этилен и способ его получения
CN108503529B (zh) * 2017-02-27 2021-06-11 中国科学院大连化学物理研究所 丙烷制备丙烯酸的方法
CA2965062A1 (en) 2017-04-25 2018-10-25 Nova Chemicals Corporation Complex comprising odh unit with integrated oxygen separation module
CA2975140A1 (en) 2017-08-03 2019-02-03 Nova Chemicals Corporation Agglomerated odh catalyst
CA2975144A1 (en) 2017-08-03 2019-02-03 Nova Chemicals Corporation Agglomerated odh catalyst
CA3019803A1 (en) 2017-11-06 2019-05-06 Nova Chemicals Corporation Controlling carbon dioxide output from an odh process
KR102312033B1 (ko) 2017-11-30 2021-10-13 롯데케미칼 주식회사 에탄의 산화탈수소화 반응용 촉매 시스템, 이의 제조방법 및 이를 이용한 에탄으로부터 에틸렌의 제조방법
DE202018107395U1 (de) 2017-12-27 2019-03-13 PTT Global Chemical Public Company Ltd. Katalysator zur Herstellung von Ethylen aus einer oxidativen Dehydrierung von Ethan
WO2019136434A1 (en) 2018-01-08 2019-07-11 Swift Fuels, Llc Processes for an improvement to gasoline octane for long-chain paraffin feed streams
CA2993683A1 (en) * 2018-02-02 2019-08-02 Nova Chemicals Corporation Method for in situ high activity odh catalyst
CA2999092A1 (en) 2018-03-26 2019-09-26 Nova Chemicals Corporation Calcination process to produce enhanced odh catlyst
US10941357B2 (en) 2018-04-16 2021-03-09 Swift Fuels, Llc Process for converting C2—C5 hydrocarbons to gasoline and diesel fuel blendstocks
CA3008612A1 (en) 2018-06-18 2019-12-18 Nova Chemicals Corporation Removing and cleaning dehydrogenation catalysts
AR116620A1 (es) 2018-10-11 2021-05-26 Nova Chem Int Sa Separación de oxigenante con sal metálica
US11492310B2 (en) 2018-11-19 2022-11-08 Nova Chemicals (International) S.A. Oxygenate separation following oxidative dehydrogenation of a lower alkane
EP3999229A1 (en) 2019-07-18 2022-05-25 Nova Chemicals (International) S.A. Odh catalyst formulations
RU2715390C1 (ru) * 2019-12-02 2020-02-27 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (Институт катализа СО РАН, ИК СО РАН) Катализатор переработки этан-этиленовой фракции нефтезаводских газов
WO2023049730A1 (en) * 2021-09-21 2023-03-30 Susteon Inc. Catalytic non-thermal plasma assisted conversion apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250346A (en) * 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
US4524236A (en) * 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4568790A (en) * 1984-06-28 1986-02-04 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
EP0294845A1 (en) * 1987-06-12 1988-12-14 Union Carbide Corporation Acetic acid from ethane, ethylene and oxygen
US6013597A (en) * 1997-09-17 2000-01-11 Saudi Basic Industries Corporation Catalysts for the oxidation of ethane to acetic acid processes of making same and, processes of using same
WO2003008096A1 (es) * 2001-07-17 2003-01-30 Consejo Superior De Investigaciones Cientificas Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529853B1 (en) * 1991-08-08 1996-02-28 Mitsubishi Chemical Corporation Catalyst and process for producing nitriles
JP3484729B2 (ja) 1993-06-11 2004-01-06 三菱化学株式会社 エチレンの製造方法
JPH10175885A (ja) 1996-04-25 1998-06-30 Mitsubishi Chem Corp エチレンの製造方法
JPH1017523A (ja) 1996-07-01 1998-01-20 Mitsubishi Chem Corp 酢酸の製造方法
WO1998002791A1 (en) 1996-07-16 1998-01-22 Chemonics Industries, Inc. Proportioning valve and control means therefor
JPH1143314A (ja) 1997-07-25 1999-02-16 Mitsubishi Chem Corp 複合酸化物の製造方法
EP1295648B1 (en) 2000-06-26 2009-04-15 Abb K.K. Two-tone coating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250346A (en) * 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
US4524236A (en) * 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4568790A (en) * 1984-06-28 1986-02-04 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
EP0294845A1 (en) * 1987-06-12 1988-12-14 Union Carbide Corporation Acetic acid from ethane, ethylene and oxygen
US6013597A (en) * 1997-09-17 2000-01-11 Saudi Basic Industries Corporation Catalysts for the oxidation of ethane to acetic acid processes of making same and, processes of using same
WO2003008096A1 (es) * 2001-07-17 2003-01-30 Consejo Superior De Investigaciones Cientificas Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOPEZ NIETO J.M. ET AL: "The selective oxidative dehydrogenation of ethane over hydrotermally synthesised MoVTeNb catalysts", CHEM. COMMUN., vol. 17, 22 August 2002 (2002-08-22), pages 1906 - 1907, XP001157397 *
THORSTEINSON E.M. ET AL: "The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium", JOURNAL OF CATALYSIS, vol. 52, 1978, pages 116 - 132, XP002981147 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618952A4 (en) * 2003-04-16 2010-10-06 Toagosei Co Ltd PROCESS FOR PRODUCING A METAL OXIDE CATALYST
WO2012101069A1 (en) 2011-01-24 2012-08-02 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
US8969602B2 (en) 2011-01-24 2015-03-03 Shell Oil Company Process for the production of ethylene oxide
US9260366B2 (en) 2011-01-24 2016-02-16 Shell Oil Company Process for the production of ethylene oxide
US9067901B2 (en) 2011-01-24 2015-06-30 Shell Oil Company Process for the production of ethylene oxide
US9139544B2 (en) 2012-03-30 2015-09-22 Shell Oil Company Process for the production of ethylene oxide
EP2644604A1 (en) 2012-03-30 2013-10-02 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
WO2013164418A1 (en) 2012-05-04 2013-11-07 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
US10058850B2 (en) 2012-10-19 2018-08-28 Instituto Mexicano Del Petroleo Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
US9937486B2 (en) 2012-10-19 2018-04-10 Instituto Mexicano Del Petroleo Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
US9409156B2 (en) 2012-10-19 2016-08-09 Instituto Mexicano Del Petroleo Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
ES2428442R1 (es) * 2012-10-19 2014-02-19 Instituto Mexicano Del Petroleo Deshidrogenación oxidativa de etano a etileno y preparación de catalizador de óxido mezclado multimetálico para tal proceso.
WO2015082598A1 (en) 2013-12-06 2015-06-11 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
US10017432B2 (en) 2013-12-06 2018-07-10 Shell Oil Company Alkane oxidative dehydrogenation and/or alkene oxidation
US9963412B2 (en) 2013-12-06 2018-05-08 Shell Oil Company Alkane oxidative dehydrogenation and/or alkene oxidation
WO2016001113A1 (en) 2014-06-30 2016-01-07 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
US11111193B2 (en) 2014-06-30 2021-09-07 Shell Oil Company Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
US10501390B2 (en) 2014-06-30 2019-12-10 Shell Oil Company Alkane oxidative dehydrogenation and/or alkene oxidation
EP3026037A1 (en) 2014-11-26 2016-06-01 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
WO2017046315A1 (en) 2015-09-18 2017-03-23 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation
US10329222B2 (en) 2015-09-18 2019-06-25 Shell Oil Company Alkane oxidative dehydrogenation
WO2017072086A1 (en) 2015-10-26 2017-05-04 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation and acetic acid recovery
US10427992B2 (en) 2015-10-26 2019-10-01 Shell Oil Company Ethane oxidative dehydrogenation and acetic acid recovery
WO2017072084A1 (en) 2015-10-26 2017-05-04 Shell Internationale Research Maatschappij B.V. Mechanically strong catalyst and catalyst carrier, its preparation, and its use
US10815169B2 (en) 2016-02-04 2020-10-27 Shell Oil Company Conversion of mixed methane/ethane streams
US11401220B2 (en) 2016-02-26 2022-08-02 Shell Usa, Inc. Alkane oxidative dehydrogenation (ODH)
US10526269B2 (en) 2016-05-19 2020-01-07 Shell Oil Company Process of alkane oxidative dehydrogenation and/or alkene oxidation
EP3246092A1 (en) 2016-05-19 2017-11-22 Shell Internationale Research Maatschappij B.V. Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
EP3246090A1 (en) 2016-05-19 2017-11-22 Shell Internationale Research Maatschappij B.V. Treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium
RU2634593C1 (ru) * 2016-06-22 2017-11-01 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен
US11707731B2 (en) 2016-07-22 2023-07-25 Shell Usa, Inc. Molybdenum-vanadium-niobium-ceria-based catalyst for oxidative dehydrogenation of alkanes and/or alkene oxidation
WO2018015479A1 (en) 2016-07-22 2018-01-25 Shell Internationale Research Maatschappij B.V. Molybdenum-vanadium-niobium-ceria-based catalyst for oxidative dehydrogenation of alkanes and/or alkene oxidation
US10752564B2 (en) 2016-07-26 2020-08-25 Shell Oil Company Oxidative dehydrogenation (ODH) of ethane
US10815170B2 (en) 2016-07-26 2020-10-27 Shell Oil Company Oxidative dehydrogenation (ODH) of ethane
WO2018019761A1 (en) 2016-07-26 2018-02-01 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
WO2018019760A1 (en) 2016-07-26 2018-02-01 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
EP3770137A1 (en) 2016-08-02 2021-01-27 Shell Internationale Research Maatschappij B.V. Ethylene production process and chemical complex
WO2018024650A1 (en) 2016-08-02 2018-02-08 Shell Internationale Research Maatschappij B.V. Ethylene production process and chemical complex
WO2018114747A1 (en) 2016-12-19 2018-06-28 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation with co-production of vinyl acetate
WO2018114752A1 (en) 2016-12-19 2018-06-28 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation with co-production of vinyl acetate
WO2018114900A1 (en) 2016-12-20 2018-06-28 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
EP3354634A1 (en) 2017-01-30 2018-08-01 Shell International Research Maatschappij B.V. Ethane oxidative dehydrogenation
WO2018153831A1 (en) 2017-02-22 2018-08-30 Shell Internationale Research Maatschappij B.V. Gas clean-up for alkane oxidative dehydrogenation effluent
US11078134B2 (en) 2017-02-22 2021-08-03 Shell Oil Company Gas clean-up for alkane oxidative dehydrogenation effluent
WO2018210782A1 (en) 2017-05-16 2018-11-22 Shell Internationale Research Maatschappij B.V. Oxidative coupling of methane
WO2019034435A1 (en) 2017-08-16 2019-02-21 Shell Internationale Research Maatschappij B.V. OXIDIZING DEHYDROGENATION OF ETHANE
WO2019034434A1 (en) 2017-08-16 2019-02-21 Shell Internationale Research Maatschappij B.V. OXIDIZING DEHYDROGENATION OF ETHANE
WO2019197249A1 (en) 2018-04-09 2019-10-17 Shell Internationale Research Maatschappij B.V. Process for the production of ethylene oxide
WO2020078980A1 (en) 2018-10-18 2020-04-23 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
US11752494B2 (en) 2018-10-18 2023-09-12 Shell Usa, Inc. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
WO2020074748A1 (en) 2018-11-02 2020-04-16 Shell Internationale Research Maatschappij B.V. Separation of ethane oxidative dehydrogenation effluent
WO2020074750A1 (en) 2018-12-11 2020-04-16 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation and/or alkene oxidation
WO2020127003A1 (en) 2018-12-19 2020-06-25 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
WO2022002421A1 (en) 2020-06-30 2022-01-06 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation process
WO2022002884A1 (en) 2020-06-30 2022-01-06 Shell Internationale Research Maatschappij B.V. Ethane oxidative dehydrogenation process
WO2022029108A1 (en) 2020-08-03 2022-02-10 Shell Internationale Research Maatschappij B.V. Integrated ethylene production process
CN113441129A (zh) * 2021-08-06 2021-09-28 西南化工研究设计院有限公司 一种复合金属氧化物型烷烃脱氢催化剂及其制备方法

Also Published As

Publication number Publication date
US20050085678A1 (en) 2005-04-21
US7319179B2 (en) 2008-01-15
WO2003064035B1 (es) 2003-11-13
ES2192983B1 (es) 2004-09-16
EP1479438A1 (en) 2004-11-24
ES2192983A1 (es) 2003-10-16

Similar Documents

Publication Publication Date Title
WO2003064035A1 (es) Procedimiento para la deshidrogenacion oxidativa de etano
JP6306559B2 (ja) 効率の高いアンモ酸化方法及び混合金属酸化物触媒
ES2439697T3 (es) Procedimiento para la conversión selectiva de alcanos en ácidos carboxílicos insaturados
JP5828338B2 (ja) 耐摩耗性混合金属酸化物アンモ酸化触媒
JP5940053B2 (ja) 改良された混合金属酸化物アンモ酸化触媒
JP5940052B2 (ja) 改良された混合金属酸化物アンモ酸化触媒の調製方法
ES2449580T3 (es) Catalizador de lecho fluidizado para producir acrilonitrilo y procedimiento para producir acrilonitrilo
JP5011176B2 (ja) アクリロニトリル合成用触媒およびアクリロニトリルの製造方法
US20150086471A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
JP2007502319A (ja) アクリル酸を与えるための結晶相の混合物内の触媒を用いたプロパンの酸化
JP6683708B2 (ja) 改良された混合金属酸化物アンモ酸化触媒
JP2022140555A (ja) 選択的副生成物hcn生成を有するアンモ酸化触媒
JP2000005603A (ja) 不飽和ニトリル製造用触媒組成物
JP2000070714A (ja) 不飽和ニトリル製造用触媒の製造方法
WO2003008096A1 (es) Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos
JP4179675B2 (ja) 不飽和ニトリルを製造する方法
JP4159729B2 (ja) アクリロニトリルの製造方法
JPH10225634A (ja) SnO2・xH2Oを用いるバナジウムアンチモネートベースの触媒の調製
JP3318962B2 (ja) アクロレイン酸化触媒の製造方法
JP3796132B2 (ja) 気相アンモ酸化反応用複合酸化物触媒の調製法
JP2520279B2 (ja) アクリロニトリルの製造方法
JP2002097015A (ja) シアン化水素の製造法
JP2004041839A (ja) 酸化反応触媒の製造方法
JP2001300310A (ja) 金属酸化物触媒の製造方法
WO2014062046A1 (es) Deshidrogenación oxidativa de etano a etileno y preparación de óxidos mixtos multimetálicos como catalizadores para tal proceso

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Free format text: 20030814

WWE Wipo information: entry into national phase

Ref document number: 10909276

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003704717

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003704717

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP