JP2001300310A - 金属酸化物触媒の製造方法 - Google Patents

金属酸化物触媒の製造方法

Info

Publication number
JP2001300310A
JP2001300310A JP2000117078A JP2000117078A JP2001300310A JP 2001300310 A JP2001300310 A JP 2001300310A JP 2000117078 A JP2000117078 A JP 2000117078A JP 2000117078 A JP2000117078 A JP 2000117078A JP 2001300310 A JP2001300310 A JP 2001300310A
Authority
JP
Japan
Prior art keywords
compound
catalyst
reaction
acrylic acid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000117078A
Other languages
English (en)
Inventor
Shinrin To
新林 屠
Mamoru Takahashi
衛 高橋
Hiroshi Niitsuma
裕志 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000117078A priority Critical patent/JP2001300310A/ja
Publication of JP2001300310A publication Critical patent/JP2001300310A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】 プロパンの気相酸化によるアクリル酸の製造
に用いられ、高収率でアクリル酸を得ることができる触
媒の製造方法の提供。 【解決手段】 Mo6+化合物、V5+化合物及びSb
3+化合物を水性媒体中で70℃以上で反応させる工程
において、V5+化合物を連続的に反応系に添加して得
られる反応生成物を主成分とし、これ以外にNb化合物
又はTa化合物、及び所望によりその他の金属化合物を
配合して得られる混合物を焼成することを特徴とする金
属酸化物触媒の製造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、金属酸化物触媒の
製造方法に関するものであり、本発明によって得られる
金属酸化物触媒はプロパンの気相接触酸化によるアクリ
ル酸の製造において適用できる。
【0002】
【従来技術】一般にアクリル酸は、触媒の存在下にプロ
ピレンと酸素を接触反応させてアクロレインを製造し、
さらにこれを酸素と接触反応させる二段酸化により製造
されている。一方、近年プロパンとプロピレンの価格差
または二段酸化に伴う工程の複雑さ等の理由で、プロパ
ンを出発原料として一段階でアクリル酸を製造する方法
が検討されており、その際に使用される触媒に関する提
案が多数なされている。代表例としては、〔V、P、T
e〕系の触媒[キャタリシス ツディー(Catal.
Today)、13,679(1992)]、AgBi
VMoO(特開平2−83348号公報)、BiMo1
2V5Nb0.5SbKOn(USP第5198580
号)、〔Mo、Te、V、Nb〕系(特開平6ー279
351号公報)および〔Mo、Sb、V、Nb〕系(特
開平9−316023号、特開平10−137585
号、特開平10−230164号公報)の触媒等が挙げ
られる。しかしながら、上記の触媒では、目的生成物で
あるアクリル酸の収率が不十分であったり、また触媒自
体の寿命が短いという問題があった。たとえば、前記の
特開平6−279351号公報で提案されている〔M
o、Te、V、Nb〕系の触媒によれば、高収率でアク
リル酸が得られるが、Teが蒸散し易いため触媒の活性
が経時的に損なわれ易い。また、本発明者らが提案した
〔Mo、Sb、V、Nb〕系触媒(特開平10−137
585号公報)もアクリル酸の収率の面や触媒製造の再
現性の面で改良の余地がある。
【0003】
【課題を解決するための手段】本発明者は、プロパンの
酸化により、高収率でアクリル酸を製造しうる触媒を得
るべく触媒製造における触媒前駆体の調製方法を鋭意検
討した結果、要求に適う触媒の製造方法を見出し、本発
明を完成するに至った。すなわち、本発明は、Mo6+
化合物、V5+化合物及びSb3+化合物を水性媒体中
で70℃以上で反応させる工程において、V5+化合物
を連続的に反応系に添加して得られる反応生成物を主成
分とし、これ以外にNb化合物又はTa化合物、及び所
望によりその他の金属化合物を配合して得られる混合物
を焼成することを特徴とする金属酸化物触媒の製造方法
である。なお、本発明において、Mo6+、V5+及び
Sb3+等は、それぞれMo(6価)、V(5価)及び
Sb(3価)等を表す。以下、本発明についてさらに詳
しく説明する。
【0004】
【発明の実施形態】プロパンの気相接触酸化によるアク
リル酸の製造用の触媒として、前述のとおり、Mo、
V、SbおよびNbまたはTaからなる金属酸化物触媒
が知られており、その好ましい製造方法として、Mo6
+化合物、V5+化合物およびSb3+化合物を水性媒
体中で加熱下に反応させ、生成物にNb化合物またはT
a化合物を添加したうえ焼成することにより金属酸化物
に変換するという方法が知られている(例えば特開平1
0−137585号公報等)。本発明においては、上記
水性媒体中におけるMo6+化合物、V5+化合物およ
びSb3+化合物の反応の効率を高めるために、水性溶
媒中で好ましくは70℃以上に加熱する際に、Mo6+
およびSb3+化合物とV5+化合物を同時に加熱開始
時に加えず、例えば30分以上の時間をかけてV5+化
合物を少しづつ連続的にに添加するという手段を採用す
るものである。すなわち、水性溶媒中で70℃以上の温
度で、Sb3+、V5+およびMo6+の三者間で酸化
還元反応が起こる。この主な反応を化学式で表すと、主
反応は次式(1)で表される。主反応以外に、式(2)
および式(3)で表わされる反応も並行的に起こる。 V5 + + Sb3+ → V3 + + Sb5 + (1) V3 + + Mo6+ → V4 + + Mo5+ (2) V5 + + V3 + → 2V4+ (3) 三成分を同時に加熱するという反応では、式(1)の反
応で生成したV3 +と原料のV5+とが式(3)で反応
するため、結果的に式(1)の反応に使われるV5+が
不足勝ちになる。これに対して、本発明においては、V
5+化合物を少しづつ連続的に反応系に添加することに
より、上記の問題点を解決した。なお、本発明における
連続的な添加は、間欠的に少量づつ複数回に分けて添加
する方法であってもよい。
【0005】本発明において、上記酸化還元反応に用い
られるV5+を構成元素とするV+5化合物としては、
メタバナジン酸アンモンニウムまたは五酸化バナジウム
が好ましく、Sb3+を構成元素とするSb3+化合物
としては、三酸化アンチモンが好ましく、またMo+6
を構成元素とするMo6+化合物としては、モリブデン
酸アンモニウム、酸化モリブデンまたはモリブデン酸等
が挙げられ、好ましくは、水溶性である点で、モリブデ
ン酸アンモニウムである。
【0006】Mo6+、V5+およびSb3+の化合物
を反応させるのに際し、加熱開始後から反応液に連続的
に添加するV 5+化合物としては、メタバナジン酸アン
モンニウムまたは五酸化バナジウムが好ましく、水溶性
で溶液の形で供給できる点でメタバナジン酸アンモンニ
ウムは特に好ましい。供給方法としては、水溶液の形で
送液ポンプにより、連続供給する方法が好適である。V
5+化合物の供給開始から終了までの所要時間は、原料
に用いるSb2O3 の粒径に依存する。Sb2O3 の粒径が0.
1μm以下であれば、供給時間は0.5時間程度で十分
であるが、粒径が0.1μm以上のSb2O3 の場合には、
さらに長時間にすることが好ましい。V5+化合物の連
続供給に際して、反応に供するMo6+化合物の一部をV
5+化合物の水溶液に添加することが好ましい。かかる
Mo6+化合物の共存下では、V5+化合物の水への溶解
度が向上するからである。
【0007】酸化還元反応におけるMo6+化合物、V
5+化合物およびSb3+化合物の使用割合は、得られ
る触媒を構成するMo、VおよびSbの原子比が以下の
組成式となる割合である。すなわち、Sb+3:V5+
=(0.3〜1):1であり、またV5+:Mo6+=
(0.001〜3):1である。Sb3+の割合が0.3
未満であるとアクリル酸選択率が低く、一方1を越える
とプロパンの転化率が低い。水性媒体における上記金属
化合物の好ましい仕込み量は、水100重量部当たり、
3種の金属化合物の合計量3〜30重量部である。3種
の金属化合物の合計量が、30重量部を越えるとV化合
物またはMo化合物の一部が不溶解物となり、酸化還元
反応が不完全になり易い。上記反応は、70℃以上の加
熱下でないと進行が遅く、好ましい反応温度は、水性媒
体中の沸点付近である。反応時間は0.5〜50時間が
好ましい。
【0008】本発明においては、上記反応の反応生成物
であるMo、VおよびSbを含む分散液に、Nb化合物
またはTa化合物を加えて均一に混合する。Nb化合物
またはTa化合物としては、酸化ニオブ、ニオブ酸、酸
化タンタルおよびタンタル酸等が挙げられる。Nb化合
物またはTa化合物は、これらを水に分散させた形で使
用しても良いが、蓚酸等を併用した蓚酸塩の水溶液の形
で用いることがさらに好ましい。Nb化合物またはTa
化合物の使用量は、得られる触媒における金属の原子比
で、Moを1としたとき、NbまたはTaが0.001
〜3.0となる量である。触媒におけるMoを1とした
ときのNbまたはTaの割合が、0.001未満である
と触媒の劣化が起こり、一方3.0を越えると触媒が低
活性となり、プロパンの転換率に劣る。本発明は、M
o、V、Sb、およびNbまたはTaの4成分系の金属
酸化物触媒は勿論、それらの金属にさらに他の金属が添
加された5成分系の金属酸化物触媒も対象とする。他の
金属としては、Na、K 、Rb、Cs、Mg、Ca、Sr、Ba、Cr、
W、Mn、Fe、Ru、Co、Ni、P 、Ag、Zn、Tl、Sn、Pb、C
u、AsまたはSe等が挙げられる。上記したその他の金属
は、前記酸化還元反応の開始時にMo、VおよびSbと
混合してもよいし、該反応の終了時に反応溶液中に添加
してもよい。
【0009】上記酸化還元反応が進行中の反応液または
反応終了後の反応液に、分子状酸素または該酸素を含む
混合ガス(以下これらを酸素含有ガスと総称する)を吹
き込み、生成されたMo5+の一部をMo6+に戻すことに
よって、Mo5+の濃度を適切に調節する。分子状酸素ま
たは該酸素を含むガスを吹き込む代わりに、過酸化水素
を添加しても同様な効果が得られる。過酸化水素の好ま
しい添加量は、原料中のSb化合物の使用量によって変
化する。本発明の実施例における触媒の調製条件では、
モル比で、Sbを1としたときの過酸化水素の最適使用
量は0.2〜1.2である。酸素含有ガスにおける好ま
しい酸素ガス濃度は、0.5Vol %以上であり、さらに
好ましくは、1〜20Vol %である。好ましい吹き込み
速度(流量)は、反応液量に依存するが、反応液量が2
00ml〜500ml程度であれば、3〜12リットル
/Hrが好ましい。酸素含有ガスの反応液への吹き込み
時間は、4時間以上が好ましい。さらに酸素含有ガスの
吹き込み中は、反応液を攪拌することが好ましい。酸素
含有ガスの吹き込みや過酸化水素の添加をしない代わ
り、またはそれらの操作と合わせて、硝酸または硝酸ア
ンモニウムをモル比で、Sbに対し0.1〜2.5程度の
量添加してもよい。
【0010】上記操作によって得られる金属化合物の混
合物は、必要により蒸発乾固または噴霧乾燥等の方法に
より乾燥した後、焼成処理を加えることにより、本発明
の触媒として用いられる特定な結晶構造を持つ金属酸化
物に変換される。本発明の触媒を製造する調製条件の中
で、触媒焼成処理の条件も重要である。本発明における
触媒は、上記混合物を酸素存在下で、温度250〜35
0℃(好ましくは280〜320℃)で2〜20時間
(好ましくは4〜10時間)焼成を行った後、さらに酸
素の不在下で、温度500〜660℃(好ましくは57
0〜620℃)で0.5〜6時間(好ましくは1〜3時
間)焼成する方法によって製造することが好ましい。上
記方法により得られる触媒は、適当な粒度にまで粉砕し
て、表面積を増大させることが好ましく、粉砕方法とし
ては、乾式粉砕法または湿式粉砕法のいずれの方法も使
用でき、粉砕装置としては、乳鉢、ボールミル等が挙げ
られる。湿式粉砕の場合に、粉砕の助剤として使用され
る溶媒の種類は水、アルコール類などが挙げられる。本
触媒の好ましい粒度は、20μm以下であり、さらに好
ましくは5μm以下である。本発明における触媒は、無
担体の状態でも使用できるが、適当な粒度を有する珪藻
土類、シリカ、アルミナ、シリカアルミナおよびシリコ
ンカーバイド等の担体に担持させた状態で使用すること
もできる。
【0011】上記方法によって得られる本発明の金属酸
化物触媒は、プロパンの気相酸化によるアクリル酸の製
造における触媒として好適に使用できる。また、本発明
の触媒はアクロレインやプロピレンの酸化によるアクリ
ル酸の合成に適用しても優れた効果を奏すると推測され
る。以下、プロパンの気相酸化によるアクリル酸の製造
について説明する。アクリル酸の製造のために用いるプ
ロパンおよび酸素ガスは、別々に反応器に導入して反応
器内で混合させてもよく、また予め両者を混合させた状
態で反応器に導入してもよい。また、反応管に挿入する
多孔性のセラッミクスチューブの壁(一方非開口)を介
在して酸素ガスを供給しても好ましく使用できる。酸素
ガスとしては、純酸素ガスまたは空気、ならびにこれら
を窒素、スチームまたは炭酸ガスで希釈したガスが挙げ
られる。プロパンおよび空気を使用する場合、空気のプ
ロパンに対する使用割合は、容積比率で30倍以下が好
ましく、さらに好ましくは、0.2〜20倍の範囲であ
る。反応器の出口から得られる未反応の原料であるプロ
パンや、中間生成物のプロピレンはそのまま燃料として
使うこともできるが、生成物の中の他の成分と分離させ
てから反応器へ導入して再利用することもできる。好ま
しい反応温度は300〜600℃であり、より好ましく
は350〜500℃である。また、ガス空間速度(以下
SVという)としては、300〜5000/hrが適当
である。
【0012】以下、実施例および比較例を挙げて、本発
明をさらに具体的に説明する。なお、各例で得られた触
媒は、その1.5ml(約2.2g)を10mmφの石
英製の反応管に充填した。反応管は420℃に加温し、
そこにプロパン4.4容積%、酸素7.0容積%、窒素
26.3容積%および水蒸気62.3容積%の混合ガス
を2400/ hrの速度で供給することにより、アクリ
ル酸を合成した。反応生成物に基づき、以下の転化率お
よび選択率を算出し、それらの値により使用した触媒の
性能を評価し、その結果は、後記の表1に記載した。プ
ロパン転化率およびアクリル酸選択率は、以下の式に基
づいて計算した(いずれもモル数により計算)。 ・プロパン転化率(%)=(供給プロパン−未反応プロ
パン)/供給プロパン ・アクリル酸選択率(%)=生成アクリル酸/(供給プ
ロパン−未反応プロパン) ・アクリル酸収率(%)=プロパン転化率×アクリル酸
選択率
【0013】
【実施例1】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87gおよびモリブ
デン酸アンモニウム20.9を加え、大量の窒素ガスを
流通させて十分に置換した。次に、上記の混合液を35
0回転/分の速度で攪拌機を回転させながら、該混合液
を水の沸点温度下、リフラックスさせながら、メタバナ
ジン酸アンモニウム6.15g、モリブデン酸アンモニ
ウム10.0gを蒸留水140mlに加熱溶解した溶液
をポンプより5時間に渡って供給させ、かつ酸素ガス濃
度が15%の空気/窒素の混合ガスを100ml/mi
nの流量で吹き込む。得られる青いコロイド分散液状の
分散液を室温まで冷却し、そこに蓚酸13.15g、ニ
オブ酸3.25gを90mlの蒸留水に溶解した常温の
水溶液を加えた。得られた混合液を30分間激しく攪拌
した後、硝酸アンモニウム5.0g添加して均一させ、
加熱濃縮し、さらに120℃で蒸発乾固させた。得られ
た固体、空気中、300℃で5時間焼成した後、窒素ガ
ス流通中において600℃で2時間焼成することにより
特定な結晶系の触媒を得た。得られた触媒に、触媒重量
の0.6倍のセライトを担体として加え、均一に混合、
打錠成形、さらに16〜30メッシュに粉砕して、アク
リル酸製造反応に使用した。この触媒の原子比は、Mo
/V/Sb/Nb=1.0/0.3/0.25/0.1
0であった。本触媒を使用してアクリル酸合成試験を行
った結果は、表1に示すとおりである。表1中、AAは
アクリル酸またPPはプロピレンを表す。
【0014】
【実施例2】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87gおよびモリブ
デン酸アンモニウム20.9を加え、大量の窒素ガスを
流通させて十分に置換した。次に、上記の混合液を35
0回転/分の速度で攪拌機を回転させながら、該混合液
を水の沸点温度下、リフラックスさせながら、メタバナ
ジン酸アンモニウム6.15g、モリブデン酸アンモニ
ウム10.0gを蒸留水140mlに加熱溶解した溶液
をシリンジポンプより3時間に渡って供給し、反応させ
た。供給が終わってから、該混合液を加熱攪拌しなが
ら、35重量%の過酸化水素水1.3gを添加し、攪拌
を5分間程度続ける。得られた青いコロイド分散液状の
分散液を室温まで冷却し、そこに蓚酸8.82g、ニオ
ブ酸2.33gおよび、硝酸アンモニウム5.0gを蒸
留水に溶解した常温の水溶液を加えた。得られた混合液
を窒素ガス雰囲気下30分間激しく撹拌した後、加熱濃
縮し、さらに120℃で蒸発乾固させた。以下、実施例
1と同様な条件で焼成を行い、触媒を得た。この触媒の
原子比は、Mo/V/Sb/Nb=1.0/0.3/
0.23/0.08であった。さらに実施例1と同様に
して得られた触媒に担体を加え、16〜30メッシュの
粒子に調製したものをアクリル酸製造反応に使用した。
この結果は表1に示すとおりである。
【0015】
【実施例3】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87gおよびモリブ
デン酸アンモニウム20.9を加え、大量の窒素ガスを
流通させて十分に窒素置換した。次に、上記の混合液を
350回転/分の速度で攪拌機を回転させながら、該混
合液を水の沸点温度下、リフラックスさせながら、メタ
バナジン酸アンモニウム6.15g、モリブデン酸アン
モニウム10.0gを蒸留水140mlに加熱溶解した
溶液をシリンジポンプより2時間に渡って供給し、反応
させた。得られた青いコロイド分散液状の分散液を室温
まで冷却し、そこに蓚酸8.82g、ニオブ酸2.33
gおよび、硝酸アンモニウム5.0gを蒸留水に溶解し
た常温の水溶液を加えた。得られた混合液を窒素ガス雰
囲気下30分間激しく撹拌した後、加熱濃縮し、さらに
120℃で蒸発乾固させた。以下、実施例1と同様な条
件で焼成を行い、触媒を得た。この触媒の原子比は、M
o/V/Sb/Nb=1.0/0.3/0.23/0.
08であった。これを実施例1と同様に加工したものを
触媒として使用してアクリル酸製造反応を行った。この
結果は表1に示すとおりである。
【0016】
【実施例4】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87gおよびモリブ
デン酸アンモニウム20.9を加え、大量の窒素ガスを
流通させて十分に置換した。次に、上記の混合液を35
0回転/分の速度で攪拌機を回転させながら、該混合液
を水の沸点温度下、リフラックスさせながら、メタバナ
ジン酸アンモニウム6.15g、モリブデン酸アンモニ
ウム10.0g、蒸留水140mlの溶液に35重量%
の過酸化水素水1.3gを滴下した溶液をシリンジーポ
ンプより3時間に渡って供給し、反応させた。得られた
青いコロイド分散液状の分散液を室温まで冷却し、そこ
に蓚酸8.82g、ニオブ酸2.33gおよび、硝酸ア
ンモニウム5.0gを蒸留水に溶解した常温の水溶液を
加えた。得られた混合液を窒素ガス雰囲気下30分間激
しく撹拌した後、加熱濃縮し、さらに120℃で蒸発乾
固させた。以下、実施例1と同様な条件で焼成を行い、
触媒を得た。この触媒の原子比は、Mo/V/Sb/N
b=1.0/0.3/0.23/0.08であった。こ
れを実施例1と同様に加工したものを触媒として使用し
てアクリル酸製造反応を行った。この結果は表1に示す
とおりである。
【0017】
【比較例1】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87g、メタバナジ
ン酸アンモニウム6.15gおよびモリブデン酸アンモ
ニウム30.9を加え、大量の窒素ガスを流通させて十
分に置換した。次に、上記の混合液を350回転/分の
速度で攪拌機を回転させながら、該混合液を水の沸点温
度下、リフラックスさせながら、かつ酸素ガス濃度が1
5%の空気/窒素の混合ガスを100ml/minの流
量で吹き込む。得られる青いコロイド分散液状の分散液
を室温まで冷却し、そこに蓚酸13.15g、ニオブ酸
3.25gを90mlの蒸留水に溶解した常温の水溶液
を加えた。得られた混合液を30分間激しく攪拌した
後、硝酸アンモニウム5.0g添加して均一させ、加熱
濃縮し、さらに120℃で蒸発乾固させた。以下、実施
例1と同様な条件で焼成を行い、触媒を得た。この触媒
の原子比は、Mo/V/Sb/Nb=1.0/0.3/
0.25/0.10であった。これを実施例1と同様に
加工したものを触媒として使用してアクリル酸製造反応
を行った。この結果は表1に示すとおりである。
【0018】
【比較例2】500mlのガラス製フラスコ内に、蒸留
水30ml、三酸化アンチモン5.87g、メタバナジ
ン酸アンモニウム6.15gおよびモリブデン酸アンモ
ニウム30.9を加え、大量の窒素ガスを流通させて十
分に置換した。次に、上記の混合液を350回転/分の
速度で攪拌機を回転させながら、該混合液を水の沸点温
度下、リフラックスさせながら3時間、反応させた。反
応後、該混合液を加熱攪拌しながら、35重量%の過酸
化水素水1.3gを添加し、攪拌を5分間程度続ける。
得られた青いコロイド分散液状の分散液を室温まで冷却
し、そこに蓚酸8.82g、ニオブ酸2.33gおよ
び、硝酸アンモニウム5.0gを蒸留水に溶解した常温
の水溶液を加えた。得られた混合液を窒素ガス雰囲気下
30分間激しく撹拌した後、加熱濃縮し、さらに120
℃で蒸発乾固させた。以下、実施例1と同様な条件で焼
成を行い、触媒を得た。この触媒の原子比は、Mo/V
/Sb/Nb=1.0/0.3/0.23/0.08で
あった。これを実施例1と同様に加工したものを触媒と
して使用してアクリル酸製造反応を行った。この結果は
表1に示すとおりである。
【0019】
【比較例3】リフラックスさせる時間を15時間以外
は、比較例2と同様に触媒を製造し、得られた触媒を使
用してアクリル酸の合成試験を行った結果は、表1に示
す通りである。
【0020】
【表1】
【0021】
【発明の効果】本発明の方法によって製造される触媒を
使用すれば、プロパンからアクリル酸が高い収率で製造
できる。
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA03 AA08 BA10B BB06A BB06B BC26A BC26B BC54A BC54B BC55A BC55B BC56A BC59A BC59B CB17 FA01 FB06 FB09 FB30 4H006 AA02 AC12 AC46 BA12 BA13 BA14 BA30 BB61 BB62 BC10 BC18 BC31 BE30 4H039 CA29 CA65 CC10 CC30

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 Mo6+化合物、V5+化合物及びSb
    3+化合物を水性媒体中で70℃以上で反応させる工程
    において、V5+化合物を連続的に反応系に添加して得
    られる反応生成物を主成分とし、これ以外にNb化合物
    又はTa化合物、及び所望によりその他の金属化合物を
    配合して得られる混合物を焼成することを特徴とする金
    属酸化物触媒の製造方法。
JP2000117078A 2000-04-18 2000-04-18 金属酸化物触媒の製造方法 Pending JP2001300310A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117078A JP2001300310A (ja) 2000-04-18 2000-04-18 金属酸化物触媒の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117078A JP2001300310A (ja) 2000-04-18 2000-04-18 金属酸化物触媒の製造方法

Publications (1)

Publication Number Publication Date
JP2001300310A true JP2001300310A (ja) 2001-10-30

Family

ID=18628447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117078A Pending JP2001300310A (ja) 2000-04-18 2000-04-18 金属酸化物触媒の製造方法

Country Status (1)

Country Link
JP (1) JP2001300310A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183897A (ja) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp 複合酸化物の製造方法、及び不飽和酸又は不飽和ニトリルの製造方法
WO2018030384A1 (ja) * 2016-08-12 2018-02-15 旭化成株式会社 酸化物触媒の製造方法、並びに不飽和ニトリル及び不飽和酸の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183897A (ja) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp 複合酸化物の製造方法、及び不飽和酸又は不飽和ニトリルの製造方法
WO2018030384A1 (ja) * 2016-08-12 2018-02-15 旭化成株式会社 酸化物触媒の製造方法、並びに不飽和ニトリル及び不飽和酸の製造方法
JPWO2018030384A1 (ja) * 2016-08-12 2019-04-25 旭化成株式会社 酸化物触媒の製造方法、並びに不飽和ニトリル及び不飽和酸の製造方法
US11612880B2 (en) 2016-08-12 2023-03-28 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst, and method for producing unsaturated nitrile and unsaturated acid

Similar Documents

Publication Publication Date Title
JP4166334B2 (ja) 酸化用触媒の調製方法
JP4247565B2 (ja) アクリル酸製造用の触媒およびそれを用いたアクリル酸の製造方法
JP4174852B2 (ja) アクリル酸の製造方法
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
JP4081824B2 (ja) アクリル酸の製造方法
JP4187837B2 (ja) 不飽和ニトリル製造用触媒の製造方法
CN117299142A (zh) 具有选择性共产物hcn生产的氨氧化催化剂
JPH09157241A (ja) ニトリルの製造法
JP3959836B2 (ja) アクリル酸製造用触媒の製造方法
WO2002051542A1 (fr) Catalyseur d'oxydation d'alcane, procede de production correspondant et procede de production d'un compose insature contenant de l'oxygene
JPH11343262A (ja) アクリル酸の製造方法
JP4179675B2 (ja) 不飽和ニトリルを製造する方法
JPH11244702A (ja) アクリロニトリルまたはメタクリロニトリル製造用触媒
JP4049363B2 (ja) アルカン酸化触媒、その製法及び不飽和酸素含有化合物の製造法
JPH07289907A (ja) ニトリル製造用触媒の製造方法
JP2000317309A (ja) アクリル酸製造用触媒の製造方法
JP4212154B2 (ja) 触媒およびこれを用いた不飽和ニトリルの製造法
JP2002159853A (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法
JP2001300310A (ja) 金属酸化物触媒の製造方法
JP3482476B2 (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2001347165A (ja) 金属酸化物触媒の製造方法
JP2003048870A (ja) アクリロニトリルおよび/またはアクリル酸の製造方法
JP2000051693A (ja) 炭化水素の気相接触酸化用触媒の製造方法
JP3750234B2 (ja) アクリル酸製造用触媒の製造方法
JP2003170044A (ja) 触媒の調製方法