RU2656849C1 - Катализатор для окислительной конверсии этана в этилен и способ его получения - Google Patents

Катализатор для окислительной конверсии этана в этилен и способ его получения Download PDF

Info

Publication number
RU2656849C1
RU2656849C1 RU2016149047A RU2016149047A RU2656849C1 RU 2656849 C1 RU2656849 C1 RU 2656849C1 RU 2016149047 A RU2016149047 A RU 2016149047A RU 2016149047 A RU2016149047 A RU 2016149047A RU 2656849 C1 RU2656849 C1 RU 2656849C1
Authority
RU
Russia
Prior art keywords
catalyst
ethylene
ethane
solution
catalysts
Prior art date
Application number
RU2016149047A
Other languages
English (en)
Inventor
Валентина Михайловна Бондарева
Евгения Викторовна Ищенко
Любовь Алексеевна Шадрина
Владимир Иванович Соболев
Валентин Николаевич Пармон
Олег Афанасьевич Парахин
Михаил Павлович Чернов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority to RU2016149047A priority Critical patent/RU2656849C1/ru
Application granted granted Critical
Publication of RU2656849C1 publication Critical patent/RU2656849C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт современной нефтехимии. Описан оксидный катализатор для процесса окислительной конверсии этана в этилен, содержащий молибден, ванадий, теллур, ниобий, кремний и один элемент М из группы, включающей Р и Se. Катализатор имеет общую формулу: Mo1VaTebNbc(Si+M)dOx, где: М - элемент из группы, включающей Р и Se, а=0,20-0,40, b=0,15-0,35, с=0,05-0,25, d=0,0001-0,5, х - количество атомов кислорода, требуемых для соблюдения электронейтральности. Способ получения катализатора включает стадии получения влажного прекурсора, содержащего все элементы с заданным атомным соотношением, удаления растворителя с использованием распылительной сушилки и последующей ступенчатой термообработки сухого прекурсора. Стадия приготовления влажного прекурсора включает смешение двух многокомпонентных растворов, первый из которых содержит Мо, V, Те и Si, а второй - Nb и М, где М - элемент из группы, включающей Р и Se. Технический результат - высокий выход целевого продукта - этилена. 2 н. и 3 з.п. ф-лы, 11 пр., 1 табл.

Description

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт современной нефтехимии. На базе этилена, помимо полиэтилена, производятся ацетальдегид, этиленоксид, винилхлорид, винилацетат и т.д., которые, в свою очередь, являются источником получения сотен и тысяч конечных продуктов.
В промышленности этилен получают в процессе пиролиза (процесс глубокого расщепления под действием высоких температур) углеводородного сырья (Брагинский О.Б. «Мировая нефтехимическая промышленность» М.: Наука. 2003. 566 с.). Наиболее подходящим сырьем пиролиза для получения олефинов, в частности этилена, являются С2-С4 алканы, прямогонные бензиновые фракции - нафта, бета-рафинаты каталитического риформинга (после удаления из них аренов). Необходимость проведения процесса при высоких температурах (от 750 до 1200°C, обусловлена двумя факторами. Во-первых, олефины - целевые продукты пиролиза - становятся термодинамически более стабильными, чем соответствующие им исходные парафины, только при достижении достаточно высокой температуры (для этилена эта величина составляет 750°C). Во-вторых, первичные реакции, в ходе которых образуются целевые олефины, обратимы и эндотермичны. Чтобы сместить равновесие в сторону расщепления сырья и образования олефинов, необходимо увеличить температуру. В современных производствах коэффициент полезного действия пиролизных печей превышает 93-95%, таким образом, возможности этого процесса ограничены и практически достигли своих пределов.
В этой связи альтернативой процессу пиролиза может служить каталитическая окислительная конверсия этана. Проведение реакции дегидрирования этана в присутствии кислорода (ОДЭ) позволяет снять термодинамические ограничения, достигать высокую конверсию сырья при температуре проведения реакции ниже 500°C, а также свести к минимуму дезактивацию катализатора из-за коксования.
Для реакции ОДЭ известны катализаторы на основе гетерополисоединений, состав, которых отражается формулой MoaP1XbYcZdQeOf, где: X - щелочной (Na, K, Rb, Cs) металл или NH4 +; Y - Sb или Sb+W; Z - 1 из Fe, Со, Ni, V, Nb, Sn, Zr/Zn или в комбинации с Cr и/или Cu; Q -, щелочноземельный металл; а=6-12; b=0.1-6; с=0.1-6; d=0.01-3; е=0.01-5; f - должен обеспечивать нейтральность композиции [ЕР №0544372, 1993 г.]. При применении данных катализаторов селективность по этилену составляет от 50 до 94%, но вследствие низкой конверсии этана (2-10%) максимальный выход этилена не превышает 16%.
В Пат. US №4250346, 1981 г. для окисления этана до этилена описано применение оксидной композиции, содержащей следующие элементы: Mo, X и Y в отношении a:b:c, где: X - элемент из группы: Cr, Mn, Nb, Та, Ti, V и/или W; a Y - из группы: Bi, Се, Со, Cu, Fe, K, Mg, Ni, Р, Pb, Sb, Si, Sn, T1 и/или U; a=1, b=0,05÷1, с=0÷2. Для приготовления катализаторов использовались водорастворимые соли или коллоидные растворы солей, или окисдов исходных соединений. Смешанные растворы/суспензии сушили и прокаливали в токе воздуха в интервале температур 200-500°C. Селективность по этилену в зависимости от используемого катализатора находится в интервале от 50 до 94% при конверсии этана от 2 до 34%. Максимальный выход этилена достигается при температуре 400°C на катализаторе катионного состава Mo16V8Nb2 и составляет 34%.
Известен способ получения этилена окислительным дегидрированием этана с использованием оксидного катализатора, содержащего Mo, V, Nb и Sb [US №4568790, 1986 г.] и MoVNbSbO катализатора, дополнительно содержащего 1 или более металлов из группы, состоящей из Li, Sc, Na, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Y, Та, Cr, Fe, Co, Ni, Ce, La, Zn, Cd, Hg, Al, Tl, Pb, As, Bi, Те, U и W [US №4524236, 1985 г.]. Катализаторы указанных составов готовили способом, описанном в патенте US №4250346, 1981 г.). На катализаторах состава Mo1.5-0.9V0.1-0.4Nb0.001-0.2Sb0.001-0.1Me0.001-1 при конверсии этана 50% селективность по этилену находится в диапазоне от 63 до 76%. Максимальный выход этилена на 4-х компонентном MoVNbSb образце составляет 44%, модифицирование катализатора добавками щелочноземельных металлов, висмута или свинца повышает выход этилена на 5-7%.
Известен также способ получения этилена из этана с использованием смешанных оксидных композиций, содержащих Mo, V, Те, Nb и, по крайней мере, 1 элемент из группы, включающей: Cu, Та, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Sb, Bi, щелочной или щелочноземельный металл следующего состава: MoTehViNbjAkOx, где: h=0.01-3, i/h=0.3-10, j=0.001-2, k=0.0001-2 [US №7319179, 2008 г.]. Катализаторы получают либо смешением водных растворов исходных соединений с последующим удалением растворителя и термообработкой, либо гидротермальным синтезом. Прокалка высушенного катализатора проводится либо в атмосфере, либо в потоке инертного газа (N2, Не, Ar), либо в их смеси с воздухом при температурах в интервале 450-600°C. Наилучшие показатели при испытаниях в реакции окислительного дегидрирования этана достигнуты на 4-х компонентном MoTeVNb катализаторе, полученным гидротермальным синтезом при температуре 175°C в течение 60 ч с последующей сушкой на воздухе при 80°C и прокалкой 2 ч в токе азота при 600°C. В реакционной смеси с соотношением этан:кислород:гелий = 30:10:60 при 400°C при времени контакта 170 г час-1 моль (C2H6)-1 конверсия этана составляет 63,3%, селективность и выход этилена - 88,7 и 56,1%, соответственно. На катализаторе такого же состава, полученном терморазложением суспензии исходных растворов, выход этилена не превышает 52%.
Наиболее близким к заявляемому по технической сущности и достигаемому выходу целевого продукта является способ приготовления катализаторов состава: MoaVbXcYdZeOn и MoaVbXcYdZeMfOn, где: X - Nb и/или Та; Y - 1 элемент из группы, включающей: Sb и Ni; Z - по крайней мере, 1 элемент из группы, включающей: Те, Ga, Pd, W, Bi и Al, М - 1 или более элементов из группы: Fe, Со, Cu, Cr, Ti, Се, Zr, Mn, Pb, Mg, Sn, Pt, Si, La, K, Ag и In; a=1.0; b=0.05-1.0; с=0.001-1.0; d=0.001 1 1.0; e=0.001-0.5; f=0.001-0.5 для получения олефинов из углеводородов [US №8105971, B01J 23/22, 31.01.2012 г.]. Получение катализатора включает стадии смешения исходных компонентов при регулировании pH раствора/суспензии многокомпонентной смеси или отдельных растворов добавлением концентрированной HNO3, удаление растворителя, прокалкой сухого прекурсора и последующее растирание прокаленного катализатора. Исходным сырьем при приготовлении катализаторов могут быть различные неорганические, органические и комплексные соединения, а в качестве растворителя - вода (предпочтительно) или другие полярные органические растворители. Получение сухого прекурсора осуществляется с помощью использования любых подходящих способов, известных в данной области, - сушку в вакууме, сушку вымораживанием, сушку распылением, ротационное выпаривание и сушку на воздухе. Предпочтение отдается ротационной сушке при 50°C, после которой сухой прекурсор подвергается дополнительной сушке при 110-120°C в течение ночи в сушильном шкафу. Последующую прокалку проводят ступенчато или в 1 стадию в атмосфере или в токе любого инертного газа - N2, Ar, Xe, Не, в воздухе или их смеси при температуре от 250°C до 1000°C от 0,5 до 15 ч. Время прокалки не является лимитирующим фактором. Такие элементы, как: Та, Ni, Pd, W, Ga, Al, Cu, Bi, Sn, Fe, Co, щелочные, щелочно- и редкоземельные могут быть введены в состав катализатора после стадии прокалки сухого прекурсора пропиткой или осаждением. В этом случае применяется дополнительная прокалка. Полученные таким способом образцы могут быть использованы в качестве катализаторов либо могут быть подвергнуты дополнительной обработке раствором (1-10 мас. %) неорганической или органической кислоты при температуре 60-90°C в течение 2-20 ч с последующим отжигом. Такая обработка способствует увеличению активности и селективности катализатора в отношении образования олефинов из парафинов. Наилучшие показатели процесса окислительного дегидрирования этана достигаются на катализаторе состава: Mo1V0.29Nb0.17Sb0.01iTe0.125On, подвергнутому дополнительному пост-прокалочному растиранию и обработке раствором щавелевой кислоты с последующим отжигом, после чего выход этилена увеличивается с 65 до 72%.
Недостатками известных способов получения этилена из этана с использованием смешанных оксидных катализаторов, содержащих в качестве основных компонентов Mo, V, Те и/или Nb и/или Sb, являются низкая активность [US №№4250346, 8105972, РФ №2412145], невысокая селективностью по этилену [US №7319179], либо неудовлетворительные оба показателя [US №№4568790, 4524236], что, в целом, обуславливает низкий выход целевого продукта - 34-64%.
Основным недостатком способа получения многокомпонентных оксидных катализаторов, описанныом в прототипе [US №8105971], является необходимость проведения дополнительных пост-прокалочных стадий - растирание/измельчение и обработка раствором кислоты для получения катализаторов, обеспечивающих выход целевого продукта выше 65%. Наличие этих стадий не только усложняет процедуру получения катализаторов, но и увеличивает его энергоемкость. Кроме того, на пост-прокалочной стадии кислотной обработки образуются сточные воды, требующие утилизации и оказывающие негативное влияние на экологию.
Изобретение решает задачу разработки эффективной композиции катализатора для процесса окислительной конверсии этана и способа его получения.
Технический результат - повышение выхода целевого продукта - этилена и упрощение способа приготовления катализаторов. Способ приготовления не требует дополнительных стадий растирания и кислотной обработки катализаторов для достижения выхода этилена выше 72%.
Задача решается разработкой оксидных катализаторов состава: Mo1VaTebNbcMdOx, где: М, по крайней мере, один элемент М из группы, включающей: P, Si, Se; а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности, для процесса окислительной конверсии этана в этилен и способа их приготовления.
Задача решается также способом приготовления катализаторов состава: Mo1VaTebNbcMdOx, где: М, по крайней мере, один элемент М из группы, включающей: Р, Si, Se; а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности, включающего следующие стадии: 1 - получение влажного прекурсора, содержащего все элементы, входящие в состав катализатора, 2 - удаление растворителя, 3 - сушка и 4 - термообработка сухого прекурсора в комбинированном режиме. В случае М=Р и/или Se для стадии приготовления влажного прекурсора первый раствор содержит Mo, V и Te, а второй раствор содержит Nb и М. В случае М=Si для стадия приготовления влажного прекурсора первый раствор дополнительно содержит Si. В качестве исходного соединения ниобия используют свежеприготовленный раствор оксалата ниобия с соотношением С2О4 2-/Nb=3/1. После удаления растворителя осуществляют сушку прекурсора при температуре не ниже 150°C.
В отличие от известных способов получения данных катализаторов, включая прототип, растворы исходных соединений компонентов, входящих в состав катализатора, использующиеся при получении влажного прекурсора, дополнительно не подкисляют и/или не подщелачивают.
Стадия получения влажного прекурсора включает смешение двух многокомпонентных растворов: в случае М=Р и/или Se первый раствор содержит Мо, V и Те, а второй раствор содержит Nb и М, в случае М=Si первый раствор дополнительно содержит Si.
В качестве исходных соединений молибдена и ванадия используются водорастворимые соли, предпочтительно, парамолибдат аммония и метаванадат аммония. Исходным соединением теллура может быть теллуровая кислота, теллурат аммония или диоксид теллура. В последнем случае растворение проводят с добавлением перекиси водорода. В качестве соединения ниобия используется свежеприготовленный раствор оксалата ниобия с соотношением С2О4 2-/Nb=3/1, получаемый растворением при комнатной температуре соответствующего количества свежеосажденного петоксида ниобия, полученного гидролизом NbCl5, в растворе щавелевой кислоты с содержанием С2О4 2-, необходимым для получения требуемого соотношения C2О4 2-/Nb. Концентрация ниобия в растворе определяется химическим анализом с использованием Perkin Elmer ISP Optima 4300DV атомно адсорбционного спектрометра. Для введения в состав катализатора фосфора и селена используются соответствующие кислоты, предпочтительно: орто-фосфорная (Н3РО4) и селенистая (H3SeO3). Источником кремния может быть диоксид, предпочтительно кремнезоль.
Стадия 1 включает приготовление растворов 1 и 2 и их последующее смешение при интенсивном перемешивании с образованием влажного прекурсора, содержащего все элементы катализатора. Раствор 1 готовят растворением при температуре 80°C и интенсивном перемешивании в дистиллированной воде исходных соединений V, Мо, Те и при необходимости Si в количествах, задаваемых их атомным соотношением в составе катализатора. Раствор 2 готовят смешением при комнатной температуре необходимого количества растворов оксалата ниобия и орто-фосфорной и/или селеновой кислот.
Стадия 2 осуществляется в токе воздуха с использованием распылительной сушилки. Температура на входе сушилки составляет 220°C, на выходе - 115°C. Скорость сушки не является лимитирующим фактором и может варьироваться в широких пределах. Различия во влажности образующегося порошка нивелируются на последующей стадии сушки.
Стадия 3 проводится в сушильном шкафу на воздухе, предпочтительно, при 160°C в течение 1 ч. Получаемый при этом сухой прекурсор содержит Мо, V, Те, Nb и, по крайней мере, один элемент М из группы, включающей P, Si, Se.
Стадия 4. Прокалка проводится ступенчато, первоначально - кратковременная термообработка в токе воздуха при температуре 300-310°C, затем - в токе инертного газа при 550-600°C в течение 2-х ч.
Отличительным признаком предлагаемого катализатора по сравнению с прототипом является использование композиции, не содержащей Sb и/или Ni, общей формулы Mo1VaTebNbcMdOx, где: М - по крайней мере один элемент из группы, включающей P, Si, Se, а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности.
Отличительными признаками предлагаемого способа приготовления катализатора состава Mo1VaTebNbcMdOx, где: М - по крайней мере один элемент из группы, включающей Р, Si, Se, а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности, по сравнению с прототипом являются:
1 - использование свежеприготовленного раствора оксалата ниобия с соотношением C2O4 2-/Nb в интервале 3.0/1-3.5/1;
2 - использование 2-х многокомпонентных растворов (раствор (1) и (2)) для получения влажного прекурсора;
3 - использование неподкисленных концентрированной азотной кислотой растворов (1) (2) и оксалата ниобия;
4 - сушка распыленного порошка на воздухе при температуре не ниже150°C в течение 1 ч.
В результате получаемые катализаторы не требуют дополнительной стадии пост-прокалочной кислотной обработки катализаторов раствором неорганической или органической кислоты с последующим отжигом для достижения в процессе окислительного дегидрирования этана выхода этилена выше 72%.
Тестирование катализаторов в реакции окислительного дегидрирования этана проводят в проточной установке в стеклянном реакторе (∅внеш.=12 мм) с коаксиально расположенной термопарой (∅внеш. термопарного кармана = 12 мм) при температуре 400°C. Реакционную смесь, содержащую этан, кислород и разбавитель - азот состава C2H6:O2:N2=10:10:80 (% об.), пропускают через слой катализатора фракционного состава 0.25-0.50 мм с объемной скоростью в интервале 360-520 ч-1.
Сущность изобретения иллюстрируется следующими примерами. Каталитические свойства полученных образцов приведены в таблице.
Пример 1.
Получение раствора оксалата ниобия с соотношением C2O4 -/Nb=3,0/1: в 200 мл дистиллированной воды при комнатной температуре и интенсивном перемешивании порциями вводят 25 г пентахлорида ниобия и капельно добавляют раствор аммиака (25% мае. NH3) до рН=7. Полученный осадок отфильтровывают и промывают водой. Отмытый осадок количественно переносят в стакан, добавляют 70 мл воды и 35 г дигидрата щавелевой кислоты и получают 160 мл раствора оксалата ниобия. В полученном таким образом растворе (раствор А) концентрация Nb составляет 56,3 мг Nb/мл. Полученный раствор далее используется при получении MoVTeNbMO катализаторов.
Получение катализатора состава Mo1V0.3Te0.23Nb0.12P0,001Ox: в 100 мл дистиллированной воды при температуре 80°C и интенсивном перемешивании растворяют 17,7 г парамолибдата аммония, 5,28 г теллуровой кислоты и 3,51 г метаванадата аммония (раствор 1). Раствор 2 получают добавлением 0,068 мл орто-фосфорной кислоты (0,911 М) к 19,8 мл раствора А при комнатной температуре и интенсивном перемешивании. Затем при комнатной температуре и интенсивном перемешивании смешивают растворы (1) и (2) и получают влажный прекурсор, содержащий все элементы, входящие в состав катализатора. Из полученного таким образом прекурсора - ярко оранжевого геля удаляют воду с использованием лабораторной распылительной сушилки. Температура на входе сушилки составляет 220°C, на выходе - 115°C, скорость сушки 5 мл/мин. Порошок после распыления подвергается сушке на воздухе при температуре 160°C в течение 1 ч в сушильном шкафу. Полученный сухой прекурсор таблетируют, отбирают фракцию 0,25-0,50 мм и ступенчато прокаливают в токе воздуха при температуре 310°C в течение 10 мин, затем в токе инертного газа - гелия при температуре 600°C в течение 2-х ч.
Полученный катализатор используют в реакции окислительного дегидрирования этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 2.
Катализатор состава Mo1V0.3Te0.23Nb0.12P0,0025Ox получают аналогично примеру 1, но для получения раствора (2) берут 0,017 мл орто-фосфорной кислоты (15.43 М) и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 3.
Катализатор состава Mo1V0.3Te0.23Nb0.12Se0.002Ox получают аналогично примеру 1, но для получения раствора (2) берут 0,026 г селенистой кислоты и 19,8 мл раствора А. Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 4.
Катализатор состава Mo1V0.3Te0.23Nb0.12P0,0025Se0.002Ox получают аналогично примеру 1, но для получения раствора (2) берут 0,017 мл орто-фосфорной кислоты (15,43 М), 0,026 г селенистой кислоты и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 5.
Катализатор Mo1V0.2Te0.23Nb0.10P0,005Se0.005Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 5,28 г теллуровой кислоты и 2,34 г метаванадата аммония, а для получения раствора (2) берут 0,034 мл орто-фосфорной кислоты (15,43 М), 0,065 г селенистой кислоты и 16,5 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 6.
Катализатор Mo1V0.27Te0.25Nb0.12P0,0025Si0.0057Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 5,74 г теллуровой кислоты, 3,16 г метаванадата аммония и 0,861 мл золя Si02 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут 0,017 мл орто-фосфорной кислоты (15,43 М) и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 7.
Катализатор Mo1V0.37Te0.25Nb0.12P0,01Si0.143Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 5,74 г теллуровой кислоты, 4,33 г метаванадата аммония и 4,305 мл золя SiO2 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут берут 0,068 мл орто-фосфорной кислоты (15,43 М) и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 8.
Катализатор Mo1V0.30Te0.23Nb0.12P0,001Si0.287Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 5,28 г теллуровой кислоты, 3,51 г метаванадата аммония и 6,457 мл золя SiO2 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут 0,0139 г селенистой кислоты и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 9.
Катализатор Mo1V0.34Te0.35Nb0.25P0,003Si0.50Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 8,03 г теллуровой кислоты, 3,98 г метаванадата аммония и 7,5 мл золя SiO2 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут 0,039 г селенистой кислоты и 43,1 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 10.
Катализатор Mo1V0.3Te0.23Nb0.05P0,05Si0.50Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 5,28 г теллуровой кислоты, 3,51 г метаванадата аммония и 7,5 мл золя SiO2 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут 0,342 мл орто-фосфорной кислоты (15,43 М) и 9,9 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Пример 11.
Катализатор Mo1V0.3Te0.15Nb0.12P0,005Si0.574Ox получают аналогично примеру 1, но для получения раствора (1) берут 17,7 г парамолибдата аммония, 3,45 г теллуровой кислоты, 3,51 г метаванадата аммония и 6,457 мл золя SiO2 (Nalko, 40 мас. % SiO2), а для получения раствора (2) берут 0,034 мл орто-фосфорной кислоты (15,43 М) и 19,8 мл раствора А.
Полученный таким образом катализатор тестируют в реакции окислительной конверсии этана в этилен. Каталитические свойства полученного образца приведены в таблице.
Преимущество заявляемого катализатора состава Mo1VaTebNbcMdOx, где: М - по крайней мере один элемент из группы, включающей Р, Si и Se, а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности, состоит в достижении более высокого выхода целевого продукта - этилена.
Преимущество заявляемого способа приготовления катализатора состава Mo1VaTebNbcMdOx, где: М - по крайней мере один элемент из группы, включающей P, Si и Se, а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,2, x - количество атомов кислорода, требуемых для соблюдения электронейтральности, состоит в упрощении и сокращении количества технологических стадий.
Figure 00000001
Figure 00000001

Claims (5)

1. Оксидный катализатор для процесса окислительной конверсии этана в этилен, содержащий молибден, ванадий, теллур и ниобий, отличающийся тем, что в составе активного компонента дополнительно содержит кремний и один элемент М из группы, включающей Р и Se.
2. Катализатор по п. 1, отличающийся тем, что имеет общую формулу: Mo1VaTebNbc(Si+M)dOx, где: М - элемент из группы, включающей Р и Se, а=0,20-0,40, предпочтительно, 0,27-0,32, b=0,15-0,35, предпочтительно, 0,23-0,27, с=0,05-0,25, предпочтительно, 0,10-0,15, d=0,0001-0,5, предпочтительно, 0,002-0,3, х - количество атомов кислорода, требуемых для соблюдения электронейтральности.
3. Способ приготовления катализатора для процесса окислительной конверсии этана в этилен по пп. 1 и 2, включающий стадии получения влажного прекурсора, содержащего все элементы с заданным атомным соотношением, удаления растворителя с использованием распылительной сушилки и последующей ступенчатой термообработки сухого прекурсора, отличающийся тем, что стадия приготовления влажного прекурсора включает смешение двух многокомпонентных растворов, первый из которых содержит Мо, V, Те и Si, а второй - Nb и М, где М - элемент из группы, включающей Р и Se.
4. Способ по пп. 3 и 4, отличающийся тем, что в качестве исходного соединения ниобия используют свежеприготовленный раствор оксалата ниобия с соотношением С2О4 2-/Nb=3/1.
5. Способ по п. 3, отличающийся тем, что после удаления растворителя осуществляют сушку прекурсора при температуре не ниже 150°C.
RU2016149047A 2016-12-14 2016-12-14 Катализатор для окислительной конверсии этана в этилен и способ его получения RU2656849C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149047A RU2656849C1 (ru) 2016-12-14 2016-12-14 Катализатор для окислительной конверсии этана в этилен и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149047A RU2656849C1 (ru) 2016-12-14 2016-12-14 Катализатор для окислительной конверсии этана в этилен и способ его получения

Publications (1)

Publication Number Publication Date
RU2656849C1 true RU2656849C1 (ru) 2018-06-07

Family

ID=62560394

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149047A RU2656849C1 (ru) 2016-12-14 2016-12-14 Катализатор для окислительной конверсии этана в этилен и способ его получения

Country Status (1)

Country Link
RU (1) RU2656849C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715390C1 (ru) * 2019-12-02 2020-02-27 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (Институт катализа СО РАН, ИК СО РАН) Катализатор переработки этан-этиленовой фракции нефтезаводских газов
RU2769185C2 (ru) * 2020-07-08 2022-03-29 Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук (ИМХРАН) Катализатор дегидрирования углеводородной смеси c1-c4 в олефины и способ его получения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997454B1 (en) * 1997-07-14 2003-09-17 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon
US6781008B2 (en) * 2001-04-25 2004-08-24 Rohm And Haas Company Catalyst
US20050085678A1 (en) * 2002-01-31 2005-04-21 Lopez Nieto Jose M. Method for the oxidative dehydrogenation of ethane
RU2358958C1 (ru) * 2007-12-25 2009-06-20 Леонид Модестович Кустов Способ приготовления активной фазы катализатора окислительного дегидрирования углеводородов, катализатор на ее основе, способ его получения и способ окислительного дегидрирования этана с его использованием
RU2352390C9 (ru) * 2002-10-17 2010-05-20 Басф Акциенгезельшафт Массы оксидов металлов
RU2600455C1 (ru) * 2015-08-25 2016-10-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997454B1 (en) * 1997-07-14 2003-09-17 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon
US6781008B2 (en) * 2001-04-25 2004-08-24 Rohm And Haas Company Catalyst
US20050085678A1 (en) * 2002-01-31 2005-04-21 Lopez Nieto Jose M. Method for the oxidative dehydrogenation of ethane
RU2352390C9 (ru) * 2002-10-17 2010-05-20 Басф Акциенгезельшафт Массы оксидов металлов
RU2358958C1 (ru) * 2007-12-25 2009-06-20 Леонид Модестович Кустов Способ приготовления активной фазы катализатора окислительного дегидрирования углеводородов, катализатор на ее основе, способ его получения и способ окислительного дегидрирования этана с его использованием
RU2600455C1 (ru) * 2015-08-25 2016-10-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715390C1 (ru) * 2019-12-02 2020-02-27 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (Институт катализа СО РАН, ИК СО РАН) Катализатор переработки этан-этиленовой фракции нефтезаводских газов
RU2769185C2 (ru) * 2020-07-08 2022-03-29 Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук (ИМХРАН) Катализатор дегидрирования углеводородной смеси c1-c4 в олефины и способ его получения

Similar Documents

Publication Publication Date Title
JP3826161B2 (ja) バナジウム含有触媒およびその製造方法、並びに、その使用方法
JP4794727B2 (ja) アルカンの酸化に有用な触媒
JP5379475B2 (ja) メタクロレインを酸化するための触媒およびその製造方法と使用方法
Solsona et al. Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts
Bond et al. Structure and reactivity of transition-metal oxide monolayers
RU2266784C2 (ru) Каталитическая композиция (варианты) и способ конверсии олефина с ее применением
RU2600977C2 (ru) Износостойкие катализаторы аммоксидирования на основе смешанных оксидов металлов
EP1479438A1 (en) Method for the oxidative dehydrogenation of ethane
RU2561084C2 (ru) Усовершенствованные катализаторы аммоксидирования на основе смешанных оксидов металлов
RU2690512C2 (ru) Улучшенные селективные катализаторы аммоксидирования
JP5192495B2 (ja) 飽和および不飽和アルデヒドの不飽和カルボン酸への酸化のための触媒、およびその製造方法と使用方法
US11691130B2 (en) Catalyst for ethane ODH
RU2003132761A (ru) Процесс приготовления катализатора для оксидации и амоксидации олефина
US20150086471A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
JP4174852B2 (ja) アクリル酸の製造方法
RU2656849C1 (ru) Катализатор для окислительной конверсии этана в этилен и способ его получения
KR20170095990A (ko) 개선된 혼합 금속 산화물 가암모니아 산화 촉매
CA2187413A1 (en) Conversion of alkanes to unsaturated carboxylic acids
RU2600455C1 (ru) Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен
JPWO2018150797A1 (ja) メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
KR101122346B1 (ko) 올레핀으로부터 불포화 알데하이드를 생산하는 혼합 금속산화물 촉매의 제조방법
KR20170015900A (ko) 개선된 선택적인 암모산화 촉매
JP2988850B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒およびこの触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の製造方法
KR102418676B1 (ko) 불포화 카복실산 제조용 촉매, 불포화 카복실산의 제조 방법, 및 불포화 카복실산 에스터의 제조 방법
RU2634593C1 (ru) Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен