WO2003062837A1 - Carte sonde - Google Patents

Carte sonde Download PDF

Info

Publication number
WO2003062837A1
WO2003062837A1 PCT/JP2003/000655 JP0300655W WO03062837A1 WO 2003062837 A1 WO2003062837 A1 WO 2003062837A1 JP 0300655 W JP0300655 W JP 0300655W WO 03062837 A1 WO03062837 A1 WO 03062837A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
substrate
flat portion
needle
probe card
Prior art date
Application number
PCT/JP2003/000655
Other languages
English (en)
French (fr)
Inventor
Akio Kojima
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to KR1020047011392A priority Critical patent/KR100634923B1/ko
Priority to JP2003562648A priority patent/JP4559733B2/ja
Priority to US10/502,365 priority patent/US7394265B2/en
Publication of WO2003062837A1 publication Critical patent/WO2003062837A1/ja
Priority to US11/821,302 priority patent/US20080010824A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a probe card provided in a wafer test apparatus (wafer probe) for performing an electrical characteristic test on a wafer that is not packaged.
  • probe needles that come into contact with wafer electrodes are made elaborate using silicon, nickel, etc.
  • the present invention relates to a probe card and a method of manufacturing a probe force which can dispose minute probe needles with high density and high accuracy without variation in needle height.
  • a plurality of semiconductor device chips formed on a wafer are in a state of a wafer before being cut into individual chips and sealed in a package, that is, in a so-called semi-finished product state. Test is performed. Such a semi-finished product wafer is tested by a wafer tester called a wafer prober having a probe force having a probe needle that applies a test signal by contacting the wafer electrode. This is performed using a device.
  • FIG. 13 is a front view conceptually showing a wafer test apparatus provided with a conventional probe card.
  • the conventional wafer test apparatus includes a wafer table 104 on which a wafer 103 to be tested is mounted, and is positioned above the wafer table 104.
  • a probe force 101 is provided.
  • the probe card 101 is provided with a board 102 such as a printed board for transmitting a predetermined test signal to be applied to each chip on the wafer 103, and is arranged and fixed on the board 102.
  • a plurality of probe needles 120 are provided.
  • the wafer table 104 is placed in a three-dimensional direction (the direction of the arrow shown in FIG. 13) so that a predetermined electrode of the mounted wafer 103 comes into contact with a predetermined probe needle 120 of the probe card 101.
  • the drive is controlled in the following manner.
  • the probe needles 120 of the probe card 101 are connected to predetermined chip electrodes on the wafer 103 by controlling the driving of the wafer table 104. Contact.
  • a test signal is applied from the test apparatus to the electrodes of the wafer 103 via the substrate 102 of the probe card 101, and a predetermined electrical characteristic test is performed on each of the devised chips on the wafer 103. Will be
  • the probe needles 120 provided in the probe card 101 are made of metal needles such as tungsten, for example.
  • a so-called cantilevered probe needle structure is adopted, in which a large number of substrates are bent and formed into a flat disk shape, and a large number are arranged and fixed with resin 130. I was
  • the cantilever-type probe needle is formed by bending a metal needle with a total length of about 30 to 50 mm so that the needle height at the tip side (arrow h shown in Fig. 13) is about 10 mm.
  • the variation can be absorbed within the elastic limit of the needle, for example, several / m.
  • a plurality of (for example, several hundred) probes are all arranged on a substrate by hand and fixed by an adhesive or the like.
  • the conventional probe card provided with such a cantilever-type probe needle has a problem that it cannot cope with the recent test of a high-density and miniaturized wafer.
  • the progress of miniaturization and high-density semiconductor devices has been remarkable, and the electrodes on each chip have become extremely small in both size and spacing (for example, one side of the electrode is about 60; m ⁇ 100m, pitch is about 100m ⁇ 200m).
  • the cantilever-type probe needle itself has a diameter of about 250 m, and the mounting of the probe needles is all done manually. It was impossible to mount it on the board. For this reason, cantilever-type probe cards cannot test high-density and miniaturized wafers in recent years.
  • the cantilever probe needle has a problem that the high-frequency characteristics are deteriorated because the total length of the needle is about 30 to 50 mm.
  • Such a membrane-type probe force enables fine processing of electrode bumps formed on a thin film, making it possible to respond to the testing of miniaturized and high-density wafers. Met.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H11-283881 (Page 4, FIG. 12)
  • Patent Document 2 Japanese Patent Application Laid-Open No. Hei 5-2-171575 (Pages 3-4, Fig. 2)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-07600 (Pages 4-5, Fig. 1)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 08-083284 (Pages 5-6, FIG. 3)
  • a membrane-type probe card has a membrane provided with electrode bumps and holds the membrane.
  • a complicated and large number of components were required, such as a holding structure to be pressed and a pressurizing means for urging the membrane toward the wafer.
  • the inventor of the present application has made it possible to form fine needles having a length of about 1 mm to 2 mm by etching silicon or using nickel plating, etc., without using the above-described membrane structure.
  • a simple probe needle can be formed with high density and high precision.
  • simply mounting the fine probe needles on the substrate will not make the probe needles uniform in height due to the unevenness of the substrate. I arrived.
  • the surface of the substrate generally has smooth irregularities in a range of about 0.1 mm to 0.3 mm. Therefore, when a fine probe needle having a length of about 1 mm to 2 mm is mounted on the surface of such a substrate, the needle height varies due to the unevenness of the substrate. Moreover, it is impossible to absorb variations within the elastic limit of a probe with a fine needle tip as in a conventional force-chinch lever type needle.
  • the inventor of the present invention has conducted further intensive research and has as a result solved the problem of the unevenness of the substrate to create the probe card of the present invention which can mount fine probe needles at a high density. It has been reached. That is, the present invention has been proposed in order to solve the problems of the conventional technology as described above, and the probe needle which contacts the electrode of the wafer is finely formed using silicon, nickel, and the like. By forming a flattened flat part on the substrate on which the probe needle is mounted and fixed, it eliminates the need for a complicated structure, eliminates variations in needle height, and minimizes the size of the probe. It is an object of the present invention to provide a probe card capable of disposing needles with high density and high accuracy, and a method of manufacturing a probe force. Disclosure of the invention
  • a probe card according to the present invention is a probe card provided in a wafer test apparatus, and has a wiring pattern for transmitting a test signal applied to a wafer to be tested.
  • the probe needle which is in contact with the electrode of the wafer is formed of, for example, nickel, silicon or the like, so that the needle length is about lmm to 2mm. Needles can be formed with high precision, and a plurality of needles can be formed at high density at minute intervals. Then, by forming a flattened flat portion on the substrate on which the probe needle is mounted, the mounting surface of the probe needle can be a flat surface having a flatness of about 10 im or less.
  • the present invention it is possible to realize a probe card having a probe needle formed with a fine structure and a high precision with a simple structure, and it is possible to reliably test a recent high-density wafer.
  • the probe card according to the present invention it is possible to prevent the entire apparatus from becoming large and complicated without requiring a complicated structure such as a conventional membrane structure, and to reduce the cost.
  • a wafer test device can be provided.
  • the probe card of the present invention has the following features.
  • a configuration in which the flat portion is flattened by polishing the surface can be employed.
  • a flat portion on the surface of a substrate such as a printed board can be flattened with high precision by a polishing process.
  • a flat layer according to the present invention can be formed easily and with high precision by laminating a plating layer or the like on the surface of the substrate and polishing the same, without using expensive materials or complicated devices.
  • the probe force of the present invention can be realized at low cost.
  • the polishing treatment can be performed by, for example, lap polishing used for manufacturing a wafer or a DVD disk.
  • the substrate has a build-up portion formed on the surface, and the flat portion is formed on the surface of the build-up portion of the substrate.
  • the flat portion according to the present invention can be formed even on a substrate having a build-up portion.
  • a build-up board build-up portion
  • a flat portion can be formed even on a substrate having such a build-up portion, so that the density of the probe card can be increased and the accuracy can be increased. Therefore, in the case of the substrate having the build-up portion, the wiring pattern of the present invention in which the flat portion is formed means the wiring pattern of the build-up portion. Needless to say, the present invention can be applied to a substrate having no build-up section.
  • the probe card of the present invention can be configured such that the flat portion is formed on the wiring pattern along the wiring pattern, as described in claim 4.
  • the flat portion according to the present invention can be formed on the wiring pattern to which the probe needle is connected along the wiring pattern.
  • the wiring pattern itself is flattened with high precision, and the probe according to the present invention can be used without any change in the configuration of the substrate or the probe needle. Card can be realized. Then, the wiring pattern is flattened in this manner, so that the mounting structure of the probe needles is the same as that of a normal probe card having no flat portion, and it can be applied to existing test equipment and mounting processes.
  • the probe force of the present invention can be applied as it is, and a probe card excellent in versatility can be provided.
  • the flat portion can be constituted by a plating layer formed on the substrate.
  • the flat portion can be formed by, for example, nickel plating.
  • the surface of the plating layer can be easily flattened by polishing or the like.
  • the flat portion according to the present invention can be easily and accurately formed.
  • the flat portion is formed along the wiring pattern of the substrate, so that the wiring pattern itself can be flattened with high precision. A fine, high-precision mounting structure of the probe needle can be realized without changing the configuration of the probe needle.
  • the flat portion can be constituted by a mask layer formed on the substrate.
  • the flat portion can be formed by the mask layer made of, for example, a metal mask or a mesh mask. Then, the surface of the mask layer can be easily planarized by polishing or the like. Thereby, the flat portion according to the present invention can be formed easily and with high precision.
  • the flat portion can be formed in a wide and flat shape on the surface of the substrate, and the mounting of the probe needle can be facilitated.
  • the flat portion can be constituted by a build-up layer formed on the substrate.
  • the flat portion according to the present invention when a build-up layer (build-up portion) is provided on the surface of the substrate, the flat portion according to the present invention is directly formed on the build-up layer by polishing the build-up layer. can do.
  • the flat portion according to the present invention can be formed on the surface of the substrate in a wide and planar manner, similarly to the case where the flat portion is formed by the mask layer. Can be.
  • the flat portion according to the present invention can be formed more easily and efficiently, and the entire probe card can be made thinner and lighter. You can also.
  • the probe card of the present invention can be configured such that the probe needle is formed separately from the substrate and mounted on a flat portion, as described in claim 8.
  • the probe needle is And a plurality of needle portions protruding in a shape.
  • the probe needle can be configured to include a needle-shaped silicon and a conductor pattern formed on the surface of the silicon.
  • a probe needle separate from the substrate can be formed with high accuracy and fineness by etching silicon. This makes it possible to easily and accurately form a fine probe needle suitable for the probe card of the present invention having a flat portion.
  • the probe card according to the present invention can be easily and efficiently manufactured.
  • the probe needle made of silicon or the like formed separately from the substrate may be formed such that each needle is a single body, and in this case, the flat portion of the present invention may also be used. Needless to say, the present invention can be applied to a probe card provided.
  • the probe needle can be formed directly on the surface of the flat portion as described in claim 11.
  • the probe needle can be formed in a needle shape on the surface of the flat portion.
  • a highly accurate and fine probe needle can be formed directly on a flat portion by, for example, nickel plating.
  • the probe needle formed by the machining process can easily and accurately form a fine needle by repeating a mask and a plating on a flat portion a plurality of times.
  • a fine probe needle having a flat portion and suitable for the probe force of the present invention can be easily and accurately formed.
  • the mounting work on the board and the connection work such as the wiring pattern can be omitted, and the probe card according to the present invention can be easily manufactured. And it can be manufactured efficiently.
  • the method for manufacturing a probe card according to the present invention includes, as described in claim 13, a substrate having a wiring pattern for transmitting a test signal applied to a wafer to be tested; A probe needle disposed on the substrate and connected to the wiring pattern, the probe needle being in contact with the electrode of the wafer.
  • the probe card to be formed Forming a mask on a substrate on which a predetermined wiring pattern is formed, forming an opening at a predetermined position of the mask, polishing the opening, and polishing the surface of the mask. And flattening by a method. Further, as described in Item 14 of the claim, the method further includes a step of removing the mask after the step of polishing and flattening the surface of the mask.
  • the flat portion according to the present invention can be easily and accurately formed at a desired position such as on a wiring pattern of a substrate by a mask process, a patterning process, a plating process, or the like. . Then, the surface of the flat portion is flattened with high precision using lap polishing or the like, and the probe card according to the present invention can be easily manufactured. It should be noted that other methods and processes can be used as long as a flat portion with high flatness can be formed by correcting the unevenness and height difference of the surface of the substrate.
  • a substrate having a wiring pattern for transmitting a test signal applied to a wafer to be tested A probe needle disposed on the substrate and connected to the wiring pattern, the probe needle being in contact with the electrode of the wafer.
  • a method of manufacturing a probe card to be formed comprising: a step of forming a pill-up portion on a substrate on which a predetermined wiring pattern is formed; and a step of polishing and flattening a surface of a build-up portion. .
  • the build-up portion (build-up layer) is formed on the surface of the substrate, and the build-up portion is polished, so that the surface is flattened with high precision.
  • the part can be formed directly on the build-up layer.
  • FIG. 1 is a front view conceptually showing a wafer test apparatus having a probe force according to a first embodiment of the present invention.
  • FIGS. 2A and 2B schematically show a state in which the probe card according to the first embodiment of the present invention is turned upside down.
  • FIG. 2A is an enlarged front view of a main part
  • FIG. FIG. 3 shows a substrate serving as a base of the probe card according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view conceptually showing a build-up substrate.
  • FIG. 4 schematically shows a build-up substrate for forming a flat portion of the probe card according to the first embodiment of the present invention, (a) is a schematic plan view, and (b) is a diagram before forming a flat portion.
  • FIG. 3A is a cross-sectional view taken along the line AA of FIG. 4A, and FIG.
  • FIG. 5 schematically shows a probe card according to a modification of the first embodiment of the present invention in which the probe card is turned upside down.
  • FIG. 5 (a) ′ is an enlarged front view of a main part, and FIG. It is a figure.
  • FIG. 6 is an explanatory view showing one manufacturing process of the flat portion of the probe card according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory view showing one manufacturing process of the flat portion of the probe card according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory view showing a modified example of the manufacturing process of the flat part of the probe card according to the first embodiment of the present invention.
  • FIG. 9 is an explanatory view showing a modified example of the manufacturing process of the flat part of the probe card according to the first embodiment of the present invention.
  • FIG. 10 is an explanatory view showing still another modified example of the process of manufacturing the flat portion of the probe card according to the first embodiment of the present invention.
  • FIGS. 11A and 11B schematically show a probe card according to a second embodiment of the present invention in a state where the probe card is turned upside down.
  • FIG. 11A is an enlarged front view of a main part
  • FIG. 11B is a perspective view of the same.
  • FIGS. 12A and 12B conceptually show a probe needle formed on a probe force pad according to a second embodiment of the present invention, wherein FIG. 12A is a plan view, FIG. 12B is a front view, and FIG. Is a left side view.
  • FIG. 13 is a front view conceptually showing a wafer test apparatus provided with a conventional probe card.
  • FIG. 1 is a front view conceptually showing a wafer test apparatus provided with a probe card according to a first embodiment of the present invention.
  • the wafer test system is used to measure the electrical characteristics of each device in a wafer state before multiple semiconductor device chips formed on a wafer (semiconductor substrate) are cut into individual chips and sealed in a package.
  • This is a device for testing the mechanical characteristics and the like, and is also called a wafer prober.
  • the wafer test apparatus includes a wafer table 4 on which a wafer 3 to be tested is mounted, and is positioned above the wafer table 4. 1 is provided with a probe card 1 according to the present embodiment.
  • the probe 1 has a plurality of probe needles 20 on a substrate 2 such as a printed circuit board for transmitting a predetermined test signal to be applied to each chip on the wafer 3. Details of the probe force 1 will be described later.
  • the wafer table 4 is a mounting table for the wafer 3 to be tested.
  • the wafer table 4 is placed in a three-dimensional direction (the first direction) so that a predetermined electrode of the mounted wafer 3 contacts a predetermined probe needle 20 of the probe card 1.
  • Drive control is performed in the direction of the arrow shown in the figure).
  • the probe needle 20 of the probe force 1 comes into contact with a predetermined chip electrode of the wafer 3, and the test is performed via the substrate 2 of the probe card 1.
  • a test signal is applied to the electrodes of wafer 3 from the apparatus. As a result, a predetermined electrical characteristic test is performed for each device chip formed on the wafer 3.
  • FIGS. 2A and 2B schematically show a probe card according to the present embodiment, in which FIG. 2A is an enlarged front view of a main part and FIG.
  • the probe force 1 includes a base substrate 2, a build-up substrate 10, and a probe needle 20.
  • the substrate 2 is made of a printed circuit board or the like, and is formed in a disk shape constituting a main body of the probe force 1.
  • the wiring pattern 2a shown in Fig. 3) is formed. A test signal is applied to this wiring pattern from a signal generator or the like of a test device (not shown).
  • a build-up substrate (build-up portion) 10 is formed on the surface of the substrate 2.
  • the substrate 2 of the present embodiment has a stepped shape with a central portion protruding in a convex shape (see FIG. 1), this corresponds to the structure of a test device (not shown) for mounting the probe card 1.
  • the stepped shape is not indispensable. Therefore, it is of course possible to use an ordinary flat substrate.
  • FIG. 3 is a sectional view conceptually showing the board 2 and the build-up board 10 of the probe card 1 according to the present embodiment.
  • the build-up substrate 10 is a multilayer substrate in which an insulating layer and a conductor layer are alternately formed in an arbitrary number on the surface of the base substrate 2 (see FIG. 3). Then two layers).
  • a build-up board is a multilayer board that is stacked on the surface of a printed circuit board when, for example, the wiring pattern of the printed board is densified to a pitch width of about 100 im.
  • the probe card 1 is provided with a build-up board 10 on the board 2 so as to increase the density of the probe card 1.
  • a flat portion 12 having a flattened surface is formed on the wiring pattern on the surface of the build-up substrate 10 (see the surface wiring pattern 11 shown in FIG. 3).
  • FIG. 4 shows a plan view (FIG. 4 (a)) and cross-sectional views (FIGS. 4 (b) and (c)) of the build-up substrate 10 on which the flat portion 12 is formed.
  • the surface of the build-up substrate 10 (and the substrate 2) has a shape in which gentle irregularities are continuous, and the height of the surface is usually about 0.1 to 0.3 mm.
  • the needle height varies due to the unevenness of the build-up board 10.
  • the flat portion 12 is formed by a nickel plating layer formed on the surface of the build-up substrate 10. Then, a flattened portion 12 is formed by polishing the surface of the nickel plating layer. As described above, the flat portion 12 is formed by nickel plating or the like, and the surface of the plating layer is polished or the like, thereby forming the flat portion 12 having a flatness of about 10 zm or less with high precision. (See FIGS. 6 and 7 described later).
  • the flat portion 12 can be constituted by a mask layer formed on the substrate surface in addition to the plating layer (see FIGS. 8 and 9). The flat portion 12 may be formed by directly polishing the build-up substrate 10 on the substrate 2 in addition to the case where the flat portion 12 is formed by the plating layer or the mask layer (see FIG. 10). ).
  • Lapping is a type of precision finishing that is used when more precision is required than by grinding. For example, it is used for the production of wafers and DVD discs, and for the precision finishing of optical glass products such as lenses and prisms. Used.
  • lapping is performed by putting a working liquid (lapping liquid) and a lapping agent consisting of abrasive grains between a tool called lap and the object to be polished, and rubbing it, making use of the wear action between the two. It forms a good smooth surface.
  • abrasive grains are generally used in the form of alumina powder, silicon carbide powder, diamond powder and the like, and lapping liquid is used in combination with light oil, spindle oil, machine oil and the like.
  • lapping can be performed using a special lapping machine or manually.
  • the flat portion 12 made of the plating layer of the present embodiment can be flattened with high precision flatness.
  • the flat portion 12 is formed on the surface wiring pattern 11 of the build-up substrate 10 along the surface wiring pattern 11 (see FIG. 2 (b)). ).
  • the flat portion 12 is formed on the surface wiring pattern 11 of the build-up substrate 10 along the surface wiring pattern 11 (see FIG. 2 (b)).
  • the flat portion 12 made of a conductive member such as nickel.
  • the probe card 1 according to the present embodiment can be realized without changing the configuration of the build-up board 10, the board 2, and the probe needle 20. Wear. Therefore, the mounting structure of the probe needle 20 can be the same as that of the normal probe card 1 without the flat portion 12, and can be used as it is with respect to existing test equipment and mounting processes.
  • the probe card 1 of the embodiment can be applied.
  • the flat portion 12 is not limited to the case where it is formed along the wiring pattern 11 as shown in FIG. 2 (b).
  • the flat portion 1 is formed by a mask layer. 2 is formed, or when the flat portion 12 is formed directly on the build-up substrate 10, the flat portion 12 is planar over the entire surface of the build-up substrate 10 (or the substrate 2). (See FIGS. 8 to 10).
  • the probe needle 20 is mounted on the flat portion 12.
  • the probe needle 20 is a probe that is connected to the wiring pattern of the substrate 2 via the build-up substrate 10 and contacts an electrode of the wafer 3 to be tested. As shown in FIG.
  • the probe needle 20 of the present embodiment is formed separately from the substrate 2 (and the pill-up substrate 10), mounted on the flat portion 12, and provided with an adhesive 23, etc. It is fixed by the.
  • the probe needle 20 is formed in a comb shape including a base 21 and a plurality of needles 22 protruding from the base 21.
  • the base 21 connects the plurality of needles 22 and the base bottom surface is formed in a shape such that the probe needle 20 stands up at a predetermined angle from the surface of the build-up substrate 10.
  • a space for filling the adhesive 23 for fixing is formed on the bottom surface side of the base.
  • the needle portions 22 are formed so as to protrude in a comb shape (finger shape) from the base portion 21. Specifically, the needle portions 22 having a total length of about lmm to 2mm are formed. Hundreds of them are formed. Then, by protruding the needle portion 22 from the surface of the build-up substrate 10, a probe needle 20 having a needle height (arrow h shown in FIG. 1) of 1 mm or less is obtained.
  • the probe needles 20 in a comb shape having a large number of fine needle portions 22, a large number of probe needles (needle portions 22) can be connected to the substrate 2 (build-up substrate) in one operation. 10) can be implemented on The number and length of the needle portions 22 may be changed as appropriate according to the number of electrodes and the pitch of the wafer 3 to be tested, the wiring pattern of the mounted substrate 2 ⁇ the build-up substrate 10 and the like. Of course it is possible.
  • the probe needle 20 is formed by etching silicon. Formed. Specifically, both sides of the silicon wafer are formed into a predetermined shape (in this embodiment, a comb-like needle shape) by etching, as in the case of being used in the semiconductor manufacturing method. Then, a silicon oxide film is formed as an insulating layer on the surface of the comb-shaped silicon body. Thereby, each needle part 22 is insulated. Further, a conductive pattern 22 a made of a conductive metal or the like is formed on the surface of each needle portion 22 insulated by the silicon oxide film.
  • the comb-shaped probe needle 20 can be formed with high precision and fineness separately from the substrate, and the flat portion 1 that has been flattened with high precision as described above.
  • a fine probe needle suitable for mounting on the probe 2 can be formed easily and with high precision.
  • the probe needle 20 is mounted on the flattened flat portion 12, and is fixed to the surface of the build-up substrate 10 with an adhesive 23, and the surface wiring pattern of the build-up substrate 10 is set. 1 is to be connected to 1.
  • the probe needle 20 and the surface wiring pattern 11 of the build-up board 10 are connected by bonding wires 24 as shown in FIG.
  • the bonding wire 24 is a wire fixed to the conductor pattern 22 a on the surface of each needle part 22 and the surface wiring pattern 11 of the build-up board 10 by soldering or the like. 2a and the surface wiring pattern 11 of the build-up board 10 are electrically connected.
  • each needle part 22 of the probe needle 20 is connected to the wiring pattern 2 a of the substrate 2 via the build-up substrate 10, and a test signal is sent from the test apparatus to the electrode of the wafer 3. Is applied.
  • connection between the probe needle 20 and the surface wiring pattern 11 of the build-up board 10 can be made by other means such as soldering, in addition to using the bonding wires 24 shown in FIG.
  • FIG. 5 shows a modification of the connection mode between the probe needle 20 and the surface wiring pattern 11.
  • the probe needle 20 and the surface wiring pattern 11 of the build-up board 10 may be connected using solder (solder part 25 in FIG. 5).
  • solder solder part 25 in FIG. 5
  • the probe needle 20 and the surface wiring pattern 11 can be electrically connected.
  • the connection using the solder portion 25 since the bonding wire 24 can be omitted, the connection operation can be performed more easily and efficiently. In this way, the connection between the probe needle 20 and the surface wiring pattern 11 can take any form as long as the test signal applied to the wafer 3 is transmitted without obstruction. Can also be taken. [Method of manufacturing probe force]
  • FIGS. 6 (a) to (d) and FIGS. 7 (a) to (c) are explanatory views showing one manufacturing process of the flat portion of the probe card according to the present embodiment.
  • a build-up substrate 10 on which a predetermined wiring pattern 11 is formed is prepared (see FIG. 6A), and a mask 14 is formed on the surface of the build-up substrate 10 (see FIG. 6B ))).
  • the mask 14 for example, a metal mask using a metal foil of copper, stainless steel, nickel, or the like, a mesh mask in which resin fibers or metal wires are woven in a mesh shape, or the like can be used.
  • the mask 14 is buttered to form an opening 14a (see FIG. 6 (c)).
  • the opening 14a is formed along the front surface wiring pattern 11 at a position corresponding to the surface wiring pattern 11 of the build-up substrate 10.
  • the opening 14a can be patterned into a desired position, shape, or the like by etching the mask 14.
  • the opening 14a is nickel-plated (see FIG. 6 (d)).
  • a flat portion 12 that is not flattened is formed.
  • the surface of the nickel plated mask 14 is polished and flattened (see FIG. 7 (a)).
  • the mask 14 is peeled off (see FIG. 7 (b)).
  • a flattened portion 12 is formed on the surface arrangement 11 of the build-up substrate 10.
  • the probe needle 20 can be mounted on the flat portion 12 (see FIG. 7 (c)).
  • the probe needle 20 mounted on the flat portion 12 is fixed by an adhesive 23, and is connected to the surface distribution pattern 11 of the build-up substrate 10 by a bonding wire 24.
  • the probe card 20 of the present embodiment in which the probe needles 20 protrude from the surface of the build-up substrate 10 with a needle height of 1 mm or less (arrow h shown in FIG. 1) is manufactured. Is completed.
  • the flat portion 1 is formed at a desired position on the surface wiring pattern 11 of the pillar-up substrate 10 by masking, patterning, plating, or the like. 2 can be easily and accurately formed. Then, the surface of the flat portion 12 can be flattened with high accuracy by using lap polishing or the like.
  • the mask 14 is used only for forming the wiring pattern, and is peeled off after being planarized by polishing (see FIG. 7 (b)).
  • the mask 14 can also be used as a pedestal for the probe needle 20 by leaving the mask 14 on the surface of the build-up substrate 10 (or the substrate 2) to eliminate the step of removing the mask 14.
  • FIGS. 8 (a) to (e) and FIG. 9 are explanatory views showing the manufacturing steps when such a mask 14 is used as the flat portion 12.
  • FIG. 8 (a) to (e) and FIG. 9 are explanatory views showing the manufacturing steps when such a mask 14 is used as the flat portion 12.
  • the mask 14 is used as the flat portion 12, as in the case shown in FIGS. 6 and 7, first, the build-up on which the predetermined wiring pattern 11 is formed is performed.
  • a substrate 10 is prepared (see FIG. 8 (a)), and a mask 14 is formed on the surface of the build-up substrate 10 (see FIG. 8 (b)).
  • the mask 14 may be, for example, a metal mask using a metal foil such as copper, stainless steel, or nickel, or a mesh mask in which resin fibers or metal wires are woven in a mesh shape.
  • the opening 14a is formed by etching the mask 14 by etching (see FIG. 8 (c)).
  • the opening 14a does not need to be formed along the surface wiring pattern 11 of the build-up substrate 10, and at least the surface wiring pattern It may be formed so as to be able to conduct to a part of 11.
  • Nickel plating of the opening 14a forms a conductive layer 11a that is electrically conductive from the surface wiring pattern 11 to the surface of the mask 14 (see FIG. 8 (d)). .
  • the surface of the mask 14 on which the conductive layer 11a is thus formed is polished and flattened (see FIG. 8 (e)).
  • the polishing method it is preferable to use lap polishing as in the case of FIG. 7 described above.
  • a flat portion 12 in which the mask 14 (and the conductive layer 11a) is flattened is formed on the surface of the build-up substrate 10.
  • mask 1 like this
  • the probe needle 20 can be mounted on the flat portion 12 constituted by 4 (see FIG. 9).
  • the probe needle 20 mounted on the flat portion 12 is fixed by an adhesive 23, and the conductive layer 1 is electrically connected to the surface wiring pattern 11 of the build-up substrate 10 by a bonding wire 24. Connected to 1a.
  • the manufacture of the probe force 1 of the present embodiment using the mask 14 as the flat portion 12 is completed.
  • the flat portion 12 is formed by the mask 14 in this way, as shown in FIG. 9, the flat portion 12 is formed in a flat shape over the entire surface of the build-up substrate 10 (or the substrate 2). Will be.
  • the flat portion 12 is formed by performing the flattening process without removing the mask 14, the flat portion 12 that is flattened with high precision can be easily formed. As in the case of the manufacturing method shown in FIGS. 6 and 7, a high-accuracy probe card can be easily obtained.
  • the flat portion 12 made of the mask 14 can be directly formed not only on the surface of the build-up substrate 10 but also on the surface of the substrate 2 without the build-up substrate 10 as described above. This is the same as the case of the flat portion 12 made of a layer.
  • the flat portion 12 may be formed by directly polishing the build-up substrate 10 of the substrate 2 in addition to the above-described plating layer and mask layer.
  • 10 (a) to 10 (e) are explanatory views showing a manufacturing process in a case where the flat portion 12 is directly formed on the build-up substrate 10.
  • FIG. 10 (a) when the flat portion 12 is formed directly on the build-up substrate 10, first, a flat surface 12 is formed on the surface of the substrate 2 provided with a predetermined wiring pattern 2 a (FIG. 10 (a)).
  • a build-up substrate 10 is formed by alternately laminating insulating layers and conductor layers (see FIGS. 10 (b) to (c)).
  • a wiring pattern 11 is formed in the insulating layer of the build-up substrate 10 via a through hole 10a, and is connected to the wiring pattern 2a of the substrate 2. Then, the surface of the build-up substrate 10 laminated (formed in FIG. 10) on the surface of the substrate 2 is polished and flattened (see FIG. 10 (e)).
  • the polishing method it is preferable to use lap polishing as in the case of polishing the plating layer and the mask layer described above. As a result, the surface of the build-up substrate 10 is formed as a flat portion 12 which is flattened with high precision.
  • the probe needle 20 is mounted on the flat part 12 and the wiring
  • the probe needle 20 can be directly mounted on the flat portion 12 made of the build-up board 10 by electrically connecting the probe 11 to the pin 11 via a bonding wire or the like.
  • the flat portion 12 can be directly formed on the build-up substrate 10.
  • the substrate 2 build-up substrate 1
  • the flat portion 12 can be formed widely and planarly on the surface of 0). Also, by forming the flat portion 12 directly on the build-up substrate 10 in this way, the flat portion 12 can be manufactured more easily and efficiently, and furthermore, the overall thickness and weight of the probe card can be reduced. You can also plan.
  • the probe needle 20 that is in contact with the electrode of the wafer 3 to be tested is formed of, for example, silicon.
  • a fine needle having a needle length of about 1 mm to 2 mm can be formed with high accuracy, and a plurality of needles can be formed at a minute interval.
  • the probe needle 20 is mounted.
  • the surface can be a highly accurate flat surface with a flatness of about 10 m or less.
  • the probe force 1 provided with the probe needle 20 formed finely and with high precision can be obtained without requiring a complicated structure such as a conventional membrane structure. This makes it possible to provide a low-cost wafer test apparatus without increasing the size and complexity of the entire apparatus.
  • FIGS. 11A and 11B schematically show a probe card according to a second embodiment of the present invention in which the probe card is turned upside down.
  • FIG. 11A is an enlarged front view of a main part
  • FIG. 11B is a perspective view of the same.
  • FIG. 12 schematically shows a probe needle formed on a probe card according to the present embodiment, (a) is a plan view, (b) is a front view, and (c) is a left side view.
  • the probe card according to the present embodiment is a modified embodiment of the above-described first embodiment, and is formed in a comb shape in the first embodiment as a probe needle mounted on a flat portion. In place of the silicon probe needle, a nickel probe probe needle was used. Therefore, the other components are the same as those in the first embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals in the drawings, and detailed description is omitted.
  • the probe force 1 of the present embodiment has a configuration in which the probe needle 20 is formed directly on the surface of the flat portion 12.
  • the probe needle 20 is formed by performing nickel plating on the surface of the flat portion 12 into a needle shape.
  • a probe needle 20 as shown in FIG. 11 can be formed by repeating the mask and the plating on the flat portion 12 a plurality of times.
  • a base 21 is formed for each surface wiring pattern 11 on the flat portion 12, and then protruded on each base 21 in parallel with the surface of the substrate 2 (build-up substrate 10).
  • a needle part 22 is formed.
  • a projection 22 b serving as a contact portion is formed at the tip of the needle 22.
  • the probe needle 20 formed by nickel plating has a total length of about 2 mm to 3 mm and a total width of about 100 mm. (See Fig. 12 (a)), the height of the base 21 is about 150 m (see Fig. 12 (b)), and the height of the projection 22b at the tip of the needle is about 50 m
  • a fine probe needle 20 of m can be formed and mounted on the flat portion 12 at a pitch of about 100 / xm or the like.
  • a fine probe needle 20 suitable for the probe card 1 having the flat portion 12 can be formed easily and with high precision.
  • the work of mounting the probe needle 20 and the work of connecting to the wiring pattern can be eliminated. Forced doors can be manufactured more easily and efficiently.
  • the probe card of the present invention described above is not limited to only the above-described embodiment, and it goes without saying that various modifications can be made within the scope of the present invention. not.
  • silicon (S i) and nickel (N i) are used as the material of the probe needle has been described as an example, but other materials are used as long as a fine probe needle can be formed. You can also.
  • a material having high elasticity is preferable so that a needle in contact with the wafer functions as a spring.
  • beryllium copper (Be-Cu), tungsten (W), or the like can be used in addition to silicon and nickel described above.
  • a flat portion is formed in the same shape as the wiring pattern on the wiring pattern of the substrate (build-up substrate) is described as an example. Is not particularly limited. Therefore, for example, a flat portion can be formed in any shape other than on the wiring pattern of the substrate in accordance with the size and shape of the mounted probe needle.
  • the probe needle that contacts the electrode of the wafer is finely formed using nickel, silicon, or the like, and the probe needle is mounted and fixed.
  • a flat portion that has been flattened with high precision can be formed on a substrate to be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Description

プローブ力一ド及びプローブ力一ドの製造方法 技術分野
この発明は、 パッケージングされていないウェハの電気的特性試験を行うゥェ ハ試験装置 (ウェハプロ一バ) に備えられるプローブカードに関する。
特に、 ウェハの電極と接触するプローブ針をシリコン, ニッケル等を用いて微 明
細に形成するとともに、 このプローブ針を搭載, 固定する基板上に高精度に平坦 化処理された平坦部を形成することにより、 複雑な構造等を必要とすることなく、 書
針高さのばらつきをなくして微小なプロ一ブ針を高密度かつ高精度に配設するこ とができるプローブカード及びプローブ力一ドの製造方法に関する。 背景技術
一般に、 ウェハ (半導体基板) 上に複数形成される半導体デバイスチップは、 個々のチップに裁断されてパッケージに封入される前のウェハの状態、 いわゆる 半完成品状態で、 各デバイスの電気的特性等の試験が行われる。 このような半完 成品状態のウェハの試験は、 ウェハの電極に接触してテスト信号を印加するプロ ーブ針 (探針) を有するプローブ力一ドを備えたウェハプローバと呼ばれるゥェ ハ試験装置を用いて行われる。
第 1 3図は、 従来のプローブカードを備えるウェハ試験装置を概念的に示した 正面図である。 同図に示すように、 従来のウェハ試験装置は、 試験対象となるゥ ェハ 1 0 3が搭載されるウェハ台 1 0 4を備えるとともに、 このウェハ台 1 0 4 の上方に位置するようにプローブ力一ド 1 0 1を備えている。
プローブカード 1 0 1は、 ウェハ 1 0 3上の各チップに印加する所定のテスト 信号を伝送するプリント基板等からなる基板 1 0 2と、 'この基板 1 0 2上に配設, 固定される複数のプローブ針 1 2 0を備えている。
ウェハ台 1 0 4は、 搭載したウェハ 1 0 3の所定の電極がプロ一ブカード 1 0 1の所定のプローブ針 1 2 0に接触するよう、 三次元方向 (第 1 3図に示す矢印 方向) に駆動制御されるようになっている。 このような構成からなる従来のウェハ試験装置では、 ウェハ台 1 0 4が駆動制 御されることにより、 プローブカード 1 0 1のプローブ針 1 2 0がウェハ 1 0 3 上の所定のチップ電極と接触する。 そして、 プローブカード 1 0 1の基板 1 0 2 を介して試験装置からウェハ 1 0 3の電極にテスト信号が印加され、 ウェハ 1 0 3上の各デパイスチップについて、 所定の電気的特性試験が行われる。
ここで、 従来のウェハ試験装置では、 第 1 3図に示すように、 プローブカード 1 0 1に備えられるプローブ針 1 2 0が、 例えばタングステン等の金属製針から なり、 この金属製針が L字状に曲折形成されて平面円盤状をなす基板 1 0 2上に 多数配設されて樹脂 1 3 0で固着される、 所謂カンチレバ一型 (cantilevered: 片持ち型) のプローブ針構造が採られていた。
カンチレバー型のプローブ針は、 全長約 3 0〜 5 0 mmの金属製針を、 先端側 の針高さ (第 1 3図に示す矢印 h) が約 1 0 mm程度になるように曲折形成して あり、 ウェハ 1 0 3の電極に接触する針高さにばらつきがあっても、 針の弾性限 内、 例えば数/ mでばらつきを吸収できるようになつている。 そして、 このよ うなカンチレバー型のプローブ針は、 複数 (例えば数百本) のプローブが、 すべ て手作業で基板上へ配設され、 接着剤等で固着されるようになっていた。
しかしながら、 このようなカンチレバー型プロ一ブ針を備える従来のプローブ カードでは、 近年の高密度化, 微細化されたウェハの試験に対応できないという 問題が発生した。 近年は、 半導体デバイスの微小化, 高密度化の進展が著しく、 各チップ上の電極も、 大きさ, 間隔とも極微細なものとなっている (例えば、 電 極の一辺が約 6 0; m〜 1 0 0 m、 ピッチが約 1 0 0 m〜 2 0 0 m) 。 従来のプローブカードでは、 カンチレバ一型のプローブ針自体が直径約 2 5 0 m程度ある上、 プローブ針の取付けがすべて手作業で行われるようになって いたため、 多数のプローブ針を微細な間隔で基板上に取り付けることは不可能で あった。 このため、 カンチレバー型のプローブカードでは、 近年の高密度化, 微 細化されたウェハを試験することができなくなった。
しかも、 カンチレバー型のプロ一ブ針では、 針の全長が約 3 0 ~ 5 0 mm程度 の長さを有することから、 高周波特性が悪化するという問題点もあった。
そこで、 このような従来のプローブカードの問題を解消するため、 カンチレバ —型のプロ一ブ針に代えて、 所定のパターン配線を形成した可撓性を有する薄膜 上に複数の電極バンプを形成した、 いわゆるメンブレン型のプロ一ブカ一ドが提 案されている (例えば、 下記特許文献 1—4参照。 ) 。
このようなメンブレン型のプローブ力一ドによれば、 薄膜上に形成される電極 バンプの微細加工が可能となることから、 微細化, 高密度化されたウェハの試験 にも対応することが可能であった。
特許文献 1 :特開平 1一 1 2 8 3 8 1号公報 (第 4頁、 第 1 2図)
特許文献 2 :特開平 5 - 2 1 5 7 7 5号公報 (第 3— 4頁、 第 2図)
特許文献 3 :特開平 7— 0 0 7 0 5 6号公報 (第 4—5頁、 第 1図)
特許文献 4 :特開平 8— 0 8 3 8 2 4号公報 (第 5— 6頁、 第 3図) しかしながら、 このようなメンブレン型のプローブカードは、 電極バンプを備 えるメンブレンと、 これを保持する保持構造, さらにメンブレンをウェハ側に向 かって付勢する加圧手段等、 複雑かつ多数の構成要素が必要となった。
このため、 プローブカード及びウェハ試験装置が、 従来のカンチレバ一型のも のと比較して、 複雑化, 大型化し、 製造コストも増大することとなった。
本願の発明者は、 シリコンをエツチング加工したりニッケルメツキ等を用いる ことにより、 長さが約 1 mm〜 2 mm程度の微細針を形成することが可能となり、 上述したメンブレン構造によることなく、 微細なプローブ針を高密度かつ高精度 で形成し得ることに想到した。 ところが、 その後、 プローブ針を微細, 高精度に 形成することができても、 微細なプローブ針を単に基板上に実装しただけでは、 基板の凹凸によってプローブ針の針高さが均一とならないことに想到した。
一般に、 基板の表面は、 例えばプリント基板の場合、 通常約 0 . l mm〜0 . 3 mm程度の範囲でなだらかな凹凸が連続している。 従って、 このような基板の 表面に長さが約 1 mm〜 2 mm程度の微細なプローブ針を実装すると、 基板の凹 凸によって針高さにばらつきが発生してしまう。 しかも、 微小な針先のプローブ 針では、 従来の力ンチレバー型の針のように弾性限内でばらつきを吸収すること も不可能である。
そこで、 本願発明者は、 更なる鋭意研究を重ねた結果、 このような基板の凹凸 の問題を解消して、 微細なプローブ針を高密度に実装することができる本願発明 のプローブカードを創作するに至ったものである。 すなわち、 本発明は、 上述のような従来の技術が有する問題を解決するために 提案されたものであり、 ウェハの電極と接触するプローブ針をシリコン, ニッケ ル等を用いて微細に形成するとともに、 このプロ一ブ針を搭載, 固定する基板上 に平坦化処理された平坦部を形成することにより、 複雑な構造等を必要とするこ となく、 針高さのばらつきをなくして微小なプローブ針を高密度かつ高精度に配 設することができるプローブカード及びプローブ力一ドの製造方法の提供を目的 としている。 発明の開示
本発明のプロ一ブカードは、 請求の範囲第 1項に記載するように、 ウェハ試験 装置に備えられるプローブカードであって、 試験対象となるウェハに印加される テスト信号を伝送する配線パターンを有する基板と、 この基板上に配設されて前 記配線パターンと接続される、 ウェハの電極と接触するプローブ針と、 基板の表 面に形成される、 表面が平坦化された平坦部と、 を備え、 プローブ針が、 平坦部 に搭載される構成としてある。
このような構成からなる本発明のプロ一ブカードによれば、 ウェハの電極と接 触するプローブ針を、 例えばニッケル, シリコン等で形成するとにより、 針長さ が約 l mm〜 2 mm程度の微細針を高精度に形成することができ、 かつ、 複数の 針を微小な間隔で高密度に形成することができる。 そして、 このプローブ針を搭 載する基板上に、 平坦化処理された平坦部を形成することにより、 プローブ針の 搭載面を、 平面度が約 1 0 i m以下の平坦面とすることができる。
これにより、 基板の表面に凹凸, 高低差等が存在しても、 針高さのばらつきを なくして微小なプローブ針を基板上に配設, 固定することが可能となる。
従って、 本発明によれば、 簡易な構造により微細, 高精度に形成されたプロ一 ブ針を備えるプローブカードを実現でき、 近年の高密度化されたウェハの試験を 確実に行うことができる。 そして、 本発明に係るプローブカードを備えることに より、 従来のメンブレン構造のような複雑な構造等を必要とすることなく、 装置 全体が大型化, 複雑化することを防止して、 低コストのウェハ試験装置を提供す ることができる。
具体的には、 本発明のプローブカードは、 請求の範囲第 2項に記載するように、 平坦部が表面を研磨されることにより平坦化される構成とすることができる。 こ のように本発明によれば、 プリント基板等の基板の表面の平坦部を研磨処理によ つて高精度に平坦化することができる。 これにより、 基板の表面にメツキ層等を 積層し、 これを研磨することによって、 本発明に係る平坦部を容易かつ高精度に 形成することができ、 高価な材料や複雑な装置等も必要なく、 安価に本発明のプ ローブ力一ドを実現することができる。 ここで、 研磨処理は、 例えばウェハや D VDディスクの製造等に用いられるラップ研磨により行うことができる。
また、 本発明のプローブ力一ドは、 請求の範囲第 3項に記載するように、 基板 が、 表面に形成されるビルドアップ部を備え、 平坦部が、 基板のビルドアップ部 の表面に形成される構成とすることができる。 このように、 本発明によれば、 ビ ルドアツプ部を備える基板に対しても、 本発明に係る平坦部を形成することがで きる。 一般に、 例えばプリント基板の配線パターンをピッチ幅 1 0 0 m程度 に高密度化する場合、 基板の表面にビルドアップ基板 (ビルドアップ部) を積層 形成する。 そして、 本発明では、 このようなビルドアップ部を備える基板に対し ても平坦部を形成することができ、 プローブカードをより高密度化, 高精度化で きるようになつている。 従って、 このようにビルドアップ部を備える基板の場合 には、 本発明の平坦部が形成される配線パターンは、 ビルドアップ部の配線パ夕 ーンを意味する。 なお、 ビルドアップ部を備えない基板について本発明を適用で きることは言うまでもない。
そして、 本発明のプローブカードは、 請求の範囲第 4項に記載するように、 平 坦部が、 配線パターン上に、 当該配線パターンに沿って形成される構成とするこ とができる。 このように、 本発明では、 プローブ針が接続される配線パターン上 にその配線パターンに沿って、 本発明に係る平坦部を形成することができる。 こ れにより、 例えば平坦部を導電性部材によって構成すれば、 配線パターン自体が 高精度に平坦ィ匕されることになり、 基板やプローブ針の構成を何等変更すること なく、 本発明に係るプローブカードを実現することができる。 そして、 このよう に配線パターンが平坦ィ匕されることにより、 プローブ針の実装構造についても、 平坦部を備えない通常のプローブカードの場合と同様となり、 既存の試験装置や 実装工程等に対して、 そのまま本発明のプローブ力一ドを適用することが可能と なり、 汎用性に優れたプローブカードを提供することができる。 また、 本発明のプローブカードは、 請求の範囲第 5項に記載するように、 平坦 部を基板上に形成されるメツキ層によって構成することができる。 このように、 本発明では、 平坦部を例えばニッケルメツキ等によって形成することができる。 そして、 メツキ層の表面を研磨加工等することで、 容易に平坦化することができ る。 これによつて、 本発明に係る平坦部を容易かつ高精度に形成することができ る。 特に、 導電性を有するメツキ層によって平坦部を構成することにより、 平坦 部を基板の配線パターンに沿って形成することで配線パターン自体を高精度に平 坦化することができ、 基板やプローブ針の構成を何等変更することなく、 微細, 高精度なプローブ針の実装構造を実現できる。
また、 本発明のプロ一ブカードは、 請求の範囲第 6項に記載するように、 平坦 部を基板上は形成されるマスク層によって構成することができる。 このように、 本発明では、 平坦部を例えばメタルマスクやメッシュマスク等からなるマスク層 によって形成することができる。 そして、 マスク層の表面を研磨加工等すること で、 容易に平坦化することができる。 これによつて、 本発明に係る平坦部を容易 かつ高精度に形成することができる。 特に、 マスク層によって平坦部を構成する ことにより、 平坦部を基板の表面に広く平面状に形成することができ、 プロ一ブ 針の実装の容易化を図ることができる。
また、 本発明のプローブカードは、 請求の範囲第 7項に記載するように、 平坦 部を基板上に形成されるビルドアップ層によって構成することができる。 このよ うに、 本発明では、 基板の表面にビルドアップ層 (ビルドアップ部) が備えられ る場合に、 当該ビルドアップ層を研磨処理することにより、 本発明に係る平坦部 をビルドァップ層に直接形成することができる。 このようにビルドァップ層を直 接研磨して平坦部を形成することにより、 マスク層で平坦部を構成する場合と同 様、 本発明に係る平坦部を基板の表面に広く平面的に形成することができる。 ま た、 このようにビルドアップ層に直接平坦部を形成することで、 より容易かつ効 率的に本発明に係る平坦部を形成することができ、 プローブカード全体の薄型化 や軽量化を図ることもできる。
そして、 本発明のプローブカードは、 請求の範囲第 8項に記載するように、 プ ローブ針が基板と別体に形成され、 平坦部に実装される構成とすることができる。 特に、 請求の範囲第 9項に記載するように、 プローブ針を、 基部と、 基部から櫛 状に突出する複数の針部とを備える構成とすることができる。 また、 請求の範囲 第 1 0項に記載するように、 プロ一ブ針は、 針形状に形成されたシリコンと当該 シリコンの表面に形成される導体パターンからなる構成とすることができる。 こ のように、 本発明によれば、 シリコンをエッチング加工することにより、 基板と 別体のプローブ針を高精度かつ微細に形成することができる。 これにより、 平坦 部を有する本発明のプロ一ブカードに好適な微細なプローブ針を、 容易かつ高精 度に形成することができる。 また、 微細な針を多数備える櫛状 (フィンガー状) に形成することにより、 一度の作業で多数のプローブ針を基板上に実装すること が可能となり、 プロ一ブ針の実装作業がきわめて容易に行え、 本発明に係るプロ ーブカードを容易かつ効率的に製造することができる。 なお、 基板と別体に形成 されるシリコン製等のプローブ針は、 一本一本の針が単体となるように形成する ことも勿論可能であり、 この場合にも、 本発明の平坦部を備えるプローブカード に適用できることは言うまでもない。
一方、 本発明のプローブカードは、 請求の範囲第 1 1項に記載するように、 プ ローブ針を平坦部の表面に直接形成することができる。 そして、 請求の範囲第 1 2項に記載するように、 プローブ針は平坦部の表面に針形状にメツキ形成するこ とができる。 このように、 本発明によれば、 例えばニッケルメツキ加工等によつ て、 高精度かつ微細なプローブ針を平坦部上に直接、 形成することができる。 メ ッキ加工によるプロ一ブ針は、 平坦部上にマスク及びメツキを複数回繰り返すこ とで容易かつ高精度に微細なメツキ針を形成することができる。 これにより、 平 坦部を有する本発明のプローブ力一ドに好適な微細なプロ一ブ針を、 容易かつ高 精度に形成することができる。 また、 このようにメツキ加工によって平坦部上に 直接プローブ針を形成することにより、 基板への実装作業や配線パターン等の接 続作業を不要とすることができ、 本発明に係るプローブカードを容易かつ効率的 に製造することが可能となる。
そして、 本発明のプローブカードの製造方法は、 請求の範囲第 1 3項に記載す るように、 試験対象となるウェハに印加されるテスト信号を伝送する配線パター ンを有する基板と、 この基板上に配設されて前記配線パターンと接続される、 ゥ ェハの電極と接触するプローブ針と、 を備えるプローブカードの基板の表面に、 プローブ針が搭載される表面が平坦化され平坦部を形成するプローブカードの製 造方法であって、 所定の配線パターンを形成した基板上にマスクを形成する工程 と、 マスクの所定位置に開口部を形成する工程と、 開口部をメツキする工程と、 マスクの表面を研磨して平坦化する工程と、 を有する方法としてある。 また、 請 求の範囲第 1 4項に記載するように、 マスクの表面を研磨して平坦化する工程の 後に、 マスクを剥離する工程を更に有する方法としてある。 このように、 本発明 によれば、 マスク処理, パターニング処理, メツキ処理等によって、 基板の配線 パターン上等、 所望の位置に、 本発明に係る平坦部を容易かつ高精度に形成する ことができる。 そして、 ラップ研磨等を用いて平坦部の表面を高精度に平面化し て、 本発明に係るプローブカードを容易に製造することができる。 なお、 基板の 表面の凹凸, 高低差等を補正して平面度の高い平坦部が形成できる限り、 他の方 法, 工程を用いることも可能である。
さらに、 本発明のプローブカードの製造方法は、 請求の範囲第 1 5項に記載す るように、 試験対象となるウェハに印加されるテスト信号を伝送する配線パター ンを有する基板と、 この基板上に配設されて前記配線パターンと接続される、 ゥ ェハの電極と接触するプローブ針と、 を備えるプローブカードの基板の表面に、 プローブ針が搭載される表面が平坦化され平坦部を形成するプローブカードの製 造方法であつて、 所定の配線パターンを形成した基板上にピルドァップ部を形成 する工程と、 ビルドアップ部の表面を研磨して平坦化する工程と、 を有する方法 としてある。 このように、 本発明によれば、 基板の表面にビルドアップ部 (ビル ドアップ層) を形成するとともに、 そのビルドアップ部を研磨処理することによ り、 表面が高精度に平面化された平坦部をビルドアツプ層に直接形成することが できる。 このようにビルドアップ部に直接平坦部を形成することによって、 より 容易かつ効率的に平坦部を備えたプローブカードを製造することが可能となる。 図面の簡単な説明
第 1図は、 この発明の第一実施形態に係るプローブ力一ドを備えるウェハ試験 装置を概念的に示した正面図である。
第 2図は、 この発明の第一実施形態に係るプローブカードの上下を反転させた 状態を模式的に示す、 (a) は要部拡大正面図、 (b ) は同じく斜視図である。 第 3図は、 この発明の第一実施形態に係るプローブカードのベースとなる基板 及びビルドアップ基板を概念的に示した断面図である。
第 4図は、 この発明の第一実施形態に係るプローブカードの平坦部を形成する ビルドアップ基板を模式的に示す、 (a ) は概略平面図、 (b ) は平坦部を形成 する前の (a ) の A— A線断面図、 また (c ) は平坦部を形成した (a ) の A— A線断面図である。
第 5図は、 この発明の第一実施形態の変形例に係るプローブカードの上下を反 転させた状態を模式的に示す、 (a )'は要部拡大正面図、 (b ) は同じく斜視図 である。
第 6図は、 この発明の第一実施形態に係るプローブカードの平坦部の一製造ェ 程を示す説明図である。
第 7図は、 この発明の第一実施形態に係るプローブカードの平坦部の一製造ェ 程を示す説明図である。
第 8図は、 この発明の第一実施形態に係るプローブカードの平坦部の製造工程 の変更例を示す説明図である。
第 9図は、 この発明の第一実施形態に係るプローブカードの平坦部の製造工程 の変更例を示す説明図である。
第 1 0図は、 この発明の第一実施形態に係るプローブカードの平坦部の製造ェ 程のさらに他の変更例を示す説明図である。
第 1 1図は、 この発明の第二実施形態に係るプローブカードの上下を反転させ た状態を模式的に示す、 (a ) は要部拡大正面図、 (b ) は同じく斜視図である。 第 1 2図は、 この発明の第二実施形態に係るプローブ力一ド上に形成されるプ ローブ針を概念的に示す、 (a ) は平面図、 (b ) は正面図、 (c ) は左側面図 である。
第 1 3図は、 従来のプローブカードを備えるウェハ試験装置を概念的に示した 正面図である。 発明を実施するための最良の形態
以下、 本発明に係るプロ一ブカードの好ましい実施形態について、 図面を参照 しつつ説明する。 [第一実施形態]
まず、 本発明に係るプローブカードの第一実施形態について、 第 1図〜第 9図 を参照しつつ説明する。
[ウェハ試験装置]
第 1図は、 本発明の第一実施形態に係るプローブカードを備えるウェハ試験装 置を概念的に示した正面図である。
ウェハ試験装置は、 ウェハ (半導体基板) 上に複数形成される半導体デバイス チップが、 個々のチップに裁断されてパッケージに封入される前のゥェハの状態、 いわゆる半完成品状態において、 各デバイスの電気的特性等を試験するための装 置であり、 ウェハプロ一バとも呼ばれる。 具体的には、 第 1図に示すように、 ゥ ェハ試験装置は、 試験対象となるウェハ 3が搭載されるウェハ台 4を備えるとと もに、 このゥェハ台 4の上方に位置するように本実施形態に係るプロ一ブカ一ド 1を備えている。
プローブ力一ド 1は、 ウェハ 3上の各チップに印加する所定のテスト信号を伝 送するプリント基板等からなる基板 2上に複数のプローブ針 2 0を備えている。 プローブ力一ド 1の詳細については後述する。
ウェハ台 4は、 試験対象となるウェハ 3の搭載台であり、 搭載されたウェハ 3 の所定の電極とプロ一ブカード 1の所定のプローブ針 2 0とが接触するよう、 三 次元方向 (第 1図に示す矢印方向) に駆動制御される。 そして、 ウェハ試験装置 では、 ウェハ台 4が駆動制御されることにより、 プローブ力一ド 1のプローブ針 2 0がウェハ 3の所定のチップ電極と接触し、 プローブカード 1の基板 2を介し て試験装置からウェハ 3の電極にテスト信号が印加される。 これによつて、 ゥェ ハ 3上に形成された各デバイスチップについて、 所定の電気的特性試験が行われ るようになっている。
[プロ一ブカード]
第 2図は、 本実施形態に係るプロ一ブカードを模式的に示すもので、 上下を反 転させた状態の (a) は要部拡大正面図、 (b) は同じく斜視図である。 同図に 示すように、 プローブ力一ド 1は、 ベースとなる基板 2とビルドアップ基板 1 0 及びプローブ針 2 0を備えている。 基板 2は、 プリント基板等からなり、 プローブ力一ド 1の本体を構成する円盤 状に形成され、 表面には、 試験対象となるウェハ 3に印加されるテスト信号を伝 送する配線パターン (第 3図に示す配線パターン 2 a参照) が形成されている。 この配線パターンに、 図示しない試験装置の信号発生器等からテスト信号を印加 されるようになつている。 そして、 本実施形態では、 基板 2の表面にビルドアッ プ基板 (ビルドアップ部) 1 0が形成してある。 なお、 本実施形態の基板 2は、 中央部が凸状に突出する段付き形状となっているが (第 1図参照) 、 これはプロ —ブカード 1を取り付ける図示しない試験装置側の構造に対応させたものであり、 特にこの段付き形状が必須となるものではない。 従って、 通常の平板状の基板と することも勿論可能である。
第 3図は、 本実施形態に係るプローブカード 1の基板 2及びビルドアップ基板 1 0を概念的に示した断面図である。 同図に示すように、 ビルドアップ基板 1 0 は、 ベースとなる基板 2の表面に、 絶縁層と導体層を交互に任意の層数だけ積層 形成された多層基板となっている (第 3図では二層) 。
一般にビルドァップ基板は、 例えばプリント基板の配線パターンをピッチ幅 1 0 0 i m程度に高密度化する場合に、 基板の表面に積層形成される多層基板で ある。 本実施形態では、 プローブカード 1の基板 2にビルドァップ基板 1 0を備 えることで、 プロ一ブカード 1の高密度化を図っている。
そして、 このビルドアップ基板 1 0の表面の配線パターン (第 3図に示す表面 配線パターン 1 1参照) 上に、 表面が平坦化された平坦部 1 2が形成されるよう になっている。
第 4図に、 平坦部 1 2を形成するビルドアップ基板 1 0の平面図 (第 4図 ( a ) ) 及び断面図 (第 4図 (b ) , ( c ) ) を示す。 同図 (b ) に示すように、 ビルドアップ基板 1 0 (及び基板 2 ) の表面は、 なだらかな凹凸が連続した形状 となっており、 通常約 0 . l mm〜0 . 3 mm程度の高低差が存在する。 従って、 このようなビルドアップ基板 1 0の表面に微細なプローブ針 2 0をそのまま実装 した場合、 ビルドアップ基板 1 0の凹凸によって針高さにばらつきが発生してし まう。 しかも、 微小なプローブ針 2 0では弹性限内でばらつきを吸収することも 困難となる。 そこで、 本実施形態では、 第 4図 (c ) に示すように、 ビルドアッ プ基板 1 0の表面に、 高精度に平坦ィ匕処理された平坦部 1 2を形成するようにし たものである。
具体的には、 本実施形態に係る平坦部 1 2は、 ビルドアップ基板 1 0の表面に メツキ形成されるニッケルメツキ層によって構成してある。 そして、 このニッケ ルメッキ層の表面を研磨することにより平坦化された平坦部 1 2を形成するよう になっている。 このように、 平坦部 1 2をニッケルメツキ等によって形成し、 メ ツキ層の表面を研磨加工等することで、 平面度約 1 0 z m以下の高精度に平坦 化された平坦部 1 2を形成することができる (後述する第 6図及び第 7図参照) 。 なお、 平坦部 1 2は、 メツキ層の他、 基板表面に形成されるマスク層によって 構成することもできる (第 8図及び第 9図参照) 。 また、 平坦部 1 2は、 メツキ 層やマスク層により形成される場合の他、 基板 2上のビルドアップ基板 1 0を直 接研磨処理して形成することも可能である (第 1 0図参照) 。
ここで、 平坦部 1 2を平坦化する研磨方法としては、 例えばラップ研磨を用い ることができる。 ラップ研磨は、 精密仕上げの一種で、 研削による以上の精密度 を要する場合に用いられる研磨方法であり、 例えばウェハや D VDディスクの製 造、 レンズ, プリズム等の光学ガラス製品等の精密仕上げに用いられる。
具体的には、 ラップ研磨は、 ラップと呼ばれる工具と被研磨対象の間に加工液 (ラップ液) 及び砥粒からなるラップ剤を入れて摺り動かすことにより、 両者間 の摩耗作用を利用して良好な平滑面を形成するものである。
ラップ研磨に使用されるラップ剤としては、 一般に、 砥粒はアルミナ粉末, 炭 化けい素粉末, ダイヤモンド粉末等、 ラップ液は、 軽油, スピンドル油, マシン 油等が交合して使用される。 また、 ラップ研磨は、 専用のラップ盤を用いて行え るとともに、 手作業によって行うこともできる。
このようなラップ研磨を用いることにより、 本実施形態のメッキ層からなる平 坦部 1 2を高精度な平面度で平坦化することができる。
また、 平坦部 1 2は、 本実施形態では、 ビルドアップ基板 1 0の表面配線バタ —ン 1 1上に、 当該表面配線パターン 1 1に沿って形成してある (第 2図 (b ) 参照) 。 このように、 平坦部 1 2を配線パターン 1 1に沿って積層形成すること により、 ニッケル等の導電性部材からなる平坦部 1 2によって配線パターン自体 が平坦化されたのと同様の結果となり、 ビルドアップ基板 1 0や基板 2 , プロ一 ブ針 2 0の構成を変えることなく、 本実施形態に係るプロ一プカ一ド 1を実現で きる。 従って、 プローブ針 2 0の実装構造についても、 平坦部 1 2を備えない通 常のプローブカード 1の場合と同様とすることができ、 既存の試験装置や実装ェ 程等に対して、 そのまま本実施形態のプロ一ブカード 1を適用することが可能と なる。 なお、 平坦部 1 2は、 第 2図 (b ) に示すような配線パターン 1 1に沿つ て形成される場合に限定されるものではなく、 例えば、 後述するようにマスク層 によって平坦部 1 2が構成される場合や、 ビルドアップ基板 1 0に直接平坦部 1 2が形成される場合には、 平坦部 1 2はビルドアップ基板 1 0 (又は基板 2 ) の 表面全体に亘つて平面状に形成することができる (第 8図〜第 1 0図参照) 。 そして、 この平坦部 1 2上にプローブ針 2 0が搭載されるようになっている。 プローブ針 2 0は、 ビルドァップ基板 1 0を経由して基板 2の配線パターンと 接続され、 試験対象となるウェハ 3の電極と接触する探針である。 本実施形態の プローブ針 2 0は、 第 2図に示すように、 基板 2 (及びピルドアップ基板 1 0 ) と別体に形成されており、 平坦部 1 2上に実装されて接着剤 2 3等で固着される ようになつている。 具体的には、 プローブ針 2 0は、 基部 2 1と、 基部 2 1から 突出する複数の針部 2 2とを備える櫛形状に形成してある。
基部 2 1は、 複数の針部 2 2を連結するとともに、 基部底面が、 プローブ針 2 0がビルドアツプ基板 1 0の表面から所定の角度で起立する形状に形成してある。 また、 この基部底面側は、 固着用の接着剤 2 3が充填される空間が形成されるよ うになつている。
針部 2 2は、 基部 2 1から櫛状 (フィンガ一状:) に複数突出するように形成さ れており、 具体的には、 全長が約 l mm〜 2 mm程度の針部 2 2が数百本形成さ れるようになっている。 そして、 この針部 2 2がビルドアップ基板 1 0の表面か ら突出することにより、 針高さ (第 1図に示す矢印 h) が l mm以下となるプロ ーブ針 2 0が得られる。
このように、 プローブ針 2 0を、 微細な針部 2 2を多数備える櫛状に形成する ことにより、 一度の作業で多数のプロ一ブ針 (針部 2 2 ) を基板 2 (ビルドアツ プ基板 1 0 ) 上に実装することができる。 なお、 針部 2 2の数や針長さは、 試験 対象となるウェハ 3の電極数やピッチ, 搭載する基板 2ゃビルドアップ基板 1 0 の配線パターン等に対応して、 適宜変更することは勿論可能である。
本実施形態では、 プローブ針 2 0を、 シリコンをエッチング加工することによ り形成してある。 具体的には、 半導体の製造方法で用いられる場合と同様に、 シ リコンウェハの両面をエッチングによって所定の形状 (本実施形態では櫛状をな す針形状) に形成する。 そして、 櫛状のシリコン本体の表面に、 絶縁層としてシ リコン酸化膜を形成する。 これによつて、 各針部 2 2は絶縁される。 さらに、 シ リコン酸ィ匕膜で絶縁された各針部 2 2の表面に、 それぞれ導電性金属等からなる 導体パターン 2 2 aを形成する。 このようにシリコンをエッチング加工すること により、 櫛状のプローブ針 2 0を、 基板と別体に、 高精度かつ微細に形成するこ とができ、 上述した高精度に平坦化された平坦部 1 2に搭載するのに好適な微細 なプロ一ブ針を、 容易かつ高精度に形成することができる。
そして、 このプローブ針 2 0が、 平坦化処理された平坦部 1 2に搭載され、 接 着剤 2 3によってビルドアップ基板 1 0の表面に固着され、 当該ビルドアップ基 板 1 0の表面配線パターン 1 1に接続されるようになっている。 プローブ針 2 0 とビルドアップ基板 1 0の表面配線パターン 1 1は、 第 2図に示すように、 ボン デイングワイヤ 2 4によって接続される。 ボンディングワイヤ 2 4は、 各針部 2 2の表面の導体パターン 2 2 a及びビルドアツプ基板 1 0の表面配線パターン 1 1にはんだ付け等で固定されるワイヤで、 各針部 2 2の導体パターン 2 2 aとビ ルドアップ基板 1 0の表面配線パターン 1 1を電気的に接続するようになってい る。 これにより、 プロ一ブ針 2 0の各針部 2 2は、 ビルドアップ基板 1 0を経由 して基板 2の配線パターン 2 aと接続され、 ウェハ 3の電極に対して試験装置か らテスト信号が印加されることになる。
なお、 プローブ針 2 0とビルドァップ基板 1 0の表面配線パターン 1 1との接 続は、 第 2図に示すボンディングワイヤ 2 4を用いる他、 はんだ付け等、 他の手 段によることもできる。 第 5図に、 プローブ針 2 0と表面配線パターン 1 1の接 続態様の変更例を示す。 同図に示すように、 プローブ針 2 0とビルドアップ基板 1 0の表面配線パターン 1 1は、 はんだを用いて接続するようにしてもよい (第 5図のはんだ部 2 5 ) 。 この場合にも、 プローブ針 2 0と表面配線パターン 1 1 と電気的に接続することができる。 そして、 このはんだ部 2 5による接続の場合、 ボンディングワイヤ 2 4を省略できるので、 接続作業をより容易かつ効率的に行 うことができる。 このように、 プローブ針 2 0と表面配線パターン 1 1の接続は、 ウェハ 3に印加されるテスト信号が障害なく伝送される限り、 どのような形態を 採ることもできる。 [プローブ力一ドの製造方法]
次に、 以上のような構成からなる本実施形態に係るビルドアップ基板 1 0の表 面に平坦部 1 2を形成するプローブカードの製造方法について、 第 6図及び第 7 図を参照して説明する。 第 6図 (a) 〜 (d ) 及び第 7図 (a ) 〜 (c ) は、 本 実施形態に係るプロ一ブカ―ドの平坦部の一製造工程を示す説明図である。 まず、 所定の配線パターン 1 1を形成したビルドアップ基板 1 0を用意し (第 6図 (a ) 参照) 、 このビルドアップ基板 1 0の表面にマスク 1 4を形成する (第 6図 (b ) 参照) 。 ここで、 マスク 1 4は、 例えば銅, ステンレス, ニッケ ル等の金属箔を用いたメタルマスク、 樹脂繊維や金属ワイヤをメッシュ状に織つ たメッシュマスク等を用いることができる。
次に、 マスク 1 4をバタ一エングして、 開口部 1 4 aを形成する (第 6図 ( c ) 参照) 。 本実施形態では、 開口部 1 4 aを、 ビルドアップ基板 1 0の表面 配線パターン 1 1と対応する位置に、 当該表面配線パターン 1 1に沿って形成す る。 ここで、 開口部 1 4 aは、 マスク 1 4をエッチングすることにより、 所望の 位置, 形状等にパターニングすることができる。
その後、 この開口部 1 4 aをニッケルメツキする (第 6図 (d ) 参照) 。 これによつて、 平坦化されていない平坦部 1 2が形成されることになる。 そして、 ニッケルメツキされたマスク 1 4の表面を研磨し、 平坦化する (第 7 図 (a ) 参照) 。 ここで、 研磨方法としては、 上述したように、 ラップ研磨を用 いることが好ましい。 研磨終了後は、 マスク 1 4を剥離する (第 7図 (b ) 参 照) 。 これにより、 ビルドアップ基板 1 0の表面配 パ夕一ン 1 1上に、 平坦化 処理された平坦部 1 2が形成される。
そして、 この平坦部 1 2上にプローブ針 2 0を搭載することができる (第 7図 ( c ) 参照) 。 平坦部 1 2上に搭載されたプローブ針 2 0は、 接着剤 2 3により 固着され、 また、 ボンディングワイヤ 2 4によってビルドアップ基板 1 0の表面 配泉パターン 1 1と接続される。
これにより、 プローブ針 2 0がビルドァップ基板 1 0の表面から 1 mm以下の 針高さ (第 1図に示す矢印 h) で突出する本実施形態のプローブカード 1の製造 が完了する。 このように、 本実施形態のプローブカードの製造方法によれば、 マ スク処理, パターニング処理, メツキ処理等によって、 ピルドアップ基板 1 0の 表面配線パターン 1 1上などの所望の位置に、 平坦部 1 2を容易かつ高精度に形 成することができる。 そして、 ラップ研磨等を用いて、 平坦部 1 2の表面を高精 度に平面化することができる。
以上の製造方法では、 マスク 1 4はメツキ配線パターンの形成にのみ利用され、 研磨による平坦化処理がなされた後は剥離されるようになっているが (第 7図 ( b ) 参照) 、 マスク 1 4の剥離工程をなくして、 マスク 1 4をビルドァップ基 板 1 0 (又は基板 2 ) の表面に残して平坦部 1 2とし、 プローブ針 2 0の台座と して利用することもできる。 第 8図 (a ) 〜 (e ) 及び第 9図は、 このようなマ スク 1 4を平坦部 1 2として利用する場合の製造工程を示す説明図である。
これらの図に示すように、 マスク 1 4を平坦部 1 2として利用する場合には、 第 6図, 第 7図に示した場合と同様、 まず、 所定の配線パターン 1 1を形成した ビルドアップ基板 1 0を用意し (第 8図 (a) 参照) 、 このビルドアップ基板 1 0の表面にマスク 1 4を形成する (第 8図 (b ) 参照) 。
マスク 1 4は、 上述したように、 例えば銅, ステンレス, ニッケル等 金属箔 を用いたメタルマスク、 樹脂繊維や金属ワイヤをメッシュ状に織ったメッシュマ スク等を使用することができる。
次に、 エッチングによりマスク 1 4をパ夕一エングして、 開口部 1 4 aを形成 する (第 8図 (c ) 参照) 。 この第 8図に示す場合には、 上述した第 6図の場合 と異なり、 開口部 1 4 aはビルドァップ基板 1 0の表面配線パターン 1 1に沿つ て形成する必要がなく、 少なくとも表面配線パターン 1 1の一部に導通できるよ うに形成されれば良い。 この開口部 1 4 aをニッケルメツキすることにより、 表 面配線パターン 1 1からマスク 1 4の表面まで電気的に導通された導通層 1 1 a が形成される (第 8図 (d ) 参照) 。
このように導通層 1 1 aが形成されたマスク 1 4の表面を研磨し、 平坦化する (第 8図 (e ) 参照) 。 なお、 研磨方法は、 上述した第 7図の場合と同様、 ラッ プ研磨を用いることが好ましい。
これにより、 ビルドアップ基板 1 0の表面上に、 マスク 1 4 (及び導通層 1 1 a ) が平坦化処理された平坦部 1 2が形成される。 そして、 このようにマスク 1 4によって構成された平坦部 1 2上にプロ一ブ針 2 0を搭載することができる (第 9図参照) 。 平坦部 1 2上に搭載されたプローブ針 2 0は、 接着剤 2 3によ り固着され、 また、 ボンディングワイヤ 2 4によってビルドアップ基板 1 0の表 面配線パターン 1 1に導通する導通層 1 1 aと接続される。
これにより、 平坦部 1 2としてマスク 1 4を利用した本実施形態のプローブ力 一ド 1の製造が完了する。 このようにマスク 1 4によって平坦部 1 2を構成する と、 第 9図に示すように、 平坦部 1 2はビルドアップ基板 1 0 (又は基板 2 ) の 表面全体に亘つて平面状に形成されることになる。
このようにマスク 1 4を剥離することなく平坦ィ匕処理して平坦部 1 2を構成す る場合にも、 高精度に平面化された平坦部 1 2を容易に形成することができ、 第 6図, 第 7図に示した製造方法の場合と同様、 高精度なプロ一ブカードを容易に 得ることができる。 なお、 マスク 1 4からなる平坦部 1 2は、 ビルドアップ基板 1 0の表面に形成される場合だけでなく、 ビルドアップ基板 1 0を備えない基板 2の表面に直接形成できることは、 上述したメツキ層からなる平坦部 1 2の場合 と同様である。
さらに、 平坦部 1 2は、 上述したメツキ層やマスク層で形成される以外にも、 基板 2のビルドアップ基板 1 0を直接研磨処理して形成するようにしても良い。 第 1 0図 (a ) 〜 (e ) は、 ビルドアップ基板 1 0に直接平坦部 1 2を形成す る場合の製造工程を示す説明図である。 同図に示すように、 ビルドアップ基板 1 0に直接的に平坦部 1 2を形成する場合には、 まず、 所定の配線パターン 2 aを 備える基板 2の表面に (第 1 0図 (a ) 参照) 、 第 3図で示したように、 絶縁層 と導体層を交互に積層してなるビルドアップ基板 1 0を形成する (第 1 0図 ( b ) 〜 (c ) 参照) 。
ビルドアツプ基板 1 0の絶縁層にはスルーホール 1 0 aを介して配線パ夕一ン 1 1が形成され、 基板 2の配線パターン 2 aと接続される。 そして、 このように 基板 2の表面に積層形成された (第 1 0図では一層) ビルドアップ基板 1 0の表 面を研磨して平坦化する (第 1 0図 (e ) 参照) 。 研磨方法は、 上述したメツキ 層, マスク層を研磨する場合と同様、 ラップ研磨を用いることが好ましい。 ' これにより、 ビルドアップ基板 1 0の表面が高精度に平坦ィヒされた平坦部 1 2 として形成される。 従って、 平坦部 1 2上にプローブ針 2 0を搭載し、 配線バタ —ン 1 1とボンディングワイヤ等を介して電気的に接続することで、 プロ一ブ針 2 0をビルドアップ基板 1 0からなる平坦部 1 2に直接実装することができる。 このように平坦部 1 2は、 ビルドアップ基板 1 0に直接形成することもでき、 このようにすると、 上述しマスク層によって平坦部 1 2を構成する場合と同様、 基板 2 (ビルドアップ基板 1 0 ) の表面に広く平面的に平坦部 1 2を形成するこ とができるようになる。 また、 このようにビルドアップ基板 1 0に直接平坦部 1 2を形成することで、 平坦部 1 2の製造がより容易かつ効率的に行え、 さらに、 プロ一ブカード全体の薄型化や軽量化を図ることもできるようになる。
以上説明したように、 本実施形態に係るプローブ力一ド及びプローブ力一ドの 製造方法によれば、 試験対象となるウェハ 3の電極と接触するプローブ針 2 0を、 例えばシリコンで形成することにより、 針長さが約 1 mm〜 2 mm程度の ί敖細針 を高精度に形成することができ、 かつ、 複数の針を微小な間隔で複数形成するこ とができる。 そして、 このプロ一ブ針 2 0を搭載する基板 2のビルドアップ基板 1 0上に、 ラップ研磨等によって平坦ィヒ処理された平坦部 1 2を形成することに より、 プローブ針 2 0の搭載面を、 平面度が約 1 0 m以下の高精度の平坦面 とすることができる。
これにより、 基板 2の表面に凹凸が存在しても、 針高さのばらつきをなくすこ とができ、 針高さが l mm以下となる微小なプローブ針 2 0を基板 2上に配設, 固定することが可能となる。 従って、 本実施形態によれば、 従来のメンブレン構 造のような複雑な構造等を必要とすることなく、 微細, 高精度に形成されたプロ —ブ針 2 0を備えるプローブ力一ド 1を実現でき、 装置全体が大型化, 複雑化す ることなく、 低コストのウェハ試験装置を提供することができる。
[第二実施形態]
次に、 第 1 1図及び第 1 2図を参照して、 本発明に係るプロ一ブカ一ドの第二 実施形態について説明する。
第 1 1図は、 本発明の第二実施形態に係るプローブカードの上下を反転させた 状態を模式的に示す、 (a) は要部拡大正面図、 (b ) は同じく斜視図である。 第 1 2図は、 本実施形態に係るプローブカード上に形成されるプローブ針を概 念的に示す、 (a ) は平面図、 (b ) は正面図、 (c ) は左側面図である。 これらの図に示すように、 本実施形態にかかるプローブカードは、 上述した第 一実施形態の変形実施形態であり、 平坦部に搭載されるプローブ針として、 第一 実施形態における櫛形状に形成されたシリコン製のプローブ針に代えて、 ニッケ ルメツキ製のプローブ針を用いたものである。 従って、 その他の構成部分は、 第 一実施形態と同様となっており、 同様の構成部分については、 図中で第一実施形 態と同一符号を付し、 詳細な説明は省略する。
第 1 1図に示すように、 本実施形態のプローブ力一ド 1は、 プローブ針 2 0が、 平坦部 1 2の表面に直接形成される構成となっている。
本実施形態では、 プローブ針 2 0を、 平坦部 1 2の表面に針形状にニッケルメ ツキ加工することにより形成するようにしてある。 具体的には、 平坦部 1 2上に マスク及びメツキを複数回繰り返すことにより、 第 1 1図に示すようなプローブ 針 2 0を形成することができる。
まず、 平坦部 1 2上に、 各表面配線パターン 1 1ごとに基部 2 1を形成し、 そ の後、 各基部 2 1上に、 基板 2 (ビルドアップ基板 1 0 ) の表面と平行に突出す る針部 2 2を形成する。 さらに、 針部 2 2の先端に、 接触部となる突起 2 2 bを 形成する。 これによつて、 平坦部 1 2上に、 互いに独立したプロ一ブ針 2 0を直 接形成することができる。
このように、 ニッケルメツキ加工によって形成されるプローブ針 2 0は、 例え ば、 第 1 2図に示すように、 針部 2 2の全長が約 2 mm〜 3 mm, 全幅が約 1 0 0 x m (第 1 2図 (a ) 参照) 、 基部 2 1の高さが約 1 5 0 m (第 1 2図 ( b ) 参照) 、 また針部先端の突起 2 2 bの高さが約 5 0 mの微細なプロ一 ブ針 2 0を、 約 1 0 0 /x mピッチ等で平坦部 1 2上に形成, 搭載することがで きる。 これによつて、 第一実施形態の場合と同様、 平坦部 1 2を備えるプローブ カード 1に好適な微細なプローブ針 2 0を、 容易かつ高精度に形成することがで きる。 また、 このようにメツキ加工によって平坦部 1 2上に直接プローブ針 2 0 を形成する本実施形態では、 プローブ針 2 0の実装作業や配線パターンとの接続 作業を不要とすることができ、 プローブ力一ド丄をより容易かつ効率的に製造す ることが可能となる。
なお、 以上説明した本発明のプローブカードは、 上述した実施形態にのみ限定 されるものではなく、 本発明の範囲で種々の変更実施が可能であることは言うま でもない。 例えば、 上述した実施形態では、 プローブ針の材料としてシリコン ( S i ) , ニッケル (N i ) を使用する場合を例にとって説明したが、 微細なプ ローブ針が形成可能な限り他の材料を使用することもできる。 特に、 ウェハに接 触する針がばねと機能するように、 高弾性を有する材料が好ましい。 例えば、 上 述したシリコンやニッケルの他、 ベリリウム銅 (B e— C u ) やタングステン (W) 等を使用することができる。
また、 上記実施形態では、 平坦部を基板 (ビルドアップ基板) の配線パ夕一ン 上に配線パターンと同形状に形成する場合を例にとつて説明したが、 平坦部の形 成箇所や形状は特に限定されない。 従って、 例えば搭載するプローブ針の大きさ や形状等に対応して、 基板の配線パターン上以外の箇所に任意の形状で平坦部を 形成することもできる。 産業上の利用可能性
以上説明したように、 本発明のプローブカード及びプローブカードの製造方法 によれば、 ウェハの電極と接触するプローブ針をニッケル, シリコン等を用いて 微細に形成するとともに、 このプローブ針を搭載, 固定する基板上に、 高精度に 平坦化処理された平坦部を形成することができる。
これにより、 複雑な構造等を必要とすることなく、 針高さのばらつきをなくし て微小なプローブ針を高密度かつ高精度に配設したプローブカードを実現するこ とができる。

Claims

請 求 の 範 囲
1 . ウェハ試験装置に備えられるプロ一ブカードであって、
試験対象となるウェハに印加されるテスト信号を伝送する配線パターンを有す る基板と、
この基板上に配設されて前記配線パターンと接続される、 前記ウェハの電極と 接触するプローブ針と;
前記基板の表面に形成される、 表面が平坦化された平坦部と、 を備え、 前記プローブ針が、 前記平坦部に搭載されることを特徴とするプローブカード。
2 . 前記平坦部が、 表面を研磨されることにより平坦化される請求の範囲第 1 項記載のプローブカード。
3 . 前記基板が、 表面に形成されるビルドアップ部を備え、
前記平坦部が、 前記基板のビルドアツプ部の表面に形成される請求の範囲第 1項 又は第 2項記載のプロ一ブカ一ド。
4. 前記平坦部が、 前記配線パターン上に、 当該配線パターンに沿って形成さ れる請求の範囲第 1項〜第 3項のいずれか一項記載のプローブカード。
5 . 前記平坦部が、 前記基板上に形成されるメツキ層からなる請求の範囲第 1 項〜第 4項のいずれか一項記載のプローブ力一ド。
6 . 前記平坦部が、 前記基板上に形成されるマスク層からなる請求の範囲第 1 項〜第 4項のいずれか一項記載のプローブカード。
7 . 前記平坦部が、 前記基板上に形成されるビルドアップ層からなる請求の範 囲第 1項〜第 4項のいずれか一項記載のプローブ力一ド。
8 . 前記プローブ針が、 前記基板と別体に形成され、 前記平坦部に実装される 請求の範囲第 1項〜第 7項のいずれか一項記載のプローブカード。
9 . 前記プローブ針が、 基部と、 この基部から櫛状に突出する複数の針部とを 備える請求の範囲第 8項記載のプローブカード。
1 0 . 前記プローブ針が、 針形状に形成されたシリコンと当該シリコンの表面 に形成される導体パターンからなる請求の範囲第 8項又は第 9項記載のプローブ カード。
1 1 . 前記プローブ針が、 前記平坦部の表面に直接形成される請求の範囲第 1 項〜第 7項のいずれか一項記載のプローブ力一ド。
1 2 . 前記プローブ針が、 前記平坦部の表面に針形状にメツキ形成される請求 の範囲第 1 1項記載のプローブカード。
1 3 . 試験対象となるウェハに印加されるテスト信号を伝送する配線パターン を有する基板と、 この基板上に配設されて前記配線パターンと接続される、 前記 ウェハの電極と接触するプローブ針と、 を備えるプローブ力一ドの前記基板の表 面に、 前記プローブ針が搭載される表面が平坦化され平坦部を形成するプローブ カードの製造方法であって、
所定の配線パターンを形成した基板上にマスクを形成する工程と、
前記マスクの所定位置に開口部を形成する工程と、
前記開口部をメツキする工程と、
前記マスクの表面を研磨して平坦化する工程と、 を有することを特徴とするプ ローブカードの製造方法。
1 4. 前記マスクの表面を研磨して平坦化する工程の後に、
前記マスクを剥離する工程を更に有する請求の範囲第 1 3項記載のプローブ力 ードの製造方法。
1 5 . 試験対象となるウェハに印加されるテスト信号を伝送する配線パターン を有する基板と、 この基板上に配設されて前記配線パターンと接続される、 前記 ウェハの電極と接触するプロ一ブ針と、 を備えるプローブ力一ドの前記基板の表 面に、 前記プローブ針が搭載される表面が平坦化された平坦部を形成するプロ一 ブカードの製造方法であって、
所定の配線パターンを形成した基板上にビルドァップ部を形成する工程と、 前記ビルドアツプ部の表面を研磨して平坦化する工程と、 を有することを特徴と するプローブカードの製造方法。
PCT/JP2003/000655 2002-01-25 2003-01-24 Carte sonde WO2003062837A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047011392A KR100634923B1 (ko) 2002-01-25 2003-01-24 프로브 카드 및 프로브 카드의 제조 방법
JP2003562648A JP4559733B2 (ja) 2002-01-25 2003-01-24 プローブカード及びプローブカードの製造方法
US10/502,365 US7394265B2 (en) 2002-01-25 2003-01-24 Flat portions of a probe card flattened to have same vertical level with one another by compensating the unevenness of a substrate and each identical height needle being mounted on the corresponding flat portion through an adhesive
US11/821,302 US20080010824A1 (en) 2002-01-25 2007-06-23 Probe card and method for manufacturing probe card

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-17040 2002-01-25
JP2002017040 2002-01-25

Publications (1)

Publication Number Publication Date
WO2003062837A1 true WO2003062837A1 (fr) 2003-07-31

Family

ID=27606154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000655 WO2003062837A1 (fr) 2002-01-25 2003-01-24 Carte sonde

Country Status (5)

Country Link
US (2) US7394265B2 (ja)
JP (1) JP4559733B2 (ja)
KR (1) KR100634923B1 (ja)
CN (1) CN100590438C (ja)
WO (1) WO2003062837A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126279A1 (ja) * 2005-05-23 2006-11-30 Kabushiki Kaisha Nihon Micronics プローブ組立体、その製造方法および電気的接続装置
WO2007000799A1 (ja) * 2005-06-27 2007-01-04 Advantest Corporation コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置
WO2007015314A1 (ja) * 2005-08-02 2007-02-08 Kabushiki Kaisha Nihon Micronics 電気的接続装置
KR100819821B1 (ko) * 2006-05-10 2008-04-07 가부시키가이샤 아드반테스트 콘택터, 그 콘택터를 구비한 콘택트 스트럭처, 프로브카드, 시험 장치, 콘택트 스트럭처 제조방법, 및 콘택트스트럭처 제조장치
JP2009031192A (ja) * 2007-07-30 2009-02-12 Japan Electronic Materials Corp プローブカードおよびプローブカードの製造方法
JP2009192309A (ja) * 2008-02-13 2009-08-27 Shinko Electric Ind Co Ltd 半導体検査装置
WO2009118850A1 (ja) 2008-03-26 2009-10-01 株式会社アドバンテスト プローブウエハ、プローブ装置、および、試験システム
KR100920790B1 (ko) 2007-10-22 2009-10-08 가부시키가이샤 니혼 마이크로닉스 프로브 조립체, 그 제조방법 및 전기적 접속장치
US8427187B2 (en) 2008-03-26 2013-04-23 Advantest Corporation Probe wafer, probe device, and testing system
US8466702B2 (en) 2008-06-02 2013-06-18 Advantest Corporation Test system and substrate unit for testing
US8624620B2 (en) 2008-05-28 2014-01-07 Advantest Corporation Test system and write wafer
US8749260B2 (en) 2008-05-21 2014-06-10 Advantest Corporation Test wafer unit and test system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346467C (zh) * 2005-07-19 2007-10-31 钰创科技股份有限公司 电路重布线方法及电路结构
KR100981645B1 (ko) * 2005-10-24 2010-09-10 가부시키가이샤 니혼 마이크로닉스 전기적 접속장치의 조립방법
JP2008076308A (ja) * 2006-09-22 2008-04-03 Advantest Corp 電子部品試験装置用のインタフェース装置
US7583101B2 (en) * 2007-01-18 2009-09-01 Formfactor, Inc. Probing structure with fine pitch probes
JP2011247792A (ja) * 2010-05-28 2011-12-08 Advantest Corp プローブ構造体、プローブ装置、プローブ構造体の製造方法、および試験装置
US9482695B2 (en) 2012-12-21 2016-11-01 Tektronix, Inc. High bandwidth differential lead with device connection
US10261108B2 (en) 2016-07-12 2019-04-16 International Business Machines Corporation Low force wafer test probe with variable geometry
US10444260B2 (en) 2016-07-12 2019-10-15 International Business Machines Corporation Low force wafer test probe
TWI678537B (zh) * 2018-01-05 2019-12-01 旺矽科技股份有限公司 探針卡

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304770A (ja) * 1999-04-16 2000-11-02 Advantest Corp プローブカード及びプローブカード製造方法
JP2000346878A (ja) * 1999-04-30 2000-12-15 Advantest Corp 微細化工程により形成するコンタクトストラクチャ
US6232669B1 (en) * 1999-10-12 2001-05-15 Advantest Corp. Contact structure having silicon finger contactors and total stack-up structure using same
US6307392B1 (en) * 1997-10-28 2001-10-23 Nec Corporation Probe card and method of forming a probe card

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3175044D1 (en) * 1981-10-30 1986-09-04 Ibm Deutschland Test apparatus for testing runs of a circuit board with at least one test head comprising a plurality of flexible contacts
JPH01128381A (ja) 1987-11-12 1989-05-22 Fujitsu Ltd Lsiウエハの試験方法
US5171992A (en) * 1990-10-31 1992-12-15 International Business Machines Corporation Nanometer scale probe for an atomic force microscope, and method for making same
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
EP0530473B1 (en) * 1991-07-15 1996-03-13 Matsushita Electric Industrial Co., Ltd. Cantilever for atomic force microscope and method of manufacturing the same
US5264787A (en) 1991-08-30 1993-11-23 Hughes Aircraft Company Rigid-flex circuits with raised features as IC test probes
US5461326A (en) 1993-02-25 1995-10-24 Hughes Aircraft Company Self leveling and self tensioning membrane test probe
US6246247B1 (en) * 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
JP2978720B2 (ja) 1994-09-09 1999-11-15 東京エレクトロン株式会社 プローブ装置
US5611942A (en) * 1995-03-02 1997-03-18 Kabushiki Kaisha Toshiba Method for producing tips for atomic force microscopes
US5824470A (en) * 1995-05-30 1998-10-20 California Institute Of Technology Method of preparing probes for sensing and manipulating microscopic environments and structures
US6066265A (en) * 1996-06-19 2000-05-23 Kionix, Inc. Micromachined silicon probe for scanning probe microscopy
ATE338278T1 (de) * 1998-01-30 2006-09-15 Nawotec Gmbh Vielsondentestkopf und prüfverfahren
US6268015B1 (en) * 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
US6255126B1 (en) * 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
JP2001174482A (ja) * 1999-12-21 2001-06-29 Toshiba Corp 電気的特性評価用接触針、プローブ構造体、プローブカード、および電気的特性評価用接触針の製造方法
JP2002162335A (ja) * 2000-11-26 2002-06-07 Yoshikazu Nakayama 垂直式走査型顕微鏡用カンチレバー及びこれを使用した垂直式走査型顕微鏡用プローブ
JP4688400B2 (ja) * 2001-12-04 2011-05-25 エスアイアイ・ナノテクノロジー株式会社 走査型プローブ顕微鏡用探針
US8071168B2 (en) * 2002-08-26 2011-12-06 Nanoink, Inc. Micrometric direct-write methods for patterning conductive material and applications to flat panel display repair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307392B1 (en) * 1997-10-28 2001-10-23 Nec Corporation Probe card and method of forming a probe card
JP2000304770A (ja) * 1999-04-16 2000-11-02 Advantest Corp プローブカード及びプローブカード製造方法
JP2000346878A (ja) * 1999-04-30 2000-12-15 Advantest Corp 微細化工程により形成するコンタクトストラクチャ
US6232669B1 (en) * 1999-10-12 2001-05-15 Advantest Corp. Contact structure having silicon finger contactors and total stack-up structure using same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667472B2 (en) 2005-05-23 2010-02-23 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
DE112005003580B4 (de) * 2005-05-23 2013-05-16 Kabushiki Kaisha Nihon Micronics Sondenanordnung, Verfahren zu ihrer Herstellung und elektrische Verbindungsvorrichtung
JP4704426B2 (ja) * 2005-05-23 2011-06-15 株式会社日本マイクロニクス 電気的接続装置、その製造方法および電気的接続装置
WO2006126279A1 (ja) * 2005-05-23 2006-11-30 Kabushiki Kaisha Nihon Micronics プローブ組立体、その製造方法および電気的接続装置
WO2007000799A1 (ja) * 2005-06-27 2007-01-04 Advantest Corporation コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置
US8241929B2 (en) 2005-06-27 2012-08-14 Advantest Corporation Contactor, contact structure, probe card, and test apparatus
US8097475B2 (en) 2005-06-27 2012-01-17 Advantest Corporation Method of production of a contact structure
US7764152B2 (en) 2005-06-27 2010-07-27 Advantest Corporation Contactor, contact structure provided with contactors, probe card, test apparatus, method of production of contact structure, and production apparatus of contact structure
US7843198B2 (en) 2005-08-02 2010-11-30 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
JP4791473B2 (ja) * 2005-08-02 2011-10-12 株式会社日本マイクロニクス 電気的接続装置
WO2007015314A1 (ja) * 2005-08-02 2007-02-08 Kabushiki Kaisha Nihon Micronics 電気的接続装置
KR100819821B1 (ko) * 2006-05-10 2008-04-07 가부시키가이샤 아드반테스트 콘택터, 그 콘택터를 구비한 콘택트 스트럭처, 프로브카드, 시험 장치, 콘택트 스트럭처 제조방법, 및 콘택트스트럭처 제조장치
JP2009031192A (ja) * 2007-07-30 2009-02-12 Japan Electronic Materials Corp プローブカードおよびプローブカードの製造方法
KR100920790B1 (ko) 2007-10-22 2009-10-08 가부시키가이샤 니혼 마이크로닉스 프로브 조립체, 그 제조방법 및 전기적 접속장치
JP2009192309A (ja) * 2008-02-13 2009-08-27 Shinko Electric Ind Co Ltd 半導体検査装置
WO2009118850A1 (ja) 2008-03-26 2009-10-01 株式会社アドバンテスト プローブウエハ、プローブ装置、および、試験システム
US8134379B2 (en) 2008-03-26 2012-03-13 Advantest Corporation Probe wafer, probe device, and testing system
US8427187B2 (en) 2008-03-26 2013-04-23 Advantest Corporation Probe wafer, probe device, and testing system
US8749260B2 (en) 2008-05-21 2014-06-10 Advantest Corporation Test wafer unit and test system
US8624620B2 (en) 2008-05-28 2014-01-07 Advantest Corporation Test system and write wafer
US8466702B2 (en) 2008-06-02 2013-06-18 Advantest Corporation Test system and substrate unit for testing

Also Published As

Publication number Publication date
JP4559733B2 (ja) 2010-10-13
CN1623094A (zh) 2005-06-01
CN100590438C (zh) 2010-02-17
KR100634923B1 (ko) 2006-10-17
JPWO2003062837A1 (ja) 2005-05-26
US7394265B2 (en) 2008-07-01
US20050225336A1 (en) 2005-10-13
US20080010824A1 (en) 2008-01-17
KR20040074129A (ko) 2004-08-21

Similar Documents

Publication Publication Date Title
US20080010824A1 (en) Probe card and method for manufacturing probe card
US7852101B2 (en) Semiconductor device testing apparatus and power supply unit for semiconductor device testing apparatus
JP5374568B2 (ja) 膜懸垂プローブを具えるプローブヘッド
US7218131B2 (en) Inspection probe, method for preparing the same, and method for inspecting elements
US5828226A (en) Probe card assembly for high density integrated circuits
JP4521611B2 (ja) 半導体集積回路装置の製造方法
EP1326079B1 (en) Probe card
JP2001091539A (ja) マイクロファブリケーションで形成するコンタクトストラクチャ
US8001685B2 (en) Method for manufacturing probe card needles
JP2002082130A (ja) 半導体素子検査装置及びその製造方法
US7688086B2 (en) Fabrication method of semiconductor integrated circuit device and probe card
KR100471339B1 (ko) 프로브 유닛 및 그의 제조 방법
JP5643477B2 (ja) コンタクトプローブ
KR20170111053A (ko) 반도체 검사장치용 인터페이스 및 그 제조방법
JP2008008774A (ja) 半導体集積回路装置の製造方法
US8362792B2 (en) Manufacturing method of probe card and the probe card
JP5022408B2 (ja) 電気接点構造の素子検査方法
WO1995034000A1 (fr) Dispositif de connexion et sa fabrication
JPH07211752A (ja) 電子回路用プローブ
JP2014016371A (ja) コンタクトプローブ
JP2009300079A (ja) コンタクトプローブ及びプローブカード
JPH02210269A (ja) プローブ装置
JP2005164480A (ja) プローブカード及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP KR US

WWE Wipo information: entry into national phase

Ref document number: 2003562648

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038026325

Country of ref document: CN

Ref document number: 1020047011392

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10502365

Country of ref document: US