WO2003056630A2 - Transistor - Google Patents
Transistor Download PDFInfo
- Publication number
- WO2003056630A2 WO2003056630A2 PCT/EP2002/014679 EP0214679W WO03056630A2 WO 2003056630 A2 WO2003056630 A2 WO 2003056630A2 EP 0214679 W EP0214679 W EP 0214679W WO 03056630 A2 WO03056630 A2 WO 03056630A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- doping
- layer
- base layer
- emitter
- base
- Prior art date
Links
- 239000002019 doping agent Substances 0.000 claims abstract description 32
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66272—Silicon vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1004—Base region of bipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/732—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
- H01L29/7375—Vertical transistors having an emitter comprising one or more non-monocrystalline elements of group IV, e.g. amorphous silicon, alloys comprising group IV elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
Definitions
- the invention relates to a transistor having an emitter, a collector and a base layer.
- a transistor which has an emitter, a collector and a base layer.
- the emitter extends into the base layer.
- the base layer has an intrinsic region arranged between the emitter and the collector.
- the base layer also has an extrinsic region which runs between a base contact and the intrinsic region of the base layer.
- the base layer contains one within the layer extending first doping layer which is doped with a trivalent dopant.
- the first doping layer extends into the extrinsic region and also extends in the region of the emitter, where it is counter-doped by five-valued doping.
- the transistor has the advantage that the first doping layer, which extends into the extrinsic region and also runs in the emitter, can be used to dope the base layer, which advantageously reduces the ohmic resistance of the base layer. Electrical losses of the transistor can thereby be reduced.
- the first doped layer runs both in the extrinsic area of the base layer and in the area of the emitter, it can be produced by conventional methods for doping base layers without a further structuring step. Common methods are: doping by implantation epitaxial deposition.
- the doping provides additional charge carriers in the form of holes in the base layer, which increase the conductivity of the base layer. This reduces the ohmic resistance between the base contact at which the base layer is contacted from the outside and the intrinsic base.
- Boron can advantageously be selected as the trivalent dopant for the first doping layer. Boron has the advantage that the activation energy of the hole is the lowest of all 3-valent dopants. As a result, the doping with boron works at room temperature.
- Further doping layers can be arranged between the first doping layer and the collector.
- a second doping layer and a third doping layer are provided, for example.
- the second doping layer is between the first Doping layer and the third doping layer arranged.
- the second and third doping layers are each doped with a trivalent dopant, preferably boron.
- the dopant concentration of the second doping layer is lower than the dopant concentrations of the first and third doping layers.
- the low dopant concentration of the second doping layer has the advantage that, as a result, the pn junction on the base side comes to lie in a region with a low dopant concentration. On the one hand, this reduces the emitter-base leakage current due to the tunnel effect and, on the other hand, it minimizes the parasitic emitter-base capacitance.
- the five-valued doping within the base layer can be diffused into the base layer from an emitter region adjoining the base layer.
- This diffusion of a pentavalent dopant from the emitter region into the base layer is advantageous, since in this way the pn junction can be shifted from a polycrystalline silicon that is usually used for the emitter region into an area of the base layer with crystalline silicon. This causes the pn junction to be in an area with few impurities, which is why the resulting transistor has better DC voltage characteristics with good linearity of the gain.
- Figure 1 shows a silicon substrate with a transistor in a schematic cross section.
- FIG. 2 shows the concentration profile of dopants along line A in FIG. 1.
- FIG. 1 shows a silicon substrate with a base layer 3. An emitter region 11 is arranged above the base layer 3. A collector is arranged below the base layer 3. The base layer 3 has an intrinsic region 4 which lies between the collector 2 and the emitter 1 of the transistor. The emitter 1 is formed from the emitter region 11 and an area which has a counter-doping 8 which has diffused into the base layer 3 from the emitter region 11.
- the dashed line in FIG. 1 shows the edge of counter-doping 8.
- the base layer 3 further comprises an extrinsic region 6, which runs between a base contact 5 and the intrinsic region 4.
- a first doping layer 7 is provided in the base layer 3, which runs within the extrinsic region 6 and also within the emitter 1.
- the first doping layer 7 is preferably produced by doping with boron. Measured on a depth scale, which begins at the upper end of arrow A (at tO), the first doping layer 7 begins at a depth tl. It extends to a depth t2. In the area between emitter region 11 and collector 2, the first doping layer 7 lies entirely within the emitter 1.
- a second doping layer 9 is connected to the first doping layer 7. The second doping layer 9 extends from the depth t2 to the depth t4. The second doping layer 9 has a smaller doping than the first doping layer 7.
- the third doping layer 9 is followed by a third doping layer 10.
- the third doping layer 10 extends from the depth t4 to the depth t5.
- the collector 2 then begins at the depth t5.
- the third doping layer 10 has a higher doping than the second doping layer 9. All three doping layers 7, 9, 10 are preferably produced by the dopant boron.
- the counter-doping 8 extends to the depth t3, which means that the counter-doping 8 still extends into the second doping layer 9.
- FIG. 2 shows the concentration dependence of doping along the line A in FIG. 1.
- the dopant concentration C is plotted over the depth t.
- C4max represents the maximum dopant concentration of counter-doping 8 in the area of base layer 3.
- the depth t0 marks the boundary between the emitter region 11 and the base layer 3. This is also the boundary between a silicon material that is in polycrystalline form (emitter region 11) and in single-crystal form (base layer 3).
- the first doping layer 7 begins at a distance from this boundary layer between the emitter region 11 and the base layer 3.
- the first doping layer 7 has an essentially constant dopant concentration Cl over the layer thickness t2-tl.
- the dopant concentration Cl is preferably between 1 10 18 and 5 x 10 20 cm " 3.
- the thickness t2 - tl of the first doping layer 7 is preferably between 10 and 100 nm.
- the second doping layer 9 follows directly after the first doping layer 7.
- the dopant concentration within the second doping layer 9 is essentially constant and corresponds to the dopant concentration C2.
- C2 is preferably between 1 x 10 18 and 1 x 10 19 cm -3 .
- the thickness t4-t2 of the second doping layer 9 is selected such that at least half of the second doping layer 9 still lies within the area delimited by the counter-doping 8 and which represents the outer boundary of the emitter 1. This is advantageous for realizing a low parasitic emitter-base capacitance.
- the third doping layer 10 has a thickness t5-t4, which is typically 5 to 50 nm. In the- within the third doping layer 10 essentially constant dopant concentration C3 is preferably between 5 x 10 18 and 1 x 10 20 cm -3 .
- the dopant concentration C1 of the first doping layer 7 has a considerable proportion of the total amount of dopant in the base layer 3. This can ensure that the first doping layer 7 contributes significantly to the conductivity of the base layer 3.
- the proportion of the first doping layer 7 in the total amount of dopant, which is determined by the first doping layer 7 together with the second doping layer 9 and the third doping layer 10, is advantageously 30% or more.
- the counter-doping 8 can be seen in FIG. 2, which, starting from a maximum dopant concentration C4max, initially remains constant with increasing depth and then drops sharply at the lower edge of the first doping layer 7 and is finally reduced to zero within the second doping layer 9 ,
- the counter-doping 8 marks the outermost edge of the emitter 1. It has the effect that the first doping layer 7 present in the base layer 3, which increases the ohmic resistance of the extrinsic base, has no negative effects in the intrinsic part of the transistor.
- the counter-doping 8 is designed in such a way that the doping of the first doping layer 7 is at least compensated and preferably even overcompensated.
- intrinsic region 4 extends approximately between the depth t5 and the depth t3, while the emitter 1 extends between the depth t3 and the left edge of FIG.
- the emitter region is bounded vertically by the single-crystal base layer. Laterally it is defined photolithographically, so that the diffusion of As is only effective in the intrinsic area.
- a germanium doping 12 can also be seen in FIG. 2, which drops from the collector 2 to the base. Such a ramped germanium doping 12 can accelerate the charge carriers penetrating into the base from the collector 2, which increases the speed of the transistor.
- C4max is preferably in the range between 1 ⁇ 10 2 ⁇ and 1 ⁇ 10 21 cm " 3.
- the material arsenic is preferably used for the counter-doping 8. This arsenic is diffused into the base layer 3 from the emitter region 11.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02793105A EP1459387A2 (de) | 2001-12-27 | 2002-12-20 | Transistor |
AU2002358786A AU2002358786A1 (en) | 2001-12-27 | 2002-12-20 | Transistor |
US10/500,079 US7629628B2 (en) | 2001-12-27 | 2002-12-20 | Bipolar transistor including a base layer containing carbon atoms and having three distinct layers being doped with a trivalent substance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10164176.1 | 2001-12-27 | ||
DE10164176A DE10164176B4 (de) | 2001-12-27 | 2001-12-27 | Bipolartransistor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003056630A2 true WO2003056630A2 (de) | 2003-07-10 |
WO2003056630A3 WO2003056630A3 (de) | 2003-12-31 |
Family
ID=7711001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/014679 WO2003056630A2 (de) | 2001-12-27 | 2002-12-20 | Transistor |
Country Status (5)
Country | Link |
---|---|
US (1) | US7629628B2 (de) |
EP (1) | EP1459387A2 (de) |
AU (1) | AU2002358786A1 (de) |
DE (1) | DE10164176B4 (de) |
WO (1) | WO2003056630A2 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017059146A1 (en) * | 2015-09-29 | 2017-04-06 | Quantum Semiconductor Llc | Electrical devices making use of counterdoped junctions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589409A (en) * | 1994-09-02 | 1996-12-31 | National Semiconductor Corporation | Fabrication of bipolar transistors with improved output current-voltage characteristics |
DE10060584A1 (de) * | 2000-01-11 | 2001-07-19 | Mitsubishi Electric Corp | Bipolartransistor und Verfahren zu seiner Herstellung |
WO2001091162A2 (fr) * | 2000-05-23 | 2001-11-29 | Matsushita Electric Industrial Co. Ltd. | Transistor bipolaire et son procede de fabrication |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140400A (en) * | 1989-03-29 | 1992-08-18 | Canon Kabushiki Kaisha | Semiconductor device and photoelectric converting apparatus using the same |
JPH0499328A (ja) * | 1990-08-18 | 1992-03-31 | Nec Corp | バイポーラトランジスタ |
JP2924417B2 (ja) * | 1992-02-26 | 1999-07-26 | 日本電気株式会社 | 半導体装置 |
JP2679639B2 (ja) * | 1994-09-12 | 1997-11-19 | 日本電気株式会社 | 半導体装置及びその製造方法 |
EP0818829A1 (de) * | 1996-07-12 | 1998-01-14 | Hitachi, Ltd. | Bipolartransistor und dessen Herstellungsverfahren |
-
2001
- 2001-12-27 DE DE10164176A patent/DE10164176B4/de not_active Expired - Fee Related
-
2002
- 2002-12-20 AU AU2002358786A patent/AU2002358786A1/en not_active Abandoned
- 2002-12-20 WO PCT/EP2002/014679 patent/WO2003056630A2/de not_active Application Discontinuation
- 2002-12-20 EP EP02793105A patent/EP1459387A2/de not_active Withdrawn
- 2002-12-20 US US10/500,079 patent/US7629628B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589409A (en) * | 1994-09-02 | 1996-12-31 | National Semiconductor Corporation | Fabrication of bipolar transistors with improved output current-voltage characteristics |
DE10060584A1 (de) * | 2000-01-11 | 2001-07-19 | Mitsubishi Electric Corp | Bipolartransistor und Verfahren zu seiner Herstellung |
WO2001091162A2 (fr) * | 2000-05-23 | 2001-11-29 | Matsushita Electric Industrial Co. Ltd. | Transistor bipolaire et son procede de fabrication |
EP1263052A2 (de) * | 2000-05-23 | 2002-12-04 | Matsushita Electric Industrial Co., Ltd. | Bipolarer transistor und herstellungsmethode |
Non-Patent Citations (3)
Title |
---|
GRUHLE A ET AL: "THE REDUCTION OF BASE DOPANT OUTDIFFUSION IN SIGE HETEROJUNCTION BIPOLAR TRANSISTORS BY CARBON DOPING" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 75, Nr. 9, 30. August 1999 (1999-08-30), Seiten 1311-1313, XP000868226 ISSN: 0003-6951 * |
OSTEN H J ET AL: "The effect of carbon incorporation on SiGe heterobipolar transistor performance and process margin" ELECTRON DEVICES MEETING, 1997. TECHNICAL DIGEST., INTERNATIONAL WASHINGTON, DC, USA 7-10 DEC. 1997, NEW YORK, NY, USA,IEEE, US, 7. Dezember 1997 (1997-12-07), Seiten 803-806, XP010265625 ISBN: 0-7803-4100-7 * |
RYUM B R ET AL: "MBE-GROWN SIGE BASE HBT WITH POLYSILICON-EMITTER AND TISI2 BASE OHMIC LAYER" SOLID STATE ELECTRONICS, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, Bd. 39, Nr. 11, 1. November 1996 (1996-11-01), Seiten 1643-1648, XP000635613 ISSN: 0038-1101 * |
Also Published As
Publication number | Publication date |
---|---|
DE10164176A1 (de) | 2003-07-10 |
US7629628B2 (en) | 2009-12-08 |
EP1459387A2 (de) | 2004-09-22 |
AU2002358786A1 (en) | 2003-07-15 |
WO2003056630A3 (de) | 2003-12-31 |
US20050127476A1 (en) | 2005-06-16 |
AU2002358786A8 (en) | 2003-07-15 |
DE10164176B4 (de) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2837028C2 (de) | ||
DE3788486T2 (de) | Verfahren zur Herstellung einer monolithischen Hochspannungshalbleiterschaltung. | |
DE69029942T2 (de) | Verfahren zur Herstellung von MOS-Leistungstransistoren mit vertikalem Strom | |
DE3880996T2 (de) | Herstellungsverfahren für eine monolithische Halbleiteranordnung mit wenigstens einem Transistor einer integrierten Kontrollschaltung und einem auf dem gleichen Chip integrierten Leistungstransistor. | |
DE19755979A1 (de) | Silizium-Germanium-Heterobipolartransistor | |
DE69624278T2 (de) | Bipolartransistor und Verfahren zur Herstellung | |
DE1764464B2 (de) | Verfahren zur herstellung eines lateralen transistors | |
DE3545040A1 (de) | Verfahren zur herstellung einer vergrabenen schicht und einer kollektorzone in einer monolithischen halbleitervorrichtung | |
DE1948921A1 (de) | Halbleiterbauelement,insbesondere monolithischer integrierter Schaltkreis und Verfahren zu seiner Herstellung | |
DE10306597B4 (de) | Verfahren zum Herstellen einer Halbleiterstruktur mit erhöhter Durchbruchspannung durch tieferliegenden Subkollektorabschnitt | |
DE10358046B4 (de) | Bipolartransistor mit erhöhtem Basisanschlussgebiet und Verfahren zu seiner Herstellung | |
DE1816436A1 (de) | Halbleiterbauelement | |
DE2429957C3 (de) | ||
EP1295326A1 (de) | Silizium-bipolartransistor, schaltungsanordnung und verfahren zum herstellen eines silizium-bipolartransistors | |
DE2813154A1 (de) | Mtl-grundschaltung und verfahren zu deren herstellung | |
DE2403816C3 (de) | Halbleiteranordnung und Verfahren zu ihrer Herstellung | |
DE3852362T2 (de) | Verfahren zur Herstellung eines monolithischen Halbleiterbauelementes mit epitaxischer Mehrschichtstruktur und geringer Konzentration an Verunreinigungen. | |
DE2364753A1 (de) | Halbleitervorrichtung | |
DE2600375C3 (de) | Halbleiteranordnung mit mindestens zwei komplementären Transistoren und Verfahren zu ihrer Herstellung | |
DE10164176B4 (de) | Bipolartransistor | |
DE69838794T2 (de) | Verfahren zur herstellung eines leistungsbipolartransistors | |
DE68922212T2 (de) | Halbleiteranordnung, die eine integrierte schaltung mit einem vertikalen transistor enthält. | |
DE2101278C2 (de) | Integrierte Halbleiteranordnung und Verfahren zu ihrer Herstellung | |
DE10254663B4 (de) | Transistor mit niederohmigem Basisanschluß und Verfahren zum Herstellen | |
EP0017021B1 (de) | Verfahren zur Herstellung einer Halbleiteranordnung mit komplementären Transistoren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002793105 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002793105 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10500079 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |