WO2003048792A1 - Procede et appareil permettant de detecter la perte de synchronisme dans un systeme generateur - Google Patents

Procede et appareil permettant de detecter la perte de synchronisme dans un systeme generateur Download PDF

Info

Publication number
WO2003048792A1
WO2003048792A1 PCT/JP2002/012636 JP0212636W WO03048792A1 WO 2003048792 A1 WO2003048792 A1 WO 2003048792A1 JP 0212636 W JP0212636 W JP 0212636W WO 03048792 A1 WO03048792 A1 WO 03048792A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
average value
value
power system
Prior art date
Application number
PCT/JP2002/012636
Other languages
English (en)
French (fr)
Inventor
Masahiro Sato
Original Assignee
Nihon University School Juridical Person
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University School Juridical Person filed Critical Nihon University School Juridical Person
Priority to AU2002354328A priority Critical patent/AU2002354328A1/en
Publication of WO2003048792A1 publication Critical patent/WO2003048792A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism

Definitions

  • the present invention relates to a power system out-of-step detection method and a power system out-of-step detection device capable of reliably detecting a step-out occurring between generator groups on both sides of a power system link line.
  • this kind of power system out-of-step detection device is provided as a device for detecting a step-out occurring between the generator groups installed on both sides of the power system link line, as is well known.
  • the method for detecting step-out from an impedance change includes the double-circle method or the three-zone method.
  • An out-of-step detection device for a power system using the double circle method detects the out-of-step from the impedance characteristics of the relay installed at the terminal of the transmission line. This is because the impedance that the relay sees from the ground point is divided into two large and small concentric circles, the first area that can be inside the small circle, the second area that can be outside the small circle and inside the large circle, and large It is divided into a third area outside the circle, and the impedance seen by the relay in normal operation is Located in the third area outside the large circle. When the power system steps out, the impedance seen by the relay changes from the third region to the second region,
  • the power system step-out detection device adopting the three-zone method sets up three areas (first zone, second zone, and third zone) in advance as in the case of the double circle method. In this state, the impedance seen by the relay is slowly
  • step-out occurs when moving to the second zone after a certain period of time when moving to the second zone It is judged that it did.
  • an out-of-step detection device for a power system that employs a system that detects a step-out from the phase difference of the voltage at both ends of the transmission line detects the voltage at both ends of the transmission line, and uses the transmission means to detect each detected voltage at another voltage.
  • the signals are transmitted to the detection point and the phase angle difference between the voltages at both ends exceeds 1800 degrees, it is determined that a step-out has occurred at the detection point.
  • the step-out is detected from the time difference that each impedance passes through each region. It is difficult to determine the area, and depending on how the area is determined, it may be judged that the step is out of step even though it is out of step, or it may be determined that the step is out but not out of step. Yes, the reliability of the judgment was poor.
  • out-of-step detection device for a power system that attempts to detect out-of-step from the change in impedance, it may not be possible to determine out-of-step when the passing time of each region is short. Furthermore, according to the power system step-out detection device that detects step-out from the phase difference of the voltage at both ends of the transmission line, it is necessary to transmit the voltage at both ends of the transmission line by the transmission means, which increases the equipment cost. To do.
  • An object of the present invention is to provide an electric power system out-of-step detection method and apparatus capable of reliably detecting the out-of-step occurring between the generator groups on both sides of the electric power system connection line, which solves the above-mentioned disadvantages. It is said.
  • the power system out-of-phase detection method is based on the assumption that out-of-step occurs in the power supply systems on both sides of the transmission line based on the phase angle difference between the voltage and current.
  • the first step of taking in the voltage and current of the power transmission line of the power 'system, and the voltage and current obtained in the first step In a given section
  • the second step of calculating the average value of the voltage and the average value of the current, the maximum value and the minimum value of the average value of the voltage and current obtained in the second step, and the maximum value and the minimum value are obtained.
  • the average value of the measured voltage at the time of determination obtained in the second step is within a certain range centered on the minimum value of the average value of the voltage stored in the third step, and
  • a fifth step of determining that a power outage has occurred in the power supply system on both sides of the transmission line is characterized in that there was example.
  • the power system step-out detection device is based on the fact that a step-out occurs in the power system guns on both sides of the transmission line based on the phase angle difference between the voltage and current.
  • the determination is made based on the voltage and current capturing means for capturing the voltage and current of the transmission line of the power system gun, and the voltage and current captured by the voltage and current capturing means.
  • An average value calculating means for calculating an average value of voltage and an average value of current in a predetermined section until the disconnection time, a maximum value and a minimum value of an average value of voltage obtained by the average value calculating means, and a current value
  • the maximum / minimum average value is obtained, and the maximum / minimum judgment storage means for storing the maximum and minimum values, and the phase angle difference for calculating the phase angle difference from the acquired voltage and current.
  • Calculation means and phase angle difference calculation When it is determined that the phase angle difference obtained from the above exceeds 90 degrees, the average value of the measured voltage obtained from the average value calculation means at the time of the determination is stored in the maximum / minimum determination storage means.
  • the average value of the measured current obtained from the average value calculation means at the time of the determination is within a certain range centered on the minimum value of the average value of the voltage.
  • a step-out determination means is provided for determining that the power supply system on both sides of the transmission line is out of step when it is within a certain range centered on the maximum average current value stored in the stage. It is characterized by this.
  • the power system out-of-phase detection method takes the voltage and current from the power system, and based on these, calculates the phase angle difference between the future voltage and current.
  • the first step is to take in voltage and current from the transmission line of the power system.
  • a second step for calculating an average value of the voltage and current obtained in the first step, a maximum value and a minimum value of the average value of the voltage calculated in the second step, and the step Obtain the maximum and minimum average current values calculated in the second step, store the maximum and minimum values, and the voltage and current obtained in the first step.
  • the average value of the voltage estimated in the fifth step is calculated in the third step.
  • the average value of the current estimated in the sixth step was stored in the third step and was in a certain range centered on the minimum value of the stored average voltage value.
  • a power system out-of-phase detection device takes in voltage and current from the power system and based on these, Estimate the phase angle difference between the voltage and current, estimate the step-out from the estimated phase angle difference, and contact the power system step-out detection device that determines the step-out from the estimated result.
  • Voltage and current capturing means for capturing voltage and current from a transmission line
  • average value calculating means for calculating an average value of the voltage obtained by the voltage and current capturing means, and calculation by the average value calculating means
  • Maximum / minimum determination storage means for determining the maximum value and minimum value of the measured voltage, and determining the maximum and minimum values of the average value of the current calculated by the average value calculation means, and storing these maximum and minimum values.
  • Voltage estimation means for estimating an average value of voltage in a predetermined section until a future judgment time point, current estimation means for estimating an average value of current in a predetermined section until a future judgment time point, and the step-out estimation means Estimated to be out of step
  • the average value of the voltage estimated by the voltage estimation means is within a certain range centered on the minimum value of the average value of the voltage stored in the maximum / minimum determination storage means, and When the average value of the current estimated by the current estimation means is within a certain range centered on the maximum average value of the current stored in the maximum / minimum determination storage means, And a step-out determination means for determining that a step-out has occurred in the power supply system on both sides.
  • the power system out-of-step detection method is the power system out-of-step determining that the power supply system on both sides of the transmission line is out of step based on the phase angle difference between the voltage and current.
  • the detection method based on the first step of taking in the voltage and current of the transmission line of the power system gun, and the voltage and current obtained in the first step, the average value of the voltage in a predetermined section until the time of determination And the second step of calculating the average value of the current and the voltage and current of the current and past several points obtained in the first step are used to simulate a quadratic function.
  • a third step to be remembered a fourth step to obtain a phase angle difference from the acquired voltage and current, and when the phase angle difference obtained in the fourth step exceeds 90 degrees, The average value of the measured voltage at the time of determination obtained in the second step is within a certain range centered on the minimum value of the voltage stored in the third step, and the second step When the average value of the measured current at the time of judgment obtained in step 3 is within a certain range centered on the maximum current value stored in the third step, the power supply systems on both sides of the transmission line And a fifth step of determining that a step-out has occurred during the period.
  • the coefficients A v and A i are estimated by the least square method. If the coefficient A v is positive and the function is convex downward, the voltage V is the minimum value. If the coefficient A i is negative and the function is convex upward, the current I is It is characterized by storing each value as a minimum value. '
  • the power system step-out detection device determines that a step-out has occurred in the power supply system on both sides of the transmission line based on the phase angle difference between the voltage and current.
  • the detection method based on the voltage and current capturing means for capturing the voltage and current of the power transmission line of the power system, and the voltage and current obtained by the voltage and current capturing means, the average of the voltage in a predetermined section until the determination time point
  • An average value calculating means for obtaining an average value of the current and the current, and a voltage and current obtained at the current and past several points obtained by the voltage and current capturing means are used to simulate a quadratic function.
  • a maximum / minimum estimation storage means for storing these values, a phase angle difference calculation means for obtaining a phase angle difference from the acquired voltage and current, and a phase obtained by the phase angle difference calculation means.
  • the average value of the measurement voltage at the time of determination obtained by the average value calculation means is centered on the minimum value of the voltage stored in the maximum / minimum estimation storage means.
  • the average value of the measured current at the time of determination obtained by the average value calculation means is centered on the maximum value of the current stored in the maximum / minimum estimation storage means.
  • a step-out determination means for determining that a step-out has occurred between the power supply systems on both sides of the transmission line when within a certain range.
  • FIG. 1 is a block diagram showing an entire power system including a power system step-out detection device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a function block of the power system step-out detection device realized by the digital arithmetic processing device shown in FIG. 1 according to the first embodiment of the present invention.
  • FIG. 3 is a power system step-out detection device according to the first embodiment of the present invention. It is a figure for demonstrating the sampling state of the voltage and electric current which are processed by this.
  • FIG. 4 relates to the first embodiment of the present invention, and is a diagram for explaining vector relationships such as the generator internal voltage and bus voltage / transmission line current before and after the occurrence of a step-out in the power system. is there.
  • FIG. 5 is a diagram for explaining out-of-step determination processed in the out-of-step detection device for a power system according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the entire system including the power system step-out detection device according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing the entire system including the power system step-out detection device according to the third embodiment of the present invention.
  • FIG. 8 is a characteristic diagram for explaining the operation of the step-out detection device for the marine product storage power system according to the third embodiment of the present invention. '' Best mode for carrying out the invention
  • FIGS. 1 to 5 are diagrams for explaining a power system step-out detection method and a power system step-out detection apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing the entire power system including the power system step-out detection device according to the first embodiment of the present invention.
  • power system 1a is connected to one end of transmission line 3 via bus 2a
  • power system 1b is connected to the other end of transmission line 3 via bus 2b.
  • the two power systems la and 1b are linked by transmission line 3.
  • the symbols u,, and w attached to the transmission line 3 indicate the phase names, u indicates the u phase, V indicates the V phase, and W indicates the W phase.
  • the voltage transformers 4 u, 4 V, and 4 w are connected to the u-phase, v-phase, and w-phase buses 2 a by connecting the primary windings of the voltage transformers 4 u, 4 v, and 4 w.
  • a predetermined voltage signal proportional to the voltages Vu, VV, and Vw of transmission line 3 can be extracted from the next winding.
  • by installing the primary side of current transformers 5 u, 5 V, 5 w on bus 2 a of u phase, V phase, w phase secondary windings of current transformers 5 u, 5 v, 5 w
  • a predetermined current signal proportional to the currents Iu, Iv, and Iw flowing in transmission line 3 can be extracted.
  • the secondary windings of the voltage transformers 4 u, 4 V, and 4 w and the secondary windings of the current transformers 5 u, 5 v, and 5 w are input units of the power system step-out detection device 6. It is connected to the.
  • the power system out-of-step detection device 6 is roughly classified into an analog / digital conversion device 7 which is a voltage and current capturing means, and a power system step-out detection program obtained from the analog / digital conversion device 7.
  • Voltage / current It consists of a digital processing unit 9 that determines step-out based on digital data.
  • the analog-to-digital converter 7 is for a voltage that takes in a voltage signal obtained from the secondary winding of each of the voltage transformers 4 u, 4 V, 4 w, and removes noise etc. to extract a basic component of the voltage signal.
  • Filters 7 1 u, 7 1 V, 7 1 w and current signals obtained from the secondary windings of each of the current transformers 5 u, 5 V, 5 w are taken in.
  • the basic components of the voltage obtained from the current filter 7 2 u, 7 2 V, 72 w and the voltage filter 7 1 u, 7 1 v, 71 w are sampled and held at the time of the sample hold command.
  • the digital arithmetic processing device 9 includes at least a processing device main body 91 for executing various arithmetic processing, a keyboard 9 2 used for predetermined data input, a mouse 93 for performing predetermined commands, and the like. It comprises a display 94 that displays the results processed by the processing unit body 9 1.
  • the processing device main body 91 includes a central processing unit 11 for performing various arithmetic processing, a main memory 12 for storing an operating system and a power system step-out detection program and various temporary data, and an interface for an input device.
  • a / D conversion means for voltage 7 3 u, 7 3 V, 7 3 w and AZD conversion means for current 7 4 u, 7 4 V, 7 4 w are connected to A / D conversion interface 17 Yes.
  • the keyboard 9 2 and the mouse 9 3 are connected to the input device interface 1 3.
  • the hard disk device 16 is connected to the hard disk interface 15.
  • the display 94 is connected to the display interface 18.
  • the hard disk device 16 stores an operating system and a power system step-out detection program for realizing the power system step-out detection method and power system step-out detection device of the present invention.
  • the operating system and the out-of-step detection program for the electric power system are read from the hard disk device 16 and expanded in the main memory 12.
  • a power system out-of-step detecting device described below is realized, and thereby a power system gun out-of-step detecting method is also realized.
  • FIG. 2 is a block diagram showing a function block of the power system gun step-out detection device realized by the digital arithmetic processing device shown in FIG.
  • the analog-digital conversion device 7 which is a voltage and current capturing means for capturing the voltage and current of the transmission line 3 of the power system 1 a from the bus 2 a, and It comprises a digital arithmetic processing unit 9 that takes in a digital signal from the analog / digital conversion unit 7 and executes a step-out detection program for the power system.
  • the digital arithmetic processing unit 9 executes a power system out-of-step detection program to store the sampling data storage means 95 for storing the voltage and current captured by the analog-digital conversion device 7; and the sampling An average value calculating means 9 6 for measuring the average value of the voltage and the average value of the current in a predetermined period until data is taken out from the data storage means 95, and the voltage obtained by the average value calculating means 96
  • Maximum / minimum determination storage means 9 7 for determining the maximum and minimum values of the average value, determining the maximum and minimum values of the average value of the current, and storing these maximum and minimum values, and the acquired voltage
  • Phase angle difference calculating means 9 8 for calculating effective voltage and effective current from the opi current, and calculating the phase angle difference based on these effective voltage and effective current, and this phase angle difference calculating means
  • an effective value data storage means 99 for storing an effective value
  • a phase angle difference data storage means 10 0 for storing a phase angle difference from the phase angle difference calculation means
  • the average value of the current measured voltage is within a certain range centered on the minimum value of the average value of the voltage stored in the maximum / minimum determination means 97, and the average value at the time of the determination When the average value of the current measured current obtained from the calculation means 95 is within a certain range centered on the maximum value of the average current stored in the maximum / minimum determination means 97.
  • the power supply system on both sides of the transmission line includes step-out determination means 1 0 1 for determining step-out.
  • the storage area of the sampling data storage means 9 5 and the maximum / minimum judgment means 9 7 and the effective value data storage means 9 9 are those when the digital arithmetic processing unit 9 is operating, and the latest value is stored in the main memory 12. It is created in the specified area of the hard disk device 16 after a certain period of time.
  • FIG. 3 The operation of the power system step-out detection apparatus configured as described above will be described with reference to FIGS. 3 to 5 based on FIGS. 1 and 2.
  • FIG. 3 The operation of the power system step-out detection apparatus configured as described above will be described with reference to FIGS. 3 to 5 based on FIGS. 1 and 2.
  • FIG. 3 The operation of the power system step-out detection apparatus configured as described above will be described with reference to FIGS. 3 to 5 based on FIGS. 1 and 2.
  • FIG. 3 is a diagram for explaining a sampling state of voltage and current processed by the power system step-out detection device according to the first embodiment of the present invention, and the horizontal axis indicates time t.
  • the vertical axis represents voltage V and current I.
  • Fig. 4 is a diagram for explaining the vector relationship such as the generator internal voltage and bus voltage before the step-out occurs in the power system.
  • FIG. 5 is a diagram for explaining step-out determination processed in the power system step-out detection apparatus according to the first embodiment of the present invention.
  • the horizontal axis represents time t force S, and the vertical axis represents The phase angle difference ⁇ 0, voltage V and current I are taken respectively.
  • the voltage filters 7 1 u, 7 1 V and 7 1 w take in the voltages obtained via the voltage transformers 4 u, 4 v and 4 w, remove noise components and high-frequency components, and convert the fundamental wave components into voltages.
  • AZD conversion means 7 3 u, 7 3 V, 7 3 w For AZD conversion means 7 3 u, 7 3 V, 7 3 w.
  • the current filters 7 2 u, 7 2 V, and 7 2 w take in the current obtained through the current transformers 5 u, 5 V, and 5 w and remove noise and high-frequency components.
  • the left fundamental wave component is sent to the current A / D conversion means 74 u, 74 V, 74 w. In the following, only one phase will be described.
  • the digital current from the digital voltage and current AZD conversion means 74 U from the voltage A / D conversion means 73 U is stored in the sampling data storage means 95.
  • the voltage A / D conversion stage 7 3 V, 7 3 w and the current A / D conversion means 74 V, 74 w are stored in the sampling data storage means 95 as well.
  • the phase angle difference calculation means 9 8 extracts the previous and current voltages Vm ⁇ 1 and Vm and the currents I m ⁇ 1 and I m from the sampling data storage means 9 5, and uses the following formulas (1) and (2) Based on the above, find the effective voltage value V and effective current value I.
  • V 2 Vm 2 + Vm- 1 2 ... (1)
  • the effective voltage value V and the effective current value I calculated by the phase angle difference calculation means 98 according to the above equation are stored in the effective value data storage means 99.
  • the average value calculation means 96 takes out the voltage and current for a predetermined period from the sampling data storage means 95, and in the predetermined interval until the judgment time point.
  • the average voltage Vh and the average current Ih are calculated and given to the maximum / minimum judgment means 97.
  • the maximum / minimum judging means 9 7 obtains the maximum value Vhmax and the minimum value Vhmin of the average value of the voltage obtained by the average value calculation means 96, and the maximum value I hmax and the minimum value I hmin of the average value of the current. And store these maximum values (V hmax, I hmax) and minimum values (Vhmin, I hminj).
  • phase angle difference calculation means 98 calculates the phase angle difference from the following formula (4) based on the voltage V and current I stored in the effective value data storage means 99. The reason why the phase angle difference can be calculated by the equation (4) will be described. Here, when the phase angle difference is 0, the following equation (3) is established between the voltage and the current.
  • V I cos ( ⁇ ) VmX I m + Vm-3X I m-3... (3) Transforming this equation (3),
  • phase angle difference 0 can be calculated from Equation (4).
  • phase angle difference ⁇ sequentially calculated by the phase angle difference calculation means 98 is stored in the phase angle difference data storage means 100.
  • Fig. 4 (a) the power to be generated by the generator G and the generator S A system is used.
  • the internal voltage of generator G is EG
  • the internal voltage of generator S is ES.
  • bus 2a is represented by N
  • the voltage of bus N is V
  • the transmission line is TL
  • the current of transmission line TL is I.
  • the phase angle difference ⁇ between the internal voltages EG and ES of the two generators G and S is within 180 degrees.
  • the resistance value of the transmission line TL is very small compared to the reactance value, so the resistance is ignored.
  • the potential difference (EG – ES) between the current I and the generators G and S is almost orthogonal.
  • the phase angle difference 0 between the voltage V of the node N and the current I is 90 degrees or less.
  • step-out when the phase angle difference between the voltages EG and ES between the generators G and S increases and reaches 180 degrees, it is determined that step-out occurs. At that time, the bus voltage V and the transmission line current I are orthogonal, and the phase angle difference ⁇ is 90 degrees.
  • Fig. 4 uses the voltages EG and ES of the generators G and S, but the same applies to the voltage relationship between the buses 2a and 2b at both ends of the transmission line 3.
  • the step-out determination unit 101 uses the above-described relationship, and based on the phase angle difference data extracted from the phase angle difference data storage unit 100, the phase angle difference ⁇ is 90 as shown in FIG.
  • the average value Vh of the current measured voltage obtained from the average value calculation means 96 at the judgment time tr is determined to be greater than the degree, the voltage stored in the maximum / minimum judgment means 97
  • the average value I h of the current measured current obtained from the average value calculation means 96 at the determination time tr is within the predetermined range centered on the minimum value Vhmin of the average value and stored in the memory.
  • the average value Vhmax and the minimum value Vhmin of the average value Vh of the voltage V and the maximum value of the average value I'h of the current I are obtained.
  • I hmax and minimum value I hmin were obtained, the maximum and minimum values were stored, the phase angle difference ⁇ was obtained from the voltage V and current I, and the phase angle difference ⁇ was 90 degrees.
  • FIG. 6 is a diagram showing the entire system including the power system step-out detection device according to the second embodiment of the present invention.
  • the power system step-out detection device 6a according to the second embodiment of the present invention also uses the hardware shown in FIG. That is, the power system step-out detection device 6 a according to the second embodiment is composed of an analog / digital conversion device 7 and a digital arithmetic processing device 9 a.
  • the difference between the power system step-out detection device 6a according to the second embodiment and the power system step-out detection device 6 according to the first embodiment is that the digital arithmetic processing device 9a is the second one. This is achieved by executing the power system out-of-phase detection program for realizing the embodiment 4 in FIG. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the digital system of the out-of-step detection device 6a for the electric power system includes sampling data storage means 9 5, average value calculation means 9 6, maximum / minimum determination storage means 9 7, phase angle difference calculation means 9 8, Based on the effective value data storage means 99, the phase angle difference data storage means 100, and the data sequentially extracted from the phase angle difference data storage means 100, the phase angle difference phase at the time of future judgment is calculated.
  • a step-out estimating means for estimating the step-out from the estimation result, and a voltage for estimating the average value of the voltages at the time of determination based on the voltage data sequentially taken out from the average value calculating means 96
  • the average value of the estimated voltage is
  • the maximum / minimum judgment storage means 9 7 is in a fixed range centered on the minimum value of the average voltage stored in the memory, and the predicted average current value is stored in the maximum / minimum judgment storage.
  • Means 9 Step-out determination that determines that step-out has occurred in the power supply system on both sides of the transmission line when it is within a certain range centered on the maximum average current value stored in 7 And means 1 0 8.
  • Step-out estimation means 1 0 5 uses phase angle differences at a plurality of points in the past, and if the phase angle difference is, for example, a quadratic prediction formula, the phase difference parameter estimation means 1 estimates the parameters of the secondary prediction formula.
  • Phase angle difference prediction means for predicting a phase angle difference of 0 with respect to a future time using a secondary prediction formula having the parameters estimated in 0 5 1 and the phase difference parameter estimation unit 1 0 5 1
  • step out predicting means 1 0 5 3 for predicting step out using the phase angle difference ⁇ predicted by the phase angle difference predicting means 1 0 5 2 and the phase angle difference for step out determination ⁇ c. .
  • the operation of the power system step-out detection device 6 a configured as described above will be described. Take the voltage and current of the bus 2a, and convert them to digital voltage and digital current sequentially with the analog 'digital converter 7'.
  • the sampling data storage means 9 5 of the device 9 a is stored.
  • the phase angle difference calculation means 98 calculates the effective voltage V and the effective current I based on the equations (1) and (2). And stored in the effective value data storage means 99.
  • the phase angle difference calculation means 9 8 calculates the phase angle difference 6 by the equation (4) based on the effective voltage V and the effective current I sequentially read from the effective value data storage means 99, and outputs the phase angle difference data. Store in storage means 1 0 0.
  • the digital voltage and the digital current are sequentially read out from the sampling data storage means 95, the average value calculation means 96 calculates the average value of the voltage and the average value of the current for the predetermined period, and the maximum / minimum determination storage means 9 7 To give.
  • Maximum / minimum determination storage means 97 obtains and stores the maximum and minimum values of the average values of voltage and current, respectively.
  • the voltage estimation means 10 6 estimates the average value of the voltage at the future judgment time from the past transition of the average value of the voltage obtained from the average value calculation means 96, and the step-out judgment means 1 0 8 To give.
  • the electric power estimation means 10 07 estimates the average value of the voltage at the future determination time point ′ from the past transition of the average value of the current obtained from the average value calculation means 96, and the step-out determination means 1 0 Give to 8.
  • the minimum value of the average value of the voltage stored in the maximum / minimum determination storage means 97 and the maximum value of the average value of the current are supplied to the step-out determination means 10 8.
  • phase difference parameter estimation means 1 0 5 1 of the step-out estimation means 1 0 5 uses the phase angle differences of the past multiple points in time, and if the phase angle difference is, for example, a secondary prediction formula, Estimate the parameters of the prediction equation, and use this quadratic prediction equation with the parameters estimated by the phase disparity parameter estimation means 1 0 5 1
  • the prediction means 1 0 5 2 predicts a phase angle difference 0 with respect to a future determination time, and the phase angle difference 0 predicted by the phase angle difference predictor 1 0 5 2 and the step-out determination phase angle difference ⁇ c
  • the step out prediction means 1 0 5 3 is used to predict step out, and the prediction result is given to the step out determination means 1 0 8.
  • the step-out determining means 10 8 is the average value of the voltage estimated by the voltage estimating means 106 when the out-of-step estimating means 10 05 estimates step out at the time of determination. It is within a certain range centered on the minimum value of the average value of the voltage stored in the judgment storage means 97, and the average value of the current predicted by the current estimation means 107 is the maximum value.
  • ⁇ Minimum judgment storage means 9 7 Determines that a step-out has occurred in the power supply system on both sides of the transmission line when it is within a certain range centered on the maximum value of the average current value stored in 7 .
  • the out-of-step can be predicted early by using the phase angle difference, voltage, and current at the time of the future judgment, so that the adverse effects of the out-of-step can be dealt with early. .
  • FIG. 7 and 8 are for explaining the third embodiment of the present invention.
  • FIG. 7 is a diagram showing the entire system including the power system step-out detection device according to the third embodiment of the present invention.
  • the hardware shown in FIG. 1 is also used in the power system step-out detection device 6 b according to the third embodiment of the present invention. That is, the power system step-out detection device 6 b according to the third embodiment is composed of an analog-to-digital conversion device 7 and a digital arithmetic processing device 9 b.
  • the digital arithmetic processing device 9 b executes a power system step-out detection program, thereby executing sampling data storage means 95 for storing the voltage and current taken in by the analog-digital conversion device 7, the voltage and Based on the voltage and current obtained by the current capture means 6
  • the average value calculating means 9 6 for obtaining the average value of the voltage and the average value of the current in the section 21 and the voltage data and current data from the sampling data storage means 95 are taken out, and the voltage data and current data are extracted. Is estimated in the form of a quadratic function, and the coefficient of the quadratic function is estimated.If the coefficient is negative and the function is convex downward, the minimum value is estimated, or if the coefficient is positive and the function is convex upward, it is estimated as the maximum value.
  • the maximum / minimum estimated storage means 1 3 0 to be stored and the effective voltage value and the effective current value are obtained from the acquired voltage and current, and the phase angle difference is calculated based on the effective voltage value and the effective current value.
  • Phase angle difference calculating means 9 8, of the outputs of the phase angle difference calculating means 9 8, the effective value data storing means 9 9 for storing the effective value, and the phase angle difference from the phase angle difference calculating means 9 8 Phase angle difference data storage
  • the average value of the current measurement voltage obtained from 5 is within a certain range centered on the minimum value of the voltage stored in the maximum / minimum estimation storage means 1 3 0, and at the time of the determination
  • the average value of the current measured current obtained from the average value calculation means 9 5 in the above is within a certain range centered on the maximum value of the current stored in the maximum / minimum estimation storage means 1 30.
  • Out-of-step determining means for determining that the power supply system on both sides of the transmission line is out of step.
  • the maximum / minimum estimated storage means 1 3 ′ 0 is:
  • V A V t 2+ B v t + C v (5) Simulated as Equation 5
  • FIG. 8 is a characteristic diagram for explaining the operation of the step-out detection device for the marine product storage power system according to the third embodiment of the present invention.
  • the horizontal axis represents time t, and the vertical axis The voltage V is taken respectively.
  • the sampling data storage means 95 receives the voltage and current from the transmission line (bus 2 a) of the power system 1 a via the analog / digital conversion device 7.
  • the average value calculating means 96 determines the average value of the voltage and the average value of the current in a predetermined section up to the time of determination based on the voltage and current stored in the sampling data storage means 95.
  • the maximum / minimum estimation storage means 1 30 estimates and stores the maximum voltage value or the minimum current value as follows. That is, as shown in FIG. 8, when the current time and tk, past several time points t k of a predetermined time interval - n, t k-2, t k-1, t voltage value measured at k Vk-n, ..., Vk-2, Vk-l, Vk are used to estimate the coefficient AV of the quadratic function form of Equation 5 above using the method of least squares. If the estimated coefficient AV is positive and the function is convex downward, the minimum value is used. If the estimated coefficient is negative and the function is convex upward, the maximum value is stored. The current I is also calculated and stored in the same manner as described above.
  • the phase angle difference calculation means 98 obtains an effective voltage value and an effective current value from the voltage and current stored in the sampling data storage means 95, and based on these effective voltage value and effective current value. The phase angle difference is calculated. When the out-of-step determining means 101 determines that the phase angle difference obtained by the phase angle difference calculating means 98 exceeds 90 degrees, the average value calculating means at that time is determined.
  • the average value of the measured voltage at the time of determination obtained in step 96 is within a certain range centered on the minimum value of the voltage stored in the maximum / minimum estimated storage unit 1 30, and
  • the average value of the measured current obtained at the time of determination obtained by the average value calculation means 96 is within a certain range centered on the maximum value of the current stored by the maximum / minimum estimation storage means 130. It is determined that a step-out has occurred in the power system traps on both sides of the transmission line.
  • the step-out based on the power system trend can be detected early by using the voltage and current slopes according to the voltage fluctuation waveform or the current fluctuation trend. It is possible to deal with the harmful effects of step-out early. Industrial applicability
  • the voltage and current of the transmission line including the bus are measured with high accuracy without estimating the zone or using special transmission means as in the past. Step-out can be determined, and step-out can be reliably determined even when specific conditions are met.
  • the step-out can be determined early by estimating the phase angle difference, voltage, and current from the past data to the time of determination. It is possible to deal with the adverse effects involved early.
  • the voltage and current of the transmission line including the bus line are measured with high determination accuracy without estimating the zone as in the past and using a special transmission means. Step-out can be determined, and step-out can be reliably determined even when a specific condition is met, and determination based on power system trends can be made.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measuring Phase Differences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

PC蘭 2/12636
明 細 書 電力系統の脱調検出方法およびその装置 技術分野
本発明は、 電力系統の連係線の両側の発電機群の間に生ずる脱調を確 実に検出できる電力系統の脱調検出方法おょぴ電力系統の脱調検出装置 に関するものである。 背景技術
従来、 この種の電力系統の脱調検出装置は、 周知のとおり、 電力系統 の連係線の両側に設置されている発電機群の間に生ずる脱調を検出する 装置として提供されている。
この電力系統の脱調検出装置は、 いくつかの脱調検出方式を採用した ものが提案されているが、 インピーダンス変化から脱調を検出する方式 と、 送電線の両端電圧の位相差から脱調を検出する方式を採用したもの が現在では主流である。
まず、 インピーダンス変化から脱調を検出する方式を採用した電力系 銃の脱調検出装置について説明すると、 インピーダンス変化から脱調を 検出する方式には二重円方式あるいは 3ゾーン方式がある。
二重円方式を採用した電力系統の脱調検出装置は、 送電線の端子に設 置した継電器のインピーダンス特性から脱調を検出するようにしたもの である。 これは、 継電器が接地点からみるインピーダンスを 2つの大小 同心円に区分し、 小さい円の内側にできる第 1の領域と、 小さい円の外 側と大きい円の内側にできる第 2の領域と、 大きい円の外側にできる第 3の領域とに分け、 通常の運転状態では継電器がみるィンピーダンスは 大きい円の外側にできる第 3の領域に位置している。 電力系統が脱調す ると、 継電器がみるインピーダンスは、 第 3の領域から第 2の領域、 第
2の領域から第 1の領域へと緩慢に移行してゆくが、 第 2の領域に一定 時間超えた後に第 3の領域に移行したときに、 脱調が発生したと判断す るものである。
また、 3ゾーン方式を採用した電力系統の脱調検出装置は、 上記二重 円方式と同様に、あらかじめ 3つの領域(第 1のゾーン、第 2のゾーン、 第 3のゾーン) を設定しておき、 この状態において継電器が見るインピ 一ダンスが緩慢に第 1の
ゾーン、 第 2のゾーン、 第 3のゾーンと移行する際に、 第 2のゾーンに 移動しているときに一定時間を超えた後に、 第 3のゾーンに移行したと きに、 脱調が発生したと判断するものである。
さらに、 送電線の両端電圧の位相差から脱調を検出する方式を採用し た電力系統の脱調検出装置は、 送電線の両端電圧をそれぞれ検出し、 各 検出電圧を伝送手段で他の電圧検出地点に伝送し合い、 両端電圧の位相 角差が 1 8 0度以上になったときに、 当該検出地点において脱調が発生 したと判断するものである。
しかしながら、 インピーダンスの変化から脱調を検出しょうとする電 力系統の脱調検出装置によれば、 各領域を各インピーダンスが通過する 時間差から脱調を検出するものであるが、 インピーダンスが通過する領 域の場合の決め方が困難であり、 領域の決め方によっては、 脱調ではな いのに脱調と判断したり、 脱調が発生しているのに脱調ではないと判断 したりしまうことがあり、 判断の信頼性が悪かった。
また、 インピーダンスの変化から脱調を検出しようとする電力系統の 脱調検出装置によれば、 各領域の通過時間が短い場合には、 脱調と判断 できなくなることがあった。 さらに、 送電線両端電圧の位相差から脱調を検出する電力系統の脱調 検出装置によれば、 送電線の両端電圧を伝送手段で伝送を行う必要があ ることから、 設備費が増大化する。
このような不都合を解消した電力系統の脱調検出装置としては、 電圧 と電流の位相角差の測定間隔毎の変化分を求め、 前記位相格差の測定間 隔毎の変化分が所定の閾値以下のときに、 前記位相角差が脱調判定用位 相角差より大きいときに送電線の両側の電源系統に脱調が発生したと判 断するものである (特開平 1 0— 3 3 6 8 8 3号公報 (以下、 従来技術 という))。
この従来技術の電力系統の脱調検出装置によれば、 従来のようにゾー ンを設定したり、 特別な伝送手段を用いる必要がなく、 母線を含む送電 線の電圧および電流を測定して高い判定精度で脱調を判定することがで きる。
しかしながら、 上述した従来の技術の電力系統の脱調検出装置によれ ば、 特定の位相角差になったときに、 現実に脱調していないのにもかか わらず、 脱調と判断するという不都合があった。 発明の開示 .
本発明は、 上述した不都合を解消し、 電力系統の連係線の両側の発電 機群の間に生ずる脱調を確実に検出できる電力系統の脱調検出方法およ びその装置を提供することを目的としている。
上記目的を達成するために、 請求項 1記載の発明に係る電力系統の脱 調検出方法は、 電圧と電流の位相角差に基づいて送電線の両側の電源系 統に脱調が発生したと判断する電力系統の脱調検出方法において、 電力 '系統の送電線の電圧おょぴ電流を取り込む第 1のステップと、 前記第 1 のステップで得た電圧と電流を基に; 判断時点までの所定区間における 電圧の平均値と電流の平均値を求める第 2のステップと、 前記第 2のス テツプで得た電圧おょぴ電流の平均値の最大値と最小値を求め、 これら 最大値および最小値を記憶しておく第 3のステップと、 前記取り込んだ 電圧および電流から位相角差を求める第 4のステップと、 前記第 4のス テツプで得た位相角差が 9 0度を超えた诗点で、 前記第 2のステップで 得た判断時点の測定電圧の平均値が前記第 3のステップで記憶しておい た電圧の平均値の最小値を中心とした一定の範囲に入っていて、 かつ、 前記第 2のステツプで得た判断時点の測定電流の平均値が前記第 3のス テップで記憶しておいた電流の平均値の最大値を中心とした一定の範囲 に入っているときに、 送電線の両側の電源系統に脱調が発生したと判断 する第 5のステップとを備えたことを特徴とするものである。
上記目的を達成するために、 請求項 2記載の発明に係る電力系統の脱 調検出装置は、 電圧と電流の位相角差に基づいて送電線の両側の電源系 銃に脱調が発生したと判断する電力系統の脱調検出装置において、 電力 系銃の送電線の電圧および電流を取込む電圧およぴ電流取込み手段と、 前記電圧および電流取込み手段で取り込んだ電圧および電流を基に、 判 断時点までの所定区間における電圧の平均値と電流の平均値を求める平 均値算出手段と、 前記平均値算出手段で得た電圧の平均値の最大値およ ぴ最小値を求めるとともに電流の平均値の最大値と最小値を求め、 これ ら最大値おょぴ最小値を記憶しておく最大 ·最小判定記憶手段と、 前記 取り込んだ電圧と流とから位相角差を算出する位相角差演算手段と、 前 記位相角差演算手段から得た位相角差が 9 0度を超えたと判断した場合 に、 その判断時点にける前記平均値算出手段から得た測定電圧の平均値 が前記最大 ·最小判定記憶手段に記憶しておいた電圧の平均値の最小値 を中心した一定の範囲に入っていて、 かつ、 当該判断時点における前記 平均値算出手段から得た測定電流の平均値が前記最大 ·最小判定記憶手 段に記憶しておいた電流の平均値の最大値を中心とした一定の範囲に入 つているときに、 送電線の両側の電源系統に脱調と判断する脱調判定手 段とを備えたことを特徴とするものである。
上記目的を達成するために、 請求項 3記載の発明に係る電力系統の脱 調検出方法は、 電力系統から電圧と電'流を取込み、 これらを基に将来の 電圧と電流の位相角差を推定し、 この推定された位相角差から脱調を推 定し、 その推定結果から脱調と判断する電力系統の脱調検出方法におい て、電力系統の送電線から電圧および電流を取り込む第 1のステップと、 前記第 1のステツプで得た電圧および電流の平均値を算出する第 2のス テツプと、 前記第 2のステップで算出した電圧の平均値の最大値および 最小値を求めるとともに前記第 2のステップで算出した電流の平均値の 最大値と最小値を求め、 これら最大値おょぴ最小値を記憶しておく第 3 のステップと、 前記第 1のステップで得た電圧および電流を基に、 将来 の判断時点の位相角差位相を推定し、 その推定結果から脱調を推定する 第 4のステップと、 将来の判断時点までの所定区間における電圧の平均 値を推定する第 5のステップと、 将来の判断時点までの所定区間におけ る電流の平均値を推定する第 6のステップと、 前記第 4のステップで脱 調と推定された場合に、 前記第 5のステップで推定した電圧の平均値が 前記第 3のステップで記憶しておいた電圧の平均値の最小値を中心とし た一定の範囲に入っていて、 かつ、 前記第 6のステップで推定した電流 の平均値が前記第 3のステップで記憶しておいた電流の平均値の最大値 を中心とした一定の範囲に入っているときに、 送電線の両側の電源系統 に脱調が発生したと判断する第 7のステップとを備えたことを特徴とす るものである。
上記目的を達成するために、 請求項 4記載の発明に係る電力系統の脱 調検出装置は、 電力系統から電圧と電流を取込み、 これらを基に将来の 電圧と電流の位相角差を推定し、 この推定された位相角差から脱調を推 定し、 その推定結果から脱調と判断する電力系統の脱調検出装置にぉ ヽ て、 電力系統の送電線から電圧おょぴ電流を取り込む電圧および電流取 込手段と、 前記電圧おょぴ電流取込手段で得た電圧の平均値を算出する 平均値算出手段と、 前記平均値算出手段で算出した電圧の最大値および 最小値を求めるとともに前記平均値算出手段で算出した電流の平均値の 最大値と最小値を求め、 これら最大値および最小値を記憶しておく最 大 ·最小判定記憶手段と、 将来の判断時点までの所定区間における電圧 の平均値を推定する電圧推定手段と、 将来の判断時点までの所定区間に おける電流の平均値を推定する電流推定手段と、 前記脱調推定手段で脱 調と推定された場合に、 前記電圧推定手段で推定した電圧の平均値が前 記最大 ·最小判定記憶手段で記憶しておいた電圧の平均値の最小値を中 心とした一定の範囲に入っていて、 かつ、 前記電流推定手段で推定した 電流の平均値が前記最大 ·最小判定記憶手段で記憶しておいた電流の平 均値の最大値を中心とした一定の範囲に入っているときに、 送電線の両 側の電源系統に脱調が発生したと判断する脱調判定手段とを備えたこと を特徴とするものである。
また、 請求項 5記載の発明に係る電力系統の脱調検出方法は、 電圧と 電流の位相角差に基づいて送電線の両側の電源系統に脱調が発生したと 判断する電力系統の脱調検出方法において、 電力系銃の送電線の電圧お ょぴ電流を取り込む第 1のステップと、 前記第 1のステップで得た電圧 と電流を基に、 判断時点までの所定区間における電圧の平均値と電流の 平均値を求める第 2のステップと、 前記第 1のステップで得た現在およ ぴ過去の数時点の電圧および電流のを用いて二次関数に模擬した後、 当 該二次関数の係数を推定し、 推定した係数が正で関数が下に凸なら最小 値とし、 推定した係数が負で関数が上に凸なら最大値とし、 これらを記 憶しておく第 3のステップと、 前記取り込んだ電圧および電流から位相 角差を求める第 4のステップと、 前記第 4のステップで得た位相角差が 9 0度を超えた時点で、 前記第 2のステツプで得た判断時点の測定電圧 の平均値が前記第 3のステップで記憶しておいた電圧の最小値を中心と した一定の範囲に入っていて、 かつ、 前記第 2のステップで得た判断時 点の測定電流の平均値が前記第 3のステツプで記憶しておいた電流の最 大値を中心とした一定の範囲に入っているときに、 送電線の両側の電源 系統の間に脱調が発生したと判断する第 5のステップと、 を備えたこと を特徴とする。
さらに、 請求項 6記載に係る発明は、 前記請求項 5記載の発明に係る 電力系統の脱調検出方法において、前記第 3のステップは、係数を A v, B v, C v、 電圧を Vとすると、 V = A v t 2+ B V t + C vと模擬し、 係数を A i, B i, C i、 電流を I とすると、 I = A i t 2+ B i t + C i と模擬し、 最小自乗法によって係数 A v, A iを推定し、 係数 A vが 正で関数が下に凸ならば電圧 Vは最小値とし、 係数 A iが負で関数が上 に凸ならば電流 Iは最小値とし、 それぞれを記憶しておくことを特徴と する。 '
また、 請求項 7記載の発明に係る電力系統の脱調検出装置は、 電圧と 電流の位相角差に基づいて送電線の両側の電源系統に脱調が発生したと 判断する電力系統の脱調検出方法において、 電力系統の送電線の電圧お よぴ電流を取り込む電圧および電流取込み手段と、 前記電圧および電流 取込み手段で得た電圧と電流を基に、 判断時点までの所定区間における 電圧の平均値と電流の平均値を求める平均値算出手段と、 前記電圧およ び電流取込み手段で得た現在および過去の数時点の電圧および電流のを 用いて二次関数に模擬した後、 当該二次関数の係数を推定し、 推定した 係数が正で関数が下に凸なら最小値とし、 推定した係数が負で関数が上 に凸なら最大値とし、これらを記憶しておく最大 ·最小推定記憶手段と、 前記取り込んだ電圧および電流から位相角差を求める位相角差演算手段 と、 前記位相角差演算手段で得た位相角差が 9 0度を超えた時点で、 前 記平均値算出手段で得た判断時点の測定電圧の平均値が前記最大 ·最小 推定記憶手段で記憶しておいた電圧の最小値を中心とした一定の範囲に 入っていて、 かつ、 前記平均値算出手段で得た判断時点の測定電流の平 均値が前記前記最大 ·最小推定記憶手段で記憶しておいた電流の最大値 を中心とした一定の範囲に入っているときに、 送電線の両側の電源系統 の間に脱調が発生したと判断する脱調判定手段と、 を備えたことを特徴 とする。
さらに、 請求項 8記載の発明は、 前記請求項 7記載の発明に係る電力 系統の脱調検出装置において、 前記最大 ·最小推定記憶手段は、 係数を A V , B V , C v、 電圧を Vとすると、 V = A v t 2+ B v t + C v と 模擬し、 係数を A i , B i, C i、 電流を I とすると、 I = A i t 2+ B i t + C i と模擬し、 最小自乗法によって係数 A v, A iを推定し、 係数 A vが正で関数が下に凸ならば電圧 Vは最小値とし、 係数 A iが負 で関数が上に凸ならば電流 Iは最大値とし、 それぞれを記憶しておくこ とを特徴とする。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る電力系統の脱調検出装置 を含む電力系統全体を示すプロック図である。
第 2図は、 本発明の第 1の実施の形態に係り、 図 1に示すデジタル演 算処理装置によって実現された電力系統の脱調検出装置の機能プロック を示すプロック図である。
第 3図は、 本発明の第 1の実施の形態に係る電力系統の脱調検出装置 で処理される電圧および電流のサンプリング状態を説明するための図で ある。
第 4図は、 本発明の第 1の実施の形態に係わり、 電力系統において脱 調発生前後の発電機内部電圧および母線電圧 ·送電線電流などのべク ト ル関係を説明するための図である。
第 5図は、 本発明の第 1の実施の形態に係る電力系統の脱調検出装置 ,において処理される脱調判定を説明するための図である。
第 6図は、 本発明の第 2の実施の形態に係る電力系統の脱調検出装置 を含む系統全体を示す図である。
第 7図は、 本発明の第 3の実施の形態に係る電力系統の脱調検出装置 を含む系統全体を示す図である。
第 8図は、 本発明の第 3の実施の形態に係る海産物の貯蔵方電力系統 の脱調検出装置の動作を説明するための特性図である。 ' 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて説明する。
[第 1の実施の形態 (請求項 1および 2に相当)]
図 1ないし図 5は本発明の第 1の実施の形態に係る電力系統の脱調検 出方法および電力系統の脱調検出装置を説明するためのものである。
ここで、 図 1は、 本発明の第 1の実施の形態に係る電力系統の脱調検 出装置を含む電力系統全体を示すプロック図である。この図 1において、 電力系統 1 aは母線 2 aを介して送電線 3の一端に接続され、 また、 電 力系統 1 bは母線 2 bを介して送電線 3の他端に接続されることにより、 二つの電力系統 l a, 1 bが送電線 3で連係されることになる。 また、 送電線 3に付した記号 u, , wは相の名称をであり、 uは u相を、 V は V相を、 Wは W相を示している。 ここで、 u相, v相, w相の母線 2 aに電圧変成器 4 u, 4 v, 4 w の一次卷線を接続することにより、 電圧変成器 4 u, 4 V , 4 wの二次 巻線から送電線 3の電圧 Vu, V V , Vwに比例した所定の電圧信号を 取り出すことができる。 また、 u相, V相, w相の母線 2 aに変流器 5 u, 5 V , 5wの一次側を設置することにより、 変流器 5 u, 5 v, 5 wの二次巻線から送電線 3に流れる電流 I u, I v, I wに比例した所 定の電流信号を取り出すことができる。 前記各電圧変成器 4 u, 4 V , 4 wの二次卷線と、 前記各変流器 5 u, 5 v, 5wの二次卷線とは電力 系統の脱調検出装置 6の入力部に接続されている。
前記電力系統の脱調検出装置 6は、 大別して、 電圧および電流取込み 手段であるアナログ ·デジタル変換装置 7と、 電力系統の脱調検出プロ グラムを実行し前記アナログ ·デジタル変換装置 7から得た電圧 ·電流 デジタルデータに基づいて脱調を判断するデジタル演算処理装置 9とか ら構成されている。
アナログ,デジタル変換装置 7は、 前記各電圧変成器 4 u, 4 V , 4 wの二次卷線から得られた電圧信号を取込み、 ノイズ等を除去して電圧 信号の基本成分を取り出す電圧用フィルタ 7 1 u, 7 1 V , 7 1 wと、 前記各変流器 5 u , 5 V , 5 wの二次卷線から得られた電流信号を取込 み、 ノイズ等を除去して電流の基本成分を取り出す電流用フィルタ 7 2 u, 7 2 V , 72 wと、 電圧用フィルタ 7 1 u, 7 1 v , 71 wから得 られた電圧の基本成分をサンプルホールド指令時点でサンプルホールド し当該サンプルホールドした電圧値をデジタル信号に変換する電圧用 A ZD変換手段 73 u, 73 V , 73 wと、 電流用フィルタ 72 u, 72 V , 7 2 wから得られた電流の基本成分をサンプルホールド指令時点で サンプルホールドし当該サンプルホールドした電流値をデジタル信号に 変換する電流用 A/D変換手段 74 u, 74 V , 74 wとから構成され ている。 なお、 以下では、 説明を簡単にするため、 1相のみについて説 明する。
前記デジタル演算処理装置 9は、 少なくとも、 各種の演算処理を実行 する処理装置本体 9 1と、 所定のデータ入力に使用するキーボード 9 2 と、 所定の指令などを行うためのマウス 9 3と、 前記処理装置本体 9 1 で処理された結果を表示するディスプレイ 9 4とから構成されている。 前記処理装置本体 9 1は、 各種演算処理を行う中央演算処理ュニット 1 1と、 オペレーティングシステムや電力系統の脱調検出プログラムや 各種一時データを記憶する主メモリ 1 2と、 入力装置用インターフエ一 ス 1 3と、 オペレーティングシステム等を主メモリ 1 2に展開したり入 出力デバイスの読み込みを行わせる基本プログラムが格納された R OM 1 4と、 ハードディスク用インターフェース 1 5と、 オペレーティング システムや各種プログラム等を格納するハードディスク装置 1 6と、 A /D変'換用ィンターフェース 1 7と、 ディスプレイ用ィンターフェース 1 8と、 これらを接続するパスライン 1 9とから構成されている。
電圧用 A/D変換手段 7 3 u, 7 3 V , 7 3 wおよび電流用 AZD変 換手段 7 4 u, 7 4 V , 7 4 wは、 A/D変換用インターフェース 1 7 に接続されている。 キーボード 9 2およびマウス 9 3は、 入力装置用ィ ンターフェース 1 3に接続されている。 ハードディスク装置 1 6は、 ハ ードディスク用インターフェース 1 5に接続されている。 ディスプレイ 9 4は、 ディスプレイ用ィンターフェース 1 8に接続されている。
ハードディスク装置 1 6には、 オペレーティングシステムと、 本発明 の電力系統の脱調検出方法および電力系統の脱調検出装置を実現させる ための電力系統の脱調検出プログラムとが格納されている。
また、 ハードディスク装置 1 6からオペレーティングシステムと、 前 記電力系統の脱調検出プログラムとを読出して主メモリ 1 2に展開し、 これらプログラムを中央演算処理ュニット 1 1が実行することにより、 以下に説明する電力系統の脱調検出装置が実現され、 これにより電力系 銃の脱調検出方法も実現される。
図 2は、 図 1に示すデジタル演算処理装置によって実現された電力系 銃の脱調検出装置の機能プロックを示すプロック図である。 この図 2に おいて、 図 1と同一構成要素は同一の符号を付して説明を省略する。 この電力系統の脱調検出装置 6は、 既に説明したが、 電力系統 1 aの 送電線 3の電圧および電流を母線 2 aから取込む電圧および電流取込み 手段であるアナログ ·デジタル変換装置 7と、 前記アナログ ·デジタル 変換装置 7からのデジタル信号を取込み電力系統の脱調検出プログラム を実行するデジタル演算処理装置 9とから構成されている。
'デジタル演算処理装置 9は、 電力系統の脱調検出プログラムを実行す ることにより、 前記アナログ ·デジタル変換装置 7で取り込んだ電圧お よび電流を記憶するサンプリングデータ記憶手段 9 5と、 前記サンプリ ングデータ記憶手段 9 5からのデータを取り出し判断時点までの所定区 間における電圧の平均値と電流の平均値を測定する平均値算出手段 9 6 と、 前記平均値算出手段 9 6で得た電圧の平均値の最大値および最小値 を求めるとともに電流の平均値の最大値と最小値を求め、 これら最大値 および最小値を記憶しておく最大 ·最小判定記憶手段 9 7と、 前記取り 込んだ電圧おょぴ電流から実効電圧および実効電流を求め、 これら実効 電圧および実効電流に基づいて位相角差を算出する位相角差演算手段 9 8と、 この位相角差演算手段 9 8の出力のうち、 実効値を記憶する実効 値データ記憶手段 9 9と、 前記位相角差演算手段 9 8からの位相角差を 記憶する位相角差データ記憶手段 1 0 0と、 前記位相角差データ記憶手 段 1 0 0からの位相角差を取込み、 当該位相角差が 9 0度を超えたと判 断した場合に、 その判断時点にける前記平均値算出手段 9 5から得た現 02 12636
13 在の測定電圧の平均値が前記最大 ·最小判定手段 9 7に記憶しておいた 電圧の平均値の最小値を中心した一定の範囲に入っていて、 かつ、 当該 判断時点における前記平均値算出手段 9 5から得た現在の測定電流の平 均値が前記最大 ·最小判定手段 9 7に記憶しておいた電流の平均値の最 大値を中心とした一定の範囲に入っているときに、 送電線の両側の電源 系統に脱調と判断する脱調判定手段 1 0 1とからなる。
なお、 サンプリングデータ記憶手段 9 5、 最大 ·最小判定手段 9 7の 記憶エリアおよび実効値データ記憶手段 9 9は、 デジタル演算処理装置 9が動作中の場合であって最新値は主メモリ 1 2上に作成されており、 一定時間経過した後には、 ハードディスク装置 1 6の所定のエリアに作 成されている。
このように構成された電力系統の脱調検出装置の動作を図 1およぴ図 2を基に、 図 3ないし図 5を参照して説明する。
図 3は、 本発明の第 1の実施の形態に係る電力系統の脱調検出装置で 処理される電圧おょぴ電流のサンプリング状態を説明するための図であ り、 横軸には時刻 tを、 縦軸には電圧 Vおよび電流 Iが取られている。 図 4は、 電力系統において脱調発生前後の発電機内部電圧おょぴ母線電 圧'送電線電流などのべク トル関係を説明するための図である。図 5は、 本発明の第 1の実施の形態に係る電力系統の脱調検出装置において処理 される脱調判定を説明するための図であり、 横軸には時刻 t力 S、 縦軸に は、 位相角差 Δ 0、 電圧 Vおよび電流 Iがそれぞれ取られている。
電圧用フィルタ 7 1 u, 7 1 V , 7 1 wは、各電圧変成器 4 u , 4 v , 4 wを介して得られる電圧を取込み、 ノイズ成分や高周波成分を除去し 基本波成分を電圧用 AZD変換手段 7 3 u , 7 3 V , 7 3 wに送出する。 同様に、 電流用フィルタ 7 2 u, 7 2 V , 7 2 wは、 各変流器 5 u, 5 V , 5 wを介して得られた電流を取込み、 ノイズ成分や高周波成分を除 去し基本波成分を電流用 A/D変換手段 7 4 u, 7 4 V , 7 4 wに送出 する。 以下では、 1相分についてのみに着目して説明するものとする。 デジタル演算処理装置 9からのサンプリング指令(例えば 6 0 0 [Hz] でサンプリング) を電圧用 A/ D変換手段 7 3 uおよび電流用 AZD変 換手段 7 4 uが受信すると、 図 3に示すように 3 0度毎に電圧サンプル 値 Vm- 2, Vm- 1 , Vm, …が電圧用 AZD変換手段 7 3 uで、 電流サ ンプル値 I m- 2, I m- 1 , I m, …が電流用 A,D変換手段 7 4 uでサ ンプリングされる。 このサンプリング値は、 電圧用 A/D変換手段 7 3 uでデジタル電圧に、 電流用 AZD変換手段 7 4 uでデジタル電流に、 それぞれ変換される。 ここで、 図 2において、 mは現在のサンプリング 時点、 m— 1は一つ前のサンプリング時点、 m— 2は前々回のサンプリ ング時点をそれぞれ示している。
これら電圧用 A/D変換手段 7 3 uからのデジタル電圧おょぴ電流用 AZD変換手段 7 4 uからのデジタル電流は、 サンプリングデータ記憶 手段 9 5に格納される。なお、電圧用 A/D変換丰段 7 3 V, 7 3 wも、 電流用 A/D変換手段 7 4 V , 7 4 wも同様にサンプリングデータ記憶 手段 9 5に格納される。
位相角差演算手段 9 8は、 サンプリングデータ記憶手段 9 5から前回 と今回の電圧 Vm- 1 , Vm と、 電流 I m- 1, I m とを取り出し、 次の 数式 (1 ) , ( 2 ) に基づいて電圧実効値 Vと電流実効値 Iを求める。
V 2 = Vm2 + Vm- 1 2 … ( 1 )
I 2 = I m2 + I m- 1 2 … ( 2 )
上記数式により位相角差演算手段 9 8で算出された電圧実効値 Vと電 流実効値 Iは、 実効値データ記憶'手段 9 9に格納される。
—方、平均値算出手段 9 6は、サンプリングデータ記憶手段 9 5から 所定の期間の電圧および電流を取り出し、 判断時点までの所定区間にお ける電圧の平均値 Vhと電流の平均値 I hを算出し、 最大 ·最小判定手 段 97に与える。
最大 ·最小判定手段 9 7は、 前記平均値算出手段 9 6で得た電圧の平 均値の最大値 Vhmax および最小値 Vhmin を求めるとともに電流の平 均値の最大値 I hmax および最小値 I hmin を求め、 これら最大値(V hmax, I hmax)および最小値 (Vhmin, I hminjを記憶する。
また、 位相角差演算手段 9 8は、 実効値データ記憶手段 9 9に記憶さ れている電圧 Vおよび電流 Iを基に下記数式 (4) から位相角差を算出 する。 この数式(4) で位相角差が算出できる理由を説明する。 ここで、 位相角差を 0 とすると、 電圧および電流の間ではと、 次の数式 (3) が 成立する。
V I cos ( Θ ) =VmX I m+ Vm-3X I m-3 … (3) この数式 (3) を変形すると、
Θ =arc cos {(VmX I m+ Vm-3X I m-3)÷V I } ■·· (4) となり、 数式 (4) から位相角差 0が算出できることが分かる。
この位相角差演算手段 9 8で順次算出された位相角差 Θは、 位相角差 データ記憶手段 1 0 0に格納される。
次に、 図 4を参照して位相角差 0と図 1に示す電力系統 1 a , l bと の関係を説明する。 まず、 二つの電力系統 l a, l bは送電線 3で連係 されているので、 これの説明を簡単にするために、 図 4 (a) に示すよ うに、 発電機 Gおよび発電機 Sとなる電力系統とする。 また、 発電機 G の内部電圧を EG、 発電機 Sの内部電圧を ES とする。 また、 母線 2 a を Nで表し、 母線 Nの電圧を Vとし、 かつ、 送電線を TL とし、 送電線 TLの電流を I とする。 以上の約束の基に、 電力系統の条件に応じて図 4 (b) ないし図 4 (d) の関係が成立する。
脱調前では、 定常状態あるいは動揺中のいずれでも脱調となる前であ れば、 図 4 (b) に示すように、 両発電機 G, Sの内部電圧 EG, ES の間の位相角差 Θは、 1 80度以内である。 また、 一般に、 送電線 TL の抵抗値はリアクタンス値と比較してきわめて小さいので、 抵抗を無視 するものとする。
このとき、 電流 I と発電機 G, Sの間の電位差 (EG— ES) はほぼ直 交する。 言い換えれば、 ノード Nの電圧 Vと電流 I との位相角差 0は 9 0度以下となる。
次に、 脱調時点では、 図 4 (c) に示すように、 発電機 G, Sの間の電 圧 EG, ES の位相角差が拡大し、 1 80度となると、 脱調と判断する 時点では母線電圧 Vと送電線電流 Iは直交し、 位相角差 Θは 90度とな る。
さらに、 脱調した後では、 図 4 (d) に示すように、 両発電機 G, Sの 間の電圧 EG, ES は 1 80度を超え、 母線電圧 Vと送電線電流 I との 位相角差 0は 90度以上になり、 脱調となる。
この図 4に示すベク トル関係は、 発電機 G, Sの電圧 EG, ES を用 いたが、 送電線 3の両端の母線 2 a, 2 bの電圧関係でも同じである。
したがって、 脱調判定手段 1 01は、 上述した関係を利用し、 位相角 差データ記憶手段 1 00から取り出した位相角差データを基に、 図 5に 示すように、 当該位相角差 Θが 90度を超えたと判断した場合に、 その 判断時点 tr にける前記平均値算出手段 96から得た現在時点の測定電 圧の平均値 Vhが前記最大 ·最小判定手段 97に記憶しておいた電圧の 平均値の最小値 Vhmin を中心した一定の範囲に入っていて、 かつ、 当 該判断時点 tr における前記平均値算出手段 96から得た現時点の測定 電流の平均値 I h が前記記憶しておいた電流の平均値の最大値 I hmax を中心とした一定の範囲に入っているときに、 送電線 3の両側の電源系 統 l a, 1 bに脱調が発生したと判断している。 したがって、 本発明の第 1の実施の形態によれば、 上述したとおり、 電圧 Vの平均値 Vhの最大値 Vhmaxおよび最小値 Vhminを求めるとと もに電流 Iの平均値' I hの最大値 I hmaxと最小値 I hminを求め、これ ら最大値および最小値を記憶しておき、 前記電圧 Vおよび電流 Iから位 相角差 Θを求め、 当該位相角差 øが 9 0度を Mえた場合に、 測定電圧の 平均値 Vh が前記記憶しておいた電圧 Vの平均値の最小値 Vhmin を中 心とした一定の範囲に入っていて、 かつ、 当該判断時点の測定電流 Iの 平均値 I hが前記記憶しておいた電流の平均値の最大値 I hmax を中心 とした一定の範囲に入っているときに、 送電線の両側の電源系統に脱調 が発生したと判断しているので、 9 0度の時点で脱調が確実に判定でき、 かつ、 あらかじめゾーンの設定や、 通信網を用いることなく、 確実に母 線を含む送電線の両端の発電機群の脱調を検出することができる。
[第 2の実施の形態 (請求項 3および 4に相当)]
図 6は、 本発明の第 2の実施の形態に係る電力系統の脱調検出装置を 含む系統全体を示す図である。
本発明の第 2の実施の形態に係る電力系統の脱調検出装置 6 aでも、 図 1に示すハードウェアを利用する。 すなわち、 この第 2の実施の形態 に係る電力系統の脱調検出装置 6 aは、 アナログ ·デジタル変換装置 7 と、 デジタル演算処理装置 9 aとから構成されることになる。
この第 2の実施の形態に係る電力系統の脱調検出装置 6 aが第 1の実 施の形態に係る電力系統の脱調検出装置 6と異なるところは、 デジタル 演算処理装置 9 aが第 2の実施の形態を 4実現するための電力系統の脱 調検プログラムを実行することにより、 実現される点にある。 したがつ て、 第 1の実施の形態と同一の構成要素には同一の符号を付して説明を 省略する。
この第 2の実施の形態に係る電力系統の脱調検出装置 6 aのデジタル 演算処理装置 9 aは、 図 6に示すように、 サンプリングデータ記憶手段 9 5 .と、 平均値算出手段 9 6と、 最大 ·最小判定記憶手段 9 7と、 位相 角差演算手段 9 8と、 実効値データ記憶手段 9 9と、 位相角差データ記 憶手段 1 0 0と、 前記位相角差データ記憶手段 1 0 0から順次取り出し たデータを基に、 将来の判断時点の位相角差位相を推定し、 その推定結 果から脱調を推定する脱調推定手段 1 0 5と、 前記平均値算出手段 9 6 から順次取り出した電圧データを基に判断時点の電圧の平均値を推定す る電圧推定手段 1 0 6と、 前記平均値算出手段 9 6から順次読み出した 電流データを基に判断時点の電流の平均値を推定する電流推定手段 1 0 7と、 前記脱調推定手段 1 0 5によって判断時点で脱調と推定された場 合に、 前記推定した電圧の平均値が前記最大 ·最小判定記憶手段 9 7に 記憶しておいた電圧の平均値の最小値を中心とした一定の範囲に入って いて、 かつ、 前記予測した電流の平均値が前記最大 ·最小判定記憶手段 9 7に記憶しておいた電流の平均値の最大値を中心とした一定の範囲に 入っているときに、 送電線の両側の電源系統に脱調が発生したと判断す る脱調判定手段 1 0 8とから構成されている。
脱調推定手段 1 0 5は、 過去の複数時点の位相角差を用いて、 位相角 差が例えば二次予測式であれば、 二次予測式のパラメータを推定する位 相格差パラメータ推定手段 1 0 5 1と、 この位相格差パラメータ推定手 段 1 0 5 1で推定されたパラメータを持つ二次予測式で、 将来の時刻に 対する位相角差 0を予測する位相角差予測手段 1 0 5 2と、 前記位相角 差予測手段 1 0 5 2で予測される位相角差 ø と脱調判定用位相角差 Θ c とを用いて脱調を予測する脱調予測手段 1 0 5 3とからなる。
このように構成された電力系統の脱調検出装置 6 aの動作を説明する。 母線 2 aの電圧おょぴ電流を取込み、 アナログ 'デジタル変換装置 7 でデジタル電圧およぴデジタル電流に順次変換し、 デジタル演算処理装 置 9 aのサンプリングデータ記憶手段 9 5に記憶させる。
また、このサンプリングデータ記憶手段 9 5から順次読み出した電圧お よび電流を基に、 位相角差演算手段 9 8で数式 (1 ) および (2 ) に基 づいて実効電圧 Vおよび実効電流 Iを算出し、 実効値データ記憶手段 9 9に格納する。
位相角差演算手段 9 8は、 実効値データ記憶手段 9 9から順次読み出 された実効電圧 Vおよび実効電流 Iを基に、 数式 (4 ) により位相角差 6を算出し、 位相角差データ記憶手段 1 0 0に記憶させる。
一方、 サンプリングデータ記憶手段 9 5から順次デジタル電圧および デジタル電流を読出し、 平均値算出手段 9 6により所定期間の電圧の平 均値および電流の平均値を算出し、 最大 ·最小判定記憶手段 9 7に与え る。 最大 ·最小判定記憶手段 9 7は、 電圧および電流の平均値の最大値 および最小値をそれぞれ求め、 記憶しておく。
また、 電圧推定手段 1 0 6は、 前記平均値算出手段 9 6から得られた 電圧の平均値の過去の推移から将来の判断時点の電圧の平均値を推定し、 脱調判定手段 1 0 8に与える。
同様に、 電 推定手段 1 0 7は、 前記平均値算出手段 9 6から得られ た電流の平均値の過去の推移から将来の判断時点'の電圧の平均値を推定 し、 脱調判定手段 1 0 8に与える。
さらに、 最大 ·最小判定記憶手段 9 7に記憶されていた電圧の平均値 の最小値と、 電流の平均値の最大値とは、 脱調判定手段 1 0 8に与えら れる。
また、脱調推定手段 1 0 5の位相格差パラメータ推定手段 1 0 5 1によ り、 過去の複数時点の位相角差を用いて、 位相角差が例えば二次予測式 であれば、 二次予測式のパラメータを推定し、 この位相格差パラメータ 推定手段 1 0 5 1で推定されたパラメータを持つ二次予測式で位相角差 予測手段 1 0 5 2により、将来の判定時刻に対する位相角差 0を予測し、 前記位相角差予測手 1 0 5 2で予測される位相角差 0と脱調判定用位 相角差 Θ cとを用いて脱調予測手段 1 0 5 3で脱調を予測し、 その予測 結果を脱調判定手段 1 0 8に与える。
脱調判定手段 1 0 8は、 前記脱調推定手段 1 0 5によって判断時点で 脱調と推定された場合に、 前記電圧推定手段 1 0 6で推定した電圧の平 均値が前記最大 ·最小判定記憶手段 9 7に記憶しておいた電圧の平均値 の最小値を中心とした一定の範囲に入っていて、 かつ、 前記電流推定手 段 1 0 7で予測した電流の平均値が前記最大 ·最小判定記憶手段 9 7に 記憶しておいた電流の平均値の最大値を中心とした一定の範囲に入って いるときに、 送電線の両側の電源系統に脱調が発生したと判断する。 このように第 2の実施の形態によれば、将来の判断時点での位相角差、 電圧およぴ電流を用いることにより脱調を早めに予測できるので、 脱調 による弊害に早めに対処できる。
[第 3の実施の形態 (請求項 5ないし 8に相当)]
図 7および図 8は、 本発明の第 3の実施の形態を説明するためのもの である。 ここに、 図 7は、 本発明の第 3の実施の形態に係る電力系統の 脱調検出装置を含む系統全体を示す図である。
本発明の第 3の実施の形態に係る電力系統の脱調検出装置 6 bでも、 図 1に示すハードウェアを利用する。 すなわち、 この第 3の実施の形態 に係る電力系統の脱調検出装置 6 bは、 アナログ 'デジタル変換装置 7 と、 デジタル演算処理装置 9 bとから構成されることになる。
前記デジタル演算処理装置 9 bは、 電力系統の脱調検出プログラムを 実行することにより、 前記アナログ ·デジタル変換装置 7で取り込んだ 電圧および電流を記憶するサンプリングデータ記憶手段 9 5と、 前記電 圧および電流取込み手段で得た電圧と電流を基に、 判断時点までの所定 6
21 区間における電圧の平均値と電流の平均値を求める平均値算出手段 9 6 と、 前記サンプリングデータ記憶手段 9 5からの電圧のデータおょぴ電 流のデータを取り出し、 当該電圧データおよび電流データをそれぞれ二 次関数の形式に模擬し、 当該二次関数の係数を推定し、 係数が負で関数 が下に凸ならば最小値あるいは係数が正で関数が上に凸なら最大値と推 定し記憶する最大 ·最小推定記憶手段 1 3 0と、 前記取り込んだ電圧お よび電流から電圧実効値および電流実効値を求め、 これら電圧実効値お よび電流実効値に基づいて位相角差を算出する位相角差演算手段 9 8と、 この位相角差演算手段 9 8の出力のうち、 実効値を記憶する実効値デー タ記憶手段 9 9と、 前記位相角差演算手段 9 8からの位相角差を記憶す る位相角差データ記憶手段 1 0 0と、 前記位相角差データ記憶手段 1 0 0からの位相角差を取込み、 当該位相角差が 9 0度を超えたと判断した 場合に、 その判断時点にける前記平均値算出手段 9 5から得た現在の測 定電圧の平均値が前記最大 ·最小推定記憶手段 1 3 0に記憶しておいた 電圧の最小値を中心した一定の範囲に入っていて、 かつ、 当該判断時点 における前記平均値算出手段 9 5から得た現在の測定電流の平均値が前 記最大 ·最小推定記憶手段 1 3 0に記憶しておいた電流の最大値を中心 とした一定の範囲に入っているときに、 送電線の両側の電源系統に脱調 と判断する脱調判定手段 1 0 1とからなる。
ここで、 前記最大 ·最小推定記憶手段 1 3' 0は、
係数を A v , Β V , C v、 電圧を Vとすると、
V = A V t 2+ B v t + C v … (5 ) 数式 5のように模擬し、
係数を A i , B i, C i、 電 ^を I とすると、
I = A i 1 2+ B i t + C i ··■ ( 6 ) 数式 (6 ) のように模擬し、 これら数式に最小自乗法を適用して係数 A v, A iを推定し、 係数 A Vが正で関数が下に凸ならば電圧 Vは最小値とし、 係数 A iが 負で関数が上に凸ならば電流 Iは最大値とし、 それぞれを記憶する。 上述したように構成された第 3の実施の形態の動作を図 8を参照して 説明する。 ここに、 図 8は、 本発明の第 3の実施の形態に係る海産物の 貯蔵方電力系統の脱調検出装置の動作を説明するための特性図であり、 横軸に時間 tを、 縦軸に電圧 Vを、 それぞれ取ったものである。
まず、 サンプリングデータ記憶手段 9 5には、 アナログ 'デジタル変 • 換装置 7を介して電力系統 1 aの送電線 (母線 2 a ) から電圧おょぴ電 流が取り込まれる。
前記平均値算出手段 9 6は、 前記サンプリングデータ記憶手段 9 5に 格納されている電圧と電流を基に、 判断時点までの所定区間における電 圧の平均値と電流の平均値を求める。
前記最大 ·最小推定記憶手段 1 3 0は、次のように電圧の最大値あるい 'は電流の最小値を推定し、記憶している。すなわち、図 8に示すように、 現在時刻を t kとすると、一定時間間隔の過去の数時点 t k-n, t k-2, t k-1 , t kで測定した電圧値 Vk-n, …, Vk-2 , Vk-l, Vk を用いて、 上 記数式 5の二次関数の形の式の係数 A Vを、 最小自乗法で推定する。 そして、 推定した係数 A Vが推定した係数が正で関数が下に凸なら最 小値とし、 推定した係数が負で関数が上に凸なら最大値とし、 これらを 記憶する。 電流 Iについても、 上述同様に計算し、 記憶しておく。
前記位相角差演算手段 9 8は、 前記サンプリングデータ記憶手段 9 5 に格納されている電圧および電流から電圧実効値おょぴ電流実効値を求 め、これら電圧実効値および電流実効値に基づいて位相角差を算出する。 前記脱調判定手段 1 0 1は、 前記位相角差演算手段 9 8で得た位相角 差が 9 0度を超えたと判定すると、 その時点において前記平均値算出手 段 9 6で得た判断時点の測定電圧の平均値が前記最大 ·最小推定記憶手 段 1 3 0で記憶しておいた電圧の最小値を中心とした一定の範囲に入つ ていて、 かつ、 前記平均値算出手段 9 6で得た判断時点の測定電流の平 均値が前記最大 ·最小推定記憶手段 1 3 0で記憶しておいた電流の最大 値を中心とした一定の範囲に入っているときに、 送電線の両側の電源系 統の閬に脱調が発生したと判断している。
このような第 3の実施の形態によっても、 電圧変動の波形あるいは電 流変動の波形の傾向に従った電圧および電流の傾きを用いることにより、 電力系統の傾向に基づく脱調を早めに検出でき、 脱調による弊害に早め に対処できる。 産業上の利用可能性
請求項 1および 2記載の発明によれば、 従来のようにゾーンを推定し たり、 特別な伝送手段を用いることなく、 母線を含む送電線の電圧およ び電流を測定して高い判定精度で脱調を判定でき、 かつ、 特定な条件に なっても確実に脱調を判定することができる。
請求項 3および 4記載の発明によれば、 過去のデータから判断時点ま での位相角差、 電圧および電流を推定するこ ^により、 早めに脱調を判 断できるので、 脱調が発生に伴う弊害を早め対処することができる。
請求項 5ないし 8記載の発明によれば、 従来のようにゾーンを推定し たり、 特別な伝送手段を用いることなく、 母線を含む送電線の電圧およ び電流を測定して高い判定精度で脱調を判定でき、 かつ、 特定な条件に なっても確実に脱調を判定することができるほか、 電力系統の傾向に基 づく判定ができる。

Claims

請 求 の 範 囲
1 . 電圧と電流の位相角差に基づいて送電線の両側の電源系統に脱調が 発生したと判断する電力系統の脱調検出方法において、 電力系統の送電 線の電圧おょぴ電流を取り込む第 1のステップと、 前記第 1のステップ で得た電圧と電流を基に、 判断時点までの所定区間における電圧の平均 値と電流の平均値を求める第 2のステップと、 前記第 2のステツプで得 た電圧おょぴ電流の平均値の最大値と最小値を求め、 これら最大値およ • び最小値を記憶しておく第 3のステップと、 前記取り込んだ電圧および 電流から位相角差を求める第 4のステップと、 前記第 4のステップで得 た位相角差が 9 0度を超えた時点で、 前記第 2のステップで得た判断時 点の測定電圧の平均値が前記第 3のステップで記憶しておいた電圧の平 均値の最小値を中心とした一定の範囲に入っていて、 かつ、 前記第 2の ステップで得た判断時点の測定電流の平均値が前記第 3のステップで記 憶しておいた電流の平均値の最大値を中心とした一定の範囲に入ってい るときに、 送電線の両側の電源系統の間に脱調が発生したと判断する第 5のステップと、 を備えたことを特徴とする電力系統の脱調検出方法。
2 . 電圧と電流の位相角差に基づいて送電線の両側の電源系統に脱調が 発生したと判断する電力系統の脱調検出装置において、 電力系統の送電 線の電圧および電流を取込む電圧および電流取込み手段と、 前記電圧お よび電流取込み手段で取り込んだ電圧および電流を基に、 判断時点まで の所定区間における電圧の平均値と電流の平均値を求める平均値算出手 段と、 前記平均値算出手段で得た電圧の平均値の最大値および最小値を 求めるとともに電流の平均値の最大値と最小値を求め、 これら最大値お ょぴ最小値を記憶しておく最大 ·最小判定記憶手段と、 前記取り込んだ 電圧と流とから位相角差を算出する位相角差演算手段と、 前記位相角差 演算手段から得た位相角差が 9 0度を超えたと判断した場合に、 その判 断時点にける前記平均値算出手段から.得た測定電圧の平均値が前記最 大 ·最小判定記憶手段に記憶しておいた電圧の平均値の最小値を中心し た一定の範囲に入っていて、 かつ、 当該判断時点における前記'平均値算 •出手段から得た測定電流の平均値が前記最大 ·最小判定記憶手段に記憶 しておいた電流の平均値の最大値を中心とした一定の範囲に入っている ときに、 送電線の両側の電源系統の間が脱調したと判断する脱調判定手 段と、 を備えたことを特徴とする電力系統の脱調検出装置。
3 . 電力系統から電圧と電流を取込み、 これらを基に将来の電圧と電流 の位相角差を推定し、 この推定された位相角差から脱調を推定し、 その 推定結果から脱調と判断する電力系統の脱調検出方法において、 電力系 銃の送電線から電圧および電流を取り込む第 1のステップと、 前記第 1 のステップで得た電圧および電流の平均値を算出する第 2のステップと、 前記第 2のステップで算出した電圧の平均値の最大値および最小値を求 めるとともに前記第 2のステップで算出した電流の平均値の最大値と最 小値を求め、 これら最大値および最小値を記憶しておく第 3のステップ と、 前記第 1のステップで得た電圧および電流を基に、 将来の判断時点 の位相角差位相を推定し、 その推定結果から脱調を推定する第 4のステ ップと、 将来の判断時点までの所定区間における電圧の平均値を推定す る第 5のステップと、 将来の判 llf時点までの所定区間における電流の平 均値を推定する第 6のステップと、 前記第 4のステップで脱調と推定さ れた場合に、 前記第 5のステップで推定した電圧の平均値が前記第 3の ステップで記憶しておいた電圧の平均値の最小値を中心とした一定の範 · 囲に入っていて、 かつ、 前記第 6のステップで推定した電流の平均値が 前記第 3のステップで記憶しておいた電流の平均値の最大値を中心とし た一定の範囲に入っているときに、 送電線の両側の電源系統に脱調が発 生したと判断する第 7のステップと、 を備えたことを特徴とする電力系 統の脱調検出方法。
4 . 電力系統から電圧と電流を取込み、 これらを基に将来の電圧と電流 の位相角差を推定し、 この推定された位相角差から脱調を推定し、 その
.推定結果から脱調と判断する電力系統の脱調検出装置において、 電力系 銃の送電線から電圧およぴ電流を取り込む電圧およぴ電流取込手段と、 前記電圧および電流取込手段で得た電圧の平均値を算出する平均値算出 手段と、 前記平均値算出手段で算出した電圧の最大値および最小値を求
5 めるとともに前記平均値算出手段で算出した電流の平均値の最大値と最 小値を求め、 これら最大値および最小値を記憶しておく最大 ·最小判定 記憶手段と、 将来の判断時点までの所定区間における電圧の平均値を推 定する電圧推定手段と、 将来の判断時点までの所定区間における電流の 平均値を推定する電流推定手段と、 前記脱調推定手段で脱調と推定され 0 た場合に、 前記電圧推定手段で推定した電圧の平均値が前記最大 ·最小 判定記憶手段で記憶しておいた電圧の平均値の最小値を中心とした一定 の範囲に入っていて、 かつ、 前記電流推定手段で推定した電流の平均値 が前記最大 ·最小判定記憶手段で記憶しておいた電流の平均値の最大値 を中心とした一定の範囲に入っているときに、 送電線の両側の電源系統 5 に脱調が発生したと判断する脱調判定手段と、 を備えたことを特徴とす る電力系統の脱調検出装置。 ·
5 . 電圧と電流の位相角差に基づいて送電線の両側の電源系統に脱調が 発生したと判断する電力系統の脱調検出方法において、 電力系統の送電 線の電圧および電流を取り込む第 1のステップと、 前記第 1のステップ 0 で得た電圧と電流を基に、 判断時点までの所定区間における電圧の平均 値と電流の平均値を求める第 2のステップと、 前記第 1のステップで得 た現在および過去の数時点の電圧および電流のを用いて二次関数に模擬 した後、 当該二次関数の係数を推定し、 推定した係数が正で関数が下に 凸なら最小値とし、 推定した係数が負で関数が上に凸なら最大値とし、 5 これらを記憶しておく第 3のステップと、 前記取り込んだ電圧おょぴ電
' 流から位相角差を求める第 4のステップと、 前記第 4のステップで得た 位相角差が 9 0度を超えた時点で、 前記第 2のステップで得た判断時点 の測定電圧の平均値が前記第 3のステップで記憶しておいた電圧の最小 値を中心とした一定の範囲に入っていて、 かつ、 前記第 2のステップで 得た判断時点の測定電流の平均値が前記第 3のステップで記憶しておい た電流の最大値を中心とした一定の範囲に入っているときに、 送電線の 两側の電源系統の間に脱調が発生したと判断する第 5のステップと、 を備えたことを特徴とする電力系統の脱調検出方法。,
6. 前記第 3のステップは、 係数を Av, Β V , C v、 電圧を Vとする と、 V = Av t2+B v t +Cv と模擬し、 係数を A i, B i, C i、 電流を I とすると、 I =A i t2+B i t +C i と模擬し、最小自乗法 によって係数 Av, A iを推定し、 係数 A Vが正で関数が下に凸ならば 電圧 Vは最小値とし、 係数 A iが負で関数が上に凸ならば電流 Iは最小 値とし、 それぞれを記憶しておくことを特徴とする請求項 5記載の電力 系統の脱調検出方法。
7. 電圧と電流の位相角差に基づいて送電線の両側の電源系統に脱調が 発生したと判断する電力系統の脱調検出方法において、 電力系統の送電 線の電圧および電流を取り込む電圧おょぴ電流取込み手段と、 前記電圧 および電流取込み手段で得た電圧と電流を基に、 判断時点までの所定区 間における電圧の平均値と電流の平均値を求める平均値算出手段と、 前 記電圧および電流取込み手段で得た現在および過去の数時点の電圧およ び電流のを用いて二次関数に模擬した後、当該二次関数の係数を推定し、 推定した係数が正で関数が下に凸なら最小値とし、 推定した係数が負で 関数が上に凸なら最大値とし、 これらを記憶しておく最大 ·最小推定記 憶手段と、 前記取り込んだ電圧および電流から位相角差を求める位相角 差演算手段と、 前記位相角差演算手段で得た位相角差が 90度を超えた 時点で、 前記平均値算出手段で得た判断時点の測定電圧の平均値が前記 最大 ·最小推定記憶手段で記憶しでおいた電圧の最小値を中心とした一 定の範囲に入っていて、 かつ、 前記平均値算出手段で得た判断時点の測 定電流の平均値が前記前記最大 ·最小推定記憶手段で記憶しておいた電 流の最大値を中心とした一定の範囲に入っているときに、 送電線の両側 の電源系統の間に脱調が発生したと判断する脱調判定手段と、 を備えた ことを特徴とする電力系統の脱調検出装置。
8. 前記最大 ·最小推定記憶手段は、 係数を Av, Β V , Cv、 電圧を Vとすると、 V = Av t 2+B V t +Cv と模擬し、係数を A i , B i, C i、 電流を I とすると、 I = A i t 2+B i t +C i と模擬し、 最小 自乗法によって係数 Av, A iを推定し、 係数 A Vが正で関数が下に凸 ならば電圧 Vは最小値とし、 係数 A iが負で関数が上に凸ならば電流 I は最大値とし、 それぞれを記憶しておくことを特徴とする請求項 7記載 の電力系統の脱調検出装置。
PCT/JP2002/012636 2001-12-03 2002-12-03 Procede et appareil permettant de detecter la perte de synchronisme dans un systeme generateur WO2003048792A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002354328A AU2002354328A1 (en) 2001-12-03 2002-12-03 Method and apparatus for detecting loss of synchronism in power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/368520 2001-12-03
JP2001368520A JP4092617B2 (ja) 2001-12-03 2001-12-03 電力系統の脱調検出方法およびその装置

Publications (1)

Publication Number Publication Date
WO2003048792A1 true WO2003048792A1 (fr) 2003-06-12

Family

ID=19178101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012636 WO2003048792A1 (fr) 2001-12-03 2002-12-03 Procede et appareil permettant de detecter la perte de synchronisme dans un systeme generateur

Country Status (3)

Country Link
JP (2) JP4092617B2 (ja)
AU (1) AU2002354328A1 (ja)
WO (1) WO2003048792A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7496478B2 (en) * 2005-07-18 2009-02-24 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
US7524683B2 (en) 2005-07-18 2009-04-28 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
US7587292B2 (en) 2005-07-18 2009-09-08 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
CN103604992A (zh) * 2013-11-28 2014-02-26 国家电网公司 变电站二次回路无线核相带负荷校保护的方法及系统
CN105262116A (zh) * 2015-09-28 2016-01-20 华自科技股份有限公司 发电机电子负荷调节器控制方法和系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012021590A2 (pt) * 2010-02-25 2016-09-13 Lifescan Scotland Ltd detecção de capacitância em ensaio eletroquímico
US20130338954A1 (en) * 2011-03-03 2013-12-19 Mitsubishi Electric Corporation Alternating-current electrical quantity measuring apparatus and alternating-current electrical quantity measuring method
CN102931657A (zh) * 2012-11-14 2013-02-13 余姚市供电局 一种配电网线损测算装置
US10436823B2 (en) 2013-08-16 2019-10-08 General Electric Company Systems and methods for swing angle estimation in an electrical power system
US10024920B2 (en) 2013-08-16 2018-07-17 General Electric Company Systems and methods for swing angle estimation in an electrical power system
JP5854057B2 (ja) * 2014-01-10 2016-02-09 ダイキン工業株式会社 脱調検出装置および電動機駆動システム
KR101601164B1 (ko) * 2014-09-25 2016-03-09 한국전력공사 전력계통 상 판별 장치 및 방법
CN113346826B (zh) * 2021-06-07 2022-11-15 青岛海信日立空调系统有限公司 一种具有三相电机的设备及三相电机缺相检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211021A (ja) * 1989-02-06 1990-08-22 Toshiba Corp ディジタル形電流動揺検出継電器
JPH05180890A (ja) * 1992-01-08 1993-07-23 Toho Gas Co Ltd 位相値の高速計測装置
JP2000162258A (ja) * 1998-11-30 2000-06-16 Tohoku Electric Power Co Inc 検相器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619194B2 (ja) * 1993-03-25 1997-06-11 株式会社東芝 電力系統の安定化装置
JP3409896B2 (ja) * 1993-11-04 2003-05-26 東北電力株式会社 電力系統の安定化装置
JPH08103020A (ja) * 1994-09-30 1996-04-16 Tohoku Electric Power Co Inc 電力系統の脱調検出装置
JPH10336883A (ja) * 1997-04-02 1998-12-18 Toshiba Corp 電力系統の脱調検出方法および脱調検出装置
JP3615020B2 (ja) * 1997-06-06 2005-01-26 ティーエム・ティーアンドディー株式会社 ディジタル形脱調予測継電器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211021A (ja) * 1989-02-06 1990-08-22 Toshiba Corp ディジタル形電流動揺検出継電器
JPH05180890A (ja) * 1992-01-08 1993-07-23 Toho Gas Co Ltd 位相値の高速計測装置
JP2000162258A (ja) * 1998-11-30 2000-06-16 Tohoku Electric Power Co Inc 検相器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7496478B2 (en) * 2005-07-18 2009-02-24 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
US7524683B2 (en) 2005-07-18 2009-04-28 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
US7587292B2 (en) 2005-07-18 2009-09-08 Dieter Rathei Method of monitoring a semiconductor manufacturing trend
CN103604992A (zh) * 2013-11-28 2014-02-26 国家电网公司 变电站二次回路无线核相带负荷校保护的方法及系统
CN103604992B (zh) * 2013-11-28 2015-11-04 国家电网公司 变电站二次回路无线核相带负荷校保护的方法及系统
CN105262116A (zh) * 2015-09-28 2016-01-20 华自科技股份有限公司 发电机电子负荷调节器控制方法和系统

Also Published As

Publication number Publication date
JP4766434B2 (ja) 2011-09-07
AU2002354328A1 (en) 2003-06-17
JP2008154452A (ja) 2008-07-03
JP4092617B2 (ja) 2008-05-28
JP2003194863A (ja) 2003-07-09

Similar Documents

Publication Publication Date Title
JP4766434B2 (ja) 電力系統の脱調検出方法およびその装置
JP4657151B2 (ja) 回転位相角測定装置及びこれを用いた周波数測定装置、同期フェーザ測定装置、開閉極位相制御装置、同期投入装置及び相判別装置
JP3823248B2 (ja) 交流モータのステータ回転故障検出器およびその検出システムおよびその方法
EP1261096B1 (en) Stability prediction for an electric power network
CN102472780B (zh) 用于监控电网状态的方法和设备
JPH10336883A (ja) 電力系統の脱調検出方法および脱調検出装置
US20110082654A1 (en) Power grid with comparison of differences in remote phasor changes
CN101297202B (zh) 产生数据组的方法和用于采集供电系统的电能质量的现场设备及系统
US6104182A (en) Method of deriving a signal indicating an oscillation in an electric power supply system
CN102565629B (zh) 一种基于集中参数π模型的交流输电线路故障选相测后模拟方法
WO2022148074A1 (zh) 基于阀侧电流时序特征的换流阀状态与阀电流的求解方法
US20110043045A1 (en) Systems and methods for asynchronous sampling data conversion
JP4480647B2 (ja) 電力系統脱調予測装置
US10613127B2 (en) Determining the frequency of an alternating signal
CN112034387B (zh) 一种基于预测序列的输电线路短路故障诊断方法及装置
US20050040835A1 (en) Method and apparatus for measuring impedance across pressure joints in a power distribution system
JP2619194B2 (ja) 電力系統の安定化装置
JP5971692B2 (ja) 電力系統の短絡容量監視方法およびそのシステム
CA2294238C (en) Methods for detecting the rotation direction of three-phase networks
CN110083992A (zh) 一种基于多新息递推最小二乘的Boost变换器故障诊断方法
Konakalla et al. Robustness to missing synchrophasor data for power and frequency event detection in electric grids
JP7257352B2 (ja) 電力系統監視装置、電力系統監視方法、及び電力系統監視プログラム
JP2015001516A (ja) 絶縁監視装置
CN109073714A (zh) 功率转换器故障检测的改进或与功率转换器故障检测相关的改进
JP3400118B2 (ja) 系統安定化装置および位相差測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase