WO2003043191A2 - Lvds-treiber für kleine versorgungsspannungen - Google Patents

Lvds-treiber für kleine versorgungsspannungen Download PDF

Info

Publication number
WO2003043191A2
WO2003043191A2 PCT/EP2002/011797 EP0211797W WO03043191A2 WO 2003043191 A2 WO2003043191 A2 WO 2003043191A2 EP 0211797 W EP0211797 W EP 0211797W WO 03043191 A2 WO03043191 A2 WO 03043191A2
Authority
WO
WIPO (PCT)
Prior art keywords
transistors
pull
lvds driver
transistor
driver
Prior art date
Application number
PCT/EP2002/011797
Other languages
English (en)
French (fr)
Other versions
WO2003043191A3 (de
Inventor
David Mueller
Anthony Sanders
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2003043191A2 publication Critical patent/WO2003043191A2/de
Publication of WO2003043191A3 publication Critical patent/WO2003043191A3/de
Priority to US10/842,985 priority Critical patent/US6975141B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018514Interface arrangements with at least one differential stage

Definitions

  • the invention relates to an LVDS driver for generating a differential output signal according to the preamble of
  • Claim 1 in particular for applications in which a supply voltage of less than 2V is available.
  • LVDS drivers (LVDS: Low Voltage Differential Signal) are used in particular in SCI interfaces (SCI: Scalable Coherent Interface) in order to transfer data quickly via point-to-point connections. SCI interfaces achieve significantly higher transmission speeds than conventional data buses.
  • LVDS drivers The principles for the design and dimensioning of LVDS drivers are specified in the IEEE standard 1596.3-1996.
  • Figure la shows an example of the output signals output at the outputs Pout and Nout of an LVDS driver.
  • FIG. 2 shows a typical example of an LVDS driver for CMOS technology with a supply voltage V DD of approximately 2.5V. 2a, b, a PMOS transistor (FIG. 2a) and an NMOS transistor (FIG. 2b) of the LVDS driver are shown in an enlarged view, the essential currents and voltages dropping on the components being shown.
  • the index S stands for "Source”, D for “Drain” and G for “Gate”.
  • the outputs of the LVDS driver shown in FIG. 2 are designated Pout and Nout.
  • the output signal shown in Fig. La is generated at the outputs.
  • a pull-up transistor Pl or P2 and a pull-down transistor are provided at each output Pout or Nout.
  • Transistor Nl or N2 provided.
  • the transistors Pl and Nl or P2 and N2 are always in the opposite switching position and switch on and off in opposite directions.
  • the transistor P1 is high, and the output Pout is about 1.0V. In the reverse switching position of the transistors P1, N1, the node Pout is approximately 1.4V.
  • the gate connections of the transistors P1, P2 and N1, N2 are each controlled by a pre-driver 1, 1 '.
  • the output signals A, B of the pre-drivers are also opposite.
  • the LVDS driver 2 shown also includes one
  • V DD At low supply voltages V DD of less than 2V, as is the case, for example, in IC circuits with a
  • Structural density of 0.18 ⁇ m and below can occur with an LVDS driver of this configuration problems in the generation of the difference signal, which are explained below with reference to FIG.
  • FIGS. 3a) and 3b) each show a control signal present on node A and B of the driver of FIG. 2 (left side) and the associated switching edge on the respective signal output Pout and Nout (right side).
  • 3a shows the switching behavior of the NMOS Transistor Nl and Figure 3b) the switching behavior of the PMOS transistor P2.
  • the supply voltage V DD (it is assumed that the supply voltage can vary between 1.6V and 2.0V) is only 1.6V.
  • the control signal present at the gate connection of the transistor Nl has an amplitude of 1.6V.
  • the source voltage of transistor Nl is 0.9V.
  • the largest part (81%) of the signal A has already been consumed before the NMOS transistor switches on. Only the remaining 300mV actually drive the element.
  • the main idea of the invention is to form the pull-up transistors and the pull-down transistors of the LVDS driver uniformly as PMOS transistors. On the one hand, an asymmetrical switching behavior of the transistors is excluded and, on the other hand, all of the transistors work essentially in the linear working range.
  • the LVDS driver preferably has a pre-driver which outputs control signals for the pull-up and pull-down transistors with reduced amplitude.
  • the maximum amplitude of the control signals A, B is preferably limited to a value above which it is ensured that the PMOS transistors are in the blocked state.
  • the maximum amplitude of the control signals is therefore preferably just above the switch-on threshold voltage, preferably at most 300mV and in particular at most 100mV above the switch-on threshold voltage of the transistors.
  • the pre-driver comprises a transistor connected to a negative supply voltage and a transistor at each output Switching transistor for switching the control outputs of the pre-driver.
  • the transistors of the pre-driver are preferably formed as NMOS transistors.
  • the pre-driver uses the principle of capacitive
  • each of the transistors connected to the supply voltage preferably having a bootstrapping capacitor.
  • the bootstrapping capacitors can either be technologically manufactured capacitors, but optionally - with an appropriate design of the NMOS transistors - parasitic gate-source capacitances can also be used as bootstrapping capacitors.
  • the control voltage for the PMOS transistors of the driver output at the outputs of the pre-driver is preferably adjustable.
  • the LVDS driver preferably comprises a balancing circuit for setting a common mode voltage.
  • the LVDS driver preferably comprises a current source and a current sink, which supply or discharge an essentially equally large current.
  • a control circuit can be provided for setting a specific current flow through the current source or sink.
  • FIG. 2a, b are enlarged representations of an NMOS and a PMOS transistor of the driver of FIG. 2;
  • Fig. 3a, b voltages on a PMOS or NMOS transistor of the driver of Fig. 2;
  • FIG. 4 shows an embodiment of an LVDS driver with associated predriver according to the invention
  • FIG. 4 shows an LVDS driver 2 with an associated one
  • the LVDS driver 2 essentially comprises four PMOS transistors P1-P4 for generating a differential output signal between the outputs Pout and Nout.
  • the pull-up transistors P3, P4 are switched to low resistance and the pull-down transistors P1, P2 are switched to high resistance.
  • the pull-down transistors P1, P2 are switched to low resistance and the pull-up transistors P3, P4 are switched to high resistance.
  • a matching circuit 3 is used to set the
  • the current source 4 and current sink 5 are shown here schematically as PMOS or NMOS transistors.
  • the pull-up P3, P4 and pull-down transistors P1, P2 are controlled by control signals A, B, which are generated by the pre-driver 1 in push-pull.
  • FIGS. 5a) and 5b An example of a pull-up or pull-down switching process is shown in FIGS. 5a) and 5b).
  • 5a) shows a switching edge of the control signal A from 1.1V to 0V.
  • the pull-down switching process generated in this way is explained below with reference to transistor P2.
  • the voltage generated at the output Nout behaves in accordance with the signal curve at the top right in FIG. 5a), the output voltage at the node Nout being pulled down from 1.4V to 1.0V (pull-down).
  • the transistor P2 operates essentially in the linear range.
  • FIG. 5b shows the pull-up which takes place at the same time.
  • the control signal A present at the gate connection of P3 switches from 1.1V to a level of 0V. In order to switch the transistor P3 low, only the signal range between 1.1 and 1.0 V is required. Here, too, the pull-up transistor P3 operates essentially in the linear range.
  • the voltage generated at the output Pout behaves in accordance with the signal curve at the top right in FIG. 5b), the output voltage at the node Pout being pulled up from 1.0V to 1.4V (pull-up).
  • the pre-driver 1 shown in FIG. 4 each comprises a transistor N3, N4 connected to a supply voltage and a switching transistor N1, N2 in order to switch the control signals between 0V and a maximum level.
  • the switching transistors N1, N2 are driven by an input voltage PIN or NIN. All
  • Transistors N1-N4 are formed as NMOS transistors.
  • capacitors C are provided between the gate connection and the source connection of the transistors N3, N4.
  • the already existing parasitic impedances C G ⁇ can be used as bootstrapping capacitances C if the
  • Transistors N3, N4 are dimensioned sufficiently large. Additional bootstrapping capacities C are no longer required in this case.
  • the capacitances C and resistors R form a time constant for the capacitive voltage increase (bootstrapping).
  • the time constant must be smaller than the bit period to avoid inter-symbol interference (ISI).
  • control inputs of the transistors N3, N4 are controlled by a control voltage V CNTR , by means of which the maximum voltage at the nodes A, B can be set. This makes the control voltage at nodes A, B adjustable. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

Die Erfindung betrifft einen LVDS-Treiber für kleine Versorgungsspannungen, insbesondere von weniger als 2,0V, zur Erzeugung eines differenziellen Ausgangssignals (Pout,Nout) mit jeweils einem Pull-Up-Transistor (P3,P4) und einem Pull-Down-Transistor (P1,P2) zum Schalten der an den Ausgängen (Pout,Nout) ausgegebenen Ausgangsspannungen. Ein optimales Schaltverhalten und somit ein unverzerrtes Differenzsignal kann dadurch erzeugt werden, daß die Pull-Up- und Pull-Down-Transistoren (P1-P4) als PMOS-Transistoren gebildet sind.

Description

Beschreibung
LVDS-Treiber für kleine Versorgungsspannungen
Die Erfindung betrifft einen LVDS-Treiber zur Erzeugung eines differenziellen Ausgangssignals gemäß dem Oberbegriff des
Patentanspruches 1, insbesondere für Applikationen, in denen eine Versorgungsspannung von weniger als 2V zur Verfügung steht.
LVDS-Treiber (LVDS: Low Voltage Differencial Signal) werden insbesondere in SCI-Interfaces (SCI: Scalable Coherent Interface) eingesetzt, um Daten über Punkt-zu-Punkt- Verbindungen schnell zu übertragen. Mit SCI-Interfaces werden wesentlich höhere Übertragungsgeschwindigkeiten erreicht als mit herkömmlichen Datenbussen.
Die Grundsätze für die Gestaltung und Dimensionierung von LVDS-Treibern sind im IEEE-Standard 1596.3-1996 angegeben. Ein standardgemäß implementierter LVDS-Treiber erzeugt ein Differenzsignal mit einer geringen Amplitude zwischen 250mV und 400mV um eine GleichtaktSpannung von z.B. Vcm=l,2V.
Figur la) zeigt ein Beispiel für die an den Ausgängen Pout und Nout eines LVDS-Treibers ausgegebenen Ausgangssignale. Wie zu erkennen ist, haben die Ausgangssignale eine Amplitude von 400mV und schwingen symmetrisch um eine GleichtaktSpannung VcM =lf2V.
Figur 2 zeigt ein typisches Beispiel eines LVDS-Treibers für eine CMOS-Technologie mit einer Versorgungsspannung VDD von ungefähr 2,5V. In den Fig. 2a, b ist ein PMOS- (Fig. 2a) und ein NMOS-Transistor (Fig. 2b) des LVDS-Treibers in vergrößerter Ansicht dargestellt, wobei die wesentlichen, an den Bauelementen abfallenden Ströme und Spannungen eingezeichnet sind. Der Index S steht dabei für „Source", D für „Drain" und G für „Gate" . Die Ausgänge des in Fig. 2 dargestellten LVDS-Treibers sind mit Pout bzw. Nout bezeichnet. An den Ausgängen wird das in Fig. la gezeigte Ausgangssignal erzeugt. Um die Ausgangsspannung zu schalten, ist an jedem Ausgang Pout bzw. Nout ein Pull-Üp-Transistor Pl bzw. P2 und ein Pull-Down-
Transistor Nl bzw. N2 vorgesehen. Die Transistoren Pl und Nl bzw. P2 und N2 befinden sich immer in der entgegengesetzten Schaltstellung und schalten gegensinnig ein und aus.
Ist z.B. der Transistor Nl niederohmig geschaltet, so ist der Transistor Pl hochohmig, und der Ausgang Pout liegt bei etwa 1.0V. In der umgekehrten Schaltstellung der Transistoren P1,N1 liegt der Knoten Pout bei etwa 1.4V.
Die Gate-Anschlüsse der Transistoren P1,P2 bzw. N1,N2 werden jeweils von einem Vortreiber 1,1' angesteuert. Die Ausgangssignale A,B der Vortreiber sind ebenfalls gegensinnig.
Der dargestellte LVDS-Treiber 2 umfaßt ferner eine
Abgleichschaltung 3 zur Einstellung der Gleichtaktspannung VCM-
Bei niedrigen Versorgungsspannungen VDD von weniger als 2V, wie sie beispielsweise in IC-Schaltkreisen mit einer
Strukturdichte von 0,18μm und darunter auftreten, können mit einem LVDS-Treiber dieser Konfiguration Probleme bei der Erzeugung des Differenzsignals entstehen, die im folgenden anhand von Figur 3 erläutert werden.
In den Figuren 3a) und 3b) ist jeweils ein am Knoten A bzw. B des Treibers von Fig. 2 anliegendes Steuersignal (linke Seite) sowie die zugehörige Schaltflanke am jeweiligen Signalausgang Pout bzw. Nout (rechte Seite) dargestellt. Dabei zeigt Figur 3a) das Schaltverhalten des NMOS- Transistors Nl und Figur 3b) das Schaltverhalten des PMOS- Transistors P2.
Die Versorgungsspannung VDD beträgt im schlechtesten Fall (es wird davon ausgegangen, dass die Versorgungsspannung zwischen 1,6V und 2,0V variieren kann) nur 1,6V. Das am Gate-Anschluß des Transistors Nl anliegende Steuersignal hat eine Amplitude von 1,6V. Im folgenden wird außerdem angenommen, daß die Schwellenspannung beider Transistoren, d.h. des NMOS- und PMOS-Transistors Nl bzw. P2 VTH=400mV ist. Die Source- Spannung des Transistors Nl liegt bei 0,9V. Die Spannung, ab der der NMOS-Transistor Nl in den niederohmigen Zustand übergeht, liegt somit bei 0, 9V+0, 4V=1.3V (VGS-VTH>0) .
Wie in Fig. 3a) zu erkennen ist, ist der größte Teil (81%) des Signals A bereits verbraucht, bevor der NMOS-Transistor einschaltet. Nur die verbleibenden 300mV treiben tatsächlich das Element.
Dagegen werden beim PMOS-Transistor P2 nur 31% des Steuersignals B benötigt, um das Element einzuschalten. Die Source-Spannung des Transistors P2 liegt bei 1,5V. Das heißt, der Transistor P2 schaltet bereits bei einer Gate-Spannung von VG=1,1V in den niederohmigen Zustand (VSG+VTH>0) .
Ein weiterer Unterschied im Schaltverhalten der NMOS- und PMOS-Transistoren Nl bzw. P2 ergibt sich aus den unterschiedlichen Arbeitsbereichen der NMOS- und PMOS- Elemente. Während der PMOS-Transistor P2 im wesentlichen im linearen Bereich arbeitet (VDS<VGs-VTH) , wechselt der NMOS- Transistor während des Schaltvorgangs vom Sättigungsbereich (VDS<VGS-VTH) in den linearen Bereich (VDS>VGs-VTH) . Da die effektive Einschaltspannung für das NMOS-Element (VGS-VTH) klein ist, ist das NMOS-Element bereits bei VDS=300mV gesättigt. Das Source-Potential liegt bei ungefähr VS=0,9V, so daß das Element bereits gesättigt ist, wenn das Drain- Potential VD>1,2V ist. Diese unterschiedlichen Schalteigenschaften von PMOS- und NMOS-Transistoren führen zu unterschiedlich steilen Schaltflanken, wie sie z.B. in Figur lb) gezeigt sind, und somit zu einer Verzerrung des Differenzsignals.
Es ist daher die Aufgabe der vorliegenden Erfindung, einen LVDS-Treiber zu schaffen, der auch bei Versorgungsspannungen von weniger als 2V ein sauberes Differenzsignal erzeugt.
Gelöst wird diese Aufgabe durch die im Patentanspruch 1 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Der wesentliche Gedanke der Erfindung besteht darin, die Pull-Up-Transistoren und die Pull-Down-Transistoren des LVDS- Treibers einheitlich als PMOS-Transistoren zu bilden. Zum einen ist dadurch ein unsymmetrisches Schaltverhalten der Transistoren ausgeschlossen und zum anderen arbeiten sämtliche der Transistoren im wesentlichen im linearen Arbeitsbereich.
Der LVDS-Treiber hat vorzugsweise einen Vortreiber, der Steuersignale für die Pull-Up- und Pull-Down-Transistoren mit reduzierter Amplitude ausgibt. Die maximale Amplitude der Steuersignale A, B ist vorzugsweise auf einen Wert begrenzt, ab dem sichergestellt ist, daß sich die PMOS-Transistoren im gesperrten Zustand befinden. Die maximale Amplitude der Steuersignale liegt somit vorzugsweise knapp überhalb der Einschalt-Schwellenspannung, vorzugsweise höchstens 300mV und insbesondere höchstens 100mV über der Einschalt- Schwellenspannung der Transistoren.
Gemäß einer bevorzugten Ausführungsform der Erfindung umfaßt der Vortreiber an jedem Ausgang einen an einer negativen Versorgungsspannung angeschlossenen Transistor und einen Schalttransistor zum Schalten der Steuerausgänge des Vortreibers.
Die Transistoren des Vortreibers sind vorzugsweise als NMOS- Transistoren gebildet.
Gemäß einer bevorzugten Ausführungsform der Erfindung nutzt der Vortreiber das Prinzip der kapazitiven
Spannungsüberhöhung (Bootstrapping), wobei jeder der an der Versorgungsspannung angeschlossenen Transistoren vorzugsweise einen Bootstrapping-Kondensator aufweist. Die Bootstrapping- Kondensatoren können entweder technologisch hergestellte Kondensatoren sein, wahlweise können - bei entsprechender Auslegung der NMOS-Transistoren - aber auch parasitäre Gate- Source-Kapazitäten als Bootstrapping-Kondensatoren genutzt werden.
Die an den Ausgängen des Vortreibers ausgegebene Steuerspannung für die PMOS-Transistoren des Treibers ist vorzugsweise einstellbar.
Der LVDS-Treiber umfaßt vorzugsweise eine Abgleichschaltung zur Einstellung einer Gleichtaktspannung.
Ferner umfaßt der LVDS-Treiber vorzugsweise eine Stromquelle sowie eine Stromsenke, die einen im wesentlichen gleich großen Strom zu- bzw. abführen. Zur Einstellung eines bestimmten Stromflußes durch die Stromquelle bzw. Senke kann eine Regelschaltung vorgesehen sein.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:
Fig. la Ausgangssignale an Ausgängen Pout, Nout eines typischen LVDS-Treibers; Fig. 1b die zeitliche Verschiebung von Schaltflanken im Signal von la;
Fig. 2 einen bekannten LVDS-Treiber;
Fig. 2a, b vergrößerte Darstellungen eines NMOS- und eines PMOS-Transistors des Treibers von Fig. 2;
Fig. 3a, b Spannungen an einem PMOS- bzw. NMOS-Transistor des Treibers von Fig. 2;
Fig. 4 ein Ausführungsbeispiel eines LVDS-Treibers mit zugehörigem Vortreiber gemäß der Erfindung;
Fig. 5a und b Signalverläufe der Eingangs- und Ausgangssignale des LVDS-Treibers von Figur 2;
Bezüglich der Beschreibung der Figuren 1-3 wird auf die Beschreibungseinleitung verwiesen.
Figur 4 zeigt einen LVDS-Treiber 2 mit einem zugehörigen
Vortreiber 1. Der LVDS-Treiber 2 umfaßt im wesentlichen vier PMOS-Transistoren P1-P4 zur Erzeugung eines differenziellen Ausgangssignals zwischen den Ausgängen Pout und Nout.
Die an den Ausgängen Pout und Nout ausgegebene Signalspannung schwankt um eine GleichtaktSpannung von ca. 1,2V mit einer maximalen Amplitude Amp=400mV, wie in Figur la) dargestellt ist.
Zur Erzeugung eines hohen Ausgangspegels (1,4V) des Signals Pout bzw. Nout werden die Pull-Up-Transistoren P3,P4 niederohmig und die Pull-Down-Transistoren P1,P2 hochoh ig geschaltet. Zur Erzeugung eines niedrigen Ausgangspegels (1,0V) werden die Pull-Down-Transistoren P1,P2 niederohmig und die Pull-Up-Transistoren P3,P4 hochohmig geschaltet. Eine Abgleichschaltung 3 dient zur Einstellung der
Gleichtaktspannung VCM und zur Terminierung des Treibers 2. Ferner ist eine Stromquelle 4 und eine Stromsenke 5 vorgesehen, die einen im wesentlichen gleich großen Strom zu- bzw. abführen. Die Stromquelle 4 und Stromsenke 5 sind hier schematisch als PMOS- bzw. NMOS-Transistoren dargestellt.
Die Steuerung der Pull-Up- P3,P4 und Pull-Down-Transistoren P1,P2 erfolgt durch Steuersignale A,B, die vom Vortreiber 1 im Gegentakt erzeugt werden.
Ein Beispiel für einen Pull-Up- bzw. Pull-Down-Schaltvorgang ist in den Figuren 5a) und 5b) gezeigt. In Figur 5a) ist eine Schaltflanke des Steuersignals A von 1,1V auf 0V gezeigt. Der dabei erzeugte Pull-Down-Schaltvorgang wird im folgenden bezüglich Transistor P2 erläutert.
Der Transistor P2 hat eine maximale Source-Spannung von 1,4V. Bei einer Schwellenspannung VTH=400mV ergibt sich somit eine Ausschalt-Schwellenspannung von 1,0V (VSG- | VTH | <0) . Um den gesperrten Zustand des Transistors P2 sicherzustellen, ist die maximale Amplitude des Steuersignals A auf einen Wert knapp oberhalb der Ausschalt- bzw. Einschalt- Schwellenspannung eingestellt, im vorliegenden Fall auf 1,1V. Die am Ausgang Nout erzeugte Spannung verhält sich entsprechend dem Signalverlauf rechts oben in Figur 5a) , wobei die Ausgangsspannung am Knoten Nout von 1,4V auf 1,0V herunter gezogen wird (Pull-Down) . Der Transistor P2 arbeitet dabei im wesentlichen im linearen Bereich.
Figur 5b) zeigt den gleichzeitig stattfindenden Pull-Up-
Schaltvorgang am Ausgang Pout des Treibers 2. Das am Gate- Anschluss von P3 anliegende Steuersignal A schaltet ausgehend von 1,1V bis auf einen Pegel von 0V. Um den Transistor P3 niederohmig zu schalten, ist jedoch nur der Signalbereich zwischen 1,1 und 1,0V erforderlich. Auch hier arbeitet der Pull-Up-Transistor P3 im wesentlichen im linearen Bereich. Die am Ausgang Pout erzeugte Spannung verhält sich entsprechend dem Signalverlauf rechts oben in Figur 5b) , wobei die Ausgangsspannung am Knoten Pout von 1,0V auf 1,4V nach oben gezogen wird (Pull-Up) .
Der in Figur 4 dargestellte Vortreiber 1 umfaßt jeweils einen an einer Versorgungsspannung angeschlossenen Transistor N3,N4 sowie jeweils einen Schalttransistor N1,N2, um die Steuersignale zwischen 0V und einem maximalen Pegel zu schalten. Die Schalttransistoren Nl,N2 werden von einer Eingangsspannung PIN bzw. NIN angesteuert. Sämtliche
Transistoren N1-N4 sind als NMOS-Transistoren gebildet.
Für die an der Versorgungsspannung angeschlossenen Transistoren N3,N4 wird das Prinzip der kapazitiven Spannungsüberhöhung (Bootstrapping) genutzt, um den
Schaltvorgang zu beschleunigen. Hierzu sind jeweils zwischen dem Gate-Anschluß und dem Source-Anschluß der Transistoren N3,N4 Kondensatoren C vorgesehen. Die ohnehin bestehenden parasitären Impedanzen C können als Bootstrapping- Kapazitäten C genutzt werden, wenn dementsprechend die
Transistoren N3,N4 ausreichend groß dimensioniert werden. Zusätzliche Bootstrapping-Kapazitäten C sind in diesem Fall nicht mehr erforderlich.
Die Kapazitäten C und Widerstände R bilden eine Zeitkonstante für die kapazitive Spannungsüberhöhung (Bootstrapping) . Dabei muß die Zeitkonstante kleiner sein als die Bitperiode, um eine Inter-Symbol-Interferenz (ISI) zu vermeiden.
Die Steuereingänge der Transistoren N3,N4 werden von einer Steuerspannung VCNTR angesteuert, mittels der die maximale Spannung an den Knoten A,B eingestellt werden kann. Dadurch wird die Steuerspannung an den Knoten A,B einstellbar. Bezugszeichenliste
1,1' Vortreiber
2 LVDS-Treiber
3 Abgleichschaltung
4 Stromquelle
5 Stromsenke
Pout Positives Ausgangssignal
Nout Negatives Ausgangssignal
V~CM GleichtaktSpannung
A,B Steuersignale
P1,P2 Pull-Down-Transistoren
P3,P4 Pull-Up-Transistoren
VDs Drain-Source-Spannung
VGS Gate-Source-Spannung
VTH Schwellenspannung

Claims

Patentansprüche
1. LVDS-Treiber zur Erzeugung eines differenziellen Ausgangssignals an Treiber-Ausgängen (Pout, Nout) , mit jeweils einem Pull-Up-Transistor (P3,P4) und einem Pull-Down- Transistor (P1,P2) zum Schalten der an den Ausgängen (Pout, Nout) ausgegebenen Ausgangsspannungen d a d u r c h g e k e n n z e i c h n e t, dass die Pull-Up- und Pull-Down-Transistoren (P1-P4) als PMOS-Transistoren gebildet sind.
2. LVDS-Treiber nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der LVDS-Treiber (2) mit einer VersorgungsSpannung (VDD) von weniger als 2V arbeitet.
3. LVDS-Treiber nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass der LVDS-Treiber (2) einen Vortreiber (1) aufweist, der Steuersignale (A,B) zur Steuerung der Pull-Up- und Pull-Down- Transistoren (P1-P4) abgibt, deren maximale Amplitude auf einen Wert begrenzt ist, der knapp oberhalb der Einschalt- Schwellenspannung der Transistoren (P1-P4) liegt.
4. LVDS-Treiber nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass die maximale Amplitude der Steuersignale (A,B) höchstens 300mV, vorzugsweise höchstens 100mV über der Einschalt- Schwellenspannung der Pull-Up-Transistoren (P3,P4) oder der Pull-Down-Transistoren (P1,P2) liegt.
5. LVDS-Treiber nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der LVDS-Treiber (2) einen Vortreiber (1) aufweist, der für jeden Steuerausgang (A, B) jeweils einen an einer Versorgungsspannung angeschlossenen Transistor (N3,N4) und einen Schalttransistor (N1,N2) aufweist.
6. LVDS-Treiber nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass die Transistoren (N1-N4) des Vortreibers (1) als NMOS- Transistoren gebildet sind.
7. LVDS-Treiber nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t, dass die an einer Versorgungsspannung anliegenden Transistoren (N3,N4) einen Bootstrapping-Kondensator (C) aufweisen.
8. LVDS-Treiber nach einem der Ansprüche 5 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass die an einer Versorgungsspannung angeschlossenen Transistoren (N3,N4) mittels einer Steuerspannung (VCNTRL) gesteuert werden.
9. LVDS-Treiber nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der LVDS-Treiber (2) eine Abgleichschaltung zur Einstellung einer Gleichtaktspannung (VCM) aufweist.
10. LVDS-Treiber nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der LVDS-Treiber eine Stromquelle (4) und eine
Stromsenke (5) aufweist, die einen im wesentlichen gleich großen Strom zu- bzw. abführen.
11. LVDS-Treiber nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass eine Regelschaltung zur Einstellung der Stromquelle (4) und/oder Stromsenke (5) auf einen vorgegebenen Stromfluß vorgesehen ist.
PCT/EP2002/011797 2001-11-12 2002-10-22 Lvds-treiber für kleine versorgungsspannungen WO2003043191A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/842,985 US6975141B2 (en) 2001-11-12 2004-05-11 LVDS driver for small supply voltages

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10155526.1 2001-11-12
DE10155526A DE10155526C2 (de) 2001-11-12 2001-11-12 LVDS-Treiber für kleine Versorungsspannungen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/842,985 Continuation US6975141B2 (en) 2001-11-12 2004-05-11 LVDS driver for small supply voltages

Publications (2)

Publication Number Publication Date
WO2003043191A2 true WO2003043191A2 (de) 2003-05-22
WO2003043191A3 WO2003043191A3 (de) 2003-12-18

Family

ID=7705480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011797 WO2003043191A2 (de) 2001-11-12 2002-10-22 Lvds-treiber für kleine versorgungsspannungen

Country Status (4)

Country Link
US (1) US6975141B2 (de)
CN (1) CN1285173C (de)
DE (1) DE10155526C2 (de)
WO (1) WO2003043191A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2326003A1 (de) * 2009-11-24 2011-05-25 Linear Technology Corporation Verfahren und Systeme für verringertes Phasenrauschen bei einem BICMOS-Takttreiber
CN1913507B (zh) * 2005-08-12 2011-06-29 三星电子株式会社 预加重装置、包含其的低压差分信令发射器和预加重方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512400B1 (en) * 2000-08-30 2003-01-28 Micron Technology, Inc. Integrated circuit comparator or amplifier
JP4509737B2 (ja) * 2004-10-28 2010-07-21 株式会社東芝 差動信号生成回路および差動信号送信回路
US7215173B2 (en) * 2005-01-31 2007-05-08 Intel Corporation Low-swing level shifter
US7843235B2 (en) * 2006-12-05 2010-11-30 Integrated Device Technology, Inc. Output slew rate control in low voltage differential signal (LVDS) driver
US7551006B2 (en) * 2007-10-04 2009-06-23 International Business Machines Corporation Low voltage differential signalling driver
CN101834594B (zh) * 2009-03-10 2012-02-01 承景科技股份有限公司 信号发送器及其操作方法
US7898295B1 (en) 2009-03-19 2011-03-01 Pmc-Sierra, Inc. Hot-pluggable differential signaling driver
CN101847988B (zh) * 2009-03-25 2011-12-28 承景科技股份有限公司 信号转换器
ATE531124T1 (de) * 2009-04-07 2011-11-15 Swatch Group Res & Dev Ltd Verstärkerschaltkreis mit schwachem phasengeräusch
JP5581913B2 (ja) * 2010-09-06 2014-09-03 ソニー株式会社 ドライバアンプ回路および通信システム
US8928365B2 (en) * 2012-10-23 2015-01-06 Qualcomm Incorporated Methods and devices for matching transmission line characteristics using stacked metal oxide semiconductor (MOS) transistors
KR101621844B1 (ko) * 2014-05-08 2016-05-17 (주) 픽셀플러스 저전압 차동 신호 전송기
CN107979366B (zh) * 2016-10-21 2020-11-27 中芯国际集成电路制造(上海)有限公司 差分信号发生电路及电子系统
US10057523B1 (en) 2017-02-13 2018-08-21 Alexander Krymski Image sensors and methods with multiple phase-locked loops and serializers
CN115622842B (zh) * 2022-12-15 2023-03-10 禹创半导体(深圳)有限公司 Lvds系统及其差动信号控制方法、装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536536A1 (de) * 1991-09-12 1993-04-14 Intergraph Corporation MOS-Ausgangsschaltung mit niedrigem Spannungshub zum Ansteuern einer ECL-Schaltung
US5977796A (en) * 1997-06-26 1999-11-02 Lucent Technologies, Inc. Low voltage differential swing interconnect buffer circuit
US6137311A (en) * 1996-07-12 2000-10-24 Telefonaktiebolaget Lm Ericsson Failsafe interface circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504636C2 (sv) * 1995-07-27 1997-03-24 Ericsson Telefon Ab L M Universell sändaranordning
JP2000031810A (ja) * 1998-07-10 2000-01-28 Fujitsu Ltd ドライバ回路
JP3415508B2 (ja) * 1999-09-27 2003-06-09 エヌイーシーマイクロシステム株式会社 ドライバ回路及びその出力安定化方法
US20030151438A1 (en) * 2000-07-21 2003-08-14 Bill Lye Switched capacitor transmitter pre-driver
US6437599B1 (en) * 2000-11-06 2002-08-20 Xilinx, Inc. Programmable line driver
US6590432B1 (en) * 2002-09-26 2003-07-08 Pericom Semiconductor Corp. Low-voltage differential driver with opened eye pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536536A1 (de) * 1991-09-12 1993-04-14 Intergraph Corporation MOS-Ausgangsschaltung mit niedrigem Spannungshub zum Ansteuern einer ECL-Schaltung
US6137311A (en) * 1996-07-12 2000-10-24 Telefonaktiebolaget Lm Ericsson Failsafe interface circuit
US5977796A (en) * 1997-06-26 1999-11-02 Lucent Technologies, Inc. Low voltage differential swing interconnect buffer circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913507B (zh) * 2005-08-12 2011-06-29 三星电子株式会社 预加重装置、包含其的低压差分信令发射器和预加重方法
EP2326003A1 (de) * 2009-11-24 2011-05-25 Linear Technology Corporation Verfahren und Systeme für verringertes Phasenrauschen bei einem BICMOS-Takttreiber
US7969189B2 (en) 2009-11-24 2011-06-28 Linear Technology Corporation Method and system for improved phase noise in a BiCMOS clock driver

Also Published As

Publication number Publication date
CN1285173C (zh) 2006-11-15
US6975141B2 (en) 2005-12-13
DE10155526A1 (de) 2003-05-28
US20040251882A1 (en) 2004-12-16
DE10155526C2 (de) 2003-09-04
CN1613183A (zh) 2005-05-04
WO2003043191A3 (de) 2003-12-18

Similar Documents

Publication Publication Date Title
DE10155526C2 (de) LVDS-Treiber für kleine Versorungsspannungen
DE19919140B4 (de) Niederspannungs-Differenzsignaltreiber mit Vorverstärkerschaltung
DE68910711T2 (de) Zeitlich abweichende Ansteuerung zur Verwendung in integrierten Schaltungen.
DE69117553T2 (de) Ausgangsschaltung
DE3689296T2 (de) Ausgangsschaltung mit Pegelstabilisierung.
DE102010046686B3 (de) Elektronische Vorrichtung und Verfahren für Pufferung
DE69839067T2 (de) Regelwandlerschaltung und integrierte Halbleiterschaltung, in der diese verwendet wird
DE3789199T2 (de) TTL/CMOS-kompatible Eingangspufferschaltung.
DE69023806T2 (de) Integrierte Schaltung mit einem Signalpegelumsetzer.
DE4344307C2 (de) Ausgangsschaltung einer integrierten Halbleiterschaltkreisvorrichtung
DE102006048846A1 (de) Eichschaltung und dieselbe enthaltende Halbleitervorrichtung
DE19735982A1 (de) Leitungsempfängerschaltkreis mit Leitungsabschlußimpedanz
DE69118214T2 (de) Digitaler Halbleiterschaltkreis
DE4400872A1 (de) Ausgangstreiberschaltung
DE19818021A1 (de) Eingangspuffer mit einer Hysteresecharakteristik
DE2514462B2 (de) Schaltungsanordnung zur Umwandlung eines Spannungspegels
DE10255642B4 (de) Verfahren und Vorrichtung zum Ausgeben eines Digitalsignals
DE19820248B4 (de) Ausgangspufferschaltkreis mit umschaltbarem Ausgangs-Gleichtaktpegel
DE69310162T2 (de) Pegelumsetzungsschaltung
DE19751789A1 (de) Spannungspegel-Verschiebeschaltung
DE60307776T2 (de) Stromversorgungsauswahlschaltung
DE60209621T2 (de) Stromschaltkreis
DE19950359B4 (de) Eingabe-Ausgabe-Puffer mit verringertem Rückkoppelungseffekt
DE19829487C1 (de) Ausgangstreiber eines integrierten Halbleiterchips
DE10350244A1 (de) Mit höherer Spannung betreibbare Niederspannungsschaltung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN IN JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10842985

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028270193

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP