WO2003033435A2 - Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire - Google Patents

Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire Download PDF

Info

Publication number
WO2003033435A2
WO2003033435A2 PCT/FR2002/003515 FR0203515W WO03033435A2 WO 2003033435 A2 WO2003033435 A2 WO 2003033435A2 FR 0203515 W FR0203515 W FR 0203515W WO 03033435 A2 WO03033435 A2 WO 03033435A2
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
coating
proportion
metal
precursor according
Prior art date
Application number
PCT/FR2002/003515
Other languages
English (en)
Other versions
WO2003033435A3 (fr
Inventor
Airy-Pierre Lamaze
Christian Barthelemy
Thomas Spadone
Robert Rey-Flandrin
Original Assignee
Aluminum Pechiney
Pechiney Rhenalu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0113267A external-priority patent/FR2830857B1/fr
Priority claimed from PCT/FR2002/003485 external-priority patent/WO2003033767A2/fr
Application filed by Aluminum Pechiney, Pechiney Rhenalu filed Critical Aluminum Pechiney
Priority to CA002464340A priority Critical patent/CA2464340A1/fr
Priority to US10/491,448 priority patent/US7256232B2/en
Priority to EP02793164A priority patent/EP1438271A2/fr
Priority to AU2002358833A priority patent/AU2002358833B9/en
Publication of WO2003033435A2 publication Critical patent/WO2003033435A2/fr
Publication of WO2003033435A3 publication Critical patent/WO2003033435A3/fr
Priority to NO20041977A priority patent/NO20041977L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to the protection of objects and materials intended for the metallurgical industry, in particular in the aluminum industry. It relates in particular to the protective coatings of said objects and materials.
  • Containers such as pockets or ovens
  • conduits such as chutes, injectors and spouts
  • tools and devices that are intended to handle and process liquid aluminum (such as filters and rotors) must have high mechanical and chemical resistance.
  • the surfaces of these objects which are exposed to liquid aluminum must neither dissolve in nor contaminate the liquid aluminum.
  • the subject of the invention is a coating precursor intended for the formation of a protective layer on a substrate.
  • Said precursor comprises a silicone resin and an inorganic filler capable of reacting chemically with said resin so as to produce a cohesive refractory layer after a calcining operation on the layer.
  • the subject of the invention is a coating precursor comprising a silicone resin (or organosiloxane), a mineral filler and an organic solvent capable of dissolving said resin and of suspending said mineral filler, said silicone resin and said mineral filler being able to react chemically so as to produce a solid layer on a substrate after evaporation of the organic solvent and a cohesive refractory layer after a calcination operation.
  • a silicone resin or organosiloxane
  • an organic solvent capable of dissolving said resin and of suspending said mineral filler
  • Said precursor is preferably homogeneous.
  • the silicone resin is a polysiloxane preferably comprising a proportion of OH groups, such as a polymethylsiloxane, a polydimethylsiloxane, a polymethylsilsesquioxane, or a mixture of these, comprising a proportion of OH groups substituted for the methyl groups.
  • the Applicant has noted that the proportion of OH groups is preferably between approximately 0.5% and approximately 2%. Too low a proportion of OH groups does not confer a sufficient propensity to form a solid layer after evaporation of the solvent and with high cohesiveness after calcination. A very high proportion of OH groups can make the polysiloxane difficult to produce at an acceptable cost.
  • the silanol groups are preferably stable in order to allow storage of the resin. These OH groups can be grafted to a polysiloxane by hydrolysis.
  • the siloxane units of the polysiloxane according to the invention are advantageously, in whole or in part, tri- or quadri-functional.
  • the organic solvent is typically an apolar solvent, such as xylene or toluene.
  • Xylene can be a mixture of different types of xylene, such as o and p.
  • the mineral filler is typically chosen from borides, carbides, nitrides and metal oxides or from borides, carbides and nitrides of non-metals (such as boron nitrides), or a combination or mixture of them.
  • Said mineral filler is advantageously chosen from metal compounds such as metal oxides, metal carbides, metal borides and metal nitrides, or a combination or a mixture of these.
  • the mineral filler is preferably able to react chemically with the silicone resin so as to produce a solid layer after evaporation of the organic solvent and a refractory layer with high cohesiveness after calcination of said raw layer.
  • the mineral filler can be chosen according to the physicochemical characteristics expected from the coating (such as its wettability or non-wettability by a liquid metal).
  • the metal compound is advantageously alumina, ZrO 2 , ZrB 2 , TiB 2 or TiO 2 or a combination or a mixture of these.
  • the alumina is preferably a reactive calcined alpha alumina, called technical alumina, the hydration rate of which is very low (typically less than 1%, or even less than 0.5%).
  • the mineral filler is preferably in the form of a fine powder, which makes it possible to obtain a fluid precursor and a uniform coating. It is typically added to the silicone resin / organic solvent mixture after a fine grinding operation.
  • the particle size of the mineral filler powder is typically such that the grain size is between 0.05 ⁇ m and 50 ⁇ m.
  • the physical properties of the coating can, in certain cases, be adapted by adjusting the proportion of mineral filler and / or its particle size.
  • the precursor is typically in the form of a suspension or a slip. It is typically obtained by mixing the resin, the mineral filler and the organic solvent.
  • the proportion of silicone resin in the precursor is typically between 5 and 30% by weight, and preferably between 7.5 and 20% by weight, in order to allow satisfactory ceramization of the coating during calcination.
  • the proportion of silicone resin in the precursor is typically between 15 and 40% by weight.
  • the proportion of organic solvent in the precursor is then typically between 7.5% and 60% by weight, and preferably between 15 and 30% by weight.
  • the amount of solvent is preferably such that all of the silicone resin is dissolved and that the solution obtained is capable of suspending the mineral filler.
  • the proportion of mineral filler in the precursor is typically between 30% and 75% by weight, and preferably between 45 and 70% by weight. Too small a proportion leads to too fine a deposition and consequently requires the deposition of a large number of successive layers. Too large a proportion gives a precursor which is difficult to spread.
  • the precursor is typically in the form of a paste.
  • the proportion of silicone resin in the precursor is then typically between 7.5 and 20% by weight, and preferably between 10 and 17.5% by weight, in order to allow satisfactory ceramization of the coating during calcination.
  • the proportion of organic solvent in the precursor is typically between 2.5% and 10% by weight.
  • the proportion of mineral filler in the precursor is typically between 70% and 95% by weight, and preferably between 75% and 90% by weight.
  • the coating precursor advantageously comprises an additive capable of reducing the viscosity of the precursor.
  • Said additive typically comprises a dispersant, such as stearic acid.
  • the proportion of said additive in the precursor is typically less than 2% by weight, and more typically between 0.1 and 1%.
  • the precursor is typically obtained by mixing the resin, the mineral filler and the additive and, if necessary, by grinding the mixture.
  • the subject of the invention is also a method for coating a determined surface of a substrate with at least one refractory layer containing silicon in which:
  • the substrate is coated with a coating precursor according to the invention, so as to form a green layer;
  • calcination capable of causing the elimination of volatile matter, the calcination of said raw layer and the formation of a cohesive refractory layer.
  • the Applicant has observed that the process of the invention makes it possible to obtain a thin, resistant layer which is strongly adherent to the substrate which is resistant to liquid metal and which has a high cohesiveness.
  • the coating precursor can be prepared in at least two operations:
  • the coating of the substrate can be carried out by any known means.
  • the coating can be applied by brushing (typically with a brush and / or roller), by dipping, by spraying, or by spraying (typically with a gun).
  • Brushing, soaking and spraying are particularly suitable for depositing precursors in the form of a suspension or slip.
  • the projection is particularly suitable for depositing the precursors in the form of a paste.
  • the substrate can optionally be brought to a temperature above ambient before coating in order to promote the formation of a homogeneous deposit and the adhesion of the deposit by melting the resin.
  • the method according to the invention can also include complementary operations, such as preparing the parts of the surface of the substrate that it is desired to coat and / or drying the raw coating before the heat treatment. Said drying is used in particular to evaporate said organic solvent and to solidify, at least partially, the raw layer (so as to be able to handle the substrate without damaging the layer).
  • the preparation of the surface of the substrate typically includes cleaning and / or degreasing (for example using acetone).
  • a coating precursor further containing a wetting agent capable of promoting the formation of a thin layer.
  • Said wetting agent is preferably a polyether silane, which promotes spreading of the coating on the substrate without preventing the ceramization of the refractory coating during the heat treatment.
  • the chemical formula of said polyether silane is typically:
  • R is an alkyl group, typically methyl.
  • the wetting agent also makes it possible to avoid or substantially delay the setting in solid of the precursor.
  • the proportion of wetting agent in the precursor is typically between 1 and 5% by weight approximately, and preferably between 2 and 4% by weight for the precursors in the form of slip or suspension and between 2 and 5% by weight for the precursors in the form of a paste.
  • the so-called calcination heat treatment comprises at least one step at an elevated temperature, which is typically between 650 and 1300 ° C, and more typically between 800 and 1300 ° C, capable of transforming the raw layer into a refractory ceramic, which is advantageously in the glassy state.
  • the composition of the glassy phase typically comprises between 5 and 25% by weight of silica obtained from the resin (the remainder, typically 75 to 95% by weight, essentially consists of the mineral filler).
  • the calcination temperature also depends on the substrate; for example, in the case of a metal substrate, it is advantageously lower than the softening temperature thereof. On the other hand, it is also preferable to use a calcination temperature higher than the temperature of use of the coated substrate.
  • the heat treatment may include an intermediate step at a temperature between 200 and 600 ° C (typically between 200 and 250 ° C).
  • This intermediate step is preferably capable of causing the crosslinking of the resin and, optionally, the decomposition of the latter before the "ceramization" (or final calcination) of the coating.
  • the duration of the heat treatment is advantageously such that it allows complete ceramization of the precursor.
  • the rise in temperature is preferably slow enough to avoid cracking of the coating.
  • the organic compounds are removed (by evaporation and / or by decomposition), leaving a refractory solid on a surface of the substrate.
  • This solid is for example formed from the metal originating from the compound of metal and silicon from the silicone resin.
  • the Si-OH silanol groups of the polysiloxane seem to establish covalent bonds with the OH groups of the alumina, which bonds seem to transform into Si-O-Al bonds, with evolution of water, during heat treatment, to form an alumino-silicate, which is advantageously in the vitreous state.
  • a similar mechanism could occur with metal compounds other than alumina.
  • the ambient atmosphere during the calcination treatment is advantageously non-oxidizing, in order to avoid in particular an oxidation of the substrate at the substrate / coating interface liable to cause decohesion between the substrate and the coating, or even the destruction of the substrate (for example when it is made of graphite).
  • the final coating can comprise two or more successive layers, which can be applied by successive coatings and heat treatments, i.e. by successive coating / heat treatment sequences.
  • the coating and calcination treatment operations of the layer are repeated for each elementary layer of the final coating.
  • the successive layers may have a different composition, so as to give them different chemical and mechanical properties. This last variant makes it possible to adapt each layer to a local function, such as the adhesion to the substrate for the first layer, the mechanical resistance for the intermediate layers and the chemical resistance for the surface layer.
  • the subject of the invention is also a substrate, at least part of the surface of which comprises at least one refractory layer obtained by using said precursor or by using said coating process, which refractory layer is advantageously in the vitreous state, with or without composition gradient in the direction perpendicular to the surface of the substrate.
  • the invention also relates to the use of said precursor or of said coating process for the protection of a substrate, in particular for the protection of a material and / or piece of equipment intended to be exposed to an oxidizing environment, to liquid metal (in particular aluminum, an aluminum alloy, magnesium or a magnesium alloy, in the liquid state ) and / or to a solid or molten salt.
  • liquid metal in particular aluminum, an aluminum alloy, magnesium or a magnesium alloy, in the liquid state
  • the substrate can be made of metal (such as an iron-nickel-chromium base alloy (typically a steel or an inconel)), of refractory material or of carbonaceous material (such as graphite ), or a mixture or combination thereof; it can be a particular object (typically a piece of equipment, such as a metal or refractory component of a casting loom, a nozzle, a distributor of liquid metal in a swamp, a steel screen (especially stainless steel) ) or in refractory or ceramic material, a metallic or refractory filter, an injector of liquid metal or gas bubbles, a rotor, a doctor blade, a pouring spout, an ultrasonic sensor, a measurement sensor (ultrasound, temperature ,.
  • metal such as an iron-nickel-chromium base alloy (typically a steel or an inconel)
  • refractory material or of carbonaceous material such as graphite
  • a mixture or combination thereof can be a particular
  • the substrate can be porous or non-porous.
  • a calcined alpha alumina powder (technical alumina of reference PI 72 SB from the company Aluminum Pechiney) having a D50 of 0.5 ⁇ m and a specific surface
  • the alumina was finely ground (particle size typically between 0.2 ⁇ m and 1.5 ⁇ m); - a ZrO 2 powder (reference CSO2 from Saint-Gobain) having a D50 of 0.8 ⁇ m and a BET of 5.5 m 2 / g; - a TiO 2 powder (reference Kemira UN Titan P 370) whose grains have a size of 0.06 ⁇ m;
  • Silicone resin a polymethylsiloxane MK from the company Wacker, which is a tri-functional resin with approximately 1% of OH groups. This resin was composed of approximately 80% of silica equivalent and 20% of methyl groups, which decompose at a temperature of the order of 450 ° C;
  • Wetting agent a Dynasylan ® 4140 polysilane from the company Dégussa-H ⁇ ls (approximately 3% by weight relative to the amount of metal compound in all cases).
  • slip compositions have been tested. They had the compositions given in Table I (% by weight). The proportions were such that the refractory coating obtained comprised about 80% by weight of equivalent of the metal compound (or mixture of metal compounds) and 20% by weight of silica equivalent. The concentration of silicone resin in xylene was approximately 250 g / l.
  • the xylene was mixed so as to obtain a homogeneous mixture.
  • the silicone resin was dissolved at room temperature in this organic solvent until a homogeneous solution was obtained. If necessary, the wetting agent was then added to this solution. After a ripening time of 10 minutes, the charge was added to this solution and mixed (by stirring) until a homogeneous suspension was obtained.
  • the substrate was previously cleaned using a solvent capable of degreasing the surfaces, in particular acetone.
  • the mesh was also soaked in a sodium hydroxide solution (for example 60 g / 1 at room temperature).
  • the slip was deposited in a thin layer on the substrate by painting (using a brush and a roller so as to clear the mesh).
  • the coated substrate was then left in the open air for a few minutes so that the solvent could evaporate. It was observed that the layer dried quickly and that the deposit adhered firmly to the substrate (the deposit was very uniform and hard and allowed easy handling of the mesh).
  • the percentage of closed meshes was low (typically less than 10 %).
  • the coated slip substrate was subjected to a one hour heat treatment at a temperature of 900 ° C.
  • the coating was obtained by depositing and baking four successive thin and uniform layers. The excess precursors of each deposit were removed in order to avoid the appearance of adhesion defects.
  • the final thickness of the coating was typically of the order of 50 ⁇ m. This coating was very uniform and solid (high cohesiveness and non-pulverulent) and did not block the openings of the mesh (the mesh was only reduced to approximately 100 ⁇ m).
  • a dough composition was tested. It had the following composition (% by weight): 82% of mineral filler (of alumina), 13.9% of silicone resin and 4.1% of organic solvent. The proportions were such that the refractory coating obtained comprised about 80% by weight of equivalent of the metal compound (or mixture of metal compounds) and 20% by weight of silica equivalent. The compositions did not include a wetting agent.
  • the paste obtained was deposited on a metal substrate (a blade) in 304 L stainless steel using a spatula.
  • the coated substrate was crosslinked at a temperature of 240 ° C for one hour, then baked at a temperature of 800 ° C.
  • the final thickness of the coating was typically of the order of 200 to 300 ⁇ m. This coating was very uniform and solid (high cohesiveness and non-powdery).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention a pour objet un précurseur de revêtement comprenant une résine silicone, une charge minérale et un solvant organique apte à dissoudre ladite résine et à mettre en suspension la charge minérale, ladite résine silicone et ladite charge minérale étant aptes à réagir chimiquement de manière à produire une couche solide sur un substrat après évaporation du solvant organique et en couche réfractaire cohésive après une opération de calcination. L'invention a également pour objet un procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel on enduit le substrat d'un précurseur de revêtement selon l'invention, de façon à former une couche crue et on effectue un traitement thermique apte à entrainer la calcination de ladite couche crue et la formation d'une couche réfractaire cohésive. L'invention permet d'obtenir un revêtement protecteur apte à resister à des environnements oxydants, à du métal liquide ou à un sel solide ou en fusion.

Description

PRECURSEURDEREVETEMENTETPROCEDEPOURREVETIRUN SUBSTRATD'UNE COUCHE REFRACTAIRE
Domaine de l'invention
La présente invention concerne la protection d'objets et de matériaux destinés à l'industrie métallurgique, notamment à l'industrie de l'aluminium. Elle concerne en particulier les revêtements de protection desdits objets et matériaux.
Etat de la technique
Les objets et matériaux qui sont utilisés dans l'industrie de l'aluminium sont souvent exposés à des environnements corrosifs et soumis à de hautes températures et des contraintes thermiques importantes. Les contenants (tels que les poches ou les fours), les conduits (tels que les goulottes, les injecteurs et les busettes de coulée) et les outils et dispositifs qui sont destinés à manipuler et à traiter l'aluminium liquide (tels que les filtres et les rotors) doivent présenter une grande résistance mécanique et chimique. En particulier, les surfaces de ces objets qui sont exposées à l'aluminium liquide ne doivent ni se dissoudre dans l'aluminium liquide, ni le contaminer.
Bien que la résistance des matériaux couramment utilisés dans l'industrie de l'aluminium soit généralement suffisante, il existe certaines applications ou conditions pour lesquelles on cherche une résistance encore plus grande. C'est le cas notamment lorsque l'on cherche à réduire à une valeur pratiquement nulle le nombre d'inclusions contenues dans chaque tonne d'aluminium coulée.
La demanderesse a donc recherché des moyens qui permettent de manipuler, d'élaborer, de traiter et de couler de l'aluminium et des alliages d'aluminium liquides de manière satisfaisante dans les conditions et applications les plus exigeantes. Description de l'invention
L'invention a pour objet un précurseur de revêtement destiné à la formation d'une couche protectrice sur un substrat. Ledit précurseur comprend une résine silicone et une charge minérale apte à réagir chimiquement avec ladite résine de manière à produire une couche réfractaire cohesive après une opération de calcination de la couche.
Plus précisément, l'invention a pour objet un précurseur de revêtement comprenant une résine silicone (ou organosiloxane), une charge minérale et un solvant organique apte à dissoudre ladite résine et à mettre en suspension ladite charge minérale, ladite résine silicone et ladite charge minérale étant aptes à réagir chimiquement de manière à produire une couche solide sur un substrat après évaporation du solvant organique et une couche réfractaire cohesive après une opération de calcination.
Ledit précurseur est de préférence homogène.
La résine silicone est un polysiloxane comprenant de préférence une proportion de groupements OH, tel qu'un polyméthylsiloxane, un polydiméthylsiloxane, un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements méthyles. La demanderesse a noté que la proportion de groupements OH est de préférence comprise entre environ 0,5 % et environ 2 %. Une proportion de groupements OH trop faible ne confère pas une propension suffisante à former une couche solide après évaporation du solvant et à forte cohésivité après calcination. Une proportion de groupements OH très élevée peut rendre le polysiloxane difficile à produire à un coût acceptable. Les groupements silanols (Si-OH) sont de préférence stables afin de permettre le stockage de la résine. Ces groupements OH peuvent être greffés à un polysiloxane par hydrolyse. Les motifs siloxaniques du polysiloxane selon l'invention sont avantageusement, en tout ou partie, tri- ou quadri-fonctionnels. Le solvant organique est typiquement un solvant apolaire, tel qu'un xylène ou un toluène. Le xylène peut être un mélange de différents types de xylène, tels que o et p.
La charge minérale est typiquement choisie parmi les borures, les carbures, les nitrures et les oxydes de métaux ou parmi les borures, les carbures et les nitrures de non-métaux (tels que les nitrures de bore), ou une combinaison ou un mélange de ceux-ci. Ladite charge minérale est avantageusement choisie parmi les composés de métal tels que les oxydes de métal, les carbures de métal, les borures de métal et les nitrures de métal, ou une combinaison ou un mélange de ceux-ci. La charge minérale est de préférence apte à réagir chimiquement avec la résine silicone de manière à produire une couche solide après évaporation du solvant organique et une couche réfractaire à forte cohésivité après calcination de ladite couche crue. La charge minérale peut être choisie en fonction des caractéristiques physico-chimiques attendues du revêtement (telles que sa mouillabilité ou non-mouillabilité par un métal liquide).
Le composé de métal est avantageusement de l'alumine, du ZrO2, du ZrB2, du TiB2 ou du TiO2 ou une combinaison ou un mélange de ceux-ci. L'alumine est de préférence une alumine alpha calcinée réactive, dite alumine technique, dont le taux d'hydratation est très faible (typiquement inférieur à 1 %, voire inférieur à 0,5 %).
La charge minérale se présente de préférence sous forme d'une poudre fine, ce qui permet d'obtenir un précurseur fluide et un revêtement uniforme. Il est typiquement ajouté au mélange résine silicone / solvant organique après une opération de broyage fin. La granulométrie de la poudre de charge minérale est typiquement telle que la taille des grains est comprise entre 0,05 μm et 50 μm.
Les propriétés physiques du revêtement, telles que ses propriétés mécaniques, peuvent, dans certains cas, être adaptées par ajustement de la proportion de charge minérale et/ou de sa granulométrie. Selon un mode de réalisation préféré de l'invention, le précurseur se présente typiquement sous la forme d'une suspension ou d'une barbotine. Il est typiquement obtenu par mélange de la résine, de la charge minérale et du solvant organique.
Dans ce mode de réalisation, la proportion de résine silicone dans le précurseur est typiquement comprise entre 5 et 30 % en poids, et de préférence entre 7,5 et 20 % en poids, afin de permettre une céramisation satisfaisante du revêtement lors de la calcination. Hors solvant, la proportion de résine silicone dans le précurseur est typiquement comprise entre 15 et 40 % en poids.
La proportion de solvant organique dans le précurseur est alors typiquement comprise entre 7,5 % et 60 % en poids, et de préférence entre 15 et 30 % en poids. La quantité de solvant est de préférence telle que toute la résine de silicone est dissoute et que la solution obtenue est apte à mettre en suspension la charge minérale.
La proportion de charge minérale dans le précurseur est typiquement comprise entre 30 % et 75 % en poids, et de préférence entre 45 et 70 % en poids. Une proportion trop faible conduit à un dépôt trop fin et nécessite par conséquent le dépôt d'un grand nombre de couches successives. Une proportion trop importante donne un précurseur qui est difficile à étaler.
Selon un autre mode de réalisation préféré de l'invention, le précurseur se présente typiquement sous la forme d'une pâte.
Dans ce mode de réalisation, la proportion de résine silicone dans le précurseur est alors typiquement comprise entre 7,5 et 20 % en poids, et de préférence entre 10 et 17,5 % en poids, afin de permettre une céramisation satisfaisante du revêtement lors de la calcination.
La proportion de solvant organique dans le précurseur est typiquement comprise entre 2,5 % et 10 % en poids. La proportion de charge minérale dans le précurseur est typiquement comprise entre 70 % et 95 % en poids, et de préférence entre 75 % et 90 % en poids.
Dans ce mode de réalisation, le précurseur de revêtement comprend avantageusement un additif apte à diminuer la viscosité du précurseur. Ledit additif comprend typiquement un dispersant, tel que de l'acide stéarique. La proportion dudit additif dans le précurseur est typiquement inférieure à 2 % en poids, et plus typiquement comprise entre 0,1 et 1 %.
Le précurseur est typiquement obtenu par mélange de la résine, de la charge minérale et de l'additif et, si nécessaire, par broyage du mélange.
L'invention a également pour objet un procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel :
- on enduit le substrat d'un précurseur de revêtement selon l'invention, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohesive.
La demanderesse a observé que le procédé de l'invention permet d'obtenir une couche mince résistante et fortement adhérente au substrat qui résiste bien au métal liquide et qui possède une forte cohésivité.
Le précurseur de revêtement peut être préparé en au moins deux opérations :
- on dissout une résine silicone dans un solvant organique, de manière à obtenir une solution de résine silicone ;
- on ajoute la charge minérale dans la solution de résine silicone ainsi obtenue.
L'enduction du substrat (qui comprend typiquement le dépôt et l'étalement dudit précurseur sur le substrat) peut être effectuée par tout moyen connu. Par exemple, le revêtement peut être déposé par badigeonnage (typiquement à l'aide d'un pinceau et/ou d'un rouleau), par trempage, par pulvérisation, ou par projection (typiquement à l'aide d'un pistolet). Le badigeonnage, le trempage et la pulvérisation sont particulièrement adaptés au dépôt de précurseurs sous forme de suspension ou de barbotine. La projection est particulièrement adaptée au dépôt des précurseurs sous forme de pâte. Le substrat peut éventuellement être porté à une température supérieure à l'ambiante avant l'enduction afin de favoriser la formation d'un dépôt homogène et l'adhérence du dépôt par fusion de la résine.
Le procédé selon l'invention peut également comprendre des opérations complémentaires, telles qu'une préparation des parties de la surface du substrat que l'on cherche à revêtir et/ou un séchage du revêtement brut avant le traitement thermique. Ledit séchage sert notamment à évaporer ledit solvant organique et à solidifier, au moins partiellement, la couche crue (de manière à pouvoir manipuler le substrat sans altérer la couche). La préparation de la surface du substrat comprend typiquement un nettoyage et/ou un dégraissage (par exemple à l'aide d'acétone).
Dans certaines applications, il peut être avantageux d'utiliser un précurseur de revêtement contenant en outre un agent mouillant apte à favoriser la formation d'une couche mince. Tel est le cas notamment de certains filtres tamis dont on cherche à revêtir les fils du grillage métallique sans en bloquer les ouvertures. Ledit agent mouillant est de préférence un polyéther silane, qui favorise l'étalement du revêtement sur le substrat sans empêcher la céramisation du revêtement réfractaire lors du traitement thermique. Le formule chimique dudit polyéther silane est typiquement :
/O - R CH3 - O - (CH2 - CH2 - O -)ι<> - CH2 - CH2 - CH2 - Si - O - R
\ O - R où R est un groupement alkyl, typiquement un méthyle.
Avantageusement, l'agent mouillant permet également d'éviter ou de retarder sensiblement la prise en masse du précurseur. La proportion d'agent mouillant dans le précurseur se situe typiquement entre 1 et 5 % en poids environ, et de préférence entre 2 et 4 % en poids pour les précurseurs sous forme de barbotine ou de suspension et entre 2 et 5 % en poids pour les précurseur sous forme de pâte.
Le traitement thermique dit de calcination comprend au moins une étape à une température élevée, qui est typiquement comprise entre 650 et 1300°C, et plus typiquement entre 800 et 1300°C, apte à transformer la couche crue en une céramique réfractaire, qui est avantageusement à l'état vitreux. La composition de la phase vitreuse comprend typiquement entre 5 et 25 % en poids de silice issue de la résine (le reste, soit typiquement 75 à 95 % en poids, est essentiellement constitué de la charge minérale). La température de calcination dépend également du substrat ; par exemple, dans le cas d'un substrat métallique, elle est avantageusement inférieure à la température de ramollissement de celui-ci. D'autre part, il > est également préférable d'utiliser une température de calcination supérieure à la température d'utilisation du substrat revêtu. Le traitement thermique peut comprendre une étape intermédiaire à une température comprise entre 200 et 600°C (typiquement entre 200 et 250°C). Cette étape intermédiaire est de préférence apte à provoquer la réticulation de la résine et, éventuellement, la décomposition de celle-ci avant la « céramisation » (ou calcination finale) du revêtement. Dans ce cas, il est possible, selon une variante avantageuse de l'invention, de poursuivre le traitement thermique de calcination in situ, c'est-à-dire lors de l'utilisation du substrat à haute température (cette température étant avantageusement supérieure à 650°C).
La durée du traitement thermique est avantageusement telle qu'elle permet une céramisation complète du précurseur. La montée en température est de préférence suffisamment lente pour éviter la fissuration du revêtement.
Lors du traitement thermique, les composés organiques sont éliminés (par évaporation et/ou par décomposition), laissant sur une surface du substrat un solide réfractaire. Ce solide est par exemple formé à partir du métal provenant du composé de métal et du silicium provenant de la résine de silicone. Dans le cas de l'alumine, les groupements silanols Si-OH du polysiloxane semblent établir des liaisons covalentes avec les groupements OH de l'alumine, lesquelles liaisons semblent se transformer en liaisons Si-O-Al, avec dégagement d'eau, lors du traitement thermique, pour former un alumino-silicate, qui est avantageusement à l'état vitreux. Un mécanisme similaire pourrait se produire avec des composés de métal autres que l'alumine.
L'atmosphère ambiante durant le traitement de calcination est avantageusement non- oxydante, afin d'éviter notamment une oxydation du substrat à l'interface substrat / revêtement susceptible d'entraîner la décohésion entre le substrat et le revêtement, voire la destruction du substrat (par exemple lorsque celui-ci est en graphite).
Le revêtement définitif peut comprendre deux ou plusieurs couches successives, qui peuvent être appliquées par enductions et traitements thermiques successifs, i.e. par des séquences enduction / traitement thermique successives. En d'autres termes, on répète les opérations d 'enduction et de traitement de calcination de la couche pour chaque couche élémentaire du revêtement définitif. Les couches successives peuvent posséder une composition différente, de manière à leur conférer des propriétés chimiques et mécaniques différentes. Cette dernière variante permet d'adapter chaque couche à une fonction locale, telle que l'adhérence au substrat pour la première couche, la résistance mécanique pour les couches intermédiaires et la résistance chimique pour la couche superficielle.
L'invention a également pour objet un substrat dont au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant ledit précurseur ou en utilisant ledit procédé de revêtement, laquelle couche réfractaire est avantageusement à l'état vitreux, avec ou sans gradient de composition dans le sens perpendiculaire à la surface du substrat.
L'invention a également pour objet l'utilisation dudit précurseur ou dudit procédé de revêtement pour la protection d'un substrat, notamment pour la protection d'un matériau et/ou d'une pièce d'équipement destinés à être exposés à un environnement oxydant, à du métal liquide (notamment de l'aluminium, un alliage d'aluminium, du magnésium ou un alliage de magnésium, à l'état liquide) et/ou à un sel solide ou en fusion.
Le terme substrat doit être entendu au sens large : le substrat peut être en métal (tel qu'un alliage base fer-nickel-chrome (typiquement un acier ou un inconel)), en matériau réfractaire ou en matériau carboné (tel que du graphite), ou un mélange ou une combinaison de ceux-ci ; il peut être un objet particulier (typiquement une pièce d'équipement, tel qu'un composant métallique ou réfractaire d'un métier de coulée, une busette, un distributeur de métal liquide dans un marais, un tamis en acier (notamment en acier inoxydable) ou en matériau réfractaire ou en céramique, un filtre métallique ou réfractaire, un injecteur de métal liquide ou de bulles de gaz, un rotor, une racle, un bec verseur, un capteur ultrason, un capteur de mesure (ultrason, température,...) destiné à être immergé dans un métal liquide, les pièces en matériaux carbonés, les briques en graphite, etc.), ou un matériau, notamment un matériau de revêtement (tel qu'une brique en matériau réfractaire ou en matériau carboné (tel que du graphite)). Le substrat peut être poreux ou non-poreux.
Essais
Plusieurs essais ont été réalisés sur différents substrats. Ces essais ont été réalisés à l'aide des composants suivants :
• Charges minérales :
- une poudre d'alumine alpha calcinée (alumine technique de référence PI 72 SB de la société Aluminium Pechiney) ayant un D50 de 0,5 μm et une surface spécifique
BET de 6 à 8 m /g. L'alumine était finement broyée (granulométrie typiquement comprise entre 0,2 μm et 1,5 μm) ; - une poudre de ZrO2 (référence CSO2 de Saint-Gobain) ayant un D50 de 0,8 μm et un BET de 5,5 m2/g ; - une poudre de TiO2 (référence Kemira UN Titan P 370) dont les grains ont une taille de 0,06 μm ;
- une poudre de TiB2 (référence Metabap 143) ayant un D50 de 1,7 μm ;
• Résine silicone : un polyméthylsiloxane MK de la société Wacker, qui est une résine tri-fonctionnelle avec 1 % de groupements OH environ. Cette résine était composée d'environ 80 % d'équivalent silice et 20 % de groupements méthyl, qui se décomposent à une température de l'ordre de 450 °C ;
Solvant organique : du xylène ;
• Agent mouillant : un polysilane Dynasylan® 4140 de la société Dégussa-Hϋls (environ 3 % en poids par rapport à la quantité de composé de métal dans tous les cas). t Série d'essais avec barbotine
Plusieurs compositions de barbotine ont été mises à l'essai. Elles avaient les compositions données au tableau I (% en poids). Les proportions étaient telles que le revêtement réfractaire obtenu comprenait environ 80 % en poids d'équivalent du composé de métal (ou du mélange de composés de métal) et 20 % en poids d'équivalent silice. La concentration de résine silicone dans le xylène était de 250g/l environ.
Tableau I
Figure imgf000011_0001
Figure imgf000012_0001
Le xylène a été mélangé de manière à obtenir un mélange homogène. La résine silicone a été dissoute à température ambiante dans ce solvant organique jusqu'à obtenir une solution homogène. Le cas échéant, le mouillant a ensuite été ajouté à cette solution. Après un temps de maturation de 10 minutes, la charge a été ajoutée à cette solution et mélangée (par agitation) jusqu'à obtenir une suspension homogène.
Plusieurs essais ont été réalisés sur un grillage en acier inoxydable 304 L en tant que substrat. Le diamètre des fils de ce grillage était de 100 μm et la maille de 200 μm.
Le substrat a été préalablement nettoyé à l'aide d'un solvant apte à dégraisser les surfaces, notamment de l'acétone. Dans certains essais, le grillage a également été trempé dans une solution de soude (par exemple 60 g/1 à température ambiante).
La barbotine a été déposée en couche mince sur le substrat par peinture (à l'aide d'un pinceau et d'un rouleau de manière à bien dégager les mailles). Le substrat revêtu a ensuite été laissé à l'air libre quelques minutes pour que le solvant puisse s'évaporer. Il a été observé que la couche séchait rapidement et que le dépôt adhérait fermement au substrat (le dépôt était très uniforme et dur et permettait une manipulation aisée du grillage). Le pourcentage des mailles obturées était faible (typiquement moins de 10 %). Après l'opération de séchage, le substrat enduit de barbotine a été soumis à un traitement thermique d'une heure à une température de 900 °C.
Typiquement, le revêtement a été obtenu par le dépôt et la cuisson de quatre couches minces et uniformes successives. Les excès de précurseurs de chaque dépôt ont été enlevés afin d'éviter l'apparition de défauts d'adhérence. L'épaisseur finale du revêtement était typiquement de l'ordre de 50 μm. Ce revêtement était très uniforme et solide (à forte cohésivité et non-pulvérulente) et ne bloquait pas les ouvertures du grillage (la maille était seulement réduite à environ 100 μm).
Des grillages ainsi revêtus ont été trempés pendant deux heures dans de l'aluminium liquide à une température comprise entre 700 et 800°C. Ce test n'a révélé aucune détérioration du revêtement.
Des grillages ainsi revêtus ont été utilisés pour filtrer de l'aluminium liquide. Ce test a montré que ces grillages permettent la circulation d'aluminium liquide sans perte de charge excessive et sans dégradation du revêtement. Les résultats obtenus pour les débits initiaux sur une surface de l'ordre de 13 cm2 sont regroupés dans le tableau I
Ces résultats montrent que le débit de métal est élevé avec toutes les barbotines mises à l'essai.
Tableau II
Figure imgf000013_0001
Les quelques essais réalisés avec une barbotine similaire à la barbotine n° 5, mais sans agent mouillant, ont donné des résultats comparables à ceux obtenus avec la barbotine n° 5. La barbotine n° 6 a donné des débits similaires à ceux obtenus avec les barbotines n° 1 à 5. Série d'essais avec pâte
Une composition de pâte a été mise à l'essai. Elle avait la composition suivante (% en poids) : 82 % de charge minérale (de l'alumine), 13,9 % de résine silicone et 4,1 % de solvant organique. Les proportions étaient telles que le revêtement réfractaire obtenu comprenait environ 80 % en poids d'équivalent du composé de métal (ou du mélange de composés de métal) et 20 % en poids d'équivalent silice. Les compositions ne comprenaient pas d'agent mouillant.
La pâte obtenue a été déposée sur un substrat métallique (une lame) en acier inoxydable 304 L à l'aide d'une spatule.
Après l'opération de séchage, le substrat revêtu a été réticulé à une température de 240 °C pendant une heure, puis cuit à une température de 800°C.
L'épaisseur finale du revêtement était typiquement de l'ordre de 200 à 300 μm. Ce revêtement était très uniforme et solide (à forte cohésivité et non-pulvérulente).

Claims

REVENDICATIONS
1. Précurseur de revêtement comprenant une résine silicone, une charge minérale et un solvant organique apte à dissoudre ladite résine et à mettre en suspension la charge minérale, la résine silicone et la charge minérale étant aptes à réagir chimiquement de manière à produire une couche solide sur un substrat après évaporation du solvant organique et une couche réfractaire cohesive après une opération de calcination.
2. Précurseur de revêtement selon la revendication 1, caractérisé en ce que les motifs siloxaniques de la résine silicone incluent des motifs tri- ou quadri- fonctionnels.
3. Précurseur de revêtement selon la revendication 1 ou 2, caractérisé en ce que la résine silicone est un polysiloxane comprenant une proportion de groupements OH.
4. Précurseur de revêtement selon la revendication 3, caractérisé en ce que ledit polysiloxane est un polyméthylsiloxane, un polydiméthylsiloxane, un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements méthyle.
5. Précurseur de revêtement selon la revendication 3 ou 4, caractérisé en ce que la proportion de groupements OH est comprise entre environ 0,5 % et environ 2 %.
6. Précurseur de revêtement selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit solvant organique est apolaire.
7. Précurseur selon la revendication 6, caractérisé en ce que le solvant organique apolaire est un xylène ou un toluène.
8. Précurseur de revêtement selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la charge minérale est choisie parmi les oxydes de métal, les carbures de métal et de non-métal, les borures de métal et de non-métal et les nitrures de métal et de non-métal, ou une combinaison ou un mélange de ceux- ci.
9. Précurseur de revêtement selon la revendication 8, caractérisé en ce que la charge minérale comprend une alumine alpha calcinée.
10. Précurseur de revêtement selon la revendication 8 ou 9, caractérisé en ce que la charge minérale est choisie dans le groupe comprenant ZrO2, ZrB2, TiB2, TiO2, nitrure de bore, et un mélange ou une combinaison de ceux-ci.
11. Précurseur de revêtement selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la charge minérale se présente sous forme de poudre dont la taille des grains est comprise entre 0,05 μm et 50 μm.
12. Précurseur de revêtement selon l'une quelconque des revendications 1 à 11, caractérisé en ce que ledit précurseur de revêtement contient en outre un agent mouillant apte à favoriser la formation d'une couche mince.
13. Précurseur de revêtement selon la revendication 12, caractérisé en ce que ledit agent mouillant est un polyéther silane.
14. Précurseur de revêtement selon l'une des revendications 12 ou 13, caractérisé en ce que la proportion d'agent mouillant dans le précurseur se situe entre 1 et 5 % en poids.
15. Précurseur selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il se présente sous forme de suspension ou de barbotine.
1.6. Précurseur selon la revendication 15, caractérisé en ce que la proportion de solvant dans le précurseur est comprise entre 7,5 % et 60 % en poids.
17. Précurseur selon la revendication 15, caractérisé en ce que la proportion de solvant dans le précurseur est comprise entre 15 % et 30 % en poids.
18. Précurseur de revêtement selon l'une quelconque des revendications 15 à 17, caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 5 et 30 % en poids.
19. Précurseur de revêtement selon l'une quelconque des revendications 15 à 17, . caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 7,5 et 20 % en poids.
20. Précurseur selon l'une quelconque des revendications 15 à 19, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 30 % et 75 % en poids.
21. Précurseur selon l'une quelconque des revendications 15 à 19, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 45 % et 70 % en poids.
22. Précurseur selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il se présente sous forme de pâte.
23. Précurseur selon la revendication 22, caractérisé en ce que la proportion de solvant dans le précurseur est comprise entre 2,5 % et 10 % en poids.
24. Précurseur selon la revendication 22, caractérisé en ce que la proportion de solvant dans le précurseur est comprise entre 10 % et 17,5 % en poids.
25. Précurseur de revêtement selon l'une quelconque des revendications 22 à 24, caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 7,5 et 20 % en poids.
26. Précurseur de revêtement selon l'une quelconque des revendications 22 à 24, caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 10 et 17,5 % en poids.
27. Précurseur selon l'une quelconque des revendications 22 à 26, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 70 % et 95 % en poids.
28. Précurseur selon l'une quelconque des revendications 22 à 26, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 75 % et 90 % en poids.
29. Précurseur selon l'une quelconque des revendications 22 à 28, caractérisé en ce qu'il comprend en outre un additif apte à diminuer la viscosité du précurseur.
30. Précurseur selon la revendication 29, caractérisé en ce que l'additif comprend un dispersant, tel qu'un acide stéarique.
31. Précurseur selon la revendication 29 ou 30, caractérisé en ce que la proportion d'additif dans le précurseur est inférieure à 2 % en poids.
32. Précurseur selon la revendication 30 ou 31, caractérisé en ce que la proportion d'additif dans le précurseur est comprise entre 0,1 et 1 % en poids.
33. Procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel : - on enduit ladite surface d'un précurseur de revêtement selon l'une quelconque des revendications 1 à 21, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohesive.
34. Procédé selon la revendication 33, dans lequel l'enduction est effectuée par badigeonnage, par trempage ou par pulvérisation.
35. Procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel :
- on enduit ladite surface d'un précurseur de revêtement selon l'une quelconque des revendications 22 à 32, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohesive.
36. Procédé selon la revendication 35, dans lequel l'enduction est effectuée par projection.
37. Procédé selon l'une quelconque des revendications 33 à 36, dans lequel le substrat est porté à une température supérieure à l'ambiante avant l'enduction.
38. Procédé selon l'une quelconque des revendications 33 à 37, dans lequel ledit traitement de calcination comprend au moins une étape à une température comprise entre 650 et 1300°C apte à transformer la couche crue en une céramique réfractaire.
39. Procédé selon l'une quelconque des revendications 33 à 38, dans lequel ledit traitement thermique comprend une étape intermédiaire à une température comprise entre 200 et 600°C.
40. Procédé selon l'une quelconque des revendications 33 à 39, dans lequel ledit traitement de calcination est effectué dans une atmosphère non-oxydante.
41. Procédé selon l'une quelconque des revendications 33 à 40, dans lequel ladite couche réfractaire est formée par plusieurs couches successives.
42. Procédé selon l'une quelconque des revendications 33 à 41, caractérisé en ce que ledit substrat est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci.
43. Procédé selon la revendication 42, caractérisé en ce que ledit métal est un alliage base fer-nickel-chrome.
44. Procédé selon l'une quelconque des revendications 33 à 41, dans lequel ledit substrat est choisi dans le groupe comprenant les composants métalliques ou réfractaires d'un métier de coulée, les busettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire ou en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs de métal liquide, les injecteurs de bulles de gaz, les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite.
45. Utilisation du précurseur selon l'une quelconque des revendications 1 à 32 ou du procédé selon l'une quelconque des revendications 33 à 41 pour la protection d'un matériau et/ou d'une pièce d'équipement destinés à être exposés à un environnement oxydant, à du métal liquide et/ou à un sel solide ou en fusion.
46. Utilisation selon la revendication 45, caractérisée en ce que ledit matériau est un métal, un réfractaire ou un matériau carboné, ou un mélange ou une combinaison de ceux-ci.
47. Utilisation selon la revendication 46, caractérisée en ce que ledit métal est un alliage base fer-nickel-chrome.
48. Utilisation selon la revendication 45, caractérisée en ce que ladite pièce est choisie dans le groupe comprenant les composants métalliques ou réfractaires d'un métier de coulée, les busettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire ou en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs " de métal liquide, les injecteurs de bulles de gaz, les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite.
49. Substrat caractérisé en ce qu'au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant un précurseur selon l'une quelconque des revendications 1 à 32 ou en utilisant le procédé selon l'une quelconque des revendications 33 à 41.
50. Substrat selon la revendication 49, caractérisé en ce qu'il est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci.
51. Substrat selon la revendication 50, caractérisé en ce que ledit métal est un alliage base fer-nickel-chrome.
52. Substrat selon la revendication 49, caractérisé en ce qu'il est choisi dans le groupe comprenant les composants métalliques ou réfractaires d'un métier de coulée, les busettes, les distributeurs de métal liquide dans un marais, les tamis en acier, en acier inoxydable, en matériau réfractaire ou en céramique, les filtres métalliques, les filtres en matériau réfractaire, les injecteurs de métal liquide, les injecteurs de bulles de gaz, les rotors, les racles, les becs verseurs, les capteurs ultrason, les capteurs de mesure destinés à être immergés dans un métal liquide, les briques en matériau réfractaire, les pièces en matériaux carbonés et les briques en graphite.
PCT/FR2002/003515 2001-10-15 2002-10-14 Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire WO2003033435A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002464340A CA2464340A1 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
US10/491,448 US7256232B2 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
EP02793164A EP1438271A2 (fr) 2001-10-15 2002-10-14 Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire
AU2002358833A AU2002358833B9 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
NO20041977A NO20041977L (no) 2001-10-15 2004-05-13 Belegningsforloper og fremgangsmate for a belegge et substrat med et motstandsdyktig lag

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0113267A FR2830857B1 (fr) 2001-10-15 2001-10-15 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
FR01/13267 2001-10-15
FRPCT/FR02/03485 2002-10-11
PCT/FR2002/003485 WO2003033767A2 (fr) 2001-10-15 2002-10-11 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire

Publications (2)

Publication Number Publication Date
WO2003033435A2 true WO2003033435A2 (fr) 2003-04-24
WO2003033435A3 WO2003033435A3 (fr) 2003-09-25

Family

ID=26213219

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2002/003517 WO2003033436A2 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
PCT/FR2002/003515 WO2003033435A2 (fr) 2001-10-15 2002-10-14 Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003517 WO2003033436A2 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire

Country Status (4)

Country Link
EP (2) EP1436240A2 (fr)
AU (2) AU2002362826B2 (fr)
CA (2) CA2463568A1 (fr)
WO (2) WO2003033436A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063710A1 (fr) * 2008-12-05 2010-06-10 Wacker Chemie Ag Revêtements hautement hydrophobes
US8210421B2 (en) * 2003-06-05 2012-07-03 Constellium France Method for separating cropped layers from plated strips by roll bonding
US20150297026A1 (en) * 2012-11-06 2015-10-22 Seb Sa Cooking Device Presenting a Cooking Surface Including a Non-Oxide or at Least Partially Non-Oxide Ceramic Non-Stick Coating, and Culinary Article or Electric Household Cooking Appliance Including Such a Cooking Device
WO2021214802A1 (fr) * 2020-04-22 2021-10-28 Danieli & C. Officine Meccaniche S.P.A. Produit métallique revêtu
CN115667423A (zh) * 2020-04-22 2023-01-31 达涅利机械设备股份公司 用于金属产品的涂料组合物及相关方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461155A (en) * 1973-10-05 1977-01-13 Sumitomo Chemical Co Method for producing aluminum
US4292345A (en) * 1980-02-04 1981-09-29 Kolesnik Mikhail I Method of protecting carbon-containing component parts of metallurgical units from oxidation
US4496469A (en) * 1982-01-12 1985-01-29 Otsuka Kagaku Yakuhin Kabushiki Kaisha Heat-insulating refractory material consisting alkali titanate and silicon resin
DE3638937A1 (de) * 1986-11-14 1988-05-26 Sigri Gmbh Kathode fuer eine schmelzflusselektrolysezelle
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
EP0601317A2 (fr) * 1992-12-04 1994-06-15 Nitto Denko Corporation Substrat pour étiquette, encre et étiquette
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
EP0834489A1 (fr) * 1996-10-04 1998-04-08 Dow Corning Corporation Revêtements épais opaques en céramique
US5851677A (en) * 1995-02-03 1998-12-22 Carbone Savoie Coating composition for carbon-containing products and said coating
EP0994158A1 (fr) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Composition organosilxane pour former d'une couche frittée
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
EP1088908A2 (fr) * 1999-10-01 2001-04-04 General Electric Company Méthode pour le lissage de la surface d'une couche de protection
EP1197585A2 (fr) * 2000-10-12 2002-04-17 General Electric Company Method for repairing a thermal barrier coating and repaired coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928668A (en) * 1974-05-06 1975-12-23 Ferro Corp Electrostatic deposition of dry ceramic powders
DE3439007A1 (de) * 1984-10-25 1986-04-30 Bayer Ag, 5090 Leverkusen Verfahren zum elektrostatischen verspruehen anorganischer pulver
DE3700702C1 (de) * 1987-01-13 1988-02-11 Bayer Ag Mit Organopolysiloxanen beschichtete Emailpulver fuer den elektrostatischen Pulverauftrag und Verfahren zu ihrer Herstellung
JPH04300251A (ja) * 1991-03-28 1992-10-23 Shin Etsu Chem Co Ltd 硼化チタン焼結体の製造方法
DE4122764A1 (de) * 1991-07-10 1993-01-14 Bayer Ag Thermoplastische formmassen, verfahren zu deren herstellung und verfahren zur herstellung von formteilen aus keramik oder metall durch sintern
JPH06212115A (ja) * 1992-05-29 1994-08-02 Ube Ind Ltd 耐熱性塗料
DE19833063A1 (de) * 1998-07-22 2000-02-03 Reinz Dichtungs Gmbh Lösemittelfreier applizierbarer wärmehärtender Beschichtungsstoff
RU2149168C1 (ru) * 1998-12-15 2000-05-20 Открытое акционерное общество "Северсталь" Электроизоляционный термостойкий композиционный состав

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461155A (en) * 1973-10-05 1977-01-13 Sumitomo Chemical Co Method for producing aluminum
US4292345A (en) * 1980-02-04 1981-09-29 Kolesnik Mikhail I Method of protecting carbon-containing component parts of metallurgical units from oxidation
US4496469A (en) * 1982-01-12 1985-01-29 Otsuka Kagaku Yakuhin Kabushiki Kaisha Heat-insulating refractory material consisting alkali titanate and silicon resin
DE3638937A1 (de) * 1986-11-14 1988-05-26 Sigri Gmbh Kathode fuer eine schmelzflusselektrolysezelle
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
EP0601317A2 (fr) * 1992-12-04 1994-06-15 Nitto Denko Corporation Substrat pour étiquette, encre et étiquette
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
US5851677A (en) * 1995-02-03 1998-12-22 Carbone Savoie Coating composition for carbon-containing products and said coating
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
EP0834489A1 (fr) * 1996-10-04 1998-04-08 Dow Corning Corporation Revêtements épais opaques en céramique
EP0994158A1 (fr) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Composition organosilxane pour former d'une couche frittée
EP1088908A2 (fr) * 1999-10-01 2001-04-04 General Electric Company Méthode pour le lissage de la surface d'une couche de protection
EP1197585A2 (fr) * 2000-10-12 2002-04-17 General Electric Company Method for repairing a thermal barrier coating and repaired coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 200061 Derwent Publications Ltd., London, GB; Class A26, AN 2000-636812 XP002205091 & RU 2 149 168 C (SEVERSTAL STOCK CO), 20 mai 2000 (2000-05-20) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 578 (C-1269), 7 novembre 1994 (1994-11-07) -& JP 06 212115 A (UBE IND LTD), 2 août 1994 (1994-08-02) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8210421B2 (en) * 2003-06-05 2012-07-03 Constellium France Method for separating cropped layers from plated strips by roll bonding
WO2010063710A1 (fr) * 2008-12-05 2010-06-10 Wacker Chemie Ag Revêtements hautement hydrophobes
US20150297026A1 (en) * 2012-11-06 2015-10-22 Seb Sa Cooking Device Presenting a Cooking Surface Including a Non-Oxide or at Least Partially Non-Oxide Ceramic Non-Stick Coating, and Culinary Article or Electric Household Cooking Appliance Including Such a Cooking Device
US10299624B2 (en) * 2012-11-06 2019-05-28 Seb S.A. Cooking device presenting a cooking surface including a non-oxide or at least partially non-oxide ceramic non-stick coating, and culinary article or electric household cooking appliance including such a cooking device
WO2021214802A1 (fr) * 2020-04-22 2021-10-28 Danieli & C. Officine Meccaniche S.P.A. Produit métallique revêtu
CN115667423A (zh) * 2020-04-22 2023-01-31 达涅利机械设备股份公司 用于金属产品的涂料组合物及相关方法

Also Published As

Publication number Publication date
AU2002358833B9 (en) 2008-05-22
WO2003033436A3 (fr) 2003-09-25
CA2463568A1 (fr) 2003-04-24
AU2002362826B2 (en) 2007-10-18
AU2002358833B2 (en) 2007-10-25
EP1436240A2 (fr) 2004-07-14
WO2003033436A2 (fr) 2003-04-24
EP1438271A2 (fr) 2004-07-21
WO2003033435A3 (fr) 2003-09-25
CA2464340A1 (fr) 2003-04-24

Similar Documents

Publication Publication Date Title
FR2830857A1 (fr) Precurseur de revetement et procede pour revetir un substrat d&#39;une couche refractaire
US8012252B2 (en) Durable hard coating containing silicon nitride
RU2401889C2 (ru) Тигель для кристаллизации кремния и способ его изготовления
WO2003033767A2 (fr) Precurseur de revetement et procede pour revetir un substrat d&#39;une couche refractaire
US20030180579A1 (en) Silicon carbide composites and methods for making same
AU777124B2 (en) Silicon carbide composites and methods for making same
KR20100133975A (ko) 유리 반송용 롤, 그의 제조 방법, 및 그것을 사용한 판유리의 제조 방법
CN111699164A (zh) 含有金属碳化物颗粒的含水悬浮液
WO2003033435A2 (fr) Percurseur de revetement et procede pour revetir un substrat d&#39;une couche refractaire
CA2620395A1 (fr) Support de cuisson pour ceramiques et procede d&#39;obtention
JP6253554B2 (ja) 複合耐火物およびその製造方法
EP3089952B1 (fr) Produit réfractaire au fluage amélioré
WO2019082458A1 (fr) Procédé de production d&#39;élément pour bain de métal en fusion
KR20060044497A (ko) 내식성 부재 및 그 제조 방법
RU2266880C1 (ru) Способ пассивирования контактной поверхности огнеупорного резервуара, преимущественно из муллита, и используемый в этом способе шликер
EP4185735A1 (fr) Revetement a base d&#39;une ceramique de silicium pour la protection d&#39;un substrat
EP1618079B1 (fr) L&#39;utilisation d&#39;un materiau ceramique a base de carbure de silicium dans les milieux agressifs
Rauchenecker Deposition of polymer-derived ceramic layers with asymmetric porosity
JP3520998B2 (ja) 耐熱性窒化珪素質焼結体及びその製造方法
JP2005161359A (ja) シリコン鋳造用鋳型のコーティング方法およびシリコン鋳造用鋳型

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2464340

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002793164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002358833

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10491448

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002793164

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP