WO2003033767A2 - Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire - Google Patents

Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire Download PDF

Info

Publication number
WO2003033767A2
WO2003033767A2 PCT/FR2002/003485 FR0203485W WO03033767A2 WO 2003033767 A2 WO2003033767 A2 WO 2003033767A2 FR 0203485 W FR0203485 W FR 0203485W WO 03033767 A2 WO03033767 A2 WO 03033767A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
precursor
layer
substrate
precursor according
Prior art date
Application number
PCT/FR2002/003485
Other languages
English (en)
Other versions
WO2003033767A3 (fr
Inventor
Airy-Pierre Lamaze
Christian Barthelemy
Original Assignee
Aluminium Pechiney
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney filed Critical Aluminium Pechiney
Priority to US10/492,523 priority Critical patent/US20040197482A1/en
Priority to EP02785544A priority patent/EP1436446A2/fr
Priority to CA002463656A priority patent/CA2463656A1/fr
Priority to CA002463568A priority patent/CA2463568A1/fr
Priority to AU2002362826A priority patent/AU2002362826B2/en
Priority to CA002464340A priority patent/CA2464340A1/fr
Priority to EP02793164A priority patent/EP1438271A2/fr
Priority to PCT/FR2002/003515 priority patent/WO2003033435A2/fr
Priority to US10/491,447 priority patent/US7238390B2/en
Priority to EP02790511A priority patent/EP1436240A2/fr
Priority to AU2002358833A priority patent/AU2002358833B9/en
Priority to PCT/FR2002/003517 priority patent/WO2003033436A2/fr
Publication of WO2003033767A2 publication Critical patent/WO2003033767A2/fr
Publication of WO2003033767A3 publication Critical patent/WO2003033767A3/fr
Priority to NO20041977A priority patent/NO20041977L/no
Priority to NO20041978A priority patent/NO20041978L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to the protection of objects and materials intended for the production of aluminum by electrolysis in molten salt, in particular according to the Hall-Héroult process. It relates in particular to the protective coatings of said objects and materials.
  • Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a bath based on molten cryolite, called electrolyte bath, in particular according to the well-known Hall-Héroult process.
  • the electrolyte bath is typically contained in cells, called “electrolysis cells”, comprising a steel box, which is coated internally with refractory and / or insulating materials, and a cathode assembly normally located at the bottom of the cell.
  • the cathode assembly typically comprises precooked cathode blocks of carbonaceous material.
  • Anodes are partially immersed in the electrolyte bath.
  • electrolysis cell normally designates the assembly comprising an electrolysis tank and one or more anodes.
  • Objects and materials that are used in the aluminum industry are often exposed to corrosive environments and subjected to high temperatures and significant thermal and mechanical stresses.
  • gaseous effluents which may contain oxygen, carbon monoxide and / or fluorinated gases
  • very high temperature typically up to around 1000 ° C
  • a molten salt typically molten cryolite
  • the Applicant has therefore sought means to increase the chemical, and possibly mechanical, resistance of the electrolytic cell elements.
  • the subject of the invention is a coating precursor comprising a silicone resin (or organosiloxane), a mineral filler and an organic solvent capable of dissolving said resin and of suspending said mineral filler, said silicone resin and said mineral filler being capable of chemically reacting so as to produce a solid layer on a substrate after evaporation of the organic solvent and a cohesive refractory layer after a calcination operation.
  • a silicone resin or organosiloxane
  • an organic solvent capable of dissolving said resin and of suspending said mineral filler
  • said silicone resin and said mineral filler being capable of chemically reacting so as to produce a solid layer on a substrate after evaporation of the organic solvent and a cohesive refractory layer after a calcination operation.
  • Said precursor which is typically in the form of a suspension or a slip, is preferably homogeneous. It is typically obtained by mixing the resin, the mineral filler and the organic solvent.
  • the silicone resin is a polysiloxane preferably comprising a proportion of OH groups, such as a polymethylsiloxane, a polydimethylsiloxane, a polymethylsilsesquioxane, or a mixture of these, comprising a proportion of OH groups substituted for the methyl groups.
  • the Applicant has noted that the proportion of OH groups is preferably between approximately 0.5% and approximately 2%. Too low a proportion of OH groups does not confer a sufficient propensity to form a solid layer after evaporation of the solvent and with high cohesiveness after calcination. A very high proportion of OH groups can make polysiloxane difficult to produce at an acceptable cost.
  • the silanol groups are preferably stable in order to allow storage of the resin. These OH groups can be grafted to a polysiloxane by hydrolysis.
  • the siloxane units of the polysiloxane according to the invention are advantageously, in whole or in part, tri- or quadri-functional.
  • the proportion of silicone resin in the precursor is typically between 5 and 30% by weight, and preferably between 7.5 and 20% by weight, in order to allow satisfactory ceramization of the coating during calcination. Excluding solvent, the proportion of silicone resin in the precursor is typically between 15 and 40% by weight.
  • the organic solvent is typically an apolar solvent, such as xylene or toluene.
  • Xylene can be a mixture of different types of xylene, such as o and p.
  • the proportion of solvent in the precursor is typically between 20 and 60% by weight, and more typically between 30% and 55% by weight.
  • the mineral filler is typically chosen from borides, carbides, nitrides and metal oxides or from borides, carbides and non-metal nitrides (such as boron nitrides and boron carbides (BC ,. ..)), or a combination or mixture thereof.
  • Said mineral filler is advantageously chosen from metal compounds such as metal oxides, metal carbides, metal borides and metal nitrides, or a combination or a mixture of these.
  • the mineral filler is preferably able to react chemically with the silicone resin so as to produce a solid layer after evaporation of the organic solvent and a refractory layer with high cohesiveness after calcination of said raw layer.
  • the metal compound is advantageously alumina, ZrO 2 , ZrB 2 , TiB 2 or TiO 2 or a combination or a mixture of these.
  • the alumina is preferably a reactive calcined alpha alumina, called technical alumina, the hydration rate of which is very low (typically less than 1%, or even less than 0.5%).
  • the proportion of mineral filler in the precursor is typically between 30% and 55% by weight. Too small a proportion leads to too fine a deposition and consequently requires the deposition of a large number of successive layers. Too large a proportion gives a precursor which is difficult to spread.
  • the mineral filler is preferably in the form of a fine powder, which makes it possible to obtain a fluid precursor and a uniform coating. It is typically added to the silicone resin / organic solvent mixture after a fine grinding operation.
  • the particle size of the mineral filler powder is typically such that the grain size is between 0.05 ⁇ m and 5 ⁇ .
  • the subject of the invention is also a method for coating a determined surface with a substrate of at least one refractory layer containing silicon in which: - the substrate is coated with a coating precursor according to the invention, so as to form a raw layer;
  • calcination capable of causing the elimination of volatile matter, the calcination of said raw layer and the formation of a cohesive refractory layer.
  • the method of the invention makes it possible to obtain a thin, resistant layer which is strongly adherent to the substrate which is resistant to liquid metal and / or to oxidation and which has a high cohesiveness.
  • the amount of said organic solvent is preferably such that all of the silicone resin is dissolved and that the solution obtained is capable of suspending the charge of mineral filler.
  • the coating precursor can be prepared in at least two operations: - a silicone resin is dissolved in an organic solvent, so as to obtain a silicone resin solution;
  • the mineral filler is added to the silicone resin solution thus obtained.
  • the coating of the substrate (which typically comprises the deposition and spreading of said precursor on the substrate) can be carried out by any known means.
  • the coating can be deposited by brushing (typically using a brush and / or a roller), by soaking, spraying or spraying (typically using a gun).
  • the substrate can optionally be brought to a temperature above ambient before coating in order to promote the formation of a homogeneous deposit and the adhesion of the deposit by melting the resin.
  • the method according to the invention can also include complementary operations, such as preparing the parts of the surface of the substrate that it is desired to coat and / or drying the raw coating before the heat treatment. Said drying is used in particular to evaporate said organic solvent and to solidify, at least partially, the raw layer (so as to be able to handle the substrate without damaging the layer).
  • the preparation of the surface of the substrate typically includes cleaning and / or degreasing (for example using acetone).
  • a coating precursor further containing a wetting agent capable of promoting the formation of a thin layer.
  • Said wetting agent is preferably a polyether silane, which promotes spreading of the coating on the substrate without preventing the ceramization of the refractory coating during the heat treatment.
  • the chemical formula of said polyether silane is typically:
  • R is an alkyl group, typically methyl.
  • the wetting agent also makes it possible to avoid or substantially delay the setting in solid of the precursor.
  • the proportion of wetting agent in the precursor is typically between 1 and 5% by weight approximately, and preferably between 2 and 3% by weight, relative to the proportion of mineral filler. Relative to the total weight of the precursor, the proportion of wetting agent in the precursor is typically between 0.5 and 5%, and preferably between 1 and 3%, by weight.
  • the so-called calcination heat treatment comprises at least one step at an elevated temperature, which is typically between 800 and 1300 ° C., capable of transforming the raw layer into a refractory ceramic, which is advantageously in the vitreous state.
  • the composition of the glassy phase typically comprises between 5 and 25% by weight of silica obtained from the resin (the remainder, typically 75 to 95% by weight, essentially consists of the mineral filler).
  • the calcination temperature also depends on the substrate; for example, in the case of a metal substrate, it is advantageously lower than the softening temperature thereof. On the other hand, it is also preferable to use a calcination temperature higher than the temperature of use of the coated substrate.
  • the heat treatment may include an intermediate step at a temperature between 200 and 600 ° C (typically between 200 and 250 ° C).
  • This intermediate step is preferably capable of causing the crosslinking of the resin and, optionally, the decomposition of the latter before the "ceramization" (or final calcination) of the coating.
  • the duration of the heat treatment is preferably such that it allows complete ceramization of the precursor.
  • the rise in temperature is preferably slow enough to avoid cracking of the coating.
  • the organic compounds are removed (by evaporation and / or by decomposition), leaving a refractory solid on a surface of the substrate.
  • This solid is for example formed from the metal originating from the compound of metal and silicon from the silicone resin.
  • the Si-OH silanol groups of the polysiloxane seem to establish covalent bonds with the OH groups of the alumina, which bonds seem to transform into Si-O-Al bonds, with evolution of water, during heat treatment, to form an alumino-silicate, which is advantageously in the vitreous state.
  • a similar mechanism could occur with metal compounds other than alumina.
  • the ambient atmosphere during the calcination treatment is advantageously non-oxidizing, in order to avoid in particular an oxidation of the substrate at the substrate / coating interface liable to cause decohesion between the substrate and the coating, or even the destruction of the substrate (for example when it is made of graphite).
  • the final coating can comprise two or more successive layers, which can be applied by successive coatings and heat treatments, i.e. by successive coating / heat treatment sequences.
  • the coating and calcination treatment operations of the layer are repeated for each elementary layer of the final coating.
  • the successive layers may have a different composition, so as to give them different chemical and mechanical properties. This last variant makes it possible to adapt each layer to a local function, such as the adhesion to the substrate for the first layer, the mechanical resistance for the intermediate layers and the chemical resistance for the surface layer.
  • the substrate can be metal, refractory material or carbonaceous material, or a mixture or combination thereof.
  • the substrate can be a molten salt electrolysis cell element for the production of aluminum.
  • the subject of the invention is also a molten salt electrolysis cell element for the production of aluminum, at least part of the surface of which comprises at least one refractory layer obtained by using said precursor or by using said coating process, which refractory layer is advantageously in the state vitreous, with or without a composition gradient in the direction perpendicular to the surface of the substrate.
  • the invention also relates to the use of said precursor or of said coating process for the protection of a material and / or of an electrolysis cell element in molten salt for the production of aluminum.
  • the molten salt electrolysis cell element for the production of aluminum can be metal, refractory material or carbonaceous material (such as graphite), or a mixture or combination thereof; it can be a particular object, in particular an anode made of carbonaceous material, an anode support element (such as an anode rod or an anodic log), an element or part of an electrolytic cell (such as '' a box or a box gunwale), an element for coating an electrolytic cell (such as a refractory brick or a brazing element), a cathode block made of carbon material or a mixture of carbon materials (such as a cathode block containing, in whole or in part, graphite).
  • the substrate can be porous or non-porous.
  • the invention also relates to a molten salt electrolysis cell for the production of aluminum comprising at least one material and / or one element according to the invention.
  • This test focused on graphite blocks of approximately 50 x 15 x 15 mm.
  • a slip was prepared with the following composition:
  • - mineral filler (a metal compound): 44.9% by weight of a TiB 2 powder (reference Metabap 143) having a D50 of 1.7 ⁇ m;
  • - silicone resin 14% by weight of a polymethylsiloxane MK from the company Wacker, which is a tri-functional resin with approximately 1% of OH groups. This resin was composed of approximately 80% of silica equivalent and 20% of methyl groups, which decompose at a temperature of the order of 450 ° C;
  • the refractory coating obtained comprised about 80% by weight of equivalent of the metal compound and 20% by weight of equivalent of silica.
  • the concentration of silicone resin in xylene was approximately 250 g / l.
  • the xylene was mixed so as to obtain a homogeneous mixture.
  • the silicone resin was dissolved at room temperature in this organic solvent until a homogeneous solution was obtained.
  • the wetting agent was then added to this solution. After a ripening time of 10 minutes, the charge was added to this solution and mixed (by stirring) until a homogeneous suspension was obtained.
  • This test involved stainless steel blades of approximately 1 x 12 x 20 mm.
  • a slip was prepared, following the same procedure as for test 1, with the following composition:
  • a calcined alpha alumina powder (technical alumina reference P172SB from the company Aluminum Pechiney) having a D50 of 0.5 ⁇ m and a BET specific surface of 6 to 8 m 2 / g.
  • the alumina was finely ground (particle size typically between 0.2 ⁇ m and 1.5 ⁇ m);
  • - silicone resin 14% by weight of a polymethylsiloxane MK from the company Wacker, which is a tri-functional resin with approximately 1% of OH groups.
  • This resin was composed of approximately 80% of silica equivalent and 20% of methyl groups, which decompose at a temperature of the order of 450 ° C;
  • - organic solvent 39.8% by weight of xylene;
  • a blade was covered with four successive layers of the slip thus obtained.
  • the slide underwent a calcination operation at 900 ° C. after each deposition.
  • the coated slide and an uncoated control slide were tested by immersion for 8 hours in a flow of liquid aluminum at about 750 ° C.
  • the coated blade was hardly attacked by the liquid metal while the uncoated blade largely dissolved in the liquid metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)

Abstract

L'invention a pour objet un précurseur de revêtement comprenant une résine silicone, un composé de métal et un solvant organique apte à dissoudre ladite résine et à mettre en suspension ledit composé de métal, ladite résine silicone et ledit composé de métal étant aptes à réagir chimiquement de manière à prooduire une couche solide sur un substrat après évaporation du solvant organique et une couche réfractaire cohésive après une opération de calcination. L'invention a également pour objet un procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel on enduit le substrat d'un précurseur de revêtement selon l'invention, de façon à former une couche crue et on effectue un traitement thermique apte à entrainer la calcination de ladite couche crue et la formation d'une couche réfractaire cohésive. L'invention permet d'obtenir un revêtement protecteur apte à résister à des environnements oxydants, à du métal liquide ou à un sel en fusion.

Description

PRECURSEUR DE REVETEMENT ET PROCEDE POUR REVETIR UN SUBSTRAT D'UNE COUCHE REFRACTAIRE
Domaine de l'invention
La présente invention concerne la protection d'objets et de matériaux destinés à la production d'aluminium par électrolyse en sel fondu, notamment selon le procédé Hall-Héroult. Elle concerne en particulier les revêtements de protection desdits objets et matériaux.
Etat de la technique
L'aluminium métal est produit industriellement par électrolyse ignée, à savoir par électrolyse de l'alumine en solution dans un bain à base de cryolithe fondue, appelé bain d'électrolyte, notamment selon le procédé bien connu de Hall-Héroult. Le bain d'électrolyte est typiquement contenu dans des cuves, dites « cuves d' électrolyse », comprenant un caisson en acier, qui est revêtu intérieurement de matériaux réfractaires et/ou isolants, et un ensemble cathodique normalement situé au fond de la cuve. L'ensemble cathodique comprend typiquement des blocs cathodiques précuits en matériau carboné. Des anodes sont partiellement immergées dans le bain d'électrolyte. L'expression « cellule d' électrolyse » désigne normalement l'ensemble comprenant une cuve d' électrolyse et une ou plusieurs anodes.
Les objets et matériaux qui sont utilisés dans l'industrie de l'aluminium sont souvent exposés à des environnements corrosifs et soumis à de hautes températures et des contraintes thermiques et mécaniques importantes. C'est le cas notamment des éléments d'une cellule de production d'aluminium par électrolyse qui sont exposés à l'action corrosive des effluents gazeux (qui peuvent contenir oxygène, monoxyde de carbone et/ou gaz fluorés), du métal liquide à très haute température (typiquement jusqu'à environ 1000 °C) et/ou un sel fondu (typiquement de la cryolithe en fusion). Ces éléments incluent notamment les anodes, les tiges d'anode, les revêtements internes des cuves, les briques de brasquage et les blocs cathodiques.
Bien que la résistance des matériaux couramment utilisés dans l'industrie de l'aluminium soit généralement suffisante, il existe certaines applications ou conditions pour lesquelles on cherche une résistance encore plus grande. C'est le cas notamment lorsque l'on cherche à réduire l'usure des cathodes contenant du graphite.
La demanderesse a donc recherché des moyens pour augmenter la résistance chimique, et éventuellement mécanique, des éléments de cellule d' électrolyse.
Description de l'invention
L'invention a pour objet un précurseur de revêtement comprenant une résine silicone (ou organosiloxane), une charge minérale et un solvant organique apte à dissoudre ladite résine et à mettre en suspension ladite charge minérale, ladite résine silicone et ladite charge minérale étant aptes à réagir chimiquement de manière à produire une couche solide sur un substrat après évaporation du solvant organique et une couche réfractaire cohesive après une opération de calcination.
Ledit précurseur, qui se présente typiquement sous la forme d'une suspension ou d'une barbotine, est de préférence homogène. Il est typiquement obtenu par mélange de la résine, de la charge minérale et du solvant organique.
La résine silicone est un polysiloxane comprenant de préférence une proportion de groupements OH, tel qu'un polyméthylsiloxane, un polydiméthylsiloxane, un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements méthyles. La demanderesse a noté que la proportion de groupements OH est de préférence comprise entre environ 0,5 % et environ 2 %. Une proportion de groupements OH trop faible ne confère pas une propension suffisante à former une couche solide après évaporation du solvant et à forte cohésivité après calcination. Une proportion de groupements OH très élevée peut rendre le polysiloxane difficile à produire à un coût acceptable. Les groupements silanols (Si-OH) sont de préférence stables afin de permettre le stockage de la résine. Ces groupements OH peuvent être greffés à un polysiloxane par hydrolyse. Les motifs siloxaniques du polysiloxane selon l'invention sont avantageusement, en tout ou partie, tri- ou quadri-fonctionnels.
La proportion de résine silicone dans le précurseur est typiquement comprise entre 5 et 30 % en poids, et de préférence entre 7,5 et 20 % en poids, afin de permettre une céramisation satisfaisante du revêtement lors de la calcination. Hors solvant, la proportion de résine silicone dans le précurseur est typiquement comprise entre 15 et 40 % en poids.
Le solvant organique est typiquement un solvant apolaire, tel qu'un xylène ou un toluène. Le xylène peut être un mélange de différents types de xylène, tels que o et p. La proportion de solvant dans le précurseur est typiquement comprise entre 20 et 60 % en poids, et plus typiquement entre 30 % et 55 % en poids.
La charge minérale est typiquement choisie parmi les borures, les carbures, les nitrures et les oxydes de métaux ou parmi les borures, les carbures et les nitrures de non-métaux (tels que les nitrures de bore et les carbures de bore (B C,...)), ou une combinaison ou un mélange de ceux-ci. Ladite charge minérale est avantageusement choisie parmi les composés de métal tels que les oxydes de métal, les carbures de métal, les borures de métal et les nitrures de métal, ou une combinaison ou un mélange de ceux-ci. La charge minérale est de préférence apte à réagir chimiquement avec la résine silicone de manière à produire une couche solide après évaporation du solvant organique et une couche réfractaire à forte cohésivité après calcination de ladite couche crue.
Le composé de métal est avantageusement de l'alumine, du ZrO2, du ZrB2, du TiB2 ou du TiO2 ou une combinaison ou un mélange de ceux-ci. L'alumine est de préférence une alumine alpha calcinée réactive, dite alumine technique, dont le taux d'hydratation est très faible (typiquement inférieur à 1 %, voire inférieur à 0,5 %). La proportion de charge minérale dans le précurseur est typiquement comprise entre 30 % et 55 % en poids. Une proportion trop faible conduit à un dépôt trop fin et nécessite par conséquent le dépôt d'un grand nombre de couches successives. Une proportion trop importante donne un précurseur qui est difficile à étaler.
La charge minérale se présente de préférence sous forme d'une poudre fine, ce qui permet d'obtenir un précurseur fluide et un revêtement uniforme. Il est typiquement ajouté au mélange résine silicone / solvant organique après une opération de broyage fin. La granulométrie de la poudre de charge minérale est typiquement telle que la taille des grains est comprise entre 0,05 μm et 5 μ .
L'invention a également pour objet un procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel : - on enduit le substrat d'un précurseur de revêtement selon l'invention, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohesive.
La demanderesse a observé que le procédé de l'invention permet d'obtenir une couche mince résistante et fortement adhérente au substrat qui résiste bien au métal liquide et/ou à l'oxydation et qui possède une forte cohésivité.
La quantité dudit solvant organique est de préférence telle que toute la résine de silicone est dissoute et que la solution obtenue soit apte à mettre en suspension la charge de charge minérale.
Le précurseur de revêtement peut être préparé en au moins deux opérations : - on dissout une résine silicone dans un solvant organique, de manière à obtenir une solution de résine silicone ;
- on ajoute la charge minérale dans la solution de résine silicone ainsi obtenue. L'enduction du substrat (qui comprend typiquement le dépôt et l'étalement dudit précurseur sur le substrat) peut être effectuée par tout moyen connu. Par exemple, le revêtement peut être déposé par badigeonnage (typiquement à l'aide d'un pinceau et/ou d'un rouleau), par trempage, par pulvérisation ou par projection (typiquement à l'aide d'un pistolet). Le substrat peut éventuellement être porté à une température supérieure à l'ambiante avant l'enduction afin de favoriser la formation d'un dépôt homogène et l'adhérence du dépôt par fusion de la résine.
Le procédé selon l'invention peut également comprendre des opérations complémentaires, telles qu'une préparation des parties de la surface du substrat que l'on cherche à revêtir et/ou un séchage du revêtement brut avant le traitement thermique. Ledit séchage sert notamment à évaporer ledit solvant organique et à solidifier, au moins partiellement, la couche crue (de manière à pouvoir manipuler le substrat sans altérer la couche). La préparation de la surface du substrat comprend typiquement un nettoyage et/ou un dégraissage (par exemple à l'aide d'acétone).
Dans certaines applications, il peut être avantageux d'utiliser un précurseur de revêtement contenant en outre un agent mouillant apte à favoriser la formation d'une couche mince. Ledit agent mouillant est de préférence un polyéther silane, qui favorise l'étalement du revêtement sur le substrat sans empêcher la céramisation du revêtement réfractaire lors du traitement thermique. Le formule chimique dudit polyéther silane est typiquement :
/O - R CH3 - O - (CH2 - CH2 - O -)10 - CH2 - CH2 - CH2 - Si - O - R
\ O - R où R est un groupement alkyl, typiquement un méthyle.
Avantageusement, l'agent mouillant permet également d'éviter ou de retarder sensiblement la prise en masse du précurseur. La proportion d'agent mouillant dans le précurseur se situe typiquement entre 1 et 5 % en poids environ, et de préférence entre 2 et 3 % en poids, par rapport à la proportion de charge minérale. Par rapport au poids total du précurseur, la proportion d'agent mouillant dans le précurseur se situe typiquement entre 0,5 et 5 %, et de préférence entre 1 et 3 %, en poids.
Le traitement thermique dit de calcination comprend au moins une étape à une température élevée, qui est typiquement comprise entre 800 et 1300°C, apte à transformer la couche crue en une céramique réfractaire, qui est avantageusement à l'état vitreux. La composition de la phase vitreuse comprend typiquement entre 5 et 25 % en poids de silice issue de la résine (le reste, soit typiquement 75 à 95 % en poids, est essentiellement constitué de la charge minérale). La température de calcination dépend également du substrat ; par exemple, dans le cas d'un substrat métallique, elle est avantageusement inférieure à la température de ramollissement de celui-ci. D'autre part, il est également préférable d'utiliser une température de calcination supérieure à la température d'utilisation du substrat revêtu. Le traitement thermique peut comprendre une étape intermédiaire à une température comprise entre 200 et 600°C (typiquement entre 200 et 250°C). Cette étape intermédiaire est de préférence apte à provoquer la réticulation de la résine et, éventuellement, la décomposition de celle-ci avant la « céramisation » (ou calcination finale) du revêtement. Dans ce cas, il est possible, selon une variante avantageuse de l'invention, de poursuivre le traitement thermique de calcination in situ, c'est-à-dire lors de l'utilisation du substrat à haute température (cette température étant de préférence supérieure à 650°C).
La durée du traitement thermique est de préférence telle qu'elle permet une céramisation complète du précurseur. La montée en température est de préférence suffisamment lente pour éviter la fissuration du revêtement.
Lors du traitement thermique, les composés organiques sont éliminés (par évaporation et/ou par décomposition), laissant sur une surface du substrat un solide réfractaire. Ce solide est par exemple formé à partir du métal provenant du composé de métal et du silicium provenant de la résine de silicone. Dans le cas de l'alumine, les groupements silanols Si-OH du polysiloxane semblent établir des liaisons covalentes avec les groupements OH de l'alumine, lesquelles liaisons semblent se transformer en liaisons Si-O-Al, avec dégagement d'eau, lors du traitement thermique, pour former un alumino-silicate, qui est avantageusement à l'état vitreux. Un mécanisme similaire pourrait se produire avec des composés de métal autres que l'alumine.
L'atmosphère ambiante durant le traitement de calcination est avantageusement non- oxydante, afin d'éviter notamment une oxydation du substrat à l'interface substrat / revêtement susceptible d'entraîner la décohésion entre le substrat et le revêtement, voire la destruction du substrat (par exemple lorsque celui-ci est en graphite).
Le revêtement définitif peut comprendre deux ou plusieurs couches successives, qui peuvent être appliquées par enductions et traitements thermiques successifs, i.e. par des séquences enduction / traitement thermique successives. En d'autres termes, on répète les opérations d' enduction et de traitement de calcination de la couche pour chaque couche élémentaire du revêtement définitif. Les couches successives peuvent posséder une composition différente, de manière à leur conférer des propriétés chimiques et mécaniques différentes. Cette dernière variante permet d'adapter chaque couche à une fonction locale, telle que l'adhérence au substrat pour la première couche, la résistance mécanique pour les couches intermédiaires et la résistance chimique pour la couche superficielle.
Le substrat peut être en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci. Le substrat peut être un élément de cellule d' électrolyse en sel fondu pour la production d'aluminium.
L'invention a également pour objet un élément de cellule d'électrolyse en sel fondu pour la production d'aluminium dont au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant ledit précurseur ou en utilisant ledit procédé de revêtement, laquelle couche réfractaire est avantageusement à l'état vitreux, avec ou sans gradient de composition dans le sens perpendiculaire à la surface du substrat.
L'invention a également pour objet l'utilisation dudit précurseur ou dudit procédé de revêtement pour la protection d'un matériau et/ou d'un élément de cellule d' électrolyse en sel fondu pour la production d'aluminium.
L'élément de cellule d' électrolyse en sel fondu pour la production d'aluminium peut être en métal, en matériau réfractaire ou en matériau carboné (tel que du graphite), ou un mélange ou une combinaison de ceux-ci ; il peut être un objet particulier, notamment une anode en matériau carboné, un élément de support d'une anode (tel qu'une tige d'anode ou un rondin anodique), un élément ou une partie de cuve d' électrolyse (tel qu'un caisson ou un plat-bord de caisson), un élément de revêtement d'une cuve d'électrolyse (tel qu'une brique réfractaire ou un élément de brasquage), un bloc cathodique en matériau carboné ou en un mélange de matériaux carbonés (tel qu'un bloc cathodique contenant, en tout ou partie, du graphite). Le substrat peut être poreux ou non-poreux.
L'invention a également pour objet une cellule d'électrolyse en sel fondu pour la production d'aluminium comprenant au moins un matériau et/ou un élément selon l'invention.
Essais
Essai 1
Cet essai a porté sur des blocs en graphite de 50 x 15 x 15 mm environ.
Une barbotine a été préparée avec la composition suivante :
- charge minérale (un composé de métal) : 44,9 % en poids d'une poudre de TiB2 (référence Metabap 143) ayant un D50 de 1,7 μm ;
- résine silicone : 14 % en poids d'un polyméthylsiloxane MK de la société Wacker, qui est une résine tri-fonctionnelle avec 1 % de groupements OH environ. Cette résine était composée d'environ 80 % d'équivalent silice et 20 % de groupements méthyl, qui se décomposent à une température de l'ordre de 450 °C ;
- solvant organique : 39,8 % en poids de xylène ;
- agent mouillant : 1,35 % en poids de polysilane Dynasylan® 4140 de la société Dégussa-Hϋls (environ 3 % en poids par rapport à la quantité de TiB2 dans tous les cas).
Ces proportions étaient telles que le revêtement réfractaire obtenu comprenait environ 80 % en poids d'équivalent du composé de métal et 20 % en poids d'équivalent silice. La concentration de résine silicone dans le xylène était de 250g/l environ.
Le xylène a été mélangé de manière à obtenir un mélange homogène. La résine silicone a été dissoute à température ambiante dans ce solvant organique jusqu'à obtenir une solution homogène. Le mouillant a ensuite été ajouté à cette solution. Après un temps de maturation de 10 minutes, la charge a été ajoutée à cette solution et mélangée (par agitation) jusqu'à obtenir une suspension homogène.
Deux blocs de graphite (bloc 1 et bloc 2) ont été recouverts au pinceau de deux couches successives de la barbotine ainsi obtenue. Les blocs ont été séchés à 100°C après chaque dépôt.
Deux autres blocs de graphite (bloc 3 et bloc 4) ont été recouverts au pinceau de deux couches successives de la même barbotine. Les blocs ont subi une opération de calcination à 900°C, sous argon, après chaque dépôt.
Ces quatre blocs (blocs n° 1 à 4) et un bloc témoin non revêtu (bloc n° 5) ont subi un test de résistance à l'oxydation consistant à les porter à une température de 720°C en présence d'air pendant 48 heures. A l'issue de ce test, le bloc témoin (n° 5) était réduit en cendre ; les blocs n° 1 et 2 avaient perdu 70 % de leur poids et les blocs n° 3 et 4 avaient perdu respectivement 3,5 et 8 % de leur poids. Un examen attentif de ces deux derniers blocs a révélé que, pour le bloc n° 3, la perte de poids était associée à deux points d'environ 1 mm de diamètre où la surface n'était pas revêtue, et que, pour le bloc n° 4, la perte de poids était associée à une absence de dépôt dans un des angles du bloc. Les revêtements des blocs n° 3 et 4 apportent donc une excellente protection contre l'oxydation que la demanderesse attribue à la formation d'une couche réfractaire protectrice lors de l'opération de calcination.
Essai 2
Cet essai a porté sur des lames en acier inoxydable de 1 x 12 x 20 mm environ.
Une barbotine a été préparée, suivant la même procédure que pour l'essai 1, avec la composition suivante :
- charge de composé de métal : 44,9 % en poids d'une poudre d'alumine alpha calcinée (alumine technique de référence P172SB de la société Aluminium Pechiney) ayant un D50 de 0,5 μm et une surface spécifique BET de 6 à 8 m2/g. L'alumine était finement broyée (granulométrie typiquement comprise entre 0,2 μm et 1,5 μm) ;
- résine silicone : 14 % en poids d'un polyméthylsiloxane MK de la société Wacker, qui est une résine tri-fonctionnelle avec 1 % de groupements OH environ. Cette résine était composée d'environ 80 % d'équivalent silice et 20 % de groupements méthyl, qui se décomposent à une température de l'ordre de 450 °C ; - solvant organique : 39,8 % en poids de xylène ;
- agent mouillant : 1,35 % en poids de polysilane Dynasylan® 4140 de la société Dégussa-Hùls (environ 3 % en poids par rapport à la quantité de TiB dans tous les cas).
Une lame a été recouverte de quatre couches successives de la barbotine ainsi obtenue. La lame a subi une opération de calcination à 900°C après chaque dépôt.
La lame revêtue et une lame témoin non revêtue ont subi un test par immersion, pendant 8 heures, dans un flux d'aluminium liquide à environ 750°C. La lame revêtue n'a pratiquement pas été attaquée par le métal liquide alors que la lame non revêtue s'est en grande partie dissoute dans le métal liquide.

Claims

REVENDICATIONS
1. Précurseur de revêtement comprenant une résine silicone, une charge minérale et un solvant organique apte à dissoudre ladite résine et à mettre en suspension la charge minérale, la résine silicone et la charge minérale étant aptes à réagir chimiquement de manière à produire une couche solide sur un substrat après évaporation du solvant organique et une couche réfractaire cohesive après une opération de calcination.
2. Précurseur de revêtement selon la revendication 1, caractérisé en ce que les motifs siloxaniques de la résine silicone incluent des motifs tri- ou quadri- fonctionnels.
3. Précurseur de revêtement selon la revendication 1 ou 2, caractérisé en ce que la résine silicone est un polysiloxane comprenant une proportion de groupements
OH.
4. Précurseur de revêtement selon la revendication 3, caractérisé en ce que ledit polysiloxane est un polyméthylsiloxane, un polydiméthylsiloxane, un polyméthylsilsesquioxane, ou un mélange de ceux-ci, comprenant une proportion de groupements OH substitués aux groupements méthyle.
5. Précurseur de revêtement selon la revendication 3 ou 4, caractérisé en ce que la proportion de groupements OH est compris entre environ 0,5 % et environ 2 %.
6. Précurseur de revêtement selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit solvant organique est apolaire.
7. Précurseur selon la revendication 6, caractérisé en ce que le solvant organique apolaire est un xylène ou un toluène.
8. Précurseur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la proportion de solvant dans le précurseur est comprise entre 20 % et 60 % en poids.
9. Précurseur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la proportion de charge minérale dans le précurseur est comprise entre 30 % et 55 % en poids.
10. Précurseur de revêtement selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la charge minérale est choisie parmi les oxydes de métal, les carbures de métal et de non-métal, les borures de métal et de non-métal et les nitrures de métal et de non-métal, ou une combinaison ou un mélange de ceux- ci.
11. Précurseur de revêtement selon la revendication 10, caractérisé en ce que la charge minérale comprend une alumine alpha calcinée.
12. Précurseur de revêtement selon la revendication 10 ou 11, caractérisé en ce que la charge minérale est choisie dans le groupe comprenant ZrO2, ZrB2, TiB , Ti0 , nitrure de bore, carbure de bore, et un mélange ou une combinaison de ceux-ci.
13. Précurseur de revêtement selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la charge minérale se présente sous forme de poudre fine dont la taille des grains est comprise entre 0,05 μm et 5 μm.
14. Précurseur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la proportion de résine silicone dans le précurseur est comprise entre 5 % et 30 % en poids, et de préférence entre 7,5 et 20 % en poids.
15. Précurseur de revêtement selon l'une quelconque des revendications 1 à 14, caractérisé en ce que ledit précurseur de revêtement contient en outre un agent mouillant apte à favoriser la formation d'une couche mince.
16. Précurseur de revêtement selon la revendication 15, caractérisé en ce que ledit agent mouillant est un polyéther silane.
17. Précurseur de revêtement selon l'une des revendications 15 ou 16, caractérisé en ce que la proportion d'agent mouillant dans le précurseur se situe entre 0,5 et 5 % environ, et de préférence entre 1 et 3 %, en poids.
18. Précurseur selon l'une quelconque des revendications 1 à 17, caractérisé en ce qu'il se présente sous forme de suspension ou de barbotine.
19. Procédé pour revêtir une surface déterminée d'un substrat d'au moins une couche réfractaire contenant du silicium dans lequel :
- on enduit ladite surface d'un précurseur de revêtement selon l'une quelconque des revendications 1 à 18, de façon à former une couche crue ;
- on effectue un traitement thermique, dit de calcination, apte à entraîner l'élimination des matières volatiles, la calcination de ladite couche crue et la formation d'une couche réfractaire cohesive.
20. Procédé selon la revendication 19, dans lequel on effectue en outre une préparation de la surface du substrat avant l'enduction, tel qu'un nettoyage et/ou un dégraissage.
21. Procédé selon la revendication 19 ou 20, dans lequel l'enduction est effectuée par badigeonnage, par trempage, par pulvérisation ou par projection.
22. Procédé selon l'une quelconque des revendications 19 à 21, dans lequel le substrat est porté à une température supérieure à l'ambiante avant l'enduction.
23. Procédé selon l'une quelconque des revendications 19 ou 22, dans lequel on effectue un séchage de ladite couche crue avant ledit traitement de calcination.
24. Procédé selon l'une quelconque des revendications 19 à 23, dans lequel ledit traitement de calcination comprend au moins une étape à une température comprise entre 800 et 1300°C apte à transformer la couche crue en une céramique réfractaire.
25. Procédé selon l'une quelconque des revendications 19 à 24, dans lequel ledit traitement de calcination est effectué dans une atmosphère non-oxydante.
26. Procédé selon l'une quelconque des revendications 19 à 25, dans lequel ladite couche réfractaire est formée par plusieurs couches successives.
27. Procédé selon l'une quelconque des revendications 19 à 26, caractérisé en ce que ledit substrat est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci.
28. Procédé selon l'une quelconque des revendications 19 à 27, dans lequel ledit substrat est un élément de cellule d'électrolyse en sel fondu pour la production d'aluminium.
29. Procédé selon la revendication 28, dans lequel ledit élément est une anode en matériau carboné, un élément de support d'une anode, un élément de revêtement d'une cuve d'électrolyse et/ou un bloc cathodique en matériau carboné.
30. Utilisation du précurseur selon l'une quelconque des revendications 1 à 18 ou du procédé selon l'une quelconque des revendications 19 à 26 pour la protection d'un matériau et/ou d'un élément de cellule d'électrolyse en sel fondu pour la production d'aluminium.
31. Utilisation selon la revendication 30, caractérisée en ce que ledit matériau est un métal, un réfractaire ou un matériau carboné, ou un mélange ou une combinaison de ceux-ci.
32. Utilisation selon la revendication 30, caractérisée en ce que ledit élément est une anode en matériau carboné, un élément de support d'une anode, un élément ou une partie de cuve d'électrolyse, un élément de revêtement d'une cuve d'électrolyse et/ou un bloc cathodique en matériau carboné.
33. Elément de cellule d'électrolyse en sel fondu pour la production d'aluminium, caractérisé en ce qu'au moins une partie de la surface comprend au moins une couche réfractaire obtenue en utilisant un précurseur selon l'une quelconque des revendications 1 à 18 ou en utilisant le procédé selon l'une quelconque des revendications 19 à 26.
34. Elément selon la revendication 33, caractérisé en ce qu'il est en métal, en matériau réfractaire ou en matériau carboné, ou un mélange ou une combinaison de ceux-ci.
35. Elément selon la revendication 33, caractérisé en ce qu'il est choisi dans le groupe comprenant les anodes en matériau carboné, les éléments de support d'une anode, les éléments ou parties de cuve d'électrolyse, les éléments de revêtement d'une cuve d'électrolyse et les blocs cathodiques en matériau carboné ou en un mélange de matériaux carbonés.
36. Elément selon la revendication 35, caractérisé en ce que lesdits éléments de support d'une anode sont choisis dans le groupe comprenant les tiges d'anode et les rondins anodiques.
37. Elément selon la revendication 35, caractérisé en ce que lesdits éléments ou parties de cuve d'électrolyse sont choisis dans le groupe comprenant les caissons et les plats-bords de caisson.
38. Elément selon la revendication 35, caractérisé en ce que lesdits éléments de revêtement sont choisis dans le groupe comprenant les briques réfractaires et les éléments de brasquage.
39. Elément selon la revendication 35, caractérisé en ce que lesdits blocs cathodiques contiennent du graphite.
40. Cellule d'électrolyse en sel fondu pour la production d'aluminium comprenant au moins un élément selon l'une quelconque des revendications 33 à 39.
PCT/FR2002/003485 2001-10-15 2002-10-11 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire WO2003033767A2 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US10/492,523 US20040197482A1 (en) 2001-10-15 2002-10-11 Coating precursor and method for coating a substrate with a refractory layer
EP02785544A EP1436446A2 (fr) 2001-10-15 2002-10-11 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
CA002463656A CA2463656A1 (fr) 2001-10-15 2002-10-11 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
PCT/FR2002/003515 WO2003033435A2 (fr) 2001-10-15 2002-10-14 Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire
AU2002362826A AU2002362826B2 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
CA002464340A CA2464340A1 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
EP02793164A EP1438271A2 (fr) 2001-10-15 2002-10-14 Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire
CA002463568A CA2463568A1 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
US10/491,447 US7238390B2 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
EP02790511A EP1436240A2 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
AU2002358833A AU2002358833B9 (en) 2001-10-15 2002-10-14 Coating precursor and method for coating a substrate with a refractory layer
PCT/FR2002/003517 WO2003033436A2 (fr) 2001-10-15 2002-10-14 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
NO20041977A NO20041977L (no) 2001-10-15 2004-05-13 Belegningsforloper og fremgangsmate for a belegge et substrat med et motstandsdyktig lag
NO20041978A NO20041978L (no) 2001-10-15 2004-05-13 Belegningsforloper og fremgangsmate for a belegge et substrat med et motstandsdyktig lag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0113266A FR2830856B1 (fr) 2001-10-15 2001-10-15 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
FR01/13266 2001-10-15

Publications (2)

Publication Number Publication Date
WO2003033767A2 true WO2003033767A2 (fr) 2003-04-24
WO2003033767A3 WO2003033767A3 (fr) 2003-10-16

Family

ID=8868301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003485 WO2003033767A2 (fr) 2001-10-15 2002-10-11 Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire

Country Status (7)

Country Link
US (1) US20040197482A1 (fr)
EP (1) EP1436446A2 (fr)
CA (1) CA2463656A1 (fr)
FR (1) FR2830856B1 (fr)
RU (1) RU2293797C2 (fr)
WO (1) WO2003033767A2 (fr)
ZA (1) ZA200403289B (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003274399A1 (en) * 2002-10-18 2004-05-04 Moltech Invent S.A. Anode current feeding connection stem
US7838552B2 (en) 2004-06-04 2010-11-23 Forest Laboratories Holdings Limited Compositions comprising nebivolol
US7803838B2 (en) * 2004-06-04 2010-09-28 Forest Laboratories Holdings Limited Compositions comprising nebivolol
WO2009132459A1 (fr) * 2008-04-30 2009-11-05 Alcan International Limited Bloc stratifié de cathode
US20110114479A1 (en) * 2009-11-13 2011-05-19 Kennametal Inc. Composite Material Useful in Electrolytic Aluminum Production Cells
CN102432336B (zh) * 2011-09-26 2013-02-20 浙江大学 有机/无机复合混凝土耐腐蚀保护膜涂层的制备及应用
RU2486292C1 (ru) * 2012-02-17 2013-06-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера
CN102817031A (zh) * 2012-07-06 2012-12-12 大连工业大学 一种方钠石沸石膜的制备方法
RU2510822C1 (ru) * 2012-12-29 2014-04-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ изготовления комбинированных подовых блоков
RU2522928C1 (ru) * 2013-04-26 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" Способ защиты углеродной футеровки
CN105642522A (zh) * 2014-11-24 2016-06-08 中国科学院大连化学物理研究所 固态聚合物电解质水电解池系统公共管道耐腐蚀处理方法
CN111303759B (zh) * 2020-02-24 2023-09-29 四会市中日化工实业有限公司 一种汽车排气管涂料及其制备方法
WO2021214802A1 (fr) * 2020-04-22 2021-10-28 Danieli & C. Officine Meccaniche S.P.A. Produit métallique revêtu
FR3112715B1 (fr) * 2020-07-23 2023-01-20 Commissariat Energie Atomique Revêtement à base d’une céramique de silicium pour la protection d’un substrat métallique
CN115072732A (zh) * 2022-06-14 2022-09-20 成都先进金属材料产业技术研究院股份有限公司 一种二硼化钛超细粉体的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461155A (en) * 1973-10-05 1977-01-13 Sumitomo Chemical Co Method for producing aluminum
US4292345A (en) * 1980-02-04 1981-09-29 Kolesnik Mikhail I Method of protecting carbon-containing component parts of metallurgical units from oxidation
US4496469A (en) * 1982-01-12 1985-01-29 Otsuka Kagaku Yakuhin Kabushiki Kaisha Heat-insulating refractory material consisting alkali titanate and silicon resin
DE3638937A1 (de) * 1986-11-14 1988-05-26 Sigri Gmbh Kathode fuer eine schmelzflusselektrolysezelle
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
EP0601317A2 (fr) * 1992-12-04 1994-06-15 Nitto Denko Corporation Substrat pour étiquette, encre et étiquette
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
EP0834489A1 (fr) * 1996-10-04 1998-04-08 Dow Corning Corporation Revêtements épais opaques en céramique
US5851677A (en) * 1995-02-03 1998-12-22 Carbone Savoie Coating composition for carbon-containing products and said coating
EP0994158A1 (fr) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Composition organosilxane pour former d'une couche frittée
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
EP1088908A2 (fr) * 1999-10-01 2001-04-04 General Electric Company Méthode pour le lissage de la surface d'une couche de protection
EP1197585A2 (fr) * 2000-10-12 2002-04-17 General Electric Company Method for repairing a thermal barrier coating and repaired coating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743192A (en) * 1956-04-24 He same
US2494920A (en) * 1945-07-25 1950-01-17 Corning Glass Works Method of coating with organopolysiloxanes
US4418097A (en) * 1981-12-11 1983-11-29 Martin Marietta Corporation Coating for graphite electrodes
US4481052A (en) * 1983-01-28 1984-11-06 Martin Marietta Corporation Method of making refractory hard metal containing tiles for aluminum cell cathodes
US5336532A (en) * 1989-02-21 1994-08-09 Dow Corning Corporation Low temperature process for the formation of ceramic coatings
US5063267A (en) * 1990-11-28 1991-11-05 Dow Corning Corporation Hydrogen silsesquioxane resin fractions and their use as coating materials
JPH06212115A (ja) * 1992-05-29 1994-08-02 Ube Ind Ltd 耐熱性塗料
US5578174A (en) * 1993-04-19 1996-11-26 Moltech Invent S.A. Conditioning of cell components for aluminum production
RU2149168C1 (ru) * 1998-12-15 2000-05-20 Открытое акционерное общество "Северсталь" Электроизоляционный термостойкий композиционный состав
FR2830857B1 (fr) * 2001-10-15 2004-07-30 Pechiney Aluminium Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461155A (en) * 1973-10-05 1977-01-13 Sumitomo Chemical Co Method for producing aluminum
US4292345A (en) * 1980-02-04 1981-09-29 Kolesnik Mikhail I Method of protecting carbon-containing component parts of metallurgical units from oxidation
US4496469A (en) * 1982-01-12 1985-01-29 Otsuka Kagaku Yakuhin Kabushiki Kaisha Heat-insulating refractory material consisting alkali titanate and silicon resin
DE3638937A1 (de) * 1986-11-14 1988-05-26 Sigri Gmbh Kathode fuer eine schmelzflusselektrolysezelle
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
EP0601317A2 (fr) * 1992-12-04 1994-06-15 Nitto Denko Corporation Substrat pour étiquette, encre et étiquette
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
US5851677A (en) * 1995-02-03 1998-12-22 Carbone Savoie Coating composition for carbon-containing products and said coating
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
EP0834489A1 (fr) * 1996-10-04 1998-04-08 Dow Corning Corporation Revêtements épais opaques en céramique
EP0994158A1 (fr) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Composition organosilxane pour former d'une couche frittée
EP1088908A2 (fr) * 1999-10-01 2001-04-04 General Electric Company Méthode pour le lissage de la surface d'une couche de protection
EP1197585A2 (fr) * 2000-10-12 2002-04-17 General Electric Company Method for repairing a thermal barrier coating and repaired coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 200061 Derwent Publications Ltd., London, GB; Class A26, AN 2000-636812 XP002205091 & RU 2 149 168 C (SEVERSTAL STOCK CO), 20 mai 2000 (2000-05-20) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 578 (C-1269), 7 novembre 1994 (1994-11-07) -& JP 06 212115 A (UBE IND LTD), 2 août 1994 (1994-08-02) *

Also Published As

Publication number Publication date
RU2293797C2 (ru) 2007-02-20
US20040197482A1 (en) 2004-10-07
ZA200403289B (en) 2005-05-03
RU2004114883A (ru) 2005-09-20
WO2003033767A3 (fr) 2003-10-16
FR2830856B1 (fr) 2004-07-30
CA2463656A1 (fr) 2003-04-24
FR2830856A1 (fr) 2003-04-18
EP1436446A2 (fr) 2004-07-14

Similar Documents

Publication Publication Date Title
WO2003033767A2 (fr) Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
US8012252B2 (en) Durable hard coating containing silicon nitride
FR2830857A1 (fr) Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire
CN116332678B (zh) 一种在碳材料表面制备碳化钽涂层的方法
FR3061710A1 (fr) Piece comprenant un substrat et une barriere environnementale
EP0807093B1 (fr) Composition pour un revetement de produits carbones et ce revetement
EP1438271A2 (fr) Percurseur de revetement et procede pour revetir un substrat d'une couche refractaire
EP0611180B1 (fr) Procédé d'obtention d'un matériau céramique à base de Sialon par réduction d'un précurseur aluminosilicaté et application à la formation de revêtement céramique sur un substrat réfractaire
KR20060044497A (ko) 내식성 부재 및 그 제조 방법
EP1618079B1 (fr) L'utilisation d'un materiau ceramique a base de carbure de silicium dans les milieux agressifs
CA2210761C (fr) Composition pour un revetement de produits carbones et ce revetement
JP4658523B2 (ja) 耐酸化複合材料
WO2022018088A1 (fr) Revetement a base d'une ceramique de silicium pour la protection d'un substrat
Gbologah et al. Sol-gel Mullite-SiC Oxidation Protective Coating for Carbon-Carbon Composites
FR2833003A1 (fr) Produit d'impregnation et procede d'impregnation de materiaux poreux
FR2690151A1 (fr) Carbone résistant à l'oxydation et procédé pour sa préparation.
JPH0733302B2 (ja) ジルコン系コーティング組成物及びジルコン系酸化物被覆黒鉛成形体の製造方法
FR2857008A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
FR2704855A1 (fr) Article en carbone revêtu résistant à l'oxydation et procédé de fabrication.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10492523

Country of ref document: US

Ref document number: 2463656

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002785544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004/03289

Country of ref document: ZA

Ref document number: 200403289

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002350837

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2002785544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP