WO2003027283A1 - Fragment d'acide nucleique competitif, trousse pour quantifier un gene de recombinaison et procede pour quantifier un gene de recombinaison en utilisant cette trousse - Google Patents

Fragment d'acide nucleique competitif, trousse pour quantifier un gene de recombinaison et procede pour quantifier un gene de recombinaison en utilisant cette trousse Download PDF

Info

Publication number
WO2003027283A1
WO2003027283A1 PCT/JP2002/009773 JP0209773W WO03027283A1 WO 2003027283 A1 WO2003027283 A1 WO 2003027283A1 JP 0209773 W JP0209773 W JP 0209773W WO 03027283 A1 WO03027283 A1 WO 03027283A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
gene
competitive
acid molecule
acid fragment
Prior art date
Application number
PCT/JP2002/009773
Other languages
English (en)
French (fr)
Inventor
Hisashi Katoh
Hideo Ohhashi
Akihiro Hino
Takeshi Matsuoka
Hideo Kuribara
Satoshi Futo
Original Assignee
National Food Research Institute
Showa Sangyo Co.,Ltd.
Nippon Flour Mills Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute, Showa Sangyo Co.,Ltd., Nippon Flour Mills Co.,Ltd. filed Critical National Food Research Institute
Priority to KR10-2004-7003979A priority Critical patent/KR20040041165A/ko
Priority to JP2003530853A priority patent/JP4317450B2/ja
Publication of WO2003027283A1 publication Critical patent/WO2003027283A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2545/00Reactions characterised by their quantitative nature
    • C12Q2545/10Reactions characterised by their quantitative nature the purpose being quantitative analysis
    • C12Q2545/107Reactions characterised by their quantitative nature the purpose being quantitative analysis with a competitive internal standard/control

Definitions

  • the present invention relates to a competitive nucleic acid fragment suitably used for a competitive PCR method used for quantifying the amount of a genetically modified crop in a crop, a kit for quantifying a genetically modified gene containing the fragment, and a method using the same.
  • the present invention relates to a method for quantifying transgenic genes by competitive PCR. Background art
  • the competitive PCR method is often used to quantify the amount of genetically modified crops in crops such as soybean and corn.
  • a competing nucleic acid molecule that serves as an internal standard for quantification is synthesized and added to a test solution, and the same primer pair is added to perform competitive PCR.
  • This method estimates the amount of competing nucleic acid molecule added as an internal standard when the amount (band concentration) becomes equal to the amount of target nucleic acid molecule in the test solution.
  • the competitive nucleic acid molecule used at this time is designed to be amplified with the same primer pair as the sequence of the target nucleic acid molecule.
  • a short sequence is inserted into the target nucleic acid molecule or a part of the sequence is deleted so that a band derived from the target nucleic acid molecule can be distinguished when amplified with the same primer pair.
  • the length has been changed, or a specific restriction enzyme site has been introduced or deleted.
  • DNA fragments compete for a common primer and therefore have a high degree of competition.
  • the termination of the amplification reaction due to the death of the DNA occurs almost simultaneously.
  • the ratio of the two after reaching the bureau reflects the initial ⁇ -type quantity.
  • the competitive nucleic acid was diluted stepwise with a test solution containing a DNA solution obtained from a sample in which the amount of the genetically modified crop was previously determined.
  • the amount of the target nucleic acid molecule was determined by performing a PCR reaction with the added molecule and determining the equivalent point. To perform this assay, it is necessary to obtain 100% transgenic seeds and 100% non-recombinant seeds, and obtaining such seeds is generally very difficult.
  • the amount of competing nucleic acid molecule to be added differs depending on the target sequence (endogenous gene or gene specific to the genetically modified crop), and is determined not by copy number but by the amount of DNA. The quantitative analysis operation is complicated and there is a problem in terms of accuracy. Disclosure of the invention
  • a first object of the present invention is to provide a competitive nucleic acid fragment suitably used for the competitive PCR method.
  • a second object of the present invention is to provide a kit for quantifying a transgenic gene.
  • a third object of the present invention is to provide a method for quantifying a recombinant gene by a competitive PCR method.
  • a first aspect of the present invention relates to at least one first competitor nucleic acid molecule corresponding to the endogenous gene portion of the transgenic gene and a gene specific to the recombinant gene portion of the transgenic gene.
  • a competitive nucleic acid fragment that binds at least one second competitive nucleic acid molecule and is located on the same nucleic acid.
  • a second aspect of the present invention is that the first competitor nucleic acid molecule has a nucleotide insertion, deletion or mutation partially within the endogenous gene sequence of the recombinant gene, 2.
  • a third aspect of the present invention is that the first competitor nucleic acid molecule has, at both ends thereof, the same primer binding region as the primer binding region at both ends of the endogenous gene sequence of the recombinant gene, and the endogenous gene sequence described above. Have different molecular weights, and the second competitor nucleic acid molecule has, at both ends, the same primer binding regions at both ends of the recombinant gene sequence of the recombinant gene, Is a competitor nucleic acid fragment according to the above 1, which has a different molecular weight.
  • a fourth aspect of the present invention is the competitive nucleic acid fragment according to any one of the above items 1 to 3, wherein the endogenous gene is a soybean lectin gene.
  • a fifth aspect of the present invention is the competitive nucleic acid fragment according to any one of the above items 1 to 4, wherein the endogenous gene portion is Le1.
  • a sixth aspect of the present invention is the competitive nucleic acid fragment according to any one of claims 1 to 5, wherein the recombinant gene portion is a portion specific to a genetically modified soybean RRS (Roundup Ready Soybean).
  • a seventh aspect of the present invention is the competitive nucleic acid fragment according to the above 1, having the nucleotide sequence of SEQ ID NO: 1.
  • a tenth aspect of the present invention is a method for quantifying a recombinant gene, comprising performing a competitive PCR method using the competitive nucleic acid fragment according to any one of the above 1 to 8.
  • a eleventh aspect of the present invention is a method for quantifying a genetically modified gene, comprising performing a competitive PCR method using the kit according to the above item 9.
  • the 12th aspect of the present invention is the method according to the 1st aspect, wherein the copy number of the endogenous gene of the genetically modified gene present in the test solution is adjusted to 500 to 500,000.
  • the thirteenth aspect of the present invention relates to a gene present in a test solution, an endogenous gene of a recombinant gene.
  • genetically modified product refers to a recombinant product in which a gene not originally contained in a plant or its seed, that is, a foreign gene, has been introduced by genetic recombination.
  • Genetically modified genes include endogenous genes originally present in plants or their seeds, recombinant-specific genes (foreign genes) introduced from outside by recombination, and recombination from outside. Includes DNA sequences introduced by The target of quantification by the method for quantifying the genetically modified gene of the present invention includes genetically modified plants, for example, crops such as soybean, corn, wheat, rice, rapeseed, potato, cotton, papaya, etc. Includes such seeds and foods produced using these as raw materials.
  • a competitive nucleic acid molecule for an endogenous gene and a competitive nucleic acid molecule for a gene specific to a recombinant are separately constructed and used after dilution based on their molecular weights.
  • the disadvantage is that if the dilution is incorrect, the measured values will vary.
  • nucleic acid molecule can be produced in large quantities by cloning this competitive nucleic acid fragment into plasmid and growing this plasmid.
  • the competitive nucleic acid fragment used for quantification of the transgenic gene of the present invention the competitive nucleic acid molecule corresponding to the endogenous gene and the competitive nucleic acid molecule corresponding to the gene specific to the recombinant gene portion bind on the same nucleic acid molecule. It was done.
  • the endogenous gene is preferably one specific to the plant.
  • a plant to be tested such as a lectin gene in soybean, a chain gene or sucrose synthase lib gene in corn, etc.
  • Genes specific to the recombinant gene portion include genes that express enzymes specific to the recombinant and the DNA sequence that was introduced at the same time, as well as the recombinant-specific force-reflective mosaic virus 35S promoter. You can use a promoter gene such as promoter or rice actin promoter, a gene fragment such as NOS one minute one one minute, or a region sandwiched by those genes. .
  • the competitor nucleic acid molecule is designed so that it is amplified with the same primer pair as the target gene, and has a different molecular weight and a different pattern when cut with a restriction enzyme from the target gene.
  • a base insertion, deletion or mutation may be introduced into the sequence using a technique such as PCR based on the sequence of the target gene.
  • a technique such as PCR based on the sequence of the target gene.
  • a mutation may be introduced inside the sequence to introduce or delete a specific restriction enzyme site.
  • the target gene sequence has the same primer binding region at both ends as the Bramer binding region at both ends of the target gene sequence, and has a different molecular weight from the target gene sequence, for example.
  • those designed so as to be longer or shorter by 10 to 40 bases, preferably 15 to 30 salts can also be used as competitive nucleic acid molecules.
  • the internal sequence sandwiched between the primer binding regions of the competitive nucleic acid molecules may be different from the target sequence.
  • a primer having an adhesive fragment was used: In addition to the PCR method, a necessary part was cut out with a restriction enzyme and a ligated fragment was prepared. It is also possible to use a method of performing a session. As a form of the binding, in addition to a method of directly binding a competitor nucleic acid molecule, a restriction enzyme site may be inserted between the competitor nucleic acid molecules.
  • the sequence order of the competitive nucleic acid molecules can be freely selected. That is, the first competitor nucleic acid molecule corresponding to the endogenous gene portion may be upstream or downstream of the second competitor nucleic acid molecule corresponding to the specific gene.
  • the competitor nucleic acid fragment of the present invention includes, between the first competitor nucleic acid molecule and the second competitor nucleic acid molecule, or upstream or downstream thereof, another first competitor nucleic acid molecule and / or a second competitor nucleic acid molecule. May be present, and a nucleic acid molecule other than the first competitor nucleic acid molecule and the second competitor nucleic acid molecule may exist.
  • the size of the first competitor nucleic acid molecule and the second competitor nucleic acid molecule of the present invention is not particularly limited, but is preferably 50 to 300 bases, more preferably 100 to 200 salt SIS. desirable.
  • the size of the competitor nucleic acid fragment of the present invention is not particularly limited, but is preferably from 100 to 500 bases, and more preferably from 300 to L500 salinity.
  • the size of the competitor nucleic acid fragment of the present invention depends on the size of the competitor nucleic acid molecule to be bound.
  • the competitor nucleic acid fragment thus constructed can be subcloned into a plasmid, and the plasmid can be propagated to produce a large amount of the same nucleic acid molecule.
  • a method for subcloning a competitive nucleic acid fragment into plasmid a method of adding a restriction enzyme recognition sequence or a method such as TA cloning can be used depending on the sequence.
  • Test solution (competitive PCR reaction solution) is prepared as necessary, such as DNA solution extracted from the sample, competitive nucleic acid fragment, dNTP solution, heat-resistant DNA polymerase, detection primer, and other salts required for PCR reaction. Use what was done. It is desirable to set the volume of the test solution between about 251-1 and 100-1 as necessary.
  • the PCR reaction can be set by controlling the temperature with a thermal cycler and confirming the temperature and the number of cycles at which the target sequence of interest and the competitor nucleic acid fragment are competitively amplified. Analysis of the PCR product after the competitive PCR reaction can be performed by measuring the fractionated DNA band using electrophoresis or the like. By measuring the DNA band derived from the competitor nucleic acid molecule and the DNA band derived from the target sequence and deriving the copy number from the intensity, the target gene in the sample can be quantified.
  • the kit for use in the quantification of the genetically modified gene of the present invention comprises the above-mentioned competitive nucleic acid fragment of the present invention, a first gene for amplifying the endogenous gene of the genetically modified gene and the first competitive nucleic acid molecule.
  • a primer pair; and a second primer pair for amplifying a recombinant gene of the transgenic gene and a second competitor nucleic acid molecule are preferable to include reagents necessary for the PCR reaction, such as dNTP, thermostable DNA polymerase, buffer, and salts.
  • the content of the genetically modified crop in the sample DNA solution can be calculated.
  • the content of genetically modified crops perform the same measurement using a DNA solution obtained from 100% genetically modified crops, and obtain the ratio of the endogenous gene to the recombinant gene in advance. This is called the internal standard ratio, and more accurate quantification is possible by correcting the value obtained by measurement with this ratio.
  • the correction based on the internal standard ratio is performed as follows. When two recombinant genes per genome are inserted into a certain recombinant variety A, the number of endogenous genes: the number of recombinant genes can be expressed as 1: 2.
  • the number of recombinant genes / the number of endogenous genes 2 which is called the internal standard ratio of recombinant cultivar A.
  • the internal standard ratio varies depending on the recombinant varieties, so it is necessary to clarify and quantify the varieties in advance.
  • the number of endogenous genes and the number of recombinant genes were measured. For example, if the copy number of the endogenous genes reached 10,000, The copy number of the transgene is 2,000 copies.
  • the ratio between the endogenous gene and the gene specific to the genetically modified product is constant depending on the genetically modified crop. For example, in the case of soybean, the ratio is approximately 1: 1. In the case of corn, the ratio is around 3: 1 to 1: 2.
  • the method for quantifying a genetically modified gene according to the present invention is suitable for measuring the content of a genetically modified product in which about 1 to 5% of the genetically modified product is mixed.
  • it is desirable that the copy number of the endogenous gene in the DNA solution extracted from the sample is 500 copies or more. However, if the number of copies is too high, Since a race condition may not be obtained, it is desirable to use 50,000 copies or less, preferably 30,000 copies or less.
  • the copy number of an endogenous gene in a DNA solution extracted from a sample is adjusted to be 5,000 to 50,000, preferably 5,000 to 20,000. It is good to use.
  • the copy number of an endogenous gene is measured by the competitive PCR method, it is necessary to add a competitor nucleic acid fragment in an amount larger than the j-piece number of the endogenous gene to the reaction solution.
  • the copy number of the competing nucleic acid fragment to be added to the test solution it is necessary to add about twice the number of copies of the endogenous gene copy number derived from the sample, in which case the concentration of the competing nucleic acid fragment in the test solution should be It is better to adjust to 20 copies // 1 to 4000 copies / $ 1.
  • a competing nucleic acid molecule corresponding to the endogenous gene portion Le 1 and a competing nucleic acid molecule corresponding to the portion where the recombinant gene portion is specific to the genetically modified soybean RRS were prepared by Meyer, R. et ah , Z. Lebensm Unters Forsch A 203: 339-344 (1996) and Studer, E. et aL, Z. Lebensm Unters Forsch A 207: 207-213 (1998).
  • PCR was performed with 3 ', LelMul-5' and Lelout-3 ', respectively. As a result, a PCR product having an adhesive portion was synthesized. When this PCR product was mixed, the adhesion was a complementary sequence because the adhesion was a complementary sequence, and a base sequence with a 21 bp nucleotide inserted inside was constructed. PCR was performed again with Lelout-5 'and Lelout-3' to amplify to obtain a PCR product.
  • a competing nucleic acid molecule for RRS was created in a similar manner.
  • an RRS-specific competitor nucleic acid molecule contained in SEQ ID NO: 1 dishes out-5 'and RRout-3', and RRM d-5 'and RRMul-3' were used.
  • Lelout-3 '5 -ctg cat gtg ttt gtg get tag tgt-3' (SEQ ID NO: 10)
  • RRout-5 5' -tgg cgc cca tgg cct gca tg-3 '(SEQ ID NO: 13) RRout-3,: 5 5 -cct tcg caa gac cct tec tct ata-3, (Rooster S row number 14)
  • RRMul-5 5,-tta cac gga att ctg aac gtc aat cct aaa gga aca-3 '
  • RRMul-3 ' 5' -gac gtt cag aat tec gtg taa tea gca tea gtg gct-3 J (Rooster column number 16)
  • RRMu2-5 ' 5,-gac gtt cag aat tec gtg taa ctg cat get tea cgg-3, (configuration ij number 17)
  • RRMu2-3 ' 5'-tta cac gga att ctg aac gtc get gta gcc act gat— 3'
  • the underlined sequence is an adhesive part.
  • the above two kinds of competitor nucleic acid molecules were bound by a PCR method using a primer having the following base sequence having an adhesive fragment.
  • PCR was performed with LelnOl-5 'and RR + Lel-3' using a competitor nucleic acid molecule specific for Lei as type I. Similarly, PCR was performed with Lel + RR-5 'and RR05-3' using a competitor nucleic acid molecule specific for RRS as type II. The obtained PCR products were mixed, and PCR was performed with LelnO 5 ′ and RR05-3 ′ to construct a competitive nucleic acid fragment in which two types of competitive nucleic acid molecules exist on the same nucleic acid molecule. Its nucleotide sequence is as shown in SEQ ID NO: 1. Base sequence of primer with adhesive fragment
  • the underlined array is the adhesive part Competitor nucleic acid fragments constructed was cloned into the blanking Rasumi de PCR R 2.1- T0P0 R using TOPO TA Cloning Kit (Invitrogen Co.) . Plasmid was mixed with the attached cell, and inoculated on LB agar medium supplemented with blue / white selection-treated ampicillin. The inoculated medium was cultured at 37 ° C for 24 hours, and the inserted white colonies were spread and inoculated on a plate. At the same time, add the cells to a PCR reaction mixture containing LelniU-5 'and LelnO3' or RR04-5 'and RR05-3' and confirm that PCR of the designed length can be obtained. did.
  • a colony having a band of a desired length was obtained, sterilized in an LB broth medium (Difco Laboratories), and then purified using a “QIAGEN Plasmid Maxi Kit” (QIAGEN GmbH).
  • the obtained cyclic DNA was treated with a restriction enzyme Hindlll (TaKaRa Shuzo CO., LTD.) To obtain a linear nucleic acid fragment as a competitive nucleic acid fragment.
  • sequence analysis was performed to confirm that there was no change in the entire nucleotide sequence (SEQ ID NO: 1).
  • the absorbance at 260 nm of the solution containing the competitor nucleic acid fragment was measured, and the solution was diluted to a predetermined copy number based on the result and the molecular weight before use.
  • DNeasy Plant Maxi Kit (QIAGEN GmbH) was used for DNA extraction from analysis samples.
  • the absorbance of the extracted DNA solution was measured at 230 nm, 260 nm, and 280 nm.
  • the concentration was calculated as 50 mg / ml when the absorbance at 260 nm of the DNA solution was 1.0, and diluted to 20 ng / l for analysis. Sterilized distilled water was used for dilution.
  • the quantification by the competitive PCR method was performed as follows.
  • the test solution (PCR reaction solution) was 1 X PCR buffer (Applied Biosystems Japan Ltd.), 0.16 t ol / L dNTP, 1.5 ol / L magnesium chloride, 0.5 mol / L primer for detection.
  • a pair of first primers (a total of two primers) for amplifying an endogenous gene and a first competitor nucleic acid molecule) or a second primer for amplifying a recombinant gene and a second competitor nucleic acid molecule
  • One pair one of the two types of primers
  • Ampli Taq Gold DNA polymerase (Applied Biosystems Japan Ltd.) are mixed and mixed with the DNA solution to be measured 2.5 1
  • a number of competing nucleic acid fragments were added to bring the total volume to 25 ⁇ 1.
  • the detection primer used here is as described above.
  • PCR reaction conditions are 96. After holding at C for 10 minutes, amplification was performed for 40 cycles with 96 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 30 seconds as one cycle, followed by holding at 72 ° C for 7 minutes.
  • AgaroseL03 “TAKARA” (TaXaRa Shuzo CO., LTD.) Or
  • the resulting PCR product had a molecular weight of 201 bp
  • the DNA obtained from RRS was When used for type I, a 180 bp PCR product was obtained.
  • the numerical value after the measurement was calculated as follows and converted to the copy number of each gene.
  • two bands appear in one lane. One is from the competitor nucleic acid molecule and the other is from the target sequence.
  • the molecular weight of the competitor nucleic acid molecule is designed to be about 21 bp longer than the target sequence, A band derived from the competitor nucleic acid molecule appears above, and a band derived from the target sequence appears below.
  • A be the band intensity derived from the competitor nucleic acid molecule
  • B be the band intensity derived from the target sequence.
  • the amount of the competitive nucleic acid fragment added to the test solution was set at five levels.
  • a test was performed using the competitor nucleic acid fragment of Example 1.
  • the genetically modified crop (GM0) content was measured using a DNA solution obtained from soybean powder previously adjusted to 1%, 3%, 5%, and 10%.
  • the concentration of the competitor nucleic acid fragment for the endogenous gene was 2000 copies / ⁇ 1, 1200 copies / ⁇ 1, 800 copies / ⁇ 1, 400 copies / ⁇ 1, and so on. . It was set to 5 levels of copy.
  • the copy number and quantification results of each gene obtained at that time are shown below. Table 3
  • a competitive nucleic acid fragment for screening test of transgenic corn was prepared.
  • the sequence of sucrose synthase lib was used as a maize endogenous gene. This is the part that is amplified by the primers SS01-5 'and SS01-3'. Since this competitive nucleic acid fragment is intended for use in screening tests for transgenic corn, a sequence specific to the cauliflower mosaic virus 35S promoter widely used in transgenic crops is detected. And a site for detecting sequences specific to the herbicide-tolerant strain GA21 (developed by Monsanto).
  • the primers for detecting the former region are Ca U-5 'and Ca U-3', and the primers for detecting the latter are GA01-5 'and GA01-3'.
  • the competitor nucleic acid fragment of the present invention comprises at least one first competitor nucleic acid molecule corresponding to the endogenous gene portion of the transgenic gene and a gene specific to the recombinant gene portion of the transgenic gene. At least one second competitor nucleic acid molecule is bound and arranged on the same nucleic acid, and the necessary competing nucleic acid molecule is present on the same nucleic acid fragment. There is no deviation in the number of copies of nucleic acid molecules. For this reason, when the recombinant gene is quantified by the competitive PCR method using this competitive nucleic acid fragment, the decrease in accuracy due to dilution is significantly suppressed as compared with the conventional method, and accurate measurement can be performed. According to the quantification method of the present invention, quantification of genetically modified crops, for example, genetically modified soybean having a recombinant contamination rate of about 5% can be easily performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)

Description

競合核酸断片、 組換え体遺伝子の定量用キット、 これを用いた組換え体遺伝子の定量方法 技術分野
本発明は、 作物中の遺伝子組換え作物混入量の定量に利用される競合的 P C R 法に好適に用いられる競合核酸断片、 これを含む遺伝子組換え体遺伝子の定量用 キット、 及びこれを用いた競合的 P C R法による遺伝子組換え体遺伝子の定量方 法に関する。 背景技術
ダイズゃトウモロコシ等の農作物中の遺伝子組換え作物混入量の定量には競合 的 P C R法が良く利用されている。 競合的 P C R法は、 定量の内部標準となる競 合核酸分子を合成して被験液に加え、 同一のプライマ一対を加えて競合的に P C Rを行わせ、 生成した標的核酸分子と競合核酸分子の量 (バンド濃度) が等しく なったときの内部標準として加えた競合核酸分子の量を被験液中の標的核酸分子 の量と推定する方法である。 このとき用いる競合核酸分子は、 標的核酸分子の配 列と同一のプライマー対で増幅するようにデザインされている。 従って、 競合核 酸分子は、 同一のプライマー対で増幅させた時に標的核酸分子由来のバンドと判 別がつくように、 標的核酸分子に短い配列を揷入したり、 一部の配列を欠失させ てその長さを変化させるか、 あるいは特定の制限酵素部位を導入又は欠失させた ものが用いられている。
競合核酸分子と標的配列の P C Rにおける増幅率が等しい場合には、 2種類の
D N A断片は共通のブラィマーを奪い合うため競合の度合いが高く、 プライマ一 の枯渴による増幅反応の停止がほぼ同時に起こる。 この場合はブラトーに達した 後の両者の比が初期鍊型量を反映したものになる。
従来行われていた競合的 P C R法による遺伝子組換え作物の定量においては、 あらかじめ遺伝子組換え作物混入量の分かつている試料から得られた D N A溶液 を含む被験液に、 段階的に希釈した競合核酸分子を加えて P C R反応を行い、 等 量点を突き止めることによって標的核酸分子の量が決定されていた。 この測定法 を行うには 100%遺伝子組換えである種子と 100%非組換えの種子を入手する必 要があり、 そのような種子の入手は一般に非常に困難である。 また、 添加する競 合核酸分子の量は標的とする配列 (内在性遺伝子又は遺伝子組換え作物に特異的 な遺伝子) によってそれぞれ異なり、 またコピー数ではなく D NAの量で規定さ れていて、 定量分析操作が煩雑で精度の点でも問題があつた。 発明の開示
本発明の第 1の目的は、 競合的 P C R法に好適に用いられる競合核酸断片を提 供することである。
本発明の第 2の目的は、 遺伝子組換え体遺伝子の定量用キットを提供すること である。
本発明の第 3の目的は、 競合的 P C R法による遺伝子組換え体遺伝子の定量方 法を提供することである。
本発明の第 1は、 遺伝子組換え体遺伝子の内在性遺伝子部分に対応する少なく とも 1つの第 1競合核酸分子と、 遺伝子組換え体遺伝子の組換え遺伝子部分に特 異的な遺伝子に対応する少なくとも 1つの第 2競合核酸分子を結合し、 同一核酸 上に配置した競合核酸断片である。
本発明の第 2は、 第 1競合核酸分子が、 遺伝子組換え体遺伝子の内在性遺伝子 配列内部に部分的に、 ヌクレオチドの挿入、 欠失又は変異を有するものであり、 第 2競合核酸分子が、遺伝子組換え体遺伝子の組換え遺伝子配列内部に部分的に、 ヌクレオチドの挿入、 欠失又は変異を有するものである、 上記 1記載の競合核酸 断片である。
本発明の第 3は、 第 1競合核酸分子が、 遺伝子組換え体遺伝子の内在性遺伝子 配列の両端のプライマ一結合領域と同一のプライマー結合領域を両端に有し、 前 記内在性遺伝子配列とは異なる分子量を有するものであり、第 2競合核酸分子が、 遺伝子組換え体遺伝子の組換え遺伝子配列の両端のプライマー結合領域と同一の ブラィマー結合領域を両端に有し、 前記組換え遺伝子配列とは異なる分子量を有 するものである、 上記 1記載の競合核酸断片である。
本発明の第 4は、 内在性遺伝子がダイズのレクチン遺伝子である、 上記 1〜 3 のいずれか 1項記載の競合核酸断片である。
本発明の第 5は、 内在性遺伝子部分が L e 1である上記 1〜4のいずれか 1項 記載の競合核酸断片である。
本発明の第 6は、 組換え遺伝子部分が遺伝子組換えダイズ R R S (Roundup Ready Soybean)に特異的な部分である請求項 1〜 5のいずれか 1項記載の競合核 酸断片である。
本発明の第 7は、 配列番号 1の塩基配列を有する上記 1記載の競合核酸断片で ある。
配列番号 1
gccctctact ccacccccat ccacatttgg gacaaagaaa ccggtagcgt tgccagcttc ttagcactga cgtctgaatg tgccgcttcc ttcaacttca ccttctatgc ccctgacaca aaaaggcttg cagatgggcg tcaaccccca agttcctaaa tcttcaagtt ttcttgtttt tggatctaaa aaactgaaaa attcagcaaa ttctatgttg gttttgaaaa aagattcaat ttttatgcaa aagttttgtt cctttaggat tgacgttcag aattccgtgt aatcagcatc agtggctaca gcctgcatgc ttcacggtgc aagc gccgg cccgca 本発明の第 8は、 配列番号 2の塩基配列を有する上記 1記載の競合核酸断片で ある。
配列番号 2
gccctctact ccacccccat ccacatttgg gacaaagaaa ccggtagcgt tgccagcttc ttagcactga cgtctgaatg tgccgcttcc ttcaacttca ccttctatgc ccctgacaca aaaaggcttg cagatgggcg tcaaccccca agttcctaaa tcttcaagtt ttcttgtttt tggatctaaa aaactgaaaa attcagcaaa ttctatgttg gttttgaaaa aagattcaat ttttatgcaa aagttttgtt cctttaggat ttcagcatca gtggctacag cgacgttcag aattccgtgt aactgcatgc ttcacggtgc aagcagccgg cccgcaaccg cccgcaaatc ctctggcctt tccggaaccg tccgcattcc cggcgacaag tc 本発明の第 9は、 上記 1〜 8のいずれか 1項記載の競合核酸断片と、 遺伝子組 換え体遺伝子の内在性遺伝子と第 1競合核酸分子とを増幅するための第 1プライ マー対と、 遺伝子組換え体遺伝子の組換え遺伝子と第 2競合核酸分子とを増幅す るための第 2プライマー対とを含む、 遺伝子組換え体遺伝子の定量に使用するた めのキットである。
本発明の第 1 0は、 上記 1〜8のいずれか 1項記載の競合核酸断片を使用して 競合的 P C R法を行うことを特徴とする、 遺伝子組換え体遺伝子の定量方法であ る。
本発明の第 1 1は、 上記 9記載のキットを使用して競合的 P C R法を行うこと を特徴とする、 遺伝子組換え体遺伝子の定量方法である。
本発明の第 1 2は、 被験液中に存在する遺伝子組換え体遺伝子の内在性遺伝子 のコピー数が、 5 0 0〜5 0 0 0 0となるように調整することを特徴とする上記 1 0又は 1 1記載の遺伝子,組換え体遺伝子の定量方法である。
本発明の第 1 3は、 被験液中に存在する遺伝子,組換え体遺伝子の内在性遺伝子 と競合させるための競合核酸断片の濃度が 20コピー// / 1〜4000コピー/〃 1の 範囲であることを特徴とする請求項 1 0または 1 1記載の遺伝子組換え体遺伝子 の定量方法である。 発明を実施するための最良の形態
この明細書中、 「遺伝子組換え体」とは、植物体又はその種子に本来は含まれて いない遺伝子すなわち外来遺伝子が遺伝子組換えによって導入された遺伝子組換 え体のことを言う。 遺伝子組換え体遺伝子には、 植物体又はその種子中に本来存 在する内在性遺伝子と、 外部から組換えによって導入された、 組換え体に特異的 な遺伝子 (外来遺伝子) および外部から組換えによって導入された D N A配列が 含まれる。 本発明の遺伝子組換え体遺伝子の定量方法による定量の対象となるも のとしては、 遺伝子組換え体植物、 例えば、 ダイズ、 トウモロコシ、 小麦、 米、 菜種、 ジャガイモ、 綿、 パパイヤのような作物、 その種子、 及びこれらを原料と して製造された食品等が含まれる。
これまでの競合的 P C R法では、 内在性遺伝子に対する競合核酸分子と組換え 体に特異的な遺伝子に対する競合核酸分子は別々に構築され、 それぞれの分子量 を元に希釈して使用しているため、 希釈が不正確な場合には測定値にばらつきが 見られるという欠点がある。
しかし本発明では 2種類以上の競合核酸分子を結合させ、 同一の核酸断片上に 構築してあるため、 不正確な希釈に起因する測定値のばらつきがなくなり、 分析 精度が著しく向上する。
またこの競合核酸断片をプラスミ ドにクローニングし、 このプラスミドを増殖 させることによって同一の核酸分子を大量に作成することも可能である。
従来、 競合的 P C R法を用いた遺伝子組換え作物の定量法において、 被験液に 競合核酸分子を加えて競合的に P C R反応を行わせ、 初期铸型量を反映した状態 で反応がプラトーに達するためには、 プライマ一濃度、 酵素濃度、 D NA濃度な どを詳細に調査する必要があつた。
これに対して本発明の反応系では、 測定の結果得られた D N Aのコピー数が一 定の範囲に入つている場合は、 さらに正しい定量値を得ることができる。 本発明の遺伝子組換え体遺伝子の定量に用いる競合核酸断片は、 内在性遺伝子 に対応する競合核酸分子と組換え遺伝子部分に特異的な遺伝子に対応する競合核 酸分子が同一核酸分子上に結合されたものである。
内在性遺伝子としては、 その植物体に特異的なものが好ましく、 例えば、 ダイ ズの場合にはレクチン遺伝子、 トウモロコシの場合にはッエイン遺伝子やショ糖 合成酵素 lib遺伝子など、 検査対象となる植物体に固有の遺伝子が利用できる。 組換え遺伝子部分に特異的な遺伝子としては、 組換え体に特異的な酵素を発現 する遺伝子や同時に導入された D N A配列のほか、 組換え体に特異的な力リフラ ヮーモザイクウィルス 3 5 S プロモーターやライスァクチンプロモーターのよう なプロモー夕一遺伝子、 N0S 夕一ミネ一夕一のような夕一ミネ一夕一遺伝子、 も しくはそれらの遺伝子ではさまれた領域などが利用できる。 .
競合核酸分子は、 標的となる遺伝子と同一のプライマー対で増幅し、 且つ、 標 的遺伝子とは分子量や制限酵素で切断した時のパターンが異なるようにデザィン されている。 このためには、 標的遺伝子の配列を元に、 P C R法などの手法を用 いて、 配列内部に、 塩基の挿入、 欠失又は変異を導入すればよい。分子量を長く、 または短くデザインしたものを利用する場合は、 1 0〜4 0塩基、 好ましくは 1 5〜3 0塩 ¾g度の配列を挿入するか欠失させることが望ましい。 あるいは、 配 列内部に変異を導入して、 特定の制限酵素部位を導入又は欠失させてもよい。 さらにまた、 標的遺伝子配列の両端のブラィマー結合領域と同一のプライマー 結合領域を両端に有し、 標的遺伝子配列とは異なる分子量を有するように、 例え ば、 1 0〜4 0塩基、 好ましくは 1 5〜3 0塩 ¾^度長く又は短くなるようにデ ザインしたものも競合核酸分子として利用可能である。
つまり競合的 P C Rの結果、 分子量の異なるバンドを同一のプライマ一対で合 成させうることができれば、 競合核酸分子のプライマー結合領域にはさまれた内 部配列は、 標的配列と異なるものでもよい。
2種以上の競合核酸分子を同一核酸分子上に結合して競合核酸断片とする方法 としては、 接着断片を持つプライマ一を用いた: P C R法のほか、 必要な部分を制 限酵素で切り出しライゲ一ションする方法なども利用できる。 結合の形態として は競合核酸分子を直接結合する方法の他に、 競合核酸分子間に制限酵素部位を揷 入することなどもできる。
また、 2種以上の競合核酸分子を同一核酸分子上に結合する際の競合核酸分子 の配列順序は自由に選択することができる。 すなわち、 内在性遺伝子部分に対応 する第 1競合核酸分子が、 特異的な遺伝子に対応する第 2競合核酸分子の上流側 にあっても良く、 また下流側にあっても良い。 さらに、 本発明の競合核酸断片に は、 第 1競合核酸分子と第 2競合核酸分子の間、 又はこれらの上流側又は下流側 に、 他の第 1競合核酸分子及び/又は第 2競合核酸分子が存在しても良く、 第 1 競合核酸分子及び第 2競合核酸分子以外の核酸分子が存在しても良い。
本発明の第 1競合核酸分子及び第 2競合核酸分子の大きさは、 特に制限されな いが、 好ましくは 5 0〜3 0 0塩基、 さらに好ましくは 1 0 0〜2 0 0塩 SIS度 が望ましい。
本発明の競合核酸断片の大きさも、 特に制限されないが、 好ましくは 1 0 0〜 5 0 0 0塩基、 さらに好ましくは 3 0 0〜: L 5 0 0塩 度が望ましい。
競合核酸分子の大きさは、 短い方が P C Rにおける特異性は高くなるが、 競合 核酸断片を構築する際のプライマーの設計が難しくなり、 長過ぎると特異性が低 くなり、 また構築した競合核酸断片を増幅する際にプラスミ ドに導入するのが困 難になる。
また本発明の競合核酸断片の大きさは、 結合する競合核酸分子の大きさに依存 するが、 長過ぎるとプラスミドに導入するのが困難になる。 このようにして構築した競合核酸断片をプラスミ ドにサブクロ一ニングし、 そ のプラスミ ドを増殖させることによって同一の核酸分子を大量に作成することも 可能である。競合核酸断片をプラスミ ドにサブクロ一ニングさせる方法としては、 制限酵素認識配列を付加させる方法や TAクローニングなどの方法を、その配列に 応じて利用することができる。
被験液 (競合的 P C R反応溶液) は、 試料から抽出した D NA溶液、 競合核酸 断片、 dNTP溶液、 耐熱性 D N Aポリメラーゼ、 検知用ブラィマ一、 その他 P C R 反応に必要な塩類などを必要に応じて調製したものを用いる。 被験液の容量は必 要に応じて 25 1から 100〃1程度の間で設定することが望ましい。 P C R反応は サーマルサイクラ一で温度をコントロールし、 目的の標的配列及び競合核酸断片 が競合的に増幅されるような温度とサイクル数を確認して、 設定すればよい。 競合的 P C R反応後の P C R産物の解析は、 電気泳動法などを用いて分画され た D N Aバンドを測定することによって行うことができる。 競合核酸分子由来の D N Aバンド、 標的配列由来の D N Aバンドを測定し、 その強度からコピー数を 導き出すことで、 試料中の標的遺伝子の定量が可能となる。
本発明の遺伝子組換え体遺伝子の定量に使用するためのキットは、 上記本発明 の競合核酸断片と、 遺伝子組換え体遺伝子の内在性遺伝子と第 1競合核酸分子と を増幅するための第 1プライマー対と、 遺伝子組換え体遺伝子の組換え遺伝子と 第 2競合核酸分子とを増幅するための第 2プライマー対とを含んでいる。さらに、 好ましくは、 dNTP、 耐熱性 D NAポリメラーゼ、 緩衝液、 塩類等の P C R反応に 必要な試薬類を含むことが望ましい。 内在遺伝子のコピー数と組換え遺伝子のコピー数を求め、 それらの比を計算す ることによって試料 D N A溶液中に含まれる遺伝子組換え作物の含量が計算でき る。遺伝子組換え作物含量を計算する場合には、 100%遺伝子組換え作物から得ら れた D N A溶液で同様の測定を行い内在性遺伝子と組換え遺伝子の比率をあらか じめ求めておく。 これを内標比といい、 測定で得られた値をこの比率で補正する ことで、 より正確な定量が可能となる。 内標比による補正は以下のように行う。 ある組換え品種 Aに 1ゲノム当たり 2個の組換え遺伝子が挿入されている場合、 内在性遺伝子の数:組換え遺伝子の数 = 1 : 2と表すことができる。 内在性遺伝 子 1つあたりで考えると組換え遺伝子の数/内在性遺伝子の数 = 2となり、 これ を組換え品種 Aの内標比という。 また別の品種 Bでは内在性遺伝子の数:組換え 遺伝子の数 = 1 : 1という場合もあり、 その場合の内標比は 1となる。 このよう に同じ作物でも組換え品種によって内標比が異なつているので、 あらかじめ品種 を明らかにして定量することが必要である。
組換え品種 Aが 10%混入している試料について、内在性遺伝子の数と組換え遺 伝子の数を測定し、たとえば内在性遺伝子のコピー数が 10, 000コピーとなった場 合、組換え遺伝子のコピー数は 2, 000コピーとなる。 この場合の混入率は、 2,000 /10,000/内標比 (2) x l00= 10 (%) と計算することができる。
内在性遺伝子と遺伝子組換え体に特異的な遺伝子の量比 (内標比) は、 その遺 伝子組換え作物によって一定の値を示すことが知られている。 例えば、 ダイズの 場合はほぼ 1 : 1であり、 トウモロコシの場合は 3 : 1から 1 : 2あたりの値を 示す。
本発明の遺伝子組換え体遺伝子の定量方法は、 遺伝子組換え体が 1〜 5 %程度 混入されたものの遺伝子組換え体の含有量を測定するのに好適である。 このため には、 試料から抽出した D NA溶液中の内在性遺伝子のコピー数は 500コピー以 上であることが望ましい。 しかし、 コピー数が多すぎると、 一方的に反応が進み 競合状態が得られない場合があるので、 50, 000 コピー以下、 好ましくは 30, 000 コピー以下とすることが望ましい。 例えば、 ダイズを測定する場合には、 試料か ら抽出した D N A溶液中の内在性遺伝子のコピー数を 5,000〜50,000、 好ましく は 5,000〜20,000となるように調整したものを用いるとよい。
内在性遺伝子のコピー数を競合的 P C R法で測定する場合は、 内在性遺伝子の jピー数よりも多い量の競合核酸断片を反応液中に加えておく必要がある。 被験 液に加える競合核酸断片のコピー数としては、 試料由来の内在性遺伝子コピー数 の 2倍量程度のコピ一数を加える必要があり、 その場合の被験液中での競合核酸 断片の濃度は、 20コピー// 1~4, 000コピー/〃1に調整するとよい。 以下、 実施例により、 本発明をさらに詳細に説明するが、 これらの実施例は 説明のためのものであり、 本発明の技術的範囲はこれらに限定されるものではな い。
実施例 1
遺伝子組換えダイズの競合核酸断片の構築
内在性遺伝子部分 L e 1に対応する競合核酸分子と、 組換え遺伝子部分が遺伝 子組換えダイズ R R S (Roundup Ready soybean)に特異的な部分に対応する競合 核酸分子を、 Meyer, R. et ah , Z. Lebensm Unters Forsch A 203 :339-344 ( 19 96 )と Studer, E. et aL , Z. Lebensm Unters Forsch A 207:207-213( 1998)を参 考にして作成した。
プライマー LelnOl- 5',Leln(U-3'で合成される部分よりも外側に広いプライマ一 Lelout- 5'と Lelout-3'を設計した。 次に LelnO卜 5',Leln01-3'で合成される配列を 中央付近で切断すると仮定し、 その断面に対するプライマーを作成した。 そのプ ライマーの 5'側に 21bpの接着部となる部分を設け、 LelMu卜 5',LelMu卜 3'とした。 Lelout- 5'と Lelout-3'で合成した P C R産物を鎵型として、 Lelout- 5'と LelMu 3'、 LelMul-5' と Lelout- 3'でそれぞれ P C Rを行った。 この結果、 接着部分を持 つた P C R産物が合成された。 この P C R産物を混合すると、 接着部分が相補的 な配列となっているため接着部分で結合され、内部に 21bpのヌクレオチドが挿入 された塩基配列が構築された。 Lelout-5'と Lelout- 3'で再度 P C Rを行って増幅 し P C R産物を得た。
R R Sの競合核酸分子も同様に作成した。 配列番号 1に含まれる R R S特異的 な競合核酸分子を構築する際には皿 out- 5'と RRout-3'、 及び RRM d-5'と RRMul-3' を用いた。 競合的 P C Rに用いたプライマーの塩基配列
Leln01-5' 5'-gcc etc tac tec acc ccc ate c一 3' (酉己歹 ij番号 3)
Leln01-3' 5'-gcc cat ctg caa gcc ttt ttg tg- 3,(配列番号 4)
RR04-5' 5, - ccc caa gtt cct aaa tct tea agt - 3, (酉己歹 !j番号 5)
RR05-3' 5'-tgc ggg ccg get get tgc a-3' (配列番号 6)
RS01-5' 5'-cct tta gga ttt cag cat cag tgg-3' (配列番号 7)
RS01-3' : 5, - gac ttg tcg ccg gga atg-3' (配列番号 8) 競合核酸断片の構築に用いたプライマーの塩基配列
Lelout-5' 5 -gca ccc caa aac cct cgt etc t-3' (酉己歹 U番号 9)
Lelout - 3' 5,-ctg cat gtg ttt gtg get tag tgt-3' (配列番号 10)
LelMul-5' 5'-tta gca ctg acg tct gaa tgt gcc get tec ttc aac - 3' (配歹 !J番号 11 )
LelMul-3' :5'-aca ttc a¾a cgt ca tgc taa gaa get ggc aac get - 3' (西己歹 ij番号 12)
RRout-5' :5' -tgg cgc cca tgg cct gca tg-3' (配列番号 13) RRout- 3, :55 -cct tcg caa gac cct tec tct ata - 3, (酉 S列番号 14)
RRMul-5, :5, - tta cac gga att ctg aac gtc aat cct aaa gga aca-3' (酉己列番号
15)
RRMul-3' :5' -gac gtt cag aat tec gtg taa tea gca tea gtg gct-3J (酉己列番 号 16)
RRMu2-5' :5, - gac gtt cag aat tec gtg taa ctg cat get tea cgg-3, (配歹 ij番号 17)
RRMu2-3' :5'-tta cac gga att ctg aac gtc get gta gcc act gat— 3' (酉己歹 U番号 18)
*下線の配列が接着部分 上記二種類の競合核酸分子を、 接着断片を持つ下記の塩基配列を有するプライ マーを用いて P CR手法によって結合させた。
Leiに特異的な競合核酸分子を錶型として LelnOl- 5'と RR+Lel-3'で P CRを行 つた。 同様に RRSに特異的な競合核酸分子を鎢型として Lel+RR-5'と RR05-3'で PCRを行った。 得られた P C R産物を混合し、 LelnO卜 5'と RR05-3'で P CRを 行い、 同一核酸分子上に二種類の競合核酸分子が存在する競合核酸断片を構築し た。 その塩基配列は配列番号 1に示すとおりである。 接着断片を持つプライマーの塩基配列
RR+Lel-3' :5, - agg aac ttg ggg gtt gac gcc cat ctg caa gcc - 3' (配列番号 19)
Lel+RR-5' :5'- ttg cag atg ggc gtc aac ccc caa gtt cct aaa -3' (配歹 !J番号 20)
*下線の配列が接着部分 構築した競合核酸断片は、 TOPO TA Cloning Kit ( Invitrogen Co. ) を用いてブ ラスミ ド P C RR2.1- T0P0Rにクローニングした。 プラスミ ドは付属のコンビテン トセルと混合し、ブル一/ホワイ トセレクション処理したアンピシリン添加の L B 寒天培地に植菌した。 植菌した培地は 37°Cで 24時間培養し、 ィンサー卜されて いるホワイ トコロニーをひろってマス夕一プレートに植菌した。 同時に LelniU- 5'と LelnO卜 3'または RR04-5'と RR05- 3'を加えてある P C R反応液に菌体を加え、 P C Rを行ってデザインされた長さのバンドが得られることを確認した。
希望の長さのバン ドが得られたコロニーを LB ブイヨン培地 (Difco Laboratories) で增菌後 「QIAGEN Plasmid Maxi Kit」 (QIAGEN GmbH) を用いて精 製した。 得られた環状 D N Aを制限酵素 Hindlll (TaKaRa Shuzo CO. , LTD. ) で処 理して直鎖状にし、 競合核酸断片とした。 また同時にシークェンス解析を行い全 塩基配列に変化がないことを確認した (配列番号 1 )。
また配列番号 5、 6とは異なる組換え遺伝子部分を検知するプライマー (配列 番号 7、 8 ) を用いて、 同様に競合核酸断片を構築した。 シークェンス解析を行 い全塩基配列に変化がないことを確認した (配列番号 2 )。
<組換え体遺伝子の定量〉
競合核酸断片を含む溶液の 260nmの吸光度を測定し、 その結果と分子量を元に 所定のコピー数となるように希釈して用いた。
分析試料からの D N A抽出には 「DNeasy Plant Maxi Kit」 (QIAGEN GmbH) を用 いた。 抽出した D NA溶液は 230nm、 260nm、 280nmの吸光度を測定した。 D N A の純度は 260/230 = 1.8以上、 260/280 = 1.8から 2.0を目安として使用の可不可 を判断した。 また D NA溶液の 260nmの吸光度が 1.0の時を 50mg/mlとして濃度 を計算し、 20ng/ lに希釈して分析に用いた。 希釈には滅菌蒸留水を用いた。 競合的 PCR法による定量は以下の様に行った。 被験液 (PCR反応液) は、 反応終濃度が 1 XPCR緩衝液 (Applied Biosys terns Japan Ltd.), 0.16腿 ol/L dNTP、 1.5誦 ol/L塩化マグネシウム、 0.5〃mol/L検知用プライマ一 (内在性遺伝 子と第 1競合核酸分子とを増幅するための第 1プライマ一対 (2種類のプライマ —の合計) 又は、 組換え遺伝子と第 2競合核酸分子とを増幅するための第 2ブラ イマ一対(2種類のプライマーの合計) のいずれか一方)、 0.625 units Ampli Taq Gold DNAポリメラ一ゼ (Applied Biosystems Japan Ltd. ) になるように混合し、 測定対象の DNA溶液 2.5 1 と所定のコピー数の競合核酸断片を加えて、 全量を 25〃1とした。 ここで使用した検知用プライマーは前述の通りである。
PCR反応条件は、 96。Cに 10分保った後、 96°C30秒、 60°C30秒、 72°C30秒を 1サイクルとして、 40サイクルの増幅を行なった後、 72°C7分間保持した。 PC R産物の解析には AgaroseL03 「TAKARA」 (TaXaRa Shuzo CO., LTD.) または
「AgaroseX」 (NIPPON GENE CO., LTD.) を用いた。 電気泳動後のゲルの画像は CCD カメラで取り込み、 画像解析装置によってバンドの強度を測定し数値化した。 競合核酸断片を錄型として、 Leln01-5'と LelnO卜 3,のプライマー対で P CRを 行った場合、 得られる PCR産物の分子量は 139bpとなる。 ダイズ DNAを铸型 に用いた場合は、 その分子量は 118bpとなった。 一方、 競合核酸分子を鎵型とし て RR04-5'と皿 05- 3'のプライマー対で P CRを行うと、得られる P CR産物の分 子量は 201bp となり、 RRSから得られた DNAを銪型に用いた場合は、 180bp の P CR産物が得られた。 測定後の数値は次のように計算し、 各遺伝子のコピー数に換算した。 競合的 P CR法での測定では、 ひとつのレーンに二本のバンドが現れる。 一本は競合核酸 分子由来、 もう一本は標的配列由来のバンドである。 実施例 1では、 競合核酸分 子の分子量が標的配列よりも 21bp程度長くなるようにデザィンされているので、 上に競合核酸分子由来のバンド、 下に標的配列由来のバンドが現れる。
画像解析装置によって数値化された競合核酸分子由来のバンド強度を A、 標的 配列由来のバンド強度を Bとする。 この実施例では、 被験液に加える競合核酸断 片の量を 5水準設定して行った。 得られたデ一夕から A/Bの値を求め Cとする。 競合核酸分子 5水準でそれぞれ 5個の C値(C1から C5)が得られるので、 log (競 合核酸分子のコビー数)を横軸に、 log(C)の値を縦軸にとると近似直線が得られる c 通常相関係数 (r2) = 0.99程度の値が得られる。 近似直線が Υ=0になる点、 すな わち log (競合核酸分子のコピー数) = log(C)となる点が等量点と呼ばれる値で、 試料 D N A溶液中に含まれる標的配列のコピー数である。 得られたコピー数の比 を計算し、 試料 D N A溶液中に含まれる遺伝子組換えダイズの含有量を求める。 試験例 1
本発明の組換え体遺伝子の定量法精度を確認する目的で、 遺伝子組換え作物 (GM0)含量をあらかじめ 1 %、 3 %、 5 %、 10%に調製したダイズ粉末から得ら れた D NA溶液を用いて測定を行った。 試験は実施例 1で構築した競合核酸断片 を用いて、 上記の定量方法で行なった。 同一の試料について 5回分析した。 結果 を以下に示す。 表 1
Figure imgf000017_0001
表 1から明らかなように、 本発明方法の定量の精度は非常に高いことが確認さ れた。 比較試験例 1
遺伝子組換え作物 (GM0)含量をあらかじめ 0.5%、 1 %、 5 %に調製した試料 を用いて同様の実験を行った。 競合核酸分子は、 内在性遺伝子に対するものと組 換え遺伝子に対するものを別々のプラスミ ドにクローニングし、 精製したものを 用いた。 その他の分析方法は上記に示した通りである。 結果を以下に示す。 表 2
Figure imgf000018_0001
試験例 1に比較して、標準偏差が大きく、定量の精度が低いことが確認された。 試験例 2
本発明の組換え体遺伝子の定量法精度を確認する目的で、 実施例 1の競合核酸 断片を用いて試験を行なった。遺伝子組換え作物(GM0)含量をあらかじめ 1 %、 3 %、 5 %、 10%に調製したダイズ粉末から得られた D NA溶液を用いて測定し た。内在性遺伝子に対する競合核酸断片の濃度は、 2 0 0 0コピー/〃 1、 1 2 0 0コピー/〃 1、 8 0 0コピー/〃 1、 4 0 0コピー/ 〃1、 。。コピ一 ^の 5水準に設定した。 その際に得られた各遺伝子のコピー数と定量の結果を以下に 示す。 表 3
Figure imgf000019_0001
Lei のコピー数が 5000から 30000コピーの間に含まれる場合には、 定 量の精度がより高いことが確認された。 また、 RRS特異的な競合核酸分子を構築する際に、 RRout-5'と RRout-3'、 及 び RRMu2- 5'と RMu2- 3'を用い、 同様な操作を行うことで、 配列番号 2の競合核酸 断片が得られた。 この競合核酸断片を鍊型として、 Leln01-5'と Leln01-3'のブラ ィマー対で P C Rを行つた場合、 得られる P C R産物の分子量は 139bpとなる。 ダイズ DN Aを鍊型に用いた場合は、 その分子量は 118bpとなった。 一方、 競合 核酸分子を錡型として RR04-5'と RR05-3'のプライマ一対で P CRを行うと、 得ら れる P C R産物の分子量は 201bpとなり、 RRSから得られた DNAを錄型に用 いた場合は、 180bpの PCR産物が得られた。 また、 RS01- 5'と RS01- 3'のブライマ 一対を用いると 142bpと 121bpの P C R産物が得られた。 実施例 2
遺伝子組換えトウモロコシの競合核酸断片の構築
遺伝子組換えトウモロコシのスクリーニング検査用競合核酸断片を作成した。 トウモロコシの内在性遺伝子としてはショ糖合成酵素 lib の配列を用いた。 これ は SS01-5'と SS01- 3'のプライマ一によって増幅される部分である。 この競合核酸 断片は遺伝子組換えトウモロコシのスクリーニング検査に用レ、ることを目的とし ているため、 遺伝子組換え作物に広く用いられているカリフラワーモザイクウイ ルス 3 5 S プロモーターに特異的な配列を検知するための部位と、 除草剤耐性品 種 GA21 (開発者:モンサント社) に特異的な配列を検知するための部位を含めた。 前者の領域を検知するためのプライマーが Ca U-5', Ca U-3'であり、 後者を検 知するためのブラィマ一が GA01- 5', GA01- 3'である。
以下に上記遺伝子組換えトウモロコシのスクリーニング検査用の競合核酸断片 の配列を示す。 網掛けの部分は挿入部分を示す。 配列番号 21
SS01-5'
^tcccaatcc tttgacatct gqtccgaagc aaagtcagag cgctgcaatg caaaacggaa insertion
: agcactca gctgtgaatg t|cgagtgggg gcagcagcgc gagcaccgcc gcgccggtgt
SS01-3' Ca 01-5' ccggacccaa agctgatcat ccatcagctlc ctgtcaccaa gagagaaatc ga|cctctcca insertion
aatgaaatga acttccttat tagaggaa gggtcttgcg
CaM01-3'
aaggatagtg ggattgtgcg tcatccctta cgtcagtgga gatatcacat ^aatgcccgg gcgaatcctg ttgccggtct tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa ttaacatgta atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat tatacattta atacgcgata gaaaacaaaa tatagcgcgc aaactaggat
GA01-5'
aaatccggtt ggaaagcgac ttbgaccccg gcagcttgac ggtgccggag atctccttga insertion
tgttacacgc tcgagtgaac gtc^gctgca gcacgatctc ctcggcgccg gccatgcacc
GA01-3'
ggatccttcc gccgttgctg acgttgccga ggcttctgag cgaaacccta taagaaccct aattccctta tctgggaact actcacacat tattatagag agagatagat ttgtagagag agactggtga tttcagcggg catgcctgca ggtcgactca gatctgggta actggcctaa ctggcggatg cactcgttga tgtttgggtt gttgtccatg gccgcttggt atctgcatta caatgaaatg agcaaagact atgtgagtaa cactggtcaa cactagggag aaggcatcga ctgactactc cactttgtgc agaac agate tagagctcct acacctgatc gatgtggtag tcggtcacgt cggtcttcag bgccgatctg gttgctgctg gtgaacatca atgcgttctc caccaagtac ttcaacttct gggttactca agcagttgta tggaatgcat tcgttgatgt ttgggttgtt gtccatggtc gactctagag gatccgcggc ttgttgtggt ctttt 上記競合核酸断片を用いたトウモロコシの分析に用いられるプライマ一配列の 例を以下に示す。
SS01-5' : 5,- etc cca ate ctt tga cat ctg c-3' (配列番号 22) SS01-3' 5'-tcg att tct etc ttg gtg aga gg-3' (配列番号 23)
CaM01-5' 5,-cct etc caa atg aaa tga act tec t (酉己列番号 24)
CaM01-3' 5'-att gat gtg ata tct cca ctg acg t-3' (配列番号 25)
GA01-5' 5'- ate egg ttg gaa age gac tt -3' (配列番号 26 )
GA01-3' 5'-gaa gcc tcg gca acg tca-3' (配列番号 27) 産業上の利用可能性
本発明の競合核酸断片は、 遺伝子組換え体遺伝子の内在性遺伝子部分に対応す る少なくとも 1つの第 1競合核酸分子と、 遺伝子組換え体遺伝子の組換え遺伝子 部分に特異的な遺伝子に対応する少なくとも 1つの第 2競合核酸分子を結合し、 同一核酸上に配置したものであり、 同一核酸断片上に必要な競合核酸分子が存在 するので、 これらを希釈してコントロールとした場合、 複数の競合核酸分子のコ ビー数にずれがなくなる。 このため、 この競合核酸断片を用いた競合的 P C R法 により組換え体遺伝子を定量すると、 従来の方法と比較して希釈による精度低下 が顕著に抑制され、 精度良く測定することが可能になる。 本発明の定量方法によ れば、 遺伝子組換え作物、 例えば、 遺伝子組換えダイズの組換え体混入率が 5 % 前後のものの定量を、 簡便に行うことができる。

Claims

請求の範囲
1 . 遺伝子組換え体遺伝子の内在性遺伝子部分に対応する少なくとも 1つの第 1競合核酸分子と、 遺伝子組換え体遺伝子の組換え遺伝子部分に特異的な遺伝子 に対応する少なくとも 1つの第 2競合核酸分子を結合し、 同一核酸上に配置した 競合核酸断片。
2 . 第 1競合核酸分子が、 遺伝子組換え体遺伝子の内在性遺伝子配列内部に部分 的に、 ヌクレオチドの挿入、 欠失又は変異を有するものであり、 第 2競合核酸分 子が、 遺伝子組換え体遺伝子の組換え遺伝子配列内部に部分的に、 ヌクレオチド の挿入、 欠失又は変異を有するものである、 請求項 1記載の競合核酸断片。
3 . 第 1競合核酸分子が、 遺伝子組換え体遺伝子の内在性遺伝子配列の両端のプ ライマー結合領域と同一のプライマ一結合領域を両端に有し、 前記内在性遺伝子 配列とは異なる分子量を有するものであり、 第 2競合核酸分子が、 遺伝子組換え 体遺伝子の組換え遺伝子配列の両端のプライマー結合領域と同一のプライマー結 合領域を両端に有し、 前記組換え遺伝子配列とは異なる分子量を有するものであ る、 請求項 1記載の競合核酸断片。
4 . 内在性遺伝子がダイズのレクチン遺伝子である請求項 1〜 3のいずれか 1項 記載の競合核酸断片。
5 . 内在性遺伝子部分が L e 1である請求項 1〜4のいずれか 1項記載の競合核 酸断片。
6 . 組換え遺伝子部分が遺伝子組換えダイズ R R S (Roundup Ready Soybean) に 特異的な部分である請求項 1〜 5のいずれか 1項記載の競合核酸断片。
7 . 配列番号 1の塩基配列を有する請求項 1記載の競合核酸断片。
8 . 配列番号 2の塩基配列を有する請求項 1記載の競合核酸断片
9 . 請求項 1〜8のいずれか 1項記載の競合核酸断片と、 遺伝子組換え体遺伝子 の内在性遺伝子と第 1競合核酸分子とを増幅するための第 1プライマ一対と、 遺 伝子組換え体遺伝子の組換え遺伝子と第 2競合核酸分子とを増幅するための第 2 プライマ一対とを含む、 遺伝子組換え体遺伝子の定量に使用するためのキット。
1 0 . 請求項 1〜 8のいずれか 1項記載の競合核酸断片を使用して競合的 P C R 法を行うことを特徴とする、 遺伝子組換え体遺伝子の定量方法。
1 1 .請求項 9記載のキットを使用して競合的 P C R法を行うことを特徴とする、 遺伝子組換え体遺伝子の定量方法。
1 2 . 被験液中に存在する遺伝子組換え体遺伝子の内在性遺伝子のコピー数が、 5 0 0〜5 0 0 0 0となるように調整することを特徴とする請求項 1 0又は 1 1 記載の遺伝子組換え体遺伝子の定量方法。
1 3 . 被験液中に存在する遺伝子組換え体遺伝子の内在性遺伝子と競合させるた めの競合核酸断片の濃度が 20コビー/// 1〜4000コピー/〃 1の範囲であること を特徴とする請求項 1 0又は 1 1記載の遺伝子組換え体遺伝子の定量方法。
PCT/JP2002/009773 2001-09-21 2002-09-24 Fragment d'acide nucleique competitif, trousse pour quantifier un gene de recombinaison et procede pour quantifier un gene de recombinaison en utilisant cette trousse WO2003027283A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2004-7003979A KR20040041165A (ko) 2001-09-21 2002-09-24 경합 핵산 단편, 재조합 유전자의 정량용 키트, 이것을이용한 재조합 유전자의 정량 방법
JP2003530853A JP4317450B2 (ja) 2001-09-21 2002-09-24 競合核酸断片、組換え体遺伝子の定量用キット、これを用いた組換え体遺伝子の定量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001289755 2001-09-21
JP2001-289755 2001-09-21

Publications (1)

Publication Number Publication Date
WO2003027283A1 true WO2003027283A1 (fr) 2003-04-03

Family

ID=19112202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009773 WO2003027283A1 (fr) 2001-09-21 2002-09-24 Fragment d'acide nucleique competitif, trousse pour quantifier un gene de recombinaison et procede pour quantifier un gene de recombinaison en utilisant cette trousse

Country Status (3)

Country Link
JP (1) JP4317450B2 (ja)
KR (1) KR20040041165A (ja)
WO (1) WO2003027283A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314237A (ja) * 2005-05-11 2006-11-24 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho 遺伝子組換え加工食品の定量的検知方法
CN1297668C (zh) * 2004-05-20 2007-01-31 厦门大学 转基因产品的低密度基因芯片检测方法
WO2014005278A1 (en) * 2012-07-03 2014-01-09 Jr-Kai Huang Self-competitive primer and method of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047764A2 (de) * 1999-02-08 2000-08-17 Bioinside Gmbh Testkit und verfahren zum quantitativen nachweis von gentechnisch veränderter dns in lebensmitteln mittels fluoreszenzgekoppelter pcr
JP2001238700A (ja) * 2000-03-03 2001-09-04 Takara Shuzo Co Ltd 異種個体の存在割合の測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047764A2 (de) * 1999-02-08 2000-08-17 Bioinside Gmbh Testkit und verfahren zum quantitativen nachweis von gentechnisch veränderter dns in lebensmitteln mittels fluoreszenzgekoppelter pcr
JP2001238700A (ja) * 2000-03-03 2001-09-04 Takara Shuzo Co Ltd 異種個体の存在割合の測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARDEGGER M. ET AL.: "Quantitative detection of the 35S promoter and the NOS terminator using quantitative competitive PCR", EUROPEAN FOOD RESEARCH AND TECHNOLOGY, vol. 209, 1999, pages 83 - 87, XP002960757 *
ZIMMERMANN ANDREAS ET AL.: "Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site", LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE, vol. 33, 2000, pages 210 - 216, XP002231560 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297668C (zh) * 2004-05-20 2007-01-31 厦门大学 转基因产品的低密度基因芯片检测方法
JP2006314237A (ja) * 2005-05-11 2006-11-24 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho 遺伝子組換え加工食品の定量的検知方法
WO2014005278A1 (en) * 2012-07-03 2014-01-09 Jr-Kai Huang Self-competitive primer and method of use
CN104024428A (zh) * 2012-07-03 2014-09-03 黄志凯 自我竞争型引物及运用此自我竞争型引物的方法
US9428802B2 (en) 2012-07-03 2016-08-30 Mackay Memorial Hospital Selective-competitive primer and method of use

Also Published As

Publication number Publication date
KR20040041165A (ko) 2004-05-14
JPWO2003027283A1 (ja) 2005-01-06
JP4317450B2 (ja) 2009-08-19

Similar Documents

Publication Publication Date Title
KR101268897B1 (ko) 옥수수 이벤트 mir604
KR102308359B1 (ko) 형질전환 옥수수 이벤트 mon 87419 및 이의 사용 방법
KR101950049B1 (ko) 대두 이벤트 pDAB9582.814.19.1 검출 방법
RU2352638C2 (ru) Растения-трансформанты кукурузы pv-zmir13 (mon863) и композиции и способы их обнаружения
CA2603949C (en) Elite event a5547-127 and methods and kits for identifying such event in biological samples
KR102031625B1 (ko) 스태킹된 제초제 내성 이벤트 8264.44.06.1, 관련된 트랜스제닉 대두 계통, 및 이의 검출
JP2016521576A (ja) ダイズトランスジェニックイベントmon87751、その検出方法及びその使用方法
KR20140051362A (ko) 대두 이벤트 pDAB9582.814.19.1 및 pDAB4468.04.16.1의 곤충 저항성 및 제초제 내성 육종 스택
AU2017203182A1 (en) Constructs for expressing transgenes using regulatory elements from panicum ubiquitin genes
KR20120107476A (ko) 우량 이벤트 ee-gm3, 그리고 생물학적 시료에서 이러한 이벤트를 동정하기 위한 방법 및 키트
KR100624667B1 (ko) 유전자 재조합체의 정량법 및 그것에 이용하는 표준 분자
Dalla Costa et al. Elaboration of a reliable strategy based on real-time PCR to characterize genetically modified plantlets and to evaluate the efficiency of a marker gene removal in grape (Vitis spp.)
WO2003027283A1 (fr) Fragment d&#39;acide nucleique competitif, trousse pour quantifier un gene de recombinaison et procede pour quantifier un gene de recombinaison en utilisant cette trousse
KR20010086586A (ko) 이종 개체 존재비율의 측정 방법
KR101820048B1 (ko) 유전자 변형체의 검정을 위한 표준 플라스미드, 이를 이용한 분석 방법 및 검정용 키트
Zaulet et al. Detection and quantification of GMO and sequencing of the DNA amplified products
KR20030084184A (ko) 유전자 조작 농산물과 이의 가공품의 정성 검정용프라이머와 정량 검정용 프라이머, 프로브 및 검정키트
KR20060048402A (ko) 유전자 변형 옥수수에 대한 특이 프라이머, 프로브 및 표준플라스미드와 이를 이용한 정량 및 정성 분석 방법
KR100838105B1 (ko) 유전자변형 벼의 정성 및 정량분석 방법
KR100664992B1 (ko) 유전자 변형체의 검정을 위한 프라이머 세트,검정방법 및이에 사용되는 표준 플라스미드
KR102291826B1 (ko) 잔디품종 및 제초제 저항성 유전자 변형 판별용 조성물 및 이의 용도
KR20030018218A (ko) 유전자 조작 농산물과 이의 가공품 검정용 프라이머 및검정키트

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047003979

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003530853

Country of ref document: JP

122 Ep: pct application non-entry in european phase