WO2002092048A2 - Cosmetic compositions using polyether siloxane copolymer network compositions - Google Patents

Cosmetic compositions using polyether siloxane copolymer network compositions Download PDF

Info

Publication number
WO2002092048A2
WO2002092048A2 PCT/US2001/045475 US0145475W WO02092048A2 WO 2002092048 A2 WO2002092048 A2 WO 2002092048A2 US 0145475 W US0145475 W US 0145475W WO 02092048 A2 WO02092048 A2 WO 02092048A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
butyl
group
carbon atoms
products
Prior art date
Application number
PCT/US2001/045475
Other languages
English (en)
French (fr)
Other versions
WO2002092048A3 (en
Inventor
Atchara Chaiyawat
Michael J. 0'brien
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to DE60124152T priority Critical patent/DE60124152T2/de
Priority to KR1020037014979A priority patent/KR100870787B1/ko
Priority to EP01989830A priority patent/EP1450758B1/en
Priority to JP2002588967A priority patent/JP4647190B2/ja
Publication of WO2002092048A2 publication Critical patent/WO2002092048A2/en
Publication of WO2002092048A3 publication Critical patent/WO2002092048A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Definitions

  • the present invention relates to silicone compositions, more particularly to compositions comprising a silicone polymer network comprising cross-links derived from epoxide or oxirane moieites.
  • the personal care industry thrives on being able to deliver multiple performance products based on mixtures of several components, with each having performance characteristics important to or desirable in the final formulation.
  • One desirable characteristic is the ability to provide a silky initial feel derived from low molecular weight silicones, such as for example, octamethylcyclotetrasilioxane or decamethylcyclopentasiloxane, in the formulation while maintaining a high, but shear-thinnable viscosity. While these low molecular weight silicones provide the desired feel characteristics, they are also low viscosity, highly flowable liquids. Thus they are not easily held in a formulation, preferring rather to separate and flow out of a given container or flow uncontrollably across the skin when used in a specific application.
  • Such polymeric silicone gels have typically been made by the hydrosilylation reaction, which requires the use of both SiH functional groups and terminal olefinic groups to form crosslinked siloxane polymers.
  • siloxane structures that can incorporate silylhydride groups and optionally, vinyl functional siloxane groups, can be utilized in making these materials.
  • this method of generating crosslinked siloxane polymers limits the range of desirable organofunctional groups that may be incorporated into the polymeric structure to create additional performance advantages in complex formulations.
  • attempts to include organofunctional groups into the crosslinked siloxane polymer include unsaturated organic groups compatible with the hydrosilylaton reaction.
  • a cosmetic composition comprising the reaction products of
  • M H R 4 R 5 R SiO ⁇ / 2 ;
  • M E R 6 R 7 R E SiO ⁇ 2 ;
  • T E R E SiO 3 /2;
  • R 1 , R 2 , R 3 , R 8 , R 9 and R 12 are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms;
  • R 4 , R 5 and R 10 are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms or hydrogen;
  • R 6 , R 7 , R ⁇ are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms or R E ;
  • each R E is independently a monovalent hydrocarbon radical containing one or more oxirane moieties having from one to sixty carbon atoms;
  • the stoichiometric subscripts a, b, c, d, e, f, g, h, i, and j are either zero or positive subject to the following limitations: a + b + c > l; b + e + h > l; c + f + i > l; b + e + h > c + f
  • reaction product of the present invention is a polyether siloxane copolymer network.
  • reaction product of the present invention is a polyether siloxane copolymer network swollen with a volatile low molecular weight silicon containing compound.
  • compositions of the present invention comprise the reaction products of an epoxy functional hydrido siloxane molecule having the following formula:
  • M H R 4 R 5 H SiO ⁇ / 2 ;
  • T R 12 SiO 3 / 2 ;
  • R 1 , R 2 , R 3 , R 8 , R 9 and R 12 are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms;
  • R 4 , R 5 and R 10 are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms or hydrogen;
  • R 6 , R , R ⁇ are independently monovalent hydrocarbon radicals having from one to sixty carbon atoms or R E ;
  • each R E is independently a monovalent hydrocarbon radical containing one or more oxirane moieties having from one to sixty carbon atoms;
  • the stoichiometric subscripts a, b, c, d, e, f, g, h, i, and j are either zero or positive subject to the following limitations: a + b + c > l; b + e + h > l; c + f + i > l; b + e + h > c + f + i; and when d +
  • One method of producing the composition of the present invention is to react a molecule having the following formula:
  • an olefinically unsaturated molecule containing one or more oxirane moieties means a molecule possessing one or more interior, pendant or terminal carbon carbon double bonds simultaneously with one or more interior, pendant or terminal three membered oxygen containing heterocyclic rings (chemically the phrase “three membered oxygen containing heterocyclic ring” is used herein interchangeably with the oxirane or epoxide structures).
  • the simplest chemical structure exemplified by such a definition is:
  • subscript k may be zero or a positive integer, more preferably a positive integer ranging generally from 0 to about 10. It should be noted that both exemplified structures are terminal in both the olefinic moiety and the oxirane (epoxide) moiety.
  • a more general chemical structure is:
  • R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently selected from the group of hydrogen and monovalent hydrocarbon radicals having from one to sixty carbon atoms
  • Q m is a di- or trivalent hydrocarbon radical having from one to sixty carbon atoms
  • Q n is a divalent hydrocarbon radical having from one to sixty carbon atoms with the subscripts m and n independently zero or one subject to the limitation that when Qm is trivalent one of R 13 or R 14 is absent and where R 16 and R 18 may be either cis- or trans- to each other.
  • acetylene analogs of the olefinicaUy unsaturated oxirane containing molecules will produce similar species that will react to form similar products.
  • an olefinically unsaturated molecule containing one or more oxirane moieties is intended to also include an acetylenically unsaturated molecule containing one or more oxirane moieties.
  • an acetylenically unsaturated molecule containing one or more oxirane moieties is intended to also include an acetylenically unsaturated molecule containing one or more oxirane moieties.
  • an acetylenically unsaturated molecule containing one or more oxirane moieties is intended to also include an acetylenically unsaturated molecule containing one or more oxirane moieties.
  • an acetylenically unsaturated molecule containing one or more oxirane moieties is intended to also include an acetylenically unsaturated
  • unsaturated molecule containing one or more oxirane moieties means a molecule possessing one or more interior, pendant or terminal carbon carbon triple bonds simultaneously with one or more interior, pendant or terminal three membered oxygen containing heterocyclic rings (chemically the phrase "three membered oxygen containing heterocyclic ring" is used herein interchangeably with the oxirane or epoxide structures).
  • the epoxide compound is an olefinic epoxide, a specific example being:
  • epoxide is an acetylenic epoxide, a specific example being:
  • R E as a substituent, becomes either:
  • the silyl hydride bearing precursor molecule MaM H b ' DdD H e'T g T H h'Qj, can be prepared by a variety of techniques known in the art.
  • Epoxy substituted siloxanes are prepared in the normal manner through the use of a hydrosilylation reaction to attach a vinyl or allyl substituted epoxide onto an
  • SiH bearing siloxane SiH containing siloxanes are well known in the art and can be linear, branched, or cyclic in structure.
  • Examples of useful vinyl or allyl substituted epoxides include 4-vinyl cyclohexene oxide, allyl glycidyl ether, limonene oxide, l,2-epoxy-5-hexene, l,2-epoxy-7-octene, norbomadiene monoepoxide and l,2-epoxy-9-decene.
  • Precious metal catalysts suitable for making epoxy siloxanes are also well known in the art and comprise complexes of rhodium, ruthenium, palladium, osmium, iridium and /or platinum.
  • platinum catalysts for this SiH olefin addition reaction hydrosilation or hydrosilylation
  • platinum catalysts may be used for the reaction in the present instance.
  • the preferred platinum catalysts are those platinum compound catalysts that are soluble in the reaction mixture.
  • the platinum compound can be selected from those having the formula (PtC ⁇ Olefin) and H(PtCl3 ⁇ lefin) as described in U.S. patent number 3,159,601, hereby incorporated by reference.
  • a further platinum containing material usable in the compositions of the present invention is the cyclopropane complex of platinum chloride described in U.S. patent number 3,159,662 hereby incorporated by reference.
  • the platinum containing material can be a complex formed from chloroplatinic acid with up to 2 moles per gram of platinum of a member selected from the class consisting of alcohols, ethers, aldehydes and mixtures of the above as described in U.S. patent number 3,220,972 hereby incorporated by reference.
  • the catalysts preferred for use are described in U. S. Patents numbers 3,715,334; 3,775,452; and 3,814,730 to Karstedt. Additional background concerning the art may be found at J. L. Spier, "Homogeneous Catalysis of Hydrosilation by Transition Metals, in Advances in Organometallic Chemistry, volume 17, pages 407 through 447, F.G.A. Stone and R. West editors, published by the Academic Press (New
  • an effective amount of platinum catalyst ranges from about 0.1 to 50 parts per million of the total organopolysiloxane composition.
  • the reaction product of produces a polymer network, believed to be a polyether siloxane copolymer network (or alternativeley a siloxane polyether copolymer network).
  • network means a three dimensionally extending structure comprising interconnected polyether siloxane copolymer chains.
  • fluid is contained within interstices of the network.
  • interstices is used herein in reference to a network to denote spaces within the network, that is, spaces between the polyether siloxane copolymer chains of the network.
  • polyether is intended to include the reaction product of two or more epoxide moieties to form one or more ether linkages that form a cross link between siloxane chains or moieties.
  • the polyether siloxane copolymer network is a crosslinked network that is insoluble in the fluid component of the silicone composition of the present invention, but that is capable of being swollen by the fluid.
  • the amount of crosslinking present in the crosslinked network may be characterized with respect to the degree of swelling exhibited by the network in the fluid.
  • the crosslinked structure of the network is effective to allow the network to be swollen by a low molecular weight silicone fluid, such as, for example, decamethylcyclopentasUoxane, from its original volume to a swollen volume that is a factor of from 1.01 to 5000, more preferably from 2 to 1000, and even more preferably from 5 to 500, times its original volume.
  • the original volume of the network can be determined, for example, by extracting or evaporating aU of the fluid component from the silicone composition of the present invention to leave the original volume, that is, the volume of the polyether sUoxane copolymer network in the absence of the fluid.
  • hydrocarbon radical includes acyclic hydrocarbon radicals, alicyclic hydrocarbon radicals and aromatic hydrocarbon radicals.
  • a monovalent radical can be represented as having been derived from a saturated hydrocarbon compound by conceptual removal of one hydrogen atom from the compound
  • a divalent radical can be represented as having been derived from a saturated hydrocarbon compound by conceptual removal of two hydrogen atoms from the compound
  • a trivalent radical can be represented as having been derived from a saturated hydrocarbon compound by conceptual removal of three hydrogen atoms from the compound.
  • an ethyl radical that is, a - CH2CH3 radical
  • a dimethylene radical that is, a - (CH2)2 - radical
  • an ethanetriyl radical that is,
  • radical is a trivalent radical, each of which can be represented as having been derived by conceptual removal of one or more hydrogen atoms from the saturated hydrocarbon ethane.
  • acyclic hydrocarbon radical means a straight chain or branched hydrocarbon radical, preferably containing from 1 to 60 carbon atoms per radical, which may be saturated or unsaturated and which may be optionally substituted or interrupted with one or more atoms or functional groups, such as, for example, carboxyl, cyano, hydroxy, halo and oxy.
  • suitable monovalent acyclic hydrocarbon radicals may include, for example, alkyl, alkenyl, alkynyl, hydroxyalkyl, cyanoalkyl, carboxyalkyl, alkyloxy, oxaalkyl, alkylcarbonyloxaalkylene, carboxamide and haloalkyl, such as, for example, methyl, ethyl, sec-butyl, tert-butyl, octyl, decyl, dodecyl, cetyl, stearyl, ethenyl, propenyl, butynyl, hydroxypropyl, cyanoethyl, butoxy, 2,5,8- rrioxadecanyl, carboxymethyl, chloromethyl and 3,3,3-fluoropropyl.
  • Suitable divalent acydic hydrocarbon radicals include, for example, linear or branched alkylene radicals, such as, for example, methylene, dimethylene, trimethylene, decamethylene, ethylethylene, 2-methyltrimethylene, 2,2- dimethyltrimethylene and linear or branched oxalkylene radicals such as, for example, methyleneoxypropylene.
  • Suitable trivalent acycUc hydrocarbon radicals include, for example, alkanetriyl radicals, such as, for example, 1,1,2- ethanetriyl, 1,2,4-butanetriyl, 1,2,8-octanetriyl, 1,2,4-cyclohexanetriyl and oxaalkanetriyl radicals such as, for example, l,2,6-triyl-4-oxahexane.
  • alkyl means a saturated straight or branched monovalent hydrocarbon radical.
  • monovalent alkyl groups are selected from linear or branched alkyl groups containing from 1 to 60 carbons per group, such as, for example, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, decyl, dodecyl.
  • alkenyl means a straight or branched monovalent terminaUy unsaturated hydrocarbon radical, preferably containing from 2 to 10 carbon atoms per radical, such as, for example, ethenyl, 2-propenyl, 3-butenyl, 5-hexenyl, 7-octenyl and ethenylphenyl.
  • alicydic hydrocarbon radical means a radical containing one or more saturated hydrocarbon rings, preferably containing from 4 to 12 carbon atoms per ring, per radical which may optionally be substituted on one or more of the rings with one or more alkyl radicals, each preferably containing from 2 to 6 carbon atoms per alkyl radical, halo radicals or other functional groups and which, in the case of a monovalent alicyclic hydrocarbon radical containing two or more rings, may be fused rings.
  • Suitable monovalent alicyclic hydrocarbon radicals include, for example, cyclohexyl and cyclooctyl.
  • Suitable divalent hydrocarbon radicals include, saturated or unsaturated divalent monocyclic hydrocarbon radicals, such as, for example, 1,4-cyclohexylene.
  • Suitable trivalent aUcyclic hydrocarbon radicals include, for example, cycloalkanetriyl radicals such as, for example, l-dimethylene-2, 4-cyclohexylene, l-methylethylene-3-methyl-
  • aromatic hydrocarbon radical means a hydrocarbon radical containing one or more aromatic rings per radical, which may, optionaUy, be substituted on the aromatic rings with one or more alkyl radicals, each preferably containing from 2 to 6 carbon atoms per alkyl radical, halo radicals or other functional groups and which, in the case of a monovalent aromatic hydrocarbon radical containing two or more rings, may be fused rings.
  • Suitable monovalent aromatic hydrocarbon radicals include, for example, phenyl, tolyl, 2,4,6-trimethylphenyl, 1,2- isopropylmethylphenyl, 1-pentalenyl, naphthyl, anthryl, eugenol and aUylphenol as weU as aralkyl radicals such as, for example, 2-phenylethyl.
  • Suitable divalent aromatic hydrocarbon radicals include, for example, divalent monocyclic arenes such as, for example, 1,2-phenylene, 1,4- phenylene, 4-methyl-l,2-phenylene, phenylmethylene.
  • Suitable trivalent aromatic hydrocarbon radicals include, for example, trivalent monocycUc arenes such as, for example, l-trimethylene-3.5-phenylene.
  • the epoxy functional organosUoxane compound is reacted by polymerizing the epoxy functional organosUoxane compound under cationic polymerization conditions and, preferably, in the presence of a fluid, preferably a volatile sUoxane fluid.
  • the epoxy functional organosUoxane compound is polymerized in the presence of a fluid to directly form the silicone composition of the present invention.
  • the epoxy functional organosUoxane compound is polymerized in the presence of a first fluid or fluid mixture to form a polyether sUoxane copolymer network, and then the network so formed is subsequently swoUen with a second fluid or fluid mixture to form the sUicone composition of the present invention.
  • the second fluid or fluid mixture may be the same as or different from the first fluid mixture.
  • the first solvent may, optionaUy, be removed from the polymerized network by, for example, evaporation, prior to addition of the second fluid.
  • the epoxy functional organosUoxane compound is polymerized in the absence of a fluid to form a polyether siloxane copolymer network and the network is subsequently swoUen with a fluid or mixture of fluids to form the silicone composition of the present invention.
  • the polymerization of the epoxy functional organosUoxane is conducted with a sufficient amount of excess hydridosUoxane functionality such that there is residual hydride remaining after polymerization that may be subsequently reacted under conditions suitable for hydrosilylation with one or more alkenyl functional compounds. This is especially advantageous in cases where the alkenyl functional compounds can act as inhibitors of cationic cure.
  • alkenyl compounds are those that contain a functionality that can act as an inhibitor of the cationic cure mechanism, e.g. a base.
  • a small amount of a concentrated hydridosUoxane or hydridosUane compound is added in order to increase the rate of polymerization.
  • Cationic polymerization conditions can be generated by addition of an acid catalyst capable of polymerizing an epoxy group such as, for example, by addition of onium salt generated acids and certain metal salts, such as, for example, aluminum trichloride and ferric chloride, which act as Lewis acids or by addition of lanthanide triflates, see PCT Int. Appl. WO 0008,087.
  • Acid catalyzed polymerization of epoxides is a well known method of forming organic polymers and has been applied to epoxy-functional siloxane compounds in order to form sUoxane polyalkyleneoxide block copolymers for use in a variety of applications as, for example, release coatings on paper, see, for example, U.S.
  • Patent No.4,279,717 and in conjunction with organic materials to form coatings and modified plastic compositions, see for example, U.S. Patent Nos. 5,354,796 and 5,663,752.
  • One precautionary note must be observed, that is if the cationic polymerization is conducted in the presence of cyclic sUoxanes, e.g. D 3/ D 4 or D5 and the like, the strength of the acid catalysis employed must be such that cationic polymerization of the epoxide moiety occurs but polymerization of the cyclic sUoxane does not occur to any appreciable extent.
  • the epoxy functional organosUoxane compound is polymerized under cationic cure conditions generated through the interaction with platinum and an SiH-containing compound.
  • This epoxide polymerization reaction route is described in U.S. Patent No. 5,128,431 and by J.V. Crivello and N. Fan, J. Polymer Sci., Part A: Polymer Chemistry, pp.1853-1863 (1997).
  • the reaction kinetics appear to be dependent upon the presence of trace quantities of molecular oxygen.
  • the polyether sUoxane copolymer network compositions of the present invention produce a cross linked structure that possesses a certain amount of steric hindrance by reason of the cross links. This steric hindrance tends to prevent the reaction from going to completion even at long reaction times and thus a certain amount of residual functionaUty may remain.
  • This residual functionality provides the abUity to incorporate other functionality into the polyether sUoxane copolymer network by reaction with functionalized molecules that are not as stericaUy constrained as the polyether siloxane copolymer network or it must be chemicaUy inactivated.
  • a noble metal hydrosilylation catalyst wiU be present in the reaction mixture or within the interstices of the polyether sUoxane copolymer network.
  • This catalyst may be used to further polymerize the oxirane or epoxide moiety (moieties) incorporated in the reaction product producing the polyether sUoxane copolymer network(s) of the present invention.
  • the residual functionality remaining by design, i.e. by use of sub-stoichiometric quantities, or by reason of steric inhibition of reaction completion may be further reacted as taught herein or neutralized or inhibited.
  • US patents 5,977,280 and 5,929,164 both herein incorporated by reference, teach such neutralization of hydrosUylation catalysts by treatment with strong noble metal complexing
  • Ugands for example phosphines, amines and organic sulfur compounds such as organic sulfides and thiols.
  • some of these strongly complexing ligands, whUe deactivating a noble metal hydrosUylation catalyst are toxic and thus their use must be avoided in some appUcations, e.g. personal care apphcations.
  • sulfur containing amino acid esters are strong noble metal complexing ligands and methionine methyl ester, methionine ethyl ester, cysteine methyl ester, cysteine ethyl ester and cysteine dimethyl ester have been preferred for such noble metal deactivation.
  • naturaUy occuring proteins containing disulfide linkages that are easUy disrupted may also be used to deactivate the noble metal catalysts employed, e.g. egg yolks and the like.
  • Sulfur containing amino acid amides, polypeptides and the like may also function simUarly to deactivate noble metal hydrosilylation catalysts.
  • the method of polymer synthesis provides for incorporation of a wide range of organofunctional groups into the copolymeric structure.
  • organofunctional groups such as, for example, organic epoxides, epoxysUoxanes, terminaUy unsaturated organic and alkenylsiloxane compounds can be used to modify the resulting copolymers.
  • the organofunctional groups are introduced to the network during polymerization of the epoxyfunctional organosUoxane by including organofunctional compounds to the reaction mixture which are copolymerizable with the epoxy functional organosUoxane under the chosen polymerization reaction conditions.
  • polymerization of the epoxy functional organosUoxane is conducted in the presence of one or more organic epoxide compounds which are copolymerizable with epoxy functional hydrido sUoxanes under the polymerization conditions to form mixed polyalkyleneoxide units.
  • the additional organic epoxide compounds may contain different substituents to further modify the resulting copolymer.
  • Suitable organic epoxide compounds include, for example, ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, glycidol and epoxide oUs suchas for example epoxidized soybean oU.
  • the polymerization of the epoxy functional organosUoxane is conducted in the presence of one or more hydroxyl functional compounds which are copolymerizable with epoxy functional hydrido sUoxanes under the polymerization conditions to modify the product copolymer.
  • Suitable hydroxyl functional compounds include, for example, water, hydroxy-stopped polyethers, organic alcohols, including organic diols, carbinol functional siloxanes and hydroxy functional organopolysiloxane polymers, including polyethersUoxane copolymers.
  • the polymerization of the epoxy functional organosUoxane is conducted in the presence one or more alkenyl functional compounds which are copolymerizable with epoxy functional hydrido sUoxanes under the polymerization conditions to modify the product copolymer.
  • alkenyl functional compounds include alkenyl functional organic compounds, such as, for example, hexadiene, and alkenyl functional silicone compounds, such as for example, vinyl polydimethylsiloxanes.
  • an alkenyl-functional compound may conveniently be added via hydrosUylation in those embodiments in which the cationic reaction conditions for reacting the epoxide groups are generated using platinum and a hydrido-substituted sUoxane, as described above.
  • the sUicone composition may be further processed under low to high shear to adjust the viscosity and sensory feel of the composition. This may be achieved, for example, by subjecting the composition to a moderate to high shearing force. High shear may be apphed using, for example, a Sonolator apparatus, a Gaulin Homogenizer or a Micro Fluidizer apparatus. OptionaUy, one or more fluids may be added to the silicone composition prior to the shearing.
  • the sUicone composition of the present invention is a solid, typically having a creamy consistency, wherein the copolymer network acts as a means for geUing the fluid to reversibly impart characteristics of a solid to the fluid.
  • the silicone composition At rest, the silicone composition exhibits the properties of a solid gel material.
  • the sUicone composition of the present invention exhibits high stability and resistance to syneresis, that is, the composition exhibits Uttle or no tendency for fluid to flow from the composition and imparts high stability and syneresis resistance to personal care compositions which include the sUicone composition as a component.
  • the high stabUity and syneresis resistance persists with prolonged aging of such sUicone compositions and personal care compositions.
  • fluid may be released from the network by subjecting the sUicone composition to a shearing force, such as, for example, by rubbing the composition between one's fingers, to provide improved sensory feel characteristic of the fluid component of the sUicone material.
  • Fluids suitable for use as the fluid component of the composition of the present invention are those compounds or mixtures of two or more compounds that are in the Uquid state at or near room temperature, for example, from about 20°C about 50°C, and about one atmosphere pressure, and include, for example, silicone fluids, hydrocarbon fluids, esters, alcohols, fatty alcohols, glycols and organic oils.
  • the fluid component of the composition of the present invention exhibits a viscosity of below about 1,000 cSt, preferably below about 500 cSt, more preferably below about 250 cSt, and most preferably below 100 cSt, at 25 °C
  • the fluid component of the present invention comprises an emollient compound.
  • Suitable emollient compound include any fluid that provides emolUent properties, that is, that when appUed to skin, tend to remain on the surface of the skin or in the stratum corneum layer of the skin to act as lubricants , reduce flaking and to improve the appearance of the skin.
  • Emollient compound include, for example, hydrocarbons, such as for example, isododecane, isohexadecane and hydrogenated polyisobutene, organic waxes, such as for example, jojoba, sUicone fluids, such as, for example, cyclopentasUoxane, dimethicone and bis-phenylpropyl dimethicone, esters, such as, for example, octyldodecyl neopentanoate and oleyl oleate, as weU as fatty acids and alcohols, such as for example, oleyl alcohol and isomyristyl alcohol.
  • hydrocarbons such as for example, isododecane, isohexadecane and hydrogenated polyisobutene
  • organic waxes such as for example, jojoba
  • sUicone fluids such as, for example, cyclopentasUoxane, dime
  • the fluid component of the present invention comprises a silicone fluid, more preferably a silicone fluid that exhibits emollient properties, preferably a low molecular weight silicone fluid or alternatively a low molecular weight siloxane compound.
  • Suitable sUicone fluids include, for example, cyclic silicones of the formula D r , wherein D, R 8 and R 9 are as previously defined, preferably with R 8 and R 9 chosen from the group consisting of monovalent one to six carbon atom monovalent hydrocarbon radicals, more preferably methyl, and r is an integer wherein 3 ⁇ r ⁇ 12, such as, for example, hexamethylcyclotrisiloxane ("D3"), octamethylcyclotetrasiloxane ("D 4 "), decamethylcyclopentasUoxane ("D5"), and dodecamethylcyclohexasUoxane ("DO”) as well as linear or branched organopolysiloxanes having the formula:
  • M' is R 19 3 SiO ⁇ / 2 ;
  • D' is R 2 ° 2 SiO 2 /2;
  • T is R 21 SiO 3 / 2
  • R 19 , R 20 and R 21 are each independently alkyl, aryl or aralkyl containing from one to sixty carbon atoms;
  • q and s are each independently integers from 0 to 300, preferably from 0 to 100, more preferably from 0 to 50, and most preferably from 0 to 20.
  • the sUicone composition of the present invention comprises, per 100 parts by weight ("pbw") of the silicone composition, from 0.1 to 99 pbw, more preferably from 0.5 pbw to 30 pbw and still more preferably from 1 to 15 pbw of the polyether sUoxane copolymer network and from 1 pbw to 99.9 pbw, more preferably from 70 pbw to 99.5 pbw, and still more preferably from 85 pbw to 99 pbw of the fluid.
  • pbw per 100 parts by weight
  • the polyether sUoxane copolymer network compositions of the present invention may be utilized as prepared or as the silicone component in emulsions.
  • emulsions comprise at least two immiscible phases one of which is continuous and the other which is discontinuous. Further emulsions may be liquids with varying viscosities or solids. AdditionaUy the particle size of the emulsions may be render them microemulsions and when sufficiently smaU microemulsions may be transparent. Further it is also possible to prepare emulsions of emulsions and these are generally known as multiple emulsions. These emulsions may be:
  • discontinuous phase comprises water and the continuous phase comprises the polyether sUoxane copolymer network of the present invention
  • discontinuous phase comprises a non- aqueous hydroxylic solvent and the continuous phase comprises the polyether sUoxane copolymer network of the present invention
  • non-aqueous emulsions where the continuous phase comprises a non- aqueous hydroxylic organic solvent and the discontinuous phase comprises the polyether siloxane copolymer network of the present invention.
  • Non-aqueous emulsions comprising a silicone phase are described in
  • non-aqueous hydroxylic organic compound means hydroxyl containing organic compounds exemplified by alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 °C, and about one atmosphere pressure.
  • the non-aqueous organic hydroxylic solvents are selected from the group consisting of hydroxyl containing organic compounds comprising alcohols, glycols, polyhydric alcohols and polymeric glycols and mixtures thereof that are liquid at room temperature, e.g. about 25 °C, and about one atmosphere pressure.
  • the non-aqueous hydroxylic organic solvent is selected from the group consisting of ethylene glycol, ethanol, propyl alcohol, iso-propyl alcohol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, iso-butylene glycol, methyl propane diol, glycerin, sorbitol, polyethylene glycol, polypropylene glycol mono alkyl ethers, polyoxyalkylene copolymers and mixtures thereof.
  • the resulting material is usuaUy a high viscosity cream with good feel characteristics, and high absorbance of volatUe sUoxanes. It is capable of being blended into formulations for hair care, skin care, antiperspirants, sunscreens, cosmetics, color cosmetics, insect repellants, vitamin and hormone carriers, fragrance carriers and the like.
  • the personal care applications where the polyether sUoxane copolymer network of the present invention and the sUicone compositions derived therefrom of the present invention may be employed include, but are not limited to, deodorants, antiperspirants, antiperspirant/ deodorants, shaving products, skin lotions, moisturizers, toners, bath products, cleansing products, hair care products such as shampoos, conditioners, mousses, styling gels, hair sprays, hair dyes, hair color products, hair bleaches, waving products, hair straighteners, manicure products such as naU poUsh, naU polish remover, naUs creams and lotions, cuticle softeners, protective creams such as sunscreen, insect repellent and anti-aging products, color cosmetics such as lipsticks, foundations, face powders, eye liners, eye shadows, blushes, makeup, mascaras and other personal care formulations where sUicone components have been conventionally added, as weU as drug deUvery systems for topical application of
  • the personal care composition of the present invention further comprises one or more personal care ingredients.
  • Suitable personal care ingredients include, for example, emollients, moisturizers, humectants, pigments, including pearlescent pigments such as, for example, bismuth oxychloride and titanium dioxide coated mica, colorants, fragrances, biocides, preservatives, antioxidants, anti-microbial agents, anti-fungal agents, antiperspirant agents, exfoliants, hormones, enzymes, medicinal compounds, vitamins, salts, electrolytes, alcohols, polyols, absorbing agents for ultraviolet radiation, botanical extracts, surfactants, sihcone oUs, organic oUs, waxes, fUm formers, thickening agents such as, for example, fumed silica or hydrated sUica, particulate fUlers, such as for example, talc, kaolin, starch, modified starch, mica, nylon, clays, such as, for example, bentonite and organo-modified clays.
  • pearlescent pigments such as, for example, bis
  • Suitable personal care compositions are made by combining, in a manner known in the art, such as, for example, by mixing, one or more of the above components with the polyether sUoxane copolymer network, preferably in the form of the sUicone composition of the present invention.
  • Suitable personal care compositions may be in the form of a single phase or in the form of an emulsion, including oU-in-water, water-in-oil and anhydrous emulsions where the sihcone phase may be either the discontinuous phase or the continuous phase, as weU as multiple emulsions, such as, for example, oU- in water-in-oU emulsions and water-in-oU-in water-emulsions.
  • an antiperspirant composition comprises the polyether sUoxane copolymer network of the present invention and one or more active antiperspirant agents.
  • Suitable antiperspirant agents include, for example, the Category I active antiperspirant ingredients listed in the U.S.
  • a skin care composition comprises the polyether siloxane copolymer network, preferably in the form of sUicone composition of the present invention, and a vehicle, such as, for example, a sUicone oil or an organic oU.
  • the skin care composition may, optionaUy, further include emollients, such as, for example, triglyceride esters, wax esters, alkyl or alkenyl esters of fatty acids or polyhydric alcohol esters and one or more the known components conventionaUy used in skin care compositions, such as, for example, pigments, vitamins, such as, for example, Vitamin A, Vitamin C and Vitamin E, sunscreen or sunblock compounds, such as, for example, titanium dioxide, zinc oxide, oxybenzone, octylmethoxy cinnamate, butylmethoxy dibenzoylm ethane, p-aminobenzoic acid and octyl dimethyl-p-aminobenzoic acid.
  • emollients such as, for example, triglyceride esters, wax esters, alkyl or alkenyl esters of fatty acids or polyhydric alcohol esters and one or more the known components conventionaUy used in skin care compositions
  • compositions of the present invention are utilized in conjunction with fragrant materials.
  • These fragrant materials may be fragrant compounds, encapsulated fragrant compounds, or fragrance releasing compounds that either the neat compounds or are encapsulated.
  • Particularly compatible with the compositions of the present invention are the fragrance releasing silicon containing compounds as disclosed in US patents 6,046,156; 6,054,547; 6,075,111; 6,077,923; 6,083,901; and 6,153,578; aU of which are herein and herewith specificaUy incorporated by reference.
  • compositions of the present invention are not restricted to personal care compositions, other products such as waxes, polishes and textiles treated with the compositions of the present invention are also contemplated.
  • Preparation Example 1 494.5 g of a hydride fluid with approximate composition M H D3oo D H M H was mixed with 5.5 g of vinyl cyclohexene oxide, 1500 g of decamethyl cyclopentasUoxane (D5), and 0.1 g of a platinum divinyltetramethyldisiloxane catalyst solution. The result was heated to 80 °C. After a couple of hours, an additional portion of platinum catalyst solution was added. The material was heated for a total of 4 hours at 80 °C In this way a gel material ExpMJO-07-391 was obtained with a solids content of about 26% . 567 g of ExpMJO-07-391 was then mixed with 1433 g of additional D5.
  • ExpMJO-07-401 had a solids content of about 7.3% and a viscosity of 24,200 cps. This material gave a very silky feel when rubbed on the skin.
  • Preparation Example 2 300 g of a hydride fluid with approximate composition M H D337 D H n.sM H was mixed with 3.94 g of vinyl cyclohexene oxide, 37 g of Gulftene C30+ Alpha Olefin Fraction from Chevron (herein defined when a substituent as C30+), 1022.8 g of decamethyl cyclopentasUoxane (D5), and 0.1 g of a platinum divinyltetramethyldisUoxane catalyst solution. The result was heated to 80 °C for 8 hours producing ExpMJO-07-433. This material had a sohds content of about 25.5 % .
  • ExpMJO-07-433 was then swollen with 1412.5 g of additional D5 and then passed through a Gaulin homogenizer at 4500 psi.
  • the result, ExpMJO-07- 434 had a solids content of about 7.4% and a viscosity of 45,000 cps. It also gave a silky feel when rubbed on the skin.
  • ExpMJO-07-422 was then swollen with 1408.6 g of additional D5 and then passed through a Gaulin homogenizer at 4500 psi.
  • ExpMJO-07-424 was then swollen with 1408.6 g of additional D5 and then passed through a Gaulin homogenizer at 4500 psi.
  • ExpMJO-07-464 533 g was then swoUen with 967 g of additional D5 and then passed through a Gaulin homogenizer at 4500 psi.
  • the result, ExpMJO-07-465 had a solids content of about 11% and a viscosity of 200,000 cps.
  • Preparation Example 6 300 g of a hydride fluid with approximate composition MDioo D H ⁇ o.sM was mixed with 13.53 g of vinyl cyclohexene oxide, 34.84 g of Gulftene C30+ Alpha Olefin Fraction from Chevron, 647 g of decamethyl cyclopentasUoxane (D5), and 0.10 g of a platinum divinyltetramethyldisUoxane catalyst solution. The result was heated to 80°C for 6 hours producing ExpMJO-07-477. This material had a solids content of about 35.25%.
  • ExpMJO-07-464 533 g was then swollen with 947 g of additional D5 and then passed through a Gaulin homogenizer at 4500 psi.
  • the result, ExpMJO-07-482 had a solids content of about 12.69% and a viscosity of 16,500 cps.
  • Preparation Example 7 316.4 g of a hydride fluid with approximate composition M H D 200 D H _c.5M H was mixed with 7.56 g of vinyl cyclohexene oxide 7.00g of 4-aUyl-2-methoxy-phenol, 840 g of decamethyl cyclopentasUoxane (D5), and 0.09 g of a platinum divinyltetramethyldisUoxane catalyst solution. The result was heated to 80 °C for 6 hours producing ExpMJO-08-537. 418 g of ExpMJO-08-537 was then swollen with 582 g of additional D5 and then passed through a Gaulin homogenizer at 8000 psi. The result, ExpMJO-08-540, had a solids content of about 12% and a viscosity of 198,000 cps.
  • 300 g of a hydride fluid with approximate composition M H ⁇ .73D 3 88 D H 6.9Mo.27 was mixed with 3.00 g of vinyl cyclohexene oxide, 4.00 g of 4-aUyl-2-methoxy-phenol, 20.8 g of Gulftene C30+ Alpha Olefin Fraction from Chevron, 984 g of decamethyl cyclopentasUoxane (D5), and 0.1 g of a platinum divinylterramethyl disiloxane catalyst solution. The result was heated to 80 °C for an hour with good mixing.
  • ExpMJO-07-481 562 g of ExpMJO-07-481 was then swollen with a mixture of 938 g of additional D5 and 1.0 g of a 10% solution of methyl di(hydrogenated taUow)amine in Isopar C and then passed through a Gaulin homogenizer at 4500 psi.
  • antiperspirant sticks were made by heating stearyl alcohol, hydrogenated castor oil, isododecane, SF1202 and ExpMJO-07-465 until the geUants were melted .
  • Al Zr Trichlorohydrex gly was added to the batch at 70°C and mixed until uniform.
  • Antiperspirants were poured to containers at about 60°C.
  • the antiperspirant was evaluated for whiteness, ability to hold liquid, feel, and hardness of the stick. The whiteness was determined by applying antiperspirant onto dark color vinyl slides to mimic the consumer application methods. Vinyl test shdes were air dried for 15 min and the whiteness was determined by appearance.
  • the control antiperspirants showed intense whiteness within 5-10 min after application.
  • the antiperspirant B showed whiteness reduction as compared to control.
  • Antiperspirant B also demonstrated a superior ability to hold cosmetic fluid when using thumb pressure was applied to the sticks. It also improved the rigidity and resiliency of the stick in this formulation. In addition, it provided lubricious skin feel with powdery finish. Formulation B also modified the crystaUization of organic gelling agents by providing a better and more uniform matrix and reducing the growth of stearyl alcohol crystaUization matrix.
  • the clear antiperspirant B in this invention showed no syneresis and increased stiffness of the stick compared to control. It gave good pay-out and smooth uniform deposition of antiperspirant active on the skin when compared to control.
  • the foundations were prepared by mixing part A and part B together at room temperature until uniform.
  • the emulsion was developed when the water phase (Part C) was added into the oU phase.
  • the foundation samples were evaluated for coverage on vinyl slides at 24 micron in thickness.
  • AU foundations were evaluated on ease of spreadabUity during draw down, appearance, degree of coverage and shine. Shine was determined by using gloss meter after 12 hours.
  • formulation B was evaluated against formulation A(control) and formulation D was evaluated against formulation C(control).
  • Formulation B gave superior uniform coverage by reducing the appearance of lines and imperfections on the vinyl slides, and by reducing shine during initial rub-out. However, both formulation A and B did not show the difference in gloss after 12 hours. Formulation B imparted a luxurious silky feel with a powdery finish appearance. The foundation B in this invention had improved stabUity after one week at room temperature compared to the formulation A(control) which showed syneresis at the same time.
  • Formulation D gave the similar benefits as described in formulation B.
  • Formulation D had an ability to control shine as shown in the result above.
  • Cetearyl methicone is a linear alkyl substituted silicone and it provides moisturization to the formulation by creating an occlusive barrier on the skin.
  • this sUicone moisturizer was combined with the new gel, it showed good compatibUity whereas the SFE839 did not.
  • the gel according to this invention is easier to blend with cosmetic ingredients in that it does not require the high shear mixer or lengthy mixing time required by
  • This skin treatment gel was prepared by combining all ingredients Usted below until uniform at room temperature.
  • the gel was used as deUvery system for skin treatment and it is suitable for both heat sensitive and non- heat sensitive active ingredients since it does not require heating during manufacturing.
  • the absence of water in this formulation ensures the efficacy of vitamin C until used.
  • a Up treatment comprising ingredients below is useful for contouring, durability and moisturization feel.
  • Silky body lotion is made by combining part A together and heating to 80°C. In a separate vessel, part B is mixed and heated to 75°C. The emulsion is formed when part A and part B are added together under high shear mixing. This lotion provides Ught and lubricious skin feel.
  • composition A B C D E Composition A B C D E
  • Hair shampoo comprising ingredients below gives a sUky feel to hair fibers.
  • This shampoo can be prepared into 2 ways; one is directly add sUicone gel to the shampoo, and the other is pre-blend sihcone gel with at least one surfactant and water until emulsion developed and add sUicone gel emulsion to the shampoo.
  • This shampoo is made by mixing ingredients as ordered.
  • compositions wt%
  • Citric acid adjust to pH 6
  • This hair conditioner for daUy use provides softness, lubricity and body.
  • the leave on hair conditioner reduces fly-away and increases body and volume.
  • This soft solid antiperspirant contains sihcone gel an anti-syneresis, thickening and sensory enhancer.
  • the gel shows exceUent organic compatibUity. It is used in combination with an organic thickener to achieve the desired texture and rigidity.
  • This sihcone hpstick contains sihcone gel to soften hps.
  • sihcone gel to soften hps.
PCT/US2001/045475 2001-05-16 2001-10-31 Cosmetic compositions using polyether siloxane copolymer network compositions WO2002092048A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60124152T DE60124152T2 (de) 2001-05-16 2001-10-31 Kosmetische zusammensetzungen enthaltend siloxancopolymer-netzwerke
KR1020037014979A KR100870787B1 (ko) 2001-05-16 2001-10-31 폴리에테르 실록산 공중합체 네트워크 조성물을 사용하는화장용 조성물
EP01989830A EP1450758B1 (en) 2001-05-16 2001-10-31 Cosmetic compositions using polyether siloxane copolymer network compositions
JP2002588967A JP4647190B2 (ja) 2001-05-16 2001-10-31 ポリエーテルシロキサンコポリマー網目構造組成物を用いた化粧品組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/858,795 US6538061B2 (en) 2001-05-16 2001-05-16 Cosmetic compositions using polyether siloxane copolymer network compositions
US09/858,795 2001-05-16

Publications (2)

Publication Number Publication Date
WO2002092048A2 true WO2002092048A2 (en) 2002-11-21
WO2002092048A3 WO2002092048A3 (en) 2004-02-26

Family

ID=25329205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/045475 WO2002092048A2 (en) 2001-05-16 2001-10-31 Cosmetic compositions using polyether siloxane copolymer network compositions

Country Status (7)

Country Link
US (4) US6538061B2 (US06759479-20040706-C00005.png)
EP (1) EP1450758B1 (US06759479-20040706-C00005.png)
JP (1) JP4647190B2 (US06759479-20040706-C00005.png)
KR (1) KR100870787B1 (US06759479-20040706-C00005.png)
CN (1) CN100558337C (US06759479-20040706-C00005.png)
DE (1) DE60124152T2 (US06759479-20040706-C00005.png)
WO (1) WO2002092048A2 (US06759479-20040706-C00005.png)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234262A1 (de) * 2002-07-27 2004-02-19 Beiersdorf Ag Haarshampoo für feines und fettiges Haar
WO2013142471A3 (en) * 2012-03-19 2014-11-27 The Procter & Gamble Company Cross linked silicone copolmyer networks in a thickened aqueous phase
WO2021223143A1 (en) * 2020-05-07 2021-11-11 Momentive Performance Materials Inc. O/w emulsion and w/o emulsion inverted therefrom, and personal care composition containing same

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411007B2 (en) * 2001-05-16 2008-08-12 O'brien Michael Joseph Cosmetic compositions using polyether siloxane copolymer network compositions
US7388049B2 (en) * 2001-05-16 2008-06-17 Momentive Performance Materials Inc. Polyether siloxane copolymer network compositions
US20030203978A1 (en) * 2001-05-16 2003-10-30 O'brien Michael Joseph Cosmetic compositions comprising silicone gels comprising entrapped, occluded or encapsulated pigments
US7241835B2 (en) * 2001-05-16 2007-07-10 General Electric Company Cosmetic compositions comprising silicone gels
GB0125778D0 (en) 2001-10-26 2001-12-19 Procter & Gamble Silicone elastomer emulsion cosmetic composition comprising colorant inclusive internal phase
US20030190336A1 (en) * 2002-03-18 2003-10-09 Adams Christine Helga Personal care compositions comprising solid particles enterapped in a gel network
US8435942B2 (en) * 2002-05-31 2013-05-07 Transdermal Biotechnology, Inc. Methods for formulating stabilized insulin compositions
US20040018237A1 (en) * 2002-05-31 2004-01-29 Perricone Nicholas V. Topical drug delivery using phosphatidylcholine
CN100354340C (zh) * 2002-10-11 2007-12-12 通用电气公司 聚醚硅氧烷共聚物网络组合物
US20040228821A1 (en) * 2003-05-16 2004-11-18 The Procter & Gamble Company Personal care products comprising active agents in a gel network
US7837742B2 (en) * 2003-05-19 2010-11-23 The Procter & Gamble Company Cosmetic compositions comprising a polymer and a colorant
US20050142079A1 (en) * 2003-12-26 2005-06-30 Garrison Mark S. Oil in silicone emulsion and compositions containing same
DE102004018017A1 (de) * 2004-04-14 2005-11-10 Wella Aktiengesellschaft Kosmetische Zusammensetzung für die Haarpflege
US20050249689A1 (en) * 2004-05-10 2005-11-10 An-Li Kuo Personal care compositions with enhanced properties, method of manufacture, and method of use thereof
US7611726B2 (en) * 2004-07-15 2009-11-03 L'oréal Shine-enhancing film formers
US20060134035A1 (en) * 2004-12-22 2006-06-22 Avon Products, Inc. Long wear topical composition having improved glossy appearance
US20090021736A1 (en) * 2005-01-24 2009-01-22 Akihiro Kuroda Method of selecting pigment and titanium dioxide taking into account environment under multiple light sources, and composition thereof
CA2596880C (en) * 2005-02-09 2012-11-27 Farouk Systems, Inc. Composition and system for hair coloring and color retention
US8197231B2 (en) * 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
WO2007038454A1 (en) 2005-09-26 2007-04-05 L'oreal Composition and process for treating keratinous substrates with at least two immiscible cosmetic compositions
US7767754B2 (en) * 2005-11-08 2010-08-03 Momentive Performance Materials Inc. Silicone composition and process of making same
US7479522B2 (en) * 2005-11-09 2009-01-20 Momentive Performance Materials Inc. Silicone elastomer composition
US8017687B2 (en) * 2005-11-15 2011-09-13 Momentive Performance Materials Inc. Swollen silicone composition and process of producing same
US7863361B2 (en) * 2005-11-15 2011-01-04 Momentive Performance Materials Inc. Swollen silicone composition, process of producing same and products thereof
US20070112078A1 (en) * 2005-11-15 2007-05-17 Ian Procter Silicone antifoam composition
US8277785B2 (en) * 2005-12-13 2012-10-02 Avon Products, Inc. Cosmetic compositions with encapsulated pigments and a method for using
US7687574B2 (en) * 2006-05-01 2010-03-30 Momentive Performance Materials Inc. Acrylate cross linked silicone copolymer networks
US20080019932A1 (en) * 2006-07-20 2008-01-24 Laura Louise Crosby Color Cosmetic Compositions
US20080134590A1 (en) * 2006-12-12 2008-06-12 Marr Jimmy F Insect repellant barrier
US20080145443A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Diaper rash composition and method
US9345649B2 (en) 2006-12-21 2016-05-24 Avon Products, Inc. Cosmetic composition containing novel fractal particle-based gels
ITMI20070172A1 (it) * 2007-02-02 2008-08-03 Art Cosmetics Srl Ombretto per occhi e processo per la sua preparazione
CN101743282B (zh) * 2007-05-30 2013-03-27 陶氏康宁公司 由天然油衍生的硅氧烷共聚物和弹性体
EP2167014B9 (en) * 2007-06-29 2012-04-25 Dow Corning Corporation Silicone-organic gels with polyalkyloxylene crosslinked silicone elastomers
DE102007030642A1 (de) * 2007-07-02 2009-01-08 Momentive Performance Materials Gmbh Verfahren zur Herstellung von Polyorganosiloxanen mit (C6-C60)-Alkylmethylsiloxygruppen und Dimethylsiloxygruppen
CN101795669A (zh) * 2007-07-11 2010-08-04 陶氏康宁公司 用于递送药物的组合物
US20090081316A1 (en) * 2007-09-20 2009-03-26 Momentive Performance Materials Inc. Boron nitride-containing silicone gel composition
CA2703114A1 (en) * 2007-10-22 2009-04-30 Alzo International, Inc. Silicone elastomers in cosmetic esters
US7842102B2 (en) * 2007-11-05 2010-11-30 Sunbelt Corporation Liquid dye formulations in non-petroleum based solvent systems
TWI468185B (zh) * 2007-12-27 2015-01-11 Avon Prod Inc 適合用於化妝品組合物之凝膠技術
TWI411448B (zh) 2007-12-27 2013-10-11 Avon Prod Inc 適合用於化妝品之光學模糊色素組合物
US8173147B2 (en) * 2008-08-15 2012-05-08 Xttrium Laboratories, Inc. Gentle, non-irritating, non-alcoholic skin disinfectant
KR101366420B1 (ko) * 2009-01-22 2014-02-24 실테크 코포레이션 알킬 쿼터늄 실리콘 화합물
EP2491065B1 (en) 2009-10-23 2014-11-26 Dow Corning Corporation Hydrophilically-modified silicone compositions
CN102666665B (zh) 2009-10-23 2015-07-22 道康宁公司 包含溶胀的硅酮凝胶的硅酮组合物
WO2011056568A2 (en) * 2009-10-27 2011-05-12 The Procter & Gamble Company Long-wear mascara compositions
US20130224496A1 (en) * 2010-10-29 2013-08-29 Hardcoat Surfaces Llc High Hardness Low Surface Energy Coating
CN103547258B (zh) 2011-03-17 2017-10-20 特兰斯德梅尔生物工艺股份有限公司 局部一氧化氮系统及其使用方法
DE102011078105A1 (de) * 2011-06-27 2012-12-27 Beiersdorf Ag Neuste Verwendung von Silikonelastomeren in kosmetischen Zubereitungen
EP2750723B1 (en) 2011-08-30 2020-06-24 Avery Dennison Corporation Silicone absorbent adhesive layer
EP2809729B1 (en) * 2012-02-01 2019-04-24 Momentive Performance Materials Inc. Siloxane polyether copolymers
DE102012202527A1 (de) * 2012-02-20 2013-08-22 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polymere und Metallatome oder -ionen und deren Verwendung
US8871254B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Systems and methods for treatment of acne vulgaris and other conditions with a topical nitric oxide delivery system
US8871255B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Treatment of skin and soft tissue infection with nitric oxide
US8871261B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Cancer treatments and compositions for use thereof
US8871256B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Methods and systems for treatment of inflammatory diseases with nitric oxide
US8871262B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Compositions and methods for treatment of osteoporosis and other indications
US8871258B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Treatment and prevention of learning and memory disorders
US8871257B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Prevention and treatment of cardiovascular diseases using systems and methods for transdermal nitric oxide delivery
US8871260B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Methods and compositions for muscular and neuromuscular diseases
US8871259B2 (en) 2012-09-19 2014-10-28 Transdermal Biotechnology, Inc. Techniques and systems for treatment of neuropathic pain and other indications
US9370471B2 (en) * 2012-09-21 2016-06-21 Elc Management Llc Slurry powder cosmetic compositions and methods
US9597267B2 (en) 2012-09-21 2017-03-21 Elc Management Llc Slurry powder cosmetic compositions and methods
KR101767207B1 (ko) * 2012-11-30 2017-08-11 (주)아모레퍼시픽 생체친화성 고분자로 코팅된 무기분체 및 이를 함유하는 화장료 조성물
CN104869973B (zh) 2012-12-21 2019-03-01 雅诗兰黛国际公司 浆料粉末化妆品组合物和方法
US20140271937A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
US9687520B2 (en) 2013-03-13 2017-06-27 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US20140271938A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
US9295636B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US9750787B2 (en) 2013-03-13 2017-09-05 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US20140271731A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US9849160B2 (en) 2013-03-13 2017-12-26 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US9339457B2 (en) 2013-03-13 2016-05-17 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US9314433B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US9314422B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US9320706B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US9314417B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9393265B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US9241899B2 (en) 2013-03-13 2016-01-26 Transdermal Biotechnology, Inc. Topical systems and methods for treating sexual dysfunction
US9295637B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Compositions and methods for affecting mood states
US9724419B2 (en) 2013-03-13 2017-08-08 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US9314423B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Hair treatment systems and methods using peptides and other compositions
US9387159B2 (en) 2013-03-13 2016-07-12 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9393264B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US9295647B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
US9320758B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
CN103393583B (zh) * 2013-06-29 2015-06-10 安徽榄菊日用制品有限公司 一种天然防晒多效润唇膏及其制备方法
CN105555875B (zh) 2013-10-31 2018-09-21 美国陶氏有机硅公司 交联的组合物及其形成方法
CN105531301B (zh) 2013-10-31 2018-04-20 道康宁公司 交联的组合物及其形成方法
US10092780B2 (en) 2013-10-31 2018-10-09 Dow Silicones Corporation Cosmetic composition comprising a carboxy-functional elastomer
WO2015167963A1 (en) 2014-04-28 2015-11-05 Dow Corning Corporation Cross-linked composition and cosmetic composition comprising the same
US9801805B2 (en) * 2014-12-16 2017-10-31 Momentive Performance Materials Inc. Personal care composition comprising silicone network
EA035468B1 (ru) 2016-02-25 2020-06-22 Юнилевер Н.В. Способ получения кремнийорганического эластомера с гидрофильными активными веществами и композиция для личной гигиены, содержащая указанный эластомер
EA035393B1 (ru) * 2016-02-25 2020-06-05 Юнилевер Н.В. Способ получения кремнийорганического эластомера и композиция для личной гигиены, содержащая указанный эластомер
CN108778239B (zh) 2016-03-14 2021-04-13 美国陶氏有机硅公司 组合物和制备方法
CN105963166A (zh) * 2016-04-11 2016-09-28 甘肃大禹黑枸杞农业科技有限公司 一种黑枸杞唇膏
JP7292381B2 (ja) * 2018-10-03 2023-06-16 ロレアル 不揮発性/揮発性油及び親油性染料を含む組成物、方法及びその使用
WO2021118775A1 (en) * 2019-12-13 2021-06-17 Rohm And Haas Company Personal care composition comprising a silicon glycan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574264A2 (en) * 1992-06-11 1993-12-15 General Electric Company Synthesis of epoxysilicones
FR2740037A1 (fr) * 1995-10-18 1997-04-25 Rhone Poulenc Chimie Compositions cosmetiques pour le cheveu et la peau a base de polyorganosiloxanes fonctionnalises greffes
EP1095959A2 (en) * 1999-10-28 2001-05-02 Shin-Etsu Chemical Co., Ltd. Cosmetic composition
EP1122276A2 (en) * 2000-02-01 2001-08-08 Shin-Etsu Chemical Co., Ltd. A novel silicone compound and a makeup containing this compound

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US4279717A (en) 1979-08-03 1981-07-21 General Electric Company Ultraviolet curable epoxy silicone coating compositions
JPS5968333A (ja) 1982-10-12 1984-04-18 Toray Silicone Co Ltd 線状オルガノポリシロキサンブロツクを含有するポリマもしくはポリマ組成物の球状硬化物およびその製造方法
JPS62243621A (ja) 1986-04-17 1987-10-24 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
US4724142A (en) * 1986-08-06 1988-02-09 Drew Chemical Corporation Synergistic microbiocidal compositions containing a mixture of a N-alkyl dimethylbenzylammonium halide and an acrolein/formaldehyde polycondensation product
US5266321A (en) 1988-03-31 1993-11-30 Kobayashi Kose Co., Ltd. Oily make-up cosmetic comprising oil base and silicone gel composition
JPH0655897B2 (ja) 1988-04-22 1994-07-27 信越化学工業株式会社 シリコーン組成物の製造方法
JPH0753646B2 (ja) 1989-01-31 1995-06-07 東レ・ダウコーニング・シリコーン株式会社 化粧料
JPH0660286B2 (ja) 1989-02-15 1994-08-10 信越化学工業株式会社 油性ペースト組成物
US4984169A (en) * 1989-03-23 1991-01-08 Milliken Research Corp. Data loading and distributing process and apparatus for control of a patterning process
US5128431A (en) 1989-09-01 1992-07-07 General Electric Company Platinum catalyzed heterocyclic compound compositions
JP2516451B2 (ja) 1990-04-04 1996-07-24 信越化学工業株式会社 硬化性組成物及びその硬化物
US5074672A (en) * 1990-10-26 1991-12-24 Westinghouse Electric Corp. Arrangement for monitoring temperatures of water-cooled electric generator windings
US5403580A (en) 1991-01-22 1995-04-04 Dow Corning Corporation Organosilicon gels and method of making
JP2631772B2 (ja) 1991-02-27 1997-07-16 信越化学工業株式会社 新規なシリコーン重合体及びそれを用いた水分散能を有するペースト状シリコーン組成物
JP2511348B2 (ja) * 1991-10-17 1996-06-26 東レ・ダウコーニング・シリコーン株式会社 オルガノポリシロキサンおよびその製造方法
EP0545002A1 (en) 1991-11-21 1993-06-09 Kose Corporation Silicone polymer, paste-like composition and water-in-oil type cosmetic composition comprising the same
US5354796A (en) 1992-10-01 1994-10-11 General Electric Company Low gloss thermoplastic molding compositions
JP2739407B2 (ja) 1993-02-09 1998-04-15 信越化学工業株式会社 低弾性率シリコーンゲル組成物及びそのゲル状硬化物
JP2974229B2 (ja) * 1993-03-03 1999-11-10 信越化学工業株式会社 フルオロシリコ−ンゴム組成物
JP3397478B2 (ja) 1993-11-26 2003-04-14 キヤノン株式会社 インクジェットヘッド及び該インクジェットヘッドの製造方法及びインクジェット装置
US5599894A (en) 1994-06-07 1997-02-04 Shin-Etsu Chemical Co., Ltd. Silicone gel compositions
US5599533A (en) 1994-12-15 1997-02-04 Estee Lauder, Inc. Stable water-in-oil emulsion system
JP3778962B2 (ja) * 1994-12-28 2006-05-24 住友電気工業株式会社 アンチスキッド制御装置
US5493041A (en) 1995-07-21 1996-02-20 Dow Corning Corporation Lightly crosslinked poly(n-alkylmethylsiloxanes) and methods of producing same
FR2737116B1 (fr) 1995-07-25 1997-08-22 Oreal Composition stable contenant un actif cosmetique et/ou dermatologique sensible a l'eau
US5665804A (en) 1996-02-05 1997-09-09 Dow Corning Corporation Silicone latex solvent thickening
FR2744911B1 (fr) 1996-02-19 1998-03-20 Oreal Utilisation d'un organopolysiloxane solide elastomere associe a une phase grasse pour la preparation d'une composition ou dans une composition de soin ou de maquillage pour matifier la peau
US5654362A (en) 1996-03-20 1997-08-05 Dow Corning Corporation Silicone oils and solvents thickened by silicone elastomers
US5919437A (en) 1996-05-24 1999-07-06 Colgate-Palmolive Company Cosmetic cream composition containing silicone gel material
US6074672A (en) 1996-06-28 2000-06-13 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Powdered cosmetic compositions containing silicone elastomers
ZA971943B (en) 1996-06-28 1998-09-07 Unilever Plc Vitamin C delivery system
US5849314A (en) 1996-06-28 1998-12-15 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Anhydrous cosmetic compositions
US5750123A (en) 1996-06-28 1998-05-12 Chesebrough-Pond's Co., Division Of Conopco, Inc. Vitamin C delivery system
US5972314A (en) 1996-06-28 1999-10-26 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Self-tanner cosmetic compositions
US5922308A (en) 1996-06-28 1999-07-13 Chesebrough-Pond's Usa Co., Underarm compositions
JP2001501913A (ja) 1996-06-28 2001-02-13 ユニリーバー・ナームローゼ・ベンノートシヤープ 液体制汗/防臭組成物
US6231259B1 (en) 1996-07-26 2001-05-15 The Gillette Company Viscous product dispenser with porous dome
US5698654A (en) * 1996-07-30 1997-12-16 General Electric Company Process for preparing hydrogen siloxane copolymers
US6271295B1 (en) * 1996-09-05 2001-08-07 General Electric Company Emulsions of silicones with non-aqueous hydroxylic solvents
US6060546A (en) 1996-09-05 2000-05-09 General Electric Company Non-aqueous silicone emulsions
US5760116A (en) 1996-09-05 1998-06-02 General Electric Company Elastomer gels containing volatile, low molecular weight silicones
DE69732464T2 (de) 1996-10-03 2006-05-11 Shiseido Co. Ltd. Äusserliches gelförmiges Hautpflegemittel
US5753751A (en) * 1996-10-24 1998-05-19 General Electric Company Process for preparing self-curable alkenyl hydride siloxane copolymers and coating composition
GB9622580D0 (en) 1996-10-30 1997-01-08 Unilever Plc Antiperspirant composition
US5811487A (en) 1996-12-16 1998-09-22 Dow Corning Corporation Thickening silicones with elastomeric silicone polyethers
JPH10175816A (ja) 1996-12-18 1998-06-30 Toray Dow Corning Silicone Co Ltd 化粧品原料、化粧品、および化粧品の製造方法
US5866261A (en) * 1996-12-20 1999-02-02 Rhodia Inc. Release composition
FR2759583B1 (fr) 1997-02-17 1999-12-10 Oreal Composition antisolaire contenant un organopolysiloxane elastomerique solide
US5854336A (en) 1997-03-20 1998-12-29 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Process for preparing silicone elastomer compositions
US5880210A (en) 1997-04-01 1999-03-09 Dow Corning Corporation Silicone fluids and solvents thickened with silicone elastomers
US5889108A (en) 1997-06-02 1999-03-30 Dow Corning Corporation Thickening solvents with elastomeric silicone polyethers
US6027738A (en) 1997-10-31 2000-02-22 E-L Management Corp. Anhydrous matte cosmetic
US5929164A (en) 1997-11-05 1999-07-27 Dow Corning Corporation Quenching post cure
US5977280A (en) 1997-11-05 1999-11-02 Dow Corning Corporation Terminating post cure with amino acid esters
US5871720A (en) 1997-11-20 1999-02-16 Colgate-Palmolive Company Cosmetic compositions with DBS and functionalized silicones
US5922309A (en) 1997-12-23 1999-07-13 Cheesebrough-Pond's Usa Co. Non-whitening underarm compositions
US5961961A (en) 1998-06-04 1999-10-05 Chesebrough-Pond's Usa Co. Sunscreen cosmetic composition
ES2154165B1 (es) 1998-08-06 2001-10-16 Univ Rovira I Virgili Composicion para el entrecruzamiento de resinas epoxi.
US6046156A (en) 1998-08-28 2000-04-04 General Electric Company Fragrance releasing olefinic silanes
US6075111A (en) 1998-08-28 2000-06-13 General Electric Company Fragrance releasing non-volatile polymeric siloxanes
US6054547A (en) 1998-08-28 2000-04-25 General Electric Company Fragrance releasing non-volatile polymeric-siloxanes
US6083901A (en) 1998-08-28 2000-07-04 General Electric Company Emulsions of fragrance releasing silicon compounds
US6042815A (en) 1998-10-21 2000-03-28 Revlon Consumer Products Corporation Water and oil emulsion solid cosmetic composition
US6056156A (en) * 1998-11-12 2000-05-02 Peng; Yuenan Caulking gun with a built-in spout cutter
US6039935A (en) 1998-12-30 2000-03-21 Elizabeth Arden Company, Division Of Conopco, Inc. Sunscreen compositions
JP4102520B2 (ja) * 1999-07-01 2008-06-18 花王株式会社 化粧料用粉体
US6365696B1 (en) * 1999-12-17 2002-04-02 Crompton Corporation Process for producing epoxyorganosilicon compounds
US6365670B1 (en) * 2000-03-10 2002-04-02 Wacker Silicones Corporation Organopolysiloxane gels for use in cosmetics
US6774179B2 (en) * 2000-12-18 2004-08-10 Dow Corning Corporation Encapsulation of actives in core-shell and gel particles
US6531540B1 (en) * 2001-05-16 2003-03-11 General Electric Company Polyether siloxane copolymer network compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574264A2 (en) * 1992-06-11 1993-12-15 General Electric Company Synthesis of epoxysilicones
FR2740037A1 (fr) * 1995-10-18 1997-04-25 Rhone Poulenc Chimie Compositions cosmetiques pour le cheveu et la peau a base de polyorganosiloxanes fonctionnalises greffes
EP1095959A2 (en) * 1999-10-28 2001-05-02 Shin-Etsu Chemical Co., Ltd. Cosmetic composition
EP1122276A2 (en) * 2000-02-01 2001-08-08 Shin-Etsu Chemical Co., Ltd. A novel silicone compound and a makeup containing this compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; retrieved from STN Database accession no. 2001:36860 XP002245347 & JP 2001 010922 A (KAO CORP) 16 January 2001 (2001-01-16) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234262A1 (de) * 2002-07-27 2004-02-19 Beiersdorf Ag Haarshampoo für feines und fettiges Haar
WO2013142471A3 (en) * 2012-03-19 2014-11-27 The Procter & Gamble Company Cross linked silicone copolmyer networks in a thickened aqueous phase
WO2021223143A1 (en) * 2020-05-07 2021-11-11 Momentive Performance Materials Inc. O/w emulsion and w/o emulsion inverted therefrom, and personal care composition containing same

Also Published As

Publication number Publication date
KR20040000475A (ko) 2004-01-03
US6759479B2 (en) 2004-07-06
DE60124152T2 (de) 2007-09-06
DE60124152D1 (de) 2006-12-07
US20050027051A1 (en) 2005-02-03
US20020188058A1 (en) 2002-12-12
JP4647190B2 (ja) 2011-03-09
CN100558337C (zh) 2009-11-11
WO2002092048A3 (en) 2004-02-26
US20030118530A1 (en) 2003-06-26
CN1516574A (zh) 2004-07-28
EP1450758B1 (en) 2006-10-25
US20030207989A1 (en) 2003-11-06
KR100870787B1 (ko) 2008-11-27
US6538061B2 (en) 2003-03-25
JP2005503348A (ja) 2005-02-03
EP1450758A2 (en) 2004-09-01

Similar Documents

Publication Publication Date Title
US6538061B2 (en) Cosmetic compositions using polyether siloxane copolymer network compositions
US6531540B1 (en) Polyether siloxane copolymer network compositions
US7381769B2 (en) Cosmetic compositions using polyether siloxane copolymer network compositions
EP1164172B1 (en) Silicone polymer network compositions
US20020119111A1 (en) Silicone compositions
US7387784B2 (en) Process for making cosmetic compositions using polyether siloxane copolymer network compositions
EP3233049B1 (en) Personal care composition comprising silicone network
US7411007B2 (en) Cosmetic compositions using polyether siloxane copolymer network compositions
US7388049B2 (en) Polyether siloxane copolymer network compositions
CA2746080A1 (en) Composition comprising at least two different cycloalkylmethicones and use thereof
EP1404744B1 (en) Branch organosilicone compound
EP3233050B1 (en) Personal care compositions containing crosslinked silicone polymer networks and their method of preparation
KR100896363B1 (ko) 폴리에테르 실록산 공중합체 망상조직 조성물
CN107205915B (zh) 化妆品组合物和制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002588967

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018232671

Country of ref document: CN

Ref document number: 1020037014979

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001989830

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001989830

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001989830

Country of ref document: EP