WO2002088275A1 - Phosphore et son procede de production - Google Patents

Phosphore et son procede de production Download PDF

Info

Publication number
WO2002088275A1
WO2002088275A1 PCT/JP2002/004265 JP0204265W WO02088275A1 WO 2002088275 A1 WO2002088275 A1 WO 2002088275A1 JP 0204265 W JP0204265 W JP 0204265W WO 02088275 A1 WO02088275 A1 WO 02088275A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
particles
metal
producing
heating
Prior art date
Application number
PCT/JP2002/004265
Other languages
English (en)
French (fr)
Inventor
Naoto Kijima
Yasuo Shimomura
Tetsuji Umebara
Wuled Lenggoro Ignatius
Kikuo Okuyama
Original Assignee
Kasei Optonix, Ltd.
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001131210A external-priority patent/JP2002322471A/ja
Priority claimed from JP2001131208A external-priority patent/JP2002322469A/ja
Priority claimed from JP2001131209A external-priority patent/JP2002322470A/ja
Priority claimed from JP2001131207A external-priority patent/JP2002322472A/ja
Priority claimed from JP2001218181A external-priority patent/JP2003027050A/ja
Priority claimed from JP2001256999A external-priority patent/JP2003034787A/ja
Application filed by Kasei Optonix, Ltd., Mitsubishi Chemical Corporation filed Critical Kasei Optonix, Ltd.
Priority to EP02722857A priority Critical patent/EP1298183A1/en
Publication of WO2002088275A1 publication Critical patent/WO2002088275A1/ja
Priority to US10/325,826 priority patent/US6712993B2/en
Priority to US10/701,449 priority patent/US7001537B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present invention relates to a phosphor suitable for use in a cathode ray tube, a fluorescent lamp, a plasma display panel (PDP), and the like, and a method for producing the same.
  • phosphors used in cathode ray tubes, fluorescent lamps, PDPs, etc. are prepared by mixing raw material powders, filling them in firing containers such as crucibles, and heating them at a high temperature for a long time to perform pyrolysis synthesis by a solid-state reaction.
  • the phosphor was manufactured and finely crushed with a pole mill or the like.
  • the phosphor produced by this method is composed of a powder in which irregularly shaped particles are aggregated.
  • the phosphor film is inhomogeneous and has a low packing density. Only excellent light emission characteristics could not be obtained.
  • a solution containing the metal elements constituting the phosphor is sprayed into the accompanying gas using an ultrasonic nebulizer or the like to obtain fine droplets, which are then dried.
  • a method has been proposed in which metal salt particles and metal complex particles are used, and the metal salt particles and metal complex particles are introduced into a pyrolysis synthesis furnace with an accompanying gas and heated to perform pyrolysis synthesis to obtain a phosphor.
  • the residence time in the pyrolysis synthesis furnace cannot be sufficiently long, the crystallinity of the phosphor is low and activator ions cannot be uniformly contained in the crystal.
  • the phosphor obtained by this method has a large number of crystal defects inside and on the surface of the crystal. There is a problem that a phosphor having good properties cannot be obtained.
  • a metal salt particle or a metal complex particle is pyrolyzed at a relatively low temperature for a short time to obtain a powder having a desired crystal phase
  • the powder is once collected, and the powder is collected.
  • a two-step heat treatment method has been proposed in which a phosphor is obtained by reheating at a relatively high temperature for a long time. According to this method, activator ions can be more uniformly contained in the crystal at the same time as the crystallinity of the phosphor particles is further increased, and a spherical phosphor having good emission characteristics can be obtained.
  • the powder once collected in this manner is reheated, the crystallinity of the phosphor is improved, but an extremely large number of aggregated particles are generated. A new problem that desired emission characteristics cannot be obtained.
  • the present invention solves the above-mentioned problems, and when applied to a cathode ray tube, a fluorescent lamp, a PDP, or the like, can form a uniform and dense high-luminance fluorescent film, and has a narrow particle size distribution and a small amount of agglomerated particles.
  • An object of the present invention is to provide a method for producing a fine phosphor having a spherical shape, a high purity, a uniform chemical composition, and excellent light emitting properties, and a phosphor obtained by the method. Disclosure of the invention
  • the present inventors have succeeded in solving the above-mentioned problems by employing the following means, and have completed the present invention. That is, the present invention has the following configuration.
  • a method for producing a phosphor in which the phosphor is obtained by thermally decomposing and synthesizing the solution by heating droplets of a solution containing the constituent metal elements of the phosphor, in the presence of an additive comprising a metal or a metal compound, A method for producing a phosphor, characterized in that the phosphor is produced by performing thermal decomposition synthesis at an average crystal growth rate of at least 0.0 O ⁇ m ⁇ / sec by heating.
  • the heating is performed in the coexistence of a thin film layer forming substance.
  • a thin film layer having an average film thickness of 10 nm or more by depositing the thin film layer forming substance on the surface of the phosphor particles in the process of the pyrolysis synthesis.
  • a method for producing a phosphor which comprises thermally decomposing and synthesizing a droplet of a solution containing a constituent metal element of the phosphor to obtain the phosphor, comprising: (a) a metal chloride in a gaseous state; Gaseous metal hydroxides or (c) gaseous hydrogen halides in gaseous state
  • a method for producing a phosphor comprising performing pyrolysis synthesis in an atmosphere gas containing the phosphor.
  • a method for producing a phosphor which is obtained by thermally decomposing and synthesizing a droplet of a solution containing a constituent metal element of the phosphor to obtain the phosphor, in the presence of an additive comprising a metal or a metal compound.
  • a method for producing a phosphor wherein the heating is performed to produce the phosphor by performing thermal decomposition synthesis at an average crystal growth rate of 0.002; m 3 Zsec or more.
  • the heating temperature is adjusted to 1350-1900 ° C, and the heating time is adjusted to a range of 0.5 seconds or more and 10 minutes or less.
  • the heating time is adjusted to a range of 0.5 seconds or more and 10 minutes or less.
  • the weight average particle diameter D50 of the phosphor particles is in the range of 0.1 to 50, and the ratio of the minimum diameter to the maximum diameter (minimum diameter / maximum diameter) of the phosphor particles is 0.8 to
  • the number of particles in the range of 1.0 is 90% or more of the total number of particles manufactured by any one of (1) to (7).
  • the manufactured phosphor is 90% or more of the total number of particles manufactured by any one of (1) to (7).
  • the phosphor is at least one element selected from the group consisting of Y, Gd, La, Lu and Sc, and Ce, Pr, Nd, Eu, Tb, Dy and (10) or (11), which comprises one or more elements selected from the group consisting of Tm.
  • the substance for forming a thin film layer is a nitrate, chloride or hydroxide containing at least one element selected from the group consisting of Li, Na, K, Rb and Cs. (10) The manufacturing method according to any one of (12) to (12).
  • the pyrolysis synthesis is performed at a heating temperature of 135 to 190 ° C. and a heating time of 0.5 seconds to 10 minutes. (10) Any of (10) to (15) Or one manufacturing method. (17) The method according to (16), wherein the pyrolysis synthesis is performed by adjusting the heating temperature within a range of 1450 to 180 ° C. and the heating time within a range of 3 seconds to 1 minute.
  • the reheating treatment is performed in a temperature range of 100 to 170 ° C. and at a temperature lower than the pyrolysis synthesis temperature by 10 O or more, and the heating time is 1 second or more and 24 hours or less. (20).
  • the reheating treatment is performed in a temperature range of 100 to 170 O and at a temperature of at least 200 lower than the thermal decomposition synthesis temperature, and a heating time of 1 second to 24 hours.
  • composition formula (R1 preparative X, R2 X) 2 0 3 where, R1 is Y, Gd, L a, at least one element selected from the group of Lu and S c, R2 is C e, At least one element selected from the group consisting of Pr, Nd, Eu, Tb, Dy, and Tm, and X is a number satisfying 0 ⁇ x ⁇ 0.2.
  • R1 is Y, Gd, L a, at least one element selected from the group of Lu and S c
  • R2 is C e
  • X is a number satisfying 0 ⁇ x ⁇ 0.2.
  • the method for producing a phosphor in which a droplet of a solution containing a metal element constituting the phosphor is thermally decomposed and synthesized by heating, the method comprises the steps of: A method for producing a phosphor, comprising performing pyrolysis synthesis at step (c).
  • heating is performed in a temperature range of 135 to 190 ° C. for a period of 0.5 seconds to 10 minutes.
  • the phosphor median diameter D 5 of " is in the range of 0.1 to 30, at the same time the value of the ratio of the minimum diameter and maximum diameter of the phosphor (minimum diameter Bruno maximum diameter) is from 0.8 to 1
  • the method comprises the steps of: A method for producing a phosphor, comprising performing pyrolysis synthesis at step (c).
  • the solution is sprayed into a gas to form the fine droplets, which are then dried to form metal salt particles or metal complex particles, which are heated to perform the thermal decomposition synthesis (45). Manufacturing method.
  • the solid content of the solution containing the metal elements constituting the phosphor is 10% by weight or less. (45) to (51).
  • composition formula M 1 M 2 A 1 Q 0 17 (where M 1 is at least one element selected from the group consisting of Ba, Sr, Ca and Eu, and M 2 is a group consisting of Mg and Mn (At least one selected element).
  • the median diameter 05 () of the phosphor is in the range of 0.1 to 30, and at the same time, the ratio of the minimum diameter to the maximum diameter (minimum diameter / maximum diameter) of the phosphor is 0.8 to 1.0 in the range
  • a method for producing a phosphor which is obtained by thermally decomposing and synthesizing a droplet of a solution containing a constituent metal element of the phosphor to obtain the phosphor, an atmosphere containing gaseous octahydrogen genide
  • a method for producing a phosphor comprising performing pyrolysis synthesis in gaseous gas.
  • the thermal decomposition synthesis is performed by heating at a temperature in the range of 600 to 1900 ° C for a residence time in the range of 0.5 seconds to 10 minutes. (65) Any of (65) to (67) Or one manufacturing method.
  • the pyrolysis synthesis is performed in the pyrolysis synthesis furnace by heating at a temperature in the range of 1450 to 1800 for a residence time in the range of 0.5 seconds to 1 minute (65) to (69) ) One of the manufacturing methods.
  • composition formula is MMA 1 1 Q 0 17 (where M is selected from Ba, Sr, ji & and £ ⁇ ! At least one element, M 2 is a main component a crystal phase represented by at least one is an element) selected from M g and M n, manufactured by the method of any one of (65) - (73) to be Phosphor to be built.
  • a method for producing phosphor particles comprising using, as a raw material of the dispersion medium, a precursor of the dispersion medium capable of producing the molten dispersion medium according to (77) or (78) when the phosphor particles are produced. .
  • At least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, zinc halides, and alkali metal sulfides is used (77) Any one of (80) to (80).
  • the dispersion medium or its precursor may be selected from the group consisting of alkali metal halides, alkaline earth metal chlorides other than beryllium, magnesium bromide, zinc fluoride, lithium sulfide, sodium sulfide, and potassium sulfide.
  • Use at least one selected compound (81) The method for producing phosphor particles.
  • a solution in which an organic compound such as an inorganic salt and / or complex of a constituent metal element of the phosphor is dissolved or dispersed (hereinafter, a compound containing a constituent metal element of the phosphor is dissolved)
  • an additive hereinafter, referred to as an “additive”
  • a desired phosphor is produced by thermally decomposing droplets of the aqueous metal salt solution while the additive is present in a gaseous state in the atmosphere during the thermal decomposition synthesis.
  • the aqueous solution of the metal salt is sprayed into an accompanying gas to form fine droplets, and then dried to dry metal salt particles of a metal constituting the desired phosphor or particles of a complex of the metal (hereinafter referred to as “solid”).
  • the raw material particles are referred to as “particles in the form of phosphors”), and are guided to a pyrolysis synthesis furnace together with the accompanying gas, and then heated to perform pyrolysis synthesis.
  • the method for producing a phosphor according to the present invention is roughly divided into the following first to sixth, mainly six modes. Basically, in the production methods of any of these six aspects, 1 ) Metal salt aqueous solution or a solution containing some additive in the metal salt aqueous solution 2) a step of preparing a metal salt aqueous solution to be dropped or a metal salt aqueous solution containing the additive, which is also referred to as a “phosphor raw material solution”; 3) classifying the produced droplets and drying them into solid phosphor raw material particles (droplet drying process); 4) entrainment The solid phosphor raw material particles are transported together with the gas into a pyrolysis furnace, heated, thermally decomposed and synthesized to obtain the desired phosphor (pyrolysis synthesis step), and the phosphor is manufactured. Further, if necessary, the phosphor is produced through a step (reheating step) of 5) reheating the phosphor obtained by the thermal decomposition synthesis in the thermal decom
  • a phosphor raw material solution is prepared by first charging a metal salt-metal complex containing a metal element constituting the phosphor into a solvent such as water and dissolving or dispersing the metal complex in the solvent.
  • a salt aqueous solution is used, and if necessary, some additive is further dissolved or dispersed in the metal salt aqueous solution to obtain a phosphor raw material solution.
  • Organometallic compounds such as inorganic salts and metal complexes containing metal elements that make up the phosphor used in the preparation of the phosphor raw material solution are water-soluble compounds or fine particles that can be dispersed in the liquid. Any compound may be used as long as it is thermally decomposed into an oxide when heated to a high temperature.
  • an aqueous solution of a metal salt obtained by dissolving an oxide of a metal element constituting the phosphor in an acid it is preferable to use an aqueous solution of a nitrate of a metal element constituting the phosphor, an aqueous solution of a halide, particularly an aqueous solution of a nitrate.
  • an aqueous solution of a nitrate of a metal element constituting the phosphor an aqueous solution of a halide, particularly an aqueous solution of a nitrate.
  • the concentration of each metal element including the additive in the phosphor raw material solution is adjusted in consideration of the sensitivity of the target phosphor particles and the diameter of the fine droplet formed by spraying the aqueous metal salt solution. . That is, if the ratio of the droplet diameter of the phosphor raw material solution to the diameter of the phosphor particles to be synthesized is large, the solute concentration in the phosphor raw material solution is lowered, and if the ratio is small, the solute concentration is adjusted high. I do.
  • the solute concentration C of the metal element in the aqueous solution should be 0. It is preferable to be within the range of 0 1 ⁇ C ⁇ 5.
  • solute concentration is lower than 0.01, the productivity decreases because the amount of phosphor that can be synthesized with respect to the amount of water removed and dried is small. On the other hand, when the solute concentration is higher than 5, droplets are hardly generated.
  • C is the total number of moles of all the metal elements of the phosphor raw material contained in one liter of the phosphor raw material solution. Note that, in order to obtain a phosphor having good emission characteristics, it is preferable to use a metal salt aqueous solution having a small content of an impurity element such as iron-nickel which becomes a killer center.
  • the pH of the aqueous metal salt solution is preferably adjusted to 7 or less, more preferably to 5 or less.
  • a homogeneous aqueous solution is formed, and uniform droplets can be formed by spraying, whereby a homogeneous phosphor can be synthesized.
  • the pH of the aqueous metal salt solution exceeds 7, a large amount of hydroxide precipitation of the metal elements constituting the phosphor is generated. As a result, it becomes difficult for a predetermined amount of the phosphor-constituting metal element to be contained in the droplet, and as a result, the phosphor composition changes or the particle size fluctuates. It is difficult to obtain.
  • the compound of the metal element constituting the phosphor may not be completely dissolved but may be partially suspended in a solid state such as a metal salt, a sol, or a colloid.
  • the mixing ratio is preferably suppressed to 10% by weight or less, more preferably 1% by weight or less. If a large amount of solid content in the form of metal salt or sol / colloid is present in the aqueous solution of metal salt, the liquid component will preferentially become droplets when sprayed, and the solid metal salt / sol / colloid etc. It becomes difficult to be contained in the droplets, and as a result, it causes a change in the composition and the particle size of the phosphor, so that it is impossible to obtain a uniform phosphor having a high emission characteristic.
  • the metal salt aqueous solution prepared as described above, and the phosphor raw material solution further containing an additive as required, are then formed into fine droplets in the accompanying gas.
  • the following various methods can be adopted as a method of forming microdroplets from the phosphor raw material solution in the accompanying gas. For example, a method of forming a liquid droplet of 1 to 50 u rn by spraying while sucking up a liquid with pressurized air, a liquid of 4 to 10 u rn using ultrasonic waves of about 2 MHz from a piezoelectric crystal.
  • a method for forming droplets, an orifice with a hole diameter of 10 to 20 im is vibrated by a vibrator, and a liquid supplied to the orifice at a constant speed is discharged from the hole by a constant amount according to the vibration frequency.
  • the fine droplets of the phosphor raw material solution formed in the dropletization step Before drying the fine droplets of the phosphor raw material solution formed in the dropletization step to generate solid phosphor raw material particles, the fine droplets of the phosphor raw material solution are classified and the fine droplets are formed.
  • the weight average particle diameter is 0.5 to 50 m and making at least 90% by weight of microdroplets into microdroplets having a particle size of twice or less the weight average particle diameter, the particle size distribution can be improved. It is possible to manufacture a phosphor that can be made narrow and has excellent coating characteristics when forming a fluorescent film.
  • the microdroplets removed before drying can be collected and reused as the raw material solution of the phosphor. As a result, it is possible to produce a phosphor having a narrow particle size distribution with good yield.
  • the generated phosphor becomes extremely small, less than 0.1 ⁇ , and the viscosity of the phosphor slurry increases when forming a phosphor film for display or the like. And the coating properties deteriorate.
  • the number of droplets larger than 50 ⁇ increases, the size of the generated phosphor becomes extremely large, and it is difficult to form a dense and high-definition fluorescent film.
  • the fine droplets of the aqueous metal salt solution were classified to adjust the weight average particle diameter to 1 to 20 ⁇ m, and that at least 90% by weight of the fine droplets was twice the weight average particle diameter. It is more preferable that the droplets have the following particle diameters.
  • the unit volume of the entrained gas of the droplet is classified when the fine droplets composed of the phosphor raw material solution are classified. It is preferable to concentrate the droplet volume per unit by a classifier.
  • a classifier a gravity classifier, a centrifugal classifier, an inertial classifier, or the like can be used.
  • the droplet volume per unit volume of the droplet-entrained gas is concentrated by removing small droplets smaller than the lower limit of the droplet diameter together with a part of the gas from the gas accompanied by the droplet.
  • an inertial classifier is preferred.
  • microdroplets obtained from the phosphor raw material solution in this way can be directly heated and thermally decomposed, but the obtained droplets are first dried to form solid phosphor raw material particles, which are then heated. It is preferable to thermally decompose.
  • a method for drying the droplets freeze drying, drying under reduced pressure, diffusion drying, heat drying and the like can be adopted. However, compared with freeze drying, reduced pressure drying, diffusion drying, etc., heat drying is cheaper and preferable in industrial production.
  • the heating rate at that time is 400 ° C or less per second.
  • the heating rate is higher than 400 ° C / s, a spherical solid phosphor is formed because a film of metal salt or metal complex is formed on the droplet surface before the water in the center of the droplet evaporates during drying. Particles cannot be generated and become hollow or explode into fine particles.
  • the heating rate during drying is set to 200 or less per second, a spherical and solid phosphor can be produced stably.
  • the solid phosphor raw material particles obtained by drying are preferably kept at 100 or more until thermal decomposition synthesis. If the temperature is lower than 100 ° C before the thermal decomposition synthesis, the water vapor generated during drying condenses and the metal salt particles or metal complex particles (solid phosphor raw material particles) partially redissolve. There is a possibility that phosphor particles having a desired shape and particle size cannot be obtained.
  • the solid phosphor material particles obtained by drying the droplets of the phosphor material solution are then introduced into a pyrolysis synthesis furnace together with the accompanying gas, where they are heated and thermally decomposed and synthesized to produce the desired fluorescent light. Generate body particles.
  • the phosphor obtained at this time is made up of hollow spheres and porous materials by selecting factors that affect the heating rate, such as the type of phosphor raw material solution, the type of gas, the gas flow rate, and the temperature in the pyrolysis synthesis furnace. It is possible to control the morphology and surface condition of the generated particles, such as solid particles, crushed particles, etc.
  • the optimum temperature is selected in consideration of the type of phosphor to be synthesized and the type and amount of metal or metal compound added to the phosphor raw material.
  • the heating temperature is preferably in the range of 135 to 190 ° C and the heating time is in the range of 0.5 seconds to 10 minutes. The range is preferably 1 minute or more and 1 minute or less. If the temperature is lower than the above-mentioned thermal decomposition synthesis temperature or the heating time is too short, the metal salt is not sufficiently thermally decomposed, and a desired phosphor cannot be produced.
  • the crystallinity is lowered, and the activator ions cannot be sufficiently contained in the crystal, so that the light emission characteristics are lowered.
  • the temperature is too high or the heating time is too long, unnecessary energy will be wasted.
  • air, oxygen, nitrogen, hydrogen, nitrogen or argon containing a small amount of carbon monoxide or hydrogen, and the like can be used as the accompanying gas of the droplets composed of the phosphor raw material solution.
  • a phosphor having a main phase of an oxide using Eu 3+ or the like as an activator ion which easily maintains a valence in an oxidizing atmosphere
  • an oxidizing gas such as air or oxygen
  • Hydrogen, and a reducing gas such as nitrogen or argon containing a small amount of hydrogen are preferred.
  • the content of carbon monoxide and carbon dioxide in the pyrolysis synthesis atmosphere is preferably adjusted to 5% by volume or less, more preferably 0.5% by volume or less. . If the content exceeds 5% by volume, a basic carbonate precipitates inside or on the surface of the phosphor, which may lower the emission characteristics of the phosphor. For example is, Y 2 0 3: E u phosphor, Y 2 0 3: T b phosphor such as is liable to precipitate a basic carbonate.
  • Powder (phosphor) generated in the pyrolysis synthesis furnace is collected using a bag filter.
  • the obtained powder (phosphor) may be used as a phosphor as it is, or may require some post-treatment.
  • the additives may be removed by washing with acid or water. For example, after the powder containing the phosphor obtained by the heat treatment is put into water, stirred, centrifuged, and the operation of removing the supernatant liquid is repeated, the powder is dried to remove water-soluble components. Good.
  • the production method uses a phosphor raw material solution containing an additive for adjusting the average crystal growth rate of the phosphor, which is made of a metal or a metal compound, and
  • the phosphor raw material solution is sprayed into a gas to form fine droplets according to the above-mentioned respective steps common to the method for producing a phosphor of the present invention, and then dried to obtain solid phosphor raw material particles.
  • a phosphor is produced by heating it in a pyrolysis synthesis furnace to perform pyrolysis synthesis, the average crystal growth rate of the phosphor is adjusted to a certain rate.
  • the average crystal growth rate of this phosphor is 0.02 / m 3 Z sec when the solid phosphor material particles obtained by drying the droplets of the phosphor material solution are thermally decomposed to produce a phosphor.
  • the average crystal growth rate of the phosphor generated when the solid phosphor material particles are heated and thermally decomposed is slower than 0.02 / sec, lattice defects and surface defects are contained in the phosphor. Therefore, it is not possible to obtain a phosphor having excellent emission characteristics.
  • the average crystal growth rate is defined as follows. That is, the diameter of the primary phosphor particles is read from the obtained SEM photograph of the phosphor.
  • the primary particles refer to the smallest unit of particles separated by grain boundaries observed in particles that seem to exist independently.
  • the primary particles are not spherical, read the intermediate value between the maximum diameter and the minimum diameter. From this primary particle diameter, the volume is calculated assuming that the primary particle is a sphere. The value obtained by dividing this volume by the heating time is defined as the average crystal growth rate. If the unit of grain diameter / im, a unit between the time of heating was sec, the unit of the average crystal growth rate is ⁇ m 3 Z sec.
  • the metal or metal salt additive added to the metal salt aqueous solution to adjust the average particle growth rate described above for example, Li, Na, K, Rb, Cs, etc., or a compound thereof can be used. Of these, alkali metal nitrates, chlorides and hydroxides are particularly preferred. It is preferable that the additive does not affect the emission characteristics of the residue after the heat treatment, or that the additive can be easily removed by the post-treatment.
  • the above-mentioned additive is not always added to the metal salt aqueous solution from the beginning as described above, but the solution containing the additive is directly or separately heated to be decomposed to form a liquid. Alternatively, it may be introduced into a pyrolysis synthesis furnace in a gaseous state, where it is heated together with the solid phosphor raw material particles to be thermally decomposed.
  • the phosphor raw material solution obtained by dissolving or dispersing a thin film layer forming substance for coating a thin film layer on a surface of a phosphor as an additive in the aqueous metal salt solution is used.
  • the phosphor raw material solution is sprayed into a gas in accordance with the above-mentioned respective steps common to the phosphor of the present invention to form fine droplets, and then dried to obtain solid phosphor raw material particles, This is heated in a pyrolysis synthesis furnace to perform pyrolysis synthesis to produce a phosphor whose surface is coated with a thin film layer made of a thin film forming substance.
  • the thin film-forming substance added to the aqueous metal salt solution can be dissolved or dispersed in the aqueous metal salt solution, and is contained in the solid phosphor raw material particles in the drying step, and is vaporized or synthesized at the pyrolysis synthesis temperature. If it is capable of improving the emission characteristics of the phosphor by pyrolyzing it into a gaseous state and depositing it on the surface of the phosphor particles finally obtained by thermal decomposition of the solid phosphor raw material particles to form a thin film, Regardless of its type. Specifically, it is possible to use a nitrate, chloride, or hydroxide containing one or more elements selected from the group of Li, Na, K, Rb and Cs. Wear.
  • nitrate of Li is particularly preferable.
  • the thin film layer forming material is not always added to the metal salt aqueous solution from the beginning as described above, but the thin film layer forming material is directly added. Alternatively, this may be separately heated, evaporated, decomposed, introduced into a pyrolysis synthesis furnace, heated together with the solid phosphor raw material particles, and thermally decomposed.
  • the thin film layer on the surface of the phosphor particles is removed from the phosphor obtained by the manufacturing method according to the second aspect of the present invention.
  • the thin film layer may reduce the light emission characteristics and coating characteristics of the phosphor.
  • a method of removing there are a method of evaporating and removing the thin film layer by heating and a method of dissolving with a solvent.
  • the solvent used here is not particularly limited as long as it selectively dissolves the thin film layer without dissolving the phosphor particles.
  • water or an acidic aqueous solution is preferable because it can be used simply and at low cost.
  • the thin film layer forming substance in the course of the thermal decomposition synthesis, is vaporized or decomposed into a gaseous state, and is deposited on the surface of the phosphor particles to form an average film having a thickness of 10 nm or more.
  • the thin film layer covering the phosphor of the present invention preferably has an average thickness of 10 nm or more. If the thickness is less than 10 nm, it is difficult to uniformly cover the surface of the phosphor particles, and the light emission characteristics cannot be sufficiently improved. A more preferable range of the average film thickness is 20 to 500 nm. The average thickness of the thin film layer was determined by observing the cross section of the phosphor particles with a scanning electron microscope.
  • the phosphor raw material solution comprising a metal salt aqueous solution containing a thin film layer forming substance has a total mole number of metal elements constituting the phosphor of A, and a metal contained in the thin film layer forming substance.
  • the total number of moles of the element is B, it is preferable to prepare a solution in advance so as to satisfy the relationship of ( ⁇ ⁇ ... 1) ⁇ B. If the amount of the thin film layer forming substance is less than the above range, the thin film layer is too thin and non-uniform, so that the phosphor particles cannot be uniformly coated, and the emission characteristics of the phosphor cannot be sufficiently improved.
  • a preferable relationship of the above solution is (AX 0.1) ⁇ ⁇ (AX 10).
  • the phosphor can be applied to the manufacturing method of the second aspect of the present invention, for example, set Narushiki (R1, - ⁇ , R2 X) 2 0 3 ( where, R1 is Y, G d, L a R2 is one or more elements selected from the group consisting of Ce, Pr, Nd, Eu, Tb, Dy and Tm. , X is a number that satisfies 0 ⁇ x ⁇ 0.2).
  • composition formula (R1, - ⁇ , R2 X) the case of producing a 2 0 3 phosphor, fluorescent KaradaHara charge solution to be sprayed, Y, Gd, L a, A compound containing one or more elements R1 selected from the group of Lu and Sc, and one or more elements R2 selected from the group of Ce, Pr, Nd, Eu, Tb, Dy and Tm And a compound containing at least one element selected from the group consisting of Li, Na, K, Rb, and Cs, which are thin film layer-forming substances.
  • the phosphor raw material solution is formed into fine droplets in an entrained gas according to the above-mentioned steps common to the manufacturing method of the phosphor of the present invention, and this is dried.
  • the solid phosphor raw material particles are heated and then thermally decomposed and synthesized to produce a phosphor.
  • Atmosphere gas contains metal chloride in the gaseous state and is heated and thermally decomposed.
  • the gaseous metal chloride is contained in the atmosphere gas at the time of thermal decomposition of the droplets of the phosphor material solution or the solid phosphor material particles obtained by drying the droplets.
  • the gaseous metal chloride precursor is heated in advance to convert the gaseous metal chloride into a pyrolysis synthesis furnace.
  • a method in which a solution in which a gaseous metal chloride precursor is added as an additive to a metal salt aqueous solution in advance is used as a phosphor raw material solution.
  • the method of using a phosphor raw material solution containing a precursor substance that can be a gaseous metal chloride in an aqueous metal salt solution is simple and preferable.
  • the additive to be added to the aqueous metal salt solution it is preferable to add a metal chloride precursor substance that generates a metal chloride in a gaseous state at the pyrolysis synthesis temperature.
  • a metal chloride which is easily vaporized by heating is more preferable.
  • the precursor substance is not particularly limited as long as it forms a gaseous metal chloride at the pyrolysis synthesis temperature.
  • alkali metal chlorides are particularly preferred because they are easily vaporized and are stable in the gaseous state.
  • a phosphor having the best emission characteristics can be produced.
  • a compound of gaseous metal chloride and carbon monoxide or carbon dioxide may be generated, and the emission characteristics of the obtained phosphor may be reduced, carbon monoxide in an atmosphere gas during pyrolysis synthesis may be reduced. It is particularly preferable to set the content of carbon dioxide and carbon dioxide to 0.1% by volume or less.
  • a metal chloride or a precursor thereof capable of supplying a gaseous metal chloride into an atmosphere at the time of thermal decomposition synthesis by heating is contained in a phosphor raw material solution or directly subjected to thermal decomposition synthesis. Except for heating while supplying to the furnace, the phosphor according to the production method of the third embodiment is produced through the above-described steps common to the production method of the phosphor of the present invention.
  • the metal chloride is preferably present in an amount of 0.001 to 5% by volume, more preferably 0.01 to 1% by volume, of the atmospheric gas during the pyrolysis synthesis. If the amount of gaseous metal chloride is too small or too large, the luminescent properties of the obtained phosphor deteriorate. In order to dry the obtained droplets to obtain solid phosphor raw material particles, drying by heating is preferably inexpensive in industrial production.
  • the phosphor when the phosphor is produced by the production method of the third aspect of the present invention, when the droplets of the phosphor raw material solution are dried to obtain solid phosphor raw material particles, fine particles are obtained by a diffusion drying method. It is more preferable to introduce metal salt particles or metal complex particles into a pyrolysis synthesis furnace after removing water from the droplets to obtain gaseous metal chlorides.
  • the metal salt aqueous solution is formed into fine droplets in an entrained gas, which is dried.
  • the atmosphere gas contains a metal hydroxide in a gaseous state, so that the phosphor particles are produced.
  • a precursor material that can react with water at the pyrolysis synthesis temperature as an additive to become a metal hydroxide in a gaseous state is added to the aqueous solution of a metal salt to form a phosphor raw material solution.
  • a metal nitrate which is easily decomposed by heating and reacts with water is more preferable.
  • the precursor substance that can be a gaseous metal hydroxide is not limited as long as it reacts with water at the pyrolysis synthesis temperature to form a gaseous metal hydroxide.
  • alkali metal nitrates are preferred. Among them, when lithium nitrate is used as a precursor substance, a phosphor having the best emission characteristics can be produced.
  • the metal hydroxide and the precursor thereof that can be in the gaseous state are preliminarily heated to a gaseous state.
  • a method of introducing metal hydroxide into pyrolysis a method of directly introducing an aqueous solution of metal hydroxide into a pyrolysis furnace, and a method of containing phosphor material solution in a phosphor material solution from the beginning. Is contained in the atmospheric gas at the time of thermal decomposition of the raw phosphor particles.
  • the production method according to the fourth embodiment of the present invention relates to a method for preparing a fluorescent material to which a metal hydroxide capable of supplying a gaseous metal hydroxide or a precursor thereof has been added to an atmosphere at the time of thermal decomposition synthesis by heating. Except for heating and thermally decomposing the droplets of the body raw material solution or the solid phosphor raw material particles in which the droplets have been dried in an atmosphere containing a metal hydroxide in a gaseous state, the method for producing a phosphor of the present invention is the same. Through the common steps described above, the phosphor of the present invention is manufactured.
  • the metal salt aqueous solution is formed into fine droplets in an entrained gas, which is dried.
  • hydrogen octogenogen in a gaseous state is contained in the atmosphere gas to obtain the phosphor.
  • Improved crystallinity It has made it possible to provide phosphors with high purity, uniform chemical composition, and excellent luminescence characteristics by suppressing the generation of aggregated particles.
  • the precursor raw material solution that can be converted into gaseous hydrogen halide at the pyrolysis synthesis temperature is contained in the above-mentioned aqueous solution of the metal salt as the phosphor raw material solution that is formed into fine droplets. It is preferable to include a substance.
  • the gaseous octogenide or its precursor is converted into a liquid or gaseous state in the same manner as in the case of the manufacturing methods of the third and fourth embodiments described above.
  • the raw material particles of the solid phosphor may be directly introduced into the atmosphere gas of the pyrolysis furnace to heat and synthesize by pyrolysis.
  • a non-metal halide which is easily vaporized by heating is more preferable.
  • gaseous hydrogen octagen By reacting gaseous hydrogen octagen with phosphor particles at the pyrolysis synthesis temperature, a phosphor having good characteristics can be synthesized in a short time of about several seconds to several minutes.
  • a precursor substance that can be gaseous hydrogen octogenogenate any substance can be used as long as it forms gaseous hydrogen hapogen at the pyrolysis synthesis temperature.
  • hydrofluoric acid hydrochloric acid, hydrobromic acid, ammonium fluoride, ammonium fluoride, ammonium chloride, ammonium bromide, and the like are preferable as the precursor substance because a phosphor having good fluorescence characteristics can be synthesized.
  • a phosphor raw material solution containing a precursor substance that generates gaseous hydrogen octylogenide at the pyrolysis synthesis temperature in an aqueous solution of a metal salt is then subjected to each of the above-mentioned processes common to the phosphor production method of the present invention. Fine droplets are formed in the entrained gas according to the process, and if necessary, the fine droplets are classified and dried, and then the produced solid phosphor raw material particles are introduced into the pyrolysis synthesis furnace together with the entrained gas. By performing thermal decomposition, the phosphor of the fifth aspect of the present invention is produced.
  • the pyrolysis synthesis it is necessary for the pyrolysis synthesis to be in an atmosphere containing gaseous hydrogen octogenogen in order to obtain a phosphor having high emission intensity.
  • a fluorescent material containing a precursor substance that generates gaseous octahydrogen genide at the thermal decomposition synthesis temperature in an aqueous metal salt solution as described above
  • the precursor material is heated in advance to form a gaseous hydrogen halide into a pyrolytic synthesis furnace. It can also be achieved by a method of introducing the solution into the reactor or a method of directly introducing an aqueous solution of hydrogen octogenogen into the pyrolysis synthesis furnace.
  • the manufacturing method of the fifth embodiment it depends on the composition of the phosphor to be manufactured.
  • heating and pyrolysis of solid phosphor raw material particles in a pyrolysis synthesis furnace are performed. It is more preferred to carry out for a residence time in the range of 0.5 seconds to 1 minute at a temperature in the range of up to 190 ° C., especially at a temperature in the range of 150 to 180 ° C. It is more preferred to heat for a residence time in the range of 0.5 seconds to 1 minute.
  • a feature of the method for producing a phosphor according to the sixth aspect is that fine phosphor droplets of a metal salt aqueous solution or solid phosphor raw material particles obtained by drying the droplets are heated together with accompanying gas,
  • a compound serving as a dispersion medium serving to disperse phosphor particles generated in the reaction system is coexisted in the reaction system as an additive, and the droplet or The solid phosphor raw material particles are heated and thermally decomposed, and a precursor of the generated phosphor (hereinafter, generated by thermal decomposition of the solid phosphor raw material particles,
  • phosphor precursors Various intermediates existing in the process of forming crystal nuclei.
  • Heating following thermal decomposition is continued in a state in which the dispersion medium in a molten state is brought into contact with the intermediates.
  • the complex generated from the phosphor precursor A number of phosphor particles are then taken out of the reaction system together with the entrained gas by being enclosed in the solidified and particulate dispersion medium, and the phosphor nuclei are generated from the phosphor precursor.
  • the surrounding liquid dispersion medium prevents the phosphor precursors from directly contacting each other, preventing the particles from agglomerating during the crystal growth of the phosphor crystal nuclei, and allowing individual particles to be substantially separated. As a result, it is possible to produce phosphor particles with high purity, uniform chemical composition, and very fine and excellent dispersibility. .
  • the dispersion medium introduced into the reaction system during the pyrolysis synthesis as an additive is melted during the pyrolysis synthesis, and the phosphor generated via the phosphor precursor is melted during the pyrolysis synthesis.
  • Any substance may be used as long as it constitutes a particle dispersion system, and it is preferable to use a substance that does not chemically react with the phosphor particles.
  • this dispersion medium or its precursor In order to introduce this dispersion medium or its precursor into the reaction system at the time of pyrolysis synthesis, it is added in advance to a metal salt solution, and an aqueous solution of the phosphor raw material containing both is sprayed into the accompanying gas to form a mixture thereof.
  • a method for forming fine droplets and a method for forming a fine droplet by spraying a phosphor raw material solution consisting of only a metal salt solution into an accompanying gas, drying the solid phosphor raw material particles, and then raising the temperature to a high temperature Heat and melt A dispersion medium in a molten state or a gaseous state is sprayed onto the surface of the solid phosphor raw material particles in the entrained gas to disperse the dispersion medium particles that contain or adhere to the solid phosphor raw material particles. Any of the forming methods may be selected.
  • the key is to disperse the phosphor particles generated via the phosphor precursor generated by thermal decomposition of droplets of the phosphor material solution or solid phosphor material particles in the dispersion medium melted during pyrolysis synthesis. is important. In any method, it is preferable to obtain fine phosphor particles by removing the dispersion medium after growing the phosphor crystals.
  • a phosphor raw material solution containing only a metal salt aqueous solution or a metal salt aqueous solution and a dispersion medium or a precursor thereof is hereinafter referred to as a fine liquid in an entrained gas according to the above-described steps common to the phosphor production method of the present invention.
  • the fine droplets are classified into droplets, and the fine droplets are subjected to classification and drying operations as necessary, thereby producing a dispersion medium or solid phosphor raw material particles containing a precursor thereof, or a dispersion medium in a gas state on the surface.
  • the phosphor of the sixth aspect of the present invention is produced by heating and thermally decomposing the solid phosphor raw material particles sprayed with the phosphor.
  • the dispersion medium is added to the phosphor raw material solution or sprayed onto the surface of solid phosphor raw material particles obtained by drying droplets of the phosphor raw material solution.
  • the body or its precursor at least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, zinc octogenide, and alkali metal sulfides can be used.
  • alkali metal halides chlorides of alkaline earth metals excluding beryllium, magnesium bromide, zinc fluoride, lithium sulfide, sodium sulfide, and lithium sulfide. preferable.
  • the amount of the dispersion medium in the dispersion medium particles generated by enclosing the phosphor particles during the thermal decomposition synthesis is preferably 1 to 100 times the volume of the phosphor. If the amount of the dispersing medium is lower than the above ratio, the crystallinity of the phosphor cannot be sufficiently improved, and aggregation of the synthetic phosphor particles cannot be avoided. If the ratio is higher than the above ratio, the crystallinity of the phosphor is sufficiently improved, but the amount of the phosphor single crystal generated in the dispersion medium particles is reduced, and the productivity is reduced.
  • the preferred range of the amount of the dispersing medium used is based on the volume of the obtained phosphor: ⁇ 20 times.
  • pyrolysis is performed depending on the type of the phosphor to be produced.
  • the thermal decomposition synthesis of the phosphor material solution droplets and the solid phosphor material obtained by drying the droplets is performed by keeping the dispersion medium in a molten state during heating for the thermal decomposition synthesis. Therefore, at least the heating of the phosphor precursor generated by thermal decomposition of the solid phosphor raw material particles must be performed at a temperature equal to or higher than the melting point of the dispersion medium, and is preferably 20 Ot It is desirable to carry out the pyrolysis synthesis in a temperature range not higher than the high temperature.
  • the phosphor precursor is included in the particles of the dispersion medium during the thermal decomposition synthesis, and the molten state is maintained.
  • Phosphor crystal nuclei can be generated and grown from the phosphor precursor surrounded by the dispersion medium, so that the synthesized phosphor particles do not aggregate. As a result, it becomes possible to remarkably improve the crystallinity of the phosphor and to obtain fine phosphor particles having a high purity and a uniform chemical composition.
  • the dispersion medium surrounding the phosphor particles generated from the phosphor precursor is preferably removed after completing the synthesis of the phosphor, in order to secure the emission characteristics. This is because the presence of the dispersion medium absorbs incident electrons and ultraviolet rays used to excite the phosphor and absorbs light emitted from the phosphor, which may cause a reduction in light emission characteristics.
  • the dispersion medium When a water-soluble inorganic salt is used as the dispersion medium, after the phosphor is synthesized in the dispersion medium, the dispersion medium can be dissolved and removed easily with water, thereby facilitating the recovery of fine phosphor particles. . Since the melting point of the usable dispersion medium is lower than the melting point of the phosphor, it is possible to separate and collect the phosphor particles by heating and evaporating the dispersion medium.
  • the maximum diameter of the phosphor particles contained in the dispersion medium particles is preferably in the range of 1 to 50 nm, more preferably in the range of 1 to 100 nm, and 1 to 100 nm. More preferably, it is in the range of nm. If the maximum diameter of the phosphor particles is smaller than 1 nm, it is difficult to uniformly introduce the activator into the crystal. On the other hand, if the maximum diameter of the phosphor particles is too large, it becomes difficult to synthesize a plurality of spatially independent phosphor particles within the particles of the dispersion medium. When the maximum diameter is 10 nm or less, the emission characteristics of the phosphor can be significantly improved.
  • the phosphor obtained by the method according to any one of Aspects 1 to 6 above is subjected to pyrolysis synthesis in a pyrolysis synthesis furnace to obtain phosphor particles containing a desired crystal phase, and then further reheated
  • a two-stage heating method for treatment may be employed. This reheating treatment enhances the crystallinity of the phosphor particles, and at the same time, controls the valence of the activator ions and uniformly activates the activator ions in the crystal.
  • a phosphor with good characteristics can be obtained.
  • metal salt particles or metal complex particles solid phosphor particles
  • a pyrolysis synthesis furnace After pyrolysis synthesis for a heating time of 5 seconds or more and 10 minutes or less, for example, if the phosphor is obtained by the production method of the second aspect of the present invention, the thin film layer on the surface of the phosphor particles is removed. Further, by performing a reheating treatment in a temperature range of 1000 to 170 ° C. for 1 second to 24 hours in the same atmosphere gas as the entrained gas at the time of pyrolysis synthesis, A phosphor having good emission characteristics can be obtained.
  • the reheating temperature is too low or the reheating time is too short, the crystallinity becomes low, and the valence of the activator ion cannot be controlled, and the light cannot be uniformly activated in the crystal.
  • the characteristics are low.
  • the reheating treatment is performed without removing the thin film layer formed on the surface, agglomerated particles are easily generated and the coating characteristics of the phosphor are deteriorated. .
  • the reheating temperature is too high or the reheating time is too long, not only is unnecessary energy wasted, but also a large number of aggregated particles are generated, and a dense fluorescent film cannot be formed. Cannot be obtained.
  • the thermal decomposition reaction time is 0.5. If the time does not reach the second, the crystallinity will not be sufficiently good, and the crystallinity will be reduced within the above-mentioned temperature range of 100 to 170 ° C for 1 second to 24 hours. Even if the reheating treatment is performed, the crystallinity is improved, but an extremely large number of aggregated particles are generated, so that a dense fluorescent film cannot be formed, and desired emission characteristics cannot be obtained.
  • the reheating treatment temperature is preferably at least 100 ° C lower than the pyrolysis synthesis temperature, and more preferably at least 200 ° C or lower.
  • a method aspect 1 aspect 5 in particular formula (R 1 x, R 2 x ) 2 0 3 (where, R 1 is Y, G d, L a, At least one element selected from the group consisting of Lu and Sc, R2 is at least one element selected from Ce, Pr, Nd, Eu, Tb, Dy and Tm, and X is 0 to x ⁇ 0.2) is suitable for producing a phosphor having a crystal phase represented by the following formula: 2 a 1 10 O 17 (and ⁇ , M 1 is B a, S r, C a and least one element selected from the group of E u, M 2 is selected from the group of M g and M n At least one element It is most suitable for the production of a phosphor having a crystal phase represented by
  • most of the obtained phosphor has a weight average particle diameter D 5D in the range of 0.1 to 50 m, and the minimum diameter of the phosphor particles ( The ratio (D S / D L ) of the ratio of (D s ) to the maximum diameter (D,) is in the range of 0.8 to 1.0, and a nearly spherical particle-shaped phosphor can be obtained.
  • the ratio (D S / D L ) of the ratio of (D s ) to the maximum diameter (D,) is in the range of 0.8 to 1.0, and a nearly spherical particle-shaped phosphor can be obtained.
  • the production method 6 described above it is possible to efficiently produce a so-called nanocrystalline phosphor having a shape close to a sphere with little aggregation and an average particle diameter of about 1 to 500 nm.
  • the phosphor obtained by the production method of the present invention described above is a fine particle with little aggregation, and can obtain a phosphor having a shape close to a sphere, such as a fluorescent lamp, a cathode ray tube, and a PDP.
  • a uniform, dense and high-brightness fluorescent film can be easily formed.
  • Air was used as the entrained gas, and the “metal salt aqueous solution” was placed in an ultrasonic nebulizer having a 1.7 MHz vibrator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight-average particle diameter of the microdroplets is 5 ⁇ am, and 90% by weight of the microdroplets has a particle size of 10 II m or less. Drops.
  • the classified microdroplets were thermally decomposed in an electric furnace having a maximum temperature of 1600 ° C for a residence time of 10 seconds, and the generated particles were collected by a bag filter.
  • Example 1 The particles were placed in water, stirred, centrifuged and the supernatant discarded. After performing this operation three times, the phosphor was dried in a dryer of 120 to obtain the phosphor of Example 1 according to the production method of Embodiment 1 above.
  • the average crystal growth rate of this phosphor was 0.27 ⁇ m 3 Zsec.
  • the emission luminance of this phosphor under irradiation with ultraviolet light of 254 nm was measured, and was 102 when the emission luminance of the phosphor of Comparative Example 1 under the same conditions was 78.
  • Weight average particle size of this phosphor 1. was measured by a laser diffraction method D 5D was 0 / 2m.
  • this metal salt aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 m, and 90% by weight of the microdroplets are microdroplets having a particle size of 10 zm or less.
  • the classified microdroplets were pyrolyzed in an electric furnace having a maximum temperature of 160 T: for a residence time of 10 seconds, and the generated particles were synthesized and collected by a bag filter.
  • Example 2 The particles were subjected to the same treatment as in Example 1 to obtain a phosphor of Comparative Example 1.
  • the average crystal growth rate of the phosphor was 0. 0008 M m 3 Roh sec.
  • the light emission luminance of this phosphor under irradiation with ultraviolet light of 254 nm was 78.
  • the weight average particle diameter D 50 of the phosphor was 1. 5 m was measured by a laser diffraction method. According to the SEM photograph of the obtained phosphor, the average value of the minimum diameter to the maximum diameter is 0.95, and the number of particles satisfying the condition of (minimum diameter / maximum diameter) is 0.8 to 1.0. Was 100% of the total. (Example 2)
  • Example 1 the phosphor of Example 2 was obtained in the same manner as in Example 1, except that the maximum temperature in the electric furnace was changed from 1600 to 1500 ° C.
  • the average crystal growth rate of this phosphor was 0.003 m 3 Zsec.
  • the weight average particle diameter D5fl of this phosphor was measured by a laser diffraction method and found to be 1.1 m.
  • the average value of the minimum diameter with respect to the maximum diameter is 0.95, and the particles satisfying the condition of (minimum diameter / maximum diameter) of 0.8 to 1.0 are obtained.
  • the number was 95% of the whole.
  • Example 3 Phosphor chemical composition (.. Y Q 94, E u 0 06) 2 0 3 and so as to yttrium nitrate and nitric acid Interview -. Mouth Piumu respectively dissolved in water, (Y D 94, E u Q. Q6) 2 ⁇ 3 with respect to 1 mol addition of sodium nitrate to be 2 moles, a small amount of nitric acid was added solute concentration C 0 of the yttrium nitrate europeapartments ⁇ beam in. 3 homogenous metal salts An aqueous solution was made. No solids were mixed in this metal salt aqueous solution.
  • the above-described aqueous solution of the metal salt was formed into small droplets using an ultrasonic atomizer having a 1.7 MHz oscillator.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 m, and 90% by weight of the microdroplets has a particle size of 10 zm or less. Fine droplets were used.
  • the classified microdroplets were heated to a heating rate of 50 ° C./sec and heated and dried at 200 ° C. to obtain metal salt particles.
  • the metal salt particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 200 ° C., and heated for 13 seconds in a furnace having a maximum temperature of 160 ° C. to be thermally decomposed to produce the solution of the second embodiment.
  • the oxide phosphor particles were synthesized by the method and collected by a bag filter.
  • potassium nitrate added to the metal salt aqueous solution reacted with water and was contained as a gaseous hydration power rim.
  • the shape of the phosphor particles is spherical with a smooth surface and uniform particle size, and the ratio of the average value of the minimum diameter to the maximum diameter is 0.95, and 0.8 ⁇ (maximum diameter of the minimum diameter).
  • the number of particles satisfying (diameter) ⁇ 1.0 was 95% of the total.
  • the median diameter D5 () was 1, and almost no aggregated particles were observed.
  • Phosphor chemical composition (B a, E u 0. ,) M g A 1 1D 0 17 become as barium nitrate, europium nitrate, magnesium nitrate, nitrate dissolved aluminum respectively water, (B a 0. 9, E u 0 .,) M g A 1 10 O and added pressure to the potassium nitrate so that 8 moles per mole of 1T, solute concentration C is added a small amount of nitric acid 0.3
  • a homogeneous aqueous solution of a metal salt was prepared. The solid content was not mixed.
  • Nitrogen containing 4% by volume of hydrogen was used as an entrained gas, and the above metal salt aqueous solution was formed into small droplets by an ultrasonic atomizer having a vibrator of 1. ⁇ MHz.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 / zm, and 90% by weight of the microdroplets has a particle diameter of 10; m or less.
  • the droplet volume per unit volume of the gas accompanying the droplet was concentrated 5 times.
  • the classified microdroplets were heated to a heating rate of 50 ° C./second and heated and dried at 200 ° C. to obtain metal salt particles.
  • the metal salt particles are conveyed to a pyrolysis synthesis furnace while maintaining the metal salt particles at 20 (TC), heated for 10 seconds in a furnace having a maximum temperature of 160, and thermally decomposed to produce the metal salt particles according to the production method of Embodiment 2.
  • Oxide phosphor particles were synthesized and collected by a bag filter 1. In the atmosphere gas for the thermal decomposition synthesis, sodium nitrate added to the metal salt aqueous solution reacted with water to form a gaseous state. It was confirmed that it was contained as sodium hydroxide.
  • the phosphor particles were filled in a firing vessel, and reheated at 140 ° C. for 2 hours in nitrogen containing 4% by volume of hydrogen to adjust the light emission characteristics to obtain a phosphor. Examination of the powder X-ray diffraction pattern of the obtained phosphor revealed that a single-phase phosphor having no impurity phase was formed.
  • the shape of this phosphor is spherical with a smooth surface and uniform particle size, and the ratio of the average value of the minimum diameter to the maximum diameter is 0.98, and 0.8 ⁇ (minimum diameter / maximum diameter The number of particles satisfying ⁇ 1.0 was 95% of the total.
  • the median particle size D 50 is 1 li mi.
  • the phosphor was irradiated with ultraviolet light having a wavelength of 254 nm, and the emission spectrum was measured. As a result, it was found that the phosphor exhibited good blue light emission, and the light emission intensity was 100. When this phosphor was applied onto a glass plate by settling, a denser and smoother phosphor film could be formed than the conventional phosphor.
  • Comparative Example 2 A phosphor of Comparative Example 3 was obtained in the same manner as in Example 4 except that the addition of potassium nitrate was omitted.
  • the chemical composition of the phosphor is (.. Yo M, E u 0 06) 2 0 3 and so as to yttrium nitrate and nitric acid Interview -.. Mouth Piumu respectively dissolved in water, (Y Q 94, E u 0 06 ) to 2 0 3 of 1 mol, chloride was added lithium ⁇ beam 1. at 3 mol, was added a small amount of nitric acid, the solute concentration C 0 as yttrium nitrate Euro Piumu. 3 homogenous metal salts An aqueous solution was prepared. The pH of the obtained aqueous solution was 1.4, and there was no solid content.
  • the above-mentioned aqueous solution of the metal salt was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight-average particle diameter of the microdroplets is 5 m, and 90% by weight of the microdroplets has a particle size of 10 im or less. Droplets were obtained.
  • the classified microdroplets were heated to a heating rate of 50 ° C./sec and heated and dried at 200 ° C. to obtain metal salt particles.
  • the metal salt particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 200, and vaporize lithium chloride to form an atmosphere containing lithium chloride in a gaseous state. Pyrolysis was performed in a furnace for a residence time of 13 seconds to synthesize oxide phosphor particles according to the production method of Embodiment 3, and the particles were collected by a bag filter.
  • Phosphor chemical composition (B a Q. 9, E u 0.,) MgA 1 1Q 0 17 and barium nitrate so, respectively europium nitrate, magnesium nitrate, aluminum nitrate was dissolved in water, (B a 0 . 9, E u 0 .i) Mg a 1 10 O per mole of 17 2.
  • add sodium chloride to be 5 moles, a small amount of solute concentration C 0.3 by adding nitric acid
  • a homogeneous aqueous solution of a metal salt was prepared. The pH of the resulting aqueous solution was 0.8, and there was no solid content.
  • Nitrogen containing 4% by volume of hydrogen was used as an entrained gas, and the above metal salt aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz vibrator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 m, and 90% by weight of the microdroplets are microdroplets having a particle size of 10 / im or less.
  • the volume of the droplet per unit volume of the gas accompanying the droplet was concentrated 5 times.
  • the classified fine droplets were heated to a heating rate of 50 ° C./sec and heated and dried at 20 Ot to obtain metal salt particles.
  • the metal salt particles are held at 200 * C and conveyed to a pyrolysis synthesis furnace, where sodium chloride is vaporized to form an atmosphere containing sodium chloride in a gaseous state.
  • the particles were thermally decomposed in a furnace for a residence time of 10 seconds to synthesize oxide particles according to the production method of Embodiment 3, and collected by a bag filter.
  • the phosphor was reheated at 1400 in nitrogen containing 4% by volume of hydrogen for 2 hours to obtain a phosphor whose emission characteristics were adjusted.
  • the chemical composition of the phosphor is (Yo. M, E u 0 . "6) 2 0 3 and so as to yttrium nitrate and nitric acid Interview bite Piumu each dissolved in water, (Y Q. 94, Eu .. Q6) to 2 0 3 of 1 mol, nitrate lithium Palladium was added to 1.5 mol, and a small amount of nitric acid was added to prepare a homogeneous metal salt aqueous solution having a solute concentration of 0.3 as yttrium europium nitrate. 1311 of the obtained aqueous solution was 1.2, and there was no solid content.
  • the above-mentioned aqueous solution of the metal salt was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 m, and 90% by weight of the microdroplets is a microdroplet having a particle diameter of 10 ⁇ or less. Drops were obtained.
  • the classified microdroplets were heated to a heating rate of 50 ° C./sec and heated and dried at 200 ° C. to obtain metal salt particles.
  • the metal salt particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 200 ° C., where lithium nitrate and water react to form an atmosphere containing lithium hydroxide in a gaseous state.
  • the phosphor was thermally decomposed in an electric furnace of 160 for a residence time of 13 seconds to synthesize the oxide phosphor particles according to the production method of the above-mentioned Embodiment 4, and collected by a bag filter. Examination of the powder X-ray diffraction pattern of the obtained phosphor revealed that a single-phase phosphor having no impurity phase was formed.
  • the shape of these particles is spherical with a smooth surface and uniform particle size, the average particle size is 1 / Am, and the value of (minimum particle size / maximum particle size) is 0.8 to 1.0.
  • the number of phosphors in the range was 99%.
  • the emission spectrum of this phosphor under irradiation of ultraviolet light at a wavelength of 254 nm was measured. As a result, a good red emission was obtained, and the emission intensity of the phosphor was measured under the same conditions. When the intensity was 80, it was 100.
  • Nitrogen containing 4% by volume of hydrogen was used as an entrained gas, and the above metal salt aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz vibrator to form microdroplets.
  • the microdroplets are classified using an inertial classifier, and the weight average particle diameter of the microdroplets is 5 ⁇ m, and 90% by weight of the microdroplets have a particle size of 10 z ⁇ m or less.
  • Droplets and the unit volume of the gas The volume of each droplet was concentrated 5 times.
  • the classified fine droplets were heated to a heating rate of 50 ° C./sec and heated and dried at 20 Ot to obtain metal salt particles.
  • the metal salt particles are held at 200 ° C and conveyed to a pyrolysis synthesis furnace where sodium nitrate reacts with water to form an atmosphere containing sodium hydroxide in a gaseous state.
  • the particles were thermally decomposed in an electric furnace at 600 ° C. for a residence time of 10 seconds to synthesize oxide particles according to the production method of the above-mentioned Embodiment 4, and collected by a bag filter.
  • the phosphor was reheated at 1400 ° C. for 2 hours in nitrogen containing 4% by volume of hydrogen to obtain a phosphor whose emission characteristics were adjusted.
  • this metal salt aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz vibrator to form fine droplets.
  • the fine droplets are classified using an inertial classifier, and the fine droplets having a weight average particle size of 5 / im and 90% by weight of fine droplets having a particle size of 10 ⁇ im or less are obtained. Droplets were used.
  • the classified fine droplets were heated to a heating rate of 50 ° C per second and heated and dried at 200 ° C to obtain metal salt particles.
  • the metal salt particles are held at 200 ° C and conveyed to a pyrolysis synthesis furnace, where the ammonium bromide is vaporized to form an atmosphere containing hydrogen bromide in a gaseous state.
  • pyrolysis was performed for a residence time of 13 seconds, and Oxide particles according to the production method were synthesized and collected by a bag filter.
  • Nitrogen containing 4% by volume of hydrogen was used as the accompanying gas, and the aqueous solution of the metal salt was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets.
  • the fine droplets are classified using an inertial classifier, and fine droplets having a weight average particle diameter of 5 m and 90 wt% of fine droplets having a particle size of 10 m or less are obtained.
  • the droplet volume per unit volume of the droplet-entrained gas was concentrated 5 times.
  • the classified fine droplets were heated to a heating rate of 50 ° C./sec and heated and dried at 200 ° C. to obtain metal salt particles. These metal salt particles are transported to a pyrolysis synthesis furnace while holding them at 20 (TC) to vaporize ammonium chloride to form an atmosphere containing hydrogen chloride in a gaseous state.
  • the resulting phosphor was thermally decomposed in the electric furnace for a residence time of 10 seconds to synthesize oxide particles according to the production method of Embodiment 5, and collected at a bag fill. Inspection revealed that a single-phase phosphor without an impurity phase was formed, and the shape of the particles was spherical with a smooth surface and uniform particle size. Was 1.
  • the emission spectrum of this phosphor under irradiation with ultraviolet light at a wavelength of 254 nm was measured, and it was found that the phosphor emitted good blue light.
  • the chemical composition of the phosphor is ( ⁇ . 94, E u 0 . 06) 2 0 2 S become as yttrium nitrate and nitric acid europium respectively dissolved in water, ( ⁇ ⁇ . ⁇ , E u 0. 06) 2
  • the precursor of the dispersion medium is such that the volume of sodium sulfide, which is the dispersion medium, is 10 times the volume of the 2 S phosphor.
  • Sodium nitrate was added, and nitric acid was added to prepare a homogeneous aqueous solution having a solute concentration C of 0.03 mol / liter as yttrium europium nitrate.
  • Nitrogen containing 20% by volume of hydrogen sulfide was used as an entrained gas, and this aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets.
  • the fine droplets were dried by heating to obtain solid phosphor raw material particles.
  • the solid phosphor raw material particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 200 ° C, and are stored in an electric furnace having a maximum temperature of 65 ° C for 3 seconds to perform pyrolysis synthesis.
  • dispersion medium particles consisting obtained above sulfide Natoriumu washed with dilute hydrochloric acid and water, the E u 0. 06) 2 0 2 S phosphor particles by the manufacturing method of the embodiment 6 to remove the sodium sulfide Obtained.
  • the chemical composition of the phosphor is ( ⁇ ⁇ . ⁇ , E u 0. 06) 2 0 3 and so as to yttrium nitrate and nitric acid Interview bite Piumu respectively dissolved in water, (Y Q. 94, E ns) 2 0 (3 )
  • An aqueous solution was prepared.
  • the pH of the obtained aqueous solution was 1.0, and there was no solid content.
  • this aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets having an average particle size of 5 m.
  • the fine droplets were dried by heating to obtain solid phosphor raw material particles.
  • the solid phosphor raw material particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 200 ° C, and are retained in an electric furnace having a maximum temperature of 850 ° C for 1 second for pyrolysis synthesis. Floats in the entrained gas generated from the pyrolysis synthesis furnace.
  • the dispersing medium particles composed of sodium chloride and phosphor particles were collected by an electrostatic precipitator.c.Observation of the fracture surface of the dispersing medium particles obtained in this way revealed that a large number of particles were found in the dispersing medium particles. of (Y fl. g4, E u 0. 06) 2 0 3 dispersed particles consisting of phosphor crystals were observed.
  • the dispersion medium the particles of the obtained above sodium chloride and washed with dilute hydrochloric acid and water, according to the manufacturing method of the embodiment 6 to remove the salts of sodium reduction (Y D. 94, E u 0. 06) 2 0 Three phosphor particles were obtained.
  • the chemical composition of the phosphor is Z n 0. 999S A g ". 0002 C 1 o. 0002 S 0. S998 become as zinc nitrate and silver and Chio urea chloride were each dissolved in water, Z n (). 99 g 8 Ag g. 2 C 1 uo Sugw Addition of bromide rim as a dispersing medium so as to make the volume 5 times the volume of phosphor, solute concentration of zinc nitrate and silver chloride C A homogeneous aqueous solution of 0.05 mol Z liter was prepared.
  • Nitrogen containing 5% by volume of hydrogen sulfide was used as an entrained gas, and this aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets.
  • the fine droplets were dried by heating to obtain solid phosphor raw material particles.
  • the solid phosphor raw material particles are conveyed to a pyrolysis synthesis furnace while maintaining the temperature at 150 ° C, and are retained in the pyrolysis synthesis furnace having a maximum temperature of 600 for only 1.2 seconds to perform pyrolysis synthesis. was carried out, Z n D. 9 ⁇ a g "., 2 C 1 0. 0002 S 0.
  • the obtained dispersion medium particles composed of the phosphor particles and the mixture of the sulfuric acid rim and the bromide rim are washed with dilute hydrochloric acid and water to remove the sulfur sulfide and the bromide rim of the dispersion medium.
  • Examination of the powder X-ray diffraction pattern of this phosphor revealed that it was a single-phase sulfur free of impurity phase. It was found that a fluoride phosphor was generated.
  • Example 11 fluorescence was changed in the same manner as in Example 11 except that the maximum temperature of the pyrolysis synthesis furnace was changed from 65 ° C. to 200 ° C., and sodium sulfide as a dispersion medium was used in a solid state. Body particles were obtained.
  • Example 12 fluorescence was changed in the same manner as in Example 12 except that the maximum temperature of the pyrolysis synthesis furnace was changed from 850 to 600 ° C, and sodium chloride as a dispersion medium was used in a solid state. Body particles were obtained.
  • Phosphor particles were obtained in the same manner as in Example 12, except that the addition of sodium chloride as a dispersion medium was omitted.
  • Example 14 In Example 12, the phosphor particles were changed in the same manner as in Example 12 except that the maximum temperature of the pyrolysis synthesis furnace was changed from 850 to 160, and the dispersing medium was operated in a gaseous state. I got Examination of the powder X-ray diffraction pattern of this phosphor revealed that a single-phase oxide phosphor having no impurity phase was formed. However, when the shape and crystallinity of the phosphor particles were observed under an electron microscope, only one polycrystalline particle having a large average particle diameter of 1 m and good crystallinity was observed. The emission spectrum of this phosphor under irradiation of ultraviolet light with a wavelength of 254 nm was measured. As a result, the phosphor emitted red light. Industrial applicability
  • a phosphor having a narrow particle size distribution, a small amount of aggregated particles, a spherical shape, and a high luminance can be easily obtained.
  • a fluorescent film such as a cathode ray tube, a fluorescent lamp, and a PDP
  • the high purity and uniform chemical composition made it possible to produce phosphors with high emission intensity at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

明 細 書 蛍光体及びその製造方法 技術分野
本発明は、 ブラウン管、 蛍光ランプ、 プラズマディスプレーパネル (P D P ) などに 用いるのに適した蛍光体及びその製造方法に関する。 背景技術
ブラウン管、 蛍光ランプ、 P D Pなどに用いられる蛍光体は、 従来、 原料粉末を混合 した後、坩堝などの焼成容器に充填し、 高温で長時間加熱することにより固相反応で熱 分解合成を行って蛍光体を製造し、 それをポールミルなどで微粉砕して得ていた。 しかし、 この方法で製造される蛍光体は、 不規則形状粒子が凝集した粉末からなって おり、 この蛍光体を上記用途に適用して蛍光膜を形成すると、不均質で充填密度の低い 蛍光膜しか得られず、 優れた発光特性を得ることができなかった。 また、 固相反応後、 ポールミルなどで微粉砕処理する過程で蛍光体に物理的及び化学的な衝撃が加えられ るため、 蛍光体粒子内や表面に欠陥が発生し、 発光特性の低下の要因となっていた。 さ らには、坩堝などの焼成容器内で高温で長時間加熱するため、坩堝から不純物が混入し、 発光特性が低下する要因となり、 また、 原料粉末の粒度によっては固相反応が十分に進 行せず、 不純物相が混在して高い発光特性を得ることができなかった。 また、 高温で長 時間加熱する必要があり、 エネルギー消費が大きく、 蛍光体の製造コストを高くしてい た。
これらの問題点を解消するために、蛍光体の構成金属元素を含有する溶液を超音波ネ ブライザ一等を用いて同伴気体中に噴霧して微小液滴を得た後、 これを乾燥して金属塩 粒子や金属錯体粒子とし、 この金属塩粒子や金属錯体粒子を同伴気体により熱分解合成 炉に導入して加熱し、 熱分解合成を行って蛍光体を得る方法が提案されている。 しかし ながら、 この方法は、 熱分解合成炉内での滞留時間を十分に長く取れないために、 蛍光 体の結晶性が低く、かつ付活剤イオンを結晶内に均一に含有させることができず、また、 この方法で得られた蛍光体は、 結晶内部や表面に結晶欠陥が多く存在するため、 発光特 性の良好な蛍光体を得ることができないという問題があった。
そこで、 この問題を解消するために、 金属塩粒子又は金属錯体粒子を比較的低温で短 時間熱分解して所望の結晶相からなる粉末を得た後、 これを一旦捕集し、 この粉末を比 較的高温で長時間再加熱処理して蛍光体を得るという 2段階加熱処理法が提案されて いる。 この方法は、 蛍光体粒子の結晶性を更に高めると同時に付活剤イオンを結晶内に 更に均一に含有させることができ、良好な発光特性を有する球状蛍光体を得ることがで きる。 しかし、 このように一旦捕集した粉末を再加熱処理すると、 蛍光体の結晶性は良 好となるが、 極めて多数の凝集粒子が生成するため、 蛍光膜を形成する際に膜が緻密に ならず、 所望の発光特性が得られないという新たな問題点が発生した。
そこで、 本発明は、 上記の問題を解消し、 ブラウン管、 蛍光ランプ、 P D Pなどに適 用するときに均質で緻密な高輝度蛍光膜を形成することができ、 粒度分布が狭く、 凝集 粒子が少なく、 球状で、 しかも高純度で、 化学組成が均一で、 優れた発光特性を有する 微少蛍光体を製造する方法及びその方法で得た蛍光体を提供しょうとするものである。 発明の開示
本発明者等は、 以下の手段を採用することにより、 上記課題の解決に成功し、 本発明 を完成した。 即ち、 本発明は下記の構成を有する。
A .蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成して 前記蛍光体を得る蛍光体の製造方法において、金属若しくは金属化合物からなる添加剤 の共存下で上記加熱を行うことにより、 平均結晶成長速度を 0 . O O S ^ m^/ s e c 以上で熱分解合成を行って前記蛍光体を製造することを特徴とする蛍光体の製造方法。
B .蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成して 前記蛍光体を得る蛍光体の製造方法において、薄膜層形成物質の共存下で上記加熱を行 うことにより、前記熱分解合成の過程で前記薄膜層形成物質を前記蛍光体粒子表面に析 出させて 1 0 n m以上の平均膜厚を有する薄膜層を形成することを特徴とする蛍光体 の製造方法。
C . 蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、 (a) 気体状態の金属塩化物、 (b) 気 体状態の金属水酸化物、 又は (c) 気体状態のハロゲン化水素からなる気体状態物質を 含む雰囲気ガス中で熱分解合成を行うことを特徴とする蛍光体の製造方法。
D. 蛍光体の構成金属元素と、 蛍光体の生成過程において蛍光体を分散させる分散媒 体と、を含有する溶液の液滴を加熱することにより熱分解合成して前記蛍光体を生成す ることにより熱分解合成して前記蛍光体を製造する方法において、前記分散媒体中の粒 子内に、複数の蛍光体粒子を分散させた状態で生成させることを特徴とする蛍光体の製 造方法。
本発明は上記の構成を有するが、 その好ましい実施の態様は、 大別して下記の第 1〜 第 6の主たる 6つの態様からなる。
〔第 1の態様〕
(1) 蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、金属若しくは金属化合物からなる添加 剤の共存下で前記加熱を行うことにより、 平均結晶成長速度を 0. 002 ; m3Zs e c以上で熱分解合成を行って前記蛍光体を製造することを特徴とする蛍光体の製造方 法。
(2) 前記添加剤が添加された前記溶液を気体中に噴霧して微小の前記液滴を形成した 後、 これを乾燥して金属塩粒子又は金属錯体粒子とし、 これを加熱して前記熱分解合成 を行う (1) に記載の蛍光体の製造方法。
(3) 平均結晶成長速度を 0. 0 1 im3 /s e c以上に調整する(1) 又は(2)の製造方 法。
(4) 前記熱分解合成は、 加熱温度を 1 350~1 900°C、 加熱時間を 0. 5秒以上 1 0分間以下の範囲に調整する (1) 〜 (3) のいずれか 1つの製造方法。
(5) 前記熱分解合成は、 加熱温度を 1450〜 1 800 °C、 加熱時間を 3秒以上 1分 間以下の範囲に調整する (1) ~ (4) のいずれか 1つの製造方法。
(6) 前記金属又は金属化合物が、 L i , N a, K, Rb及び C sの群から選ばれる少 なくとも 1つの元素を含有する (1) 〜 (5) のいずれか 1つの製造方法。
(7) 前記金属化合物が、 硝酸塩、 塩化物、 又は水酸化物である(6) の製造方法。
(8) 蛍光体粒子の重量平均粒子径 D 50が 0. 1〜 50 の範囲にあり、 かつ蛍光体 粒子の最小直径と最大直径の比 (最小直径/最大直径) の値が 0. 8〜1. 0の範囲に ある粒子の個数は全体の 90 %以上である (1) 〜 (7) のいずれか 1つの製造方法で製 造された蛍光体。
(9) 組成式 (R1 ト x , R2 x ) 2 03 (但し、 R1 は Y, G d , L a, L u及び S c の群から選ばれる少なくとも一つの元素、 R2 は C e, P r , Nd, Eu, Tb, Dy 及び Tmから選ばれる少なくとも一つの元素、 Xは 0<x≤ 0. 2を満す数である) で 表される結晶相を主成分とする(8) の蛍光体。
〔第 2の態様〕
( 10)蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、 薄膜層形成物質の共存下で前記記加 熱を行うことにより、 前記熱分解合成の過程で前記薄膜層形成物質を前記蛍光体粒子 表面に析出させて 1 0 nm以上の平均膜厚を有する薄膜層を形成することを特徴とす る蛍光体の製造方法。
(11)前記薄膜層形成物質が添加された前記溶液を気体中に噴霧して微小の前記液滴を 形成した後、 これを乾燥して金属塩粒子又は金属錯体粒子とし、 これを加熱して熱分解 を行って前記薄膜層形成物質を蒸発又は分解して気体状態となし、前記蛍光体粒子表面 に前記薄膜層を形成させる前記 (1 0) 記載の蛍光体の製造方法。
(12) 前記蛍光体は、 Y, Gd, L a, L u及び S cの群から選択される 1種以上の元 素、 及び、 C e, P r , Nd, Eu, Tb, D y及び Tmの群から選択される 1種以上 の元素を含有する (10) 又は (11) の製造方法。
(13) 前記薄膜層形成物質は、 L i, N a, K, Rb及び C sの群から選択される 1種 以上の元素を含有する硝酸塩、 塩化物、 又は水酸化物である (10) 〜 (12) のいずれか 1つの製造方法。
(14) 前記蛍光体を構成する金属元素の総モル数を A、 前記薄膜層形成物質に含まれる 金属元素の総モル数を Bとするときに、 (AX 0. 1) ≤Bの関係を満たすように前記 溶液を予め調製する (10) 〜 (13) のいずれか 1つの製造方法。
(15) 前記蛍光体を構成する金属元素の総モル数を A、 前記薄膜層形成物質に含まれる 金属元素の総モル数を Bとするときに (AX O. 1) ≤ ≤ (AX 1 0) の関係を満た すように噴霧溶液を予め調製する (14) の製造方法。
(16) 前記熱分解合成は、 加熱温度を 1 3 5 0〜 1 9 0 0 °C、 加熱時間を 0. 5秒間以 上 1 0分間以下の範囲で行う (10) 〜 (15) のいずれか 1つの製造方法。 (17) 前記熱分解合成は、 加熱温度を 1 45 0〜1 8 0 0°C、 加熱時間を 3秒間以上 1 分間以下の範囲で調整する (16) の製造方法。
(18) 前記熱分解合成後に前記蛍光体粒子表面の前記薄膜層を除去する (10) 〜 (17) のいずれか 1つの製造方法。
(19) 前記蛍光体粒子表面の前記薄膜層を水又は酸性水溶液で除去する (18) の製造方 法。
(20) 前記薄膜層が除去された前記蛍光体粒子を再加熱処理する (18) 又は (19) の製 造方法。
(21) 前記再加熱処理は、 1 0 0 0〜1 7 0 0°Cの温度範囲で、 かつ熱分解合成温度よ り 1 0 O :以上低い温度で、 加熱時間を 1秒間以上 24時間以下の範囲で行う (20) の 製造方法。
(22) 前記再加熱処理は、 1 0 0 0〜1 7 0 O の温度範囲で、 かつ熱分解合成温度よ り 2 0 0で以上低い温度で、 加熱時間を 1秒間以上 24時間以下の範囲で行う (21) の 製造方法。
(23) 組成式 (R1 ト X, R2 X ) 2 03 (但し、 R1 は Y, Gd, L a, Lu及び S cの 群から選択される 1種以上の元素で、 R2 は C e, P r , Nd, E u, Tb, Dy及び Tmの群から選択される 1種以上の元素であり、 Xは 0< x≤ 0. 2を満たす数である) で表される結晶相を主成分とする前記 (10) 〜 (22) のいずれか 1つの方法で製造され た 光体。
(24) 前記蛍光体の重量平均粒子径 D5„が 0. 1〜5 0 11、 或いはメジアン径 D50が 0. 1〜3 0 の範囲にあり、 蛍光体の最小直径と最大直径の比 (最小直径ノ最大直 径) の値が 0. 8~ 1. 0の範囲にある蛍光体の個数が全体の 9 0 %以上を占める (2 3) の蛍光体。
〔第 3の態様〕
(25)蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、気体状態の金属塩化物を含む雰囲気ガ ス中で熱分解合成を行うことを特徴とする蛍光体の製造方法。
(26)前記溶液を気体中に噴霧して微小の前記液滴を形成した後、 これを乾燥して金属 塩粒子又は金属錯体粒子とし、これを加熱して前記熱分解合成を行う(25)の製造方法。 (27) 前記熱分解合成の雰囲気ガス中の前記気体状態の金属塩化物を、 前記雰囲気ガス の 0 . 0 0 1〜5体積%存在させる (25) 又は (26) の製造方法。
(28) 前記金属塩化物がアルカリ金属塩化物である (25) 〜 (27) のいずれか 1つの製 造方法。
(29) 前記アルカリ金属塩化物が塩化リチウムである (28) の製造方法。
(30) 蛍光体の構成金属元素を含有する前記溶液の p Hが 7以下である (25) 〜 (29) のいずれか 1つの製造方法。
(31) 蛍光体の構成金属元素を含有する前記溶液の p Hが 5以下である (30) の製造方 法。
(32)蛍光体の構成金属元素を含有する前記溶液の固形分含有量が 1 0重量%以下であ る (25) - (31) のいずれか 1つの製造方法。
(33)蛍光体の構成金属元素を含有する前記溶液の固形分含有量が 1重量%以下である (32) の製造方法。
(34)前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 5体 積%以下に調整する (25) 〜 (33) のいずれか 1つの製造方法。
(35) 前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 0 . 5体積%以下に調整する (34) の製造方法。
(36) 前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 0 . 1体積%以下に調整する (35) の製造方法。
(37) 前記熱分解合成は、 1 3 5 0 〜 1 9 0 0 °Cの温度範囲で、 0 . 5秒間以上 1 0 分間以下の範囲で加熱する (25) 〜 (36) のいずれか 1つの製造方法。
(38) 前記熱分解合成は、 1 3 5 0 :〜 1 9 0 0 °Cの温度範囲で、 3秒間以上 1分間以 下の範囲で加熱する (37) の製造方法。
(39) 前記熱分解合成は、 1 4 5 0 °C〜 1 8 0 0での温度範囲で、 3秒間以上 1分間未 満の範囲で加熱する (37) 又は (38) の製造方法。 ·
(40) 蛍光体の構成金属元素を含有する前記溶液中に、 前記気体状態の金属塩化物の前 駆体を予め含有させる (25) 〜 (39) のいずれか 1つの製造方法。
(41) 前記前駆体が金属塩化物である (40) の製造方法。 (42) 組成式 (R1 ト x , R2 χ ) 2 〇3 (但し、 RJ は Υ, Gd, L a, L u及び S c の群から選択される少なくとも一つの元素で、 R2 は C e, P r, Nd, E u, Tb, Dy及び Tmの群から選択される少なくとも 1つの元素であり、 xは 0く 2を 満す数である) で表される結晶相を主成分とする (25) 〜 (41) のいずれか 1つの製造 方法により合成された蛍光体。
(43) 組成式 M1 M2 A 110O17 (但し、 M1 は B a, S r, C a及び Euの群から選択 される少なくとも一つの元素、 M2 は Mg及び Mnの群から選択される少なくとも一つ の元素である) で表される結晶相を主成分とする (25) 〜 (41) のいずれか 1つの製造 方法により合成された蛍光体。
(44) 前記蛍光体のメジアン径 D5„が 0. 1〜30 の範囲にあり、 同時に前記蛍光 体の最小直径と最大直径の比 (最小直径ノ最大直径) の値が 0. 8〜1. 0の範囲にあ る蛍光体の個数が全体の 90%以上を占める (42) 又は (43) の蛍光体。
〔第 4の態様〕
(45)蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、気体状態の金属水酸化物を含む雰囲気 ガス中で熱分解合成を行うことを特徴とする蛍光体の製造方法。
(46)前記溶液を気体中に噴霧して微小の前記液滴を形成した後、 これを乾燥して金属 塩粒子又は金属錯体粒子とし、これを加熱して前記熱分解合成を行う(45)の製造方法。
(47) 前記熱分解合成の雰囲気ガス中の前記気体状態の金属水酸化物を、 前記雰囲気ガ スの 0. 00 1〜5体積%存在させる (45) 又は (46) の製造方法。
(48) 前記金属水酸化物がアルカリ金属水酸化物である (45) 〜 (47) のいずれか 1つ の製造方法。
(49) 前記アルカリ金属水酸化物が水酸化リチウムである (48) の製造方法。
(50) 蛍光体の構成金属元素を含有する前記溶液の pHが 7以下である (45) 〜 (49) のいずれか 1つの製造方法。
(51) 蛍光体の構成金属元素を含有する前記溶液の pHが 5以下である (50) の製造方 法。
(52)蛍光体の構成金属元素を含有する前記溶液の固形分含有量が 1 0重量%以下であ る (45) ~ (51) のいずれか 1つの製造方法。
(53)蛍光体の構成金属元素を含有する前記溶液の固形分含有量が 1重量%以下である (52) の製造方法。
(54)前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 5体 積%以下に調整する (45) 〜 (53) のいずれか 1つの製造方法。
(55) 前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 0. 5体積%以下に調整する (54) の製造方法。
(56) 前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 0. 1体積%以下に調整する (55) の製造方法。
(57) 前記熱分解合成は、 1 350 °C〜 190 Otの温度範囲で、 0. 5秒間以上 10 分間以下の範囲で加熱する (45) 〜 (56) のいずれか 1つの製造方法。
(58) 前記熱分解合成は、 1 350°C〜 1900での温度範囲で、 3秒間以上 1分間以 下の範囲で加熱する (57) の製造方法。
(59) 前記熱分解合成は、 1450で〜 1800での温度範囲で、 3秒間以上 1分間未 満の範囲で加熱する (57) 又は (58) の製造方法。
(60) 蛍光体の構成金属元素を含有する前記溶液中に、 前記気体状態の金属水酸化物の 前駆体を予め含有させる (45) ~ (59) のいずれか 1つの製造方法。
(61) 前記前駆体が金属硝酸塩である (60) の製造方法。
(62) 組成式 (R1 ト x , R2 x ) 2 03 (伹し、 R1 は Y, G d, L a, L u及び S c の群から選択される少なくとも一つの元素で、 R2は C e, P r, N d, Eu, Tb, Dy及び Tmの群から選択される少なくとも一つの元素であり、 Xは 0<X≤0. 2を 満す数である) で表される結晶相を主成分とする (45) 〜 (61) のいずれか 1つの方法 により合成された蛍光体。
(63) 組成式 M1 M2 A 11Q017 (但し、 M1 は B a, S r, C a及び Euの群から選択 される少なくとも一つの元素、 M2 は Mg及び Mnの群から選択される少なくとも一つ の元素である) で表される結晶相を主成分とする (45) 〜 (61) のいずれか 1つの製造 方法により合成された蛍光体。
(64) 前記蛍光体のメジアン径05()が 0. 1 ~30 の範囲にあり、 同時に前記蛍光 体の最小直径と最大直径の比 (最小直径/最大直径) の値が 0. 8〜1. 0の範囲にあ る蛍光体の個数が全体の 90 %以上を占める (62) 又は (63) の蛍光体。
〔第 5の態様〕
(65)蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、気体状態の八口ゲン化水素を含む雰囲 気ガス中で熱分解合成を行うことを特徴とする蛍光体の製造方法。
(66) 前記溶液を気体中に噴霧して微小の前記液滴を形成した後、 これを乾燥して金属 塩粒子又は金属錯体粒子とし、これを加熱して前記熱分解合成を行う(65)の製造方法。
(67) 前記気体状態のハロゲン化水素がフッ化水素、 塩化水素又は臭化水素である (6 6) の製造方法。
(68) 600 ~ 1900°Cの範囲内の温度で、 0. 5秒間〜 10分間の範囲内の滞留時 間だけ前記加熱することにより前記熱分解合成を行う (65) 〜 (67) のいずれか 1つの 製造方法。
(69) 600 ~1900°Cの範囲内の温度で、 0. 5秒間〜 1分間の範囲内の滞留時間 だけ前記加熱することにより前記熱分解合成を行う (68) の製造方法。
(70) 前記熱分解合成炉において 1450〜 1800 の範囲内の温度で、 0. 5秒間 〜1分間の範囲内の滞留時間だけ前記加熱することにより熱分解合成を行う (65)〜(6 9) のいずれか 1つの製造方法。
(71) 前記溶液中に予め気体状態のハロゲン化水素の前駆体を含有させる (65) 〜 (7 0) のいずれか 1つの製造方法。
(72) 前記前駆体が非金属ハロゲン化物である (71) の製造方法。
(73) 前記前駆体がフッ酸、 塩酸、 臭酸、 フッ化アンモニゥム、 フッ化水素アンモニゥ ム、 塩化アンモニゥム又は臭化アンモニゥムである (72) の製造方法。
(74) 組成式が (R l】— X, R 2 X) 203 (但し、 R 1は Y、 Gd、 L a、 Lu及び S cから選ばれる少なくとも一つの元素、 R2は Ce、 P r、 Nd、 Eu、 Tb、 Dy及 び Tmから選ばれる少なくとも一つの元素であり、 Xは 0<x≤ 0. 2なる条件を満足 する数である) で表される結晶相を主成分とし、 前記 (65) 〜 (73) のいずれかに記載 の製造方法により製造される蛍光体。
(75) 組成式が M M A 11 Q017 (但し、 M は B a、 S r、 じ &及び£\!から選ば れる少なくとも一つの元素、 M 2は M g及び M nから選ばれる少なくとも一つの元素で ある) で表される結晶相を主成分とし、 (65) 〜 (73) のいずれか 1つの方法により製 造される蛍光体。
(76) 蛍光体の粒子の最大直径 (D に対する最小直径 (D s ) の比 ( D S / D L ) が 0 . 8≤ ( D S /D L ) ≤ 1 . 0なる関係を満足する粒子の個数が全体の粒子群の 9 0 % 以上であり、 メディアン径 (D 5。) が 0 . :!〜 3 0 mの範囲にあり、 (65) 〜 (75) のいずれか 1つの方法により製造される蛍光体。
〔第 6の態様〕
(77) 蛍光体の構成金属元素を含有する溶液の液滴を、 前記蛍光体粒子の生成過程にお いて該蛍光体粒子を分散させる分散媒体と接触させながら加熱することにより熱分解 合成して、前記分散媒体の粒子内に複数の前記蛍光体粒子を分散させた状態で生成させ ることを特徴とする蛍光体粒子の製造方法。
(78) 前記溶液を同伴気体中に噴霧して微小の前記液滴を形成した後、 該微液滴を乾燥 して固体状蛍光体原料となし、該固体状蛍光体原料を加熱することにより前記蛍光体の 前駆体を生成させ、該蛍光体の前駆体と溶融状態の前記分散媒体とを接触させながら前 記加熱を継続し、 前記同伴気体中に浮遊する前記分散媒体の粒子内に、 前記蛍光体の前 駆体から前記蛍光体粒子の結晶相を主相とする複数の蛍光体粒子を生成させることを 特徴とする (77) の製造方法。
(79) 前記分散媒体の原料として、 前記蛍光体粒子の生成時に (77) 又は (78) 記載 の溶融状態の分散媒体を生成し得る前記分散媒体の前駆物質を使用する蛍光体粒子の 製造方法。
(80) 前記蛍光体の構成金属元素を含有する前記溶液に、 前記分散媒体又はその前駆物 質を予め含有させる (77) ~ (79) のいずれか 1つの蛍光体粒子の製造方法。
(81) 前記分散媒体又はその前駆物質として、 アルカリ金属ハロゲン化物、 アルカリ土 類金属ハロゲン化物、ハロゲン化亜鉛、 及びアルカリ金属硫化物の群から選ばれる少な くとも一種の化合物を使用する(77)〜(80)のいずれか 1つの蛍光体粒子の製造方法。
(82) 前記分散媒体又はその前駆物質として、 アルカリ金属ハロゲン化物、 ベリリウム を除くアルカリ土類金属の塩化物、 臭化マグネシウム、 フッ化亜鉛、 硫化リチウム、 硫 化ナトリウム、及ぴ硫化カリウムの群から選ばれる少なくとも一種の化合物を使用する (81) の蛍光体粒子の製造方法。
(83) 前記分散媒体の使用量は、 前記蛍光体の体積に対して 1〜 1 0 0倍の範囲とする ( 77) 〜 (82) のいずれか 1つの製造方法。
(84) 前記蛍光体粒子の生成温度を前記分散媒体の融点以上で、 前記融点より 2 0 0 V 高い温度以下に調整する (77) 〜 (83) のいずれか 1つの製造方法。
(85) 前記蛍光体粒子を生成させた後、 前記分散媒体を水に溶解して除去する (77) 〜 (84) のいずれか 1つの製造方法。
(86)前記蛍光体粒子を生成させた後、前記分散媒体を加熱し、蒸発させて除去する (7 7) ~ (85) のいずれか 1つの製造方法。
(87) 前記蛍光体粒子の最大径が 1〜 5 0 O n mの範囲にある (77) 〜 (86) のいずれ か 1つの製造方法。
(88) 前記最大径が 1〜 1 0 0 n mの範囲にある (87) の製造方法。
(89) 前記最大径が 1〜 1 0 n mの範囲にある (88) の製造方法。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明の蛍光体の製造方法は蛍光体の構成金属元素の無機塩及び/又は錯体などの 有機化合物を溶解もしくは分散させた溶液(以下、 蛍光体の構成金属元素を含有する化 合物を溶解もしくは分散させた溶液を 「金属塩水溶液」 という) を加熱して熱分解合成 を行う際、 何らかの添加剤 (以下、 「添加剤」 という) を前記金属塩水溶液中に溶解又 は縣濁させておくか、 もしくは前記熱分解合成時の雰囲気中にこの添加剤を気体状態で 存在させておいて前記金属塩水溶液の液滴を熱分解し、所望の蛍光体を製造することを 特徴とする。 上記金属塩水溶液は、 同伴気体中に噴霧して微小液滴を形成した後、 これ を乾燥して所望の蛍光体を構成する金属の金属塩粒子又は該金属の錯体の粒子 (以下、 「固体状蛍光体原料粒子」 という) とし、 これ同伴気体と共に熱分解合成炉に導き、 加 熱して熱分解合成を行うことができる。
本発明による蛍光体の製造方法は、 大別すると下記第 1〜第 6の、 主として 6つの態 様からなるが、 基本的にはこれら 6つのいづれの態様の製造方法においても共通して、 1 ) 金属塩水溶液もしくは該金属塩水溶液中に何らかの添加剤を含んだ溶液 (以下、 液 滴化される金属塩水溶液もしくは前記添加剤を含む金属塩水溶液をいずれも「蛍光体原 料溶液」 ともいう) を調製する工程 (蛍光体原料溶液調製工程) 、 2 ) 該蛍光体原料溶 液を同伴気体中において微液滴化する工程(液滴化工程)、 3 )生成した液滴を分級し、 乾燥して固体状蛍光体原料粒子とする工程 (液滴乾燥工程) 、 4 ) 同伴気体と共に該固 体状蛍光体原料粒子を熱分解炉中に搬送して加熱し、熱分解合成して所望の蛍光体を得 る工程 (熱分解合成工程) の各工程を経て蛍光体が製造され、 更に必要に応じて、 5 ) 前記 4 ) の熱分解合成工程で一旦熱分解合成して得られた蛍光体を再度加熱する工程 (再加熱工程) を経て製造される。
最初に、 本発明における各態様の製造方法に共通した各製造工程について述べる。 1 ) 蛍光体原料溶液調製工程:
本発明において蛍光体原料溶液の調製は、 まず、 蛍光体の構成金属元素を含有する金 属塩ゃ金属錯体を水などの溶媒中に投入してこれらを溶媒中に溶解又は分散させて金 属塩水溶液とし、必要に応じてこの金属塩水溶液に更に何らかの添加剤を溶解もしくは 分散させて蛍光体原料溶液とする。 蛍光体原料溶液の調製のために使用される、 蛍光体 を構成する金属元素を含有する無機塩や金属錯体などの有機金属化合物は、水に可溶な 化合物もしくは液中に分散可能な微粒子状の化合物であって、 しかも、高温に加熱する ときに酸化物に熱分解するものであればその種類を問わない。 また、 蛍光体の構成金属 元素の酸化物を酸に溶解して得られる金属塩水溶液を使用することも可能である。しか し、 蛍光体の合成を容易にするためには、 蛍光体の構成金属元素の硝酸塩水溶液ゃハロ ゲン化物水溶液、特に硝酸塩水溶液を使用することが好ましい。 硝酸塩水溶液を微小液 滴状に噴霧して乾燥することにより得られる硝酸塩粒子は、加熱により容易に分解して 蛍光体を生成する。その際、 金属塩水溶液に溶解されている金属塩の少なくとも 1 0重 量%が硝酸塩であることが好ましい。 また、 金属塩水溶液に溶解されている金属塩の少 なくとも 5 0重量%が硝酸塩であることが更に好ましい。
蛍光体原料溶液内の添加剤を含めた各金属元素の濃度は、目的とする蛍光体粒子の直 怪と、 金属塩水溶液の噴霧により形成される微小液滴の直径とを考慮して調整する。す なわち、合成しょうとする蛍光体粒子直径に対する蛍光体原料溶液の液滴直径の比が大 きければ、 蛍光体原料溶液内の溶質濃度を低くし、 その比が小さければ溶質濃度を高く 調整する。良好な蛍光体を合成するためには、水溶液中の金属元素の溶質濃度 Cが、 0 . 0 1≤C≤ 5の範囲内であることが好ましい。 溶質濃度が 0 . 0 1より低いと、 乾燥除 去される水分量に対して合成できる蛍光体量が少ないために生産性が低くなる。 一方、 溶質濃度が 5より高いと、 液滴が生成し難くなる。 ここで、 Cは蛍光体原料溶液の 1リ ットル中に含有される蛍光体原料の全ての金属元素の合計モル数である。なお、 良好な 発光特性有する蛍光体を得るためには、キラーセンターとなる鉄ゃニッケルなどの不純 物元素の含有量の少ない金属塩水溶液とすることが好ましい。
この金属塩水溶液の P Hは、 7以下に調整することが好ましく、 5以下に調整するこ とがより好ましい。この金属塩水溶液の p Hを 7以下に調整すると均質な水溶液が形成 され、 噴霧により均質な液滴を形成することができ、 均質な蛍光体を合成することがで きる。 金属塩水溶液の p Hが 7を越えると、 蛍光体構成金属元素の水酸化物の沈殿が多 量に発生するために、 噴霧して微液滴化する際に液体成分が優先的に液滴となり、 所定 量の蛍光体構成金属元素が液滴内に含有され難くなり、 その結果、 蛍光体の組成が変動 したり、粒径が変動する要因となって均質で発光特性の高い蛍光体を得ることが難しく なる。
また、 この金属塩水溶液中には、 蛍光体の構成金属元素の化合物が完全に溶解しない で、 金属塩ゃゾルゃコロイドなどの固形状で一部懸濁していてもよいが、 金属塩溶液中 に固形分が混在する場合、 その混在の割合は 1 0重量%以下に抑えることが好ましく、 1重量%以下がより好ましい。金属塩やゾルゃコロイドなどの形で固形分が金属塩水溶 液中に多量に存在すると、 噴霧する際に液体成分が優先的に液滴となり、 固形分の金属 塩ゃゾルゃコロイドなどが液滴内に含有され難くなり、 その結果、 蛍光体の組成変動や 粒径変動の要因となり、 均質で発光特性の高い蛍光体が得られなくなる。
2 ) 液滴化工程:
上述のようにして調製された、 金属塩水溶液、 及び、 必要に応じて、 これに更に添加 剤を含有させてなる蛍光体原料溶液は、 次いで同伴気体中において微小液滴化される。 蛍光体原料溶液から同伴気体中において微小液滴を形成する方法としては、以下の様々 な方法を採用できる。例えば、 加圧空気で液体を吸い上げながら噴霧して 1〜 5 0 u rn の液滴を形成する方法、圧電結晶からの 2 M H z程度の超音波を利用して 4 ~ 1 0 u rn の液滴を形成する方法、 穴径が 1 0〜2 0 i mのオリフィスが振動子により振動し、 そ こへ一定の速度で供給されている液体が振動数に応じて一定量ずつ穴から放出され 5 〜 5 0 mの液滴を形成する方法、回転している円板上に液を一定速度で落下させて遠 心力によってその液から 2 0〜 1 0 0 /i mの液滴を形成する方法、液体表面に高い電圧 を引加して 0 . 5〜 1 0 mの液滴を発生する方法などが挙げられる。
3 ) 液滴乾燥工程
液滴化工程で形成される蛍光体原料溶液の微小液滴を乾燥して固体状蛍光体原料粒 子を生成する前に、 蛍光体原料溶液の微小液滴を分級して、微小液滴の重量平均粒子径 を 0 . 5 ~ 5 0 mにすると共に、 少なくとも 9 0重量%の微小液滴が重量平均粒子径 の 2倍以下の粒径の微小液滴とすることにより、 粒径分布を狭くすることができ、 蛍光 膜形成時の塗布特性に優れた蛍光体を製造することができる。乾燥前に除去された微小 液滴は、 回収して原料の蛍光体原料溶液として再使用できる。 その結果、 歩留まり良く 粒度分布の狭い蛍光体の製造が可能となる。粒子径が 0 . 5 i mより小さい液滴が増え ると、 生成する蛍光体が 0 . 1 πι未満と極度に小さくなつて、 ディスプレー用などの 蛍光膜を形成する際に、蛍光体スラリーの粘度が高くなって塗布特性が低下する。一方、 5 0 μ πιより大きい液滴が増えると、 生成する蛍光体が極度に大きくなつて、 緻密で高 精細の蛍光膜を形成し難くなる。 なお、 金属塩水溶液の微小液滴を分級して、 重量平均 粒子径を 1〜2 0; u mの範囲に調整すると共に、少なくとも 9 0重量%の微小液滴が重 量平均粒子径の 2倍以下の粒径の微小液滴となるようにすることがより好ましい。 蛍光体原料溶液を熱分解合成して蛍光体を製造する際の、蛍光体の生産効率を上げる ために、 蛍光体原料溶液からなる微小液滴の分級時に、 この液滴の同伴気体の単位体積 当たりの液滴体積を分級器によって濃縮することが好ましい。 分級器としては、 重力分 級器、 遠心分級器、 慣性分級器などを使用できる。 その中でも、 微小液滴を同伴した気 体から、 気体の一部と共に上記の液滴径の下限未満の微小液滴を除去して、 液滴同伴気 体の単位体積当たりの液滴体積を濃縮するためには、 慣性分級器が好ましい。
このようにして蛍光体原料溶液から得られた微小液滴はそのまま加熱、熱分解するこ ともできるが、得られた液滴は先ず乾燥して一旦固体状蛍光体原料粒子とし、 これを加 熱、 熱分解する方が好ましい。 この液滴の乾燥方法としては、 凍結乾燥、 減圧乾燥、 拡 散乾燥、 加熱乾燥などを採用できる。 しかし、 凍結乾燥、 減圧乾燥、 拡散乾燥などと比 較して、 加熱乾燥が工業的生産においては安価で好ましい。
加熱乾燥により微小液滴を乾燥する場合、その時の加熱速度は毎秒 4 0 0 °C以下であ ることが好ましい。加熱速度を毎秒 4 0 0 °Cより大きくすると、 乾燥時に液滴中央部の 水分が蒸発する前に液滴表面に金属塩又は金属錯体の膜が形成されるため、球形で中実 の蛍光体粒子が生成できず、 中空となったり爆裂を起こして微細粒子となってしまう。 乾燥時の加熱速度を毎秒 2 0 0 以下にすると、 球形で、 中実の蛍光体を安定して製造 できる。
なお、 乾燥して得られる固体状蛍光体原料粒子は、熱分解合成まで 1 0 0 以上に保 持することが好ましい。 熱分解合成前に 1 0 0 °Cより低い温度になると、乾燥時に発生 した水蒸気が凝縮して金属塩粒子又は金属錯体粒子(固体状蛍光体原料粒子) が部分的 に再溶解してしまい、 所望の形状や粒径の蛍光体粒子が得られなくなる恐れがある。
4 ) 熱分解合成工程
蛍光体原料溶液の液滴を乾燥して得られた固体状蛍光体原料粒子は、次に同伴気体と 共に熱分解合成炉に導入され、 ここで加熱されて熱分解、 合成され、 所望の蛍光体粒子 を生成する。 この時に得られる蛍光体は、 蛍光体原料溶液の種類、 気体の種類、 気体流 量、 熱分解合成炉内の温度などの加熱速度に影響を与える因子を選択することにより、 中空の球、 ポーラス、 中の詰まった粒子、 破碎された粒子などと、 生成する粒子の形態 及び表面状態を制御することができる。
固体状蛍光体原料粒子の熱分解、 合成は、 合成すべき蛍光体の種類、 蛍光体原料に添 加する金属又は金属化合物の種類や量を考慮して最適な温度が選ばれるが、具体的には 加熱温度を 1 3 5 0〜 1 9 0 0 °C、 加熱時間を 0 . 5秒以上 1 0分間以下の範囲の温度 が好ましく、 特に 1 4 5 0〜 1 8 0 0で、 3秒以上 1分間以下の範囲がより好ましい。 上記の熱分解合成温度より低すぎたり、 加熱時間が短すぎると、 金属塩が十分に熱分解 せず、 所望の蛍光体を生成できない。 また、 結晶性が低くなり、 付活剤イオンが結晶内 に十分に含有させることができないため、 発光特性が低くなる。 一方、 上記の熱分解合 成温度より高過ぎたり、加熱時間が長すぎると不要なエネルギーを浪費することになる。 本発明の蛍光体の製造方法において、蛍光体原料溶液からなる液滴の同伴気体として は、 空気、 酸素、 窒素、 水素、 少量の一酸化炭素や水素を含む窒素又はアルゴンなどを 使用できるが、 良好な発光特性を得るためには、 蛍光体の化学組成と発光に関与する付 活剤イオンの種類により気体を選択することが重要である。例えば、 酸化雰囲気で原子 価を保ちやすい E u 3+等を付活剤イオンとする酸化物を主相とする蛍光体を合成する場 合には、 空気や酸素などの酸化性ガスが好ましく、 還元雰囲気で原子価を保ちやすい E u 2 +等を付活剤イオンとする酸化物を主相とする蛍光体を合成する場合には、 水素、 少 量の水素を含む窒素やアルゴンなどの還元性ガスが好ましい。
製造される蛍光体の種類によっては、熱分解合成雰囲気中の一酸化炭素と二酸化炭素 の含有量が 5体積%以下に調整することが好ましく、 0 . 5体積%以下であることがよ り好ましい。 5体積%を超えると、 蛍光体内部や表面に塩基性炭酸塩が析出し、 蛍光体 の発光特性を低下させる塲合がある。 例えは、 Y2 03 : E u蛍光体、 Y2 03 : T b 蛍光体などは塩基性炭酸塩が析出し易い。
熱分解合成炉で生成した粉体 (蛍光体) は、 バグフィルターなどにより収集する。 得 られた粉体 (蛍光体) は、 そのままで蛍光体として使用できる場合もあるし、 何らかの 後処理を必要とする場合もある。必要な後処理のひとつとして、 添加物を酸や水で洗浄 して除去してもよい。例えば、加熱処理により得られた蛍光体を含む粉体を水に入れて 撹拌した後、 遠心分離し、 上澄み液を除去する操作を繰り返した後、 乾燥して水溶性成 分を除去してもよい。
次に本発明の中、 第 1〜第 6の態様の発明の特徴部分について詳述する。
本発明の中、 第 1の態様の製造方法は、 前記金属塩水溶液に金属又は金属化合物から なる、蛍光体の平均結晶成長速度を調整するための添加剤を添加した蛍光体原料溶液を 用い、 以下、 本発明の蛍光体の製造方法に共通した上述の各工程に従って前記蛍光体原 料溶液を気体中に噴霧して微小液滴を形成した後、 これを乾燥して固体状蛍光体原料粒 子とし、 これを熱分解合成炉で加熱して熱分解合成を行って蛍光体を生成させる際、 蛍 光体の平均結晶成長速度をある一定速度に調整することを特徴とするものである。 蛍光体原料溶液の液滴を乾燥して得た固体状蛍光体原料粒子を熱分解して蛍光体を 生成させる際、 この蛍光体の平均結晶成長速度を 0 . 0 0 2 / m3 Z s e c以上に調整 することにより、 優れた発光特性を有する蛍光体を提供することが可能になった。 固体状蛍光体原料粒子を加熱、熱分解した時に生成してくる蛍光体の平均結晶成長速 度が 0 . 0 0 2 / s e cより遅いと、 格子欠陥や表面欠陥が蛍光体中に含有され るために、 優れた発光特性を有する蛍光体を得ることができない。 一方、 この速度が速 すぎることは、 蛍光体の特性上特に問題になることは少ないが、 添加済の量を増加させ たり、 加熱温度を高くする必要があるため実用的でない場合が多い。 この平均結晶成長 速度のより好ましい範囲は 0 . 0 1〜5 0 0 /x m3 / s e cである。
なお、 この第 1の態様の発明において、 平均結晶成長速度は次のように定義する。 即 ち、 得られた蛍光体の S E M写真から、 蛍光体粒子の 1次粒子の直径を読みとる。 ここ でいう 1次粒子とは、独立に存在したと思われる粒子の中に観察される粒界で区切られ る最小単位の粒子を指す。 このとき、 1次粒子が球形でない場合、 最大直径と最小直径 の中間値を読みとる。 この 1次粒子径から、 1次粒子を球と仮定して体積を求める。 こ の体積を加熱時間で割った値を平均結晶成長速度とする。粒子径の単位を/ i m、 加熱時 間の単位を s e cとした場合、 平均結晶成長速度の単位は^ m3 Z s e cである。
本発明の第 1の態様の製造方法において、上述の平均粒子成長速度を調節するために 金属塩水溶液中に添加される金属又は金属塩からなる添加剤としては、例えば、 アル力 リ金属、 即ち L i、 N a、 K、 R b、 C sなど、 又はその化合物を使用することができ る。 その中でも特に好ましいのは、 アルカリ金属の硝酸塩、 塩化物、 水酸化物などであ る。 この添加剤は、 加熱処理後の残留物が発光特性に影響を与えないもの、 又は、 後処 理により容易に除去できるものが好ましい。 前記の添加剤は、必ずしも上述のように最 初から金属塩水溶液中に添加しておくのではなく、 上記添加剤を含む溶液を直接に、 も しくは別途これを加熱して分解し、液状もしくは気体状態にして熱分解合成炉に導入し、 ここで固体状蛍光体原料粒子と共に加熱して、 熱分解しても良い。
本発明の中、 第 2の態様の製造方法は、 前記金属塩水溶液に蛍光体の表面に薄膜層を 被覆するための薄膜層形成物質を添加剤として溶解もしくは分散させた蛍光体原料溶 液を用い、 以下、本発明の蛍光体に共通した上述の各工程に従って前記蛍光体原料溶液 を気体中に噴霧して微小液滴を形成した後、 これを乾燥して固体状蛍光体原料粒子とし、 これを熱分解合成炉で加熱して熱分解合成を行って表面に薄膜形成物質からなる薄膜 層を被覆した蛍光体を生成させることを特徴とするものである。
金属塩水溶液中に添加される薄膜形成物質は、金属塩水溶液に溶解又は分散させるこ とができ、 かつ、 乾燥工程で固体状蛍光体原料粒子中に含有され、 熱分解合成温度で気 化又は熱分解して気体状態を呈し、この固体状蛍光体原料粒子の熱分解により最終的に 得られる蛍光体粒子表面に析出して薄膜を形成し、蛍光体の発光特性を向上させるもの であればその種類を問わない。 具体的には、 L i、 N a、 K、 : R b及び C sの群から選 択される 1種以上の元素を含有する硝酸塩、 塩化物、 又は水酸化物を使用することがで きる。 その中でも、 L iの硝酸塩が特に好ましい。 なお、 この第 2の態様の製造方法の 場合にも、上記薄膜層形成物質は必ずしも上述のように最初から金属塩水溶液中に添加 しておくのではなく、上記薄膜層形成物質を直接に、もしくは別途これを加熱して蒸発、 分解して熱分解合成炉に導入し、 固体状蛍光体原料粒子と共に加熱して、熱分解しても 良い。
なお、 このようにして本発明の第 2の態様の製造方法により得られた蛍光体は、 その 後、 蛍光体粒子表面の薄膜層を除去することが好ましい。 薄膜層は蛍光体の発光特性や 塗布特性を低下させることがあるからである。 除去する方法としては、加熱して薄膜層 を蒸発除去する方法や溶剤で溶解する方法などがある。 ここで使用する溶剤は、 蛍光体 粒子を溶解せずに薄膜層を選択的に溶解するものであればその種類を問わない。例えば、 水や酸性水溶液が簡便で安価に使用できるので好ましい。
この第 2の態様の製造方法においては、前記熱分解合成の過程で前記薄膜層形成物質 を蒸発又は分解して気体状態となし、前記蛍光体粒子表面に析出させて 1 0 n m以上の 平均膜厚を有する薄膜層を形成することにより、 粒度分布が狭く、 凝集粒子が少なく、 球状で、 しかも、 高純度で化学組成が均一な優れた発光特性を有する蛍光体を安価に提 供することができ、 そして、 表面に形成された薄膜層を除去してからブラウン管、 蛍光 ランプ、 P D Pなどに適用するときに均質で緻密な高輝度蛍光膜を形成することを可能 にする。本発明の蛍光体を被覆する薄膜層は、 その平均膜厚が 1 0 n m以上であること が好ましい。 1 0 n mより薄いと、 蛍光体粒子表面を均質に被覆することが難しく発光 特性を十分に向上させることができない。平均膜厚のより好ましい範囲は 2 0〜5 0 0 n mである。 なお、 薄膜層の平均膜厚は、 蛍光体粒子の断面を走査型電子顕微鏡で観察 して決定した。
第 2の態様の製造方法において、薄膜層形成物質を含有する金属塩水溶液からなる蛍 光体原料溶液は、 蛍光体の構成金属元素の総モル数を A、 薄膜層形成物質に含まれる金 属元素の総モル数を Bとするときに、 (Α Χ Ο .· 1 ) ≤Bの関係を満たすように予め溶 液を調製することが好ましい。 薄膜層形成物質が上記の範囲より少ないと、 薄膜層が薄 すぎて不均一になるため蛍光体粒子を均一に被覆することができず、蛍光体の発光特性 を十分に向上させることができない。 なお、 この場合、 上記溶液の好ましい関係は (A X 0 . 1 ) ≤ ≤ ( A X 1 0 ) である。 本発明の第 2の態様の製造方法を適用することのできる蛍光体としては、 例えば、 組 成式 (R1 ,-χ, R2 X ) 203 (但し、 R1 は Y、 G d、 L a、 L u及び S cの群から選 択される 1種以上の元素で、 R2 は C e、 P r、 Nd、 Eu、 Tb、 Dy及び Tmの群 から選択される 1種以上の元素であり、 Xは 0<x≤0. 2を満たす数である) で表さ れる結晶相を主成分とする蛍光体を挙げることができる。 本発明の第 2の態様により、 例えば、 上記組成式 (R1 ,-χ, R2 X ) 203蛍光体を製造する場合、 噴霧される蛍光体原 料溶液は、 Y、 Gd、 L a、 L u及び S cの群から選択される 1種以上の元素 R1 を含 有する化合物と、 Ce、 P r、 Nd、 Eu、 Tb、 D y及び Tmの群から選択される 1 種以上の元素 R2 を含有する化合物を含み、 かつ、 薄膜層形成物質である L i、 Na、 K、 R b及び C sの群から選択される 1種以上の元素を含有する化合物を含み、 金属塩 水溶液中の R1 と R2 の総モル数を Cとし、薄膜層形成物質に含有される金属元素の総 モル数を Dとするとき、 (CX 0. 1) ≤D≤ (CX 10) の条件を満たすように調整 することにより、 発光特性の良好な酸化物蛍光体を合成することができる。 この酸化物 蛍光体においても、薄膜層形成物質に含有される金属元素の総モル数 Dが (CX 0. 1) より小さいと、 蛍光体粒子表面の薄膜層が薄くなり過ぎて不均一となり、 蛍光体の発光 特性を十分に向上させることができない。 また、 (CX 10) より大きくすると、 不要 な原料を消費することになり、 蛍光体の価格を押し上げる要因となる。
本発明の中、 第 3の態様の製造方法は、 本発明の蛍光体の製造方法に共通した上述の 各工程に従って、 前記蛍光体原料溶液を同伴気体中で微小液滴となし、 これを乾燥して 固体状蛍光体原料粒子とし、 これを加熱して、 熱分解合成して蛍光体を製造する際に、 雰囲気ガス中に気体状態の金属塩化物を含有させて加熱、熱分解合成を行うことを特徴 とするものであり、本態様の製造方法によって蛍光体を製造することにより、 蛍光体の 結晶性を改善し、 凝集粒子の発生を抑制し、 高純度で化学組成が均一で、 優れた発光特 性を有する蛍光体の提供を可能にした。
この第 3の態様の製造方法においては、蛍光体原料溶液の液滴もしくはこれを乾燥さ せて得た固体状蛍光体原料粒子の熱分解時の雰囲気ガス中に気体状態の金属塩化物を 含有させるが、 気体状態の金属塩化物を含有する雰囲気を得るためには、①気体状態の 金属塩化物の前駆体物質を予め加熱することにより気体状態にした金属塩化物を熱分 解合成炉内に導入する方法、②金属塩化物の水溶液を熱分解合成炉内に直接導入する方 法、③予め金属塩水溶液中に添加剤として気体状態の金属塩化物の前駆体物質を含有さ せた溶液を蛍光体原料溶液として使用する方法などがあるが、 これらの方法の中でも、 前記③の、金属塩水溶液中に気体状態の金属塩化物となり得る前駆体物質を含有させた 蛍光体原料溶液を用いる方法が簡便であり好ましい。
金属塩水溶液中に添加される添加剤としては、熱分解合成温度で気体状態の金属塩化 物を生成する金属塩化物の前駆体物質を添加することが好ましい。この前駆体物質とし ては、 加熱により容易に気化する金属塩化物がより好ましい。熱分解合成温度で気体状 態の金属塩化物を蛍光体粒子と反応させると、数秒〜数分程度の短時間で特性の高い蛍 光体を合成できる。前記前駆体物質としては、 熱分解合成温度で気体状態の金属塩化物 を形成するものならば、 その種類を問わない。 しかし、 アルカリ金属塩化物は気化しや すく、 気体状態で安定であるため特に好ましい。 その中でも、 塩化リチウムを前駆体物 質として使用すると、 最も良好な発光特性を有する蛍光体を製造できる。 また、 気体状 態の金属塩化物と一酸化炭素や二酸化炭素との化合物が生成し、得られる蛍光体の発光 特性を低下させることがあるため、熱分解合成時の雰囲気ガス中の一酸化炭素と二酸化 炭素の含有量を 0 . 1体積%以下にすることが特に好ましい。
このように、加熱して熱分解合成される時の雰囲気中に気体状態の金属塩化物を供給 し得る金属塩化物又はその前駆体を、蛍光体原料溶液中に含有させるかもしくは直接熱 分解合成炉に供給しながら加熱する以外は本発明の蛍光体の製造方法に共通した上述 の工程を経て第 3の態様の製造方法による蛍光体が製造される。
第 3の態様の製造方法の場合、熱分解合成は、 気体状態の金属塩化物を含有する雰囲 気とすることが発光特性の高い蛍光体を得る上で重要であるが、この気体状態の金属塩 化物は、熱分解合成時の雰囲気ガスの 0 . 0 0 1〜 5体積%存在させることが好ましく、 特に 0 . 0 1〜 1体積%とするのがより好ましい。 気体状態の金属塩化物が少なすぎて も多すぎても、 得られる蛍光体の発光特性が低下する。 なお、 得られた液滴を乾燥して 固体状蛍光体原料粒子とするには加熱乾燥が工業的生産においては安価で好ましい。し かしながら、 本発明の第 3の態様の製造方法により蛍光体を製造する場合、 蛍光体原料 溶液からなる液滴を乾燥して固体状蛍光体原料粒子とする場合、拡散乾燥法で微小液滴 から水分を除去して金属塩粒子や金属錯体粒子を得た後に、これを熱分解合成炉内に導 入すると、 気体状態の金属塩化物が生成し易いために更に好ましい。 本発明の中、 第 4の態様の製造方法は、 本発明の蛍光体の製造方法に共通した上述の 各工程に従って、 前記金属塩水溶液を同伴気体中で微小液滴となし、 これを乾燥して固 体状蛍光体原料粒子とし、 これを加熱して、 熱分解合成して蛍光体を製造する際に、 雰 囲気ガス中に気体状態の金属水酸化物を含有させることにより、蛍光体の結晶性を改善 し、 凝集粒子の発生を抑制し、 高純度で化学組成が均一で、 優れた発光特性を有する蛍 光体の提供を可能にした。
この第 4の態様の発明においては、 金属塩水溶液中に、 添加剤として熱分解合成温度 で水と反応して気体状態の金属水酸化物となりうる前駆体物質を添加して蛍光体原料 溶液とすることが好ましい。 この前駆体物質としては、 加熱により容易に分解して水と 反応する金属硝酸塩がより好ましい。熱分解合成温度で気体状態の金属水酸化物を蛍光 体粒子と反応させると、 数秒〜数分程度の短時間で特性の高い蛍光体を合成できる。 気体状態の金属水酸化物になり得る前駆体物質としては、熱分解合成温度で水と反応 して気体状態の金属水酸化物を形成するものならば、 その種類を問わない。 また、 水と の反応性や気体状態の安定性などの点からアル力リ金属硝酸塩が好ましい。その中でも、 硝酸リチウムは前駆体物質として使用すると、最も良好な発光特性を有する蛍光体を製 造できる。この第 4の態様の製造方法の場合にも、第 3の態様の製造方法の場合と同様、 上記気体状態となり得る金属の水酸化物やその前駆体は、①予め加熱して気体状態にし た金属水酸化物を熱分解内に導入する方法、②金属水酸化物の水溶液を熱分解炉に直接 導入する方法、③最初から蛍光体原料溶液中に含有させておく方法などを採用して固体 状蛍光体原料粒子の熱分解時の雰囲気ガス中に含有させる。
本発明の第 4の実施態様の製造方法は、加熱して熱分解合成される時の雰囲気中に気 体状態の金属水酸化物を供給し得る金属水酸化物又はその前駆体を添加した蛍光体原 料溶液の液滴又はそれが乾燥した固体状蛍光体原料粒子を、気体状態の金属水酸化物を 含む雰囲気中で加熱、 熱分解すること以外は、 本発明の蛍光体の製造方法に共通した上 述の各工程を経て本発明の蛍光体が製造される。
本発明の中、第 5の態様の製造方法は、 本発明の蛍光体の製造方法に共通した上述の 各工程に従って、 前記金属塩水溶液を同伴気体中で微小液滴となし、 これを乾燥して固 体状蛍光体原料粒子とし、 これを加熱して、 熱分解合成して蛍光体を製造する際に、 雰 囲気ガス中に気体状態の八ロゲン化水素を含有させることにより、蛍光体の結晶性を改 善し、 凝集粒子の発生を抑制し、 高純度で化学組成が均一で、 優れた発光特性を有する 蛍光体の提供を可能にした。
本発明の第 5の態様の製造方法においては、微少液滴化される蛍光体原料溶液として、 上述の金属塩水溶液中には、熱分解合成温度で気体状態のハロゲン化水素となり得る前 駆体物質を含有させることが好ましい。 この第 5の態様の製造方法の場合にも、 上述の 第 3、 第 4の態様の製造方法の場合と同様にして、 上記気体状態の八ロゲン化物やその 前駆体を液状もしくは気体状にして熱分解炉の雰囲気ガス中に直接導入して固体状蛍 光体原料粒子を加熱し、 熱分解合成しても良い。 この前駆体物質としては、 加熱により 容易に気化する非金属ハロゲン化物がより好ましい。熱分解合成温度で気体状態の八口 ゲン化水素を蛍光体粒子と反応させると、数秒〜数分程度の短時間で特性の良好な蛍光 体が合成できる。 気体状態の八ロゲン化水素になり得る前駆体物質としては、 熱分解合 成温度で気体状態のハ口ゲン化水素を形成するものならば、 どのようなものでも良い。 しかし、 前駆体物質としてフッ酸、 塩酸、 臭酸、 フッ化アンモニゥム、 フッ化水素アン モニゥム、 塩化アンモニゥム、臭化アンモニゥムなどが蛍光特性の良好な蛍光体を合成 できるので好ましい。
金属塩水溶液中に、熱分解合成温度により気体状態の八ロゲン化水素を生成する前駆 体物質を含有する蛍光体原料溶液は、 次いで、 本発明の蛍光体の製造方法に共通した上 述の各工程に従って同伴気体中において微液滴化され、必要に応じてこの微液滴に分級、 乾燥の操作を施してから、生成した固体状蛍光体原料粒子を同伴気体と共に熱分解合成 炉に導入して熱分解することによって、 本発明の第 5の態様の蛍光体が製造される。 第 5の態様の発明の製造方法においては、熱分解合成は気体状態の八ロゲン化水素を 含有する雰囲気とすることが発光強度の高い蛍光体を得る上で必要である。気体状態の ハロゲン化水素を含有する雰囲気を得るためには、上述のように金属塩水溶液中に熱分 解合成温度により気体状態の八口ゲン化水素を生成する前駆体物質を含有させた蛍光 体原料溶液を使用する方法の外に、上記本発明の第 3の態様の製造方法の場合と同様に、 該前駆体物質を予め加熱することにより気体状態にしたハロゲン化水素を熱分解合成 炉内に導入する方法や、八ロゲン化水素の水溶液を熱分解合成炉内に直接導入する方法 などによっても達成される。
なお、 この第 5の態様の製造方法の場合には、製造しょうとする蛍光体の組成にもよ るが、 結晶性が高く、 発光輝度の高い酸化物を主相とする蛍光体を得るためには、 熱分 解合成炉内での固体状蛍光体原料粒子の加熱、熱分解は 6 0 0〜 1 9 0 0 °Cの範囲内の 温度で 0 . 5秒間〜 1分間の範囲内の滞留時間だけ実施するのがより好ましく、 特に 1 4 5 0〜 1 8 0 0 の範囲内の温度で 0 . 5秒間〜 1分間の範囲内の滞留時間だけ加熱 するのが更に好ましい。
本発明の中、 第 6の態様の蛍光体の製造方法の特徴は、 金属塩水溶液の微細な液滴も しくはこれを乾燥させて得た固体状蛍光体原料粒子を同伴気体と共に加熱し、熱分解し て所望の蛍光体を合成する際、反応系内に生成する蛍光体粒子を分散させる役目を担う 分散媒体となる化合物を添加剤として反応系内に共存させておき、前記液滴もしくは前 記固体状蛍光体原料粒子を加熱してこれを熱分解し、先ず生成してくる蛍光体の前駆体 (以下、 固体状蛍光体原料粒子の熱分解によって生成され、 これが所望の蛍光体の結晶 核となるまでの過程で存在する種々の中間体を総称して 「蛍光体前駆体」 という) に溶 融状態となつた前記分散媒体を接触させた状態で熱分解に続く加熱を継続することに よって、 前記蛍光体前駆体から生成した複数の蛍光体粒子を、 その後、 固体化し粒子状 となった前記分散媒体に内包させて同伴気体と共に反応系外に取り出すもので、蛍光体 前駆体から蛍光体の結晶核が生成する際、その周囲に介在する液状の分散媒体のために 蛍光体前駆体の相互が直接接触することが妨げられ、蛍光体結晶核の結晶成長の過程で の粒子同志の凝集を防止し、個々の粒子が実質的に独立した粒子形態を保持した蛍光体 粒子を得ることができるため、 その結果、 高純度で化学組成の均一な、 微小かつ分散性 の極めて良好な蛍光体粒子を製造することを可能にする。
この第 6の態様の製造方法において、添加剤として熱分解合成時の反応系に導入され る分散媒体は、 熱分解合成時に溶融して、 蛍光体前駆体を経由して生成してくる蛍光体 粒子の分散系を構成する物質であればよく、蛍光体粒子と化学的に反応し難い物質を使 用することが好ましい。 また、 分散媒体の前駆物質を添加して熱分解合成時に前記分散 媒体と同様に機能する物質を使用することも可能である。
この分散媒体又はその前駆物質を熱分解合成時の反応系に導入するには、 これを金属 塩溶液中に予め添加して両者を含有する蛍光体原料水溶液を同伴気体中に噴霧してそ の微液滴を形成する方法と、金属塩溶液のみからなる蛍光体原料溶液を同伴気体中に噴 霧して微液滴を形成し、 乾燥して固体状蛍光体原料粒子とした後に、 高温に加熱して溶 融状態又は気体状態にした分散媒体を、前記同伴気体中の前記固体状蛍光体原料粒子表 面上に噴霧して、前記固体状蛍光体原料粒子を内包若しくはこれに付着する分散媒体粒 子を形成する方法のいずれを選択してもよい。要は、 熱分解合成時に溶融した分散媒体 中に、蛍光体原料溶液の液滴もしくは固体状蛍光体原料粒子が熱分解し、 生成した蛍光 体前駆体を経て生成した蛍光体粒子を分散させることが重要である。いずれの方法にお いても、蛍光体の結晶を成長させた後に前記分散媒体を除去して微小蛍光体粒子を得る ことが好ましい。
金属塩水溶液のみ若しくは金属塩水溶液と分散媒体又はその前駆物質とを含有する 蛍光体原料溶液は、以下、本発明の蛍光体の製造方法に共通した上述の各工程に従って、 同伴気体中において微液滴化され、必要に応じてこの微液滴に分級、 乾燥の操作を施す ことにより、 生成した分散媒体又はその前駆物質を含有する固体状蛍光体原料粒子、 又 は表面に気体状態の分散媒体が噴霧された該固体状蛍光体原料粒子を加熱して熱分解 することによって、 本発明の第 6の態様の蛍光体が製造される。
本発明の第 6の態様の製造方法において、 蛍光体原料溶液中に添加されるか、 蛍光体 原料溶液の液滴を乾燥させて得た固体状蛍光体原料粒子表面に噴霧される上記分散媒 体又はその前駆物質としては、 アルカリ金属ハロゲン化物、 アルカリ土類金属ハロゲン 化物、 八ロゲン化亜鉛、 及びアルカリ金属硫化物の群から選ばれる少なくと 一種の化 合物を使用することができ、 その中でもアルカリ金属ハロゲン化物、 ベリリウムを除く アルカリ土類金属の塩化物、 臭化マグネシウム、 フッ化亜鉛、 硫化リチウム、 硫化ナト リウム、及び硫化力リウムの群から選ばれる少なくとも一種の化合物を使用することが 好ましい。
熱分解合成時に蛍光体粒子を内包して生成してくる分散媒体粒子中の分散媒体の使 用量は、 蛍光体の体積に対して 1 ~ 1 0 0倍の分散媒体を使用することが好ましい。 分 散媒体の使用量が上記比率より低いと、蛍光体の結晶性を十分に向上させることができ ず、 合成蛍光体粒子の凝集を回避することができない。 上記比率より高いと、 蛍光体の 結晶性は十分に向上するものの、分散媒体粒子中に生成する蛍光体単結晶の量が少なく なり、 生産性が低下する。分散媒体の使用量の好ましい範囲は得られる蛍光体の体積に 対して:!〜 2 0倍である。
本発明の第 6の態搽の製造方法においては、製造する蛍光体の種類にもよるが熱分解 合成工程における加熱条件としては、蛍光体原料溶液の液滴やこれを乾燥させた固体状 蛍光体原料の熱分解合成は、熱分解合成のための加熱中に分散媒体を溶融状態にしてお くことが必要であるため、少なくとも該固体状蛍光体原料粒子の熱分解により生じた蛍 光体前駆体の加熱時には分散媒体の融点以上の温度で行う必要があり、好ましくは融点 より 2 0 O t高い温度以下の温度範囲で熱分解合成を行うことが望ましい。分散媒体も しくはその前駆体の融点以上でしかも融点より 2 0 0 °C高い温度以下とすることによ り、熱分解合成時に蛍光体前駆体を分散媒体粒子中に内包させ、 溶融状態の分散媒体で 周囲を包まれた蛍光体前駆体から蛍光体の結晶核を生成し成長させることがきるので、 合成後の蛍光体粒子が凝集することもない。 その結果、 蛍光体の結晶性を著しく向上さ せ、 かつ、 高純度で化学組成の均一な微小蛍光体粒子を得ることができるようになる。 蛍光体前駆体から生成した蛍光体粒子を包囲する分散媒体は、蛍光体の合成を終了し た後に除去することが発光特性を確保するために好ましい。分散媒体の存在は、 蛍光体 を励起する際に使用する入射電子や紫外線を吸収したり、蛍光体からの発光を吸収する ため、 発光特性を低下させる要因となる場合があるからである。
分散媒体として水溶性の無機塩を使用するときには、分散媒体中で蛍光体を合成した 後、水で分散媒体を溶解して容易に除去することができ、 微小蛍光体粒子の回収が容易 となる。 なお、 使用可能な分散媒体の融点は蛍光体の融点より低いので、 分散媒体を加 熱して蒸発させ、 蛍光体粒子を分離回収することも可能である。
分散媒体粒子内に含有される蛍光体粒子の最大径は、 1〜5 0 O n mの範囲とするこ とが好ましく、 1〜 1 0 0 n mの範囲とすることがより好ましく、 l〜1 0 n mの範囲 とすることが更に好ましい。 蛍光体粒子の最大径が、 1 n mより小さいと付活剤を結晶 内に均一に導入することが難しい。 一方、 蛍光体粒子の最大径が大きすぎると、 分散媒 体の粒子内に空間的に独立する複数の蛍光体粒子を合成することが困難となる。 また、 最大径が 1 0 n m以下の場合には、蛍光体の発光特性を顕著に向上させることができる。
5 ) 再加熱工程
上述の態様 1〜態様 6のいずれかの方法により得られた蛍光体は、熱分解合成炉内で 熱分解合成を行って所望の結晶相を含有する蛍光体粒子を得た後、さらに再加熱処理す る 2段階加熱法を採用してもよい。この再加熱処理は蛍光体粒子の結晶性を高めると同 時に、 付活剤イオンの原子価を制御し結晶内に均一に付活することができるので、 発光 特性の良好な蛍光体を得ることができる。
この 2段階加熱法 (再加熱処理法) は、 金属塩粒子又は金属錯体粒子 (固体状蛍光体 粒子) を熱分解合成炉で 1 3 5 0〜 1 9 0 0 °Cの温度範囲で 0 . 5秒間以上 1 0分間以 下の加熱時間で熱分解合成した後、 例えば、 上記本発明の第 2の態様の製造法により得 た蛍光体であれば、 蛍光体粒子表面の薄膜層を除去し、 さらに、 熱分解合成時の同伴気 体と同様の雰囲気ガス中で 1 0 0 0〜 1 7 0 0 °Cの温度範囲で 1秒間以上 2 4時間以 下で再加熱処理することにより、 より発光特性の良好な蛍光体を得ることができる。 こ の時、 再加熱温度が低すぎたり、 再加熱時間が短すぎると、 結晶性が低くなる上、 付活 剤イオンの原子価を制御できず、 結晶内を均一に付活できないため、 発光特性が低くな る。 また、 上記第 2の態様の製造法により得た蛍光体の場合、 表面に形成された薄膜層 を除去せずに再加熱処理すると、凝集粒子が発生しやすく蛍光体の塗布特性を低下させ る。 一方、 再加熱温度が高すぎたり、 再加熱時間が長すぎると、 不要なエネルギーを浪 費するだけでなく、 凝集粒子を多数生成させ、 緻密な蛍光膜を形成することができなく なり、 所望の発光特性が得られない。
また、 上記実施態様 5の場合を除き、 本発明の製造方法により製造する塲合、 上記熱 分解合成の際の加熱温度が 1 3 5 0的に達しないが、 熱分解反応時間が 0 . 5秒に達し ない場合には、 結晶性が十分に良好とならず、 これを上記の 1 0 0 0〜1 7 0 0 °Cの温 度範囲で 1秒間以上 2 4時間以下の時間内で、 再加熱処理しても、 結晶性は良好となる が、 極めて多数の凝集粒子が生成するため、 緻密な蛍光膜を形成できず、 所望の発光特 性が得られない。
なお、 再加熱処理時の凝集粒子の生成防止には、 再加熱処理温度を熱分解合成温度よ り 1 0 0で以上低いことが好ましく、 2 0 0 °C以上低いことがより好ましい。
本発明の蛍光体の製造方法の中、 態様 1〜態様 5の製造方法は、 特に組成式 (R 1 x , R 2 x ) 2 03 (但し、 R 1 は Y、 G d、 L a、 L u及び S cの群から選ばれる少 なくとも一つの元素、 R 2 は C e、 P r、 N d、 E u、 T b、 D y及び Tmから選ばれ る少なくとも一つの元素、 Xは 0く x≤0 . 2を満す数である) で表される結晶相を主 成分とする蛍光体を製造するのに適しており、 態様 3〜態様 5の製造方法は、 特に組成 式 M2 A 1 10O 17 (伹し、 M1 は B a , S r, C a及び E uの群から選択される少な くとも一つの元素、 M2 は M g及び M nの群から選択される少なくとも一つの元素であ る) で表される結晶相を主成分とする蛍光体の製造に最適である。
また、 本発明の態様 1〜態様 5の製造方法によると、 得られる蛍光体の重量平均粒子 径 D5Dの大部分は 0. 1〜 50 mの範囲にあり、 かつ蛍光体粒子の最小直径 (Ds) と最大直径 (D,) の比 (DS/DL) の値は 0. 8〜1. 0の範囲にある、 球状に近い 粒子形状の蛍光体が得られ、 本発明の態様 6の製造方法によると、 凝集が少なく球状に 近い形状を有し、平均粒子径がおよそ 1〜500 nmのいわゆるナノ結晶の蛍光体を効 率よく製造することが可能となる。
以上、 詳述した上記本発明の製造方法により得られた蛍光体は、 凝集が少ない微少粒 子であり、 球形に近い形状の蛍光体を得ることができ、 蛍光ランプ、 ブラウン管、 PD Pなどの蛍光膜として適用するときには均質で緻密な高輝度の蛍光膜を容易に形成す ることができる。
実施例
次に、 実施例により本発明を説明する。
〔実施例 1〕
硝酸ィットリウム 0. 282モル
硝酸ュ一口ピウム 0. 0 18モル
硝酸リチウム 0. 3モル
以上の成分を水に溶解し、 少量の硝酸を添加して 1リットルとした。
同伴気体として空気を使用し、 この 「 「金属塩水溶液」 」 を 1. 7 MHzの振動子を 有する超音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液滴を慣性分級器を 使用して分級し、微小液滴の重量平均粒子径が 5 ^amで、 90重量%の微小液滴が 10 II m以下の粒径の微小液滴とした。
分級された微小液滴を最高温度が 1 600 °Cの電気炉内で 1 0秒間の滞留時間だけ 熱分解し、 生成した粒子をバッグフィルタ一で捕集した。
この粒子を水に入れ、 撹拌し、 遠心分離し、 上澄み液を廃棄した。 この操作を 3回実 施した後、 120 の乾燥器で乾燥して前記態様 1の製造方法による実施例 1の蛍光体 を得た。 この蛍光体の平均結晶成長速度は 0. 27 ^m3 Zs e cであった。 この蛍光 体の 254 nmの紫外線照射下での発光輝度を測定したところ、比較例 1の蛍光体の同 条件における発光輝度を 78とした場合に 1 02だった。この蛍光体の重量平均粒子径 D5Dをレーザー回折法により測定したところ 1. 0 /2mだった。 得られた蛍光体の SE M写真によると、 最大直径に対する最小直径の平均値は 0. 95であり、 (最小直径ノ 最大直径) が 0. 8〜1. 0の条件を満足する粒子の個数は全体の 9 5 %であった。 〔比較例 1〕
硝酸イツトリウム 0. 282モル
硝酸ユーロピウム 0. 018モル
以上の成分を水に溶解し、 少量の硝酸を添加して 1リットルとした。
同伴気体として空気を使用し、 この金属塩水溶液を 1. 7 MH zの振動子を有する超 音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液滴を慣性分級器を使用して 分級し、 微小液滴の重量平均粒子径が 5 mで、 90重量%の微小液滴が 1 0 zm以下 の粒径の微小液滴とした。
分級された微小液滴を最高温度が 1 60 0 T:の電気炉内で 1 0秒間の滞留時間だけ 熱分解し、 生成した粒子を合成しバッグフィルターで捕集した。
この粒子を実施例 1と同様の処理を施して比較例 1の蛍光体を得た。この蛍光体の平 均結晶成長速度は 0. 0008 M m3 ノ s e cであった。 この蛍光体の 254 nmの紫 外線照射下での発光輝度を測定したところ 78であった。この蛍光体の重量平均粒子径 D50をレーザー回折法により測定したところ 1. 5 mだった。 得られた蛍光体の SE M写真によると、 最大直径に対する最小直径の平均値は 0. 95であり、 (最小直径/ 最大直径) が 0. 8〜1. 0の条件を満足する粒子の個数は全体の 1 00 %であった。 〔実施例 2〕
実施例 1において、電気炉内の最高温度を 1600でから 1 500°Cに変更した以外 は実施例 1と同様にして前記態様 1の製造方法による実施例 2の蛍光体を得た。この蛍 光体の平均結晶成長速度は 0. 003 m3 Zs e cであった。 この蛍光体の 254 η mの紫外線照射下での発光の輝度を測定したところ、比較例 1の蛍光体の同条件におけ る輝度を 78とした場合に 89だった。 この蛍光体の重量平均粒子径 D5flをレーザー回 折法により測定したところ 1. 1 mだった。 得られた蛍光伴の S EM写真によると、 最大直径に対する最小直径の平均値は 0. 9 5であり、 (最小直径/最大直径) が 0. 8〜1. 0の条件を満足する粒子の個数が全体の 95%だった。
〔実施例 3〕 蛍光体の化学組成が(YQ.94, E u 0.06) 2 03 となるように硝酸イットリウムと硝酸ュ —口ピウムをそれぞれ水に溶解し、 (YD.94, E u Q. Q6) 23の 1モルに対して 2モルと なるように硝酸ナトリウムを添加し、少量の硝酸を添加して硝酸イットリウムユーロピ ゥムとしての溶質濃度 Cが 0 . 3の均質な金属塩水溶液を作成した。 この金属塩水溶液 には固形分は混在していなかった。
同伴気体として空気を使用し、 上記の金属塩水溶液を 1 . 7 M H zの振動子を有する 超音波噴霧器を用いて微小液滴を形成した。 次に、 この微小液滴を慣性分級器を使用し て分級し、 微小液滴の重量平均粒子径が 5 mで、 9 0重量%の微小液滴が 1 0 z m以 下の粒径からなる微小液滴とした。
分級された微小液滴を、加熱速度が毎秒 5 0 °Cとなるように昇温して 2 0 0でで加熱 乾燥して金属塩粒子を得た。この金属塩粒子を 2 0 0 °Cに保持しながら熱分解合成炉に 搬送し、最高温度が 1 6 0 0 °Cの炉内で 1 3秒間加熱し熱分解して前記態様 2の製造方 法による酸化物蛍光体粒子を合成し、 バッグフィルターで捕集した。 なお、 この熱分解 合成の雰囲気ガス中には、前記金属塩水溶液中に添加した硝酸カリウムが水と反応して 気体状態の水酸化力リゥムとして含有されていた。
得られた蛍光体粒子の形状を走査型電子顕微鏡で観察したところ、蛍光体粒子表面に 約 0 . 1 mの厚さの水酸化ナトリウムの薄膜層が形成されていた。 この薄膜層を水と 希硝酸を使用して除去した後、 粉末 X線回折パターンを調べたところ、不純物相の存在 しない単相の蛍光体粒子が生成していることが分かつた。
この蛍光体粒子の形状は、 表面が滑らかで粒径の揃った球状であり、最大直径に対す る最小直径の平均値の比が 0 . 9 5であり、 0 . 8≤ (最小直径ノ最大直径) ≤ 1 . 0 を満足する粒子の個数は全体の 9 5 %だった。 また、 そのメジアン径 D 5()は 1 であ り、凝集粒子はほとんど観察されなった。 この蛍光体に波長 2 5 4 n m紫外線を照射し て発光スペクトルを測定したところ、 良好な赤色発光を示し、 発光強度は 1 0 0であつ た。 また、 この蛍光体をガラス板上に沈降塗布したところ、 従来の蛍光体より緻密で滑 らかな蛍光膜が形成できた。
〔実施例 4〕
蛍光体の化学組成が (B a , E u 0. , ) M g A 1 1D017となるように硝酸バリウム、 硝酸ユーロピウム、 硝酸マグネシウム、 硝酸アルミニウムをそれぞれ水に溶解し、 (B a 0.9 , E u 0. , ) M g A 1 10O 1Tの 1モルに対して 8モルとなるように硝酸カリウムを添 加し、 少量の硝酸を添加して溶質濃度 Cが 0 . 3の均質な金属塩水溶液を作成した。 な お、 固形分は混在していなかった。
同伴気体として水素を 4体積%含有する窒素を使用し、 上記の金属塩水溶液を 1 . Ί MH zの振動子を有する超音波噴霧器で微小液滴を形成した。 次に、 この微小液滴を慣 性分級器を使用して分級して、微小液滴の重量平均粒子径が 5 /z mで 9 0重量%の微小 液滴が 1 0 ; m以下の粒径の微小液滴とすると共に、液滴同伴気体の単位体積当たりの 液滴体積を 5倍に濃縮した。
分級された微小液滴を、加熱速度が毎秒 5 0 °Cとなるように昇温して 2 0 0 °Cで加熱 乾燥して金属塩粒子を得た。 この金属塩粒子を 2 0 (TCに保持しながら、熱分解合成炉 に搬送し、最高温度が 1 6 0 0での炉内で 1 0秒間加熱し熱分解して前記態様 2の製造 方法による酸化物蛍光体粒子を合成し、 バッグフィルタ一で捕集した。 なお、 この熱分 解合成の雰囲気ガス中には、前記金属塩水溶液中に添加した硝酸ナトリゥムが水と反応 して気体状態の水酸化ナトリゥムとして含有されていたことが確認された。
得られた蛍光体粒子の形状を走査型電子顕微鏡で観察したところ、蛍光体粒子表面に 約 0 . 1 i mの厚さの水酸化カリウムの薄膜層が形成されていた。 この薄膜層を水と希 硝酸を使用して除去した後、 粉末 X線回折パターンを調べたところ、 不純物相の存在し ない単相の蛍光体粒子が生成していることが分かった。
この蛍光体粒子を焼成容器に充填し、水素を 4体積%含有する窒素中で 1 4 0 0 °Cで 2時間再加熱処理を行つて発光特性を調整し蛍光体を得た。得られた蛍光体の粉末 X線 回折パターンを調べたところ、不純物相の存在しない単相の蛍光体が生成していること が分かった。 また、 この蛍光体の形状は、 表面が滑らかで粒径の揃った球状であり、 最 大直径に対する最小直径の平均値の比が 0 . 9 8で、 0 . 8≤ (最小直径/最大直径) ≤ 1 . 0を満足する粒子の個数が全体の 9 5 %だった。 また、 そのメジアン粒径 D 50は 1 li mi つすこ。この蛍光体に波長 2 5 4 n mの紫外線を照射して発光スぺクトルを測定 したところ、 良好な青色発光を示し、 その発光強度は 1 0 0であった。 また、 この蛍光 体をガラス板上に沈降塗布したところ、従来の蛍光体より緻密で滑らかな蛍光膜が形成 できた。
〔比較例 2〕 実施例 4において、 硝酸カリウムの添加を省略した以外は、 実施例 4と同様にして比 較例 3の蛍光体を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この蛍光体の形状は、 表面が滑らかで 粒径の揃った球状であり、 そのメジアン径 D 5„は 1 . l mであり、 凝集粒子はほとん ど観察されなかった。この蛍光体に波長 2 5 4 n mの紫外線を照射して発光スペクトル を測定したところ、 青色発光を示したが、 その発光強度は、 これと同一条件で測定され た実施例 4の蛍光体の発光強度の 6 0 %であった。
〔実施例 5〕
蛍光体の化学組成が(Yo. M, E u 0.06) 2 03 となるように硝酸イットリウムと硝酸ュ —口ピウムをそれぞれ水に溶解し、 (YQ.94, E u 0.06) 2 03 の 1モルに対し、 塩化リチ ゥムを 1 . 3モルとなるように添加し、 少量の硝酸を添加し、 硝酸イットリウムユーロ ピウムとして溶質濃度 Cが 0 . 3の均質な金属塩水溶液を調製した。得られた水溶液の p Hは、 1 . 4であり、 固形分の混在はなかった。
同伴気体として空気を使用し、 上記の金属塩水溶液を 1 . 7 M H zの振動子を有する 超音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液滴を慣性分級器を使用し 分級して、微小液滴の重量平均粒子径が 5 mで、 9 0重量%の微小液滴が 1 0 i m以 下の粒径の微小液滴を得た。
この分級された微小液滴を加熱速度が毎秒 5 0 °Cとなるように昇温し 2 0 0 で加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 2 0 0 に保持しながら熱分解合成炉 に搬送して、塩化リチウムを気化させて気体状態の塩化リチウムを含有する雰囲気を形 成し、最高温度が 1 6 0 0 の電気炉内で 1 3秒間の滞留時間だけ熱分解して前記態様 3の製造方法による酸化物蛍光体粒子を合成しバッグフィルターで捕集した。
得られた蛍光体の粉末 X線回折パ夕一ンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒 径の揃った球状で、 その平均粒径は 1 i mであり、 (最小粒径 最大粒径) の値が 0 . 8〜1 . 0の範囲にある蛍光体の個数は 9 5 %であった。 この蛍光体について波長 2 5 4 n m紫外線照射下での発光スペクトルを測定したところ、 良好な赤色発光を示し、 そ の発光強度は、同一条件で測定された比較例 1の蛍光体の発光強度を 8 0とするときに 1 02であった。
〔実施例 6〕
蛍光体の化学組成が (B aQ.9 , E u0., ) MgA 11Q017となるように硝酸バリウム、 硝酸ユーロピウム、 硝酸マグネシウム、 硝酸アルミニウムをそれぞれ水に溶解し、 (B a0.9 , E u0.i ) Mg A 110O17の 1モルに対して 2. 5モルとなるように塩化ナトリウ ムを添加し、 少量の硝酸を添加して溶質濃度 Cが 0. 3の均質な金属塩水溶液を調製し た。 得られた水溶液の pHは、 0. 8であり、 固形分の混在はなかった。
同伴気体として水素を 4体積%含有する窒素を使用し、 上記の金属塩水溶液を 1. 7 MHzの振動子を有する超音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液 滴を慣性分級器を使用し分級して、 微小液滴の重量平均粒子径が 5 mで、 90重量% の微小液滴が 10 /im以下の粒径の微小液滴とすると共に、液滴同伴気体の単位体積当 たりの液滴体積を 5倍に濃縮した。
この分級された微液滴を加熱速度が毎秒 50°Cとなるように昇温して 20 Otで加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 200*Cに保持して熱分解合成炉に搬 送して、塩化ナトリゥムを気化させて気体状態の塩化ナトリゥムを含有する雰囲気を形 成し、最高温度が 1 6001:の電気炉内で 10秒間の滞留時間だけ熱分解して前記態様 3の製造方法による酸化物粒子を合成しバッグフィルターで捕集した。
この酸化物粒子を焼成容器に充填した後、 水素を 4体積%含有する窒素中で 140 0 で 2時間再加熱処理を行い発光特性を調整した蛍光体を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒 径の揃つた球状であり、 その平均粒径は 1 imであり、 (最小粒径/最大粒径) の値が 0. 8〜1. 0の範囲にある蛍光体の個数は 98 %であった。 この蛍光体について波長 254 nm紫外線照射下での発光スぺクトルを測定したところ、良好な青色発光を示し、 その発光強度は、同一条件で測定された比較例 2の蛍光体の発光強度を 60とするとき に 100であった。
〔実施例 7〕
蛍光体の化学組成が(Yo.M, E u0.„6) 2 03 となるように硝酸イットリウムと硝酸ュ 一口ピウムをそれぞれ水に溶解し、 (YQ.94, Eu。.Q6) 203 の 1モルに対し、 硝酸リチ ゥムを 1. 5モルとなるように添加し、 少量の硝酸を添加し、 硝酸イットリウムユーロ ピウムとして溶質濃度 Cが 0. 3の均質な金属塩水溶液を調製した。 得られた水溶液の 1311は1. 2であり、 固形分の混在はなかった。
同伴気体として空気を使用し、 上記の金属塩水溶液を 1. 7 MH zの振動子を有する 超音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液滴を慣性分級器を使用し 分級して、 微小液滴の重量平均粒子径が 5 mで、 90重量%の微小液滴が 1 0 βτη以 下の粒径の微小液滴を得た。
この分級された微小液滴を加熱速度が毎秒 5 0°Cとなるように昇温し 2 0 0°Cで加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 2 0 0°Cに保持しながら熱分解合成炉 に搬送して、硝酸リチウムと水を反応させて気体状態の水酸化リチウムを含有する雰囲 気を形成し、最高温度が 1 6 0 0 の電気炉内で 1 3秒間の滞留時間だけ熱分解して前 記態様 4の製造方法による酸化物蛍光体粒子を合成しバッグフィルターで捕集した。 得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒 径の揃った球状で、 その平均粒径は 1 /Amであり、 (最小粒径/最大粒径) の値が 0. 8〜1. 0の範囲にある蛍光体の個数は 9 9 %であった。 この蛍光体について波長 2 5 4 nm紫外線照射下での発光スぺクトルを測定したところ、 良好な赤色発光を示し、 そ の発光強度は、同一条件で測定された比較例 1の蛍光体の発光強度を 8 0とするときに、 1 0 0であった。
〔実施例 8〕
蛍光体の化学組成が (B a0.9 , E u0., ) MgA 1】0O17となるように硝酸バリウム、 硝酸ユーロピウム、 硝酸マグネシウム、 硝酸アルミニウムをそれぞれ水に溶解し、 (B a 0.9 , E ) Mg A 110O1Tの 1モルに対し、 3モルとなるように硝酸ナトリウムを 添加し、 少量の硝酸を添加して溶質濃度 Cが 0. 3の均質な金属塩水溶液を調製した。 得られた水溶液の ρΗは 0. 3であり、 固形分の混在はなかった。
同伴気体として水素を 4体積%含有する窒素を使用し、 上記の金属塩水溶液を 1. 7 MHzの振動子を有する超音波噴霧器に入れて微小液滴を形成した。 次に、 この微小液 滴を慣性分級器を使用し分級して、 微小液滴の重量平均粒子径が 5; umで、 9 0重量% の微小液滴が 1 0 z^m以下の粒径の微小液滴とすると共に、液滴同伴気体の単位体積当 たりの液滴体積を 5倍に濃縮した。
この分級された微液滴を加熱速度が毎秒 50°Cとなるように昇温して 20 Otで加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 200°Cに保持して熱分解合成炉に搬 送して、硝酸ナトリゥムを水と反応させて気体状態の水酸化ナトリゥムを含有する雰囲 気を形成し、最高温度が 1 600°Cの電気炉内で 10秒間の滞留時間だけ熱分解して前 記態様 4の製造方法による酸化物粒子を合成しバッグフィルタ一で捕集した。
この酸化物粒子を焼成容器に充填した後、 水素を 4体積%含有する窒素中で 140 0 °Cで 2時間再加熱処理を行い発光特性を調整した蛍光体を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒 径の揃った球状であり、 その平均粒径は 1 xmであり、 (最小粒径 Z最大粒径) の値が 0. 8〜1. 0の範囲にある蛍光体の個数は 1 00%であった。 この蛍光体について波 長 254 nm紫外線照射下での発光スぺクトルを測定したところ、良好な青色発光を示 し、 その発光強度は、 同一条件で測定された比較例 2の発光強度を 60とするときに、 105であった。
〔実施例 9〕
蛍光体の化学組成が (Y0. 94, EuQ. Q 6) 203となるように硝酸イットリウムと 硝酸ユーロピウムをそれぞれ水に溶解し、 (Y0. 94, E u 0. 。 6) 203の 1モルに対 して 3モルとなるように臭化アンモニゥムを添加し、少量の硝酸を添加して硝酸ィット リウムユーロピウムとして溶質濃度 Cが 0. 3の均質な金属塩水溶液を作成した。得ら れた水溶液の ρΗは、 1. 4であり、 固形分の混在はなかった。
同伴気体として空気を使用し、 この金属塩水溶液を 1. 7 MHzの振動子を有する超 音波噴霧器に入れて微液滴を形成した。次に、 この微液滴を慣性分級器を使用して分級 して、微液滴の重量平均粒子径が 5 /imで 90重量%の微液滴が 1 0 ^im以下の粒径の 微液滴とした。
この分級された微液滴を加熱速度が毎秒 50°Cとなるように昇温して 200 °Cで加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 200°Cに保持して熱分解合成炉に搬 送して、臭化アンモニゥムを気化させて気体状態の臭化水素を含有する雰囲気を形成し、 最高温度が 1600 °Cの電気'炉内で 1 3秒間の滞留時間だけ熱分解して前記態様 5の 製造方法による酸化物粒子を合成しバッグフィルターで捕集した。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の蛍光体が生成していることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒 径の揃った球状であり、 その平均粒径は 1 z mだった。 この蛍光体について波長 2 5 4 n m紫外線照射下での発光スぺクトルを測定したところ、 良好な赤色発光を示した。 〔実施例 1 0〕
蛍光体の化学組成が (B a 0 _ 9 , E u 0 , ) M g A 1 i。 O 7となるように炭酸バリ ゥム、 酸化ユーロピウム、 炭酸マグネシウム、 金属アルミニウムをそれぞれ塩酸に溶解 し、 (B a。 9, E u 0 M g A 1 j。0 i 7の 1モルに対して 1 0モルとなる ように塩化アンモニゥムを添加し、 溶質濃度 Cが 0 . 3 6の均質な金属塩水溶液を作成 した。 得られた水溶液の p Hは、 0 . 8であり、 固形分の混在はなかった。
同伴気体として水素を 4体積%含有する窒素を使用し、 この金属塩水溶液を 1 . 7 M H zの振動子を有する超音波噴霧器に入れて微液滴を形成した。 次に、 この微液滴を慣 性分級器を使用して分級して、微液滴の重量平均粒子径が 5 mで 9 0重量%の微液滴 が 1 0 m以下の粒径の微液滴とすると共に、液滴同伴気体の単位体積当たりの液滴体 積を 5倍に濃縮した。
この分級された微液滴を加熱速度が毎秒 5 0 °Cとなるように昇温して 2 0 0 °Cで加 熱乾燥して金属塩粒子を得た。この金属塩粒子を 2 0 (TCに保持して熱分解合成炉に搬 送して、塩化アンモニゥムを気化させて気体状態の塩化水素を含有する雰囲気を形成し、 最高温度が 1 6 0 0での電気炉内で 1 0秒間の滞留時間だけ熱分解して前記態様 5の 製造方法による酸化物粒子を合成しバッグフィル夕一で捕集した。 得られた蛍光体の 粉末 X線回折パターンを調べたところ、不純物相の存在しない単相の蛍光体が生成して いることが分かった。 また、 この粒子の形状は、 表面が滑らかで粒径の揃った球状であ り、 その平均粒径は 1 だった。 この蛍光体について波長 2 5 4 n m紫外線照射下で の発光スペクトルを測定したところ、 良好な青色発光を示した。
〔実施例 1 1〕
蛍光体の化学組成が(Υο.94, E u 0.06) 2 02 Sとなるように硝酸イットリウムと硝酸 ユーロピウムをそれぞれ水に溶解し、 (Υ β. Μ, E u 0.06 ) 2 02 S蛍光体の体積に対し、 分散媒体である硫化ナトリゥムの体積が 1 0倍となるように分散媒体の前駆物質であ る硝酸ナトリウムを添加し、硝酸を添加して硝酸イツトリウムユーロピウムとして溶質 濃度 Cが 0 . 0 3モル/リツトルの均質な水溶液を調製した。
同伴気体として硫化水素を 2 0体積%含む窒素を使用し、 この水溶液を 1 . 7 MH z の振動子を有する超音波噴霧器に入れて微液滴を形成した。
この微液滴を加熱乾燥して固体状蛍光体原料粒子を得た。この固体状蛍光体原料粒子 を 2 0 0 °Cに保持しながら熱分解合成炉に搬送して、最高温度が 6 5 0 °Cの電気炉内で 3秒間だけ滞留させて熱分解合成を行い、熱分解合成炉から生成し同伴気体中に浮遊す る、 硫化ナトリウムと蛍光体粒子からなる分散媒体粒子を電気集塵器で捕集した。得ら れた分散媒体粒子の破断面を観察したところ、 その粒子内に多数の (YQ.94, E U 0. 06) ι o 2 S蛍光体結晶の分散粒子が観察された。
また、得られた上記の硫化ナトリゥムからなる分散媒体粒子を希塩酸及び水で洗浄し て、 硫化ナトリウムを除去して前記態様 6の製造方法による E u 0. 06 ) 2 02 S蛍光体粒子を得た。
この蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相の酸 硫化物蛍光体が生成していることが分かった。 また、 この蛍光体粒子の形状と結晶性を 電子顕微鏡下で観察したところ、平均粒子径が 1 0 n mの結晶性の良好な単結晶が多数 観察された。この蛍光体について 2 5 k Vの電子線照射下での発光スぺクトルを測定し たところ、 良好な赤色発光を示した。
〔実施例 1 2〕
蛍光体の化学組成が(Υβ. Μ, E u 0.06) 2 03 となるように硝酸イットリウムと硝酸ュ 一口ピウムをそれぞれ水に溶解し、 (YQ.94, E n s) 2 03 蛍光体の体積に対して 4倍 の体積となるように分散媒体である塩化ナトリゥムを添加し少量の硝酸を添加して硝 酸イツトリウムユーロピウムとして溶質濃度 Cが 0 . 1モル Zリットルの均質な水溶液 を調製した。 得られた水溶液の p Hは 1 . 0であり、 固形分の混在はなかった。
同伴気体として空気を使用し、 この水溶液を 1 . 7 M H zの振動子を有する超音波噴 霧器に入れて平均粒径 5 mの微液滴を形成した。
この微液滴を加熱乾燥して固体状蛍光体原料粒子を得た。この固体状蛍光体原料粒子 を 2 0 0 °Cに保持しながら熱分解合成炉に搬送して、最高温度が 8 5 0 °Cの電気炉内に 1秒間だけ滞留させて熱分解合成して、熱分解合成炉から生成してきた同伴気体中に浮 遊する、塩化ナトリゥムと蛍光体粒子とからなる分散媒体粒子を電気集塵器で捕集した c このようにして得られた分散媒体粒子の破断面を観察したところ、その分散媒体粒子内 に多数の (Yfl. g4, E u 0.06 ) 2 03 蛍光体結晶からなる分散粒子が観察された。
また、 得られた上記の塩化ナトリウムの分散媒体粒子を希塩酸及び水で洗浄して、 塩 化ナトリウムを除去して前記態様 6の製造方法による (YD.94, E u 0.06) 2 03 蛍光体粒 子を得た。
この蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相の酸 化物蛍光体が生成していることが分かった。 また、 この蛍光体粒子の形状と結晶性を電 子顕微鏡下で観察したところ、平均粒子径 4 0 n mの結晶性の良好な単結晶が多数観察 された。この蛍光体について波長 2 5 4 n mの紫外線照射下での発光スぺクトルを測定 したところ、 良好な赤色発光を示した。
〔実施例 1 3〕
蛍光体の化学組成が Z n 0. 999S A g„. 0002 C 1 o. 0002 S 0. S998となるように硝酸亜鉛と塩化銀 とチォ尿素をそれぞれ水に溶解し、 Z n (). 99g8A g。.剛 2 C 1 uo S ugw蛍光体の体積に対 して 5倍の体積となるように分散媒体である臭化力リゥムを添加して硝酸亜鉛と塩化 銀の溶質濃度 Cが 0 . 0 5モル Zリツトルの均質な水溶液を調製した。
同伴気体として硫化水素を 5体積%含む窒素を使用し、 この水溶液を 1 . 7 M H zの 振動子を有する超音波噴霧器に入れて微液滴を形成した。
この微液滴を加熱乾燥して固体状蛍光体原料粒子を得た。この固体状蛍光体原料粒子 を 1 5 0 °Cに保持しながら熱分解合成炉に搬送して、最高温度が 6 0 0 の熱分解合成 炉内で 1 . 2秒間だけ滞留させて熱分解合成を行い、 Z n D.9删 A g„. ,2 C 1 0. 0002 S 0. 9998 蛍光体を合成し、 熱分解合成炉から生成してきた、 同伴気体中に浮遊する硫化カリウム と臭化カリゥムの混合体と蛍光体粒子からなる固体状の分散媒体粒子を電気集塵器で 捕集した。得られた分散媒体粒子の破断面を観察したところ、 その分散媒体粒子内に多 数の蛍光体結晶の分散粒子が観察された。
また、得られた上記の硫化力リゥムと臭化力リゥムの混合体と蛍光体粒子からなる分 散媒体粒子を希塩酸及び水で洗浄して、分散媒体の硫化力リゥムと臭化力リゥムを除去 して前記態様 6の製造方法による Z n 0.9998A g 0.翻 2 C 1 o.0002 S 0.9998蛍光体粒子を得た。 この蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相の硫 化物蛍光体が生成していることが分かった。 また、 この蛍光体粒子の形状と結晶性を電 子顕微鏡下で観察したところ、平均粒子径 9 n mの結晶性の良好な単結晶が多数観察さ れた。この蛍光体について 2 5 k Vの電子線照射下での発光スぺクトルを測定したとこ ろ、 良好な青色発光を示した。
〔比較例 3〕
実施例 1 1において、 熱分解合成炉の最高温度を 6 5 0 °Cから 2 0 0 に変更して、 分散媒体の硫化ナトリウムを固体状態で使用した以外は実施例 1 1と同様にして蛍光 体粒子を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、非晶質に近い物資が生成し ていて所望の結晶性を得ることができず、実施例 1 1と同様に蛍光体を励起したが発光 を認めることはできなかった。
〔比較例 4〕
実施例 1 2において、 熱分解合成炉の最高温度を 8 5 0 から 6 0 0 °Cに変更して、 分散媒体の塩化ナトリゥムを固体状態で使用した以外は実施例 1 2と同様にして蛍光 体粒子を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の酸化物蛍光体が生成していることが分かった。 しかし、 蛍光体粒子の形状と結晶性を 電子顕微鏡下で観察したところ、 結晶性が不良で不定形結晶が凝集した粒子であり、 粒 度分布が広かった。この蛍光体に波長 2 5 4 n m紫外線照射下での発光スぺクトルを測 定したところ、 弱い赤色発光を示した。
〔比較例 5〕
実施例 1 2において、分散媒体の塩化ナトリゥムの添加を省略した以外は実施例 1 2 と同様にして蛍光体粒子を得た。
得られた蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相 の酸化物蛍光体が生成していることが分かった。しかし蛍光体粒子の形状と結晶性を電 子顕微鏡下で観察したところ、平均粒子径が 1 x mと大きく結晶性が不良で不定形結晶 が凝集した粒子であった。この蛍光体について波長 2 5 4 n m紫外線照射下での発光ス ぺクトルを測定したところ、 弱い赤色発光を示した。
〔実施例 1 4〕 実施例 1 2において、熱分解合成炉の最高温度を 8 5 0でから 1 6 0 0 に変更して、 分散媒体を気体状態で作用させた以外は実施例 1 2と同様にして蛍光体粒子を得た。 この蛍光体の粉末 X線回折パターンを調べたところ、不純物相の存在しない単相の酸 化物蛍光体が生成していることが分かった。 しかし、 蛍光体粒子の形状と結晶性を電子 顕微鏡下で観察したところ、平均粒子径が 1 mと大きく結晶性が良好な多結晶の粒子 がー個だけ観察された。この蛍光体について波長 2 5 4 n m紫外線照射下での発光スぺ クトルを測定したところ赤色発光を示した。 産業上の利用可能性
本発明は、 上記の構成を採用することにより、 粒度分布が狭く、 凝集粒子が少なく、 球状で、 かつ、 輝度が高い蛍光体を容易に得ることができるようになった。 また、 ブラ ゥン管、 蛍光ランプや P D Pなどの蛍光膜に適用すると、 均質で緻密な高輝度蛍光膜を 形成することが可能となった。 しかも、 高純度で化学組成が均一であるため、 発光強度 の高い蛍光体を安価に製造することが可能になった。
また、 本発明は、 上記の構成を採用することにより、 結晶性が良好であり、 凝集粒子 が少なく、 高純度で化学組成が均一で、 かつ微少粒子で発光特性の優れた蛍光体粒子を 得ることが可能となった。

Claims

請求の範囲
1.蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成して 前記蛍光体を得る蛍光体の製造方法において、金属若しくは金属化合物からなる添加剤 の共存下で上記加熱を行うことにより、 平均結晶成長速度を 0. 0 02 xm s e c 以上で熱分解合成を行って前記蛍光体を製造することを特徴とする蛍光体の製造方法。
2.蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成して 前 記蛍光体を得る蛍光体の製造方法において、 薄膜層形成物質の共存下で上記加熱を 行うことにより、前記熱分解合成の過程で前記薄膜層形成物質を前記蛍光体粒子表面に 析出させて 1 0 nm以上の平均膜厚を有する薄膜層を形成することを特徴とする蛍光 体の製造方法。
3.前記蛍光体の構成金属元素と前記添加剤又は前記薄膜層形成物質とを含有する溶液 を気体中に噴霧して微小の前記液滴を形成した後、これを乾燥して金属塩粒子又は金属 錯体粒子とし、前記加熱の過程で前記添加剤又は前記薄膜層形成物質を分解又は蒸発し て液体状態又は気体状態となし、前記金属塩粒子又は金属錯体粒子の熱分解合成を行う ことを特徴とする請求項 1又は 2に記載の蛍光体の製造方法。
4. 前記熱分解合成は、 加熱温度を 1 350〜 1900 °C、 加熱時間を 0. 5秒以上 1 0分間以下の範囲に調整する請求項 1〜 3のいずれか 1項に記載の蛍光体の製造方法。
5. 前記金属又は金属化合物、 及び前記薄膜層形成物質が、 L i, Na, K, Rb及び C sの群から選ばれる少なくとも一つの元素を含有する硝酸塩、 塩化物、 又は水酸化物 である請求項 1〜4のいずれか 1項に記載の蛍光体の製造方法。
6.前記蛍光体は、 Y, Gd, L a, Lu及び S cの群から選択される 1種以上の元素、 及び、 C e, P r, Nd, E u, Tb, D y及び Tmの群から選択される 1種以上の元 素を含有する請求項 2〜 5のいずれか 1項に記載の蛍光体の製造方法。
7. 前記蛍光体を構成する金属元素の総モル数を A、 前記薄膜層形成物質に含まれる金 属元素の総モル数を Bとするときに、 (AX 0. 1) ≤Bの関係を満たすように前記溶 液を予め調製する請求項 2〜 6のいずれか 1項に記載の蛍光体の製造方法。
8.前記熱分解合成後に前記蛍光体粒子表面の前記薄膜層を除去することを特徴とする 請求項 2〜 7のいずれか 1項に記載の蛍光体の製造方法。
9.前記薄膜層が除去された前記蛍光体粒子を再加熱処理する請求項 2〜8のいずれか 1項に記載の蛍光体の製造方法。
1 0. 前記再加熱処理は、 1000〜170 0°Cの温度範囲で、 かつ熱分解合成温度よ り 100°C以上低い温度で、加熱時間を 1秒間以上 24時間以下の範囲で行う請求項 9 に記載の蛍光体の製造方法。
1 1. 蛍光体粒子の重量平均粒子径 D5„が 0. 1~50 mの範囲にあり、 かつ蛍光体 粒子の最小直径と最大直径の比 (最小直径/最大直径) の値が 0. 8〜1. 0の範囲に ある粒子の個数は全体の 90 %以上である請求項 1〜 1 0のいずれか 1項に記載の製 造方法で製造された蛍光体。
12. 組成式 (R1 ト x, R2 x ) 2 03 (但し、 R1 は Y, Gd, L a, Lu及び S c の群から選ばれる少なくとも一つの元素、 R2 は Ce、 P r、 Nd、 Eu、 Tb、 Dy 及び Tmから選ばれる少なくとも一つの元素、 Xは 0<x≤0. 2を満す数である) で 表される結晶相を主成分とする請求項 1 1に記載の蛍光体。
1 3.蛍光体の構成金属元素を含有する溶液の液滴を加熱することにより熱分解合成し て前記蛍光体を得る蛍光体の製造方法において、 (a) 気体状態の金属塩化物、 (b) 気 体状態の金属水酸化物、 又は (c) 気体状態のハロゲン化水素からなる気体状態物質を 含む雰囲気ガス中で熱分解合成を行う蛍光体の製造方法。
14.前記蛍光体の構成金属元素を含有する前記溶液を気体中に噴霧して微小液滴を形 成した後、 これを乾燥して金属塩粒子又は金属錯体粒子とし、 これを加熱して熱分解合 成を行う請求項 1 3に記載の蛍光体の製造方法。
1 5. 前記熱分解合成の雰囲気ガス中の前記気体状態物質を、 前記雰囲気ガスの 0. 0 0 1〜5体積%存在させる請求項 1 3又は 14に記載の蛍光体の製造方法。
16.前記気体状態の物質がアルカリ金属塩化物又はアルカリ金属水酸化物である請求 項 1 3〜1 5のいずれか 1項に記載の蛍光体の製造方法。
1 7.蛍光体の構成金属元素を含有する前記溶液の ·ρΗが 7以下である請求項 13〜1 6のいずれか 1項に記載の蛍光体の製造方法。
18.蛍光体の構成金属元素を含有する前記溶液の固形分含有量を 10重量%以下にす る請求項 1 3〜 17のいずれか 1項に記載の蛍光体の製造方法。
1 9.前記熱分解合成の雰囲気ガス中の一酸化炭素及び二酸化炭素含有量の合計を 5体 積%以下に調整する請求項 13〜1 8のいずれか 1項 記載の蛍光体の製造方法。
20. 前記熱分解合成は、 1350 °C〜 1 9 00での温度範囲で、 0. 5秒間以上 1 0 分間以下の範囲で加熱する請求項 1 3〜1 9のいずれか 1項に記載の蛍光体の製造方 法。
2 1. 蛍光体の構成金属元素を含有する前記溶液中に、 前記気体状態の物質を形成する 前駆体を予め含有させる請求項 1 3〜20のいずれか 1項に記載の蛍光体の製造方法。
22. 組成式 (R1 ト x , R2 x ) 2 03 (但し、 R1 は Y, Gd, L a, Lu及び S c の群から選択される少なくとも一つの元素で、 R2 は C e, P r, Nd, E u, Tb, Dy及び Tmの群から選択される少なくとも一つの元素であり、 Xは 0く X≤0. 2を 満す数である)で表される結晶相を主成分とする請求項 1 3〜2 1のいずれか 1項に記 載の製造方法により合成された蛍光体。
23. 組成式 M1 M2 A 1 I0O17 (但し、 M1 は B a, S r , C a及び Euの群から選択 される少なくとも一つの元素、 M2 は Mg及び Mnの群から選択される少なくとも一つ の元素である)で表される結晶相を主成分とする請求項 1 3〜2 1のいずれか 1項に記 載の製造方法により合成された蛍光体。
24. 前記蛍光体のメジアン径 D5Qが 0. 1〜30 zmの範囲にあり、 同時に前記蛍光 体の最小直径と最大直径の比 (最小直径/最大直径) の値が 0. 8〜1. 0の範囲にあ る蛍光体の個数が全体の 90%以上を占める請求項 22又は 23記載の蛍光体。
25. 蛍光体の構成金属元素を含有する溶液の液滴を、 前記蛍光体粒子の生成過程にお いて該蛍光体粒子を分散させる分散媒体と接触させながら加熱することにより熱分解 合成して、前記分散媒体の粒子内に複数の前記蛍光体粒子を分散させた状態で生成させ ることを特徴とする蛍光体粒子の製造方法。
26. 前記溶液を同伴気体中に噴霧して微液滴を形成した後、 該微液滴を乾燥して固体 状蛍光体原料となし、該固体状蛍光体原料を加熱することにより前記蛍光体の前駆体を 生成させ、該蛍光体の前駆体と溶融状態の前記分散媒体とを接触させながら前記加熱を 継続し、 前記同伴気体中に浮遊する前記分散媒体の粒子内に、前記蛍光体の前駆体から 前記蛍光体粒子の結晶相を主相とする複数の蛍光体粒子を生成させることを特徴とす る請求項 25に記載の蛍光体粒子の製造方法。
27. 前記分散媒体の原料として、 前記蛍光体粒子の生成時に溶融状態の分散媒体を生 成し得る前記分散媒体の前駆物質を使用する請求項 2 5又は 2 6に記載の蛍光体粒子 の製造方法。
2 8 . 前記蛍光体の構成金属元素を含有する前記溶液に、 前記分散媒体又はその前駆物 質を予め含有させる請求項 2 5〜2 7のいずれか 1項に記載の蛍光体粒子の製造方法。
2 9 . 前記分散媒体又はその前駆物質として、 アルカリ金属ハロゲン化物、 アルカリ土 類金属ハロゲン化物、 ハロゲン化亜鉛、 及びアルカリ金属硫化物の群から選ばれる少な くとも一種の化合物を使用する請求項 2 5〜 2 8いずれか 1項に記載の蛍光体粒子の 製造方法。
3 0 . 前記蛍光体粒子を生成させた後、 前記分散媒体を水に溶解して除去する請求項 2 5 ~ 2 9のいずれか一項に記載の蛍光体粒子の製造方法。
3 1 .前記蛍光体粒子の最大径が 1 ~ 5 0 0 n mの範囲にする請求項 2 5〜3 0のいず れか 1項に記載の蛍光体粒子の製造方法。
PCT/JP2002/004265 2001-04-27 2002-04-26 Phosphore et son procede de production WO2002088275A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02722857A EP1298183A1 (en) 2001-04-27 2002-04-26 Phosphor and production method therefor
US10/325,826 US6712993B2 (en) 2001-04-27 2002-12-23 Phosphor and its production process
US10/701,449 US7001537B2 (en) 2001-04-27 2003-11-06 Phosphor and its production process

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2001-131208 2001-04-27
JP2001131210A JP2002322471A (ja) 2001-04-27 2001-04-27 蛍光体及びその製造方法
JP2001131208A JP2002322469A (ja) 2001-04-27 2001-04-27 蛍光体及びその製造方法
JP2001-131209 2001-04-27
JP2001-131207 2001-04-27
JP2001131209A JP2002322470A (ja) 2001-04-27 2001-04-27 蛍光体及びその製造方法
JP2001131207A JP2002322472A (ja) 2001-04-27 2001-04-27 蛍光体及びその製造方法
JP2001-131210 2001-04-27
JP2001218181A JP2003027050A (ja) 2001-07-18 2001-07-18 蛍光体粒子の製造方法
JP2001-218181 2001-07-18
JP2001-256999 2001-07-24
JP2001256999A JP2003034787A (ja) 2001-07-24 2001-07-24 蛍光体及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/325,826 Continuation US6712993B2 (en) 2001-04-27 2002-12-23 Phosphor and its production process

Publications (1)

Publication Number Publication Date
WO2002088275A1 true WO2002088275A1 (fr) 2002-11-07

Family

ID=27554931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004265 WO2002088275A1 (fr) 2001-04-27 2002-04-26 Phosphore et son procede de production

Country Status (5)

Country Link
US (1) US6712993B2 (ja)
EP (1) EP1298183A1 (ja)
KR (1) KR20040002393A (ja)
CN (1) CN1462304A (ja)
WO (1) WO2002088275A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111116A1 (de) * 2001-03-08 2002-09-19 Giesecke & Devrient Gmbh Wertdokument
US7001537B2 (en) * 2001-04-27 2006-02-21 Kasei Optonix, Ltd. Phosphor and its production process
EP1519397A4 (en) * 2003-02-20 2009-02-18 Panasonic Corp PLASMA DISPLAY DEVICE AND METHOD FOR PRODUCING A FLUOR
CN1756826A (zh) * 2003-03-11 2006-04-05 柯尼卡美能达控股株式会社 荧光体、荧光体的制造方法、荧光体浆料和等离子体显示板
DE20308495U1 (de) * 2003-05-28 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Konversions-LED
US7236179B2 (en) * 2003-10-28 2007-06-26 Eastman Kodak Company Display device color channel reconstruction
US7737623B2 (en) * 2004-06-30 2010-06-15 Mitsubishi Chemical Corporation Light emitting device, lighting system, backlight unit for display device, and display device
WO2006008935A1 (ja) 2004-06-30 2006-01-26 Mitsubishi Chemical Corporation 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
JP5226929B2 (ja) 2004-06-30 2013-07-03 三菱化学株式会社 発光素子並びにそれを用いた照明装置、画像表示装置
JP2006019409A (ja) 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp 発光装置並びにそれを用いた照明、ディスプレイ用バックライト及びディスプレイ
WO2006083326A2 (en) * 2004-08-07 2006-08-10 Cabot Corporation Gas dispersion manufacture of nanoparticulates and nanoparticulate-containing products and processing thereof
US20060083694A1 (en) 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
US7252789B2 (en) * 2005-03-31 2007-08-07 General Electric Company High-density scintillators for imaging system and method of making same
CN102449111B (zh) * 2009-06-01 2014-12-24 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
WO2011063028A1 (en) 2009-11-19 2011-05-26 Nitto Denko Corporation Method for producing nanoparticles
JP2013533380A (ja) * 2010-06-01 2013-08-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 非中空、非断片化球状金属又は金属合金粒子を製造する方法
KR101522226B1 (ko) * 2014-09-26 2015-05-26 한국과학기술연구원 알칼리 금속 함유 비수용성 금속 수화물 및 이의 제조방법
USD792465S1 (en) 2015-12-23 2017-07-18 Samsung Electronics Co., Ltd. Display screen or portion thereof with icon
JP7118059B2 (ja) 2016-11-02 2022-08-15 イー・エム・デイー・ミリポア・コーポレイシヨン 細胞培養液からマイクロキャリアを分離するための容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087033A (ja) * 1998-09-11 2000-03-28 Kasei Optonix Co Ltd 蛍光体の製造方法
JP2000109825A (ja) * 1998-09-30 2000-04-18 Kasei Optonix Co Ltd テルビウム付活アルミン酸イットリウム蛍光体の製造方法
JP2000336353A (ja) * 1999-05-28 2000-12-05 Kasei Optonix Co Ltd アルミン酸塩蛍光体の製造方法
JP2001107038A (ja) * 1999-10-04 2001-04-17 Shoei Kk 蛍光体粉末の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269966A (en) * 1992-12-31 1993-12-14 Osram Sylvania Inc. Method of making zinc sulfide precursor material for a copper-activated zinc sulfide electroluminescent phosphor
AU6665598A (en) * 1997-02-24 1998-09-09 Superior Micropowders Llc Sulfur-containing phosphor powders, methods for making phosphor powders and devices incorporating same
US6197218B1 (en) * 1997-02-24 2001-03-06 Superior Micropowders Llc Photoluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
US6168731B1 (en) 1997-02-24 2001-01-02 Superior Micropowders Llc Cathodoluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
US6193908B1 (en) 1997-02-24 2001-02-27 Superior Micropowders Llc Electroluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
KR100237309B1 (ko) * 1997-04-18 2000-02-01 하제준 구형 형광체 제조방법
US6039894A (en) * 1997-12-05 2000-03-21 Sri International Production of substantially monodisperse phosphor particles
US20020182140A1 (en) 1999-12-01 2002-12-05 Naoto Kijima Method for producing phosphor
GB2363611A (en) 2000-04-20 2002-01-02 Kasei Optonix Phosphors consisting of hollow particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087033A (ja) * 1998-09-11 2000-03-28 Kasei Optonix Co Ltd 蛍光体の製造方法
JP2000109825A (ja) * 1998-09-30 2000-04-18 Kasei Optonix Co Ltd テルビウム付活アルミン酸イットリウム蛍光体の製造方法
JP2000336353A (ja) * 1999-05-28 2000-12-05 Kasei Optonix Co Ltd アルミン酸塩蛍光体の製造方法
JP2001107038A (ja) * 1999-10-04 2001-04-17 Shoei Kk 蛍光体粉末の製造方法

Also Published As

Publication number Publication date
US6712993B2 (en) 2004-03-30
KR20040002393A (ko) 2004-01-07
US20030094596A1 (en) 2003-05-22
CN1462304A (zh) 2003-12-17
EP1298183A1 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
WO2002088275A1 (fr) Phosphore et son procede de production
JP3983734B2 (ja) アルカリ土類金属と硫黄とアルミニウム、ガリウム又はインジウムとを基材とする化合物、その製造法及び蛍光体としてのその使用
WO2009117148A2 (en) Metal silicon nitride or metal silicon oxynitride submicron phosphor particles and methods for synthesizing these phosphors
Kang et al. Brightness and decay time of Zn 2 SiO 4: Mn phosphor particles with spherical shape and fine size
JP2000505041A (ja) アルカリ土類金属、硫黄及びアルミニウム、ガリウム又はインジウムに基づく化合物、その製法並びにその発光団としての使用法
JP5236893B2 (ja) 酸化物発光体
JP5712916B2 (ja) イットリウムセリウムアルミニウムガーネット蛍光体及び発光装置
JP2005054046A (ja) 蛍光体の製造方法
US7001537B2 (en) Phosphor and its production process
JP2004162057A (ja) 蛍光体
Roh et al. Y 2 O 3: Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol
JP2000336353A (ja) アルミン酸塩蛍光体の製造方法
JP2004256763A (ja) 蛍光体の製造方法
KR100390775B1 (ko) 분무열분해법에 의한 pdp용 적색 형광체의 제조방법
JP2004277543A (ja) 蛍光体粒子の製造方法
JP2002322472A (ja) 蛍光体及びその製造方法
JP4266488B2 (ja) 中空粒子からなる蛍光体、その製造方法及び蛍光体スラリー
JP2002322470A (ja) 蛍光体及びその製造方法
JP2005002157A (ja) 蛍光体の製造方法
JP2000109825A (ja) テルビウム付活アルミン酸イットリウム蛍光体の製造方法
JP2002069441A (ja) 酸硫化物蛍光体の製造方法
Roh et al. ZnGa2O4: Mn phosphor particles with spherical shape and clean surface
JP2004026995A (ja) 真空紫外線励起発光素子用蛍光体およびそれを用いた真空紫外線励起発光素子
JP2001152144A (ja) 蛍光体の製造方法
JP2003027050A (ja) 蛍光体粒子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002722857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10325826

Country of ref document: US

Ref document number: 1020027017568

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028014197

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002722857

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017568

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002722857

Country of ref document: EP