WO2002070763A1 - Barre d'alliage de titane et procede de fabrication - Google Patents
Barre d'alliage de titane et procede de fabrication Download PDFInfo
- Publication number
- WO2002070763A1 WO2002070763A1 PCT/JP2002/001710 JP0201710W WO02070763A1 WO 2002070763 A1 WO2002070763 A1 WO 2002070763A1 JP 0201710 W JP0201710 W JP 0201710W WO 02070763 A1 WO02070763 A1 WO 02070763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling
- titanium alloy
- less
- phase
- type titanium
- Prior art date
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005096 rolling process Methods 0.000 claims abstract description 113
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 44
- 230000009466 transformation Effects 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009721 upset forging Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
Definitions
- the present invention relates to a titanium alloy bar excellent in ductility, fatigue characteristics and workability, particularly to an a + i3 type titanium alloy bar and a method for manufacturing the same.
- BACKGROUND ART Titanium alloys are used as structural materials in chemical plants, generators, aircraft, and other fields because of their high strength, lightness, and excellent corrosion resistance.
- ⁇ +] 3 type titanium alloys that have high strength and relatively good workability.
- Products using titanium alloy include various shapes such as thin plates, thick plates and bars.
- the rod is used in its original shape, but in some cases it is processed into a complex shape, such as a threaded part of Porto, or it is used as a forged material. Excellent workability is required in addition to ductility and fatigue properties.
- Figure 1 shows a typical method of manufacturing a bar.
- the temperature of the material to be rolled increases during hot rolling due to the heat generated during processing, so that stable hot rolling cannot be performed and ductility and fatigue properties
- the temperature of the material to be rolled rises to the i3 transformation point or higher, the ⁇ ⁇ Therefore, excellent ductility and fatigue properties cannot be obtained.
- the transformation point is high, the temperature of the material to be rolled hardly becomes higher than the i3 transformation point due to the heat generated during processing. Ductile, fatigue properties and workability cannot be obtained.
- Japanese Patent Application Laid-Open No. 59-82101 discloses a method of reducing the cross-sectional reduction rate per rolling pass at 0: zone temperature and + / 3 zone temperature to 40% or less. Is disclosed.
- Japanese Patent Application Laid-Open No. 58-25465 discloses a method of water-cooling a material to be rolled in order to suppress a rise in temperature due to heat generated during processing.
- Paper 1 “Hot Bar Rolling of Ti-6A1-4V in a Controllable Continuous Mill (Titanium '92 Science and Technology)”, the rolling speed is used to suppress the heat generated during processing.
- Figure 3 shows the relationship between the temperature of the material to be rolled and the rolling time in bar rolling of the Ti-6A4V alloy and the Ti-44.5Al-3V-2Fe-2Mo alloy.
- the heating temperature is 950 ° for the Ti-6A4 4V alloy (: for the Ti-4.5A3 3V-2Fe-2 ⁇ 'alloy, the j3 transformation point of which is 100 ° C lower than the Ti-6A4V alloy)
- the temperature was lowered to 850 ° C by the difference between the three transformation points.
- Rolling was performed using a reverse mill and a tandem mill, and the rolling speed, rolling reduction, and pass schedule were the same for both alloys. Rolling on a reverse rolling mill was 2.7 mI sec for both alloys, and rolling 3 ⁇ 4i in the tandem rolling mill was 2.25 m / sec for both alloys in the final rolling pass, which was the fastest.
- the rolling speed is lower than the rolling speed (6 m / sec) described in the above paper 1.
- the cross-sectional reduction rate is set to 26% at maximum for both alloys.
- the a + jS type titanium alloy bar has a process of hot rolling the titanium alloy of the above component so that the surface temperature is always below the ⁇ transformation point. It can be manufactured by a method. Brief description of the drawings- FIG. 1 is a diagram showing a typical method of manufacturing a bar.
- A1 It is an essential element for stabilizing the phase and also contributes to high strength. If it is less than 4, high strength is not sufficiently achieved, and if it exceeds 5%, ductility deteriorates.
- V An element that stabilizes the three phases and also contributes to high strength. If it is less than 2.5%, high strength is not sufficiently achieved, and) the three phases are not stable. If it exceeds 3.5%, the transformation temperature range is reduced due to the decrease of the 0 transformation point, and the cost is increased. Invite.
- the temperature rise due to the heat generated during the process causes coarsening of crystal grains and formation of a needle-like structure. Furthermore, the reason why the finished surface temperature, which is the surface temperature immediately after the rolled material has completed the final rolling pass, is in the range of -300) ° C or more and (T 3-100) ° C or less is ⁇ -300) ° c If it is less than the above, cracking sensitivity and deformation resistance will increase, and if it exceeds (Tjs-loo) ° c, crystal grains will be coarse.
- hot rolling is performed in a plurality of rolling passes, it is preferable to reduce the rolling reduction per rolling pass to 40% or less in order to prevent a temperature rise due to heat generated during processing.
- the rolling speed is preferably set to 6 m / sec or less in order to prevent a temperature rise due to heat generated during processing.
- Rolled material of 125 thigh angle was cut out from titanium alloys AO1 (within the scope of the present invention) and A02 (outside the scope of the present invention) of the chemical composition shown in Table 1 and A02 (within the scope of the present invention). Under the indicated rolling conditions B01-B18, rods having a diameter of 0 strokes or 50 bars were manufactured.
- the time between rolling passes in Table 2 is ⁇ when the time between rolling passes is 0.167 XS 1/2 sec or more in all rolling passes and X when not.
- Table 3-Table 20 show the cross-sectional area S, rolling reduction, 0.167 XS 1/2 time between rolling passes, surface temperature and rolled body of the material to be rolled in each rolling pass under each rolling condition.
- R represents a reverse rolling mill
- T represents a tandem rolling mill.
- Tensile tests were performed on the manufactured rods after annealing at 700 ° C or more and 720 ° C or less, and the yield strength (0.2 3 ⁇ 4PS), tensile strength (UTS), extension (El), and drawing (RA) were measured.
- Table 21 shows the results.
- the absence of the crystal grain size in the microstructures in the table means that the site consisted only of the ⁇ -structure mainly composed of acicular a, and no equiaxed pro-eutectoid ⁇ -phase could be observed.
- the finished surface temperature is lower than (T) 3-300) ° C, the temperature of the material to be rolled is too low, the workability is reduced, and cracks occur during rolling.
- the surface temperature is higher than (T) 3-100), as in the rolling conditions # 04, # 05 and # 07, the microstructure cannot be refined and the ductility and fatigue properties deteriorate.
- the surface temperature of the material to be rolled is lower than (T j8-300) ° C, the surface temperature of the material to be rolled is too low and cracks occur during rolling.
- the surface temperature of the material to be rolled is higher than ( ⁇ ⁇ -50) ° C, the center of the roll and the 1 / 4D yarn 13 ⁇ 4 are stitched as in the rolling conditions B02-B05, B07 and B11. It becomes a ⁇ -yarn mainly composed of a shape and has poor ductility and fatigue properties.
- ⁇ + type titanium alloys in which the volume fraction of proeutectoid ⁇ phase is 50% or more and 80% or less and the average crystal grain size of proeutectoid phase is 6 m or less
- Kt 3) fatigue strength of 200 MPa.
- the bar manufactured using rolling conditions B10 and B12 using A02 whose chemical composition is out of the range of the present invention since the rolling conditions were within the range of the present invention, the heat generation during processing was suppressed. Since the particle size exceeds 10, sufficient ductility and fatigue strength cannot be obtained.
- a cylindrical test piece of ⁇ 8 thigh ⁇ 12 thigh was collected from the radial center of the bar manufactured under the rolling conditions B0-B18 in Example 1 and heated to 800 ° C., compressed by 70%, and compressed. The hot forgeability was evaluated by examining the surface for cracks and rough surfaces.
- Bars manufactured under rolling conditions B01, B06, B08, B09, B16, ⁇ , and B18 in which the microfilament falls within the scope of the present invention did not cause cracking or roughening, and obtained good hot forgeability.
- rods manufactured under rolling conditions B10 and B12 in which the crystal grain size of the pro-eutectoid ⁇ phase exceeded 10 m did not crack, but roughened the surface.
- both the cracks and the rough surface occurred in the bars manufactured under the rolling conditions ⁇ 02, ⁇ 03, ⁇ 04, ⁇ 05, ⁇ 07, Bll, ⁇ 14, and B15 in which the center and the 1 / 4D part consisted of only / 3 phase. .
- the crystal grain size and the volume fraction of the pro-eutectoid ⁇ phase are within the range of the present invention, but the aspect ratio of the crystal grains in a cross section parallel to the rolling direction is determined. With rolling condition B13 exceeding 4, the surface roughness still occurred c
- the unit is mass%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002570785A JP4013761B2 (ja) | 2001-02-28 | 2002-02-26 | チタン合金棒材の製造方法 |
EP02703899A EP1382695A4 (en) | 2001-02-28 | 2002-02-26 | TIT ALLOY BAR AND METHOD FOR PRODUCING IT |
US10/418,252 US20030223902A1 (en) | 2001-02-28 | 2003-04-17 | Titanium alloy bar and method for manufacturing the same |
US10/968,521 US20050051245A1 (en) | 2001-02-28 | 2004-10-18 | Method for manufacturing a titanium alloy bar |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-054809 | 2001-02-28 | ||
JP2001054809 | 2001-02-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/418,252 Continuation US20030223902A1 (en) | 2001-02-28 | 2003-04-17 | Titanium alloy bar and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002070763A1 true WO2002070763A1 (fr) | 2002-09-12 |
Family
ID=18915085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/001710 WO2002070763A1 (fr) | 2001-02-28 | 2002-02-26 | Barre d'alliage de titane et procede de fabrication |
Country Status (6)
Country | Link |
---|---|
US (2) | US20030223902A1 (enrdf_load_stackoverflow) |
EP (1) | EP1382695A4 (enrdf_load_stackoverflow) |
JP (1) | JP4013761B2 (enrdf_load_stackoverflow) |
RU (1) | RU2259413C2 (enrdf_load_stackoverflow) |
TW (1) | TWI293987B (enrdf_load_stackoverflow) |
WO (1) | WO2002070763A1 (enrdf_load_stackoverflow) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015101749A (ja) * | 2013-11-22 | 2015-06-04 | 東邦チタニウム株式会社 | α+β型チタン合金および同合金の製造方法 |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
US9616480B2 (en) | 2011-06-01 | 2017-04-11 | Ati Properties Llc | Thermo-mechanical processing of nickel-base alloys |
US9624567B2 (en) | 2010-09-15 | 2017-04-18 | Ati Properties Llc | Methods for processing titanium alloys |
CN107138523A (zh) * | 2017-06-29 | 2017-09-08 | 西部超导材料科技股份有限公司 | 一种tb9钛合金丝棒材及其轧制方法 |
US9765420B2 (en) | 2010-07-19 | 2017-09-19 | Ati Properties Llc | Processing of α/β titanium alloys |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US9796005B2 (en) | 2003-05-09 | 2017-10-24 | Ati Properties Llc | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
CN109283205A (zh) * | 2018-10-19 | 2019-01-29 | 中国航发北京航空材料研究院 | 一种钛合金组织中初生α相体积分数的测定方法 |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
WO2020101008A1 (ja) * | 2018-11-15 | 2020-05-22 | 日本製鉄株式会社 | チタン合金線材およびチタン合金線材の製造方法 |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
JP2021167448A (ja) * | 2020-04-10 | 2021-10-21 | 日本製鉄株式会社 | チタン合金棒材及びその製造方法 |
US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4264411B2 (ja) * | 2004-04-09 | 2009-05-20 | 新日本製鐵株式会社 | 高強度α+β型チタン合金 |
RU2269584C1 (ru) * | 2004-07-30 | 2006-02-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана |
JP4655666B2 (ja) * | 2005-02-23 | 2011-03-23 | Jfeスチール株式会社 | ゴルフクラブヘッド |
RU2311248C1 (ru) * | 2006-05-06 | 2007-11-27 | Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) | Способ получения прутков из титановых сплавов (варианты) |
RU2335571C2 (ru) * | 2006-08-17 | 2008-10-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ изготовления плит из титановых сплавов |
RU2383654C1 (ru) * | 2008-10-22 | 2010-03-10 | Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
US9624566B2 (en) | 2011-02-24 | 2017-04-18 | Nippon Steel & Sumitomo Metal Corporation | Alpha and beta titanium alloy sheet excellent in cold rollability and cold handling property and process for producing the same |
WO2012115243A1 (ja) | 2011-02-24 | 2012-08-30 | 新日本製鐵株式会社 | 冷間でのコイル取扱性に優れた高強度α+β型チタン合金熱延板及びその製造方法 |
WO2012174501A1 (en) * | 2011-06-17 | 2012-12-20 | Titanium Metals Corporation | Method for the manufacture of alpha-beta ti-al-v-mo-fe alloy sheets |
CN102586639A (zh) * | 2012-03-16 | 2012-07-18 | 广州有色金属研究院 | 一种高速压制成形制备钛合金的方法 |
CN104532057B (zh) * | 2014-12-11 | 2017-01-04 | 西部超导材料科技股份有限公司 | 一种Ti6242钛合金及其小规格棒材的制备方法 |
CN105251804B (zh) * | 2015-10-28 | 2018-05-08 | 西部超导材料科技股份有限公司 | 一种tc6钛合金六方棒的轧制方法 |
CA3009962C (en) * | 2015-12-22 | 2021-11-09 | Stock Company "Chepetsky Mechanical Plant" (Sc Cmp) | A method of manufacturing rods from titanium alloys |
CN111545574A (zh) * | 2020-05-20 | 2020-08-18 | 攀钢集团攀枝花钛材有限公司江油分公司 | Ta15热轧板材组织控制的方法 |
CN114535343B (zh) * | 2022-04-26 | 2022-08-30 | 西部宝德科技股份有限公司 | 钛纤维制备方法 |
AT526906B1 (de) * | 2023-01-30 | 2025-02-15 | Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh | Verfahren zur Herstellung eines Objektes aus einer alpha-beta-Titanlegierung und damit hergestelltes Objekt |
CN117187723A (zh) * | 2023-08-31 | 2023-12-08 | 西部超导材料科技股份有限公司 | 冷镦用tc16钛合金棒材的加工方法 |
CN119747435A (zh) * | 2024-12-17 | 2025-04-04 | 西部超导材料科技股份有限公司 | 一种高性能叶片用tc4钛合金棒材及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5825465A (ja) * | 1981-08-05 | 1983-02-15 | Sumitomo Metal Ind Ltd | 組織の良好なチタン合金圧延材の製造方法 |
JPH05295502A (ja) * | 1992-04-21 | 1993-11-09 | Nkk Corp | 超塑性加工用α+β型チタン合金板の製造方法 |
JPH08103831A (ja) * | 1994-10-05 | 1996-04-23 | Nkk Corp | チタン合金板材の打抜加工方法 |
JPH10306335A (ja) * | 1997-04-30 | 1998-11-17 | Nkk Corp | (α+β)型チタン合金棒線材およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5982101A (ja) * | 1982-11-01 | 1984-05-12 | Sumitomo Metal Ind Ltd | チタン合金棒の製造方法 |
US5362441A (en) * | 1989-07-10 | 1994-11-08 | Nkk Corporation | Ti-Al-V-Mo-O alloys with an iron group element |
DE69024418T2 (de) * | 1989-07-10 | 1996-05-15 | Nippon Kokan Kk | Legierung auf Titan-Basis und Verfahren zu deren Superplastischer Formgebung |
US5346217A (en) * | 1991-02-08 | 1994-09-13 | Yamaha Corporation | Hollow metal alloy wood-type golf head |
JP3083225B2 (ja) * | 1993-12-01 | 2000-09-04 | オリエント時計株式会社 | チタン合金製装飾品の製造方法、および時計外装部品 |
JP3114503B2 (ja) * | 1994-07-14 | 2000-12-04 | 日本鋼管株式会社 | 局部的に耐磨耗性に優れた(α+β)型チタン合金の製造方法 |
JP3319195B2 (ja) * | 1994-12-05 | 2002-08-26 | 日本鋼管株式会社 | α+β型チタン合金の高靱化方法 |
JP4655666B2 (ja) * | 2005-02-23 | 2011-03-23 | Jfeスチール株式会社 | ゴルフクラブヘッド |
-
2002
- 2002-02-26 JP JP2002570785A patent/JP4013761B2/ja not_active Expired - Fee Related
- 2002-02-26 EP EP02703899A patent/EP1382695A4/en not_active Withdrawn
- 2002-02-26 WO PCT/JP2002/001710 patent/WO2002070763A1/ja not_active Application Discontinuation
- 2002-02-26 RU RU2003126234/02A patent/RU2259413C2/ru not_active IP Right Cessation
- 2002-02-27 TW TW091103561A patent/TWI293987B/zh not_active IP Right Cessation
-
2003
- 2003-04-17 US US10/418,252 patent/US20030223902A1/en not_active Abandoned
-
2004
- 2004-10-18 US US10/968,521 patent/US20050051245A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5825465A (ja) * | 1981-08-05 | 1983-02-15 | Sumitomo Metal Ind Ltd | 組織の良好なチタン合金圧延材の製造方法 |
JPH05295502A (ja) * | 1992-04-21 | 1993-11-09 | Nkk Corp | 超塑性加工用α+β型チタン合金板の製造方法 |
JPH08103831A (ja) * | 1994-10-05 | 1996-04-23 | Nkk Corp | チタン合金板材の打抜加工方法 |
JPH10306335A (ja) * | 1997-04-30 | 1998-11-17 | Nkk Corp | (α+β)型チタン合金棒線材およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1382695A4 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9796005B2 (en) | 2003-05-09 | 2017-10-24 | Ati Properties Llc | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
US10422027B2 (en) | 2004-05-21 | 2019-09-24 | Ati Properties Llc | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US10144999B2 (en) | 2010-07-19 | 2018-12-04 | Ati Properties Llc | Processing of alpha/beta titanium alloys |
US9765420B2 (en) | 2010-07-19 | 2017-09-19 | Ati Properties Llc | Processing of α/β titanium alloys |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US9624567B2 (en) | 2010-09-15 | 2017-04-18 | Ati Properties Llc | Methods for processing titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US10287655B2 (en) | 2011-06-01 | 2019-05-14 | Ati Properties Llc | Nickel-base alloy and articles |
US9616480B2 (en) | 2011-06-01 | 2017-04-11 | Ati Properties Llc | Thermo-mechanical processing of nickel-base alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US10570469B2 (en) | 2013-02-26 | 2020-02-25 | Ati Properties Llc | Methods for processing alloys |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10370751B2 (en) | 2013-03-15 | 2019-08-06 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
JP2015101749A (ja) * | 2013-11-22 | 2015-06-04 | 東邦チタニウム株式会社 | α+β型チタン合金および同合金の製造方法 |
US11319616B2 (en) | 2015-01-12 | 2022-05-03 | Ati Properties Llc | Titanium alloy |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10619226B2 (en) | 2015-01-12 | 2020-04-14 | Ati Properties Llc | Titanium alloy |
US12168817B2 (en) | 2015-01-12 | 2024-12-17 | Ati Properties Llc | Titanium alloy |
US10808298B2 (en) | 2015-01-12 | 2020-10-20 | Ati Properties Llc | Titanium alloy |
US11851734B2 (en) | 2015-01-12 | 2023-12-26 | Ati Properties Llc | Titanium alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
CN107138523B (zh) * | 2017-06-29 | 2019-07-02 | 西部超导材料科技股份有限公司 | 一种tb9钛合金丝棒材及其轧制方法 |
CN107138523A (zh) * | 2017-06-29 | 2017-09-08 | 西部超导材料科技股份有限公司 | 一种tb9钛合金丝棒材及其轧制方法 |
CN109283205A (zh) * | 2018-10-19 | 2019-01-29 | 中国航发北京航空材料研究院 | 一种钛合金组织中初生α相体积分数的测定方法 |
CN109283205B (zh) * | 2018-10-19 | 2021-03-26 | 中国航发北京航空材料研究院 | 一种钛合金组织中初生α相体积分数的测定方法 |
CN113039299A (zh) * | 2018-11-15 | 2021-06-25 | 日本制铁株式会社 | 钛合金线材及钛合金线材的制造方法 |
JP7024861B2 (ja) | 2018-11-15 | 2022-02-24 | 日本製鉄株式会社 | チタン合金線材およびチタン合金線材の製造方法 |
CN113039299B (zh) * | 2018-11-15 | 2022-07-19 | 日本制铁株式会社 | 钛合金线材及钛合金线材的制造方法 |
JPWO2020101008A1 (ja) * | 2018-11-15 | 2021-02-15 | 日本製鉄株式会社 | チタン合金線材およびチタン合金線材の製造方法 |
WO2020101008A1 (ja) * | 2018-11-15 | 2020-05-22 | 日本製鉄株式会社 | チタン合金線材およびチタン合金線材の製造方法 |
JP2021167448A (ja) * | 2020-04-10 | 2021-10-21 | 日本製鉄株式会社 | チタン合金棒材及びその製造方法 |
JP7518344B2 (ja) | 2020-04-10 | 2024-07-18 | 日本製鉄株式会社 | チタン合金棒材及びその製造方法 |
US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
Also Published As
Publication number | Publication date |
---|---|
RU2003126234A (ru) | 2005-03-10 |
EP1382695A4 (en) | 2004-08-11 |
JP4013761B2 (ja) | 2007-11-28 |
JPWO2002070763A1 (ja) | 2004-07-02 |
TWI293987B (enrdf_load_stackoverflow) | 2008-03-01 |
EP1382695A1 (en) | 2004-01-21 |
US20050051245A1 (en) | 2005-03-10 |
RU2259413C2 (ru) | 2005-08-27 |
US20030223902A1 (en) | 2003-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002070763A1 (fr) | Barre d'alliage de titane et procede de fabrication | |
JP6965986B2 (ja) | α+β型チタン合金線材及びα+β型チタン合金線材の製造方法 | |
EP2868759B1 (en) | ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME | |
CA2525084C (en) | Processing of titanium-aluminum-vanadium alloys and products made thereby | |
EP1466028A1 (en) | Method for processing beta titanium alloys | |
JP7448776B2 (ja) | チタン合金薄板およびチタン合金薄板の製造方法 | |
JP7401760B2 (ja) | α+β型チタン合金棒材の製造方法 | |
Ari-Gur et al. | Evolution of microstructure, macrotexture and microtexture during hot rolling of Ti-6A1-4V | |
JP7448777B2 (ja) | α+β型チタン合金棒材及びα+β型チタン合金棒材の製造方法 | |
CN110029294B (zh) | 一种钛锆铌合金的加工方法 | |
JP4019668B2 (ja) | 高靭性チタン合金材及びその製造方法 | |
JP2010082688A (ja) | β型チタン合金板の製造方法及びβ型チタン合金板 | |
JP2018053313A (ja) | α+β型チタン合金棒およびその製造方法 | |
JPH07180011A (ja) | α+β型チタン合金押出材の製造方法 | |
KR101158477B1 (ko) | 고강도 및 고연성 티타늄 합금의 제조방법 | |
JP2023092454A (ja) | チタン合金、チタン合金棒、チタン合金板及びエンジンバルブ | |
TWI796118B (zh) | 鈦合金板及鈦合金捲材暨鈦合金板之製造方法及鈦合金捲材之製造方法 | |
KR20230095259A (ko) | 미세 및 등축 결정립을 갖는 티타늄 박판의 제조방법 및 이를 이용하여 제조된 티타늄 박판 | |
JP3951564B2 (ja) | 電解析出ドラムの表面部材用熱延チタン板およびその製造方法 | |
WO2021149155A1 (ja) | 加工チタン材の製造方法 | |
KR20240096117A (ko) | 고강도 티타늄 합금 후판 및 이의 제조 방법 | |
AU2004239246B2 (en) | Processing of titanium-aluminum-vanadium alloys and products made thereby | |
KR20250091500A (ko) | 선재 및 그 제조방법 | |
JPH02112804A (ja) | α+β型チタン合金継目無管の製造方法 | |
JPH1085804A (ja) | 組織粗大化を抑制する物質を含有したα型またはα+β型チタン合金からなる継ぎ目無し管の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP RU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002570785 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10418252 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002703899 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002703899 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002703899 Country of ref document: EP |