WO2002070763A1 - Barre d'alliage de titane et procede de fabrication - Google Patents

Barre d'alliage de titane et procede de fabrication Download PDF

Info

Publication number
WO2002070763A1
WO2002070763A1 PCT/JP2002/001710 JP0201710W WO02070763A1 WO 2002070763 A1 WO2002070763 A1 WO 2002070763A1 JP 0201710 W JP0201710 W JP 0201710W WO 02070763 A1 WO02070763 A1 WO 02070763A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
titanium alloy
less
phase
type titanium
Prior art date
Application number
PCT/JP2002/001710
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
Hideaki Fukai
Atsushi Ogawa
Kuninori Minakawa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to JP2002570785A priority Critical patent/JP4013761B2/ja
Priority to EP02703899A priority patent/EP1382695A4/en
Publication of WO2002070763A1 publication Critical patent/WO2002070763A1/ja
Priority to US10/418,252 priority patent/US20030223902A1/en
Priority to US10/968,521 priority patent/US20050051245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Definitions

  • the present invention relates to a titanium alloy bar excellent in ductility, fatigue characteristics and workability, particularly to an a + i3 type titanium alloy bar and a method for manufacturing the same.
  • BACKGROUND ART Titanium alloys are used as structural materials in chemical plants, generators, aircraft, and other fields because of their high strength, lightness, and excellent corrosion resistance.
  • ⁇ +] 3 type titanium alloys that have high strength and relatively good workability.
  • Products using titanium alloy include various shapes such as thin plates, thick plates and bars.
  • the rod is used in its original shape, but in some cases it is processed into a complex shape, such as a threaded part of Porto, or it is used as a forged material. Excellent workability is required in addition to ductility and fatigue properties.
  • Figure 1 shows a typical method of manufacturing a bar.
  • the temperature of the material to be rolled increases during hot rolling due to the heat generated during processing, so that stable hot rolling cannot be performed and ductility and fatigue properties
  • the temperature of the material to be rolled rises to the i3 transformation point or higher, the ⁇ ⁇ Therefore, excellent ductility and fatigue properties cannot be obtained.
  • the transformation point is high, the temperature of the material to be rolled hardly becomes higher than the i3 transformation point due to the heat generated during processing. Ductile, fatigue properties and workability cannot be obtained.
  • Japanese Patent Application Laid-Open No. 59-82101 discloses a method of reducing the cross-sectional reduction rate per rolling pass at 0: zone temperature and + / 3 zone temperature to 40% or less. Is disclosed.
  • Japanese Patent Application Laid-Open No. 58-25465 discloses a method of water-cooling a material to be rolled in order to suppress a rise in temperature due to heat generated during processing.
  • Paper 1 “Hot Bar Rolling of Ti-6A1-4V in a Controllable Continuous Mill (Titanium '92 Science and Technology)”, the rolling speed is used to suppress the heat generated during processing.
  • Figure 3 shows the relationship between the temperature of the material to be rolled and the rolling time in bar rolling of the Ti-6A4V alloy and the Ti-44.5Al-3V-2Fe-2Mo alloy.
  • the heating temperature is 950 ° for the Ti-6A4 4V alloy (: for the Ti-4.5A3 3V-2Fe-2 ⁇ 'alloy, the j3 transformation point of which is 100 ° C lower than the Ti-6A4V alloy)
  • the temperature was lowered to 850 ° C by the difference between the three transformation points.
  • Rolling was performed using a reverse mill and a tandem mill, and the rolling speed, rolling reduction, and pass schedule were the same for both alloys. Rolling on a reverse rolling mill was 2.7 mI sec for both alloys, and rolling 3 ⁇ 4i in the tandem rolling mill was 2.25 m / sec for both alloys in the final rolling pass, which was the fastest.
  • the rolling speed is lower than the rolling speed (6 m / sec) described in the above paper 1.
  • the cross-sectional reduction rate is set to 26% at maximum for both alloys.
  • the a + jS type titanium alloy bar has a process of hot rolling the titanium alloy of the above component so that the surface temperature is always below the ⁇ transformation point. It can be manufactured by a method. Brief description of the drawings- FIG. 1 is a diagram showing a typical method of manufacturing a bar.
  • A1 It is an essential element for stabilizing the phase and also contributes to high strength. If it is less than 4, high strength is not sufficiently achieved, and if it exceeds 5%, ductility deteriorates.
  • V An element that stabilizes the three phases and also contributes to high strength. If it is less than 2.5%, high strength is not sufficiently achieved, and) the three phases are not stable. If it exceeds 3.5%, the transformation temperature range is reduced due to the decrease of the 0 transformation point, and the cost is increased. Invite.
  • the temperature rise due to the heat generated during the process causes coarsening of crystal grains and formation of a needle-like structure. Furthermore, the reason why the finished surface temperature, which is the surface temperature immediately after the rolled material has completed the final rolling pass, is in the range of -300) ° C or more and (T 3-100) ° C or less is ⁇ -300) ° c If it is less than the above, cracking sensitivity and deformation resistance will increase, and if it exceeds (Tjs-loo) ° c, crystal grains will be coarse.
  • hot rolling is performed in a plurality of rolling passes, it is preferable to reduce the rolling reduction per rolling pass to 40% or less in order to prevent a temperature rise due to heat generated during processing.
  • the rolling speed is preferably set to 6 m / sec or less in order to prevent a temperature rise due to heat generated during processing.
  • Rolled material of 125 thigh angle was cut out from titanium alloys AO1 (within the scope of the present invention) and A02 (outside the scope of the present invention) of the chemical composition shown in Table 1 and A02 (within the scope of the present invention). Under the indicated rolling conditions B01-B18, rods having a diameter of 0 strokes or 50 bars were manufactured.
  • the time between rolling passes in Table 2 is ⁇ when the time between rolling passes is 0.167 XS 1/2 sec or more in all rolling passes and X when not.
  • Table 3-Table 20 show the cross-sectional area S, rolling reduction, 0.167 XS 1/2 time between rolling passes, surface temperature and rolled body of the material to be rolled in each rolling pass under each rolling condition.
  • R represents a reverse rolling mill
  • T represents a tandem rolling mill.
  • Tensile tests were performed on the manufactured rods after annealing at 700 ° C or more and 720 ° C or less, and the yield strength (0.2 3 ⁇ 4PS), tensile strength (UTS), extension (El), and drawing (RA) were measured.
  • Table 21 shows the results.
  • the absence of the crystal grain size in the microstructures in the table means that the site consisted only of the ⁇ -structure mainly composed of acicular a, and no equiaxed pro-eutectoid ⁇ -phase could be observed.
  • the finished surface temperature is lower than (T) 3-300) ° C, the temperature of the material to be rolled is too low, the workability is reduced, and cracks occur during rolling.
  • the surface temperature is higher than (T) 3-100), as in the rolling conditions # 04, # 05 and # 07, the microstructure cannot be refined and the ductility and fatigue properties deteriorate.
  • the surface temperature of the material to be rolled is lower than (T j8-300) ° C, the surface temperature of the material to be rolled is too low and cracks occur during rolling.
  • the surface temperature of the material to be rolled is higher than ( ⁇ ⁇ -50) ° C, the center of the roll and the 1 / 4D yarn 13 ⁇ 4 are stitched as in the rolling conditions B02-B05, B07 and B11. It becomes a ⁇ -yarn mainly composed of a shape and has poor ductility and fatigue properties.
  • ⁇ + type titanium alloys in which the volume fraction of proeutectoid ⁇ phase is 50% or more and 80% or less and the average crystal grain size of proeutectoid phase is 6 m or less
  • Kt 3) fatigue strength of 200 MPa.
  • the bar manufactured using rolling conditions B10 and B12 using A02 whose chemical composition is out of the range of the present invention since the rolling conditions were within the range of the present invention, the heat generation during processing was suppressed. Since the particle size exceeds 10, sufficient ductility and fatigue strength cannot be obtained.
  • a cylindrical test piece of ⁇ 8 thigh ⁇ 12 thigh was collected from the radial center of the bar manufactured under the rolling conditions B0-B18 in Example 1 and heated to 800 ° C., compressed by 70%, and compressed. The hot forgeability was evaluated by examining the surface for cracks and rough surfaces.
  • Bars manufactured under rolling conditions B01, B06, B08, B09, B16, ⁇ , and B18 in which the microfilament falls within the scope of the present invention did not cause cracking or roughening, and obtained good hot forgeability.
  • rods manufactured under rolling conditions B10 and B12 in which the crystal grain size of the pro-eutectoid ⁇ phase exceeded 10 m did not crack, but roughened the surface.
  • both the cracks and the rough surface occurred in the bars manufactured under the rolling conditions ⁇ 02, ⁇ 03, ⁇ 04, ⁇ 05, ⁇ 07, Bll, ⁇ 14, and B15 in which the center and the 1 / 4D part consisted of only / 3 phase. .
  • the crystal grain size and the volume fraction of the pro-eutectoid ⁇ phase are within the range of the present invention, but the aspect ratio of the crystal grains in a cross section parallel to the rolling direction is determined. With rolling condition B13 exceeding 4, the surface roughness still occurred c
  • the unit is mass%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
PCT/JP2002/001710 2001-02-28 2002-02-26 Barre d'alliage de titane et procede de fabrication WO2002070763A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002570785A JP4013761B2 (ja) 2001-02-28 2002-02-26 チタン合金棒材の製造方法
EP02703899A EP1382695A4 (en) 2001-02-28 2002-02-26 TIT ALLOY BAR AND METHOD FOR PRODUCING IT
US10/418,252 US20030223902A1 (en) 2001-02-28 2003-04-17 Titanium alloy bar and method for manufacturing the same
US10/968,521 US20050051245A1 (en) 2001-02-28 2004-10-18 Method for manufacturing a titanium alloy bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-054809 2001-02-28
JP2001054809 2001-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/418,252 Continuation US20030223902A1 (en) 2001-02-28 2003-04-17 Titanium alloy bar and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2002070763A1 true WO2002070763A1 (fr) 2002-09-12

Family

ID=18915085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001710 WO2002070763A1 (fr) 2001-02-28 2002-02-26 Barre d'alliage de titane et procede de fabrication

Country Status (6)

Country Link
US (2) US20030223902A1 (enrdf_load_stackoverflow)
EP (1) EP1382695A4 (enrdf_load_stackoverflow)
JP (1) JP4013761B2 (enrdf_load_stackoverflow)
RU (1) RU2259413C2 (enrdf_load_stackoverflow)
TW (1) TWI293987B (enrdf_load_stackoverflow)
WO (1) WO2002070763A1 (enrdf_load_stackoverflow)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101749A (ja) * 2013-11-22 2015-06-04 東邦チタニウム株式会社 α+β型チタン合金および同合金の製造方法
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
CN107138523A (zh) * 2017-06-29 2017-09-08 西部超导材料科技股份有限公司 一种tb9钛合金丝棒材及其轧制方法
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN109283205A (zh) * 2018-10-19 2019-01-29 中国航发北京航空材料研究院 一种钛合金组织中初生α相体积分数的测定方法
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
WO2020101008A1 (ja) * 2018-11-15 2020-05-22 日本製鉄株式会社 チタン合金線材およびチタン合金線材の製造方法
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
JP2021167448A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 チタン合金棒材及びその製造方法
US12344918B2 (en) 2023-07-12 2025-07-01 Ati Properties Llc Titanium alloys

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264411B2 (ja) * 2004-04-09 2009-05-20 新日本製鐵株式会社 高強度α+β型チタン合金
RU2269584C1 (ru) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Сплав на основе титана
JP4655666B2 (ja) * 2005-02-23 2011-03-23 Jfeスチール株式会社 ゴルフクラブヘッド
RU2311248C1 (ru) * 2006-05-06 2007-11-27 Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) Способ получения прутков из титановых сплавов (варианты)
RU2335571C2 (ru) * 2006-08-17 2008-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления плит из титановых сплавов
RU2383654C1 (ru) * 2008-10-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него
US9624566B2 (en) 2011-02-24 2017-04-18 Nippon Steel & Sumitomo Metal Corporation Alpha and beta titanium alloy sheet excellent in cold rollability and cold handling property and process for producing the same
WO2012115243A1 (ja) 2011-02-24 2012-08-30 新日本製鐵株式会社 冷間でのコイル取扱性に優れた高強度α+β型チタン合金熱延板及びその製造方法
WO2012174501A1 (en) * 2011-06-17 2012-12-20 Titanium Metals Corporation Method for the manufacture of alpha-beta ti-al-v-mo-fe alloy sheets
CN102586639A (zh) * 2012-03-16 2012-07-18 广州有色金属研究院 一种高速压制成形制备钛合金的方法
CN104532057B (zh) * 2014-12-11 2017-01-04 西部超导材料科技股份有限公司 一种Ti6242钛合金及其小规格棒材的制备方法
CN105251804B (zh) * 2015-10-28 2018-05-08 西部超导材料科技股份有限公司 一种tc6钛合金六方棒的轧制方法
CA3009962C (en) * 2015-12-22 2021-11-09 Stock Company "Chepetsky Mechanical Plant" (Sc Cmp) A method of manufacturing rods from titanium alloys
CN111545574A (zh) * 2020-05-20 2020-08-18 攀钢集团攀枝花钛材有限公司江油分公司 Ta15热轧板材组织控制的方法
CN114535343B (zh) * 2022-04-26 2022-08-30 西部宝德科技股份有限公司 钛纤维制备方法
AT526906B1 (de) * 2023-01-30 2025-02-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren zur Herstellung eines Objektes aus einer alpha-beta-Titanlegierung und damit hergestelltes Objekt
CN117187723A (zh) * 2023-08-31 2023-12-08 西部超导材料科技股份有限公司 冷镦用tc16钛合金棒材的加工方法
CN119747435A (zh) * 2024-12-17 2025-04-04 西部超导材料科技股份有限公司 一种高性能叶片用tc4钛合金棒材及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825465A (ja) * 1981-08-05 1983-02-15 Sumitomo Metal Ind Ltd 組織の良好なチタン合金圧延材の製造方法
JPH05295502A (ja) * 1992-04-21 1993-11-09 Nkk Corp 超塑性加工用α+β型チタン合金板の製造方法
JPH08103831A (ja) * 1994-10-05 1996-04-23 Nkk Corp チタン合金板材の打抜加工方法
JPH10306335A (ja) * 1997-04-30 1998-11-17 Nkk Corp (α+β)型チタン合金棒線材およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982101A (ja) * 1982-11-01 1984-05-12 Sumitomo Metal Ind Ltd チタン合金棒の製造方法
US5362441A (en) * 1989-07-10 1994-11-08 Nkk Corporation Ti-Al-V-Mo-O alloys with an iron group element
DE69024418T2 (de) * 1989-07-10 1996-05-15 Nippon Kokan Kk Legierung auf Titan-Basis und Verfahren zu deren Superplastischer Formgebung
US5346217A (en) * 1991-02-08 1994-09-13 Yamaha Corporation Hollow metal alloy wood-type golf head
JP3083225B2 (ja) * 1993-12-01 2000-09-04 オリエント時計株式会社 チタン合金製装飾品の製造方法、および時計外装部品
JP3114503B2 (ja) * 1994-07-14 2000-12-04 日本鋼管株式会社 局部的に耐磨耗性に優れた(α+β)型チタン合金の製造方法
JP3319195B2 (ja) * 1994-12-05 2002-08-26 日本鋼管株式会社 α+β型チタン合金の高靱化方法
JP4655666B2 (ja) * 2005-02-23 2011-03-23 Jfeスチール株式会社 ゴルフクラブヘッド

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825465A (ja) * 1981-08-05 1983-02-15 Sumitomo Metal Ind Ltd 組織の良好なチタン合金圧延材の製造方法
JPH05295502A (ja) * 1992-04-21 1993-11-09 Nkk Corp 超塑性加工用α+β型チタン合金板の製造方法
JPH08103831A (ja) * 1994-10-05 1996-04-23 Nkk Corp チタン合金板材の打抜加工方法
JPH10306335A (ja) * 1997-04-30 1998-11-17 Nkk Corp (α+β)型チタン合金棒線材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1382695A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
JP2015101749A (ja) * 2013-11-22 2015-06-04 東邦チタニウム株式会社 α+β型チタン合金および同合金の製造方法
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US12168817B2 (en) 2015-01-12 2024-12-17 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN107138523B (zh) * 2017-06-29 2019-07-02 西部超导材料科技股份有限公司 一种tb9钛合金丝棒材及其轧制方法
CN107138523A (zh) * 2017-06-29 2017-09-08 西部超导材料科技股份有限公司 一种tb9钛合金丝棒材及其轧制方法
CN109283205A (zh) * 2018-10-19 2019-01-29 中国航发北京航空材料研究院 一种钛合金组织中初生α相体积分数的测定方法
CN109283205B (zh) * 2018-10-19 2021-03-26 中国航发北京航空材料研究院 一种钛合金组织中初生α相体积分数的测定方法
CN113039299A (zh) * 2018-11-15 2021-06-25 日本制铁株式会社 钛合金线材及钛合金线材的制造方法
JP7024861B2 (ja) 2018-11-15 2022-02-24 日本製鉄株式会社 チタン合金線材およびチタン合金線材の製造方法
CN113039299B (zh) * 2018-11-15 2022-07-19 日本制铁株式会社 钛合金线材及钛合金线材的制造方法
JPWO2020101008A1 (ja) * 2018-11-15 2021-02-15 日本製鉄株式会社 チタン合金線材およびチタン合金線材の製造方法
WO2020101008A1 (ja) * 2018-11-15 2020-05-22 日本製鉄株式会社 チタン合金線材およびチタン合金線材の製造方法
JP2021167448A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 チタン合金棒材及びその製造方法
JP7518344B2 (ja) 2020-04-10 2024-07-18 日本製鉄株式会社 チタン合金棒材及びその製造方法
US12344918B2 (en) 2023-07-12 2025-07-01 Ati Properties Llc Titanium alloys

Also Published As

Publication number Publication date
RU2003126234A (ru) 2005-03-10
EP1382695A4 (en) 2004-08-11
JP4013761B2 (ja) 2007-11-28
JPWO2002070763A1 (ja) 2004-07-02
TWI293987B (enrdf_load_stackoverflow) 2008-03-01
EP1382695A1 (en) 2004-01-21
US20050051245A1 (en) 2005-03-10
RU2259413C2 (ru) 2005-08-27
US20030223902A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
WO2002070763A1 (fr) Barre d'alliage de titane et procede de fabrication
JP6965986B2 (ja) α+β型チタン合金線材及びα+β型チタン合金線材の製造方法
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
CA2525084C (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
EP1466028A1 (en) Method for processing beta titanium alloys
JP7448776B2 (ja) チタン合金薄板およびチタン合金薄板の製造方法
JP7401760B2 (ja) α+β型チタン合金棒材の製造方法
Ari-Gur et al. Evolution of microstructure, macrotexture and microtexture during hot rolling of Ti-6A1-4V
JP7448777B2 (ja) α+β型チタン合金棒材及びα+β型チタン合金棒材の製造方法
CN110029294B (zh) 一种钛锆铌合金的加工方法
JP4019668B2 (ja) 高靭性チタン合金材及びその製造方法
JP2010082688A (ja) β型チタン合金板の製造方法及びβ型チタン合金板
JP2018053313A (ja) α+β型チタン合金棒およびその製造方法
JPH07180011A (ja) α+β型チタン合金押出材の製造方法
KR101158477B1 (ko) 고강도 및 고연성 티타늄 합금의 제조방법
JP2023092454A (ja) チタン合金、チタン合金棒、チタン合金板及びエンジンバルブ
TWI796118B (zh) 鈦合金板及鈦合金捲材暨鈦合金板之製造方法及鈦合金捲材之製造方法
KR20230095259A (ko) 미세 및 등축 결정립을 갖는 티타늄 박판의 제조방법 및 이를 이용하여 제조된 티타늄 박판
JP3951564B2 (ja) 電解析出ドラムの表面部材用熱延チタン板およびその製造方法
WO2021149155A1 (ja) 加工チタン材の製造方法
KR20240096117A (ko) 고강도 티타늄 합금 후판 및 이의 제조 방법
AU2004239246B2 (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
KR20250091500A (ko) 선재 및 그 제조방법
JPH02112804A (ja) α+β型チタン合金継目無管の製造方法
JPH1085804A (ja) 組織粗大化を抑制する物質を含有したα型またはα+β型チタン合金からなる継ぎ目無し管の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002570785

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10418252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002703899

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002703899

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002703899

Country of ref document: EP